- 1 answer is, I don't know, because I don't
- 2 think we know enough scientifically about
- 3 what those safety toxicity issues are. I
- 4 mean, Carol alluded to the biodistribution
- 5 issue. Some of the immunological response
- 6 issues I've alluded to before, and so again
- 7 that's why my vote was no on the first
- 8 question because I don't think we know what
- 9 to say.
- 10 MS. MORRIS: Thanks. Well, one
- 11 area that I don't think it's unique but it's
- 12 certainly crucial is this size or physical
- 13 characterization of these particles because I
- 14 think that that is going to be important for
- 15 toxicity, for biological activity, it is
- 16 certainly important for distribution
- 17 throughout the body and the need for a well
- 18 characterized particle distribution,
- 19 characterization of shape, size, aggregation,
- 20 charge -- I didn't say that -- all of those
- 21 certainly are important generally in
- 22 formulation, but I think they're crucial when

- 1 we're talking about nanotechnology because
- 2 they will be so important in determining both
- 3 biological properties and toxicity.
- 4 MR. MEYER: Again, I think we need
- 5 to, if we can, figure out what we should be
- 6 getting, what information we should know, and
- 7 can we get that information by some means
- 8 known to mankind? If so, and we're not
- 9 getting it currently, then perhaps we need a
- 10 guidance for it.
- If we don't know, and I heard a
- 12 couple of people say in different ways, they
- 13 voted one way or the other because they
- 14 didn't know what could be needed. Well,
- 15 until we know what can be needed, that's not
- 16 a reason to say, I don't think we should have
- 17 a guidance, it's a reason to say, we
- 18 shouldn't have a guidance now because we
- 19 don't know what to put in it. So maybe
- 20 someday we'll need a guidance, but in the
- 21 meantime, if we could figure out what we need
- 22 to know that we don't know, that we're not

- 1 capturing with typical preclinical and
- 2 clinical trials and everything else that goes
- 3 into approval, then I think we can't do a
- 4 guidance. So I would say one area that we
- 5 haven't talked about much is stability, and
- 6 some of these dosage forms are kind of
- 7 complex and we need to look at the stability
- 8 types of studies that are being done. It's
- 9 not just simple chemical degradation. It may
- 10 be particle size distribution changes or what
- 11 have you that could have a big impact over
- 12 time if we don't follow it once a product's
- 13 approved.
- One of my professors, Gerhard Levy
- 15 used to say, the clay feet of bioavailability
- 16 bioequivalence is we test one formulation,
- 17 certainly with the generic drug, one lot, and
- 18 we approve it. Now do we really know I
- 19 there's something unique about that generic
- 20 drug product that two years down the road
- 21 sitting on a pharmacist's shelf, that drug
- 22 product is no longer bioavailable.

- 1 So stability may be a key factor
- 2 but in general to say what is needed, if we
- 3 can figure out what we don't know, and we
- 4 know how to get that information, then
- 5 perhaps we need to prod the industry along
- 6 with some guidance. If we don't know what to
- 7 say, let's not say anything, much like I did
- 8 the first time around.
- 9 MS. TWAY: Pat Tway. I can speak
- 10 from experience from the first type, the
- 11 simple type, the (off mike) example that was
- 12 given by the second speaker, and you're
- 13 right. You have to worry about particle size
- 14 and particle size distribution and charge and
- 15 all the rest of that but I think the tools
- 16 are in place and I think the guidances are
- 17 there. It's not different than a large
- 18 molecule. You may have to do more stuff, you
- 19 may have to use different techniques, but
- 20 it's not that different. You have to be very
- 21 careful of stability, but again the guidances
- 22 are there. You can't do one lot, but you

- 1 really have to watch it and watch it
- 2 carefully.
- I can't speak to the second type so
- 4 I saw when I listened to this the simple
- 5 molecules where you're just making them much
- 6 smaller and then what I think of is more
- 7 devices where you have the gold particles or
- 8 the silver particles or the dendrites and
- 9 thing I know absolutely nothing about and
- 10 those may be very different and there may not
- 11 be the guidances to do those, but I kind of
- 12 agree with what a lot have said is I'm not
- 13 sure we know the right questions or the right
- 14 tools at this point to write it but I think
- 15 they exist for the first type or for the
- 16 simple type.
- 17 MR. MORRIS: Yes, this is Ken
- 18 Morris. I wanted to add one thing to what
- 19 you said, Pat, and that is that one of the
- 20 things I think of from years ago when I talk
- 21 about devices, of course there are diagnostic
- 22 in plants and things like that, but I'm

- 1 thinking more of the sort of science fiction
- 2 view of this where people had talked about
- 3 nanomachines that would be included in
- 4 capsules, in permeable capsules that would
- 5 then bore a hole, that's a ways down the
- 6 road, maybe not as far as we think, but
- 7 certainly the sort of thing that were it to
- 8 come across FDA's desk, you'd want to have
- 9 some background for, so certainly that sort
- 10 of uniqueness, I think, is the kind of thing
- 11 I was thinking more of although there are
- 12 certainly others that I hadn't thought of
- 13 that had been raised here.
- 14 So can we recap this? We need to
- 15 come to a consensus on this. This isn't a
- 16 voting question in the strict sense of the
- 17 word. What I had in my notes in terms of the
- 18 consensus is that the committee basically is
- 19 focused on areas that are -- in terms of
- 20 focusing on areas would be the uniqueness or
- 21 those areas which are unique to the
- 22 nanotechnology in question so that whether or

- 1 not the guidance, the hypothetical guidance
- 2 was more narrowly focused on a particular
- 3 dosage form or route of administration, but
- 4 the uniqueness of the nanotechnology should
- 5 be the focus. The impact on safety should
- 6 they be different than would be expected from
- 7 the molecular entity by itself would be
- 8 another area of the focus, that the
- 9 environmental fate of such compounds and/or
- 10 technologies, because again, not only might
- 11 you be releasing the molecule into the
- 12 environment, but maybe nanomachines someday,
- 13 and that the areas that -- I'm sorry, the
- 14 unique methodologies for characterization and
- 15 stability and characterizing both the
- 16 compound, the stability of the device, and
- 17 the compound, as well as -- I missed one
- 18 other point here -- as well as uniqueness
- 19 that is related to the biodistribution.
- 20 Does that basically capture the
- 21 consensus and then we can wordsmith this a
- 22 little bit? Can we wordsmith this after the

- 1 fact or does it have to be right now?
- 2 So is there any -- does anybody
- 3 want to comment or detract or shoot? Yeah,
- 4 Art?
- 5 MR. KIBBE: Art Kibbe. I think
- 6 this ties into the third question and the
- 7 reason I said no is because I don't think
- 8 we're ready for a guidance that's going to be
- 9 helpful and useful. And I believe what
- 10 Boswell said that unless there's absolutely a
- 11 need for a law, there's absolutely a need not
- 12 to have a law. So until we know exactly what
- we need to tell everybody about what they
- 14 need to do, then we shouldn't start down that
- 15 path. And the reason I say we go to question
- 16 three is because it says, "What elements or
- 17 factors should CDER consider to incorporate
- 18 into the definition of nanotechnology?" And
- 19 here differentiation between the first two
- 20 speakers and their definition of what a
- 21 nanotechnology product is, and we need to
- 22 make sure that the agency understands or

- 1 articulates -- I think they understand, but
- 2 articulates the difference between a device,
- 3 which is a compilation of things put together
- 4 in a very specific and controlled way, and
- 5 the simple act of reducing particle size
- 6 beyond micronized because we now have the
- 7 technology to do that. And I think that is
- 8 key to the way the agency looks at it and if
- 9 I was recommending, I wouldn't put out a
- 10 guidance. I would put out a recommendation
- 11 to companies if they have a complex
- 12 nanotechnology product that they're bringing
- 13 along, that if they're not in here talking to
- 14 us, they're in trouble. And if they're going
- 15 the simple route, just go ahead and do it
- 16 like a regular compound. And until the
- 17 agency knows what specific things bridge that
- 18 class, which is the complex system drug
- 19 delivery, then we shouldn't have a guidance.
- 20 MR. MORRIS: So does what we said,
- 21 though, in terms of the consensus sit okay?
- 22 I agree with your point, but I mean because

- 1 we're going to get to question three when
- 2 we'll hopefully delineate some of those
- 3 specific comments that you just made.
- 4 MR. KIBBE: I have no problems, I
- 5 just don't think we need a guidance. I think
- 6 we need a guidance on how we vote.
- 7 MR. MORRIS: Yes.
- 8 MR. KIBBE: But we don't need --
- 9 MR. MEYER: Marv Meyer. Ken, maybe
- 10 we could vote yes or no that we agree with
- 11 your consensus statement and that would be
- 12 more official. I hate when it comes out in
- 13 the minutes and the committee had a
- 14 consensus, well what about the four people
- 15 that thought it was a lousy idea? So
- 16 personally I think you did a good job, but
- 17 I'd like for it to go on record.
- MR. MORRIS: Yes, everybody will
- 19 get to see the draft minutes, so if that's
- 20 what you're saying -- if there was anybody
- 21 violently in opposition, but otherwise, as
- 22 Art says, unless we really need to have a

- 1 vote, we shouldn't. That's a paraphrase.
- Okay, so at this point we're
- 3 cleared to break for lunch, we're cleared for
- 4 takeoff. We're number one for departure.
- 5 And we'll reconvene at 1:30 at which we'll
- 6 have the open public hearings talk. And then
- 7 we'll take up question three in time to
- 8 resume -- question three, then topic two at
- 9 2:00. Okay. Thank you. See you at 1:30.
- 10 (Whereupon, at 12:38 p.m., a
- 11 luncheon recess was taken.)
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22

- 1 AFTERNOON SESSION
- 2 (1:34 p.m.)
- 3 MR. MORRIS: Good afternoon,
- 4 everybody, and welcome back. We're going to
- 5 start the afternoon session with the open
- 6 public hearing section. And do I have
- 7 Connie's information? And so what we're
- 8 going to do is we're going to come back after
- 9 the open public hearing comment period to our
- 10 question 3 on topic 1 as time allows if
- 11 that's okay. But for now if we could we're
- 12 going to turn our attention to lead in
- 13 pharmaceutical products as the -- it's a
- 14 general OPH, but the topic will be on lead in
- 15 pharmaceuticals. Sorry, it's the Indiana in
- 16 me.
- 17 So let me start by reading this
- 18 statement. Both the Food and Drug
- 19 Administration and the public believe in a
- 20 transparent process for information gathering
- 21 and decision-making. To ensure such
- 22 transparency at the open public hearing

- 1 session of the Advisory Committee meeting,
- 2 FDA believes that it's important to
- 3 understand -- sorry, my glasses are old, too
- 4 -- the context of an individual's
- 5 presentation. For this reason, the FDA
- 6 encourages you, the open public hearing
- 7 speaker, at the beginning of your written or
- 8 oral statement, to advise the Committee of
- 9 any financial relationship that you may have
- 10 with the sponsor, its product, and if known,
- 11 its direct competitors.
- 12 For example, this financial
- information may include the sponsor's payment
- 14 of your travel, lodging, or other expenses in
- 15 connection with your attendance at the
- 16 meeting. Likewise, FDA encourages you at the
- 17 beginning of your statement to advise the
- 18 Committee if you do not have any such
- 19 financial relationships. If you choose not
- 20 to address this issue of financial
- 21 relationships at the beginning of your
- 22 statement, it will not preclude you from

- 1 speaking.
- 2 The FDA and this Committee place
- 3 great importance in the open public hearing
- 4 process. The insights and comments provided
- 5 can help the Agency and this Committee in
- 6 consideration of the issues before them.
- 7 That said, in many insurance and for many
- 8 topics there will be a variety of opinions.
- 9 One of our goals today is for the open public
- 10 hearing to be conducted in a fair and open
- 11 way where every participant is listened to
- 12 carefully and treated with dignity, courtesy,
- 13 and respect. Therefore, please speak only
- 14 when recognized by the chair. And thank you
- 15 for your cooperation.
- How does she do that? So, can I
- 17 introduce Dr. Weaver? No problem. No
- 18 problem.
- 19 Our first speaker -- actually, it's
- 20 the only speaker for this session -- is
- 21 Connie Weaver. Professor Weaver is from
- 22 Purdue University.

