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ABSTRACT

Over the past several years, extensive databases
have been developed for the S-N behavior of various
materials used in wind turbine blades, primarily
fiberglass composites.  These data are typically
presented both in their “raw” form and curve fit to
define their average properties.  For design, confidence
limits must be placed on these descriptions.  In
particular, most designs call for the “95/95” design
values; namely, with a 95 percent level of confidence,
the designer is assured that 95 percent of the material
will meet or exceed the design value.  For such material
properties as the ultimate strength, the procedures for
estimating its value at a particular confidence level is
well defined if the measured values follow a normal or
a log-normal distribution.  Namely, based upon the
number of sample points and their standard deviation, a
commonly-found table may be used to determine the
survival percentage at a particular confidence level with
respect to its mean value.  The same is true for fatigue
data at a constant stress level (the number of cycles to
failure N at stress level S1).  However, when the stress
level is allowed to vary, as with a typical S-N fatigue
curve, the procedures for determining confidence limits
are not as well defined.  This paper outlines techniques
for determining confidence limits of fatigue data.
Different approaches to estimating the 95/95 level are
compared.  Data from the MSU/DOE and the FACT
fatigue databases are used to illustrate typical results.

INTRODUCTION

The derivation of fatigue-life curves, commonly
called S-N curves for the stress level S that produces
failure at N cycles, is typically based on suites of test
data that cover a wide range of stress levels.  Typically,
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these data are then used with curve-fitting techniques to
develop the “average” fatigue behavior of the material
over an appropriate range of stress levels.

There is always scatter in the test data, indicating
that some of the material has lower strength and some
has higher strength than the average. In fact, there is
usually a distribution of strengths underlying the
scatter. Designers therefore cannot use the average
behavior, because, by definition, approximately half of
the material cannot meet or exceed the average
strength.  Thus, the designer must use a “design” level
at which acceptably high percentages will not fail. This
leads to the search for a so-called safe strength level,
extracted from available test data, that designers can
use with confidence.  Thus, we use the term
“confidence limit.”

 If the distribution of the test data about the average
is known exactly, the desired safety level could be
determined by simply picking the strength that
corresponds to an acceptable probability of failure.
However, while the test data help to determine the
underlying distribution of strengths, they cannot define
it perfectly because they are limited in extent.  Thus,
there is uncertainty about the distribution.  To account
for the imperfect knowledge of the true strength
distribution, a confidence limit is developed for the
data.  This limit permits a conservative estimate of an
acceptable probability of failure.

Confidence limits can be created in a number of
ways, most of which are well documented in the
literature. This paper attempts to help the wind turbine
designer apply appropriate standard techniques to the
specific problem of fatigue-life curves.

Preliminaries and Definitions
When dealing with a random variable, such as the static
strength of a material, the design engineer typically
uses a value for the strength that is “guaranteed” by the
manufacturer. What the manufacturer is actually
guaranteeing is the probability P that the fraction γ of
all future tests of this material will exceed the
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guaranteed strength X*. And, this statement is made
with a confidence level of (1-α).1  These two
probabilities are usually described as follows:  “with a
(1-α) confidence level, we expect that at least γ of all
future strength tests will exceed X*.” ‡

This one-sided tolerance limit has been computed
and tabulated for the normal and the log-normal§

distributions by a number of authors, e.g., see Natrella.2

Typically, these tabulations take the following form:
*

1- ,X  = X - c  xα γσ      , [1]

where the sample average X  is given by
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c1-α,γ is a multiplier (factor) tabulated as a function of
the confidence level (1-α), probability γ and the number
of data points n.  The standard deviation σx is given by:

( )
( )

( )

1
n 22

i
i=1

x

1
2 2n n

2
i i

i=1 i=1

X  - X
 = 

n-1

n X  - X
 

n n-1

σ

 
 
 
 
  

      =  
 
  

∑

∑ ∑
        . [3]

A typical set of values of c1-α,γ for various
tolerance limits is given in Table I.  These multipliers
are based upon a normal distribution of the data.  The
95/95 level is the one typically used in the wind
industry for design (i.e., with a 95 percent confidence
level, we expect that at least 95 percent of all future
strength tests will exceed X*).

