intel.

Intel ${ }^{\circledR}$ Math Kernel Library

Reference Manual

Document Number: 630813-017
World Wide Web: http://developer.intel.com

Version	Version Information	Date
-001	Original Issue.	11/94
-002	Added functions crotg, zrotg. Documented versions of functions ?her2k, ?symm, ?syrk, and ?syr2k not previously described. Pagination revised.	5/95
-003	Changed the title; former title: "Intel BLAS Library for the Pentium ${ }^{\circledR}$ Processor Reference Manual." Added functions ?rotm, ?rotmg and updated Appendix C.	1/96
-004	Documents Intel ${ }^{\circledR}$ Math Kernel library (Intel ${ }^{\circledR} \mathrm{MKL}$) release 2.0 with the parallelism capability. Information on parallelism has been added in Chapter 1 and in section "BLAS Level 3 Routines" in Chapter 2.	11/96
-005	Two-dimensional FFTs have been added. C interface has been added to both one- and twodimensional FFTs.	8/97
-006	Documents Intel Math Kernel Library release 2.1. Sparse BLAS section has been added in Chapter 2.	1/98
-007	Documents Intel Math Kernel Library release 3.0. Descriptions of LAPACK routines (Chapters 4 and 5) and CBLAS interface (Appendix C) have been added. Quick Reference has been excluded from the manual; MKL 3.0 Quick Reference is now available in HTML format.	1/99
-008	Documents Intel Math Kernel Library release 3.2. Description of FFT routines have been revised. In Chapters 4 and 5 NAG names for LAPACK routines have been excluded.	6/99
-009	New LAPACK routines for eigenvalue problems have been added in chapter 5.	11/99
-010	Documents Intel Math Kernel Library release 4.0. Chapter 6 describing the VML functions has been added.	06/00
-011	Documents Intel Math Kernel Library release 5.1. LAPACK section has been extended to include the full list of computational and driver routines.	04/01
-6001	Documents Intel Math Kernel Library release 6.0 beta. New DFT interface and Vector Statistical Library functions have been added.	07/02
-6002	Documents Intel Math Kernel Library 6.0 beta update. DFT functions description has been updated. CBLAS interface description was extended.	12/02
-6003	Documents Intel Math Kernel Library 6.0 gold. DFT functions have been updated. Auxiliary LAPACK routines' descriptions were added to the manual.	03/03
-6004	Documents Intel Math Kernel Library release 6.1.	07/03
-6005	Documents Intel Math Kernel Library release 7.0 beta. Includes ScaLAPACK and sparse solver descriptions.	11/03
-017	Documents Intel MKL and Intel ${ }^{\circledR}$ Cluster MKL release 7.0 gold. Auxiliary ScaLAPACK and alternative sparse solver interface were added.	04/04

This manual as well as the software described in it is furnished under license and may only be used or copied in accordance with the terms of the license. The information in this manual is furnished for informational use only, is subject to change without notice, and should not be construed as a commitment by Intel Corporation. Intel Corporation assumes no responsibility or liability for any errors or inaccuracies that may appear in this document or any software that may be provided in association with this document.
Except as permitted by such license, no part of this document may be reproduced, stored in a retrieval system, or transmitted in any form or by any means without the express written consent of Intel Corporation.
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL ${ }^{\circledR}$ PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER
INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, or life sustaining applications. Intel may make changes to specifications and product descriptions at any time, without notice.
Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.
Processors may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.
Celeron, Dialogic, i386, i486, iCOMP, Intel, Intel Centrino, Intel logo, Intel386, Intel486, Inte1740, IntelDX2, IntelDX4, IntelSX2, Intel Inside, Intel Inside logo, Intel NetBurst, Intel NetStructure, Intel Xeon, Intel XScale, Itanium, MMX, MMX logo, Pentium, Pentium II Xeon, Pentium III Xeon, and VTune are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

* Other names and brands may be claimed as the property of others.

Copyright © 1994-2004 Intel Corporation.
Portions © Copyright 2001 Hewlett-Packard Development Company, L.P.
Chapters 4 and 5 include derivative work portions that have been copyrighted:
© 1991, 1992, and 1998 by The Numerical Algorithms Group, Ltd.

Contents

Chapter 1 Overview
About This Software 1-1
Technical Support 1-2
BLAS Routines 1-2
Sparse BLAS Routines 1-3
LAPACK Routines 1-3
ScaLAPACK Routines 1-3
Sparse Solver Routines 1-4
VML Functions 1-4
VSL Functions 1-4
DFT and FFT Functions 1-4
Performance Enhancements 1-5
Parallelism 1-5
Platforms Supported 1-6
About This Manual 1-6
Audience for This Manual 1-7
Manual Organization 1-7
Notational Conventions 1-8
Routine Name Shorthand 1-8
Font Conventions 1-8
Chapter 2 BLAS and Sparse BLAS Routines
Routine Naming Conventions 2-2
Matrix Storage Schemes 2-3
BLAS Level 1 Routines and Functions 2-4
?asum 2-5
? axpy 2-6
?copy 2-7
?dot 2-8
?sdot 2-9
?dotc 2-10
?dotu 2-11
?nrm2 2-12
?rot 2-13
?rotg 2-15
?rotm 2-16
?rotmg 2-18
?scal 2-19
?swap 2-20
i?amax 2-21
i?amin 2-22
BLAS Level 2 Routines 2-24
?gbmv 2-25
?gemv 2-28
?ger 2-30
?gerc 2-32
?geru 2-33
?hbmv 2-35
?hemv 2-37
?her 2-39
?her2 2-41
?hpmv 2-43
?hpr 2-45
?hpr2 2-46
?sbmv 2-48
?spmv 2-51
?spr 2-53
?spr2 2-54
?symv 2-56
?syr 2-58
?syr2 2-60
?tbmv 2-62
?tbsv 2-65
?tpmv 2-67
?tpsv 2-69
?trmv 2-71
?trsv 2-73
BLAS Level 3 Routines 2-76
Symmetric Multiprocessing Version of Intel® MKL 2-76
?gemm 2-77
?hemm 2-79
?herk 2-82
?her2k 2-84
?symm 2-87
?syrk 2-90
?syr2k 2-93
?trmm 2-96
?trsm 2-98
Sparse BLAS Routines and Functions 2-102
Vector Arguments in Sparse BLAS 2-102
Naming Conventions in Sparse BLAS 2-102
Routines and Data Types in Sparse BLAS 2-103
BLAS Routines That Can Work With Sparse Vectors 2-104
?axpyi 2-104
?doti 2-106
?dotci 2-107
?dotui 2-108
?gthr 2-109
?gthrz 2-110
?roti 2-111
?sctr 2-112
Chapter 3 LAPACK Routines: Linear Equations
Routine Naming Conventions 3-2
Matrix Storage Schemes 3-3
Mathematical Notation 3-3
Error Analysis 3-4
Computational Routines 3-5
Routines for Matrix Factorization 3-7
?getrf 3-7
?gbtrf 3-9
?gttrf 3-11
?potrf 3-12
?pptrf 3-14
?pbtrf 3-16
?ptrff 3-18
?sytrf 3-19
?hetrf 3-22
?sptrf 3-24
?hptrf 3-27
Routines for Solving Systems of Linear Equations 3-29
?getrs 3-29
?gbtrs 3-31
?gttrs 3-33
?potrs 3-35
?pptrs 3-37
?pbtrs 3-39
?pttrs 3-41
?sytrs 3-43
?hetrs 3-45
?sptrs 3-47
?hptrs 3-49
?trtrs 3-51
?tptrs 3-53
?tbtrs 3-55
Routines for Estimating the Condition Number 3-57
?gecon 3-57
?gbcon 3-59
?gtcon 3-61
?pocon 3-63
?ppcon 3-65
?pbcon 3-67
?ptcon 3-69
?sycon 3-71
?hecon 3-73
?spcon 3-74
?hpcon 3-76
?trcon 3-78
?tpcon 3-80
?tbcon 3-82
Refining the Solution and Estimating Its Error 3-84
?gerfs 3-84
?gbrfs 3-87
?gtrfs 3-89
?porfs 3-92
?pprfs 3-94
?pbrfs 3-97
?ptrfs 3-99
?syrfs 3-101
?herfs 3-104
?sprfs 3-106
?hprfs 3-108
?trrfs 3-111
?tprfs 3-113
?tbrfs 3-116
Routines for Matrix Inversion 3-119
?getri 3-119
?potri 3-121
?pptri 3-122
?sytri 3-124
?hetri 3-126
?sptri 3-127
?hptri 3-129
?trtri 3-131
?tptri 3-132
Routines for Matrix Equilibration 3-134
?geequ 3-134
?gbequ 3-136
?poequ 3-138
?ppequ 3-140
?pbequ 3-141
Driver Routines 3-144
?gesv 3-145
?gesvx 3-146
?gbsv 3-152
?gbsvx 3-153
?gtsv 3-159
?gtsvx 3-160
?posv 3-164
?posvx 3-166
?ppsv 3-170
?ppsvx 3-172
?pbsv 3-176
?pbsvx 3-178
?ptsv 3-182
?ptsvx 3-184
?sysv 3-187
?sysvx 3-189
?hesv 3-193
?hesvx 3-195
?spsv 3-199
?spsvx 3-201
?hpsv 3-205
?hpsvx 3-207
Chapter 4 LAPACK Routines: Least Squares and Eigenvalue Problems
Routine Naming Conventions 4-3
Matrix Storage Schemes 4-4
Mathematical Notation 4-4
Computational Routines 4-5
Orthogonal Factorizations 4-5
? geq rf 4-7
?geqpf 4-9
?geqp3 4-12
?orgqr 4-15
?ormqr 4-17
?ungqr 4-19
?unmqr 4-21
?gelqf 4-23
?orglq 4-26
?ormlq 4-28
?unglq 4-30
?unmlq 4-32
?geqlf 4-34
?orgql 4-36
?ungql 4-38
?ormql 4-40
?unmql 4-42
?gerqf 4-44
?orgrq 4-46
?ungrq 4-48
?ormrq 4-50
?unmrq 4-52
?tzrzf 4-54
?ormrz 4-56
?unmrz 4-59
?ggqrf 4-62
?ggraf 4-65
Singular Value Decomposition 4-68
?gebrd 4-70
?gbbrd 4-73
?orgbr 4-76
?ormbr 4-79
?ungbr 4-82
?unmbr 4-85
?bdsqr 4-88
?bdsdc 4-92
Symmetric Eigenvalue Problems 4-95
?sytrd 4-99
?orgtr 4-101
?ormtr 4-103
?hetrd 4-105
?ungtr 4-107
?unmtr 4-109
?sptrd 4-111
?opgtr 4-113
?opmtr 4-114
?hptrd 4-116
?upgtr 4-118
?upmtr 4-119
?sbtrd 4-121
?hbtrd 4-123
?sterf 4-125
?steqr 4-127
?stedc 4-130
?stegr 4-133
?pteqr 4-137
?stebz 4-140
?stein 4-143
?disna 4-145
Generalized Symmetric-Definite Eigenvalue Problems 4-147
?sygst 4-148
?hegst 4-150
?spgst 4-152
?hpgst 4-154
?sbgst 4-155
?hbgst 4-158
?pbstf 4-160
Nonsymmetric Eigenvalue Problems 4-162
?gehrd 4-166
? orghr 4-168
?ormhr 4-170
?unghr 4-173
?unmhr 4-175
?gebal 4-178
?gebak 4-181
?hseqr 4-183
?hsein 4-187
?trevc 4-192
?trsna 4-196
?trexc 4-201
?trsen 4-203
?trsyl 4-207
Generalized Nonsymmetric Eigenvalue Problems 4-210
?gghrd 4-211
?ggbal 4-214
?ggbak 4-217
?hgeqz 4-219
?tgevc 4-225
?tgexc 4-229
?tgsen 4-232
?tgsyl 4-238
?tgsna 4-242
Generalized Singular Value Decomposition 4-246
?ggsvp 4-247
?tgsja 4-251
Driver Routines 4-257
Linear Least Squares (LLS) Problems 4-257
?gels 4-258
?gelsy 4-261
?gelss 4-265
?gelsd 4-268
Generalized LLS Problems 4-272
?gglse 4-272
?ggglm 4-275
Symmetric Eigenproblems 4-277
?syev 4-278
?heev 4-280
?syevd 4-282
?heevd 4-284
?syevx 4-287
?heevx 4-290
?syevr 4-294
?heevr 4-298
?spev 4-303
?hpev 4-305
?spevd 4-306
?hpevd 4-309
?spevx 4-312
?hpevx 4-315
?sbev 4-318
?hbev 4-320
?sbevd 4-322
?hbevd 4-324
?sbevx 4-328
?hbevx 4-332
?stev 4-336
?stevd 4-338
?stevx 4-341
?stevr 4-344
Nonsymmetric Eigenproblems 4-348
?gees 4-348
?geesx 4-353
?geev 4-358
?geevx 4-362
Singular Value Decomposition 4-368
?gesvd 4-368
?gesdd 4-372
?ggsvd 4-376
Generalized Symmetric Definite Eigenproblems 4-381
?sygv 4-382
?hegv 4-385
?sygvd 4-388
?hegvd 4-391
?sygvx 4-394
?hegvx 4-398
?spgv 4-402
?hpgv 4-404
?spgvd 4-407
?hpgvd 4-410
?spgvx 4-413
?hpgvx 4-417
?sbgv 4-421
?hbgv 4-423
?sbgvd 4-425
?hbgvd 4-428
?sbgvx 4-431
?hbgvx 4-435
Generalized Nonsymmetric Eigenproblems 4-439
?gges 4-439
?ggesx 4-445
?ggev 4-452
?ggevx 4-456
Chapter 5 LAPACK Auxiliary and Utility Routines
Auxiliary Routines 5-1
?lacgv 5-11
?lacrm 5-12
?lacrt 5-13
?laesy 5-14
?rot 5-16
?spmv 5-17
?spr 5-19
?symv 5-20
?syr 5-22
i?max1 5-24
?sum1 5-25
?gbtf2 5-26
?gebd2 5-27
?gehd2 5-29
?gelq2 5-32
?geql2 5-33
?geqr2 5-35
?gerq2 5-37
?gesc2 5-38
?getc2 5-40
?getf2 5-41
?gtts2 5-42
?labrd 5-44
?lacon 5-47
?lacpy 5-48
?ladiv 5-49
?lae2 5-51
?laebz 5-52
?laed0 5-56
?laed1 5-59
?laed2 5-61
?laed3 5-63
?laed4 5-66
?laed5 5-67
?laed6 5-68
?laed7 5-70
?laed8 5-73
?laed9 5-77
?laeda 5-79
?laein 5-81
?laev2 5-84
?laexc 5-85
?lag2 5-87
?lags2 5-89
?lagtf 5-91
?lagtm 5-93
?lagts 5-95
?lagv2 5-97
?lahqr 5-99
?lahrd 5-101
?laic1 5-104
?laln2 5-106
?lals0 5-109
?lalsa 5-113
?lalsd 5-117
?lamrg 5-119
?langb 5-120
?lange 5-122
?langt 5-124
?lanhs 5-125
?lansb 5-126
?lanhb 5-128
?lansp 5-130
?lanhp 5-132
?lanst/?lanht 5-133
?lansy 5-135
?lanhe 5-136
?lantb 5-138
?lantp 5-140
?lantr 5-142
?lanv2 5-144
?lapll 5-145
?lapmt 5-146
?lapy2 5-147
?lapy3 5-148
?laqgb 5-149
?laqge 5-151
?laqp2 5-153
?laqps 5-154
?laqsb 5-157
?laqsp 5-159
?laqsy 5-160
?laqtr 5-162
?lar1v 5-165
?lar2v 5-167
?larf 5-168
?larfb 5-170
?larfg 5-172
?larft 5-174
?larfx 5-177
?largv 5-178
?larnv 5-180
?larrb 5-181
?larre 5-183
?larrf 5-185
?larrv 5-187
?lartg 5-190
?lartv 5-191
?laruv 5-193
?larz 5-194
?larzb 5-196
?larzt 5-198
?las2 5-201
?lascl 5-202
?lasd0 5-204
?lasd1 5-206
?lasd2 5-209
?lasd3 5-212
?lasd4 5-215
?lasd5 5-217
?lasd6 5-218
?lasd7 5-223
?lasd8 5-226
?lasd9 5-228
?lasda 5-230
?lasdq 5-234
?lasdt 5-237
?laset 5-238
?lasq1 5-239
?lasq2 5-240
?lasq3 5-242
?lasq4 5-243
?lasq5 5-245
?lasq6 5-246
?lasr 5-247
?lasrt 5-249
?lassq 5-250
?lasv2 5-252
?laswp 5-254
?lasy2 5-255
?lasyf 5-257
?lahef 5-260
?latbs 5-262
?latdf 5-264
?latps 5-266
?latrd 5-269
?latrs 5-272
?latrz 5-276
?lauu2 5-278
?lauum 5-280
?org2l/?ung2l 5-281
?org2r/?ung2r 5-283
?orgl2/?ungl2 5-284
?orgr2/?ungr2 5-286
?orm2l/?unm2| 5-287
?orm2r/?unm2r 5-290
?orml2/?unml2 5-292
?ormr2/?unmr2 5-294
?ormr3/?unmr3 5-297
?pbtf2 5-299
?potf2 5-301
?ptts2 5-303
?rscl 5-304
?sygs2/?hegs2 5-305
?sytd2/?hetd2 5-307
?sytf2 5-309
?hetf2 5-311
?tgex2 5-313
?tgsy2 5-315
?trti2 5-319
Utility Functions and Routines 5-321
ilaenv 5-321
ieeeck 5-324
Isame 5-325
Isamen 5-325
?labad 5-326
?lamch 5-327
?lamc1 5-328
?lamc2 5-329
?lamc3 5-330
?lamc4 5-331
?lamc5 5-331
second/dsecnd 5-332
xerbla 5-333
Chapter 6 ScaLAPACK Routines
Overview 6-2
Routine Naming Conventions 6-3
Computational Routines 6-4
Linear Equations 6-4
Routines for Matrix Factorization 6-6
p?getrf 6-6
p?gbtrf 6-8
p?dbtrf 6-10
p?potrf 6-13
p?pbtrf 6-14
p?pttrf 6-17
p?dttrf 6-19
Routines for Solving Systems of Linear Equations 6-21
p?getrs 6-22
p?gbtrs 6-24
p?potrs 6-27
p?pbtrs 6-29
p?pttrs 6-31
p?dttrs 6-34
p?dbtrs 6-36
p? trtrs 6-39
Routines for Estimating the Condition Number 6-42
p?gecon 6-42
p?pocon 6-45
p?trcon 6-48
Refining the Solution and Estimating Its Error 6-51
p?gerfs 6-51
p?porfs 6-55
p?trifs 6-59
Routines for Matrix Inversion 6-63
p?getri 6-64
p?potri 6-66
p?trtri 6-68
Routines for Matrix Equilibration 6-69
p?geequ 6-70
p?poequ 6-72
Orthogonal Factorizations 6-75
p?geqrf 6-75
p?geqpf 6-78
p?orgqr 6-81
p?ungqr 6-83
p?ormqr 6-85
p?unmqr 6-89
p?gelqf 6-92
p?orglq 6-95
p?unglq 6-97
p?ormlq 6-99
p?unmlq 6-103
p?geqlf 6-106
p?orgq 6-109
p?ungql 6-111
p?ormql 6-113
p?unmql 6-117
p?gerqf 6-120
p?orgrq 6-123
p?ungrq 6-125
p?ormrq 6-127
p?unmrq 6-131
p?tzrzf 6-134
p?ormrz 6-137
p?unmrz 6-141
p?ggqrf 6-144
p?ggrqf 6-149
Symmetric Eigenproblems 6-154
p?sytrd 6-154
p?ormtr 6-159
p?hetrd 6-162
p? unmtr 6-166
p?stebz 6-170
p?stein 6-174
Nonsymmetric Eigenvalue Problems 6-178
p?gehrd 6-179
p?ormhr 6-182
p?unmhr 6-186
p?lahqr 6-189
Singular Value Decomposition 6-191
p?gebrd 6-192
p?ormbr 6-197
p?unmbr 6-202
Generalized Symmetric-Definite Eigenproblems 6-206
p?sygst 6-207
p?hegst 6-209
Driver Routines 6-212
p?gesv 6-213
p?gesvx 6-215
p?gbsv 6-221
p?dbsv 6-224
p?dtsv 6-226
p?posv 6-229
p?posvx 6-232
p?pbsv 6-238
p?ptsv 6-241
p?gels 6-243
p?syev 6-247
p?syevx 6-250
p?heevx 6-257
p?gesvd 6-264
p?sygvx 6-269
p?hegvx 6-277
Chapter 7 ScaLAPACK Auxiliary and Utility Routines
Auxiliary Routines 7-1
p?lacgv 7-6
p?max1 7-7
?combamax1 7-9
p?sum1 7-10
p?dbtrsv 7-11
p?dttrsv 7-14
p?gebd2 7-18
p?gehd2 7-22
p?gelq2 7-25
p?geql2 7-28
p?geqr2 7-30
p?gerq2 7-33
p?getf2 7-35
p?labrd 7-37
p?lacon 7-41
p?laconsb 7-43
p?lacp2 7-44
p?lacp3 7-46
p?lacpy 7-48
p?laevswp 7-50
p?lahrd 7-52
p?laiect 7-55
p?lange 7-56
p?lanhs 7-58
p?lansy, p?lanhe 7-60
p?lantr 7-63
p?lapiv 7-65
p?laqge 7-68
p?laqsy 7-70
p?lared1d 7-73
p?lared2d 7-74
p?larf 7-76
p?larfb 7-79
p?larfc 7-82
p?larfg 7-85
p?larft 7-87
p?larz 7-90
p?larzb 7-94
p?larzc 7-98
p?larzt 7-101
p?lascl 7-105
p?laset 7-107
p?lasmsub 7-109
p? lassq 7-110
p?laswp 7-112
p?latra 7-114
p?latrd 7-115
p?latrs 7-119
p?latrz 7-121
p?lauu2 7-124
p?lauum 7-126
p?lawil 7-127
p?org21/p?ung2| 7-128
p?org2r/p?ung2r 7-131
p?orgl2/p?ungl2 7-133
p?orgr2/p?ungr2 7-136
p?orm21/p?unm2l 7-138
p?orm2r/p?unm2r 7-142
p?orml2/p?unml2 7-146
p?ormr2/p?unmr2 7-150
p?pbtrsv 7-154
p?pttrsv 7-158
p?potf2 7-162
p?rscl 7-163
p?sygs2/p?hegs2 7-165
p?sytd2/p?hetd2 7-167
p?trti2 7-171
?lamsh 7-173
?laref 7-175
?lasorte 7-177
?lasrt2 7-178
?stein2 7-179
?dbtf2 7-182
?dbtrf 7-184
?dttrf 7-185
?dttrsv 7-187
?pttrsv 7-188
?steqr2 7-190
Utility Functions and Routines 7-192
p?labad 7-193
p?lachkieee 7-194
p?lamch 7-195
p?lasnbt 7-196
pxerbla 7-197
Chapter 8 Sparse Solver Routines
PARDISO - Parallel Direct Sparse Solver Interface 8-1
pardiso 8-3
Direct Sparse Solver (DSS) Interface Routines 8-15
Interface Description 8-17
Routine Options 8-17
User Data Arrays 8-18
dss_create 8-18
dss_define_structure 8-19
dss_reorder 8-20
dss_factor_real, dss_factor_complex 8-21
dss_solve_real, dss_solve_complex 8-23
dss_delete 8-24
dss statistics 8-25
mkl_cvt_to_null_terminated_str 8-28
Implementation Details 8-29
Memory Allocation and Handles 8-29
Calling Direct Sparse Solver Routines From C/C++ 8-30
Caveat for C Users 8-31
Chapter 9 Vector Mathematical Functions
Data Types and Accuracy Modes 9-2
Function Naming Conventions 9-2
Functions Interface 9-3
VML Mathematical Functions 9-3
Pack Functions 9-4
Unpack Functions 9-4
Service Functions 9-4
Input Parameters 9-5
Output Parameters 9-5
Vector Indexing Methods 9-6
Error Diagnostics 9-6
VML Mathematical Functions 9-7
Inv 9-9
Div 9-10
Sqrt 9-11
InvSqrt 9-12
Cbrt 9-14
InvCbrt 9-15
Pow 9-16
Powx 9-18
Exp 9-19
Ln 9-21
Log10 9-22
Cos 9-23
Sin 9-24
SinCos 9-25
Tan 9-27
Acos 9-28
Asin 9-29
Atan 9-30
Atan2 9-31
Cosh 9-33
Sinh 9-34
Tanh 9-36
Acosh 9-37
Asinh 9-38
Atanh 9-39
Erf 9-40
Erfc 9-42
VML Pack/Unpack Functions 9-43
Pack 9-44
Unpack 9-46
VML Service Functions 9-48
SetMode 9-49
GetMode 9-51
SetErrStatus 9-53
GetErrStatus 9-54
ClearErrStatus 9-55
SetErrorCallBack 9-55
GetErrorCallBack 9-58
ClearErrorCallBack 9-59
Chapter 10 Vector Generators of Statistical Distributions
Conventions 10-2
Mathematical Notation 10-2
Naming Conventions 10-3
Basic Generators 10-5
Random Streams 10-6
Data Types 10-6
Parameter Definitions 10-7
Service Subroutines 10-10
NewStream 10-12
NewStreamEx 10-13
DeleteStream 10-15
CopyStream 10-16
CopyStreamState 10-17
LeapfrogStream 10-18
SkipAheadStream 10-21
GetStreamStateBrng 10-24
GetNumRegBrng 10-25
Distribution Generators 10-26
Continuous Distributions 10-27
Uniform 10-27
Gaussian 10-29
GaussianMV 10-32
Exponential 10-36
Laplace 10-39
Weibull 10-41
Cauchy 10-44
Rayleigh 10-46
Lognormal 10-49
Gumbel 10-52
Discrete Distributions 10-54
Uniform 10-54
UniformBits 10-56
Bernoulli 10-58
Geometric 10-59
Binomial 10-61
Hypergeometric 10-63
Poisson 10-65
PoissonV 10-67
NegBinomial 10-68
Advanced Service Subroutines 10-70
Data types 10-70
RegisterBrng 10-72
GetBrngProperties 10-73
Formats for User-Designed Generators 10-74
iBRng 10-77
sBRng 10-78
dBRng 10-79
Chapter 11 Discrete Fourier Transform Functions
Computing DFT 11-2
DFT Interface 11-3
Status Checking Functions 11-4
ErrorClass 11-5
ErrorMessage 11-6
Descriptor Manipulation 11-7
CreateDescriptor 11-7
CommitDescriptor 11-10
CopyDescriptor 11-11
FreeDescriptor 11-12
DFT Computation 11-13
ComputeForward 11-13
ComputeBackward 11-16
Descriptor Configuration 11-18
SetValue 11-18
GetValue 11-21
Configuration Settings 11-24
Precision of transform 11-28
Forward domain of transform 11-28
Transform dimension and lengths 11-29
Number of transforms 11-30
Sign and scale 11-30
Placement of result. 11-31
Packed formats 11-31
Storage schemes 11-34
Number of user threads 11-44
Input and output distances 11-45
Strides 11-46
Initialization Effort 11-47
Ordering 11-48
Workspace 11-49
Transposition 11-49
Chapter 12 Fast Fourier Transforms
One-dimensional FFTs 12-1
Data Storage Types. 12-2
Data Structure Requirements 12-2
Complex-to-Complex One-dimensional FFTs 12-3
cfft1d/zfft1d 12-4
cfft1dc/zfft1dc 12-5
Real-to-Complex One-dimensional FFTs 12-6
scfft1d/dzfft1d 12-7
scfft1dc/dzfft1dc 12-9
Complex-to-Real One-dimensional FFTs 12-10
csfft1d/zdfft1d 12-12
csfft1dc/zdfft1dc 12-13
Two-dimensional FFTs 12-15
Complex-to-Complex Two-dimensional FFTs 12-16
cfft2d/zfft2d 12-17
cfft2dc/zfft2dc 12-18
Real-to-Complex Two-dimensional FFTs 12-19
scfft2d/dzfft2d 12-20
scfft2dc/dzfft2dc 12-22
Complex-to-Real Two-dimensional FFTs 12-25
csfft2d/zdfft2d 12-26
csfft2dc/zdfft2dc 12-27
Appendix A Linear Solvers Basics
Matrix Fundamentals A-2
Direct Method A-3
Fill-In and Reordering of Sparse Matrices A-4
Sparse Matrix Storage Format A-7
Storage Format Restrictions A-10
Appendix B Routine and Function Arguments
Vector Arguments in BLAS B-1
Vector Arguments in VML B-2
Positive Increment Indexing B-3
Index Vector Indexing B-3
Mask Vector Indexing B-3
Matrix Arguments B-3
Appendix C Code Examples
BLAS Code Examples C-1
PARDISO Code Examples C-7
Examples for sparse symmetric linear systems C-7
Example results for symmetric systems C-7
Examples for sparse unsymmetric linear systems C-17
Example results for unsymmetric systems C-17
Direct Sparse Solver Examples C-27
Example results for symmetric systems C-28
DFT Code Examples C-39
Examples of Using Multi-Threading for DFT Computation C-48
Appendix D CBLAS Interface to the BLAS
CBLAS Arguments D-1
Enumerated Types D-2
Level 1 CBLAS D-3
Level 2 CBLAS D-5
Level 3 CBLAS D-12
Sparse CBLAS D-16
Glossary
Bibliography
Index

