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ABSTRACT 
 

Environmental exposure measurements are, in general, positive and may be subject to left censoring; i.e,. 
the measured value is less than a “detection limit.”  In occupational monitoring, strategies for assessing 
workplace exposures typically focus on the mean exposure level or the probability that any measurement 
exceeds a limit.  Parametric methods used to determine acceptable levels of exposure, are often based on 
a two parameter lognormal distribution. The mean exposure level, an upper percentile, and the 
exceedance fraction are used to characterize exposure levels, and confidence limits are used to describe 
the uncertainty in these estimates.  Statistical methods for random samples (without non-detects) from the 
lognormal distribution are well known for each of these situations.  In this report, methods for estimating 
these quantities based on the maximum likelihood method for randomly left censored lognormal data are 
described and graphical methods are used to evaluate the lognormal assumption.  If the lognormal model 
is in doubt and an alternative distribution for the exposure profile of a similar exposure group is not 
available, then nonparametric methods for left censored data are used. The mean exposure level, along 
with the upper confidence limit, is obtained using the product limit estimate, and the upper confidence 
limit on an upper percentile (i.e., the upper tolerance limit) is obtained using a nonparametric approach. 
 
All of these methods are well known but computational complexity has limited their use in routine data 
analysis with left censored data.  The recent development of the R environment for statistical data 
analysis and graphics has greatly enhanced the availability of high-quality nonproprietary (open source) 
software that serves as the basis for implementing the methods in this paper.  Numerical examples are 
provided and R(2004) functions are available at the analysis of occupational exposure data  web site 
http://www.csm.ornl.gov/esh/aoed/  (AOED). 
 
 
 
 
 
 
 
Key words: exposure measurements, lognormal, maximum likelihood, left censored, non-detect, 
confidence limits, tolerance limit, exceedance fraction, occupational monitoring. 
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INTRODUCTION 
 

Regulatory and advisory criteria for evaluating the adequacy of occupational exposure controls are 
generally expressed as limits that are not to be exceeded in a work shift or shorter time-period if the agent 
is acutely hazardous.  Exposure monitoring results above the limit require minimal interpretation and 
should trigger immediate corrective action. Demonstrating compliance with a limit is more difficult.   
The American Industrial Hygiene Association (AIHA) has published a consensus standard with two basic 
strategies for evaluating an exposure profile [Mulhausen and Damiano (1998)].  The first approach is 
based on the mean of the exposure distribution, and the second approach considers the “upper tail” of the 
exposure profile.  Statistical methods for estimating the mean, an upper percentile of the distribution, the 
exceedance fraction, and the uncertainty in each of these parameters are described.  Most of the AIHA 
methods are based on the assumptions that the exposure data does not contain non-detects, and that a 
lognormal distribution can be used to describe the data. Exposure monitoring results from a compliant 
workplace tend to contain a high percentage of non-detected results when the detection limit is close to 
the exposure limit, and in some situations, the lognormal assumption may not be reasonable.  There are 
parametric methods for censored lognormal data and non-parametric methods that can be used with left 
censored data to calculate all of the statistics recommended by the AIHA for the complete data case. 
However, the only practical way to compute these statistics is with statistical software.  The recent 
availability of free, high-quality statistical software means that complex calculations are no longer a 
barrier to the statistical analysis of almost any occupational exposure data set.  This also eliminates the 
need for special tables and graphical methods that are used in the complete data case for the lognormal 
distribution. 
 
Statistical methods for the analysis of right censored data using various parametric and non-parametric 
methods are well known and generally referred to as “survival analysis” [Cox and Oakes (1984) or 
Kabfleish and Prentice (1980)].  In this situation, the dependent or response variable (say T) is usually 
time to the occurrence of event; i.e., the “survival time” (or time to failure) of an observational or 
experimental unit (e.g., animal, person, or machine).  T may be referred to as a “lifetime random variable” 
and is by definition positive, and may be subject to “censoring.”  As a typical example, let Ti represent the 
survival time of the ith patient in a clinical trial.  If the trial ends and the patient is not known to have 
“failed” the observed survival time, say t*

i , is right censored (i.e., it is only known that Ti is greater than 
t*

i ).  This can occur for several reasons.  Suppose, for example, that all patients enter the trial at the same 
time and are followed until a specified end date, then those individuals still at risk have a censored 
survival time that is the same for all surviving patients (Type I censoring).  If patients enter the trial at 
random and the trial ends at a fixed date, then the value of t*

i  is different for each surviving patient 
(random censoring).  Statistical methods for the analysis of right censored data are widely used and 
computer software for survival analyses is available in most general purpose statistical programs  
(e.g., the R survival library). 
 
In this report, the dependent or response variable of interest is the amount, say X, of a measured quantity.  
X is a positive random variable and as the result of the analytic methods used, the observed value for the 
ith measurement may be reported as (left) “censored” and is referred to as a non-detect or as being less 
than a “detection limit”(DL) say x*

i  (i.e., it is only known that iX  is less than x*
i ).   A frequent 

assumption is that the distribution of X is lognormal . See Aitchison and Brown(1969) and  Crow and 
Shimizu(1988) for general treatment of the lognormal distribution and its application.  Schmoyer et. al. 
(1996) considered the lognormal model for contaminant concentrations in environmental risk assessment 
for both complete and left censored samples.  Akritas et. al. (1994) provide a detailed discussion of 
various methods that have been proposed for parameter estimation for left censored data.  Methods were 
classified into three general areas as described by Helsel (1990).  They are: (1) simple substitution; e.g., 
replace a censored observation with one-half of its value; (2) parametric methods; e.g., censored data 
maximum likelihood (ML), and (3) “robust parametric methods” based on variations of  “probability plot 
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regression.”  Simulations studies have been done to compare these methods under various conditions with 
the primary focus on bias and mean square error of location and scale parameters [see Helsel and 
Cohen(1988), Newman et. al. (1989)].  Akritas et. al. (1994) have reviewed these and other studies, and 
note that ML methods under the lognormal model provide expressions for the variance of the parameter 
estimates.  This is important when an upper percentile, say Xp , of the exposure distribution is of interest.  
For example, the ML estimate of log(Xp) is a linear combination of the lognormal parameters, and the 
standard error of this quantity can be estimated from the ML parameter covariance matrix.  Consequently, 
confidence limits for both Xp and the exceedance fraction can be obtained using the ML approach.   
Taylor et. al. (2001) have noted that regarding all non-detected values as censored outcomes from a 
lognormal distribution may not always be appropriate.  If there is reason to believe that a non-negligible 
proportion of the non-detects are “true zero” exposures, then a censored lognormal mixture model (a zero-
inflated lognormal model with censoring) should be considered.  ML methods for estimation and 
hypothesis testing are described and the relationship between ML parameter estimates from the mixture 
model and those based on either a left truncated or censored lognormal model are described.  Moulton and 
Halsey(1995) emphasize that it is also possible that non-detects may be from a second (possibly 
lognormal) distribution rather than a point mass at zero.  Fowlkes (1979) has described methods for 
studying the mixture of two lognormal distributions, although he did not consider left censored data.  In 
situations where the lognormal model (or some other distribution such as the gamma or Weibull) is not 
reasonable, a non-parametric approach can be used.  All of the methods just described can be 
implemented using R, the ML method being the most difficult.  It is also possible to develop procedures 
for all of these methods in several proprietary statistical programs that are available commercially. 
 
In the discussion that follows the generic term “acceptable” refers to the situation where the distribution 
of the exposure measurement X satisfies a specified criteria indicating, for example, that the workplace is 
“safe,” or that the surfaces of a survey unit are “clean.”  The term survey unit describes all or part of an 
entity (e.g., building, piece of equipment) that is being evaluated.  The term “unacceptable” means that 
the distribution of the exposure measurements indicates that the workplace or survey unit is 
“contaminated” or “hazardous.”  The formal statistical procedures used to demonstrate that an exposure 
distribution is acceptable is to state a null hypothesis in the form H0 : θ ≥ L, where θ represents a 
parameter of the exposure distribution (e.g., the mean, a percentile, or the exceedance fraction), and θ ≥ L 
indicates that the exposure distribution is unacceptable.  Then, based on a random sample from the 
exposure distribution, an estimate of θ and an upper confidence limit (UCL) with a specified confidence 
level, say γ, are calculated.  If the 100γ%UCL is less than L, then the null hypothesis is rejected and the 
exposure distribution is acceptable.  A Type I error occurs if H0 is rejected when it is true (i.e., the X 
distribution is incorrectly considered to be acceptable).  This will occur with a probability (type I error 
rate) that is less than or equal to α = (1 - γ), with α = 1 - γ when θ = L. These and other related procedures 
are described in detail in an occupational exposure context by Mulhausen and Damiano (1998). 
 
 

2.  STATISTICAL ANALYSIS FOR COMPLETE SAMPLES 
 

Lyles and Kupper (1996) have discussed strategies for the assessment of workplace exposures using time-
weighed average (TWA) exposure measurements on a representative sample of workers as a typical 
example.  The TWA measurements are considered to be a random sample from a lognormal distribution 
without censoring.  They describe “exact” statistical methods for testing either (1) the null hypothesis that 
the mean exposure level for a similar exposure group is below a certain limit; i.e., the long-term average 
permissible exposure limit, or (2) that a specified percentile of the X distribution does not exceed a limit 
L.  To review what is known for the complete data case suppose that xi, i = 1, …, n is a random sample 
from a lognormal distribution with mean µx = exp( µy + 2

yσ  / 2), where µy  and 2
yσ  are the corresponding 
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mean and variance of yi = log( ix ).  Let y  = Σi iy /n and 2
ys  = Σ ( iy – y 2) /(n-1) where 2

ys  is the 

unbiased estimator for 2
yσ .   

 
 
2.1 CONFIDENCE LIMITS FOR THE MEAN EXPOSURE LEVEL 
 
A number of methods have been proposed for calculating confidence limits for µx  [e.g., Armstrong 

(1992)].  For Land’s (1972) exact method the 100γ% UCL is exp [( y + ½ 2
ys  + C sy/√(n-1)], where C 

depends on sy, n, and α and requires special tables.  This is the “best” ( i.e., uniformly most powerful 
unbiased test) for complete samples.  The 100γ% lower confidence limit (LCL) is obtained in a similar 
way. The two one-sided limits can be combined to obtain an approximate confidence interval.  It is also 
possible to obtain an exact two-sided confidence interval using Land’s exact method.  The “best estimate” 
of xµ  in complete samples is the minimum variance unbiased estimate [see Hewett and Ganser (1997) for 
details].  Equivalent optimal methods for randomly left censored data have not been developed.  Two 
approximate confidence limits described by Land (1972) for the complete data case can be used for left 
censored data.     
 
The first method is attributed to D.R. Cox and is based on calculating an estimate of φ = log(µx ) = 

µy + 2
yσ  / 2.  For the complete data case the minimum variance unbiased estimate of φ is φ~  = y + 2

ys /2, 

and the variance of φ~  is var(φ~ ) = var ( y ) + ¼ var( 2
ys ) = 2

ys /n + ½ 4
ys  / (n-1).  The 100γ% UCL for µx is 

exp [φ~ + t var(φ~ )1/2],  and  the 100γ% LCL for µx is exp [φ~ - t var(φ~ )1/2],  where t = t (γ,n-1) is the 100γ  
percentage point of Student’s t distribution on n-1 degrees of freedom [Land (1972) and Armstrong 
(1992)].  The point estimate of  µx for this method is exp(φ~ ).  These estimates can be viewed as “bias 
adjusted” ML estimates, since the ML estimate of φ is φ̂  = µ̂y + 2/ˆ 2  

yσ , and its variance is estimated as 

var( φ̂ ) = n/ˆ 2  
yσ + n)2/(ˆ 4  

yσ  where 2  
yσ̂  = Σ ( iy – y 2) /n . The ML estimate of the (arithmetic) mean of 

X is µ̂x  = exp( φ̂ ). The estimate of the 100γ% UCL is exp [ φ̂ + t var( φ̂ )1/2],  and the estimate of the 
100γ% LCL is exp [ φ̂ - t var( φ̂ )1/2].  For left censored data ML estimates of the above quantities are not 
available in closed form, but can be obtained numerically (Cohen, 1991).  The bias adjustment of variance 
terms described above could be applied to the censored data ML estimates so that results will reduce to 
the complete data case as the proportion of non-detects goes to zero.  The second approximate method for 
confidence limits for µx is obtained by calculating the sample mean x  as the point estimate of µx   and the 
approximate lower and upper limits are x  ± t(γ ,n-1) sx/√n, where 2

xs  = Σi (xi– x )2 / (n-1). The central 
limit theorem implies that this method should converge to the exact limit as n becomes large.  For left 
censored data the product limit estimate (PLE) (Schmoyer et al, 1996) is used to obtain a non-parametric 
estimate of x  and approximate confidence limits for µx (see Section 3.5). 
 
 
2.2 CONFIDENCE LIMIT FOR THE PTH PERCENTILE 
 
Let Xp denote the 100pth percentile of the lognormal distribution.  The point estimate is  xp = exp( y +zp 
sy) where zp is the pth quantile of the standard normal distribution.  An exact 100γ% upper confidence 
limit for the pth percentile is UX(p, γ) = exp( y + K sy) and is referred to as the upper tolerance limit.  The 
value of K depends on n, p, and γ  and is obtained from the 100 γ  percentile of the noncentral t 
distribution with n-1 degrees of freedom and noncentrality parameter -√n zp [Lyles and Kupper (1996); 
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Johnson and Welch (1940)].  The null hypothesis of interest is H0: Xp ≥  Lp where Lp is a specified limit 
(e.g., the occupational exposure limit).  If UX(p, γ) < Lp then H0 is rejected indicating that the exposure 
level is acceptable (i.e, workplace is “safe” or object is “clean”). In this situation the probability is γ (we 
are 100γ% confident) that at least 100p% of the X values are less than UX(p, γ) which is less than Lp.  
Throughout this report, reference to an R function is indicated by bold face font. The R function 
extol(n,p,gam) (see the Appendix) will return the one-sided tolerance factor K for any reasonable values 
of n, p, and γ.     Further, extol(n,p,1-gam) will return the factor K΄ proposed by Tuggle (1982) that can be 
used to calculate the exact 100γ% lower confidence limit for the pth percentile LX(p, γ) = exp( y + K΄sy) .  
If LX(p, γ) > Lp the probability is γ  that at least 100(1-p)% of the Xs are above  Lp . The one-sided 
tolerance bounds can be combined to obtain an approximate two-sided tolerance interval which is a 
confidence interval for Xp .  Hahn and Meeker (1991) discuss the relationship between exact one and two-
sided tolerance bounds, confidence intervals for population percentiles, and other types of statistical 
intervals.  The factors K and K΄ obtained using extol are found in their Table A.12 for selected values of 
n, p, and γ and in Mulhausen and Damiano(1998) Appendix Table VII..  
 
