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[1] The moisture transport integrated over the depth of the atmosphere (®) is estimated
over oceans using satellite data. The transport is the product of the precipitable water and
an equivalent velocity (u,), which, by definition, is the depth-averaged wind velocity
weighted by humidity. An artificial neural network is employed to construct a relation
between the surface wind velocity measured by the spaceborne scatterometer and
coincident u, derived using humidity and wind profiles measured by rawinsondes and
produced by reanalysis of operational numerical weather prediction (NWP). On the basis
of this relation, © fields are produced over global tropical and subtropical oceans (40°N—
40°S) at 0.25° latitude-longitude and twice daily resolutions from August 1999 to
December 2003 using surface wind vector from QuikSCAT and precipitable water from
the Tropical Rain Measuring Mission. The derived u, were found to capture the major
temporal variability when compared with radiosonde measurements. The average error
over global oceans, when compared with NWP data, was comparable with the instrument
accuracy specification of space-based scatterometers. The global distribution exhibits the
known characteristics of, and reveals more detailed variability than in, previous data.
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1. Introduction

[2] The moisture transport integrated over the depth of
the atmosphere (®) is an important branch of the global
hydrological cycle. It redistributes moisture (and latent
heat), with an overall effect of transforming the input from
evaporation over oceans into the deposition as precipitation
over land. Fluctuations in the ® fields can significantly
influence flood or drought, with important economic con-
sequences. With appropriate spatial and temporal resolution,
© fields can be used to estimate the regional differences
between evaporation and precipitation and can help to
identify major water sources or sinks. This is particularly
important over the oceans, where measurements of surface
freshwater flux are extremely sparse. Through the surface
freshwater flux the atmosphere affects the circulation,
salinity, and density stratification of the upper ocean [e.g.,
Lagerloef, 2002]. Estimating ® fields over global oceans
with sufficient resolutions, however, is a great challenge.

[3] Starr and White [1955] compiled zonally averaged ®
in the Northern Hemisphere using wind and humidity
profiles in rawinsonde observations (RAOB) almost half a
century ago. Since then, there have been many studies to
improve the estimation of ® using RAOB and to apply it in
determining surface water flux over various regions and
time periods [e.g., Starr and Peixoto, 1958; Rasmusson,
1967; Rosen et al., 1979; Peixoto and Oort, 1983; Bryan
and Oort, 1984]. Another source of humidity and wind
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profiles, from which ® could be computed, is the analysis
product of numerical weather prediction (NWP) models
[e.g., Rasmusson and Mo, 1996; Trenberth and Guillemot,
1995]. The ® computed from NWP products showed
agreement with those from RAOB in the large-scale pat-
terns, but significant uncertainties and differences remain.

[4] Satellite observations may provide better coverage
than RAOB and are not affected by the deficiency in
physics and parameterizations of numerical models. Wind
profiles, however, are not measured from space at present,
but the geostrophic wind shear (the vector difference
between geostrophic winds at two levels) can be derived
from the horizontal temperature gradients of the layers
through the thermal wind equation. Slonaker and Van Woert
[1999] computed the meridional moisture transport into
Antarctica by first deriving the geostrophic winds at five
levels relative to the surface wind measurements using the
three-dimensional temperature fields from TIROS opera-
tional vertical sounder in the high southern latitudes. In this
study, we describe a simple and practical method of esti-
mating © from satellite observations, which avoids the
geostrophic assumption and the coarse resolution of space-
borne atmospheric sounders.

2. Methodology
2.1. Principles

[5s] Integration of the equation for conservation of atmo-
spheric water vapor in the vertical gives
ow

5 TV @=E-P, (1)
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Figure 1. Locations of rawinsonde observations (RAOB) (red) and National Centers for Environmental
Prediction (NCEP) (blue) data used in the artificial neural network training.

where
1 ‘Ps
0=- / qudp 2)
0

is the integrated moisture advection and

1 Ps
W:—/O qdp (3)

g

is the precipitable water. In equations (2) and (3), g is the
acceleration due to gravity, p is the pressure, p, is the
pressure at the surface, and ¢ and u are the specific humidity
and wind vector at a certain level, respectively. £ and P are
the evaporation and precipitation at the surface, respec-
tively, and ¢ is time.

[6] The computation of ® in equation (2) requires mea-
surement of the vertical profiles of wind vector and humid-
ity in the atmosphere, which traditionally come from
RAOB. Over oceans, rawinsonde data are sparse. Liu
[1993] proposed a method to estimate ® using surface wind
vector (uy) and W measured by space-based scatterometers
and microwave radiometers.

[7] As suggested by Liu [1993], an equivalent velocity is
defined as u, = ®/W, which is the depth-averaged velocity
weighted by the humidity. Since W can be accurately
measured by space-based microwave radiometers and rela-
tively long records exist from the Special Sensor Microwave
Imager, Tropical Rain Measuring Mission (TRMM) Micro-
wave Imager (TMI) [e.g., Kummerow et al., 2000], and
others, the problem of estimating ® is essentially the
determination of u,. Our objective is to develop a quantita-
tive relation between u, and u, measured by the scatterom-
eters [Liu, 2002]. The variability of vertical humidity
distribution has been extensively studied [e.g., Liu et al.,

1991]. The dominant mode of variability was found to peak
at the top of the boundary layer. Using W derived by Liu
[1987] from the microwave radiometer on Nimbus 7 and
using 850-mbar cloud drift winds as u,, Heta and Mitsuta
[1993] have estimated £ — P in the tropical Pacific from the
divergence of ®. Their results were consistent with clima-
tological features. The top of the boundary layer is approx-
imately at 850 mbar, and wind at this level is closely related
to surface level wind through similarity relations [e.g.,
Brown and Liu, 1982]. In the past, oceanographers used to
get ocean surface wind stress by multiplying the geostrophic
winds (derived from pressure gradient) by a constant factor
and by turning them by a constant angle. Deriving a simple
relation between u, and ug appears to be feasible.

2.2. Training Database

[s] A database that relates input ug and the output target
u, was established first. The quality of the database plays a
crucial role in the usefulness of the derived model function.
The output target was a combination from two data resour-
ces: (1) RAOB, which was quality controlled to best
represent in situ measurements, and (2) reanalysis of the
National Centers for Environmental Prediction (NCEP),
which was included to achieve a global representation.
There were 23 RAOB stations available, scattered in the
Pacific, Atlantic, and Indian oceans between 40°S and
40°N, and NCEP data at 135 grid points were selected
(Figure 1). NCEP provides the most timely and openly
available NWP reanalysis. One year (2000) of data from
both resources was used, including all available RAOB
measurements, and only two records every 5 days were used
for NCEP, at 0000 and 1200 UT. For each record of the
blended RAOB/NCEDP target a spatial-temporal collocation
procedure was used to extract corresponding ocean surface

2 0of 8



D10101 LIU AND TANG: MOISTURE

20

Speed of Ue
=

tion

distribut

o 11111

ol

0

TRANSPORT OVER OCEANS D10101

i
A
o " g}%ﬁ’i" ]
xﬁ‘wi -_

G

i @‘ oy

ﬂHﬂﬂHﬂﬂFﬂﬂHHH,. | .HHWHFWJ?HHHW

] 10 15
Speed at 10m (bin size=0.5 m/s)

Figure 2. Equivalent velocity u, averaged in the
(a) magnitude (bin size 0.5 m/s) and (b) direction
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Direction at 10m (bin size= 10 deg)

corresponding bins of surface vector wind uy for
(bin size 10°). Vertical bars indicate the standard

deviation. (¢ and d) Distributions for magnitude and direction, respectively.

wind vectors ug; from QuikSCAT. A 5-day moving average
is applied to each parameter to filter out the high-frequency
fluctuation. The established database contains a total of
22,925 records that are composed of ~30% from RAOB
and 70% from NCEP. From the training data set plotted in
Figure 2 the correlation between ug and u, in both magni-
tude and direction can be seen.

2.3. Artificial Neural Network

[v] The mapping from uy to u, embedded in the training
database was simulated in an empirical model function
through an artificial neural network (ANN) [Bishop,
1995]. The advantage of ANN over the multivariate regres-
sion method that was used by Liu [1993] is the ability to
blend two sets of data (from NCEP and RAOB) together
with various weights in addition to the ability to account for
the nonlinearity between inputs and the outputs without
requiring a functional form a priori. Figure 3 shows the
structure of a neural network with input, output, and two
hidden layers. Each layer contains a number of entities
called neurons. Each neuron is basically a transfer function
that produces an output signal based on weighted input
signals plus a bias from the previous layer. The outputs from
one layer become inputs to the next layer with another set of
weights and biases. Neurons in the network are connected
through these weights and biases. The so-called network
training is actually a process that iteratively decides weights
and biases to minimize the error between outputs produced
by the network in response to the inputs and the
corresponding training targets. Various network architec-
ture, algorithms, and software tools exist for ANN. In this

study, the Neural Network Toolbox with MATLAB®
[Demuth and Beale, 1998] was used to design, to develop,
and to train the ANN.

[10] Through an iterative process of training, error as-
sessment, modification, and training the final version of the
network architecture used in this study is the multilayer feed
forward network, with 7 neurons in the input layer and two
hidden layers with 28 and 8 neurons each. The seven input
variables are the (1) ocean surface wind speed, (2) direction,
(3) latitude, and (4 and 5) sine and cosine of longitude and
(6 and 7) sine and cosine of time. The values for time and
longitude were represented in harmonic function to reflect
the seasonal cycle and periodical condition. The output is the
equivalent velocity in magnitude and direction. Finally, the
matured model function was applied to ug from QuikSCAT
[Liu, 2002] in conjunction with W measured by TMI [Wentz,
1997] to produce space-based estimation of ®. The final
product of ® consists of twice daily maps in oceans from
40°S to 40°N at spatial resolution of 0.25° latitude by 0.25°
longitude and covers the time period from August 1999 to
August 2003.

3. Validation

[11] To assess the quality of the derived model function, a
blended RAOB/NCEP data set from year 2001, independent
from those used in model development, was assembled as
the validation truth set {u.}. The data set to be validated, the
derived equivalent velocity {u,} was generated by applying
the model function to the ocean surface wind {u,} extracted
from QuikSCAT collocated in space and time with {u,}.
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Figure 3. Diagram of a neural network with input, output, and two hidden layers. Each neuron
represents a transfer function, and lines denote input and output signals between the corresponding

neurons and weights and the associated biases.

The time series in Figure 4 shows that u, and u’, agree well
in intraseasonal to seasonal variations. The station, being
away from any landmass, is representative of oceanic
conditions.

Figure 4. Time series of the (a) zonal (u,) and (b)
meridional (v,) components of the equivalent velocity at
Minamidaitojima (25.83°N, 131.23°E), computed from
rawinsonde data (red) and derived from QuikSCAT winds
(black) for the year 2001. A filter of 5-day moving average
was applied to the twice daily data.

[12] There is a total of 82,218 records in the matched-up
validation set {u,, u.}, and the differences A = u,, — u,, in
magnitude and direction, were computed. Table 1 lists the
validation results. The mean A are small, —0.45 m/s in
magnitude and —2.14° in direction, and the standard devi-
ation (SD) of the ensemble A for the direction appears to be
large. The distributions of the mean and the SD of A, as a
function of u,, were examined. For speeds the mean A are
positive and negative at weak and strong winds, respectively;
the exclusion of weak winds causes the mean A to be more
negative. Excluding weak winds decreases the SD of wind
speed only slightly. The values of SD increase with wind
speed, but the number of data decreases rapidly at strong
winds. For wind direction the mean biases are small, almost
negligible for 5 m/s < u, < 15 m/s. The values of SD are
large at weak winds.

[13] To examine the large directional errors further, the
direction of A was binned into two-dimensional space of the
magnitude of u, and u, and is presented in Figure 5.
Contours represent the number of matchups in each two-
dimensional bin. Those bins with number of matchups less
than 0.05% of the total records were blacked out. The

Table 1. Statistical Results of u, — u,
Magnitude, m/s

Direction, deg

Mean SD Mean SD N
u, >0 —0.45 2.39 —2.14 52.37 79,976
u, > 3 m/s —0.83 2.27 —1.73 45.50 68,705
u, > 5 m/s —1.32 2.19 —1.00 39.10 52,051
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Figure 5. Standard deviation of directional differences
between the equivalent velocities derived from QuikSCAT
and collocated RAOB/NCEP data in the validation
database. Contours represent the number of collocated pairs
in bins of 0.5 m/s in the two-dimensional spaces. Bins with
less than 0.05% of the total validation records are blacked
out.
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direction error clearly shows the model deficiency at
low wind speed. In the range of medium to strong wind
(>5 m/s), directional SD is mostly less than 30°. It increases
to 60° for u, with magnitude between 3 and 5 m/s. The
degradation of wind direction accuracy at weak winds for
both space-based [e.g., Plant, 2000; Ebuchi et al., 2002] and
in situ measurements is well known [e.g., Dobson et al.,
1980].

4. Global Distribution

[14] The global pattern for satellite-derived ® (Figure 6)
is similar to NCEP results (not shown). The major feature is
a year-round broad belt of easterly transport in the tropical
ocean, interrupted by westerly transport in the Indian Ocean
and vicinity. The locations and magnitudes of the maxima in
the Pacific and Atlantic oceans are consistent with the
results that Rosen et al. [1979] derived from 10-year
rawinsonde data. The satellite estimation also clearly reveals
the seasonal variation of monsoons in the Indian Ocean and
the western Pacific Ocean.

[15] The winter and summer latitudinal variation of
zonally averaged ® shown in Figure 7 agrees in general
with the climatology of Peixoto and Oort [1992], consid-
ering that the climatology was compiled over both land and

0E 60E 1208 180 120W 60w ow
—-400. —-200. 0. 200. 400,
kg/(s m)

Figure 6a.

Zonal component of the climatological seasonal means of ® derived from QuikSCAT and

Tropical Rain Measuring Mission (TRMM), averaged in the 3-months periods (as indicated) from

September 1999 to August 2003.
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Figure 6b. Similar to Figure 6a but for meridional component.

ocean with most of the data from land. In boreal summer
(June, July, and August), when the Indian and Asian
monsoons are strong, rawinsonde data may underestimate
the moisture transport in the tropical ocean. Satellite data
add information on interannual variation and differences
among ocean basins. There is little interannual change in the
meridional moisture transport profiles except in the Pacific
Ocean between the equator and 20°N. It shows that the
southward moisture transport between 10°N and 20°N in
the 2002—-2003 winter is almost doubled in magnitude
compared with 2 previous years. The anomalies may be
related to the La Nifia and El Nifio episodes, which will be
analyzed in future studies.

[16] The difference between © derived from satellite data
and NCEP reanalysis can be detected in monitoring the
oceanic influence of continental rainfall through monsoons.
The computed © fields, as described at the end of section
2.3, were interpolated to some simplified coastal lines
(straight-line approximation) of India. The components
normal to these coastlines were computed (onshore advec-
tion is positive). A similar quantity was also computed from
NCEP reanalysis data. Figure 8 shows that the annual cycles
of ® computed from satellite data are in phase with the
precipitation integrated over the Indian subcontinent derived
from TRMM. At the onset of the summer monsoon in May/
June the magnitude of © directed into the continent is

higher than the total precipitation; the difference may
indicate the transport of moisture overland to the north.
The moisture influxes computed from NCEP reanalysis are
much weaker during the summer monsoon, with the
peaks occurring behind those of satellite-based ® and
precipitation.

5. Discussion

[17] A simple and innovative method of estimating ©
using space-based active and passive microwave sensors is
presented. A fictitious u, (depth-averaged wind vector
weighted by humidity) is introduced and related to surface
wind vector. The relation is established by statistical tools,
which compensate for the shortcoming in our knowledge of
the physical processes. The relation may not work well
when the surface winds are completely decoupled from the
winds aloft. This practical methodology is developed with
the awareness that simple methods, while useful, may not be
sufficient for all purposes.

[18] In comparison with a validation data set composed of
both radiosonde and NWP data the mean and standard
deviation are found to be —0.8 and 2.3 m/s for magnitude
and —1.7° and 45.5° for direction for u, larger than 3 m/s,
as shown in Table 1. The instrument specifications of a
series of space-based scatterometers are 2 m/s and 20° in
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Figure 7. Meridional profiles for the zonally averaged meridional moisture transport over the (a) global,
(b) Indian, (¢) Pacific, and (d) Atlantic oceans, averaged for the months of (left) December, January, and
February and (right) June, July, and August. Year 1 indicates the period from September 1999 to August
2000, year 2 indicates the period from September 2000 to August 2001, etc. Diamonds in Figure 7a
represent 10-year climatological averages compiled by Peixoto and Oort [1992] using RAOB.

magnitude and direction for surface wind vector for the
wind speed range of 3—20 m/s [Naderi et al., 1991]; the
standard deviations of the error of retrieved u, are only
slightly higher. Comparisons with time series of u, at
selected RAOB ocean stations show that the derived statis-
tical relation reproduces major temporal variability. The
limited validation effort in this study shows that, except
for weak wind conditions, the derived transport field should
be useful.

[19] At present, the model function is only developed
for tropical and subtropical oceans within 40° of the
equator. Effort is underway to extend it to higher latitudes.
The computed ® field captures the major large-scale
features exhibited by the operational NWP products but
with the advantage of improved resolution. An example of
the large local difference between satellite- and NWP-
derived ® is also provided. Radiosonde data over oceans
are too sparse to construct any meaningful large-scale
spatial variability. The present evaluation is hampered by

lack of standards, and there will surely be continuous
effort in improving and validating the model function. The
best validation of space-based observations is, perhaps,
through scientific applications, and the © fields are being
applied to the studies of oceanic influence of continental
hydrologic balance and to the studies of hydrologic
balance of the upper ocean.

[20] Knowing the surface wind vector or the atmospheric
circulation may not be sufficient to quantify ®. The mois-
ture transport is strongly influenced by but is not equivalent
to atmospheric circulation. Because humidity is much
higher at low altitude, ® is strongly influenced by low-
level winds. W generally decreases with increasing latitude,
and O also emphasizes low-latitude flows. Water vapor is
not a passive quantity advected by winds. Phase changes in
atmospheric water vapor change the energy cycle and then
the winds; © has clear feedback to atmospheric circulation.
The method presented is a practical tool to estimate an
important parameter at improved resolution and coverage.
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Figure 8. Time series of the moisture transport into the Indian subcontinent through simplified
coastline, calculated from satellite data (black) and NCEP (green) and compared with total precipitation

over land measured by TRMM (red).
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