Overview

The Intel ${ }^{\circledR}$ Math Kernel Library (Intel ${ }^{\circledR}$ MKL) provides Fortran routines and functions that perform a wide variety of operations on vectors and matrices including sparse matrices. The library also includes discrete Fourier transform routines, as well as vector mathematical and vector statistical functions with Fortran and C interfaces.

The version of the library named Intel $^{\circledR}$ Cluster MKL is a superset of Intel MKL and includes also ScaLAPACK software for solving linear algebra problems on distributed-memory parallel computers.

The Intel MKL enhances performance of the application programs that use it because the library has been optimized for latest generations of Intel ${ }^{\circledR}$ processors.
This chapter introduces the Intel Math Kernel Library and provides information about the organization of this manual.

About This Software

The Intel Math Kernel Library includes the following groups of routines:

- Basic Linear Algebra Subprograms (BLAS):
- vector operations
- matrix-vector operations
- matrix-matrix operations
- Sparse BLAS (basic vector operations on sparse vectors)
- LAPACK routines for solving systems of linear equations
- LAPACK routines for solving least-squares problems, eigenvalue and singular value problems, and Sylvester's equations
- Auxiliary and utility LAPACK routines
- ScaLAPACK computational, driver and auxiliary routines (for Intel Cluster MKL only)
- Direct Sparse Solver routines
- Vector Mathematical Library (VML) functions for computing core mathematical functions on vector arguments (with Fortran and C interfaces)
- Vector Statistical Library (VSL) functions for generating vectors of pseudorandom numbers with different types of statistical distributions
- General Discrete Fourier Transform Functions (DFT) and a subset of Fast Fourier transform routines (FFT) with Fortran and C interfaces.

For specific issues on using the library, please refer to the MKL Release Notes.

Technical Support

Intel MKL provides a product web site that offers timely and comprehensive product information, including product features, white papers, and technical articles. For the latest information, check: http://developer.intel.com/software/products/

Intel also provides a support web site that contains a rich repository of self help information, including getting started tips, known product issues, product errata, license information, user forums, and more (visit http://support.intel.com/support/).

Registering your product entitles you to one year of technical support and product updates through Intel® Premier Support. Intel Premier Support is an interactive issue management and communication web site providing these services:

- Submit issues and review their status.
- Download product updates anytime of the day.

To register your product, contact Intel, or seek product support, please visit:
http://www.intel.com/software/products/support

BLAS Routines

BLAS routines and functions are divided into the following groups according to the operations they perform:

- BLAS Level 1 Routines and Functions perform operations of both addition and reduction on vectors of data. Typical operations include scaling and dot products.
- BLAS Level 2 Routines perform matrix-vector operations, such as matrix-vector multiplication, rank-1 and rank-2 matrix updates, and solution of triangular systems.
- BLAS Level 3 Routines perform matrix-matrix operations, such as matrix-matrix multiplication, rank-k update, and solution of triangular systems.

Sparse BLAS Routines

Sparse BLAS Routines and Functions operate on sparse vectors (that is, vectors in which most of the elements are zeros). These routines perform vector operations similar to BLAS Level 1 routines. Sparse BLAS routines take advantage of vectors' sparsity: they allow you to store only non-zero elements of vectors.

LAPACK Routines

The Intel Math Kernel Library covers the full set of the LAPACK computational, driver, auxiliary and utility routines.

The original versions of LAPACK from which that part of Intel MKL was derived can be obtained from http://www.netlib.org/lapack/index.html. The authors of LAPACK are E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen.

The LAPACK routines can be divided into the following groups according to the operations they perform:

- Routines for solving systems of linear equations, factoring and inverting matrices, and estimating condition numbers (see Chapter 3).
- Routines for solving least-squares problems, eigenvalue and singular value problems, and Sylvester's equations (see Chapter 4).
- Auxiliary and utility routines used to perform certain subtasks, common low-level computation or related tasks (see Chapter 5).

ScaLAPACK Routines

ScaLAPACK package (included with Intel Cluster MKL only, see Chapter 6 and Chapter 7) runs on distributed-memory architectures and includes routines for solving systems of linear equations, solving linear least-squares problems, eigenvalue and singular value problems, as well as performing a number of related computational tasks.

The original versions of ScaLAPACK from which that part of Intel Cluster MKL was derived can be obtained from http://www.netlib.org/scalapack/index.html. The authors of ScaLAPACK are L. Blackford, J. Choi, A.Cleary, E. D'Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K.Stanley, D. Walker, and R. Whaley.

Intel Cluster MKL version of ScaLAPACK is optimized for Intel processors and uses MPICH version of MPI.

Sparse Solver Routines

Direct sparse solver routines in Intel MKL (see Chapter 8) solve symmetric and symmetrically-structured sparse matrices with real or complex coefficients. For symmetric matrices, these Intel MKL subroutines can solve both positive definite and indefinite systems. Intel MKL includes the PARDISO* sparse solver interface as well as an alternative set of user callable direct sparse solver routines.

VML Functions

Vector Mathematical Library (VML) functions (see Chapter 9) include a set of highly optimized implementations of certain computationally expensive core mathematical functions (power, trigonometric, exponential, hyperbolic etc.) that operate on real vector arguments.

VSL Functions

Vector Statistical Library (VSL) functions (see Chapter 10) include a set of pseudo- and quasi-random number generator subroutines implementing basic continuous and discrete distributions. To provide best performance, VSL subroutines use calls to highly optimized Basic Random Number Generators and the library of vector mathematical functions, VML.

DFT and FFT Functions

The Intel MKL multidimensional Discrete Fourier Transform functions with mixed radix support (see Chapter 11) provide uniformity of DFT computation and combine functionality with ease of use. Both Fortran and C interface specification are given.

For compatibility with previous versions, Intel MKL provides also a set of simplified one- and two-dimensional Fast Fourier Transform functions (see Chapter 12) that support powers of 2 transform size.

Performance Enhancements

The Intel Math Kernel Library has been optimized by exploiting both processor and system features and capabilities. Special care has been given to those routines that most profit from cache-management techniques. These especially include matrix-matrix operation routines such as dgemm ().

In addition, code optimization techniques have been applied to minimize dependencies of scheduling integer and floating-point units on the results within the processor.

The major optimization techniques used throughout the library include:

- Loop unrolling to minimize loop management costs.
- Blocking of data to improve data reuse opportunities.
- Copying to reduce chances of data eviction from cache.
- Data prefetching to help hide memory latency.
- Multiple simultaneous operations (for example, dot products in dgemm) to eliminate stalls due to arithmetic unit pipelines.
- Use of hardware features such as the SIMD arithmetic units, where appropriate.

These are techniques from which the arithmetic code benefits the most.

Parallelism

In addition to the performance enhancements discussed above, the Intel MKL offers performance gains through parallelism provided by the symmetric multiprocessing performance (SMP) feature. You can obtain improvements from SMP in the following ways:

- One way is based on user-managed threads in the program and further distribution of the operations over the threads based on data decomposition, domain decomposition, control decomposition, or some other parallelizing technique. Each thread can use any of the Intel MKL functions because the library has been designed to be thread-safe.
- Another method is to use the FFT and BLAS level 3 routines. They have been parallelized and require no alterations of your application to gain the performance enhancements of multiprocessing. Performance using multiple processors on the level 3 BLAS shows excellent scaling. Since the threads are called and managed within the library, the application does not need to be recompiled thread-safe (see also BLAS Level 3 Routines in Chapter 2).
- Yet another method is to use tuned LAPACK routines. Currently these include the single- and double precision flavors of routines for $Q R$ factorization of general matrices, triangular factorization of general and symmetric positive-definite matrices, solving systems of equations with such matrices, as well as solving symmetric eigenvalue problems.

For instructions on setting the number of available processors for the BLAS level 3 and LAPACK routines, see the Intel MKL Technical User Notes.

Platforms Supported

The Intel Math Kernel Library includes Fortran routines and functions optimized for Intel ${ }^{\circledR}$ processor-based computers running operating systems that support multiprocessing. In addition to the Fortran interface, the Intel MKL includes a C-language interface for the Discrete Fourier transform functions, as well as for the Vector Mathematical Library and Vector Statistical Library functions.
For hardware and software requirements to use Inlel MKL, see MKL Release Notes.

About This Manual

This manual describes the routines and functions of the Intel MKL and Intel Cluster MKL. Each reference section describes a routine group typically consisting of routines used with four basic data types: single-precision real, double-precision real, single-precision complex, and double-precision complex.

Each routine group is introduced by its name, a short description of its purpose, and the calling sequence, or syntax, for each type of data with which each routine of the group is used. The following sections are also included:

Description	Describes the operation performed by routines of the group based on one or more equations. The data types of the arguments are defined in general terms for the group.
Input Parameters	Defines the data type for each parameter on entry, for example:
a \quadREAL for saxpy DOUBLE PRECISION for daxpy	
Output Parameters	Lists resultant parameters on exit.

Audience for This Manual

The manual addresses programmers proficient in computational mathematics and assumes a working knowledge of the principles and vocabulary of linear algebra, mathematical statistics, and Fourier transforms.

Manual Organization

The manual contains the following chapters and appendixes:

Chapter 1	Overview. Introduces the Intel Math Kernel Library software, provides information on manual organization, and explains notational conventions.		
Chapter 2	BLAS and Sparse BLAS Routines. Provides descriptions of BLAS and Sparse BLAS functions and routines.		
Chapter 3	LAPACK Routines: Linear Equations. Provides descriptions of LAPACK routines for solving systems of linear equations and performing a number of related computational tasks: triangular factorization, matrix inversion, estimating the condition number of matrices.		
Chapter 4	LAPACK Routines: Least Squares and Eigenvalue Problems. Provides descriptions of LAPACK routines for solving least-squares problems, standard and generalized eigenvalue problems, singular value problems, and Sylvester's equations.		
Chapter 5	LAPACK Auxiliary and Utility Routines. Describes auxiliary and utility		
Chapter 6 6	LAPACK routines that perform certain subtasks or common low-level computation.		
Chapter 7 ScaLAPACK Routines. Describes ScaLAPACK computational and driver			
routines (software included with Intel Cluster MKL only).		\quad	ScaLAPACK Auxiliary and Utility Routines. Describes ScaLAPACK auxiliary
:---			
Scoutines (software included with Intel Cluster MKL only).			
Chapter 8 8	\quad	Sparse Solver Routines. Describes direct sparse solver routines that solve	
:---			
symmetric and symmetrically-structured sparse matrices.			

Chapter 11	Discrete Fourier Transform Functions. Describes multidimensional functions for computing the Discrete Fourier Transform.
Chapter 12	Fast Fourier Transforms. Provides descriptions of a simplified fast Fourier transform (FFT) routines.
Appendix A	Linear Solvers Basics. Briefly describes the basic definitions and approaches used in linear algebra for solving systems of linear equations.
Appendix B	Routine and Function Arguments. Describes the major arguments of the BLAS routines and VML functions: vector and matrix arguments. Code Examples. Provides code examples of calling various Intel MKL
Appendix C	functions and routines (BLAS, Sparse Solver, DFT).
Appendix D	CBLAS Interface to the BLAS. Provides the C interface to the BLAS.
The manual also includes a Bibliography, Glossary and an Index.	

Notational Conventions

This manual uses the following notational conventions:

- Routine name shorthand (?ungqr instead of cungqr/zungqr).
- Font conventions used for distinction between the text and the code.

Routine Name Shorthand

For shorthand, character codes are represented by a question mark "?" in names of routine groups. The question mark is used to indicate any or all possible varieties of a function; for example:

$$
\text { ?swap } \quad \text { Refers to all four data types of the vector-vector ?swap routine: sswap, }
$$ dswap, cswap, and zswap.

Font Conventions

The following font conventions are used:
UPPERCASE COURIER Data type used in the discussion of input and output parameters for Fortran interface. For example, CHARACTER*1.

lowercase courier	Code examples: $a(k+i, j)=$ matrix (i, j) and data types for C interface, for example, const float*
lowercase courier mixed	
with UpperCase courier	Function names for C interface, for example, vmlSetMode
lowercase courier italic	Variables in arguments and parameters discussion. For example, incx.
*	Used as a multiplication symbol in code examples and equations and where required by the Fortran syntax.

BLAS and Sparse BLAS Routines

This chapter contains descriptions of the BLAS and Sparse BLAS routines of the Intel ${ }^{\circledR}$ Math Kernel Library. The routine descriptions are arranged in four sections according to the BLAS level of operation:

- "BLAS Level 1 Routines and Functions" (vector-vector operations)
- BLAS Level 2 Routines (matrix-vector operations)
- BLAS Level 3 Routines (matrix-matrix operations)
- Sparse BLAS Routines and Functions.

Each section presents the routine and function group descriptions in alphabetical order by routine or function group name; for example, the ?asum group, the ?axpy group. The question mark in the group name corresponds to different character codes indicating the data type (s, d, c, and z or their combination); see Routine Naming Conventions on the next page.

When BLAS routines encounter an error, they call the error reporting routine xerbla. To be able to view error reports, you must include xerbla in your code. A copy of the source code for xerbla is included in the library.

In BLAS Level 1 groups i? amax and i?amin, an " i " is placed before the character code and corresponds to the index of an element in the vector. These groups are placed in the end of the BLAS Level 1 section.

Routine Naming Conventions

BLAS routine names have the following structure:

```
<character code> <name> <mod> ( )
```

The <character code> is a character that indicates the data type:
s real, single precision c complex, single precision
d real, double precision \quad z complex, double precision
Some routines and functions can have combined character codes, such as $s c$ or dz . For example, the function scasum uses a complex input array and returns a real value.

The <name > field, in BLAS level 1, indicates the operation type. For example, the BLAS level 1 routines ? dot, ? rot, ? swap compute a vector dot product, vector rotation, and vector swap, respectively.

In BLAS level 2 and 3, <name> reflects the matrix argument type:
ge general matrix
gb general band matrix
sy symmetric matrix
sp symmetric matrix (packed storage)
sb symmetric band matrix
he Hermitian matrix
hp Hermitian matrix (packed storage)
hb Hermitian band matrix
tr triangular matrix
tp triangular matrix (packed storage)
tb triangular band matrix.
The $<$ mod $>$ field, if present, provides additional details of the operation.
BLAS level 1 names can have the following characters in the <mod> field:
C conjugated vector
u unconjugated vector
g Givens rotation.
BLAS level 2 names can have the following characters in the <mod> field:
mv matrix-vector product
sv solving a system of linear equations with matrix-vector operations
r rank-1 update of a matrix
r2 rank-2 update of a matrix.

BLAS level 3 names can have the following characters in the $<$ mod> field:
mm matrix-matrix product
$\mathrm{sm} \quad$ solving a system of linear equations with matrix-matrix operations
rk rank- k update of a matrix
$r 2 \mathrm{k}$ rank- $2 k$ update of a matrix.
The examples below illustrate how to interpret BLAS routine names:
<d> <dot> ddot: double-precision real vector-vector dot product
<c> <dot> <c> cdotc: complex vector-vector dot product, conjugated
<sc> <asum> scasum: sum of magnitudes of vector elements, single precision real output and single precision complex input
<c> <dot> <u> cdotu: vector-vector dot product, unconjugated, complex
<s> <ge> <mv> sgemv: matrix-vector product, general matrix, single precision
<z> <tr> <mm> ztrmm: matrix-matrix product, triangular matrix, double-precision complex.
Sparse BLAS naming conventions are similar to those of BLAS level 1.
For more information, see "Naming Conventions in Sparse BLAS".

Matrix Storage Schemes

Matrix arguments of BLAS routines can use the following storage schemes:

- Full storage: a matrix A is stored in a two-dimensional array a, with the matrix element $a_{i j}$ stored in the array element $a(i, j)$.
- Packed storage scheme allows you to store symmetric, Hermitian, or triangular matrices more compactly: the upper or lower triangle of the matrix is packed by columns in a one-dimensional array.
- Band storage: a band matrix is stored compactly in a two-dimensional array: columns of the matrix are stored in the corresponding columns of the array, and diagonals of the matrix are stored in rows of the array.

For more information on matrix storage schemes, see "Matrix Arguments" in Appendix B.

BLAS Level 1 Routines and Functions

BLAS Level 1 includes routines and functions, which perform vector-vector operations. Table 2-1 lists the BLAS Level 1 routine and function groups and the data types associated with them.

Table 2-1 BLAS Level 1 Routine Groups and Their Data Types

Routine or Function Group	Data Types	Description
? asum	s, d, sc, dz	Sum of vector magnitudes (functions)
? axpy	s, d, c, z	Scalar-vector product (routines)
? copy	s, d, c, z	Copy vector (routines)
?dot	s, d	Dot product (functions)
?sdot	sd, d	Dot product with extended precision (functions)
? dotc	c, z	Dot product conjugated (functions)
? dotu	c, z	Dot product unconjugated (functions)
? nrm 2	s, d, sc, dz	Vector 2-norm (Euclidean norm) a normal or null vector (functions)
?rot	s, d, cs, zd	Plane rotation of points (routines)
?rotg	s, d, c, z	Givens rotation of points (routines)
?rotm	s, d	Modified plane rotation of points
?rotmg	s, d	Givens modified plane rotation of points
? scal	s, d, c, z, cs, zd	Vector scaling (routines)
? swap	s, d, c, z	Vector-vector swap (routines)
i? amax	s, d, c, z	Vector maximum value, absolute largest element of a vector where i is an index to this value in the vector array (functions)
i?amin	s, d, c, z	Vector minimum value, absolute smallest element of a vector where i is an index to this value in the vector array (functions)

?asum

Computes the sum of magnitudes of the vector elements.

Syntax

```
res = sasum ( n, x, incx )
res = scasum ( n, x, incx )
res = dasum ( n, x, incx )
res = dzasum ( n, x, incx )
```


Description

Given a vector x, ? asum functions compute the sum of the magnitudes of its elements or, for complex vectors, the sum of magnitudes of the elements' real parts plus magnitudes of their imaginary parts:

```
res \(=|\operatorname{Rex}(1)|+|\operatorname{Im} x(1)|+|\operatorname{Rex}(2)|+|\operatorname{Im} x(2)|+\ldots+|\operatorname{Rex}(n)|+|\operatorname{Imx}(n)|\)
```

where x is a vector of order n.

Input Parameters

```
n integer. Specifies the order of vector x.
x REAL for sasum
    DOUBLE PRECISION for dasum
    COMPLEX for scasum
    DOUBLE COMPLEX for dzasum
    Array, DIMENSION at least (1 + (n-1)*abs (incx)).
incx INTEGER. Specifies the increment for the elements of x.
```


Output Parameters

```
res
REAL for sasum
    DOUBLE PRECISION for dasum
    REAL for scasum
    DOUBLE PRECISION for dzasum
```

 Contains the sum of magnitudes of all elements' real parts plus magnitudes of
 their imaginary parts.