 
2.3  CONFIDENCE LIMITS FOR EXCEEDANCE FRACTION 
 
Let FL represent the proportion of the Xs that exceed a given limit Lp.  The null hypothesis is H0: FL ≥ F0 
= 1-p; i.e., F0 is the maximum proportion of the population that can exceed the limit Lp.  The point 
estimate of FL is f = 1-N(u), where u = [log(Lp)- y ]/sy and N(u) is the standard normal distribution 
function.  If the 100γ% UCL for FL, Uf(Lp,γ), is less than F0 than H0 is rejected (i.e. the object or 
workplace is acceptable).  This limit is obtained by first calculating the 100γ% lower confidence limit for 
u .  It can be shown that n u follows the non-central t distribution with n-1 degrees of freedom and 
noncentrality parameter δ.  A lower 100γ% confidence limit for u is obtained by solving pt( n u, n-1, dl) 
= γ for the noncentrality parameter dl where pt is the distribution function for the noncentral t 
distribution.  The value of ul = d1/ n  is the LCL for u and the 100γ% UCL for FL is Uf(Lp,γ) = 1-N(ul) ,  
i.e. we are 100γ% confident that at most Uf(Lp, γ) percent of the Xs are greater than Lp.  The 100γ% lower 
confidence limit Lf(Lp, γ) is obtained in a similar way.  The R function efcl(x, γ, L,T) returns lognormal-
based point and 100γ% lower and upper confidence limits for the exceedance fraction FL (expressed as a 
percent ) for complete samples (see the Appendix). 
 
The relationship between the upper tolerance limit and the exceedance fraction is summarized as follows: 
 H0:  Xp ≥ Lp                   reject H0 if UX(p, γ) <  Lp, 

  H0:  FL ≥ F0 = 1-p          reject H0 if Uf(Lp, γ) < F0 .                                       (1) 
 
If, for example, p = .95, γ=0.95, and  Lp = 0.2  then F0 = .05 (5%).   H0 is rejected if UX(.95,.95)  ≤ 0.2, or 
if Uf (0.2, 0.95) ≤ 5% , and the exposure profile is considered acceptable.  Note that if the lower 
confidence limit Lf(L, γ) > F0 = 1-p this indicates that, with confidence level gamma, at  least Lf (L, γ)% 
of the Xs exceed Lp.  This is equivalent to finding that the lower confidence limit for Xp is greater than Lp. 
Tuggle(1982) provides futher discussion of tolerance limits (and implicitly the exceedance fraction) as 
well as the choice of the values of  p, Lp, and γ that determine conditions for an acceptable level of 
exposure.  It is of interest to note that confidence limits for F require Lp and γ (not p), and confidence 
limits for Xp  require p and γ (not Lp).  The Type I error for this procedure is ≤ α = (1-γ) = probability of 
rejecting Ho when it is true; i.e., incorrectly deciding that the exposure is acceptable (e.g., workplace is 
safe).  The Type II error, β, is the probability of failing to reject H0 when the alternative hypothesis, say 
FL = F* ( < F0)  is true, i.e. deciding that an acceptable exposure profile is not acceptable (clean object is 
contaminated.)  The power = (1- β) of this test is the probability of correctly deciding that an exposure 
profile is acceptable.  The power depends on the sample size and the “true” value of the exceedance 
fraction when the alternative hypothesis is true.  For complete samples from the lognormal distribution 
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the power is pt(t0 ,n-1,λ1) where the non-centrality parameter is  λ1 =  zF*√n, and  t0 = t΄(n-1,α,λ0) is the 
100αth percentile of the non-central t distribution with n-1 degrees of freedom and non-centrality 
parameter λ0 = zF√n . The exact sample size required to provide power of at least (1- β) may be obtained 
(Lyles and Kupper,1996) by finding the smallest integer n such that  
 

t΄(n-1,α,λ0) - t΄(n-1,1-β, λ1)  ≥  0 .                                (2) 
 

 The R function fnlnf(fstar,pow,p,gam) in the Appendix is used to find n. 
 

 
3.  ANALYSIS OF DATA WITH NON-DETECTS 

 
In situations where an exposure measurement may be less than a detection limit exact methods have not 
been developed for the lognormal model.  The maximum likelihood principle can be used for parameter 
estimation, and to obtain large sample equivalents of confidence limits for the mean exposure level, the 
100pth percentile, and the exceedance fraction.  For a detailed discussion of assumptions, properties, and 
computational issues related to ML estimation see Cox and Hinkley (1979) and Cohen (1991). 
 
 
3.1 MAXIMUM LIKLIHOOD ESTIMATION FOR LOGNORMAL DATA WITH  
 NON-DETECTS 
 
For notational convenience the m detected values xi are listed first followed by the *ix    indicating  
non-detects, so that the data are x = { ix ,  i = 1,...,m, *ix , i = m + 1,...,n}.  If *ix  is the same for each  
non-detect, this is referred to as a left singly censored sample (Type I censoring) and x* is the DL.  If 
the *ix  are different, this is known as randomly (or progressively) left censored data [Cohen (1991) and 
Schmoyer et al (1996)].  In some situations a value of 0 is recorded when the exposure measurement is 
less than the DL.  In this situation, the value of *ix  is the DL indicating that ix is in the interval (0, *ix ).  
The probability density function for lognormal distribution is 
 

g(x;µ,σ) = exp[- ½(log(x) – µ)2/σ2] ( 2π σx)-1,                                    (3) 
 

where y = log(x) is normally distributed with mean µ and standard deviation σ (Aitchison and Brown, 
1969).  The geometric mean of X is GM= exp(µ) and the geometric standard deviation is GSD = exp(σ) 
[Strom and Stansbury(2000)] for a summary of these and other relationships for lognormal parameters.  
Assuming the data are a random sample from a lognormal distribution, the log of the likelihood function 
for the unknown parameters µ and σ given the data is 
 

L (µ,σ) = ∑=

m

1i
log [g( ix ; µ, σ)]  + ∑ +=

n

1mi
log [G ( *ix ; µ ,σ)],       (4) 

 
where G(x*;µ,σ) is the lognormal distribution function, i.e. G(x*;µ,σ) is the probability that x is less than 
or equal to x*.  The ML equations are obtained by differentiating the log-likelihood function (4) with 
respect to the µ and σ and setting the result equal to 0; i.e., ∂L(µ, σ) /∂µ = 0, ∂L (µ, σ) /∂σ = 0 .  These 
equations cannot be solved directly so a Newton-Raphson-type iterative algorithm is often used to find a 
root of the system of equations.  This leads to 
 

C(θ0)δ0 = G(θ0) ,       (5) 
 
where G(θ) = [∂L(θ)/∂θj], θ1 = µ and θ2= σ, and C(θ0) is the 2 x 2 information matrix with elements cjk = 
∂2L(θ)/∂θj∂θk ,    j, k = 1, 2, .  Each of the elements in C and G is elevated at the value of an initial estimate 
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θ0 = (µ0, σ0).  This linear system of equations (5) is solved for δ0, and the new value θ1 = θ0 + δ0 is 
obtained.  The procedure is repeated until a stable solution θ̂  is reached; i.e., G( θ̂ ) = 0 and C( θ̂ ) is 
negative definite.  The large sample covariance matrix of the ML estimate θ̂  is obtained by inverting the 
information matrix evaluated at θ̂ , i.e. V( θ̂ ) = C( θ̂ )-1 .  The numerical approach used here is based on 
the R function optim, a general-purpose optimization procedure that includes the Nelder-Mead, quasi-
Newton, and conjugate-gradient algorithms.  If the algorithm converges (as indicated by the convergence 
code from optim) and θ̂  is an interior point in the parameter space, it is the unique global maximum of 
(4) for the situation considered here.  The ML estimates µ̂ , σ̂ , and standard errors are obtained using the 
R function mlndln provided in the Appendix.  Note that for complete samples m = n and the second term 
in equation (1) is not present.  In this case, the solution of the likelihood equations result in well known 
estimate µ̂  = Σ iy /n, σ̂  = [Σ( iy  -  iµ̂ )2 /n]1/2,  where iy  =  log( ix ).  
 
 
3.2   CONFIDENCE LIMITS FOR THE MEAN EXPOSURE LEVEL WITH NON-DETECTS 
 
To test the hypothesis H0: µx  ≥ *

xµ , at the α = 1- γ significance level a one-sided upper 100γ% confidence 
limit is needed.  The first method considered is to use the censored data equivalent of Cox’s direct 
method; i.e., calculate φ̂  = µ̂  + ½ 2σ̂ , var( φ̂ ) = var( µ̂ + ½ 2σ̂ ) where 

 var( φ̂ ) = var( µ̂ ) + ¼ var( 2σ̂ ) +cov( µ̂ , 2σ̂ ) .       (6) 
 
In (6) µ̂  and 2σ̂  are the ML estimates of µ and σ2, and the estimated variances and covariance are 
obtained from  

V( θ̂ ) = 












)σ̂(var)σ̂,µ̂cov(
)σ̂ ,µ̂cov(         )µ̂var(

22

2

 .      (7) 

 
The ML estimate of µx is exp( φ̂ ), the 100γ%LCL for µx is exp[ φ̂ - t var( φ̂ )],  and the 100γ%UCL for µx 
is exp[ φ̂ + t var( φ̂ )], where t = t(γ, m-1).   The resulting confidence interval (LCL,UCL) has confidence 
level 100(2γ-1)%.   An equivalent procedure is to estimate φ = µ+½σ2 and its standard error directly, i.e. 
by solving (5) with θ1 = µ+½σ2 and θ2=σ2.  The R function mlndln provided in the Appendix returns ML 
estimates of µ, σ, φ, σ2, and estimates of the standard errors for each of the parameter.  
 
A second method for obtaining an UCL for µx is based on the procedure proposed by Lyles and Kupper 
(1996) for the complete data case.  They use the relationship between the statistics y  + csy and the non-
central t distribution to obtain an approximate UCL for log(µx ) of y  + uĉ ys  where, 
 

[ ] n1)/-nα,- t(1 1)-nχ(α,/)1n/(nδ̂ cu +−−=
∧

 .                                         (8) 
 
In (8), χ(α, n-1) is the positive square root of the 100α percentile of the chi-square distribution with n-1 
degrees of freedom, and ˆ / 2s ynδ = − .  The quantity uĉ  is an estimate of the upper bound of 

nδ)/α,,1n(tc −′−= where t′  is the 100αth percentile of the noncentral t distribution with n-1 

degrees of freedom and non centrality parameter σ/2.n-δ =  For censored data, an approximate 
log(UCL) for µx  is µ̂ + uĉ σ̂  where in calculating uĉ  n is replaced with m.   The log(LCL) is obtained in 
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a similar  way. We speculate that the 100γ% approximate UCL for µx , exp( µ̂ + uĉ σ̂ ) should be a 
conservative upper bound.  When there are no non-detects (i.e. m = n) Lyles and Kupper (1996) have 
shown that this procedure is similar in terms of power and Type I error rate to Land’s exact method in 
most situations they considered.  Recall that the exact method depends on µ̂  and 2

ys  being independent 

and respectively normally and a constant times a chi-square.  For left censored data the cov( µ̂ , 2σ̂ ) (see 
equation 6) is negative and increases in magnitude as the proportion of non-detects increases.  The R 
function LKcl computes confidence limits for µx using this approximate method.   
 
 
3.3   CONFIDENCE LIMITS FOR THE PTH PERCENTILE WITH   NON-DETECTS 
 
 The point estimate of yp = log (Xp) is ŷp  = µ̂  + zp σ̂  with variance  

var( py
∧

) = var(
∧
µ  + zpσ

∧
) = var(

∧
µ ) + z2

p var (σ
∧

) + 2zp cov(
∧
µ ,σ

∧
).                   (9) 

 
 
The 100γ%  LCL  and UCL for Xp   are 
 
 LX(p,γ) = exp[ pŷ - t(γ,(m-1))var(yp)1/2], 
 UX(p,γ) = exp[ pŷ + t(γ,(m-1))var(yp)1/2].                (10) 
 
UX(p,γ) is the estimated 100p-100γ geometric upper tolerance limit.  The ML estimates of var( µ̂ ), 
var( σ̂ ), and cov( µ̂ , σ̂ ) are obtained from the ML variance-covariance matrix using R function mlndln 
provided in the Appendix.  The null hypothesis H0:  Xp ≥ Lp is rejected at the α = (1-γ) significance level 
if 100γ% UCL for  Xp is less than Lp  (indicating the exposure profile is acceptable).  A second method 
that can be used to estimate the upper tolerance limit is to treat µ̂  and σ̂  as if they were obtained from a 
complete sample of size m and calculate UX(p,γ) = exp( µ̂ + K σ̂ ), where K is obtained from the non-
central t distribution using m, p, and γ as described in Section 2.2.  If there are no non-detects, then m = n 
and method 2 provides the exact upper tolerance limit ( provided the unbiased estimate of σ2  is used).  
The R function lnclxpnd at the AEOD web site calculates estimates of  LX(p,γ) and UX(p, γ) using both 
large sample ML approach (method 1) and using approximate K values (method 2).  Method 2 is the 
result of “analogical reasoning” and  it  appears to be a conservative upper bound for UX(p, γ) for 
lognormal data with non-detects.  The K factor in Section 2.2 is obtained using the fact that y  and 2

ys  are 
independent statistics calculated from a random sample from a normal distribution Johnson and Welch 
(1940). The ML estimates of µ and σ2    from censored samples do not satisfy these assumptions.   
 
 
3.4   CONFIDENCE LIMITS FOR EXCEEDANCE FRACTION WITH 
        NON-DETECTS 
 
The ML point estimate of FL is f = 1-N(v) where v  =  [log(L)- µ̂ ]/ σ̂ .  The large sample 100γ% LCL for 
V = [log(L) – µ]/σ is LCLv = v – t(γ, m-1) var(v)1/2 , where  
 
               var(v) = p1

2var( µ̂ )+p2
2var( σ̂ )+2p1p2cov( µ̂ , σ̂ ),                                              (11) 

 
 with p1 = ∂v/∂µ = -1/ σ̂  and  p2 = ∂v/∂σ =  -[log(L)- µ̂ ]/ 2σ̂ .  The 100γ% UCL for FL is Uf(L,γ)= 1-
N(LCLv). 
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The 100γ% LCL for FL is LF(L,γ) = 1-N(UCLv), where UCLv =  u + t(γ,m-1)var(v)1/2.  The null 
hypothesis H0: FL = 1-p is rejected if the 100γ% UCL for FL is less thanF0 , indicating that the exposure 
profile is acceptable.  The large sample ML estimates of the exceedance fraction and 100γ% confidence 
limits for lognormal data with non-detects are obtained using the R function efclnd in the Appendix. 
 