- 1 MS. WEAVER: Where do you want me?
- 2 MR. MORRIS: Right there if you
- 3 could.
- 4 MS. WEAVER: Okay.
- 5 MR. MORRIS: Thank you.
- 6 MS. WEAVER: Great, thank you. So
- 7 to honor your request, pretty much any
- 8 calcium producing company or food company
- 9 I've had some relationship with, either
- 10 through grants, or advisory boards, or
- 11 consulting, or something. The organization
- 12 that I hope is planning to pay my travel here
- 13 today is GlaxoSmithKline.
- 14 Let me tell you who I am and why
- 15 I'm here then. So as Ken said, I'm head of
- 16 the department and distinguished professor of
- 17 foods and nutrition at Purdue University in
- 18 West Lafayette, Indiana. And some possibly
- 19 relevant positions I've held -- I was a
- 20 member of the Institute of Medicine panel
- 21 that determined calcium requirements that are
- 22 still in existence for North America. I was

- 1 a member of the 2005 Dietary Guidelines for
- 2 Americans Committee. And I am a past member
- 3 of the Food Chemical Codex Committee. My
- 4 expertise is on calcium and mineral
- 5 bioavailability, in general. And that's the
- 6 area I would like to address -- is the
- 7 special interaction between calcium and lead
- 8 -- today.
- 9 So, today you're discussing lead
- 10 limits. And I applaud your efforts to do
- 11 that. I noticed in the advanced slides that
- 12 you will be discussing factors that influence
- 13 lead exposure and lead burden. So I want to
- 14 call your attention to this special
- 15 relationship -- this interaction between
- 16 calcium and lead so that you don't throw the
- 17 baby out with the bath water while you're
- 18 considering lead limits. Because calcium and
- 19 lead co-exist in nature, and if they're
- 20 co-ingested, the calcium has a huge influence
- 21 over the amount of lead that's absorbed and
- 22 its risk then to the subjects.

- 1 So it would appear by looking at
- 2 the slide on potential increases in blood
- 3 level exposure that that particular
- 4 interaction of calcium suppressing lead
- 5 absorption is not factored into the potential
- 6 increase in blood level increases. So, lead
- 7 is a natural part of the environment. It
- 8 exists in the soil and transfers into the
- 9 food supply. It's a natural part of mind
- 10 minerals.
- 11 Thus, food and other natural
- 12 materials, including mind calcium carbonate
- 13 will have measurable amounts of lead and
- 14 possibly amounts that are in the range of
- 15 those limits or those levels that you're
- 16 considering today.
- 17 An important strategy backed by a
- 18 lot of animal and human data to reduce the
- 19 body burden of lead, especially for children,
- 20 is to encourage adequate calcium intakes.
- 21 Calcium competes with lead for absorption in
- 22 the gut, and thereby reduces lead absorption

- 1 in a dose-dependent manner. Dietary calcium
- 2 has been shown to be inversely related to
- 3 blood levels, lead levels, in about 3,000
- 4 black and white children in the NHANES
- 5 survey. Higher calcium intakes have been
- 6 shown to offset pregnancy-induced or
- 7 lactation-induced increases in material blood
- 8 levels. Thus, calcium supplements admittedly
- 9 should be manufactured to reduce the lead
- 10 content as much as possible, and a lot of the
- 11 industries take measures to precipitate the
- 12 mind calcium to reduce the lead levels. But
- 13 maybe not expect purity to the point it
- 14 increases cost to the consumer because keep
- in mind that the calcium that they ingest
- 16 enhances the benefit-risk ratio by reducing
- 17 absorption of lead.
- 18 Calcium is one of the nutrients
- 19 most likely to be deficient in the diet. It
- 20 was listed as a shortfall nutrient for both
- 21 children and adults by the 2005 Dietary
- 22 Guidelines for Americans report, a committee

- 1 for which I served as a member. Thus, it
- 2 would not be a health advantage to eliminate
- 3 calcium supplements using mind calcium
- 4 carbonate which happens to be the cheapest
- 5 and most abundant source for calcium
- 6 supplements.
- 7 I'm happy to answer any questions
- 8 or serve as a resource if that should be
- 9 welcome.
- 10 MR. MORRIS: No, absolutely. And
- if anybody would have any questions of
- 12 Professor Weaver, please signify. Marilyn
- 13 and then Mel.
- MS. MORRIS: Just a general
- 15 question. It's Marilyn Morris. Do other --
- 16 are there any other electrolytes that have
- 17 been shown to also affect lead absorption,
- 18 such as magnesium?
- 19 MS. WEAVER: Yes. Several minerals
- 20 that are sort of bone seeking nutrients do
- 21 interact. And that would include magnesium
- 22 and zinc. So also -- my expertise is

- 1 calcium, so I can best address that.
- 2 But there are other nutrients that
- 3 would suppress absorption of lead as well.
- 4 MR. KOCH: Mel Koch. That's
- 5 basically the same question I was going to
- 6 ask because sometimes you have a large
- 7 interaction between a number of minerals that
- 8 are co-factors, etcetera.
- 9 MS. WEAVER: Correct.
- 10 MR. KOCH: Assisting in activity as
- 11 well as absorption.
- MS. WEAVER: Correct.
- 13 MR. MORRIS: I'm sorry. I just
- 14 have one quick question.
- MS. WEAVER: Sure.
- MR. MORRIS: So to follow up on
- 17 both those points, are the levels are
- 18 magnesium safe, say for example, that are
- 19 natural in mind calcium carbonate dissimilar
- 20 to lead, or less than lead, or do we know? I
- 21 know that's not your specialty.
- MS. WEAVER: No, mind calcium

- 1 carbonate sources for fortifying foods or
- 2 making supplements would have negligible
- 3 amounts of magnesium or zinc.
- 4 That wouldn't be where -- but in
- 5 the food supply and for behavior to bone they
- 6 sort of co-migrate.
- 7 MR. MORRIS: Oh, I'm sorry. Dr. Au
- 8 was recused this morning and rejoins us this
- 9 afternoon.
- 10 Sorry.
- 11 MS. AU: I have a question
- 12 regarding the other ions. So is there a way
- 13 for us to find out? Based on the calcium, I
- 14 think your diagram, it was clear there is a
- 15 linear relationship. But what about the
- 16 other (off mike) ions? Is there a way for us
- 17 to know based on the content of the other
- 18 (off mike) ions what sort of absorption can
- 19 we expect?
- 20 MS. WEAVER: I don't think they've
- 21 been studied to the degree of calcium, so I
- 22 don't recall seeing similar obvious negative

- 1 bar graph relationships the way we have
- 2 available for us for calcium. It's more of
- 3 an association by survey associating certain
- 4 mineral intakes with blood level burden of
- 5 lead.
- 6 MR. MORRIS: Marv.
- 7 MR. MEYER: You mentioned a couple
- 8 of times mind calcium carbonate.
- 9 MS. WEAVER: Right.
- 10 MR. MEYER: Are there other
- 11 sources? And are they significant sources or
- 12 not?
- MS. WEAVER: Well, most of the
- 14 committees I'm on prioritize drinking dairy.
- 15 So we advocate consuming dairy as your
- 16 primary source of calcium.
- 17 MR. MEYER: But as a recipient,
- 18 let's say, there aren't --
- MS. WEAVER: There are a number of
- 20 other calcium sources all more expensive and
- 21 lower in abundance. So, the amount you would
- 22 have to consume in terms of pills goes up

- 1 weight-wise. So you have calcium lactate,
- 2 calcium glutamate, calcium sulfate, calcium
- 3 phosphate, calcium citric malate.
- 4 MR. MEYER: I was thinking more in
- 5 terms of a substitute for mind to get away
- 6 from the lead associated with the calcium
- 7 carbonate.
- MS. WEAVER: Well, it can get even
- 9 worse. If you go more back to products from
- 10 nature that you can't purify as well, so
- 11 oyster cell calcium, for example, or dolomite
- 12 or something, that's even worse for heavy
- 13 metal contamination.
- So, how the committee knows at this
- 15 time is best to measure by ICP mass spec or
- 16 something. And you can quantitate them. But
- 17 there's good enough data to say what the
- 18 effect of co-ingested calcium is. Maybe not
- 19 so much the other minerals for the lead
- 20 suppressing effects on absorption.
- 21 MR. MORRIS: Thank you very much.
- MS. WEAVER: You're welcome.

- 1 MR. MORRIS: So there are no other
- 2 speakers in the open public hearing, so at
- 3 the close we'll -- let me just read this
- 4 statement. The open public hearing portion
- 5 of this meeting has now concluded and we will
- 6 no longer take comments from the audience.
- 7 The Committee will now turn its attention to
- 8 address the task at hand, the careful
- 9 consideration of the data before the
- 10 Committee, as well as the public comments.
- 11 Okay, so at this point if we could
- 12 I'd like to return to question 3 to finalize
- 13 the nanotechnology discussion of this
- 14 morning. I know in some ways it sounds like
- 15 we're asking the same question three
- 16 different ways; however, there are subtleties
- in each of these that we can, of course,
- 18 tease out now as we go on.
- 19 So question 3 is for regulatory
- 20 purposes, what elements or factors should
- 21 CDER consider incorporating into a definition
- 22 of nanotechnology? So, to couch this in

- 1 terms of what we had done earlier, we first
- 2 talked about the need for guidance given the
- 3 state of understanding. Then, the focuses
- 4 and now we're talking about, well, if we need
- 5 to define it before we can get any farther,
- 6 what are the considerations? What should be
- 7 considered incorporating into a definition?
- 8 And I think Mel and --
- 9 MR. KOCH: Mel Koch. I guess it's
- 10 maybe not following with the intent of the
- 11 question, but it would be nice to see a list
- 12 of what CDER's experience has seen as
- 13 important as a template for developing what
- 14 needs to be considered. But is there some
- 15 experiential basis for here are the things
- 16 that normally are thought of or related to
- 17 generating such a guidance?
- 18 MR. WEBBER: Well, I think rather
- 19 than give sort of a summary of what we found
- 20 is important, because I'm not sure how long
- 21 that list would be -- the essence of this
- 22 question as I see it is more towards if we

- 1 were to have guidance or develop policy
- 2 related to nanotechnology, what would be
- 3 considered within the scope of that? What
- 4 type of products? What are the
- 5 characteristics of the products that would be
- 6 within the scope of that guidance? And how
- 7 would we decide if we're dealing with
- 8 nanotechnology or not?
- 9 MR. KIBBE: Before we break I said
- 10 we really have to separate out the difference
- 11 between a complex dosage form that uses
- 12 nanosize particles in a unique way from
- 13 simply making particles when API or something
- 14 else nanosized. And I think if you're
- 15 talking about nanotechnology that needs to be
- 16 watched carefully, it's the first as opposed
- 17 to the second. So if I was going to define
- 18 nanotechnology, it wouldn't simply be any
- 19 particle less than 1 micron or less than half
- 20 a micron or some number like that. It would
- 21 be that technology involved uses particles in
- 22 the nanosize range which are complex and do a

- 1 very specific function.
- 2 MR. MORRIS: I guess I would add --
- 3 I agree with what Art said. And I also agree
- 4 with what you said earlier with respect --
- 5 this is Ken Morris, sorry.
- 6 Something you said earlier which is
- 7 the idea that to make that assessment in part
- 8 what would go into the definition would be
- 9 these considerations that you're not going to
- 10 have at hand unless the company has come
- 11 forward or the sponsors come forward early to
- 12 share with you what the technology is or what
- 13 the belief -- or the level of understanding
- in the technology is. Because on one hand it
- 15 seems like we ought to have some element of
- 16 the uniqueness. We need some sort of the
- 17 uniqueness factor that speaks to what you're
- 18 talking about. And if it's unique in the
- 19 sense that if you have a nanoparticle but it
- 20 doesn't have any impact on the fate, or
- 21 disposition, or effect, then that may be a
- 22 distinction without a difference.