TYPICAL DATA SET

A typical data set is used for illustration. The data,
shown in Fig. 1, were taken from the MSU/DOE
Database.3 They are from materials called DD5 and
DD5P in the database, which are fiberglass with
polyester matrix. Their composition is 72 percent 0°
fibers, and the remaining 28 percent fibers are oriented
at ±45°. The DD5 has a volume fraction of 38 percent

                                                       
‡ For example, for γ = 0.95 and (1-α) = 0.9, one would say that

with 90 percent confidence that more than 95 percent of all samples
will exceed the guaranteed strength.

§ A log-normal distribution is a distribution of X when log(X) is
normally distributed.  Thus, log(X) may be analyzed using methods
based on the normal distribution.

fibers, and the DD5P has a 36 percent volume fraction.
The tests were conducted at an R value of 0.1 (tension).
The data set has a total of 45 data points, of which 6 are
static strength and the remaining 39 are ε-N fatigue
data.

Additional data sets are evaluated later in the
paper.

CURVE FITTING S-N OR ε-N DATA

The problem of defining a confidence level for
stress-life (S-N) or strain-life (ε-N) data is that a
random function, rather than a random variable, must
be used in the description of this material property.

ASTM1 offers a “Standard Practice” for this class
of analysis.  Although their analysis is directed at “two-
sided” tolerance limits, their guidance offers important
insights into the analysis of one-sided tolerance limits.

To facilitate the analysis of this function, a set of
simplifying assumptions is made.  The first is that the
relationship between the log of the measured life (N

Table I.  Multiplier for One-Sided Tolerance
Limits for Normal Distributions.

MultiplierNumber of
Samples 95/90 95/95 99/99

3 5.310 7.655 -
5 3.40 4.202 -
8 2.755 3.188 5.811

10 2.568 2.911 5.075
15 2.329 2.566 4.224
20 2.208 2.396 3.832
30 2.080 2.220 3.446
50 1.965 2.065 3.124
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Figure 1.  Typical ε-N Data , Material DD from the
MSU Database.
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cycles) is a linear function of the strain (stress) or the
log of the strain.  The second assumption is that the
distribution function of the residuals about the mean
line is homogeneous; i.e., it does not depend on the
strain level.

Sample Size
The ASTM Standard Practice1 offers guidance for

the minimum number of ε-N (S-N) data points that
should be included in the statistical analysis. Their
recommendation assumes that the data are based on
random samples of the material and that the test data
contain no run-outs** or suspended tests. Their
recommendations are summarized in Table II.

With 39 ε-N data points, the data shown in Fig. 1
contain sufficient samples for statistical analysis.

Replication
In addition to number of specimens, ASTM1 offers

replication guidelines.  If the percent replication R is
defined as

 = 100 1 - 
n
l

R È ˘
Í ˙Î ˚     , [4]

where l is the number of  different strain (stress) levels
in the test data, then the minimum replication
percentage is given in Table III.

With 7 levels and 39 ε-N data points, the
replication level of 82 percent is within the reliability
guidelines.††

The authors are not sure why the replication rate is
included in the ASTM Standard Practice.1  One would
surmise that data spread over the entire data range are
better than data clustered at several points.  Perhaps this
is an attempt to insure that the data points do not
contain a systematic error. If so, the “Distribution of
Residuals,” discussed below and shown in Fig. 3, is a
better indicator of systematic variations about the mean.
                                                       

** The specimen did not fail at a specified number of cycles.
†† There are some minor variations in the maximum strain

within each of these levels for the current data set, see Fig.1.

Curve Fitting
The ASTM Standard Practice1 assumes that the strain-
life curve is fit with a straight line of the form

Y = A + mX      , [5]

where X is the independent variable, Y is the dependent
variable, A is the intercept, and m is the slope of the
linear curve fit.