A second method that can be used to estimate the exceedance fraction and 100γ% confidence limits is to 
treat µ̂  and σ̂  as if they were obtained from a complete sample of size m  and use the complete sample 
method described in Section 2.3. Method 2 is the result of “analogical reasoning” and it appears to be a 
conservative upper bound for  Uf(L,γ) for lognormal data with non-detects.  The R function efcl2 in the 
Appendix is used to calculate these limits. 
 
 
3.5  NON-PARAMETRIC METHODS FOR SAMPLES WITH NON-DETECTS 
 
The product limit estimator (PLE) of the cumulative distribution function was first proposed by Kaplan 
and Meier (1958) for right censored data.  Turnbull (1976) provides a more general treatment of non-
parametic estimation of the distribution function for arbitrary censoring.  For randomly left censored data, 
the PLE is defined as follows [Schmoyer et al. (1996)].  Let a1 <  . . . <   aM be the  M distinct values at 
which detects occur, rj is the number of detects at aj , and nj is the sum of non-detects and detects that are 
less than or equal to aj.  Then the PLE is defined to be 0 for 0 ≤ x ≤  ao, where ao is a1 or the value of the 
detection limit for the smallest non-detect if it is less than a1 .  For ao ≤ x <  aM  the PLE is F̂ j = 

j
∏  (nj - 

rj)/nj , where the product is over all aj > x, and the PLE is 1 for x ≥  aM .  When there are only detects this 
reduces to the usual definition of the empirical cumulative distribution function.  The R function plend at 
the AEOD web site is used to compute the PLE. 
 
 
The PLE is used to determine the plotting positions on the horizontal axis for the censored data version  
of a theoretical quantile-quantile (q-q) plot for the lognormal distribution (see Chambers et al., 1983).  
Waller and Turnbull (1992) provide a good overview of q-q plots and other graphical methods for 

censored data.  The lognormal q-q plot is obtained by plotting aj (on log scale) versus Hj= G-1( P̂ j ), where 

G-1 is the inverse of the distribution function of the standard normal distribution and P̂ j = ( F̂ j + F̂ 1-j )/2 is 
the plotting position for aj [Meeker and Escobar (1998, Chap 6)].  Helsel and Cohen (1988) consider 
alternative procedures that can be used for calculating plotting positions for left censored data.  In the 

complete data case without ties P̂ j =  (j- ½)/n.    If the lognormal distribution is a close approximation to 
the empirical distribution, the points on the plot will fall near a straight line.  An objective evaluation of 
this is obtained by calculating the square of the correlation coefficient associated with the plot; i.e., 
R2= cor(logaj, Hj)2.  In the complete data case this will be a close approximation to the Shapiro-Wilk W 
statistic that is used as a test for normality.  Verril and Johnson (1988) considers the large sample 
distribution of the correlation statistic for Type I and Type II right censored data.  A formal test for 
normality of randomly left censored data has not been developed. 
 
The mean ( px ) of the PLE is a censoring-adjusted point estimate of µx.  An approximate standard error of 
the PLE mean can be obtained using the method of Kaplan and Meier (1958) and the 100γ% UCL is 

px  + t (α, m-1) sp, where sp is the Kaplan-Meier standard error of px  adjusted by the factor m/(m-1), 
where m is the number of detects in the sample.  When there is no censoring this reduces to the second 
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approximate method described by Land (1972).  The R function kmms at the AEOD web site is used to 
calculate px , sp, and the confidence limits. 
 
 
3.6  NON-PARAMETRIC UPPER TOLERANCE LIMIT AND EXCEEDANCE FRACTION 
 
A non-parametric upper tolerance limit can be obtained using the method described by Somerville (1958).  
Given a random sample of size n from a continuous distribution, then, with a confidence level of at least 
γ, 100p percent of the population will be below the kth  largest value in the sample.  The maximum non-
detect must be less than the kth largest value. The value of k for specific values of n, p, and γ can be 
obtained from published tables or, for any reasonable values of n, p, and γ, by using the R function nptl 
provided in the Appendix.  The 100γ% upper tolerance bound is equivalent to an upper 100γ% confidence 
limit for the 100pth percentile of the population. 
 
When the distribution function for the Xs is not specified a “nonparametric” approach can be used to 
estimate FL the proportion of measurements that exceed the limit L.  Given a random sample of size n the 
number y of nonconforming observations (i.e., y = number of ix  > L) is described using the binomial 
distribution.  The point estimate of FL is f= y/n and confidence limits are obtained using the method of 
Clopper and Pearson (1934) [Hahn and Meeker (1991, chap 6)] and the R documentation for base R 
function binom.test.  The R driver function efclnp returns the point estimate of FL and the lower and 
upper 100γ% confidence limits for FL. 
 

4.  APPLICATIONS 
 

In several situations of practical interest statistical analysis of left censored data from a lognormal 
distribution are required.  The "exact" results for complete samples described in Section 2 have not been 
developed for censored data.  The methods presented here are "large sample" results and follow directly 
from the properties of ML estimators described in Section 3.  Each of the examples will describe the 
censored data equivalent of the exact methods used with complete samples.  The emphasis here is on 
describing the methods and software.  The focus in the examples is two areas of application that are part 
of the Department of Energy (DOE) Chronic Beryllium Disease Prevention Program.  The DOE is 
concerned with monitoring objects (e.g., equipment, buildings) for beryllium contamination and workers 
for exposure to beryllium in the workplace.  The first example describes the results of a survey to evaluate 
possible beryllium “contamination” based on surface wipe sampling of a smelter facility used to recycle 
metal.  The second example describes the results of a beryllium worker-monitoring program using 8-hour 
TWA.  In both situations “limit values” have been established to determine if exposure levels are 
acceptable; i.e., the object is “clean” or the workplace is “safe.”  In general, the limit value will depend on 
the strategy that is being used as described in the introduction.  In the examples the null hypothesis of 
interest is that the 95th percentile of exposure distribution does not exceed the specified limit.  Hewett 
(1996) explains that occupational exposure limits (OELs) are generally single shift limits used for day-to-
day risk management that will also constrain long-term, working lifetime exposures of each individual 
worker to protective levels.  OELs are based on health or toxicology studies that establish protective mean 
exposure levels.  A work environment that rarely exceeds the OEL will also maintain mean levels well 
below the OEL.  Day-to-day exposure prevention is achieved through investigations to determine cause 
and corrective actions for exposure measurements above the OEL.   

Ninety-five-percent confidence that fewer than 5% of measurements are above a specified limit is a 
statistical definition of compliance that has come into widespread use to determine the monitoring efforts 
needed to demonstrate compliance [see chapter 7, Mulhausen and Damiano (1998)].    In this situation the 
upper tolerance limit (i.e., the 95% UCL for the 95th percentile) and the UCL for the exceedance fraction 
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are of primary interest (see Section 2.3) to determine if the exposure distribution is acceptable.  The exact 
results for samples from a lognormal (or normal) distribution described in Section 2 and the Appendices 
of Mulhausen and Damiano(1998)  are based on the assumption of complete samples; i.e., no left 
censored data.   The statistical methods and computer software for the analysis of left censored data 
described in Section 3 can be used to calculate the censored data equivalent of all of the statistics 
described by Mulhausen and Damiano (1998).  Details describing R and the R driver functions used to 
obtain these results are described in the Appendix and at the AOED website.  All of the R functions can 
be downloaded from the AOED web site.   

In the examples, results obtained using R interactively are shown in a monospaced font like this 
(where “>” is the R prompt).  To duplicate these results in the examples read the Appendix and 
then visit the AOED web site and complete steps 1-4.   Note that Exhibit 1 is listed at the end of readall.R 
at the AOED web site, and the data frame SESdata and character string IpSESdata will be in the R 
working directory. 

4.1  EXAMPLE 1.   SURFACE WIPE SAMPLES FROM ELEVATED SEMELTER SURFACES 

The data in Exhibit 1 are 31 surface wipe samples from elevated surfaces of a smelter with beryllium 
contamination.    Exhibit 1 illustrates one method that can be used to enter data into R in the format 
required for the ML estimation.   This would normally be done by using a text editor to create a file 
(example1.txt).  All characters on a line to the right of the # sign are comments.  The data is entered into 
the R working directory  using the R function source; i.e, if the file is in the directory(folder) where the R 
session was initiated, source (“example1.txt”) will input the vectors x, det, and the data.frame SESdata. 

 

Exhibit 1 of Section 4.1 
       #    Illustrates one method that can be used to enter  
       #    data into R in the format required for ML estimates 
       # 
       #       Surface Wipe Samples from Smelter  
            IpSESdata <- "SESdata:  Smelter-Elevated Surfaces " 
       #    IpSESdata is Character string for Use by qqlognB() 
       x <- (15,15,15,25,25,40,40,40,45,50,50,70,75,95,100,125,125, 
            145,145,150,150,165,270,290,345,395,395,420,495,840,1140) 
       x <- x/1000         # wipe samples micrograms per 100 cm^2 
       det<- c(0,0,0,rep(1,28) )   # first three values are censored 
       SESdata<- data.frame(x,det) # R data frame for mlndln() 
       # 

    ML estimates of µ, σ, log(µx ) , and σ2 are obtained using : 

> mlndln(SESdata) 
              mu     sigma       logE      sig2      -2Log(L) Conver 
mle   -2.2907643 1.2760000 -1.4766777 1.6281796 -12.852885390      0 
semle  0.2311395 0.1754489  0.3137301 0.4477474  -0.002005525     28 
 
The R function mlndln is described in the Appendix and is available at the AOED website. The data in 
Exhibit 1 are shown graphically in Fiqure 1.  ML estimates of µ, and σ are shown in title of the plot.  To 
obtain Figure 1, use the following at the R prompt: 
 
>qqlognB(SESdata,IpSESdata,L=0.2,unit = “mug/100 cm^2”,p=0.95,gam=0.95) 
 
If equipment is being evaluated for release to the public or for non beryllium use the DOE has established 
a release limit for removable beryllium contamination of  L95 = 0.2  µg/100cm2.   The ML estimate of the  
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Figure 1.  Results for Surface Wipe Samples in Example 1. 
 
exceedance fraction (see Section 2.3),  95% LCL, and 95% UCL  are obtained using R function efclnd 
based on the method described in Section 3.4; 
 
> efclnd(SESdata,gam=0.95,L=0.2) 
   f_MLE LCL_0.95 UCL_0.95 
29.66864 19.45963 41.80762  
 
The nonparametric estimates of  the exceedance fraction,  95% LCL, and 95% UCL are obtained using 
efclnp based on the method described in Section 3.5: 
 
> efclnp(SESdata,gam=0.95,L=0.2) 
     fnp   LCL_95   UCL_95 
29.03226 16.06111 45.19044. 
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The exceedance fraction is an estimate of the percentage of surface area that is expected to exceed the 
release limit Lp = 0.2 µg/100cm2 with p =   0.95.   Both the point estimate and the UCL for F exceed 
Fo=100( 1-p)= 5%,  indicating that the equipment is not acceptable.  In fact, the 95% LCL indicates that at 
the 95% confidence level at least 19.5% of the surface area exceeds the release limit.   These lognormal 
based and nonparametric estimates of the exceedance fraction and 95% CLs are shown in the lower right 
of Figure 1 along with the lognormal based estimate of the 95th percentile Xp  = 0.825, the lower 95% CL 
= LX(0.95,0.95) = 0.446, and upper 95% CL= UX(0.95,0.95)= 1.526  (see Section 3.3).  The GM, GSD, 
ML estimates of the (arithmetic) mean of X (with  confidence limits) based on the lognormal model, the 
distribution free Kaplan-Meier mean (with confidence limits), the percent non-detects, the sample size 
(n), the number of detects (m),  R2  (as defined in Section 3.5), and the z value for the limit Lp are in the 
upper left corner of  Figure 1.   
 
All of the these summary statistics and a brief description of each can be obtained using  R function 
allss(dd,L,p,gam); e.g , 

 
> allss(dd=SESdata,L=0.2,p=0.95,gam=0.95)  
           sstat                                             Sec 
mu        -2.291 ML estimate of mean of y=log(x)        Sec 3.1  
se.mu      0.231 Estimate of standard error of mu       Sec 3.1  
   ... 
Fnp_0.2   29.030 Nonparmetric estimate of F for limit L Sec 3.6  
FnLCL_95  16.060 Nonparmetric estimate of LCL for  F    Sec 3.6  
FnUCL_95  45.190 Nonparmetric estimate of UCL for  F    Sec 3.6  
>  
 
4.2  EXAMPLE 2.  TWA BERYLLIUM EXPOSURE DATA 
 
As part of a chronic disease prevention program the DOE adopted an 8-hour TWA OEL limit value of 0.2 
micrograms per cubic meter proposed by the American Conference of Government Industrial Hygienists 
(DOE 10 CRF Part 850 and ACGIH 2004).  Figure 2 summarizes the results of 280 personal 8-hour TWA 
beryllium exposure readings at a DOE facility.  This data contains 175 non-detects that range in value 
from 0.005 to 0.100 µg/m3.  This is an example of random (progressive) left censored data (available at 
the AOED web site in file beTWA.txt).  The q-q plot in Figure 2 is based on the PLE as described in 
Section 3.5 and was calculated using the R function plend(beTWA).  Figure 2 can be obtained using R 
utility function qqlognB.  To obtain Figure 2, use the following at the R prompt: 
 
>beTWA <- read.table(“beTWA.txt”)  
>qqlognB(beTWA,IpbeTWA,L=0.2, unit = “mug/m^3”).  
 
