W. P. Wolfe, and S. S. Ochs, "CFD Calculations of S809 Aerodynamic Characteristics", AIAA Aerospace Sciences Mtg, 1997.

CFD Calculations of S809 Aerodynamic Characteristics

Walter P. Wolfe

Engineering Sciences Center Sandia National Laboratories Albuquerque, NM 87185-0836

and

Stuart S. Ochs Aerospace Engineering Department Iowa State University

Abstract¹

Steady-state, two-dimensional CFD calculations were made for the S809 laminar-flow, windturbine airfoil using the commercial code CFD-ACE. Comparisons of the computed pressure and aerodynamic coefficients were made with wind tunnel data from the Delft University 1.8m x 1.25m low-turbulence wind tunnel. This work highlights two areas in CFD that require further investigation and development in order to enable accurate numerical simulations of flow about current generation wind-turbine airfoils: transition prediction and turbulence modeling. The results show that the laminar-to-turbulent transition point must be modeled correctly to get accurate simulations for attached flow. Calculations also show that the standard turbulence model used in most commercial CFD codes, the k-e model, is not appropriate at angles of attack with flow separation.

 $^{^{\}rm 1}$ This work was supported by the United States Department of Energy under Contract DE-AC04-94AL85000.