?axpy

Computes a vector-scalar product and adds the result to a vector.

Syntax

```
call saxpy ( n, a, x, incx, y, incy )
call daxpy ( n, a, x, incx, y, incy )
call caxpy ( n, a, x, incx, y, incy )
call zaxpy ( n, a, x, incx, y, incy )
```


Description

The ?axpy routines perform a vector-vector operation defined as

```
y := a*x + y
```

where:
a is a scalar
x and y are vectors of order n.

Input Parameters

 DOUBLE PRECISION for daxpy COMPLEX for caxpy DOUBLE COMPLEX for zaxpy Specifies the scalar a.x
REAL for saxpy DOUBLE PRECISION for daxpy COMPLEX for caxpy DOUBLE COMPLEX for zaxpy Array, DIMENSION at least (1 + (n-1)*abs (incx)).
incx INTEGER. Specifies the increment for the elements of x.

```
Y REAL for saxpy
    DOUBLE PRECISION for daxpy
    COMPLEX for caxpy
    DOUBLE COMPLEX for zaxpy
    Array, DIMENSION at least (1 + (n-1)*abs (incy)).
incy INTEGER. Specifies the increment for the elements of y.
```


Output Parameters

```
\(y \quad\) Contains the updated vector \(y\).
```


?copy

Copies vector to another vector.

Syntax

```
call scopy ( n, x, incx, y, incy )
call dcopy ( n, x, incx, y, incy )
call ccopy ( n, x, incx, y, incy )
call zcopy ( n, x, incx, y, incy )
```


Description

The ?copy routines perform a vector-vector operation defined as
$y=x$
where x and y are vectors.

Input Parameters

n
X

INTEGER. Specifies the order of vectors x and y.
REAL for scopy DOUBLE PRECISION for dcopy
COMPLEX for ccopy
DOUBLE COMPLEX for zcopy
Array, DIMENSION at least $(1+(n-1) * a b s(i n c x))$.

incx	Integer. Specifies the increment for the elements of x.
y	REAL for scopy
	DOUBLE PRECISION for dcopy
	COMPLEX for ccopy
	double complex for zcopy
	Array, DIMENSION at least ($1+(\mathrm{n}-1)$ *abs (incy)).
incy	INTEGER. Specifies the increment for the elements of y.
Outp	ters

Contains a copy of the vector x if n is positive. Otherwise, parameters are unaltered.

?dot

Computes a vector-vector dot product.

Syntax

res $=\operatorname{sdot}(n, x, i n c x, y$ incy $)$
res $=\operatorname{ddot}(n, x, i n c x, y, i n c y)$

Description

The ? dot functions perform a vector-vector reduction operation defined as
res $=\sum\left(x^{*} y\right)$,
where x and y are vectors.
Input Parameters
n
INTEGER. Specifies the order of vectors x and y.
REAL for sdot
DOUBLE PRECISION for ddot
Array, DIMENSION at least ($1+(n-1) * a b s(i n c x)$).
incx INTEGER. Specifies the increment for the elements of x.

```
y REAL for sdot
    DOUBLE PRECISION for ddot
    Array, DIMENSION at least (1+(n-1)*abs (incy)).
incy INTEGER. Specifies the increment for the elements of y.
```


Output Parameters

```
res REAL for sdot
```

res REAL for sdot
DOUBLE PRECISION for ddot
DOUBLE PRECISION for ddot
Contains the result of the dot product of }x\mathrm{ and }y\mathrm{ , if n is positive. Otherwise,
res contains 0.

```

\section*{?sdot}

Computes a vector-vector dot product with extended precision.

\section*{Syntax}
```

res = sdsdot (n, sb, sx, incx, sy, incy)
res = dsdot (n, sx, incx, sy, incy)

```

\section*{Description}

The ?sdot functions compute the inner product of two vectors with extended precision. Both functions use extended precision accumulation of the intermediate results, but the function sdsdot outputs the final result in single precision, whereas the function dsdot outputs the double precision result. The function sdsdot also adds scalar value sb to the inner product.

\section*{Input Parameters}
\begin{tabular}{ll}
\(n\) \\
\(s b\) & INTEGER. Specifies the number of elements in the input vectors \(s x\) and \(s y\). \\
REAL. Single precision scalar to be added to inner product (for the function \\
sdsdot only).
\end{tabular}
\begin{tabular}{ll} 
incx & \begin{tabular}{l} 
INTEGER. Specifies the increment for the elements \\
of \(s x\).
\end{tabular} \\
incy & \begin{tabular}{l} 
INTEGER. Specifies the increment for the elements \\
of \(s y\).
\end{tabular}
\end{tabular}

\section*{Output Parameters}
```

res REAL for sdsdot
DOUBLE PRECISION for dsdot
Contains the result of the dot product of sx and sy (with sb added for
sdsdot), if n is positive. Otherwise, res contains sb for sdsdot and 0 for
dsdot.

```

\section*{?dotc}

Computes a dot product of a conjugated vector with another vector.

\section*{Syntax}
```

res = cdotc (n, x, incx, y, incy)
res = zdotc (n, x, incx, y, incy)

```

\section*{Description}

The ? dotc functions perform a vector-vector operation defined as
```

res = \sum(conjg(x)*y),

```
where \(x\) and \(y\) are \(n\)-element vectors.

\section*{Input Parameters}
\(n \quad\) INTEGER. Specifies the order of vectors \(x\) and \(y\).
\(x \quad\) COMPLEX for cdotc
DOUBLE COMPLEX for zdotc
Array, DIMENSION at least \((1+(n-1) * a b s(i n c x))\).
incx INTEGER. Specifies the increment for the elements of \(x\).
```

Y COMPLEX for cdotc
DOUBLE COMPLEX for zdotc
Array, DIMENSION at least (1 + (n-1)*abs (incy)).
incy INTEGER. Specifies the increment for the elements of }y\mathrm{ .

```

\section*{Output Parameters}
```

res COMPLEX for cdotc

```
res COMPLEX for cdotc
    DOUBLE COMPLEX for zdotc
    DOUBLE COMPLEX for zdotc
    Contains the result of the dot product of the conjugated }x\mathrm{ and unconjugated }y\mathrm{ ,
    if }n\mathrm{ is positive. Otherwise, res contains 0.
```


?dotu

Computes a vector-vector dot product.

Syntax

```
res = cdotu ( n, x, incx, y, incy )
```

res $=$ zdotu (n, x, incx, y, incy)

Description

The ? dotu functions perform a vector-vector reduction operation defined as res $=\sum\left(x^{*} y\right)$, where x and y are n-element complex vectors.

Input Parameters

$n \quad$ integer. Specifies the order of vectors x and y.
$x \quad$ COMPLEX for cdotu
DOUBLE COMPLEX for zdotu
Array, DIMENSION at least ($1+(n-1) * a b s(i n c x))$.
incx Integer. Specifies the increment for the elements of x.
y COMPLEX for cdotu
double complex for zdotu

Array, DIMENSION at least ($1+(n-1) * a b s(i n c y))$.
incy INTEGER. Specifies the increment for the elements of y.

Output Parameters

res	COMPLEX for cdotu
	DOUBLE COMPLEX for $z d o t u$

Contains the result of the dot product of x and y, if n is positive. Otherwise, res contains 0 .

?nrm2

Computes the Euclidean norm of a vector.

Syntax

```
res = snrm2 ( n, x, incx )
res = dnrm2 ( n, x, incx )
res = scnrm2 ( n, x, incx )
res = dznrm2 ( n, x, incx )
```


Description

The ?nrm2 functions perform a vector reduction operation defined as res $=||x||$,
where:
x is a vector
res is a value containing the Euclidean norm of the elements of x.

Input Parameters

n	INTEGER. Specifies the order of vector x .
x	REAL for snrm2
	DOUBLE PRECISION for dnrm2
	COMPLEX for scnrm2
	DOUBLE COMPLEX for dznrm2
	Array, DIMENSION at least ($1+(n-1$) *abs (incx)) .
incx	integer. Specifies the increment for the elements of x.
Output Parameters	
res	REAL for snrm2
	DOUBLE PRECISION for dnrm2
	REAL for scnrm2
	DOUBLE PRECISION for dznrm2
	Contains the Euclidean norm of the vector x.

?rot

Performs rotation of points in the plane.

Syntax

```
call srot ( }n,x,incx, y, incy, c, s 
call drot ( }n,x,incx, y, incy, c, s 
call csrot ( n, x, incx, y, incy, c, s )
call zdrot ( n, x, incx, y, incy, c, s )
```


Description

Given two complex vectors x and y, each vector element of these vectors is replaced as follows:

```
x(i) = c*x(i) + s*Y(i)
y(i) = c*y(i) - s*x(i)
```


Input Parameters

$n \quad$ integer. Specifies the order of vectors x and y.
$x \quad$ REAL for srot DOUBLE PRECISION for drot
COMPLEX for csrot DOUBLE COMPLEX for zdrot Array, DIMENSION at least ($1+(n-1) *$ abs (incx)).
incx INTEGER. Specifies the increment for the elements of x.
$y \quad$ REAL for srot DOUBLE PRECISION for drot COMPLEX for csrot DOUBLE COMPLEX for zdrot Array, DIMENSION at least ($1+(n-1) *$ abs (incy)).
incy INTEGER. Specifies the increment for the elements of y.
c
REAL for srot DOUBLE PRECISION for drot REAL for csrot DOUBLE PRECISION for zdrot A scalar.
s
REAL for srot DOUBLE PRECISION for drot REAL for csrot DOUBLE PRECISION for zdrot A scalar.

Output Parameters

x	Each element is replaced by $c^{\star} x+s^{\star} y$.
y	Each element is replaced by $c^{\star} y-s^{\star} x$.

?rotg

Computes the parameters for a Givens rotation

Syntax

```
call srotg ( a, b, c, s )
call drotg ( a, b, c, s )
call crotg ( a, b, c, s )
call zrotg ( a, b, c, s )
```


Description

Given the cartesian coordinates (a, b) of a point p, these routines return the parameters a, b, c, and s associated with the Givens rotation that zeros the y-coordinate of the point.

Input Parameters

REAL for srotg DOUBLE PRECISION for drotg COMPLEX for crotg DOUBLE COMPLEX for zrotg Provides the x-coordinate of the point p.
b
REAL for srotg DOUBLE PRECISION for drotg COMPLEX for crotg DOUBLE COMPLEX for zrotg Provides the y-coordinate of the point p .

Output Parameters

a	
b	Contains the parameter r associated with the Givens rotation.
c	Contains the parameter z associated with the Givens rotation.
REAL for srotg	
DOUBLE PRECISION for drotg	
REAL for crotg	
DOUBLE PRECISION for zrotg	

Contains the parameter c associated with the Givens rotation.
s

```
REAL for srotg
DOUBLE PRECISION for drotg
COMPLEX for crotg
DOUBLE COMPLEX for zrotg
```

Contains the parameter s associated with the Givens rotation.

?rotm

Performs rotation of points in the modified plane.

Syntax

```
call srotm ( n, x, incx, y, incy, param )
```

call drotm (n, x incx, $y, i n c y, ~ p a r a m ~)$

Description

Given two complex vectors x and y, each vector element of these vectors is replaced as follows:
$x(i)=H^{*} X(i)+H^{*} y(i)$
$Y(i)=H^{*} Y(i)-H^{*} X(i)$
where:
H is a modified Givens transformation matrix whose values are stored in the param (2) through param (5) array. See discussion on the param argument.

Input Parameters

$n \quad$ INTEGER. Specifies the order of vectors x and y.
$x \quad$ REAL for srotm DOUBLE PRECISION for drotm Array, DIMENSION at least $(1+(n-1) * a b s(i n c x))$.
incx INTEGER. Specifies the increment for the elements of x.
$y \quad$ REAL for srotm DOUBLE PRECISION for drotm Array, DIMENSION at least $(1+(n-1) * a b s(i n c y))$.
incy INTEGER. Specifies the increment for the elements of y.
param
REAL for srotm
DOUBLE PRECISION for drotm
Array, DIMENSION 5.
The elements of the param array are:
param(1) contains a switch, flag.
param (2-5) contain h11, h21, h12, and h22, respectively, the components of the array H.

Depending on the values of $f l a g$, the components of H are set as follows:
flag $=-1 .: H=\left[\begin{array}{ll}h 11 & h 12 \\ \text { h21 } & \text { h22 }\end{array}\right]$
flag $=0 .: H=\left[\begin{array}{cc}1 . & h 12 \\ h 21 & 1 .\end{array}\right]$
flag $=1 .: H=\left[\begin{array}{cc}h 11 & 1 . \\ -1 . & h 22\end{array}\right]$
flag $=-2 .: H=\left[\begin{array}{ll}1 & 0 \\ 0 . & 1 .\end{array}\right]$

In the above cases, the matrix entries of $1 .,-1$. , and 0 . are assumed based on the last three values of $f l \mathrm{ag}$ and are not actually loaded into the param vector.

Output Parameters

x	Each element is replaced by h11*x+h12*y.
y	Each element is replaced by h21*x+h22*y.
H	Givens transformation matrix updated.

?rotmg

Computes the modified parameters for a Givens
rotation.

Syntax

```
call srotmg ( d1, d2, x1, y1, param )
call drotmg ( d1, d2, x1, y1, param )
```


Description

Given cartesian coordinates $(x 1, y 1)$ of an input vector, these routines compute the components of a modified Givens transformation matrix H that zeros the y-component of the resulting vector:
$\left[\begin{array}{l}x \\ 0\end{array}\right]=H\left[\begin{array}{l}x 1 \\ y 1\end{array}\right]$

Input Parameters

REAL for srotmg DOUBLE PRECISION for drotmg Provides the scaling factor for the x-coordinate of the input vector (sqrt (dI) xl).

REAL for srotmg DOUBLE PRECISION for drotmg Provides the scaling factor for the y-coordinate of the input vector (sqrt (d2) y1).

REAL for srotmg
DOUBLE PRECISION for drotmg
Provides the x-coordinate of the input vector.
REAL for srotmg
DOUBLE PRECISION for drotmg
Provides the y-coordinate of the input vector.

Output Parameters

param
REAL for srotmg
DOUBLE PRECISION for drotmg
Array, DIMENSION 5.
The elementsof the param array are:
param (1) contains a switch, flag.
param (2-5) contain h11, h21, h12, and h22, respectively, the components of the array H.

Depending on the values of $f 1$ ag, the components of H are set as follows:
flag $=-1 .: H=\left[\begin{array}{lll}\text { h11 } & \text { h12 } \\ \text { h21 } & \text { h22 }\end{array}\right]$
flag $=0 .: H=\left[\begin{array}{cc}1 . & h 12 \\ \text { h21 } & 1 .\end{array}\right]$
flag $=1 .: H=\left[\begin{array}{cc}h 11 & 1 . \\ -1 . & h 22\end{array}\right]$
flag $=-2 .: H=\left[\begin{array}{ll}1 & 0 . \\ 0 . & 1\end{array}\right]$
In the above cases, the matrix entries of $1 .,-1$., and 0 . are assumed based on the last three values of $f l a g$ and are not actually loaded into the param vector.

?scal

Computes a vector by a scalar product.

Syntax

```
call sscal ( n, a, x, incx )
call dscal ( n, a, x, incx )
call cscal ( n, a, x, incx )
call zscal ( n, a, x, incx )
call csscal ( n, a, x, incx )
```

```
call zdscal ( n, a, x, incx )
```


Description

The ?scal routines perform a vector-vector operation defined as $x=a * x$
where:
a is a scalar, x is an n-element vector.

Input Parameters

n INTEGER. Specifies the order of vector x.
a
REAL for sscal and csscal DOUBLE PRECISION for dscal and zdscal COMPLEX for cscal DOUBLE COMPLEX for zscal Specifies the scalar a.
x
REAL for sscal DOUBLE PRECISION for dscal COMPLEX for cscal and csscal DOUBLE COMPLEX for zscal and csscal Array, DIMENSION at least ($1+(n-1) * a b s(i n c x))$. incx INTEGER. Specifies the increment for the elements of x.

Output Parameters

Overwritten by the updated vector x .

?swap

Swaps a vector with another vector.

Syntax

```
call sswap ( n, x, incx, y, incy )
call dswap ( n, x, incx, y, incy )
```

```
call cswap ( n, x, incx, y, incy )
call zswap ( n, x, incx, y, incy )
```


Description

Given the two complex vectors x and y, the ? swap routines return vectors y and x swapped, each replacing the other.

Input Parameters

$n \quad$ integer. Specifies the order of vectors x and y
x REAL for sswap
DOUBLE PRECISION for dswap
COMPLEX for cswap
double complex for zswap
Array, DIMENSION at least ($1+(n-1) * a b s(i n c x))$.
incx INTEGER. Specifies the increment for the elements of x .
$y \quad$ REAL for sswap
DOUBLE PRECISION for dswap
COMPLEX for cswap
DOUBLE COMPLEX for zswap
Array, DIMENSION at least ($1+(n-1) * a b s(i n c y)$).
incy Integer. Specifies the increment for the elements of y.

Output Parameters

x	Contains the resultant vector x.
y	Contains the resultant vector y.

i?amax

Finds the element of a vector that has the largest
absolute value.

Syntax

```
index = isamax ( n, x, incx )
```

```
index = idamax ( n, x, incx )
index = icamax ( n, x, incx )
index = izamax ( n, x, incx )
```


Description

Given a vector x, the i ? amax functions return the position of the vector element $x(i)$ that has the largest absolute value or, for complex flavors, the position of the element with the largest sum $|\operatorname{Rex}(i)|+|\operatorname{Im} x(i)|$.

If n is not positive, 0 is returned.
If more than one vector element is found with the same largest absolute value, the index of the first one encountered is returned.

Input Parameters
$n \quad$ INTEGER. Specifies the order of the vector x.
$x \quad$ REAL for isamax
DOUBLE PRECISION for idamax
COMPLEX for icamax
DOUBLE COMPLEX for izamax
Array, DIMENSION at least ($1+(n-1) * a b s(i n c x))$.
incx INTEGER. Specifies the increment for the elements of x.

Output Parameters

index INTEGER. Contains the position of vector element x that has the largest absolute value.

i?amin

Finds the element of a vector that has the smallest absolute value.

```
Syntax
index = isamin ( n, x, incx )
index = idamin ( n, x, incx )
```

```
index = icamin ( n, x, incx )
index = izamin ( n, x, incx )
```


Description

Given a vector x, the i?amin functions return the position of the vector element $x(i)$ that has the smallest absolute value or, for complex flavors, the position of the element with the smallest sum $|\operatorname{Rex}(i)|+|\operatorname{Im} x(i)|$.

If n is not positive, 0 is returned.
If more than one vector element is found with the same smallest absolute value, the index of the first one encountered is returned.

Input Parameters
$n \quad$ Integer. On entry, n specifies the order of the vector x.
$x \quad$ REAL for isamin
DOUBLE PRECISION for idamin
COMPLEX for icamin
DOUBLE COMPLEX for izamin
Array, DIMENSION at least ($1+(n-1) * a b s(i n c x)$).
incx Integer. Specifies the increment for the elements of x.

Output Parameters

index INTEGER. Contains the position of vector element x that has the smallest absolute value.

BLAS Level 2 Routines

This section describes BLAS Level 2 routines, which perform matrix-vector operations. Table 2-2 lists the BLAS Level 2 routine groups and the data types associated with them.

Table 2-2 BLAS Level 2 Routine Groups and Their Data Types

Routine Groups	Data Types	Description
? g bmv	s, d, c, z	Matrix-vector product using a general band matrix
? gemv	s, d, c, z	Matrix-vector product using a general matrix
? ger	s, d	Rank-1 update of a general matrix
? gerc	c, z	Rank-1 update of a conjugated general matrix
? geru	c, z	Rank-1 update of a general matrix, unconjugated
? hbmv	c, z	Matrix-vector product using a Hermitian band matrix
? hemv	c, z	Matrix-vector product using a Hermitian matrix
?her	c, z	Rank-1 update of a Hermitian matrix
?her2	c, z	Rank-2 update of a Hermitian matrix
? hpmv	c, z	Matrix-vector product using a Hermitian packed matrix
?hpr	c, z	Rank-1 update of a Hermitian packed matrix
?hpr2	c, z	Rank-2 update of a Hermitian packed matrix
? sbmv	s, d	Matrix-vector product using symmetric band matrix
? spmv	s, d	Matrix-vector product using a symmetric packed matrix
? spr	s, d	Rank-1 update of a symmetric packed matrix
? spr2	s, d	Rank-2 update of a symmetric packed matrix
? symv	s, d	Matrix-vector product using a symmetric matrix
? syr	s, d	Rank-1 update of a symmetric matrix
?syr2	s, d	Rank-2 update of a symmetric matrix
?tbmv	s, d, c, z	Matrix-vector product using a triangular band matrix
?tbsv	s, d, c, z	Linear solution of a triangular band matrix

Table 2-2 BLAS Level 2 Routine Groups and Their Data Types (continued)

Routine Groups	Data Types	Description
$\underline{\text { ? tpmv }}$	$\mathrm{s}, \mathrm{d}, \mathrm{c}, \mathrm{z}$	Matrix-vector product using a triangular packed matrix
$\underline{\text { ?tpsv }}$	$\mathrm{s}, \mathrm{d}, \mathrm{c}, \mathrm{z}$	Linear solution of a triangular packed matrix
$\underline{\text { ?trmv }}$	$\mathrm{s}, \mathrm{d}, \mathrm{c}, \mathrm{z}$	Matrix-vector product using a triangular matrix
$\underline{\text { ?trsv }}$	$\mathrm{s}, \mathrm{d}, \mathrm{c}, \mathrm{z}$	Linear solution of a triangular matrix

?gbmv

Computes a matrix-vector product using a general band matrix

Syntax

```
call sgbmv ( trans, m, n, kl, ku, alpha, a, lda, x, inxc, beta, y, incy )
call dgbmv ( trans, m, n, kl, ku, alpha, a, lda, x, incx, beta, y, incy )
call cgbmv ( trans, m, n, kl, ku, alpha, a, lda, x, incx, beta, y, incy )
call zgbmv ( trans, m, n, kl, ku, alpha, a, lda, x, incx, beta, y, incy )
```


Description

The ?gbmv routines perform a matrix-vector operation defined as

```
y := alpha*a*X + beta*Y
```

or
y := alpha*a'*x + beta*y,
or
y := alpha*Conjg(a')*x + beta*y,
where:
alpha and beta are scalars
x and y are vectors
a is an m by n band matrix, with $k I$ sub-diagonals and $k u$ super-diagonals.

Input Parameters

trans	CHARACTER*1. Specifies the operation to be performed, as follows:	
	trans value	Operation to be Performed
	N or n	$y:=~ a l p h a * a * x+$ beta* Y
	T or t	$y:=~ a l p h a * a ' * x+b e t a * y$
	C or c	$y:=~ a l p h a * c o n j g(a ') * x+b e t a * y$

m
n
$k 1$ INTEGER. Specifies the number of sub-diagonals of the matrix a. The value of $k l$ must satisfy $0 \leq k l$.

INTEGER. Specifies the number of super-diagonals of the matrix a. The value of $k u$ must satisfy $0 \leq k u$.
a
INTEGER. Specifies the number of rows of the matrix a. The value of m must be at least zero.

INTEGER. Specifies the number of columns of the matrix a. The value of n must be at least zero.

REAL for sgbmv
DOUBLE PRECISION for dgbmv
COMPLEX for cgbmv
DOUBLE COMPLEX for $z g b m v$
Specifies the scalar alpha.
REAL for sgbmv

DOUBLE PRECISION for dgbmv
COMPLEX for cgbmv
DOUBLE COMPLEX for $z g b m v$
Array, DIMENSION (lda, n). Before entry, the leading $(k I+k u+1)$ by n part of the array a must contain the matrix of coefficients. This matrix must be supplied column-by-column, with the leading diagonal of the matrix in row $(k u+1)$ of the array, the first super-diagonal starting at position 2 in row $k u$, the first sub-diagonal starting at position 1 in row $(k u+2)$, and so on. Elements in the array a that do not correspond to elements in the band matrix (such as the top left ku by ku triangle) are not referenced.