 ML estimates of µ, σ, log(µx ) , and σ2 are obtained using : 
> mlndln(beTWA) 
              mu     sigma       logE      sig2      -2Log(L) Conver 
 

mle   -5.1786787 1.5357165 -3.9994324 2.3585614 -2.175955e+02      0 
semle  0.1340638 0.1155163  0.1485077 0.3548366 -8.918476e-03    105 

> 
The ML estimate of the 95-95 geometric upper tolerance limit is calculate using the results in 
Section 3.3 equation  (9), i.e. ŷ.95 = µ̂  + z.95 σ̂   -2.652 and   
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var( ŷp ) = Var( µ̂ ) + z2
p var (σ

∧
) + 2zpcov( µ̂ ,σ̂ ) 

 = 0.13412 + 1.6452(0.1155)2 + 2*1.645(-.008918) 
 = 0.0247 

 
Then, using equation 6 , UX(0.95,0.95) = exp[-2.652 + 1.659 (0.0247)1/2] = 0.091.  The nonparametric 
upper tolerance limit from Section 3.6 is 0.13.  Both estimates are well below the limit  L0.95 = 0.2 µg/m3 
indicating that the workplace acceptable (in compliance).   
 
The lognormal based estimate of the exceedance fraction for L0.95  = 0.2 is 1.01%, and the 95% upper 
confidence limit Uf(0.2,0.95) = 3.24%  < 5% indicating the workplace is acceptable.  The non-parametric 
estimate of the exceedance fraction is 1.43% with 95% UCL = 3.24%.  All of the above results provide 
strong support for the decision that the workplace is in compliance. 

 
Figure 2.  Results for 8-hour TWA Data in Example 2. 
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5. DISCUSSION 

 
After installing R software as described in the Appendix the R functions posted at the AOED web site can 
be used to analyze exposure data with non-detects.  Data can be entered into R from text files that you 
create by copying data from word processing, spreadsheet or database files.  The output txt files created 
by R can be imported back into files used for analysis, report writing and record keeping  (see the AOED 
web site, Example 1, and the Appendix for more details).  All of the statistics described in the AIHA 
Consensus Standard are calculated using the methods described in Sections 3 and 4 as illustrated in the 
examples.  For all practical purposes there is no upper limit on the size of the data set that can be 
analyzed, and as long as there are at least two detected results most of the statistics will be calculated.  
The R2 statistic and lognormal q-q plots are equivalent to the W statistic and log probability plots 
described by Mulhausen and Damiano (1998), and are used in the same way to check on the lognormal 
assumption and select the appropriate metrics. 

 
Note, however, that the results in Sections 3 and 4 are based on large-sample ML methods and the 
resulting confidence intervals may be "too short" in "small samples."  Schmee et al. (1985) have 
considered confidence limits for the parameters µ and σ for Type I right censored samples from the 
lognormal distribution.  Their report indicates that "exact" results (obtained using Monte Carlo methods) 
are most useful when the number of uncensored observations is small.  They found that when the number 
of uncensored observations is greater than 20 the agreement between exact and large sample ML 
confidence limits is good irrespective of the sample size. They did not consider confidence intervals for 
functions of µ and σ.  As far as we know exact (small sample) results have not been developed for 
randomly (progressively) left censored data.  
 

In this report the UCL for the 95th percentile and the exceedance fraction (both functions of µ̂  and σ̂ ) 

are of primary interest.  In the complete data case the upper confidence limits UX(p, γ) and Uf(Lp,γ) 
always yield equivalent results, i.e. the decision to reject H0 will always be the same.  When the exposure 
measurements are subject to left censoring the exact methods cannot be used and this is no longer true.   
Table 1 presents the results from a simulation study that compares the censored ML estimates of UX(p, γ) 
and Uf(Lp,γ) on the basis of power and type I error rates.  The nominal values used were p = 0.95, γ = 
0.95, power = 0.8,  Lp  = 1, and detection limit DL= 0.1.  The results in each cell in Table 1 are based on 
2000 independently generated random samples from a lognormal distribution under H0 with FL= 5%, or 
separately under H1 with exceedance fraction FL = F* and sample size n* (see columns 2 and 3 in Table I).  
Columns 3 through 13 in the table are the nominal values for the percent non-detects (PND) in each 
sample.  The sample size was obtained using equation (2) with α = 0.05,  (1- β) = 0.8 and F* = 0.75%, 
1.5%, and 3%.  Figure 3 provides a graphical summary of the relation between sample size and F* for 
four levels of power.  The three vertical line intersect the solid curve for power = 80% at n = 34 for F*= 
0.75% , 67 for F* = 1.5%, and 291  for  F* = 3%.   For each of the 15 combination of values of F* and 
PND the parameters of the lognormal distribution under H0 and H1 and were obtained by solving (with Lp  
= 1 and DL= 0.1) 

         µ0  +  zp 0σ = log(Lp)   ;    µ0  +  zc 0σ = log(DL)  .                                            (11)       

   µ1  +  z1 1σ = log(Lp)    ;    µ1  +  zc 1σ = log(DL)  ,                                            (12) 

With zp = 1.645, z1 is based on the value of F*, and zc  is determined by the value of PND.  For example, 
with F* = 1.5% and PND = 40% z1 = 2.17, zc = -0.2533, µ1 = -2.062, σ`1 = -0.950, µ0 = -1.995, and σ0 = 
1.213.  This approach requires that for a given value of F* the percent non-detects will be the same under 
H0 and H1.  The simulation study was done as follows: 
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Table 1.  Results of Simulation Study with Nominal Value p = 0.95, 

                                         Power = 80%,  α = 5%, Lp  = 1.0, and DL = 0.1 

  
Type I ErrorA                  PowerB 

      Empirical Estimates                     Empirical Estimates 
 

   PNDI                     PND 
Procedure F*G nH 1 20 40 60 80 1 20 40 60 80

UfC 0.75 34 6.5 5.2 4.5 3.9 1.1 82 76.1 68.5 55.5 24.9
Uf 1.5 67 5.5 5 5 4.2 4 80.6 76.8 69.1 64.3 50.8
Uf 3 291 5.8 4.5 5.1 5.3 4.8 82.2 79 72.8 67.5 64.8

UXD 0.75 34 10.5 8.8 9.8 10.8 11.5 89.1 86.2 82.8 79.1 73
UX 1.5 67 7.6 7 7.6 8.2 10.2 85.8 84.2 78.3 76.5 74.1
UX 3 291 6.3 5.5 6.2 7 8 84.2 81.4 77 73.6 72.8

Method 2E 0.75 34 5.4 3.8 2.1 0.8 0.1 79.1 69.8 52.3 30.1 6.8
Method 2 1.5 67 4.8 3.5 2.4 0.7 0.1 78.2 69.5 54.6 35.9 8.9
Method 2 3 291 5.1 3.5 2 1.1 0.2 80.7 73.8 59.8 40.2 11.1

ExactF 0.75 34 5.5 4.8 5.2 5.4 4.7 79.8 81.3 79.9 80.5 81.2
Exact 1.5 67 4.9 4.7 4.2 4.8 4.8 79 81 78.6 80 80.9
Exact 3 291 5.1 4.7 4.7 5.4 4.9 81.2 81.8 80.2 79 79.8   

AThe empirical type I error estimate is percent of 2000 tests rejected under H0 
BThe empirical power estimate is percent of 2000 tests rejected under H1 
CThe Uf procedure refers to results using Uf(1,0.95) ML method 1 
D The XU procedure refers to results using UX(0.95,0.95) ML method 1 
E Method 2 is based on analogical reasoning as describe in the methods section 
F The exact procedure refers to exact results from the uncensored samples 
G F* is the value of the exceedance fraction under H1 
H n is sample size based on equation 2 
I PND refers to the nominal percent non-detects.  
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Figure 3.  Sample Size Versus F* for Five Levels of Power



 

17 

 

For each value of F*,  n* and PND solve equation (11) for µ0  and 0σ ; solve equation (12) for µ1  and 

1σ  

(1) Obtain a random sample of size n* from a lognormal distribution with parameters µ0  and 0σ .  
For each complete sample calculate the value of y  and sy .  Replace each sample value < DL 
with DL and calculate the ML estimates µ̂ , σ̂ , their standard errors, covariance, and m using 
mlndln. 

(2) Obtain a random sample of size n*  from a lognormal distribution with parameters µ1  and 1σ .  
For each complete sample calculate the value of y  and sy .  Replace each sample value < DL 
with DL and calculate the ML estimates µ̂ , σ̂ , their standard errors, covariance, and m using 
mlndln. 

(3) Save the results from 2 and 3 as a row in a data frame. 

(4) Repeat steps 1-4 2000 times. 

The results in columns 4 through 8 in Table I are empirical estimates of the Type I error rate (percent of 
2000 samples rejecting H0) for the method in column 1 under H0 for the sample size in column 3 and 
PND at the top of the column.    The results in columns 9 through 13 are the empirical power estimates, 
i.e. percent of 2000 tests that rejected H0 under H1 with true value FL = F* in column 2 and sample size in 
column 3.   The first three rows demonstrate that using the UCL for the exceedance fraction Uf(p,γ) 
results in a Type I error rate (columns 4 through 8)  that is close to or below the nominal level of 5% for 
censoring levels above 20% .  The type I error rate decreases as the PND increase.   Columns 9 through 
13 of the first three rows show a decrease in power for Uf(p,γ)  as  a result of increasing levels of 
censoring.   The Type I error rate for upper tolerance limit UX(p, γ) (see Table 1 rows 3-6 columns 4-8 ) 
clearly exceeds the nominal level for all situations considered , and consequently the higher levels of 
power are misleading.  The results for method 2 are very conservative; i.e,. the UCLs for the exceedance 
fraction and 95th percentile provide a conservative upper bound.  The last three rows in Table I are based 
on the exact values of the test statistics, either Uf(p,γ) or UX(p, γ), that were computed from each sample 
before the sample was censored. These empirical rates are in close agreement with the nominal rates.  The 
average value of the percent non-detect (100*m/n) was calculated for each of the 30 samples and was 
within 0.1% of the nominal value in every case.   These results suggest that in situations where the 
exceedance fraction is of interest for lognormal data with non-detects the UCL for the exceedance 
fraction is preferred procedure. 
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APPENDIX 
 
R (2004) is available as Free Software under the terms of the Free Software Foundation's  
GNU General Public License in source code form. It compiles and runs on a wide variety of UNIX 
platforms and similar systems (including FreeBSD and Linux), Windows and MacOS.  Detailed 
documentation on all aspects of R is available at the R home page http://www.r-project.org/.  Sources, 
binaries, and documentation for R can be obtained via CRAN, the “Comprehensive R Archive Network”  
(click on CRAN on the R home page menu ).  An Introduction to R and related manuals edited by the R 
Development Core Team are  provided under the “Manuals” link.  Additional manuals, tutorials, etc. are 
provided by users of R under the “Contributed” Link.   References are provide under the “Publications” 
link. [Venables and Ripley(2002)] is a highly recommended book on statistical data analysis using R.  All 
of the R functions discussed in this report and the data used in the examples in Section 4 are available at 
the website http://www.csm.ornl.gov/esh/aoed (AOED).  Most of the serious computing is done by R 
base functions optim and uniroot.   The R driver functions at AOED are provided to assist the reader that 
may not have experience with R.  They are not “formal” R functions, i.e. there is limited error checking 
and the usual type of R online “help” files are not provided.  Documentation for each function is provided 
in this report and as comments in the function.  All of the files at the AOED web site are ascii (txt) files 
and can be modified using any text editor (e.g. xemacs, wordpad, vi).   The most important functions with 
more detailed documentation are combined into one file oedmain.R (Exhibit 3).  Additional functions that 
reflect the authors’ interest and that may require revisions for other applications are also provided in the 
file oedutil.R (Exhibit 4).  Both of these are available at the AOED web site the AOED website. 
 
In Section 4 several examples of the interactive use of these functions for the analysis of left censored 
data were provided.  These functions can be used for complete data sets by providing an input matrix with 
the data in column 1 and the censoring indicator for each data value (all equal to 1) in column 2.   The 
results will be the ML estimates.   For complete data sets when n is small the “exact “ results  described in 
Section 2 may be of interest.   The R function lnexact in Exhibit 2 illustrates the use of the functions (see 
Exhibit 3) extol and efcl for the exact analysis of complete samples. It is used here to provide an 
introduction to R (see below).  These functions are appropriate for complete data sets when the “upper 
tail” of the lognormal distribution is of interest (see Mulhausen and Damiano, 1998 Appendix VII).   In 
this situation the industrial hygienist picks an upper percentile Xp  (often the 95th percentile) and specifies 
a limit Lp (e.g., the OEL).   The value of p is the minimum proportion of the exposure distribution that 
must fall below the limit Lp for the exposure profile to be considered “acceptable.”  The exact 100γ% 
upper confidence limit for the pth percentile Xp   is UX(p, γ) = exp( y + K sy) and is referred to as the 
upper tolerance limit ( see Section 2.2). The exact 100γ% lower confidence limit for Xp is LX(p, γ) = 
exp( y + K΄sy).  The point estimate of the exceedance fraction FL and 100γ% lower and upper confidence 
limits are calculate using efcl(x,gam,L) as described in Section 2.3.  The Sapiro-Wilk W statistic 
recommended by AIHA can be used on complete data sets using R function shapiro.test for n between 3 
and 5000.  
 
To duplicate the results that follow visit the AOED web site and complete steps 1-4.   The R working 
directory AIHD will contain all of the functions described in this report and data frames aiha (example 
data from Mulhausen and Damiano, 1998, page 259) and aihand (example data from Mulhausen and 
Damiano, 1998, page 244 with 3 non-detected values).  Note that aihand is used as the default data set in 
all functions that require a two column matrix or data frame (e.g., mlndln).  The input to 
lnexact(x,p,gam,L) in Exhibit 2 is a vector x of positive data  xi, i = 1,…, n ,  and the values of p, gam(γ), 
and L.  The first line is the function name and arguments.  Lines 2 –18 are comments that describe what 
the function does, the arguments, and the values returned.  All characters on a line to the right of the # 
sign are comments. In a formal R function this information is obtained from a “help” file by entering ? 
followed by the name of the function; e.g,  typing pt at the R prompt ( the symbol >) describes the 
probability density function for Student’s t distribution that is used by extol and efcl.  Line 20 describes 
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the error check on line 21.   The mean and standard deviation of y = log(x) and sample size are calculated 
on line 23 ( note that the semicolon separates executable statements on the same line).   The next 3 lines 
calculate the point estimate and confidence limits for Xp  using extol to calculate the values of  K and K´.   
Line 27 combines the three values into a vector xp and names it np.  Line 28 uses efcl to calculate the 
point estimate and confidence limits for the exceedance fraction, and the next line combines vector xp 
and fp into a data frame with names based on the input values of p, gam, and L. These functions can be 
revised using the R functions fix or edit, or by using a text editor (e.g., Notepad or XEmacs) to make a 
new file.   
 