Sutherland4 provides a complete discussion of the
various forms of Eq. 5.

Independent and Dependent Variable
Despite the normal form of plotting ε-N data

shown in Fig. 1, the stress or strain (or log stress or log
strain) is taken as the independent variable X, and log
life (i.e., log N) is taken as the dependent variable Y.

Curve Fit
For typical ε-N (S-N), a linear fit may be obtained

using log(N) and ε or log(ε).  Before fitting, the data
should be plotted and a decision made as the proper
form of the equation and its appropriate range.  For the
data presented in Fig. 1, a log-linear fit is appropriate.
The appropriate range includes all of the ε-N data and
the static strength as well.  As discussed below, it may
or may not be appropriate to include the static strength
in the fit.  Only a plot of the data can serve as a guide.

The fitting technique should find the best-fit of a
straight line through the data.  A least-squares curve fit
(L-S Fit), a function included in many spreadsheets,
works well for this purpose.  The line shown in Fig. 1 is
a log-linear fit of the ε-N and the static strength data
using a least-squares curve fitting routine.  In this case,
the independent variable, normalized strain (ε/εo, where
εo is ultimate tensile strain of the materials), is fit to the
dependent variable of log(N).  For this fit, A equals
0.9897 and m equals -9.943.  The “R-squared” measure
of the goodness-of-fit is 0.967.

The ASTM Standard Practice1 recommends a
maximum likelihood estimator for A and m of the form

Â = Y - mX       , [6]

Table III.  ASTM Standard Practice1 Replication
Percentage.

Type of Test Percent Replication
(minimum)

Preliminary & Exploratory 17 to 33
Research and Development 33 to 50

Design Allowables 50 to 75
Reliability 75 to 88

Table II.  ASTM Standard Practice1

Recommended Sample Size.

Type of Test Minimum Number
of Specimens

Preliminary & Exploratory 6 to 12
Research and Development 6 to 12

Design Allowables 12 to 24
Reliability 12 to 24
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X  and Y  are the mean values of the X and Y test data,
respectively. This technique yields an Â  of 0.9897 and
an m of –9.943, the same as the least-squares curve fit.

Adequacy
ASTM Standard Practice1 offers a testing

procedure to determine if a linear model is adequate,
but it is not reproduced here.

Distribution of Residuals
The added difficulty of finding tolerance limits for

ε-N data over that of static strength is that the former
requires a curve fit while the later requires only a single
value. If the data are fit with a linear equation, see Eq.
7, both the A and m coefficients could be treated as
correlated random variables. However, as the dashed
lines in Figure 2 suggest, a simple, one-degree-of-
freedom model might be sufficient and is in fact often
used. It assumes the slope of the line is known but the
intercept is uncertain.

The distribution about the mean line is determined
by aggregating the residuals of the data with respect to
the linear fit from different strain levels into a common
pot. The residuals are defined by

iii ŶYR −=    , [8]

where

i i
ˆŶ  = A - mX       and [9]

Â is defined in Eq. 6.

The standard deviation of the residuals of Y, i.e., the
residuals about the linear fit, is given by

( )
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n 22
i i

y i 1

ˆY  - Y =  

n 2
=

 
 σ  
 − 
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For the data cited above, X  equals 0.597, Y equals
3.965 and σy equals 0.336.  The mean of the residuals,
as is typically the case, is nearly zero.

The distribution of residuals about the mean line is
assumed to be independent of the maximum strain, see
Fig. 2. To evaluate this assumption, the residuals are
plotted against the maximum strain.  Figure 3 illustrates
that for this data set, the residuals are distributed about
the maximum strain in no apparent pattern; i.e., there is
not a systematic variation of the residuals about the
mean.  If there were, the straight-line fit on a log-linear
plot would be in question and another fit to the data
would be required (e.g., log-log, or bilinear).

