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Fluid Mechanics and Turbulence

• We are all surrounded by fluids, and depend on them     
(air, water, etc) for survival. Some examples are:

- engineering: airplanes, engines, pipelines

- nature and environment: atmosphere, oceans, rivers

- chemistry and biology: combustion, human body

• Flow parameters can vary considerably:

- low to high flow speeds (U)

- small to large body dimensions (L)

- fluids of different viscosities (n )

• Reynolds 1883: flow becomes disorderly (turbulent) if 
Reynolds number (                     )  exceeds some critical value
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Examples

Space shuttle Grid turbulence 
in a wind-tunnel
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Turbulence: nature and complexity

• Disorderly fluctuations in time and three-dimensional space

• Agent of efficient mixing and dispersion

- transport of heat or contaminants/substances

• As a field of scientific inquiry:

- very difficult, many fundamental issues unresolved

- require a combination of theory, experiment and computation

- highly nonlinear, wide range of scales

• Most applications are at high Reynolds number

- energy transferred from large scales to small scales
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Turbulence: importance and applications

- astrophysics: plasma turbulence

- oceanography: stratified turbulence, marine ecology

- meteorology: weather prediction, hurricanes

- aeronautics: wing surface, clear air turbulence

- environment: air quality, rivers, and lakes

- combustion: reacting flow, turbulent mixing

- plus in many interdisciplinary problems…

In all cases, the complexities of turbulence limit our ability to predict 
natural phenomena and to design improved engineering devices
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Some Quotes and References

• Often said (Feymann): “last unsolved problem in physics”

“...has suggested that this title is likely to make trouble, since it may be 

misinterpreted in databases as referring to politics.”

• Lumley & Yaglom: Flow, Turbulence & Combustion 2001:           
“A century of turbulence”

- …“long thwarted attempts to fully understand it”

• Columbia Electronic Encyclopedia , 2004:

- …“state of violent or agitated behavior in a fluid”

- …“advent of supercomputers has enabled advances in…

design of better airplane wings and artificial heart valves”
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The basic equations

• Statistical averaging leads to more unknowns than equations, and the 
need for modeling, especially in engineering calculations 

Let’s compute the (instantaneous) flow according to the exact 
N-S equations without modeling, then extract statistics

• Navier-Stokes: conservation of mass and momentum

unsteadiness, nonlinear advection, pressure gradient, viscous forces
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Direct Numerical Simulations (DNS): the promise

• Moin & Mahesh (Annu. Rev. Fluid Mech. 1998): A powerful tool for 
research: physical understanding and model testing/development

• Tremendous detail available from simulation resolving all the   
scales, including quantities difficult to measure in experiments:

- ALL components of velocity gradients and scalar gradients 

- interaction between different scales (via Fourier decomposition)

- ...with relative ease in selecting parameters

- statistics following the motion of infinitesimal fluid elements
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More on DNS: the requirements

• Full range of scales in space and time

- size of domain L0 > L (largest length scale in the flow)

- grid spacing                    (smallest, Kolmogorov length scale)

- time step (shortest, Kolmogorov time scale)

- length of simulation T > TE (large-eddy turnover time)

• CPU cost subject further to:

- numerical stability restrictions on time-step size

- scalability performance of parallel computer codes

(20483 simulation: as many as 8,000 time steps per TE)
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High Reynolds Number DNS

A Grand Challenge problem in computational science

• Why is simulating high Reynolds number important?

- Re is high in most applications

- many theories are based on a clear separation of scales

• The cost of achieving high Re:

• Overall CPU costs increase almost as N4
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High-Re DNS: state-of-the-art

• Isotropic turbulence: simplest turbulent flow, suitable for study of 
small scales, which are approximately universal at high Re

• Largest simulation (ours) in the US: 20483,        ~ 600 - 700

- At NERSC: mixing passive scalars in turbulence

- aiming for longer simulation for better statistics

- Kaneda et. al (Phys. Fluids 2003): at Taylor-scaled Reynolds 
number (                     ) approx. 1,200, presented at SC’02

• 40963 on the Earth Simulator in Japan:

- 16 Teraflops sustained on 40-Teraflop machine

- velocity field only, for 2 large-eddy time scales
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Basic scaling issues: Kolmogorov 1941

Notion of scale similarity at high Reynolds number

- statistics depend only on        (rate of energy transfer from large to 
small scales), requires yet higher Reynolds no.