Exhibit 2 in the Appendix 
 
lnexact <-function(x=aiha[,1],p=0.95,gam=0.95,L=5){  
#    Find point estimates and confidence limits for Xp the pth 
#    percentile and the exceedance fraction F_L = Pr[ x > L]  
#    for a  (complete) sample from a lognormal distribution 
# USAGE: lnexact(x,p,gam,L) 
# ARGUMENTS: 
#     x is a vector of positive lognormal data 
#     p is proportion that should fall below L 
#     gam is the one-sided confidence level  
#     L is the specified limit of interest 
# VALUE: data.frame containing point estimates  
#     of Xp and F_L in column 1 
#     100gam% lower confidence limits in column 2 
#     100gam% upper confidence limits in column 3  
#      Xp    LX(p,gam)    UX(p,gam) 
#      F_L   Lf(L,gam)    Uf(L,gam) 
# NOTE: The combined confidence limits are an approximate 
#       100*[1 - (1-gam)*2] Percent Confidence Interval 
# 
#     The next line is an example of "error checking" 
 if( any(x) <= 0 ) stop("all data values must be positive") 
# calculate mean(yb) and standard deviation(sy) of y=log(x) 
yb <- mean(log(x)) ;  sy<- sd(log(x) ) ; n <- length(x) 
xp <- exp( yb + qnorm(p)*sy  )        # point estimate of Xp 
lxp <- exp( yb + extol(n,p,1-gam)*sy) # exact LCL for Xp 
uxp <- exp( yb + extol(n,p,gam)*sy )  # exact UCL for Xp 
xp <- c(xp,lxp,uxp)   ; nx <- paste("X",100*p,sep="")  
fl <- efcl(x,gam,L,T) ; nf <- paste("F",L,sep="_") 
out<-  rbind(xp,fl) 
dimnames(out)<- list( c(nx,nf),c("Est","LCL","UCL")) 
out 
} 
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The following script demonstrates the use of lnexact  
 
> #   Use data from Hewett and Ganser (HG) 1997 page 135 to   
> #   illustrate use of lnexact to obtain exact confidence    
> #   limits for Xp percentile and the exceedance fraction 
> #   for complete samples from lognormal distribution the 
> #   next line assigns the data to the vector variable xhg 
> 
> xhg<- c(4.25,1.38,3.11,2.20,2.82) 
> 
> # now use function lnexact with xhg as input 
>  
> lnexact(xhg,p=0.95,gam=0.95,L=5) 
         Est    LCL.95   UCL.95 
X95 5.145787 3.6328368 15.10336 
F_5 5.744611 0.3795139 35.55304 
> 
> # HG results--- F_5= 5.7  LCL= 0.38  UCL= 35.55 
> #           --- X95  not calculated 
>   
> # Next use aiha[,1] to check results in Appendix VII 
> # of  Mulhausen and Damiano, 1998 (DM) 
> Ipaiha 
[1] "Strategy for Assessing & Managing Occ Exp page 259" 
> 
>  lnexact(aiha$x,p=0.95, gam=0.95) 
         Est       LCL       UCL 
X95 4.842716 3.9015308  7.045908 
F_5 4.241070 0.8570198 15.282684 
> 
> 
> #  DM Appendix VII page 278-280 results UTL= 7.11    
> #  F_5= 4.4%   95% LCL = 2%   95% UCL  = 15% 
> #   difference is due to graphical interpolation and  
> #   rounding of the mean and SD of log(x) 
> mean( log(aiha[,1]) ) ; sd( log(aiha[,1]) ) 
[1] 0.9079064 # rounded to 0.91 
[1] 0.4070693 # rounded t0 0.41 
> 
> # DM Appendix VII page 277 mean= 0.91 SD = 0.41 
> 
 
The results from lnexact will agree with those from Odeh and Owen for any reasonable values of p, gam, 
and L. Note that if the value of L is changed to the 95% UCL for Xp 
> 
> #  change L to 7.046  the 95% UCL for X95 
> 
> lnexact(aiha[,1],p=0.95, gam=0.95, L=7.046) 
              Est     LCL.95   UCL.95 
X95     4.8427163 3.90153084 7.045908 
F_7.046 0.5143435 0.02923116 4.999718 
 
#  and the 95% UCL for F is 5% as expected 
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This shows the equivalance of the relationship between the upper tolerance limit and the exceedance 
fraction; i.e, with γ = 0.95 , p= 0.95,  L= 7.046, F0 =  5% the upper tolerance limit is  UX(0.95,0.95) =  
7.04559 and the upper confidence limit  for the exceedance fraction is Uf(7.046,0.95)= 4.99972   
 
 H0:  Xp ≥ L        reject if  UX(p, γ) <  L         REJECT  H0 
 H0:  FL ≥ 1-p     reject if Uf(L, γ) < F0                REJECT  H0 
 
Likewise, if the value  p = 1 - UCLF_5/100 = .8472 is used 
 
> #  change p to  1 - 0.1528= 0.8472 
> 
 
> lnexact(aiha[,1],p=0.8472, gam=0.95, L=5) 
           Est    LCL.95    UCL.95 
X84.72 3.76199 3.1313547  5.000301 
F_5    4.24107 0.8570198 15.282684 
> #  and the 95% UCL for Xp is 5 as expected 
 
This is equivalent to γ = 0.95 , p= 0.8472, L= 5, F0 =  15.29% , the upper tolerance limit is  
UX(0.847,0.95)= 4.999157,  and the upper confidence limit  for the exceedance fraction is   Uf(5,0.95) =  
15.282684   
 

 H0:  Xp ≥ L        reject if  UX(p, γ) <  L         REJECT  H0 
 H0:  FL ≥ 1-p     reject if Uf(L, γ) < F0               REJECT  H0 
 
 
Exhibit 3 in the Appendix 
 
#             oedmain.R Contains R Functions described in 
# 
#        Statistical Methods and Software for the  Analyis of  
#        Occupaional Exposure Data with Non-Detectable Values  
#              E. L. Frome and P. F. Wambach 
#                 Revision 6a: 29 June 2005 
#            http://www.csm.ornl.gov/esh/aoed/ 
# 
#  Name                 Purpose 
# -------------------   ------------------------------------------------------
- 
#  mlndln(dd)         ML estimates for left censored sample in dd 
#  efclnd(dd,gam,L,T) "large sample" CLs for Exceedance Fraction 
#  efclnp(dd,gam,L)   non-parametric CLs for F= exceedance fraction 
#  extol(n,p,gam)     K factor for exact Lognormal tolerance limit  
#  nptl(n,p,gam)      index for Nonparametric tolerance limit 
#  efcl(x,gam,L,lx)   exact lognormal CLs for exceedance fraction 
#  fnlnf(fs,pow,p,gam) find exact sample size for lognormal  
# NOTE: 
#  dd  is an  n by 2 matrix with x in column 1 and det(0,1) in column 2 
#  gam is confidence level for one sided confidence intervals 
#  p   determines the percentile Xp 
#  L   is specified limit for Xp 
#  fs  true percent of Xs > L 
#  pow power of the test 
# 
# See comments in each function for details 
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# 
###########################  mlndln ################################### 
mlndln <- function(dd = aihand ){ 
#    ML estimates for lognormal sample with non-detects see Section 3 
# USAGE: mlndln( dd ) 
# ARGUMENT: matrix dd with x[i] in column 1 and det[i] in col 2 
#     x[i] is positive lognormal data  
#     det[i]=0 for non-detect ; 1 for detect 
# NOTE: 
#     y= log(x) is normal with mean mu and standard deviation sigma 
#     E(X) = exp( mu + 0.5*sig2)= exp(logE) where sig2 = sigma^2 
#     m is number of detects and Conver is convergence check 
# VALUE: ML estimates of following in 2 by 6 matrix format: 
#     mu    sigma      logE     sig2     -2Log(L)     Conver 
#   se.mu  se.sigma  se.logE  se.sig2   cov(mu,sig)   m 
# REFERENCE: Cohen, A.C (1991) Truncated and Censored Samples 
#            Marcel Decker, New York         
#  REQUIREs:  ndln() ndln2() loglikelihood functions for optim()         
#             see R help file for details on optim() and dlnorm()  
   m <- sum(dd[,2])   #  number of non-detects   
#  initial estimate of mu and sig (sigma)    
      yt <- ifelse(dd[,2]==0,dd[,1]/2,dd[,1] ) 
      est <- c( mean(log(yt)), sd(log(yt)) ) 
# ML estimates  mu and sig 
est <- optim(est,ndln, method = c("Nelder-Mead"),xd=dd )$par 
cont <- list(parscale=abs(est)) 
opt1 <- optim(est,ndln ,NULL,  method ="L-BFGS-B",lower=c(-Inf,0.0), 
          upper=c(Inf,Inf),cont, hessian=T,xd=dd ) 
conv1 <- opt1$conv          # convergenc check from optim() 
mle <- opt1$par             # ML estimate of mu and sig 
vcm <- solve(opt1$hessian) 
semle <- sqrt(diag( vcm ))  # standard Errors of mu and sig 
cov <- vcm[1,2] #  covariace(mu,sig) needed for Tolerance bound 
# 
# ML estimate of logE  and sig2 (sigmma^2) 
# 
 est[1] <- mle[1] + 0.5*mle[2]^2 
 est[2] <- mle[2]^2 
cont <- list(parscale=abs(est)) 
opt2 <- optim(est,ndln2 ,NULL,  method ="L-BFGS-B",lower=c(-Inf,0.0), 
          upper=c(Inf,Inf),cont, hessian=T,xd=dd ) 
#  next line adds ML estimate of logE  sig2 -2Log(L) and Conver 
#  If Conver is not equal to 0 CHECK RESULTs--- see optim() help 
 
mle <- c(mle,opt2$par, 2*opt2$value,opt2$conv+conv1 ) 
semle <- c(semle,sqrt(diag(solve(opt2$hessian))),vcm[1,2],m) 
names(mle) <- c("mu","sigma","logE","sig2","-2Log(L)","Conver") 
out <-rbind( mle,semle) 
out 
} 
#    
ndln <- function(p=est,xd){ 
# -log likelihood functions for optim() in  mlndln() 
 mu<-p[1]; sig<-p[2]; x<-xd[,1] 
xx<-ifelse(xd[,2]==1,dlnorm(x,mu,sig,log=T) , plnorm(x,mu,sig,log.p=T)) 
  -sum(xx) 
} 
# 
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ndln2 <- function(p=est,xd){ 
# -log likelihood functions for optim() in  mlndln() 
 mu<-p[1] - 0.5*p[2]; sig<-sqrt(p[2]);x<-xd[,1] 
xx<-ifelse(xd[,2]==1,dlnorm(x,mu,sig,log=T) , plnorm(x,mu,sig,log.p=T)) 
  -sum(xx) 
} 
############################## efclnd  ################################ 
efclnd<-function(du=aihand,gam=0.95,L=5,dat=T){ 
#  Calculate ML estimate of exceedance fraction F= Pr[ x > L] 
#  and  "large sample" confidence limits  
#  for lognormal data with non-detects see Section 3.4 
# USAGE: efclnd(du,gam,L,dat) 
# ARGUMENTS: if dat=T  du is an n by 2 matrix or data frame 
#            if dat=F  du is matrix from mlndln(du) 
#            gam is one-sided confidence level(%)  
#            L is specifed limit ( e.g OEL) 
# VALUE: ML estimate of exceedance fraction and 100gam% CLs 
# NOTE: (Lf,Uf) is a 100*[1 - (1-gam/100)*2] Percent Confidence Interval 
    if( dat==F ) me <- du 
    if( dat==T ) me <- mlndln(du) 
#   see mlndln() comments 
mu <- me[1,1] ; sig<- me[1,2] ; LL <- log(L) 
u<- ( LL - mu)/sig 
pd1 <- (-1/sig) ; pd2 <- (mu - LL)/sig^2 
# calculate var of u using method of statistical differentials 
su <- sqrt( (pd1*me[2,1])^2 + (pd2*me[2,2])^2 + 2*pd1*pd2*me[2,5] ) 
m <- me[2,6]  # number of non-detects 
u1<- u + qt(gam,m-1)*su  ; u2<- u - qt(gam,m-1)*su 
f1<- 1-pnorm(u1) ; f2<- 1- pnorm(u2) ; f<- 1- pnorm(u) 
out<- 100*c(f,f1,f2)  
names(out)<-c("f_MLE",paste("Lf_",gam,sep=""),paste("Uf_",gam,sep="") ) 
out 
} 
############################## efclnp ################################# 
 
efclnp<-function(dd=aihand,gam=0.95,L=5){ 
#  For random sample size n from any distribution 
#  exceedance fraction F= Pr[ x > L]  See Section 3.4 
#  (FL,FU) is 100gam-percent CI for F 
# USAGE: efclnp(dd=aiha,gam=0.95,L=5) 
# ARGUMENTS: dd = matrix dd with x[i] in column 1 and det[i] in col 2 
#           gam= confidence level one sided 
#           and L= Limit Fo null value(%) 
# VALUE: estimate f of F and exact 100*[ 1 - 2*gam ] percent   
#       Confidence Interval for the exceedance fraction F= Pr[ x > L] 
# DETAILS: see R function  binom.test() 
# ASSUMPTION: all non-detects are less than L 
nx<- sum( ifelse(dd[,1] > L,1,0) ) 
n<-dim(dd)[1] 
ef<- nx/n 
# f0 <- 1 - p 
clev<- 1 - (1 - gam)*2 
tmp<- binom.test(nx,n,ef,"two.sided",clev) 
fcl<- as.numeric( unlist(tmp[4]) ) 
out<- 100*c(ef,fcl) 
names(out)<-c("fnp",paste("LCL_",100*gam,sep=""), 
            paste("UCL_",100*gam,sep="") ) 
out 
} 
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############################ extol #################################### 
 
extol<- function(n=50,p=0.95,gamma=0.95) { 
# Find K factor for exact tolerance limit for complete sample of 
# size n from normal distribution.  See Section 2.2  
# USAGE: extol(n,p,gam) 
# ARGUMENTS: n: sample size  
#            p: quantile of standard normal 
#            gamma:  confidence level for one-sided interval 
# VALUE: factor K for exact tolerance limit   
# DETAILS: R function uniroot is used to find quantile 
#     of noncentral t distribution 
# NOTE: If M is sample mean and SD is standard deviation  
# Prob[ at least 100p% of Xs < M + K*SD] = gamma 
# REFERENCES:  
#        Johnson, N. L. and Welch, B. L. (1940), Applications of 
#        the Non-Central T distribution, Biometrika, 362-389 
# 
#        Odeh, R.E. and Owen, D.B.(1980) Tables for Normal 
#        Tolerance Limits,Sampling Plans, and Screening, 
#         Marcel Deker, New York (see Table 1) 
# 
tx<- function(x,nn=n,th=p,ga=gamma) 
{pt(x,nn-1,(-sqrt(nn)*qnorm(th))) + ga- 1} 
uout<- uniroot(tx,sqrt(n)*c( -(1/(1- max(p,gamma) )),50) ) 
K<- -uout$root/sqrt(n)  
K 
} 
 
