

Limitations of current serologic assays to detect antibody responses to HA and NA

FDA/NIH/WHO workshop: Immune Correlates of Protection, December 10-11, 2007

John Wood NIBSC

Assays to be discussed

HA Haemagglutination-inhibition

HA Virus neutralisation – (microneutralisation)

HA Single Radial Haemolysis

Neuraminidase assays

Advantages

- Technically simple- easy to automate
- Considerable experience evaluating antibody responses to infection/vaccination
- Convenient for antigenic analysis years of experience
- Correlates of immunity well documented for seasonal flu
- Good correlation with VN titres

- Insensitive for antibody to flu B, H5 and H7 viruses
- Technical aspects of test (erythrocytes, RDE) affect HI titres
- Poor reproducibility between labs

Advantages

- Technically simple- easy to automate
- Considerable experience evaluating antibody responses to infection/vaccination
- Convenient for antigenic analysis years of experience
- Correlates of immunity well documented for seasonal flu
- Good correlation with VN titres

- Insensitive for antibody to flu B, H5 and H7 viruses
- Technical aspects of test (erythrocytes, RDE) affect HI titres
- Poor reproducibility between labs

Advantages

- Correlates of immunity well documented for seasonal flu
 - De Jong (2003) review of 24 studies in healthy children and adults involving natural infection and challenge infection with H2N2, H3N2, H1N1 and B viruses
 - Median HI titre of 1:28 associated with 50% protection;
 - Median HI titre of 1:192 associated with 90% protection.
 - Conclusion that HI of 1:40 is justified for seasonal flu
- Good correlation with VN titres
 - Vaccine studies only where strains in vaccine and assay are homologous
 - VN is more strain specific than HI (De Jong, 2003; Stephenson et al, 2007; M. Zambon pers. com.)

- Insensitive for antibody to flu B, H5 and H7 viruses
 - B assay, use of split antigens with decreased strain specificity (Monto and Maassab, 1981; Kendal and Kate, 1983)
 - H5 and H7, use of horse HI (Stephenson et al, 2003)
- Poor reproducibility between labs
 - Wood et al, 1994 greatest variation in HI titres 32 fold
 - EDQM study 2005 HI >16 fold variation; compliance with CHMP licensing varies with from lab to lab
 - Stephenson et al, 2007 H3N2 HI 6-128 fold variation

- Insensitive for antibody to flu B, H5 and H7 viruses
 - B assay, use of split antigens with decreased strain specificity (Monto and Maassab, 1981; Kendal and Kate, 1983)
 - H5 and H7, use of horse HI (Stephenson et al, 2003)
- Poor reproducibility between labs
 - Wood et al, 1994 greatest variation in HI titres 32 fold
 - EDQM study 2005 HI >16 fold variation
 - Stephenson et al, 2007 HI 6-128 fold variation

Advantages and limitations of Horse HI assay

Advantages

- Test is sensitive for antibody to H5 and H7 haemagglutinins
- Good correlation with VN test (Confirmed H5N1 cases: J Katz, pers. com.;
 H5N1 vaccine trials: J Katz, pers. com.; Treanor et al, 2006; Bresson et al, 2006)
- Can use inactivated antigen BSL2

- Unsure whether hHI titre of 1:40 relates to 50% protection against an H5N1 virus?
- Agglutination affected by aa changes near HA rbs
 - Evaluate specificity and sensitivity of hHI for new H5N1 strains (J Katz pers. com.)
- May not be as robust as turkey HI
 - Affected by age and source of horse erythrocytes
- Reproducibility between labs unknown

Advantages and limitations of Horse HI assay

Advantages

- Test is sensitive for antibody to H5 and H7 haemagglutinins
- Good correlation with VN test (Confirmed H5N1 cases: J Katz, pers. com.; H5N1 vaccine trials: J Katz, pers. com.; Treanor et al, 2006; Bresson et al, 2006)
- Can use inactivated antigen BSL2

- Unsure whether hHI titre of 1:40 relates to 50% protection against an H5N1 virus?
- Agglutination affected by aa changes near HA rbs
 - Evaluate specificity and sensitivity of hHI for new H5N1 strains (*J Katz pers. com.*)
- May not be as robust as turkey HI
 - Affected by age and source of horse erythrocytes
- Reproducibility between labs unknown

