Fluid **Turbulence** and Mixing at High Reynolds Number

P. K. Yeung and Diego Donzis School of Aerospace Engineering Georgia Institute of Technology Atlanta, GA 30332-0150, USA pk.yeung@ae.gatech.edu

Supercomputing Conference 2004

- NSF Grant CTS-0121030
- NERSC (INCITE computer time and consultant support)
- Allocations at San Diego and Pittsburgh Supercomputer Centers
- Collaborators: K.R. Sreenivasan (Univ. Maryland, & Director, ICTP, Italy) R.O. Fox (Iowa State Univ. + DoE Ames Lab)

Fluid Mechanics and Turbulence

- We are all surrounded by fluids, and depend on them (air, water, etc) for survival. Some examples are:
 - engineering: airplanes, engines, pipelines
 - nature and environment: atmosphere, oceans, rivers
 - chemistry and biology: combustion, human body
- Flow parameters can vary considerably:
 - low to high flow speeds (U)
 - small to large body dimensions (*L*)
 - fluids of different viscosities (v)
- Reynolds 1883: flow becomes disorderly (turbulent) if **Reynolds number** ($Re \equiv UL/\nu$) exceeds some critical value

Examples

Space shuttle

Grid turbulence in a wind-tunnel

Jet

Turbulence: nature and complexity

- **Disorderly** fluctuations in time and three-dimensional space
- Most applications are at high Reynolds number
 - highly nonlinear, wide range of scales
 - energy transferred from large scales to small scales
- Agent of **efficient mixing** and dispersion
 - transport of heat or contaminants/substances
- As a field of scientific inquiry:
 - very difficult, many fundamental issues unresolved
 - require a combination of theory, experiment and computation

Turbulence: importance and applications

- astrophysics: plasma turbulence
- oceanography: stratified turbulence, marine ecology
- meteorology: weather prediction, hurricanes
- aeronautics: wing surface, clear air turbulence
- environment: air quality, rivers, and lakes
- combustion: reacting flow, turbulent mixing
- plus in many interdisciplinary problems...

In all cases, the complexities of turbulence limit our ability to predict natural phenomena and to design improved engineering devices

Some Quotes and References

- Often said (Feymann): "last unsolved problem in physics"
- Lumley & Yaglom: *Flow, Turbulence & Combustion* 2001: **"A century of turbulence**"
 - "...has suggested that this title is likely to make trouble, since it may be misinterpreted in databases as referring to politics."
- Columbia Electronic Encyclopedia, 2004:
 - ... "state of violent or agitated behavior in a fluid"
 - ... "long thwarted attempts to fully understand it"
 - ... "advent of supercomputers has enabled advances in... design of better airplane wings and artificial heart valves"

The basic equations

• Navier-Stokes: conservation of mass and momentum

$$\begin{aligned} \nabla \cdot \vec{u} &= 0 \\ \frac{\partial \vec{u}}{\partial t} + \vec{u} \cdot \nabla \vec{u} &= -\frac{1}{\rho} \nabla p + \nu \nabla^2 \vec{u} \end{aligned}$$

unsteadiness, nonlinear advection, pressure gradient, viscous forces

• Statistical averaging leads to more unknowns than equations, and the need for modeling, especially in engineering calculations

Let's compute the (instantaneous) flow according to the exact N-S equations without modeling, then extract statistics

Direct Numerical Simulations (DNS): the promise

- **Tremendous detail** available from simulation resolving all the scales, including quantities difficult to measure in experiments:
 - ALL components of velocity gradients and scalar gradients
 - interaction between different scales (via Fourier decomposition)
 - statistics following the motion of infinitesimal fluid elements
 - ...with relative ease in selecting parameters
- Moin & Mahesh (Annu. Rev. Fluid Mech. 1998): A powerful tool for research: physical understanding and model testing/development

More on DNS: the requirements

- Full range of scales in space and time
 - size of domain $L_0 > L$ (largest length scale in the flow)
 - grid spacing $\Delta x \sim \eta$ (smallest, Kolmogorov length scale)
 - time step $\Delta t < \tau_n$ (shortest, Kolmogorov time scale)
 - length of simulation $T > T_E$ (large-eddy turnover time)
- CPU cost subject further to:
 - numerical stability restrictions on time-step size (2048³ simulation: as many as 8,000 time steps per T_E)
 - scalability performance of **parallel computer codes**

High Reynolds Number DNS

- Why is simulating high Reynolds number important?
 - *Re* is high in most applications
 - many theories are based on a clear separation of scales
- The cost of achieving high *Re*:

 $N^3 \sim (L/\eta)^3 \sim Re^{9/4}$ and $(T_E/\tau_\eta) \sim Re^{1/2}$

• Overall CPU costs increase almost as N^4

A Grand Challenge problem in computational science

High-Re DNS: state-of-the-art

- Isotropic turbulence: simplest turbulent flow, suitable for study of small scales, which are approximately universal at high *Re*
- 4096³ on the *Earth Simulator* in Japan:
 - Kaneda *et. al* (Phys. Fluids 2003): at Taylor-scaled Reynolds number ($R_{\lambda} \propto Re^{1/2}$) approx. 1,200, presented at SC'02
 - 16 Teraflops sustained on 40-Teraflop machine
 - velocity field only, for 2 large-eddy time scales
- Largest simulation (ours) in the US: 2048³, $R_{\lambda} \sim 600$ 700
 - At NERSC: mixing passive scalars in turbulence
 - aiming for longer simulation for better statistics

Basic scaling issues: Kolmogorov 1941

Notion of scale similarity at high Reynolds number

- First hypothesis, for small scales (size ~ $\eta \equiv (\nu^3/\langle \epsilon \rangle)^{1/4}$)
 - "locally isotropic" and universal, independent of details of large scales; determined only by viscosity (v) and dissipation rate ($\langle \epsilon \rangle$)

$$\langle \epsilon \rangle \equiv 2\nu \langle s_{ij} s_{ij} \rangle$$
; $\mathbf{S} \equiv [(\nabla \vec{u}) + (\nabla \vec{u})^T]/2$

- Second hypothesis, for "inertial range" ($\eta \ll r \ll L$)
 - statistics depend only on $\langle \epsilon \rangle$ (rate of energy transfer from large to small scales), requires yet higher Reynolds no.

Simulation Overview: Velocity Field

- Numerical scheme:
 - energy input by forcing at the large scales, for stationarity
 - Fourier pseudo-spectral in space: Fast Fourier Transforms with number of operations scaling as $N^3 \log_2 N$
 - periodic in 3D (OK if focus on the small scales)
 - second order Runge-Kutta in time
 - Our database:
 - Taylor-scale Reynolds numbers from 38 to 700
 - grid resolution 64³ to 2048³, $\Delta x/\eta \approx 2$ in most cases

Inertial Range: Energy Spectrum

• K41: $E(k) = C_K \langle \epsilon \rangle^{2/k} k^{-5/3}$ where C_K is Kolmogorov constant

A to G: R_{λ} 38 (64³) to R_{λ} 700 (2048³)

- Universality at high wavenumbers.
- Consistent with DNS at even higher *Re* (Kaneda *et. al* 2003) and experiments (Sreenivasan 1995).
- Intermittency correction due to fluctuations of $\epsilon : E(k)$ drops slightly faster than $k^{-5/3}$

Intermittency at the Small Scales

Intermittency: localized, short-lived bursts of intense activity

- Significant probability of large deviation from the mean
- Fluctuations of the energy dissipation rate
 - intense local straining can cause local flame extinction
 - important in relative dispersion and stochastic modeling
 - subject of "intermittency models" for refinements of K41
- Increases with Reynolds number
- Visualization of 3D fields possible, thanks to NERSC Staff

Intermittency: energy dissipation rate

PDF and Statistics of the Energy Dissipation

- Wider "tails" at higher *Re*
- log(€) often modeled as having a normal (Gaussian) distribution
- Multifractal description uses probability distribution of local averages of € in box of size r

Passive Scalars

Diffusive contaminant/material that does not affect the flow e.g. small temperature differences, low species concentrations

• Scalar fluctuation field $\phi(\vec{x},t)$ evolves by

$$\frac{\partial \phi}{\partial t} + \vec{u} \cdot \nabla \phi = -\vec{u} \cdot \nabla \Phi + D \nabla^2 \phi$$

- production due to velocity acting on mean scalar gradient
- advective **transport** breaks large blobs into smaller scales
- molecular diffusivity causes **dissipation** at small scales
- Schmidt number, $Sc \equiv \nu/D$ varies:
 - 0.7 for heat in air, O(1) for gaseous flames
 - 7 for heat and salt in water, $O(10^3)$ in some liquids

Scalar Spectrum: Inertial-Convective Range

• At high Re:
$$E_{\phi}(k) = C_{OC} \langle \chi \rangle \langle \epsilon \rangle^{-1/2} k^{-5/3}$$

- Intermediate wavenumbers for *Sc*=*O*(1) or less: extension to K41 by Obukhov 1949 and Corrsin 1951
- This may be the clearest demonstration of O-C scaling ever obtained, at least in DNS
- Value of C_{OC} agrees with experiments (Sreenivasan 1996)

- **Departure from local isotropy** (in response to mean gradient)
 - $\nabla_{||}\phi$ has a skewed probability distribution, sustained at high Reynolds number
- More intermittent than the velocity field:
 - scalar dissipation rate $\chi \equiv 2D\nabla\phi\cdot\nabla\phi$, vs. energy dissipation
 - Effect of Schmidt number (especially for Sc > 1) is different from that of Reynolds number