• Second hypothesis, for “inertial range” (                       )

- “locally isotropic” and universal, independent of details of large         
scales; determined only by viscosity (n ) and dissipation rate (     )

• First hypothesis, for small scales  (size  ~                              )

;
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Simulation Overview: Velocity Field

• Our database:

- Taylor-scale Reynolds numbers from 38 to 700

- grid resolution 643 to 20483,                       in most cases

• Numerical scheme:

- periodic in 3D (OK if focus on the small scales)

- energy input by forcing at the large scales, for stationarity

- Fourier pseudo-spectral in space: Fast Fourier Transforms 
with number of operations scaling as N3log2N

- second order Runge-Kutta in time
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• Universality at high wavenumbers.

• Consistent with DNS at even 
higher Re (Kaneda et. al 2003) and 
experiments (Sreenivasan 1995).

Inertial Range: Energy Spectrum

• K41:                                        where CK is Kolmogorov constant

• Intermittency correction due to 
fluctuations of     : E(k) drops 
slightly faster than k-5/3

A to G:        38 (643) to        700 (20483)

1.62
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Intermittency at the Small Scales

Intermittency: localized, short-lived bursts of intense activity

• Significant probability of large deviation from the mean 

- intense local straining can cause local flame extinction

- important in relative dispersion and stochastic modeling

• Fluctuations of the energy dissipation rate

- subject of “intermittency models” for refinements of K41

• Increases with Reynolds number

• Visualization of 3D fields possible, thanks to NERSC Staff
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Intermittency: energy dissipation rate

~700 (20483)

High activity regions tend 
to occur in “filaments”
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A to F:        8 (1283)   to        700 (20483)

PDF and Statistics of the Energy Dissipation 

• Wider “tails” at higher Re

• Multifractal description uses 
probability distribution of local 
averages of     in box of size r

“Log-normal” 
fits for B and F • log(  ) often modeled as having a 

normal (Gaussian) distribution
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Passive Scalars

• Schmidt number,                    varies:

- 0.7 for heat in air, O(1) for gaseous flames

- 7 for heat and salt in water, O(103) in some liquids

- production due to velocity acting on mean scalar gradient

- advective transport breaks large blobs into smaller scales

- molecular diffusivity causes dissipation at small scales

• Scalar fluctuation field evolves by

Diffusive contaminant/material that does not affect the flow
e.g. small temperature differences, low species concentrations
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Scalar Spectrum: Inertial-Convective Range

~700 (20483)

Sc = 1/8

Sc = 1

0.67

• At high Re:

• Value of COC agrees with 
experiments (Sreenivasan 1996)

• This may be the clearest 
demonstration of O-C scaling 
ever obtained, at least in DNS

• Intermediate wavenumbers for 
Sc=O (1) or less: extension to K41 by 
Obukhov 1949 and Corrsin 1951
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Scalar Field at the Small Scales

• Effect of Schmidt number (especially for Sc > 1) is different from 
that of Reynolds number

• Departure from local isotropy (in response to mean gradient)

- has a skewed probability distribution, sustained at high 
Reynolds number

• More intermittent than the velocity field:

- scalar dissipation rate                             , vs. energy dissipation
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Scalar Gradients: Local Anisotropy

circles: Sc=1/8 
triangles: Sc=1

• Zero mean value, but positive 
samples more likely

• Odd-order moments, e.g. 
skewness factor of
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Energy dissipation and scalar dissipation

Scalar dissipation shows higher peaks

~700 (20483)

Energy dissipation Scalar dissipation
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High activity topology: filaments (    ) and sheet-like structures (     )

Energy dissipation and scalar dissipation

~160 (2563)

Energy dissipation Scalar dissipation

Energy dissipation (     ) Scalar dissipation (     )    
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Scalar dissipation rate: Re effect

~ 160 (2563) ~700 (20483)