- 1 On the other hand, if the
- 2 functioning depends solely on some aspect,
- 3 whether it's the size or the structure of the
- 4 particle, then that seems like a distinction
- 5 that has to be made or included in any sort
- 6 of a definition. You know, the definition
- 7 has to include some level of functionality as
- 8 well. So there's a structure part and
- 9 there's a functionality. And then whether or
- 10 not you call it a technology or just the API
- 11 itself -- I mean, if you take an API and
- 12 reduce the particle size until it's nano,
- 13 that may be just a property of the API at
- 14 that point. The technology used to get there
- 15 may not be anything unique; whereas, if you
- 16 have a layered particle or some sort of a
- 17 more intricate device, that's a different
- 18 category there again I would say.
- 19 MR. KIBBE: Art Kibbe again.
- 20 That's exactly what I was getting to.
- 21 Remember the second speaker, he gave us the
- 22 Noyes-Whitney equation which is more than 100

- 1 years old. Okay, so that equation defines
- 2 what happens when you change particle size.
- 3 Thank you. Okay. So that's not a
- 4 brand new technology. It's pushing the limit
- 5 of that technology further down. I mean,
- 6 more than 50 years ago we started micronizing
- 7 drugs and now we have the ability to reduce
- 8 that particle size and prevent aggregation by
- 9 adding a second ingredient. I don't think
- 10 that's what you need to be dealing with.
- 11 What you need to be dealing with are the
- 12 kinds of things that the first speaker talked
- about where doing a real complex, targeted
- 14 system. And that is fraught with issues that
- 15 you need to address.
- MR. WEBBER: What I think I hear
- 17 you saying is there's a distinction between
- 18 nanoparticles and nanotechnology. Just
- 19 because it's small doesn't make it a
- 20 technology.
- 21 MR. MEYER: Perhaps it's a dopey
- 22 idea, but maybe you could define it in terms

- 1 of what it's not.
- 2 It is not a conventional particle
- 3 size. It's not a conventional this,
- 4 conventional that. So if it's not one of
- 5 those, then it must be -- and produced in a
- 6 certain way perhaps -- then it's
- 7 nanotechnology. Because it sounds like, you
- 8 know, as soon as you get your guidance and
- 9 your definition out there, somebody is going
- 10 to come up with something a little bit
- 11 different that doesn't really fit that. So
- 12 you're going to be constantly trying to
- 13 revise or have arguments that they don't fit.
- MR. WEBBER: I was just going to
- 15 add for thought to think about is one of the
- 16 difficulties we run into is that nano
- 17 particles or what might -- if you broaden the
- 18 definition of technology that we deal with is
- 19 that it's not always intended. You may have
- 20 a particle that's a nano particle. It wasn't
- 21 intended to be a nano particle. That's just
- 22 what it is. And how much do we need to be

- 1 concerned about those things that aren't
- 2 necessarily intended to be.
- 3 From a scientific respect, if you
- 4 would think, well, once the body sees it, it
- 5 doesn't really matter whether it was intended
- 6 to be a nanoparticle or not. It's going to
- 7 have the same issues. And those are things
- 8 we need to consider in developing these
- 9 definitions.
- 10 MR. MORRIS: I think it was Harriet
- 11 and then Mel.
- 12 MS. NEMBHARD: I'm reflecting on
- 13 the idea that there's a distinction between
- 14 the simple process for manufacturer and the
- 15 more complex process for manufacturer, but
- 16 I'm not sure that is incorporated into a
- 17 complete definition of nanotechnology. From
- 18 the standpoint, for example, we've heard
- 19 presentations about the use of
- 20 nanoparticulates of gold and silver, fairly
- 21 well known, well established particles.
- 22 However, if you are desiring to reduce those

- 1 particle sizes to some specific dimensions,
- 2 it may require some processes.
- 3 For example, modifications to the
- 4 wet milling process that may use tooling or
- 5 tools made out of materials. The point was
- 6 made that the milling machine should be of
- 7 3/16 stainless steel. But if you were trying
- 8 to reduce the particle size and wanted to
- 9 experiment, for example, with using ceramics
- 10 in the tooling, well that may then -- even
- 11 though the product is simple -- may still
- 12 want to -- may still call for us to take a
- 13 look at the product development itself in
- 14 terms of its nanotechnology relevance.
- 15 MR. KOCH: Mel Koch. Just
- 16 reflecting back reminded me of something that
- 17 Keith was talking about. At some point there
- 18 are industrial processes. You go back maybe
- 19 20 years ago when you were effectively
- 20 separating particles based on screening, and
- 21 there was a certain amount of material that
- 22 would go through the last screen and would

- 1 just not only be called dust -- and depending
- 2 on the product use there was a certain amount
- 3 of dust that was allowed in the products,
- 4 whatever. But it often contributed to
- 5 sticking or other problems in formulation.
- 6 But it also turned out that it had some
- 7 effects in actual absorption.
- 8 And taking a look on this
- 9 particular product, there was only like 2/10
- 10 of a percent that made it through that last
- 11 screen. But it had more surface area than
- 12 the other 98 percent. So there were things
- 13 that, I think, just happened that, I think,
- 14 now beg some attention to what are the
- 15 implications.
- MR. MORRIS: Liz.
- 17 MS. TOPP: Yeah, Keith, I want to
- 18 address some issues that you raised a few
- 19 minutes ago, and I think certainly one thing
- 20 that a definition would require is some
- 21 comment on size. But beyond that this idea
- 22 of structure or in particular, periodicity in

- 1 structure, this intentionality or periodicity
- 2 in par t, because the periodicity in a
- 3 nanoparticulate may be exactly the thing that
- 4 is an immune stimulant or may, you know, be
- 5 something that's triggering for that kind of
- 6 response. So, some other people have talked
- 7 about, you know, sort of intentionality or
- 8 structure. These all kind of are the words
- 9 around the same kind of thing. To what
- 10 extent is this structured, or periodic, or
- 11 intentional, as opposed to being dust that
- 12 happens to be at the nanometer scale or a
- 13 particle that's really not particularly
- 14 structured but just happens to be at that
- 15 size range.
- MR. MORRIS: That's really
- interesting, actually. One comment before --
- 18 unless there are others -- before we sum up.
- 19 All right. One of the things I'm sort of
- 20 hearing and maybe we can put this in a form
- 21 of part of the consensus and then query
- 22 ourselves on it, is that there's still a

- 1 distinction between -- and I'm not sure where
- 2 it would go. It would go more maybe in the
- 3 other question, but it leads into here -- is
- 4 whether or not we're talking about an
- 5 existing product that we're changing so that
- 6 something like that unexpected might show up
- 7 versus a new product that might go through
- 8 the rigors of the IND and first in human, you
- 9 know, that Jerry was talking about earlier,
- 10 that might not be the same level of scrutiny
- 11 that you'd give to a product that you were
- 12 just altering sort of, to your point, I
- 13 guess, Art.
- 14 So I just wonder if in that
- 15 definition consideration exercise there
- 16 shouldn't be this inclusion of an altering of
- 17 an existing product where we think we know
- 18 what's going on versus a new product.
- 19 MR. WEBBER: Yeah, I think along
- 20 those lines, sort of counter opposed to Art's
- 21 comment, one of the things that people say
- 22 about nanotechnology is that once you get to

- 1 a smaller size you get new characteristics,
- 2 new functionalities, and new activities for a
- 3 compound which it doesn't possess when it's a
- 4 larger size. And those are the things that
- 5 we need to keep in mind as well. Where and
- 6 how do you recognize a new activity or a new
- 7 characteristic based on simply size.
- 8 MR. MORRIS: Anything else? Now,
- 9 let me try to see if we can lasso this into
- 10 something like a consensus. One of the
- 11 things I think that comes out of this is that
- 12 whatever comes of the definition, the
- 13 definition has to include consideration of
- 14 the idea that the functionality of what's
- 15 being done has to be part of the scope of the
- 16 definition. In other words, if you're just
- 17 making something smaller for the sake of
- 18 making it smaller -- I can't remember who
- 19 said that -- and it doesn't impact on the
- 20 functionality, then does it really matter?
- 21 Maybe I said it. Maybe that's why it sounded
- 22 familiar.

- In any case, the idea that you're
- 2 tying the nano aspects of the dosage form or
- 3 the product to its activity -- to its
- 4 functionality -- should be one of the issues
- 5 -- one of the areas -- elements or factors.
- 6 One of the elements or factors that we should
- 7 distinguish between existing product that is
- 8 to be altered and new material. Not to say
- 9 that one or the other shouldn't be subject to
- 10 the same level of scrutiny, but rather that
- 11 if we don't know the characteristics of
- 12 what's out there, then how do we know when
- 13 it's changed, number one; and number two, how
- 14 do we then determine if there is a
- 15 difference.
- And then in that same vein,
- 17 Harriet's point about the fact that
- 18 modification of equipment may -- and the
- 19 process itself, I guess, in the more general
- 20 sense, may impart different properties than
- 21 you know or understand. So, Mel's dust, for
- 22 example, may be quite a different beast than

- 1 it was when it started, and then elements
- 2 like Liz's point about the periodicity
- 3 perhaps being what stimulates the immune
- 4 response becomes an issue.
- 5 So, if we sort of boil that down a
- 6 little more, the idea is that we have to know
- 7 what's in whatever it is we're talking about.
- 8 So the definition has to start with the
- 9 presupposition that there's been sufficient
- 10 communication to allow the agency to know
- 11 what the product actually consists of and
- 12 what the level of understanding is. To
- 13 become a nanotechnology, it also has to be
- 14 tied to the functionality, and that that
- 15 functionality may be an intended or
- 16 unintended result of the process, and then
- 17 the distinguish between existing and new
- 18 product. Have I missed anything? Please,
- 19 Harriet.
- 20 MS. NEMBHARD: I may just like to
- 21 clarify my thought about the functionality.
- 22 I don't think that a consideration of its