The following program segment transfers a band matrix from conventional full matrix storage to band storage:

```
do 20, j = 1, n
    k = ku + 1 - j
        do 10, i = max(1, j-ku), min(m, j+kl)
        a(k+i, j) = matrix(i,j)
    10 continue
20 continue
```

```
INTEGER. Specifies the first dimension of a as declared in the calling (sub)program. The value of \(l\) da must be at least \((k l+k u+1)\).
REAL for sgbmv
DOUBLE PRECISION for dgbmv
COMPLEX for cgbmv
DOUBLE COMPLEX for \(z g b m v\)
Array, DIMENSION at least \((1+(n-1) * a b s(i n c x))\) when trans \(={ }^{\prime} N^{\prime}\) or ' \(n\) ' and at least ( \(1+(m-1) * a b s(i n c x))\) otherwise. Before entry, the incremented array \(x\) must contain the vector \(x\).
INTEGER. Specifies the increment for the elements of \(x\). incx must not be zero.
REAL for sgbmv
DOUBLE PRECISION for dgbmv
COMPLEX for cgbmv
DOUBLE COMPLEX for \(z g b m v\)
Specifies the scalar beta. When beta is supplied as zero, then \(y\) need not be set on input.
REAL for sgbmv
DOUBLE PRECISION for dgbmv
COMPLEX for cgbmv
DOUBLE COMPLEX for \(z g b m v\)
Array, DIMENSION at least \((1+(m-1) * a b s(i n c y))\) when trans \(={ }^{\prime} N\) ' or ' n ' and at least
\((1+(n-1) * a b s(i n c y))\) otherwise. Before entry, the incremented array \(y\) must contain the vector \(y\).
INTEGER. Specifies the increment for the elements of \(y\). The value of incy must not be zero.
```


Output Parameters

Overwritten by the updated vector y.

?gemv

Computes a matrix-vector product
using a general matrix

Syntax

```
call sgemv ( trans, m, n, alpha, a, lda, x, incx, beta, y, incy )
call dgemv ( trans, m, n, alpha, a, lda, x, incx, beta, y, incy )
call cgemv ( trans, m, n, alpha, a, lda, x, incx, beta, y, incy )
call zgemv ( trans, m, n, alpha, a, lda, x, incx, beta, y, incy )
```


Description

The ?gemv routines perform a matrix-vector operation defined as

```
y := alpha*a*x + beta*y,
```

or

```
y := alpha*a'*x + beta*y,
```

or
y := alpha*conjg(a')*x + beta*y,
where:
alpha and beta are scalars
x and y are vectors
a is an m by n matrix.

Input Parameters

trans CHARACTER*1. Specifies the operation to be performed, as follows:

trans value	Operation to be Performed
N or n	$Y:=$ alpha*a*X + beta* y
T or t	$Y:=$ alpha*a'* $X+$ beta* Y
C or c	$Y:=$ alpha*Conjg $\left(a^{\prime}\right) *_{X}+$ beta* Y

INTEGER. Specifies the number of rows of the matrix a. m must be at least zero.

INTEGER. Specifies the number of columns of the matrix a. The value of n must be at least zero.

REAL for sgemv
DOUBLE PRECISION for dgemv
COMPLEX for cgemv
DOUBLE COMPLEX for $z g e m v$
Specifies the scalar alpha.
REAL for sgemv
DOUBLE PRECISION for dgemv
COMPLEX for cgemv
DOUBLE COMPLEX for zgemv
Array, DIMENSION ($1 d a, n$). Before entry, the leading m by n part of the array a must contain the matrix of coefficients.

INTEGER. Specifies the first dimension of a as declared in the calling (sub)program. The value of 1 da must be at least max $(1, m)$.

REAL for sgemv DOUBLE PRECISION for dgemv
COMPLEX for cgemv
DOUBLE COMPLEX for zgemv
Array, DIMENSION at least $(1+(n-1) * a b s(i n c x))$ when trans $=' N$ ' or ' n ' and at least $(1+(m-1) * a b s(i n c x))$ otherwise. Before entry, the incremented array x must contain the vector x.

INTEGER. Specifies the increment for the elements of x. The value of incx must not be zero.

REAL for sgemv
DOUBLE PRECISION for dgemv
COMPLEX for cgemv DOUBLE COMPLEX for $z g e m v$

Specifies the scalar beta. When beta is supplied as zero, then y need not be set on input.

```
y REAL for sgemv
    DOUBLE PRECISION for dgemv
    COMPLEX for cgemv
    DOUBLE COMPLEX for zgemv
    Array, DIMENSION at least (1 + (m-1)*abs (incy)) when trans = 'N' or
    'n' and at least (1+(n-1)*abs (incy)) otherwise. Before entry with
    beta non-zero, the incremented array y must contain the vector y.
incy INTEGER. Specifies the increment for the elements of y. The value of incy
    must not be zero.
```


Output Parameters

```
\(y \quad\) Overwritten by the updated vector \(y\).
```


?ger

Performs a rank-1 update of a general matrix.

Syntax

```
call sger ( m, n, alpha, x, incx, y, incy, a, lda )
call dger ( m, n, alpha, x, incx, y, incy, a, lda )
```


Description

The ?ger routines perform a matrix-vector operation defined as

```
a := alpha*\mp@subsup{x}{}{*}\mp@subsup{y}{}{\prime} + a,
```

where:
alpha is a scalar
x is an m-element vector
y is an n-element vector
a is an m by n matrix.

Input Parameters

incx INTEGER. Specifies the increment for the elements of x. The value of incx
$y \quad$ REAL for sger
m
n
alpha
x
a

Ida

INTEGER. Specifies the number of rows of the matrix a. The value of m must be at least zero.

INTEGER. Specifies the number of columns of the matrix a. The value of n must be at least zero. DOUBLE PRECISION for dger

Array, DIMENSION at least $(1+(m-1) * a b s(i n c x))$. Before entry, the incremented array x must contain the m-element vector x. must not be zero. DOUBLE PRECISION for dger
Array, DIMENSION at least $(1+(n-1) * a b s(i n c y))$. Before entry, the incremented array y must contain the n-element vector y.
INTEGER. Specifies the increment for the elements of y. The value of incy must not be zero.

REAL for sger
DOUBLE PRECISION for dger
Array, DIMENSION (Ida, n). Before entry, the leading m by n part of the array a must contain the matrix of coefficients.
da INTEGER. Specifies the first dimension of a as declared in the calling (sub)program. The value of 1 da must be at least max $(1, m)$.

Output Parameters

a Overwritten by the updated matrix.

?gerc

Performs a rank-1 update (conjugated) of a general matrix.

Syntax

```
call cgerc ( m, n, alpha, x, incx, y, incy, a, lda )
call zgerc ( m, n, alpha, x, incx, y, incy, a, lda )
```


Description

The ?gerc routines perform a matrix-vector operation defined as

```
a := alpha* **conjg(y') + a,
```

where:
alpha is a scalar
x is an m-element vector
y is an n-element vector
a is an m by n matrix.

Input Parameters

m
n
alpha SINGLE PRECISION COMPLEX for cgerc DOUBLE PRECISION COMPLEX for zgerc

Specifies the scalar alpha.
SINGLE PRECISION COMPLEX for cgerc DOUBLE PRECISION COMPLEX for zgerc

Array, DIMENSION at least $(1+(m-1) * a b s(i n c x))$. Before entry, the incremented array x must contain the m-element vector x.

incx	integer. Specifies the increment for the elements of x. The value of incx must not be zero.
Y	COMPLEX for cgerc
	DOUBLE COMPLEX for zgerc
	Array, DIMENSION at least $(1+(n-1) * a b s(i n c y))$. Before entry, the incremented array y must contain the n-element vector y.
incy	integer. Specifies the increment for the elements of y. The value of incy must not be zero.
a	COMPLEX for cgerc
	DOUBLE COMPLEX for zgerc
	Array, DIMENSION (lda, n). Before entry, the leading m by n part of the array a must contain the matrix of coefficients.
Ida	INTEGER. Specifies the first dimension of a as declared in the calling (sub)program. The value of 1 da must be at least max $(1, m)$.
Output Parameters	
a	Overwritten by the updated matrix.

?geru

Performs a rank-1 update (unconjugated) of a general matrix.

Syntax

```
call cgeru ( m, n, alpha, x, incx, y, incy, a, lda )
call zgeru ( m, n, alpha, x, incx, y, incy, a, lda )
```


Description

The ?geru routines perform a matrix-vector operation defined as
$a:=a l p h a * x^{*} y^{\prime}+a$,
where:
alpha is a scalar

```
x}\mathrm{ is an m-element vector
y}\mathrm{ is an n-element vector
a is an mby n matrix.
Input Parameters
m INTEGER. Specifies the number of rows of the matrix a. The value of m must be at least zero.
INTEGER. Specifies the number of columns of the matrix \(a\). The value of \(n\) must be at least zero
alpha COMPLEX for cgeru DOUBLE COMPLEX for zgeru
Specifies the scalar alpha.
COMPLEX for cgeru
DOUBLE COMPLEX for zgeru
Array, DIMENSION at least \((1+(m-1) * a b s(i n c x))\). Before entry, the incremented array \(x\) must contain the \(m\)-element vector \(x\).
incx Integer. Specifies the increment for the elements of \(x\). The value of incx must not be zero.
y COMPLEX for cgeru
DOUBLE COMPLEX for zgeru
Array, DIMENSION at least \((1+(n-1) * a b s(i n c y))\). Before entry, the incremented array \(y\) must contain the \(n\)-element vector \(y\).
incy INTEGER. Specifies the increment for the elements of \(y\). The value of incy must not be zero.
a
COMPLEX for cgeru
DOUBLE COMPLEX for zgeru
Array, DIMENSION (lda, n). Before entry, the leading \(m\) by \(n\) part of the array a must contain the matrix of coefficients.
lda
INTEGER. Specifies the first dimension of \(a\) as declared in the calling (sub)program. The value of \(1 d a\) must be at least \(\max (1, m)\).
```


Output Parameters

a Overwritten by the updated matrix.

?hbmv

Computes a matrix-vector product using a Hermitian band matrix.

Syntax

```
call chbmv ( uplo, n, k, alpha, a, lda, x, incx, beta, y, incy )
call zhbmv ( uplo, n, k, alpha, a, lda, x, incx, beta, y, incy )
```


Description

The ?hbmv routines perform a matrix-vector operation defined as
$y:=a l p h a * a * x+$ beta* y,
where:
alpha and beta are scalars
x and y are n-element vectors
a is an n by n Hermitian band matrix, with k super-diagonals.

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower triangular part of the band matrix a is being supplied, as follows:

uplo value	Part of Matrix a Supplied
U or u	The upper triangular part of matrix a is being supplied.
L or 1	The lower triangular part of matrix a is being supplied.

n
INTEGER. Specifies the order of the matrix a. The value of n must be at least zero.
k INTEGER. Specifies the number of super-diagonals of the matrix a. The value of k must satisfy $0 \leq k$.
alpha COMPLEX for chbmv DOUBLE COMPLEX for zhbmv

Specifies the scalar alpha.
COMPLEX for chbmv
DOUBLE COMPLEX for zhbmv
Array, DIMENSION (lda, n). Before entry with uplo = 'U' or ' u ', the leading $(k+1)$ by n part of the array a must contain the upper triangular band part of the Hermitian matrix. The matrix must be supplied column-by-column, with the leading diagonal of the matrix in row (k +1) of the array, the first super-diagonal starting at position 2 in row k, and so on. The top left k by k triangle of the array a is not referenced.

The following program segment transfers the upper triangular part of a Hermitian band matrix from conventional full matrix storage to band storage:

```
do 20, j = 1, n
    m = k + 1 - j
do 10, i = max(1, j - k), j
    a(m + i, j) = matrix(i, j)
    10 continue
20 continue
```

Before entry with uplo='L' or ' 1 ', the leading $(k+1)$ by n part of the array a must contain the lower triangular band part of the Hermitian matrix, supplied column-by-column, with the leading diagonal of the matrix in row 1 of the array, the first sub-diagonal starting at position 1 in row 2 , and so on. The bottom right k by k triangle of the array a is not referenced.

The following program segment transfers the lower triangular part of a Hermitian band matrix from conventional full matrix storage to band storage:

```
do 20, j = 1, n
    \(m=1-j\)
    do 10, \(i=j, \min (n, j+k)\)
        a( m + i, j ) = matrix( i, j )
    10 continue
20 continue
```

The imaginary parts of the diagonal elements need not be set and are assumed to be zero.

incx	INTEGER. Specifies the increment for the elements of x. The value of incx must not be zero. beta COMPLEX for chbmv DOUBLE COMPLEX for zhbmv Specifies the scalar beta.
y	COMPLEX for chbmv DOUBLE COMPLEX for zhbmv Array, DIMENSION at least $(1+(n-1) * a b s ~($ incy $)) . ~ B e f o r e ~ e n t r y, ~ t h e ~$ incremented array y must contain the vector y.
incy \quadInTEGER. Specifies the increment for the elements of y. The value of incy must not be zero.	
Output Parameters	
y	Overwritten by the updated vector y.

?hemv

Computes a matrix-vector product
using a Hermitian matrix.

Syntax

```
call chemv ( uplo, n, alpha, a, lda, x, incx, beta, y, incy )
call zhemv ( uplo, n, alpha, a, lda, x, incx, beta, y, incy )
```


Description

The ?hemv routines perform a matrix-vector operation defined as
y := alpha*a*x + beta*y,
where:
alpha and beta are scalars
x and y are n-element vectors
a is an n by n Hermitian matrix.

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower triangular part of the array a is to be referenced, as follows:

uplo value	Part of Array a To Be Referenced		
U or u	The upper triangular part of array a is to be		
Leferenced.		\quad	The lower triangular part of array a is to be
:---			
referenced.			

n

X

INTEGER. Specifies the order of the matrix a. The value of n must be at least zero.

COMPLEX for chemv DOUBLE COMPLEX for zhemv

Specifies the scalar alpha.
COMPLEX for chemv DOUBLE COMPLEX for zhemv

Array, DIMENSION (Ida, n). Before entry with uplo = 'U' or 'u', the leading n by n upper triangular part of the array a must contain the upper triangular part of the Hermitian matrix and the strictly lower triangular part of a is not referenced. Before entry with uplo = 'L' or 'l', the leading n by n lower triangular part of the array a must contain the lower triangular part of the Hermitian matrix and the strictly upper triangular part of a is not referenced.

The imaginary parts of the diagonal elements need not be set and are assumed to be zero.

INTEGER. Specifies the first dimension of a as declared in the calling (sub)program. The value of Ida must be at least max $(1, n)$.

COMPLEX for chemv
DOUBLE COMPLEX for zhemv
Array, DIMENSION at least $(1+(n-1) * a b s(i n c x))$. Before entry, the incremented array x must contain the n-element vector x .
\(\left.\begin{array}{ll}incx \& INTEGER. Specifies the increment for the elements of x . The value of incx

must not be zero.

beta \& COMPLEX for chemv

DOUBLE COMPLEX for zhemv

Specifies the scalar beta. When beta is supplied as zero then y need not be

set on input.

COMPLEX for chemv

DOUBLE COMPLEX for zhemv\end{array}\right]\)| Array, DIMENSION at least $(1+(n-1) *$ abs (incy)). Before entry, the |
| :--- |
| incremented array y must contain the n-element vector y. |

?her

Performs a rank-1 update of a Hermitian matrix.

Syntax

```
call cher ( uplo, n, alpha, x, incx, a, lda )
call zher ( uplo, n, alpha, x, incx, a, lda )
```


Description

The ?her routines perform a matrix-vector operation defined as

```
a := alpha* X*conjg(x') + a,
```

where:
alpha is a real scalar
x is an n-element vector
a is an n by n Hermitian matrix.

Input Parameters

uplo	CHARACTER*1. Specifies whether the upper or lower triangular part of the array a is to be referenced, as follows:
	uplo value Part of Array a To Be Referenced
	U or $u \quad \begin{aligned} & \text { The upper triangular part of array } a \text { is to be } \\ & \text { referenced. }\end{aligned}$
	L or 1 The lower triangular part of array a is to be referenced.
n	INTEGER. Specifies the order of the matrix a. The value of n must be at least zero.
alpha	REAL for cher DOUBLE PRECISION for zher
	Specifies the scalar alpha.
x	COMPLEX for cher DOUBLE COMPLEX for zher
	Array, dimension at least $(1+(n-1) * a b s(i n c x))$. Before entry, the incremented array x must contain the n-element vector x.
incx	INTEGER. Specifies the increment for the elements of x. The value of incx must not be zero.
a	COMPLEX for cher DOUBLE COMPLEX for zher
	Array, DIMENSION (Ida, n). Before entry with uplo = 'U' or ' u ', the leading n by n upper triangular part of the array a must contain the upper triangular part of the Hermitian matrix and the strictly lower triangular part of a is not referenced.
	Before entry with uplo = ' L ' or ' 1 ', the leading n by n lower triangular part of the array a must contain the lower triangular part of the Hermitian matrix and the strictly upper triangular part of a is not referenced.
	The imaginary parts of the diagonal elements need not be set and are assumed to be zero.
$1 d a$	INTEGER. Specifies the first dimension of a as declared in the calling (sub)program. The value of 1 da must be at least $\max (1, n)$.

Output Parameters

a
With uplo='U' or 'u', the upper triangular part of the array a is overwritten by the upper triangular part of the updated matrix.

With uplo = 'L' or ' 1 ', the lower triangular part of the array a is overwritten by the lower triangular part of the updated matrix.

The imaginary parts of the diagonal elements are set to zero.

?her2

Performs a rank-2 update of a Hermitian matrix.

Syntax

```
call cher2 ( uplo, n, alpha, x, incx, y, incy, a, lda )
call zher2 ( uplo, n, alpha, x, incx, y, incy, a, lda )
```


Description

The ?her2 routines perform a matrix-vector operation defined as

```
a := alpha*x*conjg(y') + conjg(alpha)*y*conjg(x') + a,
```

where:
alpha is a scalar
x and y are n-element vectors
a is an n by n Hermitian matrix.

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower triangular part of the array a is to be referenced, as follows:

uplo value	Part of Array a To Be Referenced
U or u	The upper triangular part of array a is to be referenced.
L or l	The lower triangular part of array a is to be referenced.

n	INTEGER. Specifies the order of the matrix a. The value of n must be at least zero.
alpha	COMPLEX for cher2
	DOUBLE COMPLEX for zher2
	Specifies the scalar alpha.
x	COMPLEX for cher2
	DOUBLE COMPLEX for zher2
	Array, DIMENSION at least $(1+(n-1) * a b s(i n c x))$. Before entry, the incremented array x must contain the n-element vector x.
incx	integer. Specifies the increment for the elements of x. The value of incx must not be zero.
Y	COMPLEX for cher2
	DOUBLE COMPLEX for zher2
	Array, DIMENSION at least $(1+(n-1) * a b s(i n c y))$. Before entry, the incremented array y must contain the n-element vector y.
incy	INTEGER. Specifies the increment for the elements of y. The value of incy must not be zero.
a	COMPLEX for cher2
	DOUBLE COMPLEX for zher2
	Array, DIMENSION (lda, n). Before entry with uplo = 'U' or 'u', the leading n by n upper triangular part of the array a must contain the upper triangular part of the Hermitian matrix and the strictly lower triangular part of a is not referenced.
	Before entry with uplo $=$ 'L' or 'l', the leading n by n lower triangular part of the array a must contain the lower triangular part of the Hermitian matrix and the strictly upper triangular part of a is not referenced.
	The imaginary parts of the diagonal elements need not be set and are assumed to be zero.
Ida	INTEGER. Specifies the first dimension of a as declared in the calling (sub)program. The value of 1 da must be at least $\max (1, n)$.

Output Parameters

With uplo = 'U' or 'u', the upper triangular part of the array a is overwritten by the upper triangular part of the updated matrix.

With uplo = 'L' or ' 1 ', the lower triangular part of the array a is overwritten by the lower triangular part of the updated matrix.

The imaginary parts of the diagonal elements are set to zero.

?hpmv

Computes a matrix-vector product using a Hermitian packed matrix.

Syntax

```
call chpmv ( uplo, n, alpha, ap, x, incx, beta, y, incy )
```

call zhpmv (uplo, $n, ~ a l p h a, ~ a p, ~ x, ~ i n c x, ~ b e t a, ~ y, ~ i n c y ~) ~$

Description

The ?hpmv routines perform a matrix-vector operation defined as
y := alpha*a*x + beta* y,
where:
alpha and beta are scalars
x and y are n-element vectors
a is an n by n Hermitian matrix, supplied in packed form.

Input Parameters

uplo
CHARACTER*1. Specifies whether the upper or lower triangular part of the matrix a is supplied in the packed array $a p$, as follows:

uplo value	Part of Matrix a Supplied
U or u	The upper triangular part of matrix a is supplied in
L or 1	The lower triangular part of matrix a is supplied in
	ap.

INTEGER. Specifies the order of the matrix a. The value of n must be at least zero.

```
alpha COMPLEX for chpmv
    DOUBLE COMPLEX for zhpmv
    Specifies the scalar alpha.
COMPLEX for chpmv
DOUBLE COMPLEX for zhpmv
Array, DIMENSION at least \(\left(\left(n^{*}(n+1)\right) / 2\right)\). Before entry with uplo = 'U' or 'u', the array ap must contain the upper triangular part of the Hermitian matrix packed sequentially, column-by-column, so that \(a p(1)\) contains \(a(1\), 1), \(a p(2)\) and \(a p(3)\) contain \(a(1,2)\) and \(a(2,2)\) respectively, and so on. Before entry with uplo = 'L' or 'l', the array ap must contain the lower triangular part of the Hermitian matrix packed sequentially, column-by-column, so that \(a p(1)\) contains \(a(1,1), a p(2)\) and \(a p(3)\) contain \(a(2,1)\) and \(a(3,1)\) respectively, and so on.
The imaginary parts of the diagonal elements need not be set and are assumed to be zero.
COMPLEX for chpmv DOUBLE PRECISION COMPLEX for zhpmv
Array, DIMENSION at least ( \(1+(n-1) * a b s(i n c x))\). Before entry, the incremented array \(x\) must contain the \(n\)-element vector \(x\).
incx INTEGER. Specifies the increment for the elements of \(x\). The value of incx must not be zero.
beta COMPLEX for chpmv DOUBLE COMPLEX for zhpmv
Specifies the scalar beta. When beta is supplied as zero then \(y\) need not be set on input.
\(y \quad\) COMPLEX for chpmv DOUBLE COMPLEX for zhpmv
Array, DIMENSION at least \((1+(n-1) * a b s(i n c y))\). Before entry, the incremented array \(y\) must contain the \(n\)-element vector \(y\).
incy INTEGER. Specifies the increment for the elements of \(y\). The value of incy must not be zero.
```


Output Parameters

[^0]
?hpr

Performs a rank-1 update of a Hermitian packed matrix.

Syntax

```
call chpr ( uplo, n, alpha, x, incx, ap )
call zhpr ( uplo, n, alpha, x, incx, ap )
```


Description

The ?hpr routines perform a matrix-vector operation defined as

```
a := alpha* X*conjg(x') + a,
```

where:
alpha is a real scalar
x is an n-element vector
a is an n by n Hermitian matrix, supplied in packed form.

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower triangular part of the matrix a is supplied in the packed array ap, as follows:

uplo value	Part of Matrix a Supplied
U or u	The upper triangular part of matrix a is supplied in
L or l	ap.
	The lower triangular part of matrix a is supplied in ap.

$n \quad$ INTEGER. Specifies the order of the matrix a. The value of n must be at least zero.
alpha
REAL for chpr
DOUBLE PRECISION for zhpr
Specifies the scalar alpha.

x	COMPLEX for chpr
DOUBLE COMPLEX for zhpr	

Array, DIMENSION at least $(1+(n-1) * a b s(i n c x))$. Before entry, the incremented array x must contain the n-element vector x.
incx INTEGER. Specifies the increment for the elements of x. incx must not be zero.
ap COMPLEX for chpr
DOUBLE COMPLEX for zhpr
Array, DIMENSION at least $((n *(n+1)) / 2)$. Before entry with uplo = 'U' or 'u', the array ap must contain the upper triangular part of the Hermitian matrix packed sequentially, column-by-column, so that $a p(1)$ contains a(1, 1), $a p(2)$ and $a p(3)$ contain $a(1,2)$ and $a(2,2)$ respectively, and so on.