Correlation of Microneutralization (MN) and Horse RBC HI (HHI) titers for Sera from Individuals Vaccinated with VN/1203 H5N1 Vaccine*

^{*} NIAID/NIH supported clinical trial in healthy adults

Specificity of Horse RBC HI assay versus MN assay for H5N1 Clade 1 and 2 viruses

Clade 1 viruses		Clade 2 viruses		
Horse HI assay	MN assay	Horse HI assay	MN assay	
93.8%	100%	100%	100%	

- 80 U.S. control sera from persons aged 20-70 years
- Positive = titer of 1:80 or greater in either assay

Virus neutralisation assay

Advantages

- Functional assay
- Suitable for semi-automation
- Equivalent sensitivity to other HA antibody assays for seasonal viruses (HI, SRH)
- More strain specific than HI for seasonal and H5N1 viruses (De Jong, 2003;
 Stephenson et al, 2007; M. Zambon pers. com.)
- Equivalent sensitivity to hHI and SRH for antibody to H5N1 viruses

Virus neutralisation assay

- Correlates of immunity unknown, although VN titre of 1:20-80 used to indicate a seropositive for H5N1 (J Katz, M Zambon pers. com.)
- Need for live virus BSL2+ (rg H5N1virus), BSL3+ (HP H5N1virus)
- Technical aspects of assay can affect titres (Virus growth kinetics; protocol differences for serum treatment and dilution, amount of virus, neutralisation time, diluent)
- Poor reproducibility between labs (Stephenson et al, 2007)

Virus neutralisation assay

- Correlates of immunity unknown, although VN titre of 1:20-80 used to indicate a seropositive for H5N1 (J Katz, M Zambon pers. com.)
- Need for live virus BSL2+ (rg H5N1virus), BSL3+ (HP H5N1virus)
- Technical aspects of assay can affect titres (Virus growth kinetics; protocol differences for serum treatment and dilution, amount of virus, neutralisation time, diluent)
- Poor reproducibility between labs (Stephenson et al, 2007)

Variability of Virus Neutralisation assay

Available online at www.sciencedirect.com

Vaccine 25 (2007) 4056-4063

Comparison of neutralising antibody assays for detection of antibody to influenza A/H3N2 viruses: An international collaborative study[☆]

Iain Stephenson a,*, Rose Gaines Das b, John M. Wood b, Jacqueline M. Katz c

a Infectious Diseases Unit, University Hospitals Leicester, Leicester LE1 5WW, UK
 b National Institute for Biological Standards and Controls, Potters Bar, Hertfordshire, UK
 c Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA

Received 19 December 2006; received in revised form 5 February 2007; accepted 8 February 2007 Available online 27 February 2007

- Comparison of HI and VN for H3N2 virus
- 11 labs from 8 countries
- Panel of 19 sera from vaccine trials

Results: comparison of replicate samples within laboratories (R and U)

Reproducibility of 'absolute' titres between laboratories

Assay Type	HI		VN	
Laboratory	Minimum	Maximum	Minimum	Maximum
001	10	640	10	>2560
002	10	10240	7	12141
003	8	2048	53	81920
004	<10	1280	<10	2560
005	40	>=1920	28	4520
006	<10	2560	<80	2560
007	<10	640	<10	>1280
008	20	1280	<10	160
009	<10	2560	10	5120
010	<10	640	<10	2560
011	20	5120	20	5120

Variability of Virus Neutralisation assay

ELSEVIER	Available online at www.sciencedirect.com ScienceDirect Vaccine 25 (2007) 4056–4063	Vaccine.			
Comparison of neutralising antibody assays for detection of antibody to influenza A/H3N2 viruses: An international collaborative study **					
Iain Stepher	ason a,*, Rose Gaines Das b, John M. Wood b, Jacq	ueline M. Katz ^c			
	^a Infectious Diseases Unit, University Hospitals Leicester, Leicester LEI SW: National Institute for Biological Standards and Controls, Potters Bar, Hertfords ^c Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA	shire, UK			
Rece	ived 19 December 2006; received in revised form 5 February 2007; accepted 8 F Available online 27 February 2007	ebruary 2007			

Assays of serum N	GMT	Range Fo	ld difference	GCV
HI	39	10-1280	128	278%
VN	130	80-2560	724	529%