- 1 functionality -- whether it be a simple
- 2 function or a previously known product --
- 3 should exempt it from coming under the
- 4 definition of nanotechnology if it meets the
- 5 standard of a small size -- less than one
- 6 micron or what have you. Even if it's
- 7 familiar, if it's of a nanosize, I think that
- 8 should be sufficient to take a look at it
- 9 under the definition of nanotechnology.
- 10 While I agree the functionality is
- important, I don't think that being able to
- 12 say that it had a previous form or a simple
- 13 function should exempt it from being
- 14 considered a part of a nanotech product.
- MR. MORRIS: Yeah, I guess -- sort
- 16 of what I was thinking is that you have a
- 17 structural element and you have a functional
- 18 element. So structurally it can be a
- 19 nanoparticle, but functionally, whether or
- 20 not that makes a difference just in terms of
- 21 the definition. But I agree that once it's
- 22 best -- once it's proper scale of measure is

- 1 a nanometers, then it's nanotech. That's
- 2 interesting.
- 3 Is there anything we've missed in
- 4 our overview? No? Is that good? Okay.
- 5 Well, if there's no further discussion we'll
- 6 go on to Topic 2. We've already heard some
- 7 from Connie Weaver on this as background, so
- 8 we should have that in mind as well. Topic 2
- 9 is lead in pharmaceutical products. And
- 10 we're going to -- Norman Schmuff, who is the
- 11 branch chief division of Pre-marketing
- 12 Assessment II, ONDQA from FDA is going to
- 13 give us a historical background and an
- 14 introduction to the topic. And of course
- 15 we've all had the pre-reads. I saw Norman.
- 16 Where did he go? You moved.
- 17 MR. SCHMUFF: Thanks, Ken. So,
- 18 it's my job to cover a little background of
- 19 how we got here and to give you at least a
- 20 few specific numbers to think about.
- 21 MR. MORRIS: Nice try, but you have
- 22 to stand up.

- 1 MR. SCHMUFF: Okay. And this is
- 2 sort of the generalized question -- what
- 3 further steps should we take regarding lead
- 4 content, specifically in pharmaceutical
- 5 products. I will mention that we, of course,
- 6 are representing CDER. And there is another
- 7 big stakeholder in this, and that's the
- 8 Center for Foods. And we do have them
- 9 represented here today. And Dr. Kashtock
- 10 will be a speaker.
- 11 Initially we got a docket
- 12 submission related to a monograph. And the
- 13 monograph essentially proposed that for
- 14 ibuprofen and a number of other drugs -- that
- 15 we regulate those by a monograph system
- 16 instead of the current NDA system.
- 17 You may or may not know that there
- 18 really are two ways to do what we used to
- 19 call OTC and nonprescription products. One
- 20 of the monograph rail and one is the NDA
- 21 rail.
- 22 So there was a proposal -- a

- 1 tentative proposal -- to include ibuprofen.
- 2 And Albemarle raised the issue of lead in
- 3 foreign-sourced drug substance and reported
- 4 some testing that they did. They tested 30
- 5 products and here are the numbers for the
- 6 1200 mg maximum daily dose of ibuprofen.
- 7 Okay, U.S. products from not detected to 1.25
- 8 micrograms. And the foreign products from
- 9 not detected to 13 micrograms.
- 10 Probably related to this, the
- 11 Department of Veterans Affairs asked FDA to
- 12 test some ibuprofen in 2003. And at that
- 13 time an FDA lab tested 11 samples from two
- 14 suppliers that came from the stocks of the
- 15 Veterans Affairs. And really found that
- 16 there were submicrogram levels -- nanogram
- 17 levels -- for 1200 mg of ibuprofen.
- Just to give you an idea here what
- 19 the USP limits are like for 1200 mg and a
- 20 theoretical tablet of, say, 500 mg in weight
- 21 -- you can read the numbers there. But the
- 22 result is that you could have as much as

- 1 about 75, 78 micrograms of daily intake that
- 2 would be permitted under the current USP lead
- 3 limits. And that actually -- ibuprofen
- 4 doesn't have a lead limit. It has a heavy
- 5 metals limit. And you'll hear a little bit
- 6 about that later on.
- 7 Here's just a summary of some
- 8 regulatory lead limits. The USP as you'll
- 9 hear currently regulates on a monograph by
- 10 monograph basis and with quite a wide range
- in parts per million (ppm) that would result
- in quite a wide range of potential daily
- 13 intake. How CDER does it I'll mention in a
- 14 moment. CFSAN recently -- that is the Center
- 15 for Food Safety and Applied Nutrition
- 16 recently revised their limits on candy to 0.1
- 17 ppm. I don't know how much candy you think
- 18 your kids would be able to eat, but for 50
- 19 grams of candy that would be about 5
- 20 micrograms intake.
- 21 Just for comparison, the EPA --
- 22 which does recognize that there is no safe

- 1 threshold and their goal is zero --
- 2 nonetheless has a limit when you have to take
- 3 some remedial action of 0.15 ppm. So, for 2
- 4 liters of water that's 30 micrograms. And
- 5 the EU foods actually has some limits that
- 6 really are pretty widely ranging. And I
- 7 believe that highest limit -- the 1000 mg, or
- 8 1000 micrograms, or 1 milligram I think is
- 9 for bivalves, as I recall.
- 10 How does CDER control lead? Well,
- 11 really it's indirectly via the USP/NF
- 12 monographs. And about half the drug
- 13 substances and excipients have either lead or
- 14 heavy metals limits. And drug products --
- 15 very few of the drug products have limits.
- 16 Just a few of those. And generally we would
- 17 have no additional controls unless the
- 18 product contains metals other than sodium or
- 19 potassium. So generally if we did see these
- 20 mined elements, metals, we would generally
- 21 see or ask for a limit on heavy metals.
- In '93 there was a provisional

- 1 tolerable total intake level that was arrived
- 2 at by one of the models for lead intake and
- 3 its correlation with problematic blood
- 4 levels. And you can see what those numbers
- 5 look like. So 6 micrograms to 75 micrograms
- 6 for adults.
- 7 And here just, you know, I only
- 8 went up to grams a day, but here's the kind
- 9 of range you would see depending on how many
- 10 parts per million were allowable in a drug
- 11 product ranging up to 8 milligrams. So you
- 12 can see that you get up to -- you know, you
- 13 get up to 75 microgram levels depending on
- 14 the amount of drug intake and the amount
- 15 that's permissible. But recall that so far
- 16 as I reported what we've seen it's more like
- in the low single digit microgram numbers.
- 18 So we did form a working group that
- 19 was comprised of people from a diverse range
- 20 of offices.
- 21 We knew we had to get some
- 22 pediatric input. The ONDQA had me as a

- 1 member. The Office of Pharmaceutical
- 2 Science, Janna Malay. And there were a
- 3 couple of people from the OTC group which is
- 4 now known as the Office of Nonprescription
- 5 Products. And at some point then we stepped
- 6 back a bit from the specifics of lead in
- 7 ibuprofen and merely responding to the lead
- 8 in ibuprofen and saying, well, maybe we
- 9 should take a risk-based look at all
- 10 pharmaceutical products and just see what
- 11 kind of lead levels we do see.
- 12 And I think we came up with a
- 13 pretty good risk-based sampling plan that
- 14 also Dr. Kauffman will discuss a little more.
- 15 So the idea was anything with a mind comp
- 16 component -- non-alkaline metal -- that's
- 17 used in the pediatric population and if it's
- 18 a high volume product. And so we sampled
- 19 based on that kind of plan.
- Now, I'll just remind you that
- 21 vitamin supplements and minerals are
- 22 regulated not by CDER but by our Center for

- 1 Foods. And there was a letter that was sent
- 2 by Congressman Waxman in response to a
- 3 finding that there was 15 micrograms of lead
- 4 in 2 tablets, which presumably is about a
- 5 daily dose of a vitamin supplement. Now,
- 6 there are some -- in response to that, CFSAN
- 7 collected more than 300 samples of vitamins
- 8 and minerals, and at least the preliminary
- 9 analysis suggests that there really are no
- 10 significantly elevated levels of lead. But
- 11 you won't see the final levels until that
- 12 information is finalized.
- So, here's the agenda then. First
- 14 we'll start with medical effects. Then John
- 15 will talk about the drug product survey that
- 16 was done. Dr. Abernethy from USP will talk
- 17 about the USP controls. And I think more
- 18 interesting, where the USP is moving in this
- 19 direction. And then Dr. Kashtock will tell
- 20 us a little about CFSAN's approach to
- 21 controlling lead exposure. And then we'll
- 22 have a wrap up and the questions.

- 1 So it's a general question that's
- 2 posed to the Committee. And there are some
- 3 underlying implicit questions. But the
- 4 explicit question is what additional
- 5 information would be necessary for us to
- 6 gather so that we might appropriately
- 7 determine the next steps that the FDA or CDER
- 8 should take.
- 9 So, with that, I think I would
- 10 introduced Susan Cummins, who actually has a
- 11 fair amount of background in this particular
- 12 area. And we really were fortunate to have
- 13 her on the committee because of her expertise
- in this area, and also her involvement with
- 15 pediatric drug development at FDA.
- So, Dr. Cummins.
- 17 DR. CUMMINS: Good afternoon. And
- 18 thank you for having me.
- 19 This is a huge topic and I can only
- 20 in the time allotted touch the highlights.
- 21 How do I go forward here? There we go.
- I'm going to spend a fair amount of

- 1 time talking about the blood lead level
- 2 distributions in the U.S. population and
- 3 special groups that we're particularly
- 4 concerned about and trends about those over
- 5 time. I'm going to spend some time talking
- 6 about measurement and modeling the exposure
- 7 because in the last 15 years or so with the
- 8 advent of the K X-ray fluorescence machine,
- 9 which is a tool that's used for research to
- 10 measure lead concentration in bone, there's
- 11 been a lot of work in modeling lead exposure
- 12 and understanding where lead moves around in
- 13 the body once it's there. And the bone is a
- 14 long-term storage compartment. We now
- 15 understand it's interplay with blood lead
- 16 levels over time.
- 17 I'm also going to just touch on --
- 18 very quickly walk through what we know about
- 19 the major health effects, particularly with
- 20 low level population level exposure.
- 21 Oops, sorry. So this is a slide.
- 22 You can actually go to the Arctic snow strata

- 1 and burr down like with rings in a tree and
- 2 collect samples and measure how ambient air
- 3 lead levels have changed over time. And
- 4 that's what this slide is showing you. And
- 5 you can see that starting with the Industrial
- 6 Revolution there was a gradual increase.
- 7 And then the ambient air lead
- 8 levels really shot up beginning in the 1930s
- 9 and through the 1950s with the use of leaded
- 10 gasoline. Leaded gasoline's phase-out
- 11 started in 1975 and ended in about 1996. And
- 12 that dotted line is a hypothetical line
- 13 showing a decline. The amount of tonnage of
- 14 lead mined each year continues to increase,
- 15 so if we were able to go and update this
- 16 slide we might see some interesting patterns.
- 17 This is old data but still
- 18 relevant. This is from the National Health
- 19 and Nutrition Survey from 1991 to 1994, and
- 20 it shows you the distribution of blood lead
- 21 levels according to age and gender. And
- 22 you'll see a couple of important points I

- 1 want to point out. The first is that there's
- 2 this u-shape distribution. So very young
- 3 children are at high risk, and gradually
- 4 their risk of lead exposure declines as they
- 5 get older until they reach adolescence. And
- 6 then you see a steady increase. You don't
- 7 really see a gender differential until
- 8 adulthood, and that's because more men than
- 9 women work in lead occupations. And most
- 10 adult exposure to lead is from workplace
- 11 exposure.
- 12 Pediatric patients -- I always like
- 13 to think of lead poisoning as an opportunity
- 14 that's tied into development. So the peak
- 15 age incidence for lead poisoning in young
- 16 children is around the age of two. At about
- 17 two they stop engaging in much oral motor
- 18 behavior. They start talking more. They're
- 19 exploring their environment less with their
- 20 mouths. They're being less exposed to lead
- 21 contaminated dust, and that's why their blood
- 22 lead levels tend to drop.