Before entry with uplo = 'L' or 'l', the array ap must contain the lower triangular part of the Hermitian matrix packed sequentially, column-by-column, so that $a p(1)$ contains $a(1,1), a p(2)$ and $a p(3)$ contain $a(2,1)$ and $a(3,1)$ respectively, and so on.

The imaginary parts of the diagonal elements need not be set and are assumed to be zero.

Output Parameters

With uplo = 'U' or 'u', overwritten by the upper triangular part of the updated matrix.

With uplo = 'L' or 'l', overwritten by the lower triangular part of the updated matrix.
The imaginary parts of the diagonal elements are set to zero.

?hpr2

Performs a rank-2 update of a Hermitian packed
matrix.

Syntax

```
call chpr2 ( uplo, n, alpha, x, incx, y, incy, ap )
```

```
call zhpr2 ( uplo, n, alpha, x, incx, y, incy, ap )
```


Description

The?hpr2 routines perform a matrix-vector operation defined as

```
a := alpha*x*conjg(y') + conjg(alpha)*y*conjg(x') + a,
```

where:
alpha is a scalar
x and y are n-element vectors
a is an n by n Hermitian matrix, supplied in packed form.

Input Parameters

CHARIO | CHARTER*1. Specifies whether the upper or lower triangular part of the |
| :--- |
| matrix a is supplied in the packed array ap, as follows |

uplo value	Part of Matrix a Supplied
U or u	The upper triangular part of matrix a is supplied in ap.
L or l	The lower triangular part of matrix a is supplied in $a p$.

n
alpha COMPLEX for chpr2
DOUBLE COMPLEX for zhpr2
Specifies the scalar alpha.
COMPLEX for chpr2
DOUBLE COMPLEX for zhpr 2
Array, dimension at least $(1+(n-1) * a b s(i n c x))$. Before entry, the incremented array x must contain the n-element vector x.
incx INTEGER. Specifies the increment for the elements of x. The value of incx must not be zero.
$y \quad$ COMPLEX for chpr2
DOUBLE COMPLEX for zhpr2

Array, DIMENSION at least ($1+(n-1) * a b s(i n c y))$. Before entry, the incremented array y must contain the n-element vector y.
incy INTEGER. Specifies the increment for the elements of y. The value of incy must not be zero.
ap COMPLEX for chpr2
DOUBLE COMPLEX for zhpr2
Array, DIMENSION at least $((n *(n+1)) / 2)$. Before entry with uplo = 'U' or 'u', the array ap must contain the upper triangular part of the Hermitian matrix packed sequentially, column-by-column, so that $a p(1)$ contains $a(1$, 1), $a p(2)$ and $a p(3)$ contain $a(1,2)$ and $a(2,2)$ respectively, and so on.

Before entry with uplo = 'L' or 'l', the array ap must contain the lower triangular part of the Hermitian matrix packed sequentially, column-by-column, so that $a p(1)$ contains $a(1,1), a p(2)$ and $a p(3)$ contain $a(2,1)$ and $a(3,1)$ respectively, and so on.

The imaginary parts of the diagonal elements need not be set and are assumed to be zero.

Output Parameters

With uplo = 'U' or 'u', overwritten by the upper triangular part of the updated matrix.

With uplo = 'L' or 'l', overwritten by the lower triangular part of the updated matrix.

The imaginary parts of the diagonal elements need are set to zero.

?sbmv

Computes a matrix-vector product using a symmetric
band matrix.

Syntax

```
call ssbmv ( uplo, n, k, alpha, a, lda, x, incx, beta, y, incy )
call dsbmv ( uplo, n, k, alpha, a, lda, x, incx, beta, y, incy )
```


Description

The ?sbmv routines perform a matrix-vector operation defined as
y := alpha*a*X + beta* y,
where:
alpha and beta are scalars
x and y are n-element vectors
a is an n by n symmetric band matrix, with k super-diagonals.

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower triangular part of the band matrix a is being supplied, as follows:

uplo value	Part of Matrix a Supplied
U or u	The upper triangular part of matrix a is supplied.
L or l	The lower triangular part of matrix a is supplied.

n
INTEGER. Specifies the order of the matrix a. The value of n must be at least zero.

INTEGER. Specifies the number of super-diagonals of the matrix a. The value of k must satisfy $0 \leq k$.
alpha
a

REAL for ssbmv DOUBLE PRECISION for dsbmv

Specifies the scalar alpha.
REAL for ssbmv DOUBLE PRECISION for dsbmv

Array, DIMENSION (Ida, n). Before entry with uplo = 'U' or 'u', the leading $(k+1)$ by n part of the array a must contain the upper triangular band part of the symmetric matrix, supplied column-by-column, with the leading diagonal of the matrix in row $(k+1)$ of the array, the first super-diagonal starting at position 2 in row k, and so on. The top left k by k triangle of the array a is not referenced.
The following program segment transfers the upper triangular part of a symmetric band matrix from conventional full matrix storage to band storage:

```
do 20, j = 1, n
    m = k + 1 - j
    do 10, i = max( 1, j - k ), j
        a( m + i, j ) = matrix( i, j )
        1 0 ~ c o n t i n u e
20 continue
```

Before entry with uplo = 'L' or 'l', the leading $(k+1)$ by n part of the array a must contain the lower triangular band part of the symmetric matrix, supplied column-by-column, with the leading diagonal of the matrix in row 1 of the array, the first sub-diagonal starting at position 1 in row 2 , and so on. The bottom right k by k triangle of the array a is not referenced.

The following program segment transfers the lower triangular part of a symmetric band matrix from conventional full matrix storage to band storage:

```
do 20, j = 1, n
\(m=1-j\)
do 10, \(i=j, \min (n, j+k)\)
    a( m + i, j ) = matrix ( i, j )
    10 continue
20 continue
```

Ida INTEGER. Specifies the first dimension of a as declared in the calling (sub)program. The value of Ida must be at least $(k+1)$.

X
incx
beta

Y

REAL for ssbmv DOUBLE PRECISION for dsbmv

Array, DIMENSION at least $(1+(n-1) * a b s(i n c x))$. Before entry, the incremented array x must contain the vector x.

INTEGER. Specifies the increment for the elements of x. The value of incx must not be zero.

REAL for ssbmv DOUBLE PRECISION for dsbmv

Specifies the scalar beta.
REAL for ssbmv
DOUBLE PRECISION for dsbmv
Array, DIMENSION at least $(1+(n-1) * a b s(i n c y))$. Before entry, the incremented array y must contain the vector y.
Incy \quad INTEGER. Specifies the increment for the elements of y. The value of incy
must not be zero.

Output Parameters

$y \quad$ Overwritten by the updated vector y.

?spmv

Computes a matrix-vector product
using a symmetric packed matrix.

Syntax

```
call sspmv ( uplo, n, alpha, ap, x, incx, beta, y, incy )
call dspmv ( uplo, n, alpha, ap, x, incx, beta, y, incy )
```


Description

The ?spmv routines perform a matrix-vector operation defined as
y := alpha*a*x + beta* y,
where:
alpha and beta are scalars
x and y are n-element vectors
a is an n by n symmetric matrix, supplied in packed form.

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower triangular part of the matrix a is supplied in the packed array $a p$, as follows:

uplo value	Part of Matrix a Supplied
U or u	The upper triangular part of matrix a is supplied in
L or 1	ap.
	The lower triangular part of matrix a is supplied in

n	INTEGER. Specifies the order of the matrix a. The value of n must be at least zero.
alpha	REAL for sspmv
	DOUBLE PRECISION for dspmv
	Specifies the scalar alpha.
ap	REAL for sspmv
	DOUBLE PRECISION for dspmv
	Array, DIMENSION at least $((n *(n+1)) / 2)$. Before entry with uplo = ' U or 'u', the array ap must contain the upper triangular part of the symmetric matrix packed sequentially, column-by-column, so that $a p(1)$ contains $a(1$, 1), $a p(2)$ and $a p(3)$ contain $a(1,2)$ and $a(2,2)$ respectively, and so on. Before entry with uplo $=$ 'L' or 'l', the array ap must contain the lower triangular part of the symmetric matrix packed sequentially, column-by-column, so that $a p(1)$ contains $a(1,1), a p(2)$ and $a p(3)$ contain $a(2,1)$ and $a(3,1)$ respectively, and so on.
x	REAL for sspmv
	DOUBLE PRECISION for dspmv
	Array, DIMENSION at least $(1+(n-1) * a b s(i n c x))$. Before entry, the incremented array x must contain the n-element vector x.
incx	Integer. Specifies the increment for the elements of x. The value of incx must not be zero.
beta	REAL for sspmv
	DOUBLE PRECISION for dspmv
	Specifies the scalar beta. When beta is supplied as zero, then y need not be set on input.
Y	REAL for sspmv
	DOUBLE PRECISION for dspmv
	Array, DIMENSION at least $(1+(n-1)$ *abs (incy)). Before entry, the incremented array y must contain the n-element vector y.
incy	INTEGER. Specifies the increment for the elements of y. The value of incy must not be zero.
Output Parameters	
	Overwritten by the updated vector y.

?spr

Performs a rank-1 update

of a symmetric packed matrix.

Syntax

```
call sspr( uplo, n, alpha, x, incx, ap )
call dspr( uplo, n, alpha, x, incx, ap )
```


Description

The ?spr routines perform a matrix-vector operation defined as

```
a:= alpha*X*X' + a,
```

where:
alpha is a real scalar
x is an n-element vector
a is an n by n symmetric matrix, supplied in packed form.

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower triangular part of the matrix a is supplied in the packed array ap, as follows:

uplo value	Part of Matrix a Supplied
U or u	The upper triangular part of matrix a is supplied in
L or l	ap.
	The lower triangular part of matrix a is supplied in ap.

n
INTEGER. Specifies the order of the matrix a. The value of n must be at least zero.
alpha
REAL for sspr
DOUBLE PRECISION for dspr
Specifies the scalar alpha.

```
x REAL for sspr
DOUBLE PRECISION for dspr
Array, DIMENSION at least (1 + (n-1)*abs (incx)). Before entry, the
incremented array x must contain the n-element vector x.
incx INTEGER. Specifies the increment for the elements of x. The value of incx
must not be zero.
ap REAL for sspr
DOUBLE PRECISION for dspr
Array, DIMENSION at least \(((n *(n+1)) / 2)\). Before entry with uplo = 'U' or 'u', the array ap must contain the upper triangular part of the symmetric matrix packed sequentially, column-by-column, so that \(a p(1)\) contains \(a(1,1), a p(2)\) and \(a p(3)\) contain \(a(1,2)\) and \(a(2,2)\) respectively, and so on.
Before entry with uplo= 'L' or 'l', the array ap must contain the lower triangular part of the symmetric matrix packed sequentially, column-by-column, so that \(a p(1)\) contains \(a(1,1), a p(2)\) and \(a p(3)\) contain \(a(2,1)\) and \(a(3,1)\) respectively, and so on.
```


Output Parameters

With uplo = 'U' or 'u', overwritten by the upper triangular part of the updated matrix.
With uplo = 'L' or 'l', overwritten by the lower triangular part of the updated matrix.

?spr2

Performs a rank-2 update
of a symmetric packed matrix.

Syntax

```
call sspr2( uplo, n, alpha, x, incx, y, incy, ap )
```

call dspr2(uplo, n, alpha, $x, i n c x, y, i n c y, ~ a p ~)$

Description

The ? spr2 routines perform a matrix-vector operation defined as

```
a:= alpha*x*y' + alpha*y*x' + a,
```

where:
alpha is a scalar
x and y are n-element vectors
a is an n by n symmetric matrix, supplied in packed form.

Input Parameters

uplo	CHARACTER*1. Specifies whether the upper or lower triangular part of the matrix a is supplied in the packed array $a p$, as follows:
	uplo value Part of Matrix a Supplied
	U or $\mathrm{u} \quad$ The upper triangular part of matrix a is supplied in ap.
	L or 1 The lower triangular part of matrix a is supplied in ap.
n	INTEGER. Specifies the order of the matrix a. The value of n must be at least zero.
alpha	REAL for sspr2 DOUBLE PRECISION for dspr2
	Specifies the scalar alpha.
x	REAL for sspr 2 DOUBLE PRECISION for dspr2
	Array, DIMENSION at least $(1+(n-1) *$ abs (incx)). Before entry, the incremented array x must contain the n-element vector x.
incx	INTEGER. Specifies the increment for the elements of x. The value of incx must not be zero.
y	REAL for sspr2 DOUBLE PRECISION for dspr2
	Array, DIMENSION at least ($1+(n-1) * a b s($ incy $)$). Before entry, the incremented array y must contain the n-element vector y.

incy INTEGER. Specifies the increment for the elements of y. The value of incy must not be zero.
ap
REAL for sspr2
DOUBLE PRECISION for dspr2
Array, DIMENSION at least $\left(\left(n^{*}(n+1)\right) / 2\right)$. Before entry with uplo = 'U' or 'u', the array ap must contain the upper triangular part of the symmetric matrix packed sequentially, column-by-column, so that $a p(1)$ contains $a(1,1), a p(2)$ and $a p(3)$ contain $a(1,2)$ and $a(2,2)$ respectively, and so on.

Before entry with uplo = 'L' or 'l', the array ap must contain the lower triangular part of the symmetric matrix packed sequentially, column-by-column, so that $a p(1)$ contains $a(1,1), a p(2)$ and $a p(3)$ contain $a(2,1)$ and $a(3,1)$ respectively, and so on.

Output Parameters

With uplo = 'U' or 'u', overwritten by the upper triangular part of the updated matrix.

With uplo = 'L' or 'l', overwritten by the lower triangular part of the updated matrix.

?symv

Computes a matrix-vector product
for a symmetric matrix.

Syntax

```
call ssymv ( uplo, n, alpha, a, lda, x, incx, beta, y, incy )
```

call dsymv (uplo, n, alpha, a, lda, x, incx, beta, y, incy)

Description

The ?symv routines perform a matrix-vector operation defined as

```
y := alpha*a*x + beta*y,
```

where:
alpha and beta are scalars
x and y are n-element vectors
a is an n by n symmetric matrix.

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower triangular part of the array a is to be referenced, as follows:

uplo value	Part of Array a To Be Referenced
U or u	The upper triangular part of array a is to be referenced.
L or l	The lower triangular part of array a is to be referenced.

n
alpha
a

Ida
x

INTEGER. Specifies the order of the matrix a. The value of n must be at least zero.

REAL for ssymv
DOUBLE PRECISION for dsymv
Specifies the scalar alpha.
REAL for ssymv
DOUBLE PRECISION for dsymv
Array, DIMENSION (Ida, n). Before entry with
uplo = 'U' or 'u', the leading n by n upper triangular part of the array a must contain the upper triangular part of the symmetric matrix and the strictly lower triangular part of a is not referenced. Before entry with
uplo = 'L' or 'l', the leading n by n lower triangular part of the array a must contain the lower triangular part of the symmetric matrix and the strictly upper triangular part of a is not referenced.

INTEGER. Specifies the first dimension of a as declared in the calling (sub)program. The value of 1 da must be at least max $(1, n)$.

REAL for ssymv
DOUBLE PRECISION for dsymv
Array, DIMENSION at least $(1+(n-1) * a b s(i n c x))$. Before entry, the incremented array x must contain the n-element vector x.

incx	INTEGER. Specifies the increment for the elements of x. The value of incx must not be zero.
beta	REAL for ssymv DOUBLE PRECISION for dsymv Specifies the scalar beta. When beta is supplied as zero, then y need not be set on input.
y	REAL for ssymv DOUBLE PRECISION for dsymv Array, DIMENSION at least $(1+(n-1) * a b s ~(i n c y)) . ~ B e f o r e ~ e n t r y, ~ t h e ~$ incremented array y must contain the n-element vector y.
incy \quadINTEGER. Specifies the increment for the elements of y. The value of incy must not be zero.	
Output Parameters	
y	

?syr

Performs a rank-1 update of a symmetric matrix.

Syntax

```
call ssyr( uplo, n, alpha, x, incx, a, lda )
```

call dsyr(uplo, $n, ~ a l p h a, ~ x, ~ i n c x, ~ a, ~ l d a ~) ~$

Description

The ?syr routines perform a matrix-vector operation defined as

```
a := alpha*x*x' + a,
```

where:
alpha is a real scalar
x is an n-element vector
a is an n by n symmetric matrix.

Input Parameters

uplo	CHARACTER*1. Specifies whether the upper or lower triangular part of the array a is to be referenced, as follows:	
	uplo value	Part of Array a To Be Referenced
	U or u	The upper triangular part of array a is to be referenced.
	L or 1	The lower triangular part of array a is to be referenced.

incx INTEGER. Specifies the increment for the elements of x. The value of incx
n
alpha

X
a

Ida

INTEGER. Specifies the order of the matrix a. The value of n must be at least zero.

REAL for ssyr DOUBLE PRECISION for dsyr

Specifies the scalar alpha.
REAL for ssyr
DOUBLE PRECISION for dsyr
Array, DIMENSION at least $(1+(n-1) * a b s(i n c x))$. Before entry, the incremented array x must contain the n-element vector x . must not be zero.

REAL for ssyr
DOUBLE PRECISION for dsyr
Array, DIMENSION (lda, n). Before entry with uplo = 'U' or 'u', the leading n by n upper triangular part of the array a must contain the upper triangular part of the symmetric matrix and the strictly lower triangular part of a is not referenced.

Before entry with uplo = 'L' or ' 1 ', the leading n by n lower triangular part of the array a must contain the lower triangular part of the symmetric matrix and the strictly upper triangular part of a is not referenced.

INTEGER. Specifies the first dimension of a as declared in the calling (sub)program. The value of 1 da must be at least $\max (1, n)$.

Output Parameters

a
With uplo = 'U' or 'u', the upper triangular part of the array a is overwritten by the upper triangular part of the updated matrix.

With uplo = 'L' or 'l', the lower triangular part of the array a is overwritten by the lower triangular part of the updated matrix.

?syr2

Performs a rank-2 update of symmetric matrix.

Syntax

```
call ssyr2( uplo, n, alpha, x, incx, y, incy, a, lda )
```

call dsyr2(uplo, $n, ~ a l p h a, ~ x, ~ i n c x, ~ y, ~ i n c y, ~ a, ~ l d a ~) ~$

Description

The ?syr2 routines perform a matrix-vector operation defined as

```
a := alpha*X*Y' + alpha*Y*X' + a,
```

where:
alpha is a scalar
x and y are n-element vectors
a is an n by n symmetric matrix.

Input Parameters

uplo
CHARACTER*1. Specifies whether the upper or lower triangular part of the array a is to be referenced, as follows:

uplo value	Part of Array a To Be Referenced
U or u	The upper triangular part of array a is to be referenced.
L or l	The lower triangular part of array a is to be referenced.

n
alpha

X

Ida

INTEGER. Specifies the order of the matrix a. The value of n must be at least zero.

REAL for ssyr2
DOUBLE PRECISION for dsyr2
Specifies the scalar alpha.
REAL for ssyr2
DOUBLE PRECISION for dsyr2
Array, DIMENSION at least $(1+(n-1) * a b s(i n c x))$. Before entry, the incremented array x must contain the n-element vector x.

INTEGER. Specifies the increment for the elements of x. The value of incx must not be zero.

REAL for ssyr2
DOUBLE PRECISION for dsyr2
Array, DIMENSION at least $(1+(n-1) * a b s(i n c y))$. Before entry, the incremented array y must contain the n-element vector y.

INTEGER. Specifies the increment for the elements of y. The value of incy must not be zero.

REAL for ssyr2 DOUBLE PRECISION for dsyr2

Array, DIMENSION (Ida, n). Before entry with uplo = 'U' or 'u', the leading n by n upper triangular part of the array a must contain the upper triangular part of the symmetric matrix and the strictly lower triangular part of a is not referenced.
Before entry with uplo = 'L' or 'l', the leading n by n lower triangular part of the array a must contain the lower triangular part of the symmetric matrix and the strictly upper triangular part of a is not referenced.

INTEGER. Specifies the first dimension of a as declared in the calling (sub)program. The value of Ida must be at least max $(1, n)$.

Output Parameters

a
With uplo = 'U' or 'u', the upper triangular part of the array a is overwritten by the upper triangular part of the updated matrix.

With uplo = 'L' or 'l', the lower triangular part of the array a is overwritten by the lower triangular part of the updated matrix.

?tbmv

Computes a matrix-vector product
using a triangular band matrix.

Syntax

```
call stbmv ( uplo, trans, diag, n, k, a, lda, x, incx )
call dtbmv ( uplo, trans, diag, n, k, a, lda, x, incx )
call ctbmv ( uplo, trans, diag, n, k, a, lda, x, incx )
call ztbmv ( uplo, trans, diag, n, k, a, lda, x, incx )
```


Description

The ? tbmv routines perform one of the matrix-vector operations defined as

```
x := a*x, or x := a'*x, or x := conjg(a')*x,
```

where:
x is an n-element vector
a is an n by n unit, or non-unit, upper or lower triangular band matrix, with $(k+1)$ diagonals.

Input Parameters

uplo
CHARACTER*1. Specifies whether the matrix is an upper or lower triangular matrix, as follows:

uplo value	Matrix a
U or u	An upper triangular matrix.
L or 1	A lower triangular matrix.

CHARACTER*1. Specifies the operation to be performed, as follows:

trans value	Operation to be Performed
N or n	$x:=a *_{x}$
T or t	$x:=a^{\prime} *_{x}$
C or c	$x:=\operatorname{conjg}\left(a^{\prime}\right) *_{X}$

CHARACTER*1. Specifies whether or not a is unit triangular, as follows:

diag value	Matrix a
U or u	Matrix a is assumed to be unit triangular.
N or n	Matrix a is not assumed to be unit triangular.

INTEGER. Specifies the order of the matrix a. The value of n must be at least zero.

INTEGER. On entry with uplo = 'U' or 'u', k specifies the number of super-diagonals of the matrix a. On entry with uplo = 'L' or 'l', k specifies the number of sub-diagonals of the matrix a. The value of k must satisfy $0 \leq k$.
REAL for stbmv
DOUBLE PRECISION for dtbmv
COMPLEX for ctbmv
DOUBLE COMPLEX for ztbmv
Array, DIMENSION (Ida, n). Before entry with uplo = 'U' or 'u', the leading $(k+1)$ by n part of the array a must contain the upper triangular band part of the matrix of coefficients, supplied column-by-column, with the leading diagonal of the matrix in row $(k+1)$ of the array, the first super-diagonal starting at position 2 in row k, and so on. The top left k by k triangle of the array a is not referenced. The following program segment transfers an upper triangular band matrix from conventional full matrix storage to band storage:

```
do 20, j = 1, n
    m = k + 1 - j
do 10, i = max(1, j - k), j
```

$a(m+i, j)=\operatorname{matrix}(i, j)$
10 continue
20 continue
Before entry with uplo = 'L' or 'l', the leading
$(k+1)$ by n part of the array a must contain the lower triangular band part of the matrix of coefficients, supplied column-by-column, with the leading diagonal of the matrix in rowl of the array, the first sub-diagonal starting at position 1 in row 2 , and so on. The bottom right k by k triangle of the array a is not referenced. The following program segment transfers a lower triangular band matrix from conventional full matrix storage to band storage:

```
do 20, j = 1, n
    m = 1 - j
    do 10, i = j, min(n, j + k)
        a(m + i, j) = matrix (i, j)
    10 continue
20 continue
```

Note that when diag = 'U' or 'u', the elements of the array a corresponding to the diagonal elements of the matrix are not referenced, but are assumed to be unity.

INTEGER. Specifies the first dimension of a as declared in the calling (sub)program. The value of Ida must be at least $(k+1)$.

REAL for stbmv
DOUBLE PRECISION for dtbmv
COMPLEX for ctbmv
DOUBLE COMPLEX for $z t$ bomv
Array, DIMENSION at least $(1+(n-1) * a b s(i n c x))$. Before entry, the incremented array x must contain the n-element vector x.
incx INTEGER. Specifies the increment for the elements of x. The value of incx must not be zero.