 
 
############################ nptl #################################### 
 
 nptl<- function(n=100,p=0.95,gamma=0.95){ 
#  function nptl(n,p,gam)   
#     For a random sample of size n calculate largest value 
#      of m such that with  confidence level gamma 
#      100p percent of population lies  below the 
#      mth largest data value in the sample... see Section 3.6 
# USAGE: nptl(n,p,gam) 
# ARGUMENTS: n: sample size p: defined above 
#            gam:  confidence level for one-sided interva 
# VALUE: m  
# DETAILS: Requries R function qbeata(p,par1,par2) 
# REFERENCES: 
#   Sommerville, P.N. (1958) Annals Math Stat pp 599-601 
k <- ceiling(n*p) 
pv <- qbeta(1-gamma,k,n+1-k) 
while( pv < p && k < n+1){ 
k <- k + 1 
if( k == n + 1) next 
pv<-qbeta(1-gamma,k,n+1-k) 
} 
if( k <= n) m<- n+1-k else m<- NA 
m 
} 
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############################ efcl #################################### 
 
efcl<- function(x=aiha[,1] ,gam=0.95,L=5,logx=T) { 
#  Calculate F = exceedance fraction for limit L (e.g.OEL) 
#  For complete random sample size n from lognormal distribution 
#  yb is mean  sd is standard deviation of y=log(x) See Section 2.3 
#   
# USAGE: efcl(x=ex1,gam=0.95,L=5,logx=T)  
# ARGUMENTS:x vector of data  
#           gam = confidence level    
#           L = Limit for exceedance fraction 
#           logx if logx=T use log scale 
# VALUE: estimate of F ( as percent)  
#        exact 100gam% Uf(L,gam) and Lf(L,gam) 
#       for the exceedance fraction F= Pr[ x > L] 
# NOTE: ( Uf(L,gam),Lf(L,gam) ) is  100*[ 1 - 2*(1-gam) ] percent   
#       Confidence Interval for F see Section 2.3 
# DETAILS: R function uniroot is used to find noncentrality  
#    parameter of noncentral t distribution to calculate CLs 
#    for U= (L-mu)/sigma where F= pnorm(U) see JW Eq 16 p 366 
# REFERENCES:  
#      Johnson, N. L. and Welch, B. L. (1940), Applications  
#      of the Non-Central T distribution, Biometrika, 362-389 
n <- length(x) 
if( logx ) { y<- log(x) ; LL<- log(L) } 
      else { y<- x ; LL<-L } 
yb <- mean(y) 
sd <- sd(y) 
out<- efcl2(yb,sd,n,gam,LL) 
names(out) <- c("F_L",paste("Lf(",L,",",100*gam,")",sep=""), 
                   paste("Uf(",L,",",100*gam,")",sep="") ) 
out 
} 
efcl2<-function(yb=0.91,sd=0.41,n=15,gam=0.95,LL=log(5)) 
{ 
# USAGE: efcl(yb,sd,n,gam,L)  
# ARGUMENTS: yb= mean  sd= standard deviation n= sample size 
#            gam = confidence  L= Limit 
# DETAILS: see efcl() 
del<- function(ncp,tv=t0,df=n-1,eps=cv) 
{pt(tv,df,ncp) - eps } 
u<- (LL - yb)/sd  ; t0<- sqrt(n)*u 
cv<- gam 
#    use JW eq 30 to estimate delta 
dap<- t0 - qnorm(gam)*( 1 + t0^2/(2*(n-1)) )^0.5 
u2<- uniroot(del,dap*c(1/2,2) )$root 
cv<- 1 - gam 
dap<- t0 - qnorm(cv)*( 1 + t0^2/(2*(n-1)) )^0.5 
u1<- uniroot(del, dap*c(1/2,2))$root 
out<-c(u1,u2)/sqrt(n)  # Johnson and Welch eq 16 
out<- 100*c( 1-pnorm(u), 1 - pnorm(out) ) 
out 
} 
 
 
 
 
 
 



 

29 

############################ fnlnf ################################### 
 
fnlnf<-function(fstar=1,power=0.9,p=0.95,gam=0.95){ 
#   For random sample from lognormal distribution 
#   given Ho: Xp > Lp  at the alp = 1 - gam significance level 
#         where Xp is 100p percentile and Lp is specified limit 
#         Ho: Fp > 100*(1-p)  
#         where Fp is the percent of Xs > Lp 
#   Reject Ho if Uf(Lp,gam) < Lp OR UX(p,gam)< Lp  
#   find exact sample size n to provide power of at least (1-beta) 
#   when the true value F is F* (fstar) 
#   
# USAGE: fnlnf(fstar,power,p,gam) 
# ARGUMENTS: 
#   fstar is true percent of Xs > Lp 
#   power = power of test = (1 -beta) 
#   p specifies 100pth percentile of X distribution 
#   gam desired confidence level = 1 - alp 
# VALUE: n sample size 
# NOTE: Based on non-central t distribution see  
#     Lyles and Kupper (1996) JAIHA vol 57 6-15 Equation 5 
if( fstar > 100*(1-p) )  
stop(paste("fstar must be less than",100*(1-p),"percent") ) 
 
tinv<-function(n,nc,p){ 
# Given n (sample size)  
# nc(non-centrality parameter) 
# p Pr[ t <= x}  find x 
tx<- function(x,nn=n,ncp=nc,pv=p) 
{pt(x,nn-1,ncp) - pv } 
uout<- uniroot(tx,sqrt(n)*c( -1/(1-max(p,0.99)) ,50) ) 
K<- uout$root  
K 
} 
fnlf2<-function(n,fs=fstar,pow=power,pv=p,ga=gam){ 
# 
ncp0<- -sqrt(n)*qnorm(pv) 
ncp1<- -sqrt(n)*qnorm( 1 - fs/100 ) 
t0<- tinv(n,ncp0,1-ga) 
t1<- tinv(n,ncp1,pow) 
val<- (t0 - t1) 
} 
out<- floor(uniroot(fnlf2,c(3,20000))$root+1  ) 
out 
} 
 
############################ end oedmain.R ############################# 
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Exhibit 4 in the Appendix 
 
#            oedutil.R   Contains R Functions described in 
# 
#        Statistical Methods and Software for the Analysis of  
#        Occupational Exposure Data with Non-Detectable Values  
#              E. L. Frome and P. F. Wambach 
#                 Revision 6: 13 May 2005 
#            http://www.csm.ornl.gov/esh/aoed/ 
# 
#  Name                 Purpose 
# -------------------   ------------------------------------------------------
- 
#  plend(dd)             Product Limit Estimate for data with non-detects 
#  plquan(ple,qq)        calculate the qth quantile from PLE of CDF 
#  lnclxpnd(met,p,gam,T) calculate CLs for lognormal percentile  
#  kmms(dd,gam)          calculate Kaplan-Meier mean and CLs 
#  kmdif(d1,d2,gam,Ls)   two sample t test with non-detects  
#  coxcl(dd,gam)         calculate modified Cox Interval for lognormal mean 
#  LKcl(dd,gam)          calculate CLs for lognormal mean: Lyles and Kupper  
#  allss(dd,L,p,gam)     calculate summary statistic for left censored sample  
#  qqqlogn(dd,Ip)        quick q-q plot for left censored lognormal data 
#  qqlognB()             q-q plot for left censored lognormal with statistics 
#  readss(fn,L,comma)    read data in spread sheet format 
#  helpfn()              list all functions 
 
############################ plend #################################### 
 
plend<-function(dd=aihand){ 
#    Product Limit Estimate for positive data with  non-detectable 
#   ( left censored data) values see Section 3.5 
# USAGE: plend(dd) 
# ARGUMENTS: dd is an n by 2 matrix or data frame 
#       dd[,1]=  exposure variable in column 1 
#       dd[,2] = censor ( 0 for non-detect 1 for detect) 
# VALUE:   data frame with columns 
#          apl    a   ple  n r   surv 
# 
#      apl[j] is adjusted ple used in q-q plot 
#      a(j)   is the  value of jth detect (ordered) 
#      ple(j) is product limit estimate of cdf (Kaplin-Meier) 
#      n(j) = number of detects or non-detects <= x(j) 
#      r(j)=  number of detects at x(j) 
#      suv(j) = 1 - ple(j) 
# REFERENCES: Schmoyer et al (1996) Environmental and Ecological 
#             Statistics,3 81-79 
# NOTE: see R package dblcens 
nn<- length(dd[,1]); n<-rev( 1: nn ) 
if( sum(dd[,2]) < 2) stop("At least 2 detects required for PLE") 
t1<- as.matrix( cbind( dd[ rev(order(dd[,1]) ),1:2],n ) ) 
dimnames(t1)<- list(NULL,c("x","cen","n") ) 
t2<- t1[ t1[,2]==1,]  # select detects 
ung<- c(-1, diff(t2[,1] ))  
d<- rev( table( t2[,1] ) )  
#  columns of t2 are x[j] n[j] d[j] for cen=1 
#   IN REVERSE order 
t2<- as.matrix( cbind( t2[ ung< 0,],d )[,c(1,3:4)] ) 
#  x contains detects and nx is number of detects 
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x<- dd[ dd[,2]==1,1] ; nx<-length(x)  
ndt<- max(x) 
# add row if min(x) is a non-detect 
if( nx < dim(dd)[1] ){ 
ndt<- dd[ dd[,2]==0, 1] #  nondetects 
if( min(ndt) < min(x) ){ 
nl<- sum( ifelse(dd[,1] <= min(ndt),1,0) ) 
 frow<- c(min(ndt),nl,0) 
 t2<- rbind(t2,frow) 
}} 
# ple = Prod( [n[j] - d[j] ]/n[j] )  
n1<- dim(t2)[1] 
ple0<- cumprod( (t2[,2]-t2[,3])/t2[,2] ) 
ple<- c(1,ple0[1:n1-1]) 
apl<- as.matrix( rev( (ple0 + ple)/2 ) ) 
#dimnames(apl)<-list( NULL,c("apl","a","ple","n", "r") ) 
suv<- 1 - ple ;  suv<-c(suv[2:n1],1 ) 
t2<- cbind(t2,ple,suv) 
t2<- t2[order(t2[,1]),] 
#t2<- data.frame(apl,t2[,c(1,4,2,3,5)]) 
t2<- cbind(apl,t2[,c(1,4,2,3,5)]) 
dimnames(t2)<-list( NULL,c("apl","a","ple","n", "r","surv") ) 
t2<-data.frame(t2) 
t2 
} 
############################ plquan #################################### 
 
plquan<-function(pe=ple,qq=0.95){ 
# Find the qth quantile from PLE of CDF 
# USAGE: plend(pe=ple,qq=0.95) 
# ARGUMENTS: pe is data.frame from plend 
#            qq is such that qq*100 is percentile 
# VALUE: Xq the 100qqth percentile  
x <- c(0,pe[,2]) 
p <- c(0,pe$ple) 
j <- 0 
for( jj in 1:length(x) ) {j<- j+1 
   if( p[jj] > qq)  break} 
 xq<- (x[j] - x[j-1])/(p[j] -p[j-1]) 
 xq<- x[j-1] + xq*( qq - p[j-1]) 
xq 
} 
 
############################ lnclxpnd #################################### 
 
lnclxpnd<-function(ae=aihand,p=0.95,gam=0.95,dat=T){ 
#  Calculate with confidence level gam that  
#  100*p percent of population lies  below the upper bound xpu 
#     and above the lower bound xpl so that 
#  (xpl,xpu) is an approximate 100*[ 1 - 2*(1-p) ] percent   
#  Confidence Interval for the Xp percentile of lognormal distribution 
# USAGE: lnclxpnd(ae,p,gam,dat) 
# ARGUMENTs: if dat=F  ae is output matrix from mlndln(dd) 
#            if dat=T  dd is an n by 2 matrix or data frame 
#           p is percentile and  
#           gam is confidence level 
# VALUE: Xp is pth percentile of lognormal distribution 
#        (xpl,xpu) METHOD 1 Confidence Interval for Xp 
#        (expl,expu) METHOD 2 Confidence Interval for Xp 
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# NOTE: The upper bound xpu is the UTL ( upper tolerance limit) 
#   for the pth percentile, i.e UTL-pg 
#  METHOD 1 IS LARGE SAMPLE RESULT 
#  x is lognormal so y=log(x) is normal(mean=ym,sd=ysd) 
#    yp = ym + zp*ysd is pth percentile of y 
#    ypu = ym + t(gam,nt1-1 )*zp*sdyq  is upper bound 
#  var(yqu) = var(yb) + zp^2*var(ysd) +2*zp*cov(yb,ysd) 
#   zp is pth percentile of N(0,1) and t() is quantile of  t distn 
# METHOD 2 uses tolerance limit factor fron non-central t distribution 
#  these are exact limits when there are no nondetects 
# REQUIRESs extol() 
if(dat) ae<-mlndln(ae) 
mu <- ae[1,1] ; sig <- ae[1,2] ; m <-ae[2,6]  
vmu <- ae[2,1]^2 ;  vsig <- ae[2,2]^2 
zt <- qnorm(p) ; yp<- mu + zt*sig 
#  cov(mu,sig) from mlndln() is in ae[2,5] 
sdyp <- sqrt( vmu + zt^2*vsig + 2*zt*ae[2,5] ) 
xp <- exp(yp) 
xpu <- exp( yp + qt(gam,m-1 )*sdyp ) 
xpl <- exp( yp - qt(gam,m-1 )*sdyp ) 
#  km <- (log(xpu) -mu)/sig  # km is equivalent to K factor 
#  require m > 2 
K<-extol( max(3,m),p,gam)[1] # apprx K value 
expu <- exp(mu + K*sig)   
expl <- exp(mu + sig*extol(m,p,(1 -gam))[1] )  
#out<-c(xp,xpl,xpu,expl,expu,km,K,m) 
#names(out)<-c("Xp","xpl","xpu","expl","expu","km","K","m") 
out<-c(xp,xpl,xpu,expl,expu) 
names(out)<-c("Xp","xpl","xpu","expl","expu") 
out 
} 
 