- 1 We also -- this is just looking at
- 2 children's blood lead levels over time. And
- 3 you can see that with each successive NHANES
- 4 survey there's been a steady decline in
- 5 geometric mean blood lead levels. This is
- 6 just in children. We would see probably the
- 7 same pattern in adults. And that's because
- 8 of the many environmental and regulatory
- 9 interventions that have been taken to reduce
- 10 the amount of lead in consumer products, and
- 11 gasoline, and paint, and other sources.
- 12 This slide, just very quickly,
- 13 lists the sources -- common sources for
- 14 adults and children. And for pediatric
- 15 patients, the exposure sources have changed
- 16 some over time. We've made a lot of progress
- in reducing the number of homes in the United
- 18 States with deteriorated lead based paint.
- 19 Children can also be exposed when their
- 20 parents bring lead dust home on their
- 21 clothing, through folk remedies, through
- 22 ceramic pots and toys, and many others. And

- 1 as you know this has really been in the news
- 2 recently with imports from China that have
- 3 lead in them surprisingly often.
- 4 And there had not actually been a
- 5 death from lead poisoning in the U.S. until
- 6 the last couple of years. And there were two
- 7 children who have died. The first died from
- 8 lead-based paint exposure, a very
- 9 deteriorated home. And the second child died
- 10 because he swallowed a lead trinket that was
- 11 on his tennis shoe that was imported from
- 12 China.
- 13 Adult lead exposure is primarily
- 14 through occupation, also through hobbies.
- 15 They also may use folk remedies that are
- 16 imported from other countries that have high
- 17 lead content. Ceramic pots can leach lead.
- 18 Food can be contaminated. There are many,
- 19 many sources of lead. It's a very
- 20 industrially useful metal, and that's why you
- 21 can find it so much and why people continue
- 22 to use it.

- 1 Now I want to move on and talk
- 2 about uptake distribution metabolism
- 3 excretion. There are two primary routes of
- 4 lead exposure: Inhalation and ingestion.
- 5 And the only particles that make it into the
- 6 lungs are the very tiny ones, less than 1
- 7 micrometer in size. And those are ones that
- 8 are respirable. Ones that are inhaled that
- 9 get stuck in the nasopharyngeal tract can be
- 10 ingested because they mix with mucous that is
- 11 swallowed.
- 12 Ingestion is the other common
- 13 pathway for exposure. A little bit can be
- 14 exposed, particularly from organaleg
- 15 compounds. Exposure to those now is very
- 16 rare. And absorption is influenced, as was
- 17 mentioned earlier, by the presence -- or
- 18 absence of other nutrients. Iron deficiency,
- 19 calcium deficiency -- both tend to increase
- 20 lead absorption. And children tend to absorb
- 21 more of the lead they are exposed to than do
- 22 adults. And that's probably primarily

- 1 because they are at higher risk for those
- 2 nutritional deficiencies and because they
- 3 have a much higher metabolic rate.
- 4 Now, this is a very simplistic
- 5 slide, but I want to try to make a point when
- 6 you think about exposure and cumulative
- 7 exposure. There are two kinds of ways that
- 8 particularly children are exposed. You can
- 9 have a brief acute exposure. Child swallows
- 10 a BB. Child goes fishing, sucks on fishing
- 11 weights. Parent has a minor exposure that
- 12 comes and goes. And you can actually track
- 13 that by monitoring blood lead levels. A
- 14 famous example was one a couple of decades
- 15 ago. There was a big party at the U.S.
- 16 Embassy in Mexico, and the children's punch
- 17 was in a lead glazed punchbowl. And the
- 18 punch was acidic. The lead leached into the
- 19 punch. The children got lead poisoning, and
- 20 they all got serial blood lead levels and you
- 21 could see their blood lead levels go up and
- 22 go down fairly quickly.

- What's much more common and of much
- 2 greater concern is the kind of chronic
- 3 long-term exposure that's modeled here where
- 4 a child was living in a home with
- 5 contaminated dust, and they are constantly
- 6 exposed to that lead-contaminated dust
- 7 because it's from the friction surfaces on
- 8 painted surfaces. And they are constantly
- 9 exposed, and over time build up a body burden
- 10 of lead that is stored in their bones. This
- 11 is what we worry about the most because once
- 12 that lead is in that bone compartment it's
- 13 hard to get it out. It does come out but
- 14 very, very slowly.
- 15 Here is just another slide that
- 16 goes into a little bit more detail about
- 17 uptake disposition and excretion. As I
- 18 mentioned you can inhale it or ingest it. It
- 19 comes into us. It goes in. Some of it is
- 20 excreted in feces, sweat, hair, and nails --
- 21 a small amount. Most lead then goes into the
- 22 blood compartment. It mostly is bound to red

- 1 blood cells.
- 2 It interacts with the soft tissue
- 3 compartments. The ones we worry about the
- 4 most are the kidneys and the brain,
- 5 especially for young children. It's
- 6 primarily excreted in the kidneys, and
- 7 there's this interaction in the bone
- 8 compartment.
- 9 Most lead over long term is stored
- 10 in bones. The bone lead body burden for
- 11 adults is about -- 90 to 95 percent of their
- 12 total lead burden is in their bones, and for
- 13 children that number is about 80 to 95
- 14 percent.
- Now, circulating lead -- there are
- 16 times when lead levels will go up. There's a
- 17 tendency when there's a need to heighten bone
- 18 reabsorption and mobilize calcium. That
- 19 occurs during pregnancy and lactation. It
- 20 can happen with prolonged bed rest. For
- 21 example, children who get a femur fraction
- 22 and traction actually can become

- 1 hypercalcemic because there's a lot of bone
- 2 reabsorption going on just from not moving --
- 3 being in bed. Osteoporosis -- post-menopause
- 4 osteoporosis is a time when that occurs.
- 5 Hyperthyroidism and weightlessness. Not a
- 6 common risk factor but one I listed here for
- 7 completeness.
- 8 Now, clinically when you worry
- 9 about lead poisoning and do screening
- 10 programs for lead poisoning, primarily we
- 11 measure blood lead levels. And a blood lead
- 12 level reflects usually recent exposure. The
- 13 half-life of lead in blood is about 35 days,
- 14 but if there's this kind of long-term chronic
- 15 exposure pathway that I mentioned earlier,
- 16 the clearance of that lead is not simple. It
- 17 interacts with the other soft tissues that we
- 18 worry about and then it equilibrates with
- 19 soft tissue and bone.
- 20 And we kind of always thought this,
- 21 but this has actually been very well
- 22 characterized in the last decade with the

- 1 availability of x-ray fluorescence to measure
- 2 lead in bone. And I keep coming back to that
- 3 because this is a real breakthrough. I think
- 4 the '90s we learned a lot about how to
- 5 remediate lead in housing, and in this last
- 6 decade we've learned a lot about how to
- 7 better look at lead exposure long-term,
- 8 short-term, and how to integrate the various
- 9 compartments where it lives in humans.
- 10 Bone lead levels are a way to
- 11 estimate cumulative body burden, particularly
- 12 -- lead is particularly stable in cortical
- 13 bone where it has a half-life of decades. A
- 14 very long half-life. Trabecular bone -- the
- 15 turnover is more rapid. But still it's years
- 16 to decades.
- 17 There's also been some effort to
- 18 develop a cumulative blood lead index. And
- 19 I'll show you an example of that in just a
- 20 moment. That's the area under the curve -- a
- 21 way of integrating various blood lead levels
- 22 taken at points in time to estimate total

- 1 blood burden.
- 2 This slide demonstrates that
- 3 concept. This is data from the treatment of
- 4 lead exposed children trial -- TLC trial. It
- 5 was the only randomized controlled clinical
- 6 trial of chelation therapy for moderately
- 7 lead poisoned children. It was conducted in
- 8 the early- to mid-1990s. Children who had
- 9 moderately elevated blood lead levels were
- 10 recruited into the trial. They were treated
- 11 either with succimer, an oral chelating
- 12 agent, or a placebo. They were followed for
- 13 three years to see if there was an impact on
- 14 their IQ after chelation therapy. And the
- 15 trial was sized to detect a three point
- 16 increase in IQ after chelation.
- 17 There were many interesting lessons
- 18 from this trial. Both arms, by the way, had
- 19 environmental interventions to deal with the
- 20 lead paint in their homes and to clean it up
- 21 and keep their homes as free of lead dust as
- 22 possible. One of the most important lessons

- 1 is many had hoped in lead poisoning
- 2 prevention that we could use a decline in
- 3 blood lead level as a surrogate measure for
- 4 reduction in lead with chelation. And what
- 5 we learned from the TLC trial is that wasn't
- 6 a very useful measure.
- 7 You can see that after chelation in
- 8 the treated group there was a small and
- 9 transient decline in blood lead levels, but
- 10 over time there was a convergence between the
- 11 placebo group and the succimer group. And
- 12 really, not much lead was mobilized by this
- 13 chelating agent. It was really an
- 14 intervention of very limited impact. But you
- 15 can also see here how one might be able, with
- 16 a lot of serial blood lead levels, to model
- 17 cumulative exposure and develop and index of
- 18 that.
- 19 So I'm going to quickly run through
- 20 what we know about health effects in
- 21 children. This is a huge topic so I'm going
- 22 to just touch on the high points. Lead is a

- 1 systemic toxicant. It's not an essential
- 2 nutrient. There's no such thing as a normal
- 3 blood lead level. We have lead in our bodies
- 4 because it's been used industrially, it's in
- 5 the environment, and we're exposed.
- 6 This slide shows the level of lead
- 7 in blood is -- on the left side you can see
- 8 the points when CDC changed their definition
- 9 of a blood lead level of concern. And you
- 10 can see also on the right a list of various
- 11 health effects so that the higher the blood
- 12 lead level, the more serious the effects.
- 13 And we are now thinking about these
- 14 very low levels. And what's been really
- 15 interesting in watching lead poisoning
- 16 prevention and lead poisoning health
- 17 literature over the years is that as the
- 18 levels of lead have declined in the
- 19 population, every time there's a decline then
- 20 we go to say, well, you know, is there an
- 21 effect on learning, IQ, cognition, behavior
- 22 between the range of 0 and 10, which is where

- 1 the action has been in the last 15 years or
- 2 so for kids. And we can do that because we
- 3 can find children with very little exposure
- 4 as the reference population, and then do
- 5 comparisons with various levels of exposure.
- 6 The effects that we mostly worry
- 7 about now are these ones here at the bottom
- 8 -- attention deficits, learning disabilities,
- 9 school failure, behavior problems, reduced
- 10 IQ. And I'd add to that that there is
- 11 literature showing evidence that antisocial
- 12 behavior and real sociopathic behaviors have
- 13 been linked to lead poisoning as well.
- I don't want to forget mentioning
- 15 that lead commonly can cause at higher levels
- 16 microcytic anemia and the symptoms of that --
- of lead exposure, such as abdominal pain.
- 18 And at even more severe levels can cause
- 19 death from encephalopathy.
- 20 This is an old slide. It shows the
- 21 regression lines for several studies that
- 22 have looked at blood lead versus IQ. And the