Output Parameters

$x \quad$ Overwritten with the transformed vector x

?tbsv

Solves a system of linear equations whose coefficients are in a triangular band matrix.

Syntax

```
call stbsv ( uplo, trans, diag, n, k, a, lda, x, incx )
call dtbsv ( uplo, trans, diag, n, k, a, lda, x, incx )
call ctbsv ( uplo, trans, diag, n, k, a, lda, x, incx )
call ztbsv ( uplo, trans, diag, n, k, a, lda, x, incx )
```


Description

The ? tbsv routines solve one of the following systems of equations:
$a{ }^{*} x=b$, or $a^{\prime *} x_{x}=b$, or conjg(a')*x $=b$,
where:
b and x are n-element vectors
a is an n by n unit, or non-unit, upper or lower triangular band matrix, with $(k+1)$ diagonals.
The routine does not test for singularity or near-singularity. Such tests must be performed before calling this routine.

Input Parameters

uplo
CHARACTER*1. Specifies whether the matrix is an upper or lower triangular matrix, as follows:

uplo value	Matrix a
U or u	An upper triangular matrix.
L or l	A lower triangular matrix.

trans CHARACTER*1. Specifies the operation to be performed, as follows:

trans value	Operation to be Performed
N or n	$a * x=b$

trans value	Operation to be Performed
T or t	$a^{\prime} *_{X}=b$
Cor c	conjg $\left(a^{\prime}\right) *_{X}=b$
CHARACTER*1. Specifies	whether or not a is unit triangular, as follows:
diag value	Matrix a
U or u	Matrix a is assumed to be unit triangular.
N or n	Matrix a is not assumed to be unit triangular.

INTEGER. Specifies the order of the matrix a. The value of n must be at least zero.

INTEGER. On entry with uplo = 'U' or 'u', k specifies the number of super-diagonals of the matrix a. On entry with uplo $=$ 'L' or 'l', k specifies the number of sub-diagonals of the matrix a. The value of k must satisfy $0 \leq k$.

REAL for stbsv
DOUBLE PRECISION for dtbsv
COMPLEX for ctbsv
DOUBLE COMPLEX for $z t b s v$
Array, DIMENSION (Ida, n). Before entry with uplo = 'U' or 'u', the leading $(k+1)$ by n part of the array a must contain the upper triangular band part of the matrix of coefficients, supplied column-by-column, with the leading diagonal of the matrix in row $(k+1)$ of the array, the first super-diagonal starting at position 2 in row k, and so on. The top left k by k triangle of the array a is not referenced.

The following program segment transfers an upper triangular band matrix from conventional full matrix storage to band storage:

```
do 20, j = 1, n
    m = k + 1 - j
    do 10, i = max(1, j - k), j
    a(m + i, j) = matrix (i, j)
    10 continue
20 continue
```

Before entry with uplo = 'L' or 'l', the leading
$(k+1)$ by n part of the array a must contain the lower triangular band part of the matrix of coefficients, supplied column-by-column, with the leading
diagonal of the matrix in row 1 of the array, the first sub-diagonal starting at position 1 in row 2 , and so on. The bottom right k by k triangle of the array a is not referenced.

The following program segment transfers a lower triangular band matrix from conventional full matrix storage to band storage:

```
do 20, j = 1, n
    m = 1 - j
    do 10, i = j, min(n, j + k)
    a(m + i, j) = matrix (i, j)
    10 continue
20 continue
```

When diag = 'U' or 'u', the elements of the array a corresponding to the diagonal elements of the matrix are not referenced, but are assumed to be unity.
Ida INTEGER. Specifies the first dimension of a as declared in the calling (sub)program. The value of 1 da must be at least $(k+1)$.
x
REAL for stbsv
DOUBLE PRECISION for dtbsv
COMPLEX for ctbsv
DOUBLE COMPLEX for ztbsv
Array, DIMEnsion at least $(1+(n-1) * a b s(i n c x))$. Before entry, the incremented array x must contain the n-element right-hand side vector b.
incx Integer. Specifies the increment for the elements of x. The value of incx must not be zero.

Output Parameters

X
 Overwritten with the solution vector x .

?tpmv

Computes a matrix-vector product
using a triangular packed matrix.

Syntax

```
call stpmv ( uplo, trans, diag, n, ap, x, incx )
```

```
call dtpmv ( uplo, trans, diag, n, ap, x, incx )
call ctpmv ( uplo, trans, diag, n, ap, x, incx )
call ztpmv ( uplo, trans, diag, n, ap, x, incx )
```


Description

The ? tpmv routines perform one of the matrix-vector operations defined as

```
x := a*x, or x := a'*x, or x := conjg(a')*x,
```

where:
x is an n-element vector
a is an n by n unit, or non-unit, upper or lower triangular matrix, supplied in packed form.

Input Parameters

uplo
trans
n

CHARACTER* 1. Specifies whether the matrix a is an upper or lower triangular matrix, as follows:

uplo value	Matrix a
U or u	An upper triangular matrix.
L or l	A lower triangular matrix.

CHARACTER*1. Specifies the operation to be performed, as follows:

trans value	Operation To Be Performed
N or n	$x:=a *_{X}$
T or t	$x:=a^{\prime} *_{X}$
C or c	$x:=\operatorname{conjg}\left(a^{\prime}\right) *_{X}$

CHARACTER*1. Specifies whether or not a is unit triangular, as follows:

diag value	Matrix a
U or u	Matrix a is assumed to be unit triangular.
N or n	Matrix a is not assumed to be unit triangular.

INTEGER. Specifies the order of the matrix a. The value of n must be at least zero.

```
ap REAL for stpmv
    DOUBLE PRECISION for dtpmv
    COMPLEX for ctpmv
    DOUBLE COMPLEX for ztpmv
    Array, DIMENSION at least ((n* (n+1))/2). Before entry with uplo = 'U'
    or 'u', the array ap must contain the upper triangular matrix packed
    sequentially, column-by-column, so that ap(1) contains a(1,1),ap(2) and
    ap(3) contain a(1,2) and a(2,2) respectively, and so on. Before entry with
    uplo = 'L' or 'l', the array ap must contain the lower triangular matrix
    packed sequentially, column-by-column, so that ap(1) contains a(1,1),
    ap(2) and ap(3) contain a(2,1) and a(3,1) respectively, and so on. When
    diag = 'U' or 'u', the diagonal elements of a are not referenced, but are
    assumed to be unity.
    REAL for stpmv
    DOUBLE PRECISION for dtpmv
    COMPLEX for ctpmv
    DOUBLE COMPLEX for ztpmv
    Array, DIMENSION at least (1+(n-1)*abs (incx)). Before entry, the
    incremented array x must contain the n-element vector x.
incx INTEGER. Specifies the increment for the elements of x. The value of incx
    must not be zero.
```


Output Parameters

Overwritten with the transformed vector x.

```

\section*{?tpsv}

Solves a system of linear equations whose coefficients are in a triangular packed matrix.

\section*{Syntax}
```

call stpsv (uplo, trans, diag, n, ap, x, incx)
call dtpsv (uplo, trans, diag, n, ap, x, incx)
call ctpsv (uplo, trans, diag, n, ap, x, incx)
call ztpsv (uplo, trans, diag, n, ap, x, incx)

```

\section*{Description}

The ? tpsv routines solve one of the following systems of equations
```

a*x = b, or a'*x = b, or conjg(a')** = b,

```
where:
\(b\) and \(x\) are \(n\)-element vectors
a is an \(n\) by \(n\) unit, or non-unit, upper or lower triangular matrix, supplied in packed form.
This routine does not test for singularity or near-singularity. Such tests must be performed before calling this routine.

\section*{Input Parameters}
uplo CHARACTER*1. Specifies whether the matrix \(a\) is an upper or lower triangular matrix, as follows:
\begin{tabular}{ll}
\hline uplo value & Matrix a \\
\hline U or u & An upper triangular matrix. \\
L or 1 & A lower triangular matrix. \\
\hline
\end{tabular}
trans CHARACTER*1. Specifies the operation to be performed, as follows:
\begin{tabular}{ll}
\hline trans value & Operation To Be Performed \\
\hline N or \(n\) & \(a^{*} X=b\) \\
T or \(t\) & \(a^{\prime} * X=b\) \\
\(C\) or \(c\) & conjg \(\left(a^{\prime}\right) * X=b\) \\
\hline
\end{tabular}

CHARACTER*1. Specifies whether or not \(a\) is unit triangular, as follows:
\begin{tabular}{ll}
\hline diag value & Matrix \(a\) \\
\hline U or u & Matrix \(a\) is assumed to be unit triangular. \\
N or n & Matrix \(a\) is not assumed to be unit triangular. \\
\hline
\end{tabular}

INTEGER. Specifies the order of the matrix \(a\). The value of \(n\) must be at least zero.


\section*{?trmv}

Computes a matrix-vector product
using a triangular matrix.

\section*{Syntax}
```

call strmv (uplo, trans, diag, n, a, lda, x, incx)
call dtrmv (uplo, trans, diag, n, a, lda, x, incx)
call ctrmv (uplo, trans, diag, n, a, lda, x, incx)
call ztrmv (uplo, trans, diag, n, a, lda, x, incx)

```

\section*{Description}

The ? trmv routines perform one of the following matrix-vector operations defined as
```

x := a*x or x := a'*x or x := conjg(a')*x,

```
where:
\(x\) is an \(n\)-element vector
\(a\) is an \(n\) by \(n\) unit, or non-unit, upper or lower triangular matrix.

\section*{Input Parameters}
uplo CHARACTER*1. Specifies whether the matrix \(a\) is an upper or lower triangular matrix, as follows:
\begin{tabular}{ll}
\hline uplo value & Matrix \(a\) \\
\hline U or \(u\) & An upper triangular matrix. \\
L or \(l\) & A lower triangular matrix. \\
\hline
\end{tabular}
trans CHARACTER*1. Specifies the operation to be performed, as follows:
\begin{tabular}{ll}
\hline trans value & Operation To Be Performed \\
N or n & \(\mathrm{x}:=a^{*} \mathrm{X}\) \\
T or t & \(\mathrm{x}:=a^{\prime} *_{X}\) \\
C or c & \(\mathrm{x}:=\operatorname{conjg}\left(a^{\prime}\right) *_{X}\) \\
\hline
\end{tabular}

CHARACTER*1. Specifies whether or not a is unit triangular, as follows:
\begin{tabular}{ll}
\hline diag value & Matrix \(a\) \\
\hline U or u & Matrix \(a\) is assumed to be unit triangular. \\
N or n & Matrix \(a\) is not assumed to be unit triangular. \\
\hline
\end{tabular}
integer. Specifies the order of the matrix \(a\). The value of \(n\) must be at least zero.

REAL for strmv
DOUBLE PRECISION for dtrmv
COMPLEX for ctrmv
double complex for ztrmv
\(\left.\begin{array}{ll}\text { Ida } & \begin{array}{l}\text { INTEGER. Specifies the first dimension of a as declared in the calling } \\ \text { (sub)program. The value of } 1 \text { da must be at least } \max (1, n) .\end{array} \\ x & \begin{array}{l}\text { REAL for strmv } \\ \text { DOUBLE PRECISION for dtrmv } \\ \text { COMPLEX for ctrmv } \\ \text { DOUBLE COMPLEX for ztrmv }\end{array} \\ \text { Array, DIMENSION at least }(1+(n-1) * a b s(\text { incx })) . \text { Before entry, the } \\ \text { incremented array } x \text { must contain the } n \text {-element vector } x .\end{array}\right\} \begin{aligned} & \text { INTEGER. Specifies the increment for the elements of } x . \text { The value of incx } \\ & \text { must not be zero. }\end{aligned}\)

\section*{?trsv}

Solves a system of linear equations whose coefficients are in a triangular matrix.

\section*{Syntax}
```

call strsv (uplo, trans, diag, n, a, lda, x, incx)
call dtrsv (uplo, trans, diag, n, a, lda, x, incx)
call ctrsv (uplo, trans, diag, n, a, lda, x, incx)
call ztrsv (uplo, trans, diag, n, a, lda, x, incx)

```

\section*{Description}

The? trsv routines solve one of the systems of equations:

where:
\(b\) and \(x\) are \(n\)-element vectors
\(a\) is an \(n\) by \(n\) unit, or non-unit, upper or lower triangular matrix.
The routine does not test for singularity or near-singularity. Such tests must be performed before calling this routine.

\section*{Input Parameters}
uplo
trans
diag
n

CHARACTER*1. Specifies whether the matrix is an upper or lower triangular matrix, as follows:
\begin{tabular}{ll}
\hline uplo value & Matrix a \\
\hline U or u & An upper triangular matrix. \\
L or 1 & A lower triangular matrix. \\
\hline
\end{tabular}

CHARACTER*1. Specifies the operation to be performed, as follows:
\begin{tabular}{ll}
\hline trans value & Operation To Be Performed \\
N or \(n\) & \(a^{*} X=b\) \\
T or \(t\) & \(a^{\prime} * X=b\) \\
C or \(c\) & conjg \(\left(a^{\prime}\right) * X=b\) \\
\hline
\end{tabular}

CHARACTER*1. Specifies whether or not a is unit triangular, as follows:
\begin{tabular}{ll}
\hline diag value & Matrix \(a\) \\
\hline U or u & Matrix \(a\) is assumed to be unit triangular. \\
N or n & Matrix \(a\) is not assumed to be unit triangular. \\
\hline
\end{tabular}

INTEGER. Specifies the order of the matrix \(a\). The value of \(n\) must be at least zero.
a

Ida
\(x\)
incx

REAL for strsv
DOUBLE PRECISION for dtrsv
COMPLEX for ctrsv
DOUBLE COMPLEX for ztrsv
Array, DIMENSION ( 1 da, \(n\) ). Before entry with uplo = 'U' or 'u', the leading \(n\) by \(n\) upper triangular part of the array a must contain the upper triangular matrix and the strictly lower triangular part of \(a\) is not referenced. Before entry with uplo = 'L' or 'l', the leading \(n\) by \(n\) lower triangular part of the array a must contain the lower triangular matrix and the strictly upper triangular part of \(a\) is not referenced. When \(d i a g=\) ' \(U\) ' or 'u', the diagonal elements of a are not referenced either, but are assumed to be unity.

INTEGER. Specifies the first dimension of a as declared in the calling (sub)program. The value of 1 da must be at least max \((1, n)\).

REAL for strsv
DOUBLE PRECISION for dtrsv
COMPLEX for ctrsv
DOUBLE COMPLEX for \(z t r s v\)
Array, DIMENSION at least \((1+(n-1) * a b s(i n c x))\). Before entry, the incremented array \(x\) must contain the \(n\)-element right-hand side vector \(b\).

INTEGER. Specifies the increment for the elements of \(x\). The value of incx must not be zero.

\section*{Output Parameters}

Overwritten with the solution vector \(x\).

\section*{BLAS Level 3 Routines}

BLAS Level 3 routines perform matrix-matrix operations. Table 2-3 lists the BLAS Level 3 routine groups and the data types associated with them.

Table 2-3 BLAS Level 3 Routine Groups and Their Data Types
\begin{tabular}{|c|c|c|}
\hline Routine Group & Data Types & Description \\
\hline ? gemm & s, d, c, z & Matrix-matrix product of general matrices \\
\hline ? hemm & c, z & Matrix-matrix product of Hermitian matrices \\
\hline ?herk & c, z & Rank-k update of Hermitian matrices \\
\hline ?her2k & c, z & Rank-2k update of Hermitian matrices \\
\hline ? symm & s, d, c, z & Matrix-matrix product of symmetric matrices \\
\hline ? syrk & s, d, c, z & Rank-k update of symmetric matrices \\
\hline ? syr 2 k & s, d, c, z & Rank-2k update of symmetric matrices \\
\hline ? trmm & s, d, c, z & Matrix-matrix product of triangular matrices \\
\hline ?trsm & s, d, c, z & Linear matrix-matrix solution for triangular matrices \\
\hline
\end{tabular}

\section*{Symmetric Multiprocessing Version of Intel \({ }^{\circledR}\) MKL}

Many applications spend considerable time for executing BLAS level 3 routines. This time can be scaled by the number of processors available on the system through using the symmetric multiprocessing (SMP) feature built into the Intel MKL Library. The performance enhancements based on the parallel use of the processors are available without any programming effort on your part.

To enhance performance, the library uses the following methods:
- The operation of BLAS level 3 matrix-matrix functions permits to restructure the code in a way which increases the localization of data reference, enhances cache memory use, and reduces the dependency on the memory bus.
- Once the code has been effectively blocked as described above, one of the matrices is distributed across the processors to be multiplied by the second matrix. Such distribution ensures effective cache management which reduces the dependency on the memory bus performance and brings good scaling results.

\section*{?gemm}

Computes a scalar-matrix-matrix product and adds the result to a scalar-matrix product.

\section*{Syntax}
```

call sgemm (transa, transb, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc)
call dgemm (transa, transb, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc)
call cgemm (transa, transb, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc)
call zgemm (transa, transb, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc)

```

\section*{Description}

The ?gemm routines perform a matrix-matrix operation with general matrices. The operation is defined as
```

c := alpha*op(a)*op(b) + beta*c,

```
where:
\(\circ p(x)\) is one of \(o p(x)=x\) or op \((x)=x^{\prime}\) or op \((x)=\operatorname{conjg}\left(x^{\prime}\right)\),
alpha and beta are scalars
\(a, b\) and \(c\) are matrices:
\(\mathrm{op}(a)\) is an \(m\) by \(k\) matrix
\(o p(b)\) is a \(k\) by \(n\) matrix
\(C\) is an \(m\) by \(n\) matrix.

\section*{Input Parameters}
\(\begin{array}{ll}\text { transa } & \text { CHARACTER*1. Specifies the form of op (a) to be used in the matrix } \\ \text { multiplication as follows: }\end{array}\)
\begin{tabular}{ll}
\hline transa value & Form of op \((a)\) \\
N or \(n\) & op \((a)=a\) \\
T ort & op \((a)=a^{\prime}\) \\
C or \(c\) & op \((a)=\operatorname{conjg}\left(a^{\prime}\right)\) \\
\hline
\end{tabular}
transb CHARACTER*1. Specifies the form of op (b) to be used in the matrix multiplication as follows:
\begin{tabular}{ll}
\hline transb value & Form of op \((b)\) \\
N or \(n\) & op \((b)=b\) \\
T or \(t\) & op \((b)=b^{\prime}\) \\
Cor \(c\) & op \((b)=\operatorname{conjg}\left(b^{\prime}\right)\) \\
\hline
\end{tabular}
m
n
\(k\)
alpha
a
lda
b

INTEGER. Specifies the number of rows of the matrix op (a) and of the matrix \(c\). The value of \(m\) must be at least zero.

INTEGER. Specifies the number of columns of the matrix op ( \(b\) ) and the number of columns of the matrix \(c\). The value of \(n\) must be at least zero.

INTEGER. Specifies the number of columns of the matrix op (a) and the number of rows of the matrix op (b). The value of \(k\) must be at least zero.

REAL for sgemm DOUBLE PRECISION for dgemm COMPLEX for cgemm DOUBLE COMPLEX for zgemm

Specifies the scalar alpha.
REAL for sgemm DOUBLE PRECISION for dgemm COMPLEX for cgemm DOUBLE COMPLEX for zg gmm

Array, DIMENSION (lda, ka), where ka is \(k\) when transa \(=\) ' \(N\) ' or 'n', and is \(m\) otherwise. Before entry with transa \(={ }^{\prime} N\) ' or ' \(n\) ', the leading \(m\) by \(k\) part of the array a must contain the matrix \(a\), otherwise the leading \(k\) by \(m\) part of the array a must contain the matrix \(a\).

INTEGER. Specifies the first dimension of a as declared in the calling (sub)program. When transa \(=\) ' \(N\) ' or ' \(n\) ', then 1 da must be at least max ( 1 , \(m\) ), otherwise lda must be at least \(\max (1, k)\).

REAL for sgemm DOUBLE PRECISION for dgemm COMPLEX for cgemm DOUBLE COMPLEX for zgemm

Array, DIMENSION ( \(1 \mathrm{db}, \mathrm{kb}\) ), where \(k b\) is \(n\) when transb \(=\) ' \(N\) ' or ' \(n\) ', and is \(k\) otherwise. Before entry with transb \(=\) ' \(N\) ' or ' \(n\) ', the leading \(k\) by \(n\) part of the array \(b\) must contain the matrix \(b\), otherwise the leading \(n\) by \(k\) part of the array \(b\) must contain the matrix \(b\).
\(1 d b\)
beta

C
ldc

INTEGER. Specifies the first dimension of \(b\) as declared in the calling (sub)program. When transb \(=\) ' \(N\) ' or ' \(n\) ', then \(l d b\) must be at least max ( 1 , \(k)\), otherwise \(l d b\) must be at least \(\max (1, n)\).

REAL for sgemm
DOUBLE PRECISION for dgemm
COMPLEX for cgemm
DOUBLE COMPLEX for zgemm
Specifies the scalar beta. When beta is supplied as zero, then \(c\) need not be set on input.

REAL for sgemm
DOUBLE PRECISION for dgemm
COMPLEX for cgemm
DOUBLE COMPLEX for \(z g e m m\)
Array, DIMENSION ( \(1 d c, n\) ). Before entry, the leading \(m\) by \(n\) part of the array \(c\) must contain the matrix \(c\), except when beta is zero, in which case \(c\) need not be set on entry.

INTEGER. Specifies the first dimension of \(c\) as declared in the calling (sub)program. The value of \(1 d c\) must be at least \(\max (1, m)\).

\section*{Output Parameters}

Overwritten by the \(m\) by \(n\) matrix (alpha*op \((a) * o p(b)+b e t a * c)\).

\section*{?hemm}

Computes a scalar-matrix-matrix product (either one of
the matrices is Hermitian) and adds the result to
scalar-matrix product.

\section*{Syntax}
call chemm ( side, uplo, m, \(n, ~ a l p h a, ~ a, ~ l d a, ~ b, ~ l d b, ~ b e t a, ~ c, ~ l d c ~) ~\)
```

call zhemm (side, uplo, m, n, alpha, a, lda, b, ldb, beta, c, ldc)

```

\section*{Description}

The ?hemm routines perform a matrix-matrix operation using Hermitian matrices. The operation is defined as
```