############################ kmms  #################################### 
 
kmms <- function(dd=aihand,gam=0.95){ 
#    Kaplan- Meier(KM) estimate of mean and Standard Error of 
#    the mean for left censored data  see Section 3.5 
# USAGE: kmms(dd,cl) 
# ARGUMENTS:  dd[,1]= data(exposure variable) 
#          dd[,2] = censor ( 0 for non-detect 1 for detect) 
#          gam= one-sided confidence level  
# VALUE: 
#  KM-mean = KM non-parametric estimate of mean  
#  KM-se = standard error of mean (adjusted) 
#  KM-L and KM-U lower and upper confidence limits  
# NOTE: (kml,kmu) is a 100*[1 - (1-cl)*2] Percent Confidence Interval 
# REFERENCES: 
#  Kaplan- Meier (1958) J Am Stat Assoc 457-481 
#       Turnbull (1976) J Royal Stat Soc 290-295 
nn<- length(dd[,1]); n<-rev( 1: nn ) 
if( sum(dd[,2]) < 2) stop("At least 2 detects required for kmms") 
#  t1 columns of x cen n in reverse order 
t1<- cbind( dd[ rev(order(dd[,1]) ),1:2],n ) 
t2<- t1[ t1[,2]==1,]  # select detects 
ung<- c(-1, diff(t2[,1] ))  
d<- as.vector( rev( table( t2[,1] ) ) ) 
# t2 keep rows with d GT O  
t2<- as.matrix( cbind( t2[ ung< 0,],d )[,c(1,3:4)] ) 
#  x contains detects and nx is number of detects 
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x<- dd[ dd[,2]==1,1] ; nx<-length(x)  
ndt<-max(x) 
#  if min val of x is non-detect add a row 
if( nx < dim(dd)[1] ){ 
ndt<- dd[ dd[,2]==0, 1] #  nondetects 
if( min(ndt) < min(x) ){ 
nl<- sum( ifelse(dd[,1] <= min(ndt),1,0) ) 
 frow<-c(min(ndt),nl,0) 
 t2<-rbind(t2,frow) 
}} 
# caculate product limit estimate 
  ple<-cumprod( (t2[,2]-t2[,3])/t2[,2] ) 
if( min(ndt) < min(x) ) ple[ dim(t2)[1] ] <- 0  
sv<- 1 - ple 
xv<- abs(diff(c(t2[,1],0)) ) 
a<- sv*xv  # a is area for jth interval 
ac<- xv*ple ;n1<-dim(t2)[1] 
  # if( t2$d[nl==0 )ac[n1-1]<-0 
B<- rev(cumsum(rev(ac))) 
t2<- cbind(t2,ple,sv,a,ac,B) 
t2<- data.frame( t2[order(t2[,1]),] ) 
#  compute terms for variance 
vb<-ifelse( (t2[,2] -t2[,3])==0 , 0, 1/((t2[,2] -t2[,3])*t2[,2]) ) 
vb<- t2$d*t2$B^2*vb 
t2<-data.frame(t2,vb) 
kmm<-sum( t2$a) # Kaplan-Meier mean 
kmvb<-sum(vb)   # Kaplan-Meier variance (unadjusted) 
kmseu<- sqrt(kmvb); kmse<- kmseu* sqrt(nx/(nx-1) ) 
#  
cd<- qt( gam ,nx-1)*kmse 
kml<- kmm - cd ; kmu<- kmm + cd 
stat<-c(kmm,kmse,kml,kmu,gam) 
names(stat)<-c("KM-mean","KM-se","KM-L","KM-U","CL-one") 
stat 
} 
############################ kmdif  #################################### 
 
kmdif<-function(ds=sua1,dr=ref,gam=0.95,Ls=0.0){ 
# Compare beryllium concentration is survey unit (SU) with reference area (RA) 
# 
# Ho is mSU > mRA + Ls   mean in SU concentration NOT acceptable 
# Ho    mSU - mRA > Ls 
# Ha is mSU < mRA + Ls   mean concentration acceptable 
# USAGE: kmdif(ds,dr,gam,Ls) 
# ARGUMENTS: ds and dr are n by 2 matricies or data frames 
#       ds[,1]=  exposure variable in column 1 for SU 
#       ds[,2] = detect ( 0 for non-detect 1 for detect) for Su 
#       dr[,1]=  exposure variable in column 1 for RA 
#       dr[,2] = detect ( 0 for non-detect 1 for detect) for RA 
#       gam is confidence level (one sided) for confidence intervals 
#       Ls is value of the "site limit" factor ( default is 0) 
#  VALUE: 
#      KMdif= KMmean from SU - KMmean from RA 
#      sed = standard error of the difference 
#      LCL = Lower confidence limit 
#      UCL = Upper confidence limit 
#      gam = one-sided confidence level(%) 
#      stdif = KMdif divided by sed 
#      pval = probability observing difference GE KMdif if Ho true 
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#      Ls =  value of the "site limit" factor 
#   To test Ho calculate the 100*gam% UCL for (mSU - mRA) 
#     if (95%) UCL < Ls  Recect Ho (the area is acceptable) 
#    use approx method of Satterthwaite  for t test with unequal variances 
#  REFERENCE: Snedecor and Cochran 7th Ed. page 97 
#  REQUIREs: R function kmms() 
kr<- kmms(dr,gam) 
ks<- kmms(ds,gam) 
kmd<- ks[1] - kr[1] # difference of KM means mSU - mRA 
sed<- sqrt( ks[2]^2 + kr[2]^2 )# standard error of difference  
# nr is the number of detects in RA ns is number of detects in SU    
nr<-sum(dr[,2]) ; ns<- sum(ds[,2]) 
#  
ws<- ks[2]^2  ; wo<-kr[2]^2 
# dftp is approximate degrees of freedom for t distribution 
dftp<- (ws + wo)^2/( ws^2/(ns-1) + wo^2/(nr-1) ) 
tp<-  qt(gam,dftp)  # t-value for UCL 
stdif<- kmd/sed    #  Standardized difference 
# p-value If Ho true  i.e if  mSU - mRA = Ls 
pval<- 1 - pt( (kmd - Ls)/sed,dftp ) # p-value 
 
cd<- tp*sed 
dl <- kmd - cd ; du <- kmd + cd 
out<- c( round(c(kmd,sed,dl,du,gam,stdif,dftp,pval,Ls),5) ) 
names(out)<-c("KMdif","sed","LL","UL","gam","stdif","df","pval","Ls" ) 
out 
} 
############################ coxcl  #################################### 
 
coxcl<-function(dd=aihand,gam=0.95,dat=T){ 
#    Calculate confidence limits for lognormal mean 
#    using equivalent of Cox's direct method modified  
#    for non-detects as described in Section 3.2 
# USAGE: coxcl(dd,cl,dat) 
# ARGUMENTS: if dat=T  dd is an n by 2 matrix or data frame 
#            if dat=F  dd is matrix from mlndln(dd) 
#            gam is one-sided confidence level 
# VALUE: ML estimate of AM= exp(mu +0.5sig^2) 
#        AM-L lower confidence limit for AM 
#        AM-U upper confidence limit for AM 
# NOTE: (AM-L,AM-U) is a 100*[1 - (1-cl)*2] Percent Confidence Interval 
    if( dat==F ) ys <- dd 
    if( dat==T ) ys<- mlndln(dd) 
#   see mlndln() comments ys[1,3] is ML estimate of logED 
#    ys[2,3] is standard of logED 
m <- ys[2,6]  # m = number of non-detects 
lex <- ys[1,3]  # same as mu + 0.5*sig^2 
tv <- qt(gam, m-1) 
lexl <- lex - tv*ys[2,3] 
lexu <- lex + tv*ys[2,3] 
out<- c( exp( c(lex,lexl,lexu) ) ) 
names(out)<-c("AM","AM-L","AM-U") 
out 
} 
############################ LKcl #################################### 
 
LKcl<-function(dd=aihand,gam=0.95,dat=T){ 
#  Calculate confidence limits for lognormal mean 
#  using approximate method described in Section 3.2 
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# USAGE: LKcl(dd,cl,dat) 
# ARGUMENTS: if dat=T  dd is an n by 2 matrix or data frame 
#            if dat=F  du is matrix from mlndln(dd) 
#            gam is one-sided confidence level(%) 
# VALUE: ML estimate of AM= exp(mu +0.5sig^2) 
#        LK-L lower confidence limit for AM 
#        LK-U upper confidence limit for AM 
# NOTE: (LK-L,LK-U) is a 100*[1 - (1-cl)*2] Percent Confidence Interval 
# If there are no non-detects (m=n) then (LK-L,LK-U) will be 
# an approximation to Land's exact method 
# REFERENCES: 
#     Lyles and Kupper (1996) JAIHA vol 57 6-15 
ml <- dd 
if( dat==T ) ml <- mlndln(dd)  
  yb<-ml[1,1] ; sy<-ml[1,2]; vyb<-ml[2,1]^2 
#   
  n <- ml[2,6]  # number of non-detects 
 alp <- 1 - gam  
 ch<- sqrt( qchisq(alp,n-1) ) ; clo<-sqrt( qchisq(1-alp,n-1) ) 
#  see Section 3.2 equation 11 
cuh<- (sqrt(n)*(sy/2)*sqrt((n-1)/n))/ch  + qt(1-alp,n-1)/sqrt(n) 
cul<- (sqrt(n)*(sy/2)*sqrt((n-1)/n))/clo  + qt(alp,n-1)/sqrt(n) 
lex<- yb +0.5*sy^2 
lexl<-yb + cul*sy ; kl<-  sqrt(n-1)*(lexl - lex)/sy 
lexu<- yb + cuh*sy ; ku<- sqrt(n-1)*(lexu - lex)/sy 
out<-c(exp(lex) ,exp(lexl),exp(lexu) ) 
names(out)<-c("AM","LK-L","LK-U") 
out 
} 
 
############################ allss  #################################### 
allss <- function(dd=aihand,L=5,pc=0.95,gam=0.95,mth=1,ro=3){ 
#  allss  2 Oct04 Revised from 7 Jul 04 
#  calculate all summary statistic for left censored sample x[] 
#  from lognormal distribution based on Maximum Likelihood 
#  and nonparametric methods 
#  INPUT: 
#    dd is 2col data frame or matrix  with 
#    x  in column 1  and cen=1 for  detect 0 for nondetect column 2 
#    gam is confidence level (one sided) for confidence intervals 
#    pc is quantile for UTL-pc-gam 
#    mth=1 for asymptotic mth=2 "pseudo exact"  
# REQUIRES mlndln(dd)  plend() coxcl() lnclxpnd() efclnd() efclnp() 
# 
nt <- length(dd[,1]) 
ndet <- sum(dd[,2]) 
if( ndet < 2) stop("At least 2 detects required for allss") 
PCndet <- round( 100*(nt-ndet)/nt,1) 
du <- dd[,1:2]  
 
ys <- mlndln(du) 
GM <- exp(ys[1,1]) 
GSD <- exp(ys[1,2]) 
 
#  Method 1 is equivalent to modified  Cox direct Method 
#  approximate CLs for lognormal mean 
if(mth==1) {clo<-coxcl(ys,gam,F) 
   EX<-clo[1] 
   EXL<-clo[2]; nEXL=paste("LCLa",100*gam,sep="_") 
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   EXU<- clo[3]; nEXU=paste("UCLa",100*gam,sep="_") 
} 
 
#  If mth=2 Use Modifed Method of Lyles and Kupper  
#  to calculate approximate CLs for lognormal mean 
if(mth==2) {lko<-LKcl(ys,gam,F) 
   EX<-lko[1] 
   EXL<-lko[2]; nEXL=paste("LCLe",100*gam,sep="_") 
   EXU<- lko[3]; nEXU=paste("UCLe",100*gam,sep="_") 
} 
#  calculate Product limit estimate of CDF for left censored data 
cdf <- plend(du) 
#  RH is (progressively left censored version of correlation coef) 
#  see Verrill and Johnson JASA 1988 Equation 4.4 
#  in no censoring Rsq= RH^2 will be approx equal to Shapiro-Wilk W 
Rsq <- cor(qnorm(cdf[,1]),log(cdf[,2]) )^2 
#  calculate UTL and CLs method 1 and 2 
xtmp<-lnclxpnd(ys,p=pc,gam,F) 
pc.obs<- plquan( cdf  , pc) # find pcth percentile of x 
pc.est<-xtmp[1] 
 
pco<-paste("Obs%",100*pc,sep=""); pce<- paste("Est%",100*pc,sep="") 
# 
if( mth==1 ){TL<-xtmp[2];pTL<-paste("LXpa",100*pc,100*gam,sep="") 
TU<-xtmp[3];pTU<-paste("UXpa",100*pc,100*gam,sep="") 
 } 
# 
if( mth==2 ) {TL<-xtmp[4];pTL<-paste("LXpe",100*pc,100*gam,sep="") 
TU<-xtmp[5];pTU<-paste("UXpe",100*pc,100*gam,sep="") 
 
 } 
zL<- (log(L)-ys[1,1])/ys[1,2]; noel<-paste("z_L_",L,sep="") 
 
xmax<-max(du[,1]) 
m5 <- nptl(nt,pc,gam) 
if( is.na(m5) )NPTL<-NA    else NPTL<- rev(sort(du[,1]))[m5] 
# 
km<-kmms(dd,gam) 
nKML<-paste("KLCL",100*gam,sep="_"); nKMU<-paste("KUCL",100*gam,sep="_") 
nNPTL<-paste("NpUTL",100*pc,100*gam,sep="") 
 
out<-c(ys[1,1],ys[2,1],ys[1,2],ys[2,2],GM,GSD,EX,EXL,EXU, 
      km[1],km[3],km[4],km[2],pc.obs,pc.est,TL,TU,zL) 
 
#  calculate excedance fraction for L lognormal model 
#   efclnd() is approximate large sample  
if(mth==1) { ef<- efclnd(ys,gam,L,dat=F) 
nef1<-paste("Fax",L,sep="_"); nef2<-paste("FaLCL",100*gam,sep="_") 
                              nef3<-paste("FaUCL",100*gam,sep="_") 
} 
if(mth==2){ ef<- efcl2(ys[1,1],ys[1,2],ys[2,6],gam,log(L)) 
nef1<-paste("Fax",L,sep="_"); nef2<-paste("FeLCL",100*gam,sep="_") 
                              nef3<-paste("FeUCL",100*gam,sep="_") 
} 
#  non-parametric excedance fraction and CLs for L 
npf<- efclnp(du,gam,L ) 
np1<-paste("Fnp",L,sep="_"); np2<-paste("FnLCL",100*gam,sep="_") 
                              np3<-paste("FnUCL",100*gam,sep="_") 
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sstat<- round( c(out,NPTL,xmax,round(PCndet,2),round(nt), 
         Rsq,ndet,ef,npf ),ro ) 
 