- 1 important lesson to take home from this is
- 2 that these lines are all going downward as
- 3 blood lead goes upwards. And many more
- 4 studies have been done since this slide was
- 5 developed, and they would show you generally
- 6 the same consistent trend.
- 7 This is data from -- just to remind
- 8 me that there have been studies that have
- 9 specifically looked at behavioral effects of
- 10 lead. This is one from one of the most
- 11 famous studies. It was a study of dentin
- 12 lead levels from deciduous teeth done by Herb
- 13 Needleman published in 1979. And it shows
- 14 you that the higher the dentin lead level --
- 15 so the yellow is low, up to red is high --
- 16 the more distractible, dependent,
- 17 disorganized, frustrated, unable to follow
- 18 sequences, and low overall functioning this
- 19 school-aged child had -- none of these are
- 20 qualities you'd want your own children to
- 21 have.
- 22 And this was actually -- I want to

- 1 give credit to Herb Needleman. I think he's
- 2 retired now, but he always pushed the
- 3 envelope. And this was a study that really
- 4 rattled everyone and moved us in a new
- 5 direction. He managed to follow up this
- 6 cohort to graduation and showed, again, that
- 7 there was a strong and dose-response
- 8 relationship between deciduous tooth dentin
- 9 level at age seven, and the likelihood of not
- 10 graduating from high school -- and in the
- 11 subgroup that had identified lead poisoning,
- 12 that likelihood of not graduating was nearly
- 13 45 percent. So this is not a trivial effect;
- 14 it's quite significant.
- Now, let's zoom forward. There's
- 16 been a lot of other research in this area. I
- 17 want to mention one study that was published
- in April of 2003 in the New England Journal
- 19 of Medicine. This was a study by Canfield
- 20 and colleagues that looked at 172 children.
- 21 Followed them from birth -- every 6 months
- 22 from birth to -- from 6 months to 36 months,

- 1 and then saw them again at 48 and 60 months.
- 2 And did IQ studies at 3 and 5 years
- 3 of age. And then they looked at the impact
- 4 of blood lead levels on their IO that was
- 5 measured and they adjusted for maternal IQ,
- 6 which is the most positive, strongest
- 7 predictor of a child's IQ and other
- 8 co-variants that are related to IQ.
- 9 This is their regression line. And
- 10 you can see a couple of things. Here again
- is lifetime average blood lead concentration.
- 12 So he integrated all those values as we
- 13 discussed. Here are their IO scores. And
- 14 you can see that there is a dose response
- 15 relationship between blood lead levels and
- 16 Stanford-Binet IQ -- Stanford-Binet is just
- 17 one of several standardized IQ tests.
- 18 And what's important about this one
- 19 is the action here in the average blood lead
- 20 levels between 0 and 10. Because you can see
- 21 that this line -- the slope of this line
- 22 changes. And that there is a larger dose

- 1 response effect at these very low blood
- 2 levels than there is at higher blood lead
- 3 levels.
- 4 Indeed the nonlinear model was the
- 5 most predictive, and the nonlinear model
- 6 showed that for blood leads below 10 there
- 7 was an impact on IQ of 7.4 points. That's
- 8 about half a standard deviation.
- 9 And that for the linear model
- 10 overall above 10 micrograms per deciliter
- 11 there's about a 4-1/2 to 5 point decline in
- 12 IQ for every 10 microgram per deciliter
- 13 increase in blood lead.
- Now, that may seem like a small
- 15 effect, but it's important when you think
- 16 about it as distributed over the entire
- 17 population. If you think that a blood lead
- 18 level greater than 10 will lower IQ by 2 to 4
- 19 points, that has a big -- oops, sorry --
- 20 impact on the tails of the distribution.
- 21 Here and here.
- 22 So this little change may not seem

- 1 like much, but when you look at the tails it
- 2 will double the number of children with low
- 3 IQs in the retarded range, and half the
- 4 number of children in the high IQs in the
- 5 gifted range. And the other powerful point
- 6 about this is this new finding by Canfield
- 7 that there's a bigger impact in these blood
- 8 lead levels between 1 to 10 -- that lead has
- 9 a bigger impact on neurodevelopment as
- 10 measured by IQ.
- I also mentioned that lead
- 12 poisoning causes anemia. The anemia you see
- with lead poisoning is a hypochromic
- 14 microcytic. Red cells -- tiny pale red cells
- 15 -- that's because lead tends to bind to the
- 16 enzymes that help to create heme and block
- 17 its production. And block the binding of
- iron to hemoglobin, and block the binding
- 19 essentially of oxygen to hemoglobin. So it
- 20 mimics and looks very much like the kind of
- 21 anemia you see with iron deficiency.
- 22 It's rare with blood lead levels

- 1 less than 35. It's now pretty rate in
- 2 children because we don't see that that
- 3 often, but it does still occur in adults.
- 4 Other health effects are behavioral
- 5 effects that have been seen in children and
- 6 youth in various studies include executive
- 7 function disorders. That's things like
- 8 active working memory, being able to plan --
- 9 the kind of skills you need to organize
- 10 yourself and perform well in school as school
- 11 demands get greater. Complications of
- 12 attention deficit hyperactivity disorder and
- 13 school failure. One study showed a very
- 14 small and subtle effect of blood lead on the
- 15 date of onset of puberty. There's been
- 16 studies linking it to dental carriers, and
- 17 also studies linking it to -- in a small way
- 18 -- to reduce linear growth.
- 19 Now I'm going to move on and talk
- 20 about adult workers in the general
- 21 population. And again, lead is a systemic
- 22 toxicant. It's a dose response relationship

- 1 in the kinds of effects that you see. Adult
- 2 exposed workers can have a whole range of
- 3 health effects depending on their level of
- 4 exposure.
- 5 And with chronic exposure they can
- 6 have fatigue, apathy, GI complaints, gout,
- 7 arthritis, impaired concentration, renal
- 8 disease, and again, microcytic anemia.
- 9 The next couple of slides list the
- 10 range of health effects you can see in adult
- 11 workers. And I'm not going to walk through
- 12 these because they're in your slides and you
- 13 can read them. But only to point out that
- 14 there are many organ systems involved. And
- 15 with a high level of exposure, each organ
- 16 system can experience some damage.
- 17 There are reproductive effects that
- 18 have been reported in adult workers. In
- 19 males that includes impotence, reduced sperm
- 20 counts, malformed sperm, and with reduced
- 21 mobility. For women, menstrual disturbances,
- 22 sterility, spontaneous abortions and

- 1 stillbirths. And in both there has been
- 2 measured genetic damage to germ cells.
- 3 Both the National Toxicology
- 4 Program and the World Health Organization
- 5 have declared lead to be a probable human
- 6 carcinogen. The NTP declared it a reasonably
- 7 anticipated to be a human carcinogen in 2004.
- 8 And the WHO monograph -- which is if you want
- 9 a full review of lead and all we know about
- 10 it, I would highly recommend that document --
- 11 found inorganic lead to probably be
- 12 carcinogenic to humans but was not able to
- 13 classify organic lead compounds.
- 14 The tumors of particular concern
- 15 are renal, stomach, and brain. There is some
- 16 data on lung cancer but that's somewhat
- 17 equivocal.
- Now I want to just touch on what we
- 19 know about the low level exposure in adults.
- 20 There have been several surveys. I've
- 21 included a couple of slides from one of the
- 22 best surveys on these issues.

- 1 The reason I want to focus on this
- 2 is because occupational exposure is regulated
- 3 in a somewhat different way, but we now know
- 4 because we can look at where lead migrates
- 5 over time within the body. There are very
- 6 well documented studies showing a
- 7 relationship between low level lead exposure
- 8 in adults -- much from the mobilization of
- 9 lead in bone -- and hypertension and renal
- 10 disease, various cardiovascular endpoints,
- 11 and cognition declines with aging.
- With regard to hypertension there
- 13 have been many, many reviews and metanalysis
- 14 of this relationship, including 30 original
- 15 observational studies. In cumulation, about
- 16 60,000 participants that have shown that low
- 17 level lead exposure is associated with a rise
- in blood lead levels with every twofold
- 19 increase in blood lead. So from 5 micrograms
- 20 to 10 micrograms per deciliter there is an
- 21 approximate 0.6 to 1.25 millimeters of
- 22 mercury increased in systolic blood pressure.

- 1 And this research has been supported by
- 2 animal studies as well.
- 3 For cognitive function -- now, this
- 4 is an issue that has just started to come
- 5 together. There was a large metanalyses
- 6 published in 2007 that looked at study
- 7 participants with environmental exposure or
- 8 current or past occupational exposure. And
- 9 that's one of the challenges in the adult
- 10 studies -- is that those two groups are
- 11 integrated and their exposure stories are
- 12 often quite different.
- These studies supported an
- 14 association between lead dose and decrements
- in cognitive function for all these cohorts.
- 16 And that the kind of effect and cognitive
- 17 domains include verbal and visual memory,
- 18 motor and psychomotor speed, manual
- 19 dexterity, attention, executive functioning,
- 20 peripheral motor strength. And in each of
- 21 these studies there appeared to be a dose
- 22 response relationship.

- 1 Now, I just want to mention in
- 2 closing that much of this research comes from
- 3 the Normative Aging Study. This is a study
- 4 that was begun in Boston in 1961. They
- 5 recruited about 2,300 Boston men. And then
- 6 to do the lead study, subsetted out 719 men
- 7 without any occupational exposure history
- 8 entry. They followed these 719 men over time
- 9 ever since 1961. They now have bone lead
- 10 measurements in them, and they've been able
- 11 to integrate all that data to understand
- 12 these relationships I've been talking about.
- Just to give you the data that they
- 14 collected from their bone lead measurements
- 15 -- and you can see it here. They looked at
- 16 particularly a bone lead burden in the tibia
- 17 and patella.
- 18 So to conclude, lead is a systemic
- 19 toxicant. There is no evidence for a safe
- 20 exposure threshold. The integration of bone
- 21 lead and blood lead measurements has allowed
- 22 us a more precise categorization of exposure

- 1 and body burdens over time. And the recent
- 2 evidence that I just showed you demonstrates
- 3 that there is harm in children and in adults
- 4 from low level lead burdens.
- 5 Thank you for your time. Do you
- 6 want to take questions now or do you want to
- 7 wait?
- 8 MR. MORRIS: Actually, if there are
- 9 clarifying questions then we should take them
- 10 now if that's all right with you?
- DR. CUMMINS: Yeah, that's fine.
- 12 Absolutely.
- MR. MORRIS: Art.
- 14 MR. KIBBE: I have just a few that
- 15 I think you can answer quickly. For people
- 16 that are not exposed to lead in their
- 17 workplace, is most of the lead that they have
- 18 picked up during their lifetime airborne?
- DR. CUMMINS: It's airborne or they
- 20 can also have a point source of exposure.
- 21 People have things around their house that
- 22 have lead in it that they don't know. It can