Scalar Gradients: Local Anisotropy

- Zero mean value, but positive samples more likely
- Odd-order moments, e.g. skewness factor of $\nabla_{||}\phi$

Energy dissipation and scalar dissipation

 $R_{\lambda} \sim 700 \; (2048^3)$

Scalar dissipation shows higher peaks

Energy dissipation and scalar dissipation

High activity topology: filaments (ϵ) and sheet-like structures (χ)

Scalar dissipation rate: Re effect

$R_{\lambda} \sim 160 \; (256^3)$

 $R_{\lambda} \sim 700 \; (2048^3)$

Peaks more intense and localized at higher Reynolds number

A Matter of Statistics

- Turbulence statistics have a natural variability in time
- Some quantities are more sensitive: e.g. fewer samples of large scales in a finite domain
- Accurate sampling is important: e.g. at least 5 *T_E*; needs longer run for high-quality results

Parallel Algorithm and Data Structure

У

- Distributed memory, equal-sized slabs
- IBM-optimized ESSL library for FFT calls
- MPI_ALLTOALL communication used to swap between *x*-*y* and *x*-*z* slabs
- Various improvements suggested by consultants

Performance on Seaborg

Problem size	1024	2048
No. processors	256	2048
CPU/step/proc	63 secs	84 secs
Performance per-proc.	178 Mflop/s	135 Mflop/s
Aggregate	182 Gflop/s	247 Gflop/s
Per-proc peak memory	282 MB	565 MB
Size of restart dataset	20 GB	160 GB

- Approx. 70% scalability, better if use 15 procs of 16-proc node (suggestion by David Skinner, NERSC)
- Bottleneck is in **all-to-all communication**
- Essentially perfect load balance across all processors

Summary of Accomplishments (at NERSC)

- Turbulent mixing at highest *Re* ($R_{\lambda} \sim 600-700$) in DNS, 2048³
 - clear attainment of inertial-convective range
 - sustained departures from local isotropy of scalars
 - scalar dissipation highly intermittent, with sheet-like structure
- Huge database (including past data) to analyze, e.g.
 - multifractal properties, conditional statistics in modeling
 - differential diffusion of multiple scalars with different molecular diffusivities (inefficient combustion, undesirable by-products)
 - Progress towards DNS of Turbulent Reacting Flows...

Turbulent Reactive Flow: phenomena and challenges

• Often associated with combustion, but also arises in atmospheric aerosols, nanomaterial synthesis, etc

- Complex interactions between turbulence and chemistry
 - **premixed**: slow chemistry, propagation of a flame front
 - **non-premixed**: fast chemistry, controlled by rate of mixing
 - regime of finite-rate chemistry is the most difficult
- Damkohler no. (*Da*): turbulence to chemistry time scale ratios
- Highly nonlinear reaction schemes, e.g. k[A][B] (or worse...)
- **Non-equilibrium** phenomena e.g. local extinction, reignition strongly affected by small-scale intermittency (Bilger 2004, Sreenivasan 2004)

Example: contours of reaction rates

For single-step, first-order reaction: consider regions of high scalar dissipation, high reaction rate, and extinction.

Ref: Computational Models for Turbulent Reacting Flows, R.O. Fox, Cambridge Univ. Press, 2003.

Reacting Flow: DNS Formulation

• One-step reversible reaction (fuel, oxidant, products)

 $F + rO \rightleftharpoons (1+r)P$

where r is stochiometric coefficient

- If all species have same diffusivities: can solve equations for
 - "mixture fraction" (a linear combination of the species concentrations), which behaves as a conserved scalar
 - "progress variable" (e.g. product concentration), which may evolve from zero to equilibrium value

To move beyond basic studies by others who focused on decaying isotropic turbulence at low Reynolds number:

- systematic study at **different** *Re*, *Sc* and *Da*.
- critical needs in novel **theory and model development** (e.g. behavior of scalar dissipation rate)
- differential diffusion, with emphasis on small scales

DNS and the Evolution of Computers

• Ref: NRC Report

"Condensed matter and materials physics; basic research for tomorrow's technologies" (1999) Figure originally by K.R. Sreenivasan.

• Reynolds number now comparable to or higher than in many laboratory experiments

The Last Word...

- Thanks to our **1.2M INCITE Award**, we now have:
 - largest production DNS (2048³) done in the US
 - highest Reynolds number in DNS for turbulent mixing
- **The future** is bright:
 - US may be able to reclaim title of world's fastest supercomputer in 2005 or 2006 (benchmarking has started)
 - we are well positioned for the next Grand Challenge of reacting turbulence, at high Reynolds and a range of Damkohler numbers
 - many exciting collaborations ahead with other researchers