# 
 
onames<- c("mu","se.mu","sigma","se.sigma","GM","GSD","EX",nEXL,nEXU, 
      
"KMmean",nKML,nKMU,"KM.se",pco,pce,pTL,pTU,noel,nNPTL,"Maximum","NonDet%", 
     "n","Rsq","m",nef1,nef2,nef3,np1,np2,np3 ) 
Sec<-c( 
"ML estimate of mean of y=log(x)        Sec 3.1 ", 
"Estimate of standard error of mu       Sec 3.1 ", 
"ML estimate of sigma                   Sec 3.1 ", 
"Estimate of standard error of sigma    Sec 3.1 ", 
"MLE of geometric mean                  Sec 3.1 ", 
"MLE of geometric standard deviation    Sec 3.1 ", 
"MLE of the EX the (arithmetic) mean    Sec 3.2 ", 
"Lower Confidence Limit for EX          Sec 3.2 ", 
"Upper Confidence Limit for EX          Sec 3.2 ", 
"Kaplan-Meier(KM) Estimate of EX        Sec 3.5 ", 
"KM Lower Confidence Limit for EX       Sec 3.5 ", 
"KM Upper Confidence Limit for EX       Sec 3.5 ", 
"Standard Eror of KMmean                Sec 3.5 ", 
"Obsevred Percentile of data            Sec 3.5 ", 
"ML estimate of Xp the pth percentile   Sec 3.3 ", 
"MLE of LX(p,gam) LCL for Xp            Sec 3.5 ", 
"MLE of UX(p,gam) UCL for Xp            Sec 3.5 ", 
"MLE of the Z value for limit L         Sec 3.4 ", 
"Nonparmetric estimate of the UTL       Sec 3.5 ", 
"Largest value in the data set                  ", 
"The percent of Xs that are left censored       ", 
"The number of observations in the data set     ", 
"Square of correlation for the q-q      Sec 3.5 ", 
"The number Xs greater than the LOD             ", 
"MLE of exceedance fraction F for limit L       ", 
"LCf(L,gam) MLE of LCL for F            Sec 3.4 ", 
"UCf(L,gam) MLE of UCL for F            Sec 3.4 ", 
"Nonparmetric estimate of F for limit L Sec 3.6 ", 
"Nonparmetric estimate of LCL for  F    Sec 3.6 ", 
"Nonparmetric estimate of UCL for  F    Sec 3.6 ", 
) 
 
#tmp<<- data.frame(out[1:14],odes,row.names=onames[1:14]) 
 
#names(sstat) <- c("mu","se.mu","sigma","se.sigma","GM","GSD","EX",nEXL,nEXU, 
#      "KMmean",nKML,nKMU,pco,pce,pTL,pTU,noel,nNPTL,"Maximum","NonDet%", 
#     "n","Rsq","m",nef1,nef2,nef3,np1,np2,np3 ) 
names(sstat) <- onames  
sstat<-data.frame(sstat,Sec,row.names=onames) 
#sstat<-cbind(sstat) 
sstat 
} 
############################ qqqlogn  #################################### 
qqqlogn<-function(dd=aihand,Ip="NONE"){ 
#   
# Quick q-q plot for Left censored sample from  Lognormal Distribution 
#  without detailed summary statistics in the plot 
#  
# USAGE: qqqlogn(dd,Ip) 
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# ARGUMENTs: matrix dd with x[i] in column 1 and det[i] in col 2 
#     x[i] is positive lognormal data  
#     det[i]=0 for non-detect ; 1 for detect 
#     Ip  part of title used in plots ( default="NONE") 
# VALUE: ML estimates from mlndln() 
# REQUIRES: mlndln() and plend() 
#  
if( sum(dd[,2]) < 2) stop("At least 2 detects required for qqqlogn") 
if(Ip=="NONE") Ip<-paste("Lognomal Q-Q Plot for",deparse(substitute(dd) ) ) 
yvalue <- names(dd)[1] 
ple<- plend(dd)      # calculate ple 
ym <- ple[,2]        # data on the vertical axis 
xq<- qnorm(ple$apl)  # normal quantiles on horizontal axis 
# 
plot( xq,ym,type = "n",xlab="Normal Quantile",ylab=yvalue,log="y" ) 
points(xq,ym, pch = 1, cex = 0.6,col="red") 
# 
#  add results from MLE 
mle<-mlndln(dd) 
GM<- exp( mle[1,1] ) 
GSD<- exp( mle[1,2] ) 
Rsq <- round(cor(qnorm(ple[,1]),log(ple[,2]) )^2,3) 
xx<- c(xq[1],xq[length(xq)]);  yhat<- exp(mle[1,1] + xx*mle[1,2]) 
lines(cbind(xx,yhat),type="b") 
# add a title 
title(paste(Ip,"GM= ",round(GM,2)," GSD= ",round(GSD,2),"Rsq= ",Rsq) ) 
mle 
} 
 
############################ qqlognB  #################################### 
 
qqlognB<-function(dd=aihand,Ip="NONE",L=5,unit="mg/m^3",pc=0.95, 
                 gam=0.95,mth=1,ro=3,loc=F){ 
#   
#  q-q plot for Left censored sample from  Lognormal Distribution 
#  with detailed summary statistics in the plot 
# USAGE: qqlognB(dd,Ip,L,unit,pc,gam,mth,ro) 
# ARGUMENTs: dd two column matris with nonnegative data in d[,1]  
#         censoring(0=non-detect;1=detect) indicator in d[,2] 
#       Ip  part of title used in plots ( default="NONE") 
#       L is specified limit in data units ( e.g OEL) default 5 
#       unit is data units--default micrograms/m^3   
#       gam is confidence level (one sided) for confidence intervals 
#       pc is quantile for Xp and UTL-pc-gam 
#       mth = 1 (default) for asymptotic ML  mth=2 "pseudo-exact"  
#       ro controls rounding ( digidt to right of decimal point) 
#       loc if true use cursor to locate statistics 
#  VALUE: Lognormal q-q plot in graphics window with summary statistics 
# REQUIRES:  allss()  AND all functions listed in allss()   
if( sum(dd[,2]) < 2) stop("At least 2 detects required for qqlognB") 
if(loc) cat("use cursor LEFT CLICK to locate statistics \n\ ") 
du <- dd[,1:2] 
if(Ip=="NONE") Ip<-paste("Lognomal Q-Q Plot for",deparse(substitute(dd) ) ) 
par(mfrow = c(1, 1), oma = c(1.1, 1.1, 1.1, 1.1), cex = 1) 
kmg<- plend(du) 
ym <- kmg[,2] ; cl<- 100*gam   
tmp<-  allss(du,L,pc,gam,mth,ro) 
ss<-as.list(round(tmp[,1],ro)) 
names(ss)<- row.names(tmp) 
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Rsq<-round(ss$Rsq,3) 
xq<- qnorm(kmg$apl) 
#  scale factors for axis 
sf<- 1.2 ;  scy<-c(min(ym)/sf,max(ym)*sf) 
#scx<- c(min(xq)/ifelse( min(xq)<sf, max(xq)*sf) 
scx<- c( min(xq) - 0.5, max(xq) + 0.5 ) 
  plot( xq,ym,type = "n",xlim = scx, ylim= scy, 
        xlab="Normal Quantile",ylab=paste(" ",unit),log="y" ) 
points(xq,ym, pch = 1, cex = 0.6,col="red") 
xx<- c(xq[1],xq[length(xq)]);  yhat<- exp(ss$mu + xx*ss$sigma) 
lines(cbind(xx,yhat),type="b") 
 
# Use results in ss from allss() to add statistics to the plot 
 
tfile<-paste(    
   "\n GM= ",round(ss$GM,ro),"GSD= ",round(ss$GSD,ro), 
   "\nArithmetic Mean ( ",cl,"% UCL ) ", 
   "\n ", round( ss$EX,ro) ,"  (", round(ss$LCL,ro), 
   ",",round( ss$UCL ,ro)," )", 
   "\nKaplan-Meier Mean (",cl,"% UCL) ", 
   "\n", ss$KMmean,"  (",ss$KLCL,",", ss$KUCL,")", 
    "\nNon-Detects Percent= ",ss$NonD , 
 "\n n=", ss$n," m=",ss$m,"Rsq=",Rsq )    
tadd<- paste("\nZ for L",L,unit," =  ", round( (log(L) -ss$mu)/ss$sigma,2))  
if(L > 0) tfile<-paste(tfile,tadd) 
  xp<- min(xq) +  0.2* abs( max(xq) - min(xq)) 
 yp<- min(ym) + 0.5*( max(ym) - min(ym)) 
if(loc) {xyp<-locator(1); xp<-xyp[1]; yp<-xyp[2]} 
 
 text(xp,yp,tfile,cex=0.7) 
 tfile2<- paste( paste( "\nObs ",100*pc,"th Percentile= ", round(ss$Obs,ro),  
 "\nEst ",100*pc,"% ( ",cl,"% UCL ) ",sep=""), 
 paste("\nLognormal ", round( ss$Est,ro) ,"  (", round(ss$LXp,ro), 
   ",",round( ss$UXp ,ro)," )"),paste( 
 "\n 95-",cl,"Nonparametric  UTL=  ", ss$NpUTL, 
"\nExceedance Fraction ( ",cl,"% UCL ) ", 
"\nLognormal ", round( ss$Fax,ro) ,"  (", round(ss$FaL,ro), 
   ",",round( ss$FaU ,ro)," )", 
 
"\nNonparametric ", round( ss$Fnp,ro) ,"  (", round(ss$FnL,ro), 
   ",",round( ss$FnU ,ro)," )", 
 "\nMaximum Value = ",round(max(du[,1]),ro) 
  ) ) 
         xp<- 0.7*max(xq) 
 yp<- min(ym) + 0.025*(max(ym) - min(ym)) 
#yp <- min(ym) + 0.01*(  max(ym)/min(ym) ) 
if(loc) {xyp<-locator(1); xp<-xyp[1]; yp<-xyp[2]} 
 
text(xp,yp,tfile2,cex=0.7) 
 Ip<-paste(Ip,"\n   Lognormal(",ss$mu,",",ss$sigma,")", 
         "  Q-Q Plot ML Method=",mth,"Confidence Limits" ) 
# "MLEs Method",mth,"Confidence Limits" ) 
#   navyblue  
 mtext( side = 3, line = 1, Ip , cex = 1.0,col="royalblue4",font=2) 
 t1<-paste("qqlognB ",substring(date(),1,10),substring(date(),20,24)) 
 
} 
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############################## readss.R ########################## 
 
readss<-function(fn="beTWA",L=0.2,comma=F) { 
#  Read data from fn.txt or fn.csv and calculate all summary statistics 
#   using allss().   Output results allss() from to a txt file. 
# USAGE: readss("fn",L=2,comma=F) 
# ARGUMENTS: fn in double quotes is file name without extension 
#            L is specified limit value 
#            comma is F (for .csv file) or T (for .txt file) 
# NOTE:  
#    If comma is F 
#    read fn.txt a space delimited file with three couluns 
#    Col 1 is rowname Col 2 is positive data value Col 3 is 0 or 1  
#    the first record must have 2 valid R column names, e.g. x det 
# or if comma is T 
#    fn.csv is a two column comma delimited text file created 
#    from Excel using Save as type CSV(comma delimited)  
#    x in column 1 and det( 0 or 1 ) in column two 
#    the first record must have 2 valid R column names, e.g. x det 
# VALUE: data.frame  
#        writes output from allss to file "fnout.txt" 
# EXAMPLEs readss("beTWA",L=0.2,comma=F) 
#          readss("aihand",L=0.2,comma=T) 
# REFERENCE: see R help files for read.table and read.csv 
#  
if(comma){ tmp<- read.csv( paste(fn,"csv",sep=".") ,T ) 
stats<- allss(tmp,L) 
stats<-cbind(stats) 
nout<-paste(fn,"out.txt",sep="") 
} 
else{ tmp<- read.table( paste(fn,"txt",sep=".") ,T ) 
stats<- allss(tmp,L) 
stats<-cbind(stats) 
nout<-paste(fn,"out.txt",sep="") 
} 
sink(nout) 
print(stats) 
sink() 
tmp 
} 
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helpfn<-function(h=T){if(h)cat("type helpfn[Enter] without ()/n") 
# list of functions 
# NOTE: 
#  dd  is n by 2 matrix with x in column 1 and det(0,1) in column 2 
#  gam is confidence level for one sided confidence intervals 
#  p   determines the percentile Xp 
#  L   is specified limit for Xp 
#  fs  true percent of Xs > L 
#  met ML estimates output from mlndln() 
#  ple Product limit estimates from plend() 
#  pow power of the test 
# 
#  FUNCTIONS USED FOR DATA WITH NON-DETECTS  
#  Name                 Purpose 
# -------------------   --------------------------------------------------- 
#  allss(dd,L,p,gam)    calculate summary statistic for left censored sample  
#  coxcl(dd,gam)        calculate modified Cox Interval for lognormal mean 
#  efclnd(dd,gam,L,T)   "large sample" CLs for Exceedance Fraction 
#  efclnp(dd,gam,L)     non-parametric CLs for F= exceedance fraction 
#  kmms(dd,gam)         calculate Kaplan-Meier mean and CLs 
#  LKcl(dd,gam)         calculate CLs for lognormal mean: Lyles and Kupper 
#  lnclxpnd(met,p,gam,T)calculate confidence intervals for lognormal 
percentiles  
#  mlndln(dd)           ML estimates for left censored sample in dd 
#  plend(dd)            Product Limit Estimate of CDF for data with non-
detects 
#  plquan(ple,qq)       calculate the qth quantile from PLE of CDF 
#  qqqlogn(dd,Ip)       quick q-q plot for left censored lognormal data 
#  qqlognB()            q-q plot for left censored lognormal with statistics 
#  readss(fn,L,comma)   read data in spread sheet format 
#  
#  FUNCTIONS USED FOR COMPLETE DATA  
#  efcl(x,gam,L,lx)     exact lognormal CLs for exceedance fraction 
#  extol(n,p,gam)       K factor for exact Lognormal tolerance limit 
#  fnlnf(fs,pow,p,gam)  find exact sample size for lognormal   
#  nptl(n,p,gam)        index for Nonparametric tolerance limit 
 
# TYPE THE NAME OF THE FUNCTION WITHOUT () FOR DETAILS 
} 
 
 
########################## end util.R ########################## 
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