- 1 be from soldered cans, from a hobby they
- 2 practice. You know. Rifling enthusiasts
- 3 pack their own shot. Some people -- my
- 4 stepmother, who had very poorly controlled
- 5 hypertension, made stained-glass using leaded
- 6 solder. I mean, there are many, many ways
- 7 that adults can be exposed to lead. But
- 8 occupation is far and away the most common.
- 9 MR. KIBBE: Second, your slide 21
- 10 shows IQ lifetime average blood level -- it
- 11 has a curve through it, but the data points
- 12 are hugely scattered.
- DR. CUMMINS: Yes, they are.
- 14 You're absolutely right.
- 15 MR. KIBBE: And what is the
- 16 reliability of that correlation based on that
- 17 kind of scatter?
- DR. CUMMINS: Well, that's a very
- 19 good point, and I'm glad you brought that up.
- 20 I just showed you the most influential and
- 21 final study that has looked at this
- 22 relationship. There have been a number of

- 1 other studies. In the interest of time -- I
- 2 could give you a whole hour talk on just this
- 3 area of research -- but a number of other
- 4 studies have shown a very similar
- 5 relationship with a very similar estimate of
- 6 the effect size for blood leads between 0 and
- 7 10.
- 8 There are many other factors -- one
- 9 of the challenges is that IQ is an apex
- 10 measure of cognitive performance. And it's
- influenced by many factors other than blood
- 12 lead level. And so the thrust in recent
- 13 research to look at this relationship has
- 14 been to collect that data, robust that
- 15 covaried data as robustly as possible so you
- 16 can adjust for that. And these are adjusted
- 17 for those factors.
- 18 But there is a lot of scatter.
- 19 There is a lot of variation in the impact of
- 20 lead on cognition.
- 21 And what the literature suggests is
- 22 that the children who are most at risk for

- 1 school failure, who are in the poorest
- 2 households with the least able parents are
- 3 the most impacted by this added burden in
- 4 their lives. Children who are of better
- 5 economic circumstances, or whose parents are
- 6 better educated or smarter, tend to recover
- 7 more from any lead exposure that they had.
- 8 MR. KIBBE: Third question. I
- 9 notice that in the discussion of how lead is
- 10 eliminated from the body -- because if we
- 11 have a constant exposure, in order to balance
- 12 it up and keep our lead levels -- that brings
- 13 me to the question of what does that mean for
- 14 the end stage renal disease population whose
- 15 kidneys have shut down.
- DR. CUMMINS: Oh, that's a good
- 17 question. Well, they are really in a bind.
- 18 It's difficult for them to mobilize and
- 19 excrete their lead. You're right. I can't
- 20 say that I can answer that with more
- 21 precision. I haven't really focused on that
- 22 subpopulation.

- 1 MR. KIBBE: Because we use calcium.
- DR. CUMMINS: Absolutely.
- 3 MR. KIBBE: To control their
- 4 phosphorous level. And if calcium has got
- 5 lead in it, even if it inhibits lead
- 6 absorption, it still exposes it. I mean, I
- 7 just don't know what that means.
- 8 DR. CUMMINS: That's a really good
- 9 question. I wish I could answer it off the
- 10 top of my tongue, but I can't.
- 11 Any other clarifying questions?
- MS. MORRIS: In the last study that
- 13 you talked about the Boston man, I take it
- 14 they were looking at correlation with
- 15 disease?
- DR. CUMMINS: Yes. A lot of the
- 17 issues I mentioned earlier -- let me
- 18 apologize. I should have put those slides
- 19 earlier in my talk. And I didn't. So I
- 20 played catch up. But, yes, many of those
- 21 studies that I cited earlier, much of the
- 22 data or some of the data came from the

- 1 Normative Aging Study. It's been a really
- 2 important study in this arena.
- 3 MS. MORRIS: So was it mainly
- 4 hypertension?
- 5 DR. CUMMINS: Hypertension, other
- 6 cardiovascular endpoints, such as sudden
- 7 death. That data is softer, but there is
- 8 some evidence that there is sudden death,
- 9 cardiac hypertrophy, other cardiovascular
- 10 endpoints, as well. Hypertension is the
- 11 biggest one though and the strongest
- 12 relationship. And again, a concern because
- 13 we all have blood pressure. You know, it's a
- 14 variable that's one that's distributed
- 15 throughout the population.
- 16 Thank you for your time.
- 17 MR. MORRIS: Thank you. So next we
- 18 have John Kauffman. Is that right?
- MR. SCHMUFF: Yes, we have John
- 20 Kauffman, who also was a member of our CDER
- 21 group, as was Dr. Cummins. And I'd just like
- 22 to say that the group could sit around and

- 1 pontificate about this issue, but then when
- 2 it came time to do something about it people
- 3 always looked to John and said, well, can you
- 4 guys do this? And as our labs have said in
- 5 the past -- they always say, yeah, we can do
- 6 that. And I'll tell you, we had a recent
- 7 issue in which we had a little project that
- 8 we thought maybe would be nice to get some
- 9 data. And that was their response, too.
- 10 Yeah, we can do that. So, I would say thanks
- 11 to John, who actually had to set up the
- 12 assay, validate the assay, buy the samples,
- 13 and do most of the work.
- 14 Also, the paper that came out of
- 15 this, which Susan was also a coauthor of,
- 16 really, I think, painted a pretty good
- 17 holistic picture of the whole issue of lead
- 18 exposure in pharmaceuticals and the
- 19 acceptable levels. So, John.
- 20 MR. KAUFFMAN: Thank you. You're
- 21 giving me more credit than I deserve because
- 22 a bunch of other people did a lot of this

- 1 work as well. But thank you anyway.
- 2 Shortly after the lead in
- 3 pharmaceuticals working group began to think
- 4 of broader issues, you know, one of the first
- 5 things we did was a literature search. And
- 6 we found that in the literature there was
- 7 very little known about lead in
- 8 pharmaceuticals. What's the level of
- 9 contamination?
- 10 And so what I'm going to tell you
- 11 about today is a survey that we did in the
- 12 Division of Pharmaceutical Analysis. And I'm
- 13 going to begin by talking about how the drugs
- 14 were selected. And this was something that
- 15 the group -- the entire group participated
- 16 in. I'm going to talk a little bit about
- 17 analytical procedures because you can't
- 18 really talk about lead limits without also
- 19 considering the procedures -- the analytical
- 20 methods that are available to test those
- 21 limits.
- 22 And then I'll talk about the

- 1 results. And we look at concentrations in
- 2 pharmaceutical products and materials, and
- 3 also the amount of lead delivered to the
- 4 patient by ingesting these materials. And in
- 5 the end I'm going to relate that to blood
- 6 lead levels, which is the more relevant
- 7 toxicological quantity.
- 8 So, as Norman mentioned earlier, we
- 9 used a risk-based approach. And of course,
- 10 we wanted to address the concerns of the
- 11 citizens' petition, so ibuprofen was at the
- 12 top of the list. And we also wanted to look
- 13 at other analgesics, like aspirin and
- 14 acetaminophen, and so forth. We looked at
- 15 calcium- containing, bismuth-containing,
- 16 other metal- containing products. We figured
- 17 that those would be the ones that would be
- 18 most likely to have elevated levels of lead.
- 19 We also looked at high volume products, and
- 20 in particular we looked at products that
- 21 treated chronic diseases like diabetes,
- 22 cholesterol drugs, drugs for asthma and

- 1 rheumatoid arthritis. We looked at some
- 2 over-the-counter drugs, smoking cessation
- 3 products, vitamins -- which also will have
- 4 metals in them -- and so forth.
- 5 We also attempted to collect
- 6 imported drugs. We were able to use imported
- 7 ibuprofen that the FDA collected in routine
- 8 inspections. But it was very difficult for
- 9 us to find finished products that we knew
- 10 with certainty were imported. We found one
- 11 of those we purchased over the Internet, and
- 12 you'll see that later.
- We were also cognizant of the need
- 14 to look at pediatric dosage forms. And one
- 15 of the things -- two of the things I didn't
- 16 mention up here were that we also looked at
- 17 products that were likely to be taken by
- 18 older adults. And also we wanted to have a
- 19 pretty good balance of innovative products
- 20 and generic products.
- 21 So let me talk briefly about the
- 22 common methods -- the USP methods for lead.

- 1 And there are two of them. The first one is
- 2 the lead -- a general chapter on analyzing
- 3 lead. This was a dithazone extraction. You
- 4 make up a dithazone solution in chloroform
- 5 and that solution is a bluish-green. And it
- 6 chelates metals. And when it chelates metals
- 7 it turns from bluish-green to sort of a
- 8 bright pink. So it's unambiguous when you're
- 9 chelating metals. The way you do this is you
- 10 take your product, and you grind it up, and
- 11 you extract the metals from it in an acid
- 12 solution. And ideally you would do this in
- 13 something like a closed vessel digester.
- 14 Okay, like a microwave digester because that
- 15 way you can make sure that all the matrix
- 16 materials are decomposed and that the lead is
- 17 truly released. So the best way to proceed
- is with some sort of closed vessel digestion.
- 19 It's a little bit problematic to do
- 20 that because when you close a vessel and you
- 21 digest it, you're making carbon dioxide. So
- 22 it can get very high pressure. So you're

- 1 limited in how much mass you can put in one
- 2 of these digestion vessels.
- Well, in any case, the dithazone is
- 4 in a chloroform solution. You take that
- 5 extract and you extract that aqueous -- that
- 6 acidic aqueous solution with this chloroform
- 7 solution, and the lead will partition into
- 8 the non-polar phase. And then what you do is
- 9 you take a standard solution and you apply
- 10 this method. And you take your test solution
- 11 and you apply this method. And then you look
- 12 at them and you ask is the test solution more
- 13 red or less red than the standard solution.
- 14 And if you answer that it's more red, then
- 15 you say that it fails the lead test; and if
- 16 it's less red you say it passes the lead
- 17 test. And that's the way the test is done.
- 18 Okay. The detection limits are in
- 19 the ballpark of 1ppm. That's probably a
- 20 little optimistic, but that's the range that
- 21 it's intended to be used. Okay. There are a
- 22 number of problems with this. First of all,

- 1 you have to control pH fairly carefully in
- 2 order for this method to work properly. It's
- 3 only useful for a fairly narrow range of
- 4 analyte concentrations. Calcium, magnesium
- 5 phosphorous, iron -- a lot of elements will
- 6 interfere with this test. And it's
- 7 nonspecific. So if you have zinc and lead in
- 8 the same solution, you'll get the response
- 9 and you don't know whether it's zinc or lead.
- 10 All you know is that the solution turned
- 11 pink.
- 12 It's a fairly elaborate wet
- 13 chemical procedure. And also you need a
- 14 fairly large sample mass. The way you
- 15 increase the sensitivity of this method is to
- 16 jack up the mass of material from which you
- 17 extract the lead. And that then becomes too
- 18 much for a closed vessel digester to handle.
- 19 And so it's incompatible with the closed
- 20 vessel digestion.
- 21 The other method in the USP that is
- 22 often used to determine lead or that will

- 1 often respond to lead in materials is the
- 2 heavy metals test, Chapter 231. This is a
- 3 sulfide precipitation. It's also a wet
- 4 chemical method. You get insoluble colored
- 5 metal sulfides that turn the solution a sort
- 6 of rust color, depending on what metals you
- 7 have. And this is also a similar visual
- 8 colorimetric test. You have a reference.
- 9 You have a test. If the test is darker than
- 10 the reference, then it fails. If it's
- 11 lighter than the reference, then it passes.
- 12 A number of problems with this
- 13 method as well. The low limited detection
- 14 here is fairly high for many metals. And
- 15 it's also nonspecific. It requires elaborate
- 16 wet chemical methods, and it also requires a
- 17 fairly large sample mass. And so it's
- 18 incompatible with microwave digestion. Or
- 19 it's more challenging to do if you're going
- 20 to use microwave digestion.
- Okay. So these are the two methods
- 22 that are prescribed by the monographs for