Typically, the form of the distribution about the
mean is taken to be either log-normal or Weibull.  A
graphical approach may be used to ascertain the
functional form of this distribution.  In this approach,
the residuals, see Eq. 10, are computed for n points in
the data record. They are then sorted in ascending
order. The residual plot, shown in Fig. 4a, for the
current data set is obtained by using the inverse normal
distribution function available in most spreadsheets or
by using normal (Gaussian) graph paper.5 If this
distribution is normal (log-normal) the residuals will
plot as a straight line. Recall that Y is the log of the
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cycles to failure, so when the residuals of Y are tested
for normality, the log-normal distribution of fatigue life
is really being evaluated. As shown in Fig. 4a, the plot
is very close to a straight line, with an R-squared
goodness-of-fit of 0.996.

Another distribution commonly used for ε-N data
is the Weibull distribution. A Weibull plot of the
residuals is shown in Fig. 4b.‡‡ This plot may also be
obtained using Weibull graph paper.5 For these data, the
Weibull plot appears to be less appropriate, with an R-
squared goodness-of-fit of 0.959.

Although R-squared is a good measure of the
quality of the distribution fit, it does not tell the whole
story. More importantly, a systematic deviation of the

                                                       
‡‡ Because the Weibull distribution is fit to the actual lifetimes

instead of the log of lifetimes, the ratio of test life to the linear fit is
the best residual. However, because a Weibull plot requires a
logarithmic axis, and the log of the ratios is the same as the difference
of the logs, the result is a plot of the residuals defined in Eq. 10.

residuals from a straight line on either the normal or
Weibull scales could indicate an inappropriate choice of
distribution. For this case, neither the normal nor the
Weibull fit can be rejected. Little5 notes that a
minimum of 35 data points is required to discriminate
adequately between a normal and a Weibull
distribution.

TOLERANCE LIMITS

Once the functional form of the distribution of
residuals is known, the one-sided tolerance limit can be
computed.  For a linear fit of the ε-N data, the tolerance
limit is determined using a variation of Eq. 5.  Namely,

y1- ,
ˆY = A + m X - c  α λ σ     . [11]

In this case, σy is defined in Eq. 10.  A graphical view
of this reduction in life is shown in Fig. 5.  Also defined
in this figure are Lx, the data range, and ∆X, the
differential strain about the mean.  The former is the
difference between the maximum and the minimum
strain (stress) in the data set, and the latter is the
absolute value of the difference between the current
strain and mean strain of the data set, see Eq. 12 below.
For log-log fits, these two variables are defined as
differences in the log(strain).

Within the Data Range
In its simplest form, the multiplier c1-α,γ remains a

function only of the number of tests, n. The result is a
one-degree-of-freedom model of the uncertainty and a
constant value for c1-α,γ. The ASTM Standard Practice1

recommends that the tolerance bounds be restricted to
the range of the data, namely Lx in Fig. 5.  For this data
set, the range of the normalized strain is from 1 to
approximately 0.35; see Fig. 1.
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For a normal distribution of residuals, the
multiplier c1-α,γ is equivalent to the one-sided tolerance
limits for a single variable shown in Table I for various
values of (1-α), γ, and n.  For our example case, with 45
total data points, the multiplier is 2.092 at the 95/95
level.  The resulting tolerance bound is shown in Fig. 6
as the long-dashed line.  As a reminder, the ASTM
Standard Practice recommends that this bound should
not be used for normalized strain values that are less
than approximately 0.35.

At a confidence level of 95/90, the multiplier
would be 1.986 (namely with a 95 percent confidence
level, we expect that at least 90 percent of all future ε-N
tests will lie above the tolerance bound line defined in
Eq. 11).  At the 90/95 level the multiplier would be
1.669, and at a 99/99 level, the multiplier would be
3.181.

Outside the Data Range
Unfortunately, the recommendation of ASTM1 to

limit the tolerance bounds to the data range is not
appropriate (or of much use) for wind turbine
applications.  Wind turbines are subjected to a wide
range of fatigue cycles that is simply not covered by the
current material databases.  They probably never will
be because of the excessively long test times required to
obtain fatigue data at or above 108 cycles.