c := alpha*a*b + beta*c
or
c := alpha*b*a + beta*c,
where:
alpha and beta are scalars
a is an Hermitian matrix
b}\mathrm{ and c are m by n matrices.
Input Parameters
side CHARACTER*1. Specifies whether the Hermitian matrix a appears on the left or
right in the operation as follows:

```
\begin{tabular}{ll} 
side value & Operation To Be Performed \\
L or \(l\) & \(C:=a l p h a * a * b+\) bet \(a * C\) \\
\(R\) or \(r\) & \(C:=\) alpha* \(b * a+\) beta* \(C\) \\
\hline
\end{tabular}
uplo CHARACTER*1. Specifies whether the upper or lower triangular part of the Hermitian matrix \(a\) is to be referenced as follows:
\begin{tabular}{ll}
\hline uplo value & Part of Matrix a To Be Referenced \\
\hline U or \(u\) & \begin{tabular}{l} 
Only the upper triangular part of the Hermitian \\
matrix is to be referenced.
\end{tabular} \\
L or l & \begin{tabular}{l} 
Only the lower triangular part of the Hermitian \\
matrix is to be referenced.
\end{tabular} \\
\hline
\end{tabular}

INTEGER. Specifies the number of rows of the matrix \(c\). The value of \(m\) must be at least zero.
n
INTEGER. Specifies the number of columns of the matrix \(c\). The value of \(n\) must be at least zero.
\begin{tabular}{ll} 
alpha & \begin{tabular}{l} 
COMPLEX for chemm \\
DOUBLE COMPLEX for zhemm
\end{tabular} \\
Specifies the scalar alpha. \\
a COMPLEX for chemm
\end{tabular}

Array, DIMENSION (lda, \(k a\) ), where \(k a\) is \(m\) when side \(=\) 'L' or 'l'and is \(n\) otherwise. Before entry with side \(=\) 'L' or 'l', the \(m\) by \(m\) part of the array a must contain the Hermitian matrix, such that when uplo = 'U' or ' \(u\) ', the leading \(m\) by \(m\) upper triangular part of the array a must contain the upper triangular part of the Hermitian matrix and the strictly lower triangular part of \(a\) is not referenced, and when uplo = 'L' or ' 1 ', the leading \(m\) by \(m\) lower triangular part of the array a must contain the lower triangular part of the Hermitian matrix, and the strictly upper triangular part of \(a\) is not referenced. Before entry with side \(=\) ' \(R\) ' or ' \(r\) ', the \(n\) by \(n\) part of the array \(a\) must contain the Hermitian matrix, such that when uplo = 'U' or 'u', the leading \(n\) by \(n\) upper triangular part of the array a must contain the upper triangular part of the Hermitian matrix and the strictly lower triangular part of \(a\) is not referenced, and when uplo = ' \(L\) ' or ' \(l\) ', the leading \(n\) by \(n\) lower triangular part of the array a must contain the lower triangular part of the Hermitian matrix, and the strictly upper triangular part of \(a\) is not referenced. The imaginary parts of the diagonal elements need not be set, they are assumed to be zero.

INTEGER. Specifies the first dimension of \(a\) as declared in the calling (sub) program. When side = 'L' or ' 1 ' then \(l d a\) must be at least \(\max (1, m)\), otherwise lda must be at least \(\max (1, n)\).

COMPLEX for chemm
DOUBLE COMPLEX for zhemm
Array, DIMENSION ( \(1 \mathrm{db}, n\) ). Before entry, the leading \(m\) by \(n\) part of the array \(b\) must contain the matrix \(b\).

INTEGER. Specifies the first dimension of \(b\) as declared in the calling (sub)program. The value of \(1 d b\) must be at least \(\max (1, m)\).
\begin{tabular}{ll} 
beta & COMPLEX for chemm \\
& DOUBLE COMPLEX for zhemm
\end{tabular}

Specifies the scalar beta. When beta is supplied as zero, then \(c\) need not be set on input.

C
COMPLEX for chemm DOUBLE COMPLEX for zhemm

Array, DIMENSION \((c, n)\). Before entry, the leading \(m\) by \(n\) part of the array \(c\) must contain the matrix \(c\), except when beta is zero, in which case \(c\) need not be set on entry.

Idc INTEGER. Specifies the first dimension of \(c\) as declared in the calling (sub)program. The value of \(I d c\) must be at least max \((1, m)\).

\section*{Output Parameters}

Overwritten by the \(m\) by \(n\) updated matrix.

\section*{?herk}

Performs a rank-n update of a Hermitian matrix.

\section*{Syntax}
```

call cherk (uplo, trans, n, k, alpha, a, lda, beta, c, ldc)
call zherk (uplo, trans, n, k, alpha, a, lda, beta, c, ldc)

```

\section*{Description}

The ?herk routines perform a matrix-matrix operation using Hermitian matrices. The operation is defined as
```

c := alpha*a*conjg(a') + beta*C,
or
c := alpha*conjg(a')*a + beta*C,
where:
alpha and beta are real scalars
c}\mathrm{ is an n by n Hermitian matrix

```
\(a\) is an \(n\) by \(k\) matrix in the first case and a \(k\) by \(n\) matrix in the second case.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{4}{*}{uplo} & CHARACTER*1. Specifies whether the upper or lower triangular part of the array \(c\) is to be referenced as follows: \\
\hline & uplo value Part of Array \(c\) To Be Referenced \\
\hline & U or \(u \quad\)\begin{tabular}{l} 
Only the upper triangular part of \(C\) is to be \\
referenced.
\end{tabular} \\
\hline & \begin{tabular}{l}
Lor 1 \\
Only the lower triangular part of \(C\) is to be referenced.
\end{tabular} \\
\hline \multirow[t]{4}{*}{trans} & CHARACTER*1. Specifies the operation to be performed as follows: \\
\hline & trans value Operation to be Performed \\
\hline & N orn \(\quad C:=a l p h a * a * C o n j g\left(a^{\prime}\right)+\) beta* \(C\) \\
\hline & Corc \(C:=a l p h a * \operatorname{conjg}\left(a^{\prime}\right) * a+b e t a * c\) \\
\hline \(n\) & INTEGER. Specifies the order of the matrix \(c\). The value of \(n\) must be at least zero. \\
\hline k & \begin{tabular}{l}
INTEGER. With trans = 'N' or 'n', \(k\) specifies the number of columns of the matrix \(a\), and with \\
trans \(=\) ' C ' or ' c ', \(k\) specifies the number of rows of the matrix \(a\). The value of \(k\) must be at least zero.
\end{tabular} \\
\hline \multirow[t]{3}{*}{alpha} & \multirow[t]{2}{*}{REAL for cherk} \\
\hline & \\
\hline & Specifies the scalar alpha. \\
\hline \(a\) & COMPLEX for cherk \\
\hline & DOUBLE COMPLEX for zherk \\
\hline & Array, DIMENSION (lda, ka), where ka is \(k\) when trans = 'N' or 'n', and is \(n\) otherwise. Before entry with trans \(=\) ' \(N\) ' or ' \(n\) ', the leading \(n\) by \(k\) part of the array a must contain the matrix \(a\), otherwise the leading \(k\) by \(n\) part of the array a must contain the matrix \(a\). \\
\hline Ida & INTEGER. Specifies the first dimension of a as declared in the calling (sub)program. When trans \(=' N\) ' or ' \(n\) ', then Ida must be at least max ( 1 , \(n\) ), otherwise \(I d a\) must be at least \(\max (1, k)\). \\
\hline
\end{tabular}
\begin{tabular}{ll} 
beta & REAL for cherk \\
DOUBLE PRECISION for zherk \\
C & \begin{tabular}{l} 
Specifies the scalar beta. \\
\end{tabular} \\
& \begin{tabular}{l} 
COMPLEX for cherk \\
DOUBLE COMPLEX for zherk
\end{tabular}
\end{tabular}

Array, DIMENSION ( \(1 d c, n\) ). Before entry with uplo = 'U' or 'u', the leading \(n\) by \(n\) upper triangular part of the array \(c\) must contain the upper triangular part of the Hermitian matrix and the strictly lower triangular part of \(c\) is not referenced.

Before entry with uplo = 'L' or 'l', the leading \(n\) by \(n\) lower triangular part of the array \(c\) must contain the lower triangular part of the Hermitian matrix and the strictly upper triangular part of \(c\) is not referenced.

The imaginary parts of the diagonal elements need not be set, they are assumed to be zero.

Idc INTEGER. Specifies the first dimension of \(c\) as declared in the calling (sub)program. The value of \(l d c\) must be at least \(\max (1, n)\).

\section*{Output Parameters}

With uplo = 'U' or 'u', the upper triangular part of the array \(c\) is overwritten by the upper triangular part of the updated matrix.

With uplo = 'L' or 'l', the lower triangular part of the array \(c\) is overwritten by the lower triangular part of the updated matrix.
The imaginary parts of the diagonal elements are set to zero.

\section*{?her2k}

\section*{Performs a rank-2k update of a Hermitian matrix.}

\section*{Syntax}
```

call cher2k (uplo, trans, n, k, alpha, a, lda, b, ldb, beta, c, ldc)
call zher2k (uplo, trans, n, k, alpha, a, lda, b, ldb, beta, c, ldc)

```

\section*{Description}

The ?her 2 k routines perform a rank-2k matrix-matrix operation using Hermitian matrices. The operation is defined as
\(c:=a l p h a * a * \operatorname{conjg}\left(b^{\prime}\right)+\operatorname{conjg}(a l p h a) * b * \operatorname{conjg}\left(a^{\prime}\right)+b e t a * c\),
or
\(c:=a l p h a * \operatorname{conjg}\left(b^{\prime}\right) * a+\operatorname{conjg}(a l p h a) * \operatorname{conjg}\left(a^{\prime}\right) * b+b e t a * c\),
where:
alpha is a scalar and beta is a real scalar
\(c\) is an \(n\) by \(n\) Hermitian matrix
\(a\) and \(b\) are \(n\) by \(k\) matrices in the first case and \(k\) by \(n\) matrices in the second case.

\section*{Input Parameters}
uplo CHARACTER*1. Specifies whether the upper or lower triangular part of the array \(c\) is to be referenced as follows:
\begin{tabular}{|c|c|}
\hline uplo value & Part of Array C To Be Referenced \\
\hline u or u & Only the upper triangular part of \(C\) is to be referenced. \\
\hline L or 1 & Only the lower triangular part of \(C\) is to be referenced. \\
\hline \multicolumn{2}{|l|}{CHARACTER*1. Specifies the operation to be performed as follows:} \\
\hline trans value & Operation to be Performed \\
\hline N or n & \[
\begin{aligned}
c:= & a l p h a * a * \operatorname{conjg}\left(b^{\prime}\right) \\
& +a l p h a * b * \operatorname{conjg}\left(a^{\prime}\right)+b e t a * c
\end{aligned}
\] \\
\hline C or c & \[
\begin{aligned}
c:= & a l p h a * \operatorname{conjg}\left(a^{\prime}\right) * b \\
& +a l p h a * \operatorname{conjg}\left(b^{\prime}\right) * a+b e t a * c
\end{aligned}
\] \\
\hline
\end{tabular}

INTEGER. Specifies the order of the matrix \(c\). The value of \(n\) must be at least zero.
k
INTEGER. With trans \(=\) ' \(N\) ' or ' \(n\) ', \(k\) specifies the number of columns of the matrix \(a\), and with
trans = ' C' or 'c', \(k\) specifies the number of rows of the matrix \(a\). The value of \(k\) must be at least zero.
```

alpha COMPLEX for cher 2k
DOUBLE COMPLEX for zher2k
Specifies the scalar alpha.
COMPLEX for cher2k
DOUBLE COMPLEX for zher2k

```

Array, DIMENSION (lda, ka), where \(k a\) is \(k\) when trans = 'N' or 'n', and is \(n\) otherwise. Before entry with trans \(=\) ' \(N\) ' or ' \(n\) ', the leading \(n\) by \(k\) part of the array a must contain the matrix \(a\), otherwise the leading \(k\) by \(n\) part of the array a must contain the matrix \(a\).

INTEGER. Specifies the first dimension of a as declared in the calling (sub)program. When trans = 'N' or 'n', then lda must be at least max (1, \(n\) ), otherwise 1 da must be at least \(\max (1, k)\).
REAL for cher \(2 k\)
DOUBLE PRECISION for zher2k

Specifies the scalar beta.
COMPLEX for cher 2 k DOUBLE COMPLEX for \(z h e r 2 k\)

Array, DIMENSION ( \(1 \mathrm{db}, \mathrm{kb}\) ), where \(k b\) is \(k\) when trans = ' N ' or ' n ', and is \(n\) otherwise. Before entry with trans \(={ }^{\prime} N\) ' or ' \(n\) ', the leading \(n\) by \(k\) part of the array \(b\) must contain the matrix \(b\), otherwise the leading \(k\) by \(n\) part of the array \(b\) must contain the matrix \(b\).
INTEGER. Specifies the first dimension of \(b\) as declared in the calling (sub)program. When trans \(=\) ' \(N\) ' or ' \(n\) ', then \(1 d b\) must be at least \(\max (1\), \(n)\), otherwise \(1 d b\) must be at least \(\max (1, k)\).

COMPLEX for cher 2 k DOUBLE COMPLEX for \(z h e r 2 k\)

Array, DIMENSION ( \(1 d c, n\) ). Before entry with uplo = 'U' or ' \(u\) ', the leading \(n\) by \(n\) upper triangular part of the array \(c\) must contain the upper triangular part of the Hermitian matrix and the strictly lower triangular part of \(c\) is not referenced.
Before entry with uplo = ' L ' or ' 1 ', the leading \(n\) by \(n\) lower triangular part of the array \(c\) must contain the lower triangular part of the Hermitian matrix and the strictly upper triangular part of \(c\) is not referenced.

The imaginary parts of the diagonal elements need not be set, they are assumed to be zero.
ldc INTEGER. Specifies the first dimension of \(c\) as declared in the calling (sub)program. The value of \(1 d c\) must be at least \(\max (1, n)\).

\section*{Output Parameters}
c
With uplo= 'U' or 'u', the upper triangular part of the array \(c\) is overwritten by the upper triangular part of the updated matrix.
With uplo = 'L' or 'l', the lower triangular part of the array \(c\) is overwritten by the lower triangular part of the updated matrix.
The imaginary parts of the diagonal elements are set to zero.

\section*{?symm}

Performs a scalar-matrix-matrix product (one matrix operand is symmetric) and adds the result to a scalar-matrix product.

\section*{Syntax}
```

call ssymm (side, uplo, m, n, alpha, a, lda, b, ldb, beta, c, ldc)
call dsymm (side, uplo, m, n, alpha, a, lda, b, ldb, beta, c, ldc)
call csymm (side, uplo, m, n, alpha, a, lda, b, ldb, beta, c, ldc)
call zsymm (side, uplo, m, n, alpha, a, lda, b, ldb, beta, c, ldc)

```

\section*{Description}

The ?symm routines perform a matrix-matrix operation using symmetric matrices. The operation is defined as
```

c := alpha*a*b + beta*C,

```
or
\(c:=a l p h a * b * a+b e t a * C\),
where:
alpha and beta are scalars
\(a\) is a symmetric matrix
\(b\) and \(c\) are \(m\) by \(n\) matrices.

\section*{Input Parameters}
side CHARACTER*1. Specifies whether the symmetric matrix a appears on the left or right in the operation as follows:
\begin{tabular}{ll}
\hline side value & Operation to be Performed \\
L or l & \(c:=a l p h a * a * b+b e t a{ }^{*} C\) \\
R or \(r\) & \(c:=a l p h a \star b * a+\) bet \(a{ }^{*} C\) \\
\hline
\end{tabular}
uplo CHARACTER*1. Specifies whether the upper or lower triangular part of the symmetric matrix a is to be referenced as follows:
\begin{tabular}{ll}
\hline uplo value & Part of Array a To Be Referenced \\
\hline U or \(u\) & \begin{tabular}{l} 
Only the upper triangular part of the symmetric \\
matrix is to be referenced.
\end{tabular} \\
L or 1 & \begin{tabular}{l} 
Only the lower triangular part of the symmetric \\
matrix is to be referenced.
\end{tabular}
\end{tabular}
m
n
alpha
a

INTEGER. Specifies the number of rows of the matrix \(c\). The value of \(m\) must be at least zero.

INTEGER. Specifies the number of columns of the matrix \(c\). The value of \(n\) must be at least zero.

REAL for ssymm
DOUBLE PRECISION for dsymm
COMPLEX for csymm
DOUBLE COMPLEX for zsymm
Specifies the scalar alpha.
REAL for ssymm
DOUBLE PRECISION for dsymm
COMPLEX for csymm
DOUBLE COMPLEX for zsymm
Array, DIMENSION ( \(1 \mathrm{da}, \mathrm{ka}\) ), where ka is \(m\) when side = 'L' or 'l' and is n otherwise. Before entry with side \(=\) 'L' or ' l ', the \(m\) by \(m\) part of the array a must contain the symmetric matrix, such that when uplo = 'U' or 'u', the
leading \(m\) by \(m\) upper triangular part of the array a must contain the upper triangular part of the symmetric matrix and the strictly lower triangular part of \(a\) is not referenced, and when uplo = 'L' or ' 1 ', the leading \(m\) by \(m\) lower triangular part of the array a must contain the lower triangular part of the symmetric matrix and the strictly upper triangular part of \(a\) is not referenced.

Before entry with side \(=\) ' \(R\) ' or ' \(r\) ', the \(n\) by \(n\) part of the array a must contain the symmetric matrix, such that when uplo=' U ' or ' \(u\) ', the leading \(n\) by \(n\) upper triangular part of the array a must contain the upper triangular part of the symmetric matrix and the strictly lower triangular part of \(a\) is not referenced, and when uplo = 'L' or ' 1 ', the leading \(n\) by \(n\) lower triangular part of the array a must contain the lower triangular part of the symmetric matrix and the strictly upper triangular part of \(a\) is not referenced.

C

INTEGER. Specifies the first dimension of \(a\) as declared in the calling (sub)program. When side = 'L' or ' 1 ' then Ida must be at least max \((1, m)\), otherwise 1 da must be at least \(\max (1, n)\).
REAL for ssymm
DOUBLE PRECISION for dsymm
COMPLEX for csymm
DOUBLE COMPLEX for zsymm
Array, DIMENSION ( \(1 \mathrm{db}, \mathrm{n}\) ). Before entry, the leading \(m\) by \(n\) part of the array b must contain the matrix \(b\).
INTEGER. Specifies the first dimension of b as declared in the calling (sub)program. The value of \(1 d b\) must be at least \(\max (1, m)\).
REAL for ssymm
DOUBLE PRECISION for dsymm
COMPLEX for csymm
DOUBLE COMPLeX for zsymm
Specifies the scalar beta. When beta is supplied as zero, then \(c\) need not be set on input.
REAL for ssymm
DOUBLE PRECISION for dsymm
COMPLEX for csymm
double complex for zsymm
Array, dimension ( \(1 d c, n\) ). Before entry, the leading \(m\) by \(n\) part of the array \(c\) must contain the matrix \(c\), except when beta is zero, in which case \(c\) need not be set on entry.

Idc INTEGER. Specifies the first dimension of \(c\) as declared in the calling (sub)program. The value of \(1 d c\) must be at least max \((1, m)\).

\section*{Output Parameters}
\(c \quad\) Overwritten by the \(m\) by \(n\) updated matrix.

\section*{?syrk}

Performs a rank-n update of a symmetric matrix.

\section*{Syntax}
```

call ssyrk (uplo, trans, n, k, alpha, a, lda, beta, c, ldc)
call dsyrk (uplo, trans, n, k, alpha, a, lda, beta, c, ldc)
call csyrk (uplo, trans, n, k, alpha, a, lda, beta, c, ldc)
call zsyrk (uplo, trans, n, k, alpha, a, lda, beta, c, ldc)

```

\section*{Description}

The ?syrk routines perform a matrix-matrix operation using symmetric matrices. The operation is defined as
```

c := alpha*a*a' + beta*c,

```
or
c := alpha*a'*a + beta*c,
where:
alpha and beta are scalars
\(c\) is an \(n\) by \(n\) symmetric matrix
\(a\) is an \(n\) by \(k\) matrix in the first case and a \(k\) by \(n\) matrix in the second case.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{4}{*}{uplo} & CHARACTER*1. Specifies whether the upper or lower triangular part of the array \(c\) is to be referenced as follows: \\
\hline & uplo value Part of Array C To Be Referenced \\
\hline & U or \(u \quad \begin{aligned} & \text { Only the upper triangular part of } c \text { is to be } \\ & \text { referenced. }\end{aligned}\) \\
\hline & L or \(1 \quad \begin{aligned} & \text { Only the lower triangular part of } c \text { is to be } \\ & \text { referenced. }\end{aligned}\) \\
\hline \multirow[t]{5}{*}{trans} & CHARACTER*1. Specifies the operation to be performed as follows: \\
\hline & trans value Operation to be Performed \\
\hline & Norn \(\quad\) : \(=\) alpha*a*a' + beta*C \\
\hline & Tort \(\quad c:=a l p h a * a ' * a+\) beta* \(C\) \\
\hline & Corc \(C:=a l p h a * a ' * a+\) beta* \(C\) \\
\hline \(n\) & INTEGER. Specifies the order of the matrix \(c\). The value of \(n\) must be at least zero. \\
\hline k & INTEGER. On entry with trans \(=\) ' \(N\) ' or ' \(n\) ', \(k\) specifies the number of columns of the matrix \(a\), and on entry with trans = ' \(T\) ' or 't' or ' \(C\) ' or ' \(c\) ', \(k\) specifies the number of rows of the matrix \(a\). The value of \(k\) must be at least zero. \\
\hline alpha & \begin{tabular}{l}
REAL for ssyrk \\
DOUBLE PRECISION for dsyrk \\
COMPLEX for csyrk \\
DOUBLE COMPLEX for zsyrk
\end{tabular} \\
\hline & Specifies the scalar alpha. \\
\hline
\end{tabular}
\(a\)

REAL for ssyrk
DOUBLE PRECISION for dsyrk
COMPLEX for csyrk
DOUBLE COMPLEX for zsyrk
Array, DIMENSION (lda,ka), where ka is \(k\) when trans = 'N' or 'n', and is \(n\) otherwise. Before entry with trans \(={ }^{\prime} N\) ' or ' \(n\) ', the leading \(n\) by \(k\) part of the array a must contain the matrix \(a\), otherwise the leading \(k\) by \(n\) part of the array a must contain the matrix \(a\).

INTEGER. Specifies the first dimension of a as declared in the calling (sub)program. When trans \(=\) ' \(N\) ' or ' \(n\) ', then lda must be at least \(\max (1, n)\), otherwise 1 da must be at least max \((1, k)\).

REAL for ssyrk
DOUBLE PRECISION for dsyrk
COMPLEX for csyrk
DOUBLE COMPLEX for zsyrk
Specifies the scalar beta.
REAL for ssyrk
DOUBLE PRECISION for dsyrk
COMPLEX for csyrk
DOUBLE COMPLEX for zsyrk
Array, DIMENSION ( \(I d c, n\) ). Before entry with uplo = 'U' or 'u', the leading \(n\) by \(n\) upper triangular part of the array \(c\) must contain the upper triangular part of the symmetric matrix and the strictly lower triangular part of \(c\) is not referenced.

Before entry with uplo \(=\) 'L' or 'l', the leading \(n\) by \(n\) lower triangular part of the array \(c\) must contain the lower triangular part of the symmetric matrix and the strictly upper triangular part of \(c\) is not referenced.

INTEGER. Specifies the first dimension of \(c\) as declared in the calling (sub)program. The value of \(1 d c\) must be at least max \((1, n)\).

\section*{Output Parameters}

With uplo = 'U' or 'u', the upper triangular part of the array \(c\) is overwritten by the upper triangular part of the updated matrix.

With uplo = 'L' or 'l', the lower triangular part of the array \(c\) is overwritten by the lower triangular part of the updated matrix.

\section*{?syr2k}

Performs a rank-2k update of a symmetric matrix.

\section*{Syntax}
```

call ssyr2k (uplo, trans, n, k, alpha, a, lda, b, ldb, beta, c, ldc)
call dsyr2k (uplo, trans, n, k, alpha, a, lda, b, ldb, beta, c, ldc)
call csyr2k (uplo, trans, n, k, alpha, a, lda, b, ldb, beta, c, ldc)
call zsyr2k (uplo, trans, n, k, alpha, a, lda, b, ldb, beta, c, ldc)

```

\section*{Description}

The ? syr 2 k routines perform a rank- 2 k matrix-matrix operation using symmetric matrices. The operation is defined as
```