- 1 analyzing lead and other heavy metals in
- 2 pharmaceutical materials.
- 3 There are lots of instrumental
- 4 methods available. One of the most widely
- 5 available ones is a flame atomic emission.
- 6 And I mentioned for the previous two methods
- 7 -- the wet chemical methods -- the limits of
- 8 detection are on the order of a part per
- 9 million or higher. For flame atomic
- 10 absorption the detection limit is about 30
- 11 parts per billion (ppb).
- 12 So that's about 30 times better
- 13 sensitivity than the wet chemical methods.
- 14 It's inexpensive -- relatively inexpensive as
- 15 an instrumental method. It's pretty widely
- 16 available, and so that's very beneficial
- 17 because people don't have to buy new
- 18 instrumentation.
- 19 There are interferences that can
- 20 cause problems. We tried to use this on one
- 21 of the vitamins that we looked at, and some
- 22 of the metals really interfere and give you

- 1 false results. Each metal requires its own
- 2 specific lamp. So if you want to just do
- 3 lead, then you just need a lead lamp. But if
- 4 you want to look at a variety of metals, then
- 5 you need to use several different lamps. And
- 6 that increases the amount of time and effort
- 7 that's required to do the analysis.
- 8 It requires a fairly large volume
- 9 of solution, and that means it requires a
- 10 fairly large mass of the product that you're
- 11 trying to analyze. And again, that makes it
- 12 difficult to do with closed vessel digestion
- 13 because you would have to do multiple
- 14 digestions in order to get enough mass.
- 15 And there are a number of other
- 16 methods. Most of the other methods are along
- 17 these lines. But the state-of-the-art -- the
- 18 real state-of-the- art is inductively coupled
- 19 plasma mass spectrometry.
- 20 And the detection limits for ICP-MS
- 21 for lead -- for metals in general -- is in
- the ballpark of one part per trillion (ppt).

- 1 For lead, this is the method we use. We got
- 2 about a 0.5 ppt. That is, you know, 30,000
- 3 times more sensitive than flame atomic
- 4 emission. So this means we can use very
- 5 small samples. It's compatible with closed
- 6 vessel digestion methods, and it's definition
- 7 the current state-of-the-art for metals
- 8 analysis.
- 9 It's more expensive than AA. This
- 10 is potentially problematic, but it's being
- 11 adapted by most analytical labs at this point
- 12 and the prices are coming down. There are
- 13 tabletop models and so forth. Not so many
- 14 interferences because you can separate things
- 15 out by mass -- single mass unit analysis.
- 16 And it can survey nearly all the metals.
- 17 So this is the method we're going
- 18 to use. There are a few references on this
- 19 in the literature, and I think we may hear
- 20 more about these later. But there was a
- 21 paper written in 2000 by someone from -- I
- 22 think this person is from -- well, they're

- 1 from the pharmaceutical industry. I think
- 2 they're from Merck. One of these is from
- 3 Merck, and the other one is from another
- 4 pharmaceutical company. In any case, this is
- 5 a survey of replacing the USP heavy metals
- 6 method with ICP mass spec. And they
- 7 concluded that this is a much better way to
- 8 do it. This is another paper that was
- 9 written also looking at ICP mass spec as a
- 10 means of screening for heavy metals. And
- 11 then the third paper here is our paper that
- 12 was published in 2007. And this is really
- 13 not looking at the method itself; rather,
- 14 it's looking at lead in pharmaceutical
- 15 products -- the prevalence of lead in
- 16 pharmaceutical products.
- So, here's what we did, and this is
- 18 a summary of our analysis. So we did -- as I
- 19 said, we used inductively coupled plasma mass
- 20 spectrometry. Our limits of detection were
- 21 0.5 ppb in the product.
- 22 Okay. So those detection limits I

- 1 mentioned before -- 30 ppb for flame atomic
- 2 absorption and roughly 1 ppt for ICP mass
- 3 spec -- that is the detection limit with
- 4 respect to the solution that you aspirate
- 5 into the instrument. When you then take into
- 6 account the fact that you've diluted the
- 7 sample and so forth, what we get with this
- 8 method is a detection limit of 0.5 ppb in the
- 9 actual product. Okay. So we have very good
- 10 ability to detect lead in pharmaceutical
- 11 products.
- 12 We performed this in collaboration
- 13 with the University of Missouri research
- 14 reactor. The analytical services group there
- 15 -- all they do is elemental analysis. And
- 16 they are very good at it. They're truly
- 17 experts in ICP mass spec. And we really
- 18 benefited from their contribution.
- 19 Here's the summary. We analyzed 45
- 20 total products. None of them exceeded 500
- 21 ppb of head. The highest one we saw was 500
- 22 ppb. So, you know, we need to put that in

- 1 perspective. When Norman talked about what's
- 2 allowable for ibuprofen, that level would be
- 3 roughly 25 ppm. And what we see is 500 ppb
- 4 at the highest. That's about 50 times lower
- 5 than what's allowable in ibuprofen.
- 6 Okay, the average was roughly 50
- 7 ppb. That's 500 times lower than what's
- 8 allowed in ibuprofen. And so I want to
- 9 emphasize that while I will talk about some
- 10 higher concentration products versus lower
- 11 concentration products, those -- I'm
- 12 referring to high and low with respect to the
- 13 average of our survey. I would say that none
- 14 of these constitutes high concentrations of
- 15 lead in the actual product.
- We also looked at 10 foreign
- 17 sources of ibuprofen. As I mentioned, none
- 18 of those exceeded 15 ppb. Okay, so orders of
- 19 magnitude below what we expected on the basis
- 20 of the citizens petition.
- 21 All right, so onto the results.
- 22 We're going to look at the results along

- 1 several different dimensions. First we want
- 2 to look at ibuprofen. So I've tried to color
- 3 code these. And by the way, this is all
- 4 published. Okay, so these tables are
- 5 directly from the published paper. The only
- 6 part that's not published is this part --
- 7 this little bit on ibuprofen API. Okay. And
- 8 we discussed that but we didn't publish this
- 9 in a table. And what you see here is that
- 10 the ibuprofen API -- here are our lead
- 11 concentrations in ppb. And they range from
- 12 less than 1 ppb to about 12 ppb. Those are
- 13 very low concentrations of lead.
- I've tried to color code the ones
- 15 that tend to be on the high side with respect
- 16 to the products that we looked at. If we see
- 17 an elevated concentration, I've labeled that
- 18 with a yellow highlighting. If I see one
- 19 with elevated intake -- that is if the mass
- 20 of lead delivered by this product is
- 21 elevated, then I made that one blue. And if
- 22 both concentration and intake are elevated,

- 1 then that one is green.
- 2 So, this one happens to be green.
- 3 The one that we see here that is high is this
- 4 product that we purchased over the internet.
- 5 It's a combination product. It contains both
- 6 ibuprofen and acetaminophen. It has
- 7 virtually no information on the package about
- 8 what other materials are in there.
- 9 We did X-ray fluorescence analysis
- 10 on this material to see if we could find
- 11 calcium because that might be a potential
- 12 source. There's very little calcium.
- We really don't know where lead
- 14 came from in this product. And yet, it was
- one of the higher concentration products that
- 16 we looked at. It's 316 ppb. Still fairly
- 17 low, but this is one of the higher ones.
- 18 So that's ibuprofen. We can look
- 19 at the pediatric products. And what we see
- 20 with the pediatric products is that, again,
- 21 very low levels of acetaminophen. Anywhere
- 22 from a part per billion to -- most of these

- 1 down here are in the 1 ppb to 25 ppb range.
- 2 Those are, again, very low. The highest ones
- 3 we saw -- actually, this product -- this
- 4 vitamin product had the highest concentration
- 5 that we saw. That's right about 500 ppb.
- 6 The interesting thing about this product is
- 7 that though the concentration is high, the
- 8 dose mass is relatively low. And so the mass
- 9 ingested by taking this product as it's
- 10 recommended is less than 1 microgram of lead
- 11 per day.
- 12 Another product -- this is a
- 13 calcium containing product. It had a
- 14 concentration of 173 ppb. Again, in the
- ingested mass, if you take it as recommended
- 16 -- the maximum mass as recommended by the
- 17 product insert -- you would ingest about.85
- 18 micrograms of lead a day. So, I mean, in
- 19 conclusion, again, very low concentrations of
- 20 lead in these pediatric products.
- Now, I want to focus on the worst
- 22 cases here -- the highest concentrations.

- 1 And I'm going to begin by looking at these.
- 2 These are now sorted according to their
- 3 concentration. There are six products that
- 4 have concentrations higher than 100 ppb. And
- 5 they range from 500 ppb down to 144 ppb.
- 6 Most of these are either metal containing,
- 7 such as this vitamin. There are a couple of
- 8 calcium containing or bismuth containing
- 9 materials. So these are things that are
- 10 expected to have some lead impurities in
- 11 them.
- 12 And then this one down here is a
- 13 smoking cessation product. And this product
- 14 actually has a fairly low concentration of
- 15 lead, but the recommended amount is -- the
- 16 maximum recommended daily dose is so high
- 17 that you can ingest a microgram of lead by
- 18 taking this product as recommended.
- So, we can sort these not by
- 20 concentration, but we can sort them by
- 21 maximum daily ingestion. And you see that
- 22 that ranges from about 2.7 micrograms per day

- 1 down to 1 microgram per day.
- 2 Those are the five that deliver the
- 3 highest mass of lead to the consumer in a
- 4 day. So the highest one here is about 2.7
- 5 micrograms per day.
- 6 And we can look at that now with
- 7 respect to blood lead levels. And this is
- 8 the same table. I've added this column here.
- 9 Here's the 2.7. And below I have this table
- 10 that is -- I believe this is an EPA model
- 11 that attempts to relate the blood lead level
- 12 -- the blood lead level to the ingestion
- 13 rate.
- 14 So the toxicologically relevant
- 15 quantity is the blood lead level, but the
- 16 easiest quantity to measure is the ingestion
- 17 rate, particularly with respect to the sorts
- 18 of things that we're talking about today.
- 19 And so the way to think about this
- 20 is that this is the conversion factor. This
- 21 blood lead level per ingestion rate. And the
- 22 units of that is micrograms per deciliter per

- 1 microgram per day. So you take the
- 2 micrograms per day that you ingest, you
- 3 multiply it by this conversion factor, and
- 4 you get an estimate of the blood lead level.
- 5 And so we've done that on the basis of the
- 6 maximum daily ingested mass. And we get
- 7 these sorts of blood lead levels.
- 8 So the blood lead level increase
- 9 that you can expect from the product that
- 10 delivers the highest mass of lead is about.11
- 11 micrograms per deciliter.
- 12 That's the increase. And if you'll
- 13 remember from the previous talk, the average
- 14 -- I believe that I got this right -- the
- 15 average is in the ballpark -- the average
- 16 blood lead level is in the ballpark of 3
- 17 micrograms per deciliter. So that gives you
- 18 an idea that here we're about an order of
- 19 magnitude below that. And that's the worst
- 20 case scenario.
- 21 And by the way, this product is a
- 22 calcium containing product. So we're not