Median GCVs

HI 138-261% VN 256-323%

Use of standard serum

Median GCVs HI 64-108% VN 85-115%

Single Radial Haemolysis assay

Advantages

- SRH has equivalent sensitivity to HI (seasonal viruses); greater sensitivity than HI for B viruses
- SRH titre of 25mm² relates to 50% protection seasonal flu
 - De Jong (2003) summary: three studies of H3N2 and B vaccination/natural infection
- For antibody to 1997 H5 viruses, SRH has greater sensitivity than turkey
 HI and equivalent sensitivity to VN (Stephenson et al, 2003)
- Better reproducibility between labs
 - Collaborative study with seasonal strains (Wood et al, 1994): HI 32 fold variation, SRH 3.8 fold variation between labs

Correlation between SRH and VN antibody to A/HK/97 for Hong Kong sera

MN data from J. Katz (CDC)

Correlation between SRH and VN for antibody to 1997 H5N1 viruses

Stephenson et al, 2003

Single Radial Haemolysis assay

- Can detect antibody to virus internal proteins
- Unsure about correlates of immunity for H5N1
- Technical details can affect clarity of zones
 - Complement, erythrocytes, source of virus
 - Can be difficult to read zones
 - Assays more demanding for Clade 1 H5N1 viruses

SRH assay of sera from human A/Hong Kong/97 (H5N1) cases

A/Hong Kong/489/97 (H5N1) virus

Assays for antibody to neuraminidase

Neuraminidase enzyme inhibition

Advantages

- Allowed assays of NA antibody (Aymard-Henry et al, 1973)
- NI antibody associated with protection in mice; vaccines stimulate NI antibody in animals and humans (various authors)
 - NA has a role in protection yet NA content of vaccines and antibody to NA in vaccines are not regularly assessed

- Laborious, use of toxic chemicals, not suitable for automation
- NA enzyme activity is labile
- Not sufficiently sensitive poor levels of NI antibody in vaccine trials
- Low level of NA enzyme activity in MDCK cell grown viruses (Aymard, 2003)
- Antibody to HA can cause 'steric hindrance' need reassortant viruses (Kilbourne, 1968)

Assays for antibody to neuraminidase

ELISA assays

- Partially pure NA Murphy et al, 1980; Khan et al, 1982
- Capture Mab Gerentes et al, 1998)

Advantages

- Technically easier than NI can automate
- More sensitive than NI
 - Post-vaccine sera: low levels of NI ab, but equivalent levels of ELISA NA ab and HI ab (Powers et al, 1996)
- Could be adapted to assay vaccine NA content

- Reliance on Mabs, limits use for new variants only N2 assay developed
- Specificity of antigen NA assay depends on availability of pure NA
- Unsure about reproducibility
- Unsure about correlates of immunity

Key assay limitations – action needed

Need to standardise assays for antibody to H5 HA

- variability of hHI, VN, SRH titres
- comparability, sensitivity, specificity
- WHO collaborative study to evaluate H5N1 serological techniques and to establish an International Standard for H5N1 antibody
 - Plasma from two NIBRG-14 H5N1 vaccine trials pooled (2L) and freeze dried at NIBSC as candidate International Standard
 - Test sera filled and coded
 - Sheep anti-NIBRG-14 HA also to be evaluated as a standard serum
 - US human serum spiked with sheep H5 antibody to be evaluated
 - Viruses: A/Vietnam/1194/04 NIBRG-14, A/turkey/Turkey/1/05 NIBRG-23, CDC A/Anhui/05 RG6 virus
 - Reagents shipped November 26
 - Investigators: UK NIBSC, HPA, U Hosp Leicester; USA CDC, CBER, NIAID
 - 17 participants agreed

Key assay limitations – action needed

Need comparative evaluation of assays for antibody to H5 NA

- Novel and existing assays
- Evaluate sensitivity, specificity, reproducibility
 - Standardised assays
 - Standardised vaccines

Assays for antibody to H5 HA and NA

Need correlates of immunity (especially for VN)

Prepare for the unexpected

- Adequate controls/back-up assays
- Investigations

Acknowledgements

Iain Stephenson, University Hospitals Leicester, UK

Maria Zambon, HPA, UK

Jackie Katz, CDC, USA

Rose Das, Diane Major, Bob Newman, NIBSC, UK