To extrapolate the tolerance bound outside the
range of data requires a detailed statistical analysis that
examines the joint distribution of the two variables A
and m (a two-degree-of-freedom model of uncertainty).
For normal distributions, Echtermeyer, Hayman, and
Ronold6,7 conducted this analysis.  Their graphical
description of the multiplier c1-α,γ at a 95/95 level is
shown in Fig. 7.  As shown in this figure, the value of
c95/95 varies with the number of data points and with the

normalized distance from the mean of the data set.  The
data in Fig. 7, can be approximated using the following
equation:

-0.71
95,95

x

5.588 x
c  = 1.645 + 2.567  (n-2)  + 

Ln-2
∆

   , [12]

X   1.0Lfor 
n  10

x
∆ >


≥

     .

The intercepts at ∆X/Lx equal to zero, for the various
values of n are identical to those shown in Table I at the
95/95 level.

When this technique is applied to our data set, the
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results are shown in Fig. 8 as the short dashed line. As
seen in this figure, the two tolerance lines lie essentially
one on top of the other, with a small deviation at the
extreme of 108 cycles.

Inclusion of Static Strength
In this analysis, we have included the quasi-static

strength data with the fatigue data in the curve fitting
procedure. For comparison, we eliminated from
consideration the static strength data shown in Fig. 1
and fit in Fig. 6. The results are shown in Fig. 9.  In this
figure, the fit is compared to the tolerance limit
computed using the ASTM technique.  As shown in this
figure, the inclusion or exclusion of the static strength
data does not significantly affect the predicted 95/95
tolerance limit; the two tolerance lines lie essentially
one on top of the other with small deviations at the low
and high cycle ends of the curve.

Log-Log vs. Log-Linear Fits
A major assumption made in estimating the 95/95

tolerance limits for the above illustration is that the best
fit for these data is log-linear. With an R-squared value
of 0.967, the fit is indeed very good.  If the ε-N data
(excluding the static strength data) are fit with log-log
scales, an R-squared value of 0.879 results; see Fig.
10a.

Figure 10b compares the fit without the static data
to that with the static data. As anticipated the fit
including the static data is significantly better at the
static data and the R-squared value is increased to
0.953.§§ However, the fit to the ε-N fatigue data is

                                                       
§§   This increase in R-squared is to be anticipated because the fit

with static data passes through essentially two clusters of data while
the fit without static data passes through one.  The former typically
produces a larger value for R-squared than the latter.

significantly poorer. And the tolerance limit is lower
(perhaps excessively) than that predicted without using
the static data in the fit. Although the log-log fit
including the static data cannot be rejected on a purely
mathematical basis, our judgement indicates that the
log-log fit without the static data is the proper choice.

A plot of the residuals about the log-log mean line
yields R-squared values of 0.997 and 0.942 for the
normal and Weibull fit of the residuals, respectively.
The fit of the residuals to a normal distribution is shown
in Fig. 11.  Again, neither the normal nor the Weibull
fit of these data can be rejected, although the normal fit
is better.

The 95/95 tolerance limits obtained by using the
techniques described by Echtermeyer, Hayman, and
Ronold,6,7 are also shown in Fig. 10.

In a direct comparison of the log-linear and log-log
fits of the data, the two fits agree over the range of the
fatigue data; namely, the normalized strain range of
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approximately 0.8 to 0.4; see Fig. 12.  Thus, within this
range, either data fit works equally well.