Peaks more intense and localized at higher Reynolds number
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A Matter of Statistics

• Turbulence statistics 
have a natural 
variability in time
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• Some quantities are more 
sensitive: e.g. fewer 
samples of large scales in 
a finite domain

• Accurate sampling is 
important: e.g. at least 5 
TE;  needs longer run
for high-quality results
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Parallel Algorithm and Data Structure

• IBM-optimized ESSL library for 
FFT calls

• MPI_ALLTOALL 
communication used to swap 
between x-y and x-z slabs

• Various improvements 
suggested by consultants

• Distributed memory, equal-sized slabs

x

z

y
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Performance on Seaborg

160 GB20 GBSize of restart dataset

565 MB282 MBPer-proc peak memory

247 Gflop/s182 Gflop/sAggregate

135 Mflop/s178 Mflop/sPerformance per-proc.

84 secs63 secsCPU/step/proc

2048256No. processors

20481024Problem size

• Approx. 70% scalability, better if use 15 procs of 16-proc node 
(suggestion by David Skinner, NERSC)

• Bottleneck is in all-to-all communication

• Essentially perfect load balance across all processors 
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Summary of Accomplishments (at NERSC) 

• Turbulent mixing at highest Re (      ~ 600-700) in DNS, 20483

- clear attainment of inertial-convective range

- sustained departures from local isotropy of scalars

- scalar dissipation highly intermittent, with sheet-like structure

- multifractal properties, conditional statistics in modeling

• Huge database (including past data) to analyze, e.g.

- differential diffusion of multiple scalars with different molecular 
diffusivities (inefficient combustion, undesirable by-products)

Progress towards DNS of Turbulent Reacting Flows…
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Turbulent Reactive Flow: phenomena and challenges 

• Damkohler no. (Da): turbulence to chemistry time scale ratios

• Often associated with combustion, but also arises in atmospheric 
aerosols, nanomaterial synthesis, etc

• Highly nonlinear reaction schemes, e.g. k[A][B] (or worse…)

• Non-equilibrium phenomena e.g. local extinction, reignition strongly 
affected by small-scale intermittency (Bilger 2004, Sreenivasan 2004)

• Complex interactions between turbulence and chemistry

- premixed: slow chemistry, propagation of a flame front

- non-premixed: fast chemistry, controlled by rate of mixing

- regime of finite-rate chemistry is the most difficult

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com


Example: contours of reaction rates

Ref: Computational Models 
for Turbulent Reacting 
Flows , R.O. Fox, Cambridge 
Univ. Press, 2003.

For single-step, first-order 
reaction: consider regions of 
high scalar dissipation, high 
reaction rate, and extinction.
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Reacting Flow: DNS Formulation 

- “mixture fraction” (a linear combination of the species 
concentrations), which behaves as a conserved scalar

• If all species have same diffusivities: can solve equations for

- “progress variable” (e.g. product concentration), which 
may evolve from zero to equilibrium value

• One-step reversible reaction (fuel, oxidant, products)

where r is stochiometric coefficient
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Reacting Flow: Future Goals

• systematic study at different Re, Sc and Da.

To move beyond basic studies by others who focused on decaying 
isotropic turbulence at low Reynolds number:

• critical needs in novel theory and model development

(e.g. behavior of scalar dissipation rate)

• differential diffusion, with emphasis on small scales
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DNS and the Evolution of Computers

• Reynolds number now 
comparable to or higher 
than in many laboratory 
experiments

• Ref: NRC Report

“Condensed matter and 
materials physics; basic 
research for tomorrow’s 
technologies” (1999)

Figure originally by          
K.R. Sreenivasan.

20483 on 
Seaborg

Earth Simulator

40963 on ES
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The Last Word…

- largest production DNS (20483) done in the US

• Thanks to our 1.2M INCITE Award, we now have:

- highest Reynolds number in DNS for turbulent mixing

• The future is bright:

- US may be able to reclaim title of world's fastest supercomputer 
in 2005 or 2006 (benchmarking has started)

- we are well positioned for the next Grand Challenge of reacting
turbulence, at high Reynolds and a range of Damkohler numbers

- many exciting collaborations ahead with other researchers
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