c := alpha*a*b' + alpha*b*a' + beta*c,
or
c := alpha*a'*b + alpha*b'*a + beta*c,

```
where:
alpha and beta are scalars
\(c\) is an \(n\) by \(n\) symmetric matrix
\(a\) and \(b\) are \(n\) by \(k\) matrices in the first case and \(k\) by \(n\) matrices in the second case.

\section*{Input Parameters}
uplo CHARACTER*1. Specifies whether the upper or lower triangular part of the
array \(C\) is to be referenced as follows:
\begin{tabular}{ll}
\hline uplo value & Part of Array \(c\) To Be Referenced \\
\hline U or u & \begin{tabular}{l} 
Only the upper triangular part of \(c\) is to be \\
referenced.
\end{tabular} \\
L or I & \begin{tabular}{l} 
Only the lower triangular part of \(c\) is to be \\
referenced.
\end{tabular} \\
\hline
\end{tabular}
trans CHARACTER*1. Specifies the operation to be performed as follows:
\begin{tabular}{ll}
\hline trans value & Operation to be Performed \\
N or n & \(c:=a l p h a * a * b^{\prime}+a l p h a * b * a^{\prime}+b e t a * c\) \\
T or t & \(c:=a l p h a * a^{\prime} * b+a l p h a * b^{\prime} * a+b e t a * c\) \\
C or C & \(c:=a l p h a * a^{\prime} * b+a l p h a * b^{\prime} * a+b e t a * c\) \\
\hline
\end{tabular}
n
\(k\)
alpha
a
lda
b

INTEGER. Specifies the order of the matrix \(c\). The value of \(n\) must be at least zero.

INTEGER. On entry with trans \(=\) ' \(N\) ' or ' \(n\) ', \(k\) specifies the number of columns of the matrices \(a\) and \(b\), and on entry with trans \(=\) ' \(T\) ' or 't' or ' \(C\) ' or ' \(c\) ', \(k\) specifies the number of rows of the matrices \(a\) and \(b\). The value of \(k\) must be at least zero.

REAL for ssyr \(2 k\) DOUBLE PRECISION for dsyr2k COMPLEX for csyr2k DOUBLE COMPLEX for zsyr \(2 k\)

Specifies the scalar alpha.
REAL for ssyr \(2 k\) DOUBLE PRECISION for dsyr2k COMPLEX for csyr2k DOUBLE COMPLEX for zsyr2k

Array, DIMENSION (lda,ka), where ka is \(k\) when trans \(={ }^{\prime} N\) ' or ' \(n '\), and is \(n\) otherwise. Before entry with trans \(=\) ' \(N\) ' or ' \(n\) ', the leading \(n\) by \(k\) part of the array a must contain the matrix \(a\), otherwise the leading \(k\) by \(n\) part of the array a must contain the matrix \(a\).

INTEGER. Specifies the first dimension of a as declared in the calling (sub)program. When trans \(={ }^{\prime} N\) ' or ' \(n\) ', then Ida must be at least \(\max (1, n)\), otherwise 1 da must be at least \(\max (1, k)\).

REAL for ssyr \(2 k\)
DOUBLE PRECISION for dsyr 2 k
COMPLEX for csyr2k
DOUBLE COMPLEX for zsyr2k

Array, DIMENSION (ldb, \(k b\) ) where \(k b\) is \(k\) when trans \(=\) ' \(N\) ' or ' \(n\) ' and is ' \(n\) ' otherwise. Before entry with trans \(=\) ' \(N\) ' or ' \(n\) ', the leading \(n\) by \(k\) part of the array \(b\) must contain the matrix \(b\), otherwise the leading \(k\) by \(n\) part of the array \(b\) must contain the matrix \(b\).

INTEGER. Specifies the first dimension of a as declared in the calling (sub)program. When trans \(=\) ' \(N\) ' or ' \(n\) ', then \(l d b\) must be at least \(\max (1, n)\), otherwise \(1 d b\) must be at least \(\max (1, k)\).

REAL for ssyr \(2 k\)
DOUBLE PRECISION for dsyr \(2 k\)
COMPLEX for csyr2k
DOUBLE COMPLEX for zsyr2k
Specifies the scalar beta.
REAL for ssyr2k
DOUBLE PRECISION for dsyr2k
COMPLEX for csyr2k
DOUBLE COMPLEX for zsyr2k
Array, DIMENSION ( 1 dc, n). Before entry with uplo = 'U' or 'u', the leading \(n\) by \(n\) upper triangular part of the array \(c\) must contain the upper triangular part of the symmetric matrix and the strictly lower triangular part of \(c\) is not referenced.
Before entry with uplo \(=\) ' L' or 'l', the leading \(n\) by \(n\) lower triangular part of the array \(c\) must contain the lower triangular part of the symmetric matrix and the strictly upper triangular part of \(c\) is not referenced.
INTEGER. Specifies the first dimension of \(c\) as declared in the calling (sub)program. The value of \(1 d c\) must be at least max \((1, n)\).

\section*{Output Parameters}

With uplo = 'U' or 'u', the upper triangular part of the array \(c\) is overwritten by the upper triangular part of the updated matrix.

With uplo = 'L' or 'l', the lower triangular part of the array \(c\) is overwritten by the lower triangular part of the updated matrix.

\section*{?trmm}

Computes a scalar-matrix-matrix product (one matrix operand is triangular).

\section*{Syntax}
```

call strmm (side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)
call dtrmm (side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)
call ctrmm (side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)
call ztrmm (side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)

```

\section*{Description}

The ?t rmm routines perform a matrix-matrix operation using triangular matrices. The operation is defined as
```

b := alpha*op (a)*b

```
or
\(b:=a l p h a * b * o p(a)\)
where:
alpha is a scalar
\(b\) is an \(m\) by \(n\) matrix
\(a\) is a unit, or non-unit, upper or lower triangular matrix
\(\mathrm{op}(a)\) is one of \(\mathrm{op}(a)=a\) or \(\mathrm{op}(a)=a^{\prime}\) or op \((a)=\operatorname{conjg}\left(a^{\prime}\right)\).

\section*{Input Parameters}
side
CHARACTER*1. Specifies whether op (a) multiplies \(b\) from the left or right in the operation as follows:
\begin{tabular}{ll}
\hline side value & Operation To Be Performed \\
L or \(l\) & \(b:=\) alpha*op \((a) * b\) \\
\(R\) or \(r\) & \(b:=\) alpha* \(b * o p(a)\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multirow[t]{4}{*}{uplo} & CHARACTER* 1 . Specifies whether the matrix \(a\) is an upper or lower triangular matrix as follows: \\
\hline & uplo value Matrix a \\
\hline & U or u Matrix \(a\) is an upper triangular matrix. \\
\hline & L or \(1 \quad\) Matrix a is a lower triangular matrix. \\
\hline \multirow[t]{5}{*}{transa} & CHARACTER*1. Specifies the form of op (a) to be used in the matrix multiplication as follows: \\
\hline & transa value Form of op (a) \\
\hline & N orn n ( \(\quad\) p \((a)=a\) \\
\hline & Tort op (a) = \(\mathrm{a}^{\prime}\) \\
\hline & Corct op (a) = conjg (a') \\
\hline \multirow[t]{4}{*}{diag} & CHARACTER*1. Specifies whether or not a is unit triangular as follows: \\
\hline & diag value Matrix a \\
\hline & U or \(\mathrm{u} \quad\) Matrix \(a\) is assumed to be unit triangular. \\
\hline & N or \(\mathrm{n} \quad\) Matrix a is not assumed to be unit triangular. \\
\hline m & INTEGER. Specifies the number of rows of \(b\). The value of \(m\) must be at least zero. \\
\hline n & INTEGER. Specifies the number of columns of \(b\). The value of \(n\) must be at least zero. \\
\hline \multirow[t]{5}{*}{alpha} & REAL for strmm \\
\hline & DOUBLE PRECISION for dtrmm \\
\hline & COMPLEX for ctrmm \\
\hline & DOUBLE COMPLEX for ztrmm \\
\hline & Specifies the scalar alpha. When alpha is zero, then \(a\) is not referenced and \(b\) need not be set before entry. \\
\hline \multirow[t]{4}{*}{a} & REAL for strmm \\
\hline & DOUBLE PRECISION for dtrmm \\
\hline & COMPLEX for ctrmm \\
\hline & DOUBLE COMPLEX for ztrmm \\
\hline
\end{tabular}

Array, DIMENSION ( \(l d a, k\) ), where \(k\) is \(m\) when side \(=\) 'L' or 'l' and is \(n\) when side = 'R' or 'r'. Before entry with uplo = 'U' or 'u', the leading \(k\) by \(k\) upper triangular part of the array a must contain the upper triangular matrix and the strictly lower triangular part of \(a\) is not referenced.

Before entry with uplo = 'L' or ' l ', the leading \(k\) by \(k\) lower triangular part of the array a must contain the lower triangular matrix and the strictly upper triangular part of \(a\) is not referenced. When diag = 'U' or 'u', the diagonal elements of \(a\) are not referenced either, but are assumed to be unity.

Ida INTEGER. Specifies the first dimension of \(a\) as declared in the calling (sub)program. When side = 'L' or ' 1 ', then lda must be at least max ( 1 , \(m\) ), when side \(=\) ' \(R\) ' or ' \(r\) ', then lda must be at least \(\max (1, n)\).

REAL for strmm
DOUBLE PRECISION for dtrmm
COMPLEX for ctrmm
DOUBLE COMPLEX for ztrmm
Array, dimension (ldb,n). Before entry, the leading \(m\) by \(n\) part of the array \(b\) must contain the matrix \(b\).

INTEGER. Specifies the first dimension of \(b\) as declared in the calling (sub)program. The value of \(1 d b\) must be at least \(\max (1, m)\).

\section*{Output Parameters}
b Overwritten by the transformed matrix.

\section*{?trsm}

Solves a matrix equation (one matrix operand is
triangular).

\section*{Syntax}
```

call strsm (side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)
call dtrsm (side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)
call ctrsm (side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)
call ztrsm (side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)

```

\section*{Description}

The ?trsm routines solve one of the following matrix equations:
\(o p(a) * x=a l p h a * b\),
or
\(x^{*} \mathrm{op}(a)=a l p h a * b\),
where:
alpha is a scalar
\(x\) and \(b\) are \(m\) by \(n\) matrices
\(a\) is a unit, or non-unit, upper or lower triangular matrix
\(\mathrm{op}(\mathrm{a})\) is one of \(\mathrm{op}(\mathrm{a})=\mathrm{a}\) or \(\mathrm{op}(\mathrm{a})=\mathrm{a}^{\prime}\) or
\(\mathrm{op}(\mathrm{a})=\operatorname{conjg}\left(\mathrm{a}^{\prime}\right)\).
The matrix \(x\) is overwritten on \(b\).

\section*{Input Parameters}
side CHARACTER*1. Specifies whether op (a) appears on the left or right of \(x\) for the operation to be performed as follows:
\begin{tabular}{ll}
\hline side value & Operation To Be Performed \\
\hline L or \(l\) & \(\mathrm{op}(a) * X=a l p h a * b\) \\
R or \(r\) & \(x^{*} \mathrm{Op}(a)=a l p h a * b\) \\
\hline
\end{tabular}
uplo CHARACTER*1. Specifies whether the matrix \(a\) is an upper or lower triangular matrix as follows:
\begin{tabular}{ll}
\hline uplo value & Matrix \(a\) \\
\hline U or \(u\) & Matrix \(a\) is an upper triangular matrix. \\
L or 1 & Matrix \(a\) is a lower triangular matrix. \\
\hline
\end{tabular}

CHARACTER*1. Specifies the form of op (a) to be used in the matrix multiplication as follows:
\begin{tabular}{ll} 
transa value & Form of op \((a)\) \\
N or n & op \((a)=a\)
\end{tabular}
\begin{tabular}{ll}
\hline transa value & Form of op \((a)\) \\
\(T\) or \(t\) & op \((a)=a^{\prime}\) \\
\(C\) or \(c\) & \(o p(a)=\operatorname{conjg}\left(a^{\prime}\right)\) \\
\hline
\end{tabular}

CHARACTER*1. Specifies whether or not a is unit triangular as follows:
\begin{tabular}{ll}
\hline diag value & Matrix \(a\) \\
\hline U or u & Matrix \(a\) is assumed to be unit triangular. \\
N or n & Matrix \(a\) is not assumed to be unit triangular. \\
\hline
\end{tabular}

INTEGER. Specifies the number of rows of \(b\). The value of \(m\) must be at least zero.

INTEGER. Specifies the number of columns of \(b\). The value of \(n\) must be at least zero.

REAL for strsm
DOUBLE PRECISION for dtrsm
COMPLEX for ctrsm
DOUBLE COMPLEX for \(z t r s m\)
Specifies the scalar alpha. When alpha is zero, then a is not referenced and \(b\) need not be set before entry.

REAL for strsm
DOUBLE PRECISION for dtrsm
COMPLEX for ctrsm
DOUBLE COMPLEX for ztrsm
Array, DIMENSION ( \(l d a, k\) ), where \(k\) is \(m\) when side \(=\) 'L' or 'l' and is \(n\) when side = 'R' or 'r'. Before entry with uplo \(=' U '\) or 'u', the leading \(k\) by \(k\) upper triangular part of the array a must contain the upper triangular matrix and the strictly lower triangular part of \(a\) is not referenced.

Before entry with uplo \(=\) 'L' or 'l', the leading \(k\) by \(k\) lower triangular part of the array a must contain the lower triangular matrix and the strictly upper triangular part of \(a\) is not referenced. When diag = 'U' or 'u', the diagonal elements of a are not referenced either, but are assumed to be unity.

INTEGER. Specifies the first dimension of a as declared in the calling (sub)program. When side = 'L' or 'l', then lda must be at least max (1, \(m\) ), when side \(=\) ' \(R\) ' or 'r', then lda must be at least max \((1, n)\).

REAL for strsm
DOUBLE PRECISION for dtrsm
COMPLEX for ctrsm
DOUBLE COMPLEX for ztrsm
Array, DIMENSION ( \(1 d b, n\) ). Before entry, the leading \(m\) by \(n\) part of the array \(b\) must contain the right-hand side matrix \(b\).
\(1 d b \quad\) INTEGER. Specifies the first dimension of \(b\) as declared in the calling (sub)program. The value of 1 db must be at least max \((1, m)\).

\section*{Output Parameters}
b
Overwritten by the solution matrix \(x\).

\section*{Sparse BLAS Routines and Functions}

This section describes Sparse BLAS, an extension of BLAS Level 1 included in Intel \({ }^{\circledR}\) Math Kernel Library beginning with Intel MKL release 2.1. Sparse BLAS is a group of routines and functions that perform a number of common vector operations on sparse vectors stored in compressed form.

Sparse vectors are those in which the majority of elements are zeros. Sparse BLAS routines and functions are specially implemented to take advantage of vector sparsity. This allows you to achieve large savings in computer time and memory. If \(n z\) is the number of non-zero vector elements, the computer time taken by Sparse BLAS operations will be \(O(\mathrm{nz})\).

\section*{Vector Arguments in Sparse BLAS}

Compressed sparse vectors. Let a be a vector stored in an array, and assume that the only non-zero elements of a are the following:
\[
a\left(k_{1}\right), a\left(k_{2}\right), a\left(k_{3}\right) \ldots a\left(k_{n z}\right),
\]
where \(n z\) is the total number of non-zero elements in a.
In Sparse BLAS, this vector can be represented in compressed form by two FORTRAN arrays, \(x\) (values) and indx (indices). Each array has \(n z\) elements:
```

x(1)=a(k (k),x(2)=a(k (k),···x(nz)=a(knz})

```


Thus, a sparse vector is fully determined by the triple ( \(n z, x\), indx). If you pass a negative or zero value of \(n z\) to Sparse BLAS, the subroutines do not modify any arrays or variables.

Full-storage vectors. Sparse BLAS routines can also use a vector argument fully stored in a single FORTRAN array (a full-storage vector). If \(y\) is a full-storage vector, its elements must be stored contiguously: the first element in \(y(1)\), the second in \(y(2)\), and so on. This corresponds to an increment incy \(=1\) in BLAS Level 1. No increment value for full-storage vectors is passed as an argument to Sparse BLAS routines or functions.

\section*{Naming Conventions in Sparse BLAS}

Similar to BLAS, the names of Sparse BLAS subprograms have prefixes that determine the data type involved: s and d for single- and double- precision real; c and z for single- and double-precision complex.

If a Sparse BLAS routine is an extension of a "dense" one, the subprogram name is formed by appending the suffix \(i\) (standing for indexed) to the name of the corresponding "dense" subprogram. For example, the Sparse BLAS routine saxpyi corresponds to the BLAS routine saxpy, and the Sparse BLAS function cdotci corresponds to the BLAS function cdotc.

\section*{Routines and Data Types in Sparse BLAS}

Routines and data types supported in the Intel MKL implementation of Sparse BLAS are listed in Table 2-4.

\section*{Table 2-4 Sparse BLAS Routines and Their Data Types}
\begin{tabular}{lll}
\begin{tabular}{l} 
Routine/ \\
Function
\end{tabular} & \begin{tabular}{l} 
Data \\
Types
\end{tabular} & Description \\
\(\underline{\text { ?axpyi }}\) & \(\mathrm{s}, \mathrm{d}, \mathrm{c}, \mathrm{z}\) & Scalar-vector product plus vector (routines) \\
\(\underline{\text { ?doti }}\) & \(\mathrm{s}, \mathrm{d}\) & \begin{tabular}{l} 
Dot product (functions) \\
?dotci
\end{tabular} \\
\(\mathrm{c}, \mathrm{z}\) & \begin{tabular}{l} 
Complex dot product conjugated (functions) \\
?dotui
\end{tabular} & \(\mathrm{c}, \mathrm{z}\) \\
\(\underline{? g t h r}\) & \(\mathrm{~s}, \mathrm{~d}, \mathrm{c}, \mathrm{z}\) & \begin{tabular}{l} 
Complex dot product unconjugated (functions) \\
Gathering a full-storage sparse vector into \\
compressed form: \(n z, x\), indx (routines)
\end{tabular} \\
\(\underline{\text { ?gthrz }}\) & \(\mathrm{s}, \mathrm{d}, \mathrm{c}, \mathrm{z}\) & \begin{tabular}{l} 
Gathering a full-storage sparse vector into \\
compressed form and assigning zeros to \\
gathered elements in the full-storage vector \\
(routines)
\end{tabular} \\
\(\underline{? \text { ?roti }}\) & \(\mathrm{s}, \mathrm{d}\) & \begin{tabular}{l} 
Givens rotation (routines) \\
\(\underline{\text { ?sctr }}\)
\end{tabular} \\
\(\mathrm{s}, \mathrm{d}, \mathrm{c}, \mathrm{z}\) & \begin{tabular}{l} 
Scattering a vector from compressed form to \\
full-storage form (routines)
\end{tabular} \\
\hline
\end{tabular}

\section*{BLAS Routines That Can Work With Sparse Vectors}

The following BLAS Level 1 routines will give correct results when you pass to them a compressed-form array \(x\) (with the increment incx \(=1\) ):
?asum sum of absolute values of vector elements
? copy copying a vector
?nrm2 Euclidean norm of a vector
?scal scaling a vector
i?amax index of the element with the largest absolute value or, for complex flavors, the largest sum \(|\operatorname{Rex}(i)|+|\operatorname{Imx}(i)|\).
i?amin index of the element with the smallest absolute value or, for complex flavors, the smallest sum \(|\operatorname{Rex}(i)|+|\operatorname{Imx}(i)|\).
The result \(i\) returned by \(i\) ? amax and \(i\) ? amin should be interpreted as index in the compressed-form array, so that the largest (smallest) value is \(x(i)\); the corresponding index in full-storage array is indx (i).

You can also call ?rotg to compute the parameters of Givens rotation and then pass these parameters to the Sparse BLAS routines ?roti.

\section*{?axpyi}

Adds a scalar multiple of compressed sparse vector to a full-storage vector.

\section*{Syntax}
```

call saxpyi (nz, a, x, indx, y)
call daxpyi (nz, a, x, indx, y)
call caxpyi (nz, a, x, indx, y)
call zaxpyi (nz, a, x, indx, y)

```

\section*{Description}

The ?axpyi routines perform a vector-vector operation defined as
```

y := a*x + y

```
where:

\footnotetext{
\(a\) is a scalar
}
( \(n z, x\), indx) is a sparse vector stored in compressed form
\(y\) is a vector in full storage form.
The ?axpyi routines reference or modify only the elements of \(y\) whose indices are listed in the array indx. The values in indx must be distinct.

\section*{Input Parameters}
\(n z \quad\) INTEGER. The number of elements in \(x\) and indx.
a REAL for saxpyi
DOUBLE PRECISION for daxpyi
COMPLEX for caxpyi
DOUBLE COMPLEX for zaxpyi
Specifies the scalar a.
REAL for saxpyi
DOUBLE PRECISION for daxpyi
COMPLEX for caxpyi
DOUBLE COMPLEX for zaxpyi
Array, DIMENSION at least \(n z\).
indx INTEGER. Specifies the indices for the elements of \(x\).
Array, DIMENSION at least nz.
\(y \quad\) REAL for saxpyi
DOUBLE PRECISION for daxpyi
COMPLEX for caxpyi
DOUBLE COMPLEX for zaxpyi
Array, DIMENSION at least \(\max _{i}\) (indx(i)).

\section*{Output Parameters}
\(y \quad\) Contains the updated vector \(y\).

\section*{?doti}

Computes the dot product of a compressed sparse real vector by a full-storage real vector.

\section*{Syntax}
```

res = sdoti (nz, x, indx, y)
res = ddoti (nz, x, indx, y)

```

\section*{Description}

The ? doti functions return the dot product of \(x\) and \(y\) defined as
```

x(1)*y(indx(1)) + x(2)*y(indx(2)) +...+x(nz)*y(indx(nz))

```
where the triple ( \(n z, x, i n d x\) ) defines a sparse real vector stored in compressed form, and \(y\) is a real vector in full storage form. The functions reference only the elements of \(y\) whose indices are listed in the array indx. The values in indx must be distinct.

\section*{Input Parameters}
```

nz INTEGER. The number of elements in }x\mathrm{ and indx.
x REAL for sdoti
DOUBLE PRECISION for ddoti
Array, DIMENSION at least nz.
indx INTEGER. Specifies the indices for the elements of x.
Array, DIMENSION at least nz.
y REAL for sdoti
DOUBLE PRECISION for ddoti
Array, DIMENSION at least max (indx(i)).

```

\section*{Output Parameters}
res
REAL for sdoti
DOUBLE PRECISION for ddoti
Contains the dot product of \(x\) and \(y\), if \(n z\) is positive. Otherwise, res contains 0.

\section*{?dotci}

Computes the conjugated dot product of a compressed sparse complex vector with a full-storage complex vector.

\section*{Syntax}
```

res = cdotci (nz, x, indx, y)
res = zdotci (nz, x, indx, y)

```

\section*{Description}

The ? dotci functions return the dot product of \(x\) and \(y\) defined as
```

conjg(x(1))*y(indx(1)) + ... + conjg(x(nz))*y(indx(nz))

```
where the triple ( \(n z, x, i n d x\) ) defines a sparse complex vector stored in compressed form, and \(y\) is a real vector in full storage form. The functions reference only the elements of \(y\) whose indices are listed in the array indx. The values in indx must be distinct.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \(n z\) & INTEGER. The number of elements in \(x\) and indx. \\
\hline \multirow[t]{3}{*}{\(x\)} & COMPLEX for cdotci \\
\hline & DOUBLE COMPLEX for zdotci \\
\hline & Array, DIMENSION at least nz. \\
\hline indx & Integer. Specifies the indices for the elements of \(x\). Array, DIMENSION at least \(n z\). \\
\hline \multirow[t]{3}{*}{y} & COMPLEX for cdotci \\
\hline & double complex for zdotci \\
\hline & Array, DIMENSION at least max \({ }_{i}\) (indx (i) ) . \\
\hline
\end{tabular}

\section*{Output Parameters}
res COMPLEX for cdotci
DOUBLE COMPLEX for zdotci
Contains the conjugated dot product of \(x\) and \(y\), if \(n z\) is positive. Otherwise, res contains 0 .

\section*{?dotui}

Computes the dot product of a compressed sparse complex vector by a full-storage complex vector.

\section*{Syntax}
```

res = cdotui (nz, x, indx, y)
res = zdotui (nz, x, indx, y)

```

\section*{Description}

The ?dotui functions return the dot product of \(x\) and \(y\) defined as
```

x(1)*y(indx(1)) + x(2)*y(indx(2)) +...+x(nz)*y(indx(nz))

```
where the triple ( \(n z, x\), indx) defines a sparse complex vector stored in compressed form, and \(y\) is a real vector in full storage form. The functions reference only the elements of \(y\) whose indices are listed in the array indx. The values in indx must be distinct.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline nz & INTEGER. The number of elements in \(x\) and indx \\
\hline \multirow[t]{3}{*}{\(x\)} & COMPLEX for cdotui \\
\hline & DOUBLE COMPLEX for zdotui \\
\hline & Array, dimension at least nz. \\
\hline indx & integer. Specifies the indices for the elements of \(x\). Array, DIMENSION at least nz. \\
\hline \multirow[t]{3}{*}{y} & COMPLEX for cdotui \\
\hline & double complex for zdotui