However, when the log-linear and log-log fits are
extrapolated beyond the test range, the two diverge
significantly from one another. As shown in Fig. 13, the
log-log fit yields a prediction for the static strength that
is 20 percent high.  The static strength data indicate that
the log-linear fit is more appropriate for the entire range
of this data set. If a log-log fit is used for these data, a
bi-linear fit is indicated, with the first fit covering the
normalized strain range of approximately 1.0 to 0.8 and
the second covering the normalized strain range of
approximately 0.8 to 0.4. Likewise, below a normalized
strain of approximately 0.4, the curves diverge. In this
case, the log-linear fit looks suspicious because its
extension indicates that at approximately 1010 cycles,
the material will fail at zero strain, which is unlikely.
As fatigue data are not available above approximately
107 cycles to failure, the log-log fit may or may not be

any better than then the log-linear fit. Again, a bi-linear
(or tri-linear) fit is warranted. As discussed in the
ASTM Standard Practice,1 one should always be
extremely careful when extrapolating data.

POTENTIAL PITFALLS

As with all illustrations, well-behaved data produce
well-behaved results.  Unfortunately, the application of
the techniques discussed above can lead to erroneous
conclusions concerning design curves.  Several of these
potential pitfalls are discussed and illustrated in this
section of the paper.

Log-Log vs Log-Linear
Unfortunately, the ASTM Standard Practice1 does

not offer insights into the choice of log-linear or log-log
fit of the data.  To explore this choice, let us now
consider the ε-N data for a composite from the FACT
(FAtique of Composite for wind Turbines) database.8

For this illustration, the ε-N data extracted from the
database was for a uniaxial composite tested at an R
ratio of 0.1 (tension).  The material chosen has a 36.9
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percent volume fraction of fibers, and all specimens
were tested at DLR (German Aerospace Research
Establishment).  There are 32 ε-N data points for this
material and 5 quasi-static strength data points, see Fig.
14.

First, these data were fit using a log-linear, least-
squares curve fit.  One fit included the static data and
the second did not.  The fits had R-squared values of
0.888 and 0.741, respectively.  As shown in Fig. 14, the
two fits provide very different results, with the no-
static-data fit significantly overpredicting the static
strength by over 30 percent (this result is equivalent to
that shown in Fig. 10b).  When the two fits differ,
several options are open.  As discussed above, the first
would be to use the static-data fit, which does not
represent the mean of the fatigue data very well.  The
second, and preferred, is bi-linear fit.  For these data,
the first segment would cover the range from
approximately 1.0 to 0.8 and the second from
approximately 0.8 to 0.2.

When tolerance limits are fit to these data,
additional problems become apparent.  As shown in
Fig. 15a, the 95/95 tolerance limit (using the techniques
of Echtermeyer, Hayman, and Ronold6,7) yields a
prediction of zero strain producing failure at
approximately 107.5 cycles.  Thus, even a bi-linear log-
linear fit should not be applied to normalized strain
values of less than approximately 0.2.

When a log-log fit is used (R-squared of 0.690), the
results are better for relatively low strain values, but
very poor for relatively high strain values, see Fig. 15.
As shown in this figure, the log-log fit overpredicts the
static strength by a factor of approximately 2.5.
However, it does not predict a finite life at zero strain.

Thus, with the normalized strain range of
approximately 0.8 to 0.2, either fit will yield equivalent
results.  Above that range, a log-linear fit appears to be

the best choice, and below, a log-log fit appears best.
However, without data, a conclusive statement cannot
be made.  And, ASTM1 does not recommend a form for
the equation either.

Distribution of Residuals
In the examples above, the distributions of

residuals for the various curve fits were fit best with a
normal or log-normal distribution, based on their
respective R-squared goodness-of-fit.  In all cases, see
Figs. 4a and 10b, the R-squared goodness-of-fit was at
least 0.964 for the normal distribution.  When the data
are plotted on Weibull scales, see Fig. 4b, the linear fits
are somewhat less accurate, ranging down to R-squared
values of 0.795.  However, in both cases, the number of
data points is below the minimum number required to
differentiate between a normal and a Weibull
distribution, i.e., the minimum of 35 data points noted
by Little.5  Thus, neither distribution can be rejected as
the proper form for the distribution.
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Figure 15.  Tolerance Limits for Uniaxial Material
from FACT Database.
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To expand our discussion, let us consider another
material tested at DLR to examine the nature of
distribution in more detail. This material is similar to
the DD5 material discussed above, with 0° and ±45°
layers of fibers. Its layup schedule is [[+45(280),-
45(280)WR]1,[0(425)]2]s. The ±45° layers are 280
fabric and the 0° fibers are 425 fabric. Its volume
fraction of fibers is 38 percent. The FACT database8

reports 54 ε-N data points for testing an R value of -1
(tension/compression). Five quasi-static strength data
points are also reported. As shown in Fig. 16, the
fatigue data are best fit with a log-log fit that does not
include the static data.

When the residuals are plotted, see Fig. 17, the
results are still inconclusive. Both the log-normal and
the Weibull models appear to fit the data equally well,

with R-squared values of 0.984 and 0.962 for the log-
normal and the Weibull distributions, respectively.

Thus, for a graphical analysis of the three data sets
examined here, neither the normal (log-normal) nor the
Weibull distribution may be rejected as the actual form
of the distribution of residuals, although the log-normal
distribution did consistently better.

Additional analysis techniques can be conducted to
determine which distribution is appropriate; see
D’Agostino and Stephens.9 If the distribution is
Weibull, then the determination of tolerance limits
cannot be determined from a table. Rather, a detailed
statistical analysis of the data is required. A description
of one such technique is provided by Little.5  A
numerical approach can be found in Efron and
Tibshirani.10
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Figure 16.  Tolerance Limits for Multi-axial
Material from FACT Database.
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However, one must ask if a detailed evaluation of
the distribution is warranted for our application. In
particular, when dealing with wind turbines, most
variations in the tolerance limits between a normal and
a Weibull distribution will be minor when compared to
those associated with the randomness of the input loads
and the uncertainties associated with cumulative
damage laws. Thus, the simplicity of determining
tolerance limits using a normal (log-normal)
distribution makes it the distribution of choice.
However one warning should be sounded, as the
probability level increases (γ>0.95), the log-normal
distribution becomes increasingly non-conservative
compared to the Weibull.

CONCLUDING REMARKS

In this paper, we illustrate the techniques and
pitfalls of determining tolerance limits for fatigue data.
A large number of figures are presented to illustrate the
options. Unfortunately, this thoroughness may lead to
some confusion. The following recommendations and
observations may help.

When confronted with a set of fatigue data, first
graph the data on log-linear and log-log scales; see
Figs. 1 and 10. Include quasi-static strength data if
available. Based on these plots, fit the data with one or
more linear fits that cover the range of data and that can
be extrapolated to the entire range of interest without
violating physical constraints (i.e., strain cycles with
zero amplitude should not produce failure). In the low-
cycle range, a log-linear curve will probably provide
the best fit.  In the high-cycle range, a log-log curve is
probably best.

The distribution of residuals about the best-fit line
should be examined using plots similar to Figs. 3 and 4.
Unless there are overriding circumstance, the normal
distribution of residuals (log of cycles-to-failure) should
be assumed.

If the extrapolation range is less than half the range
of the test data, (∆x/Lx) < 1.0, then a constant c1-α,γ may
be determined from a table; see Table I and/or Ref. 2.
Otherwise, use the non-linear evaluation of c1-α,γ shown
in Fig. 7.

Compute the tolerance limit and plot the resulting
line with the original data.  Examine the plot to insure
the tolerance limit is consistent with the data.

This relatively simple set of procedures produces a
reasonable estimation of the tolerance limit for fatigue
data used in the evaluation of damage for wind turbine
applications.

It should be noted that of the issues related to
estimating a fatigue life curve at a given confidence
level, the most likely to produce large differences in

estimated lifetime is the choice of a linear or
logarithmic axis for stress or strain.

Once established, the confidence level formulation
of fatigue strength provides the designer with properties
that can be used, with confidence, in design.  However,
the authors would be remiss if they did not remind the
reader that these strength properties do not account for
such design details as joints, size effects and
environmental degradation.  These design details must
be handled outside of the confidence level formulation
with additional safety (knock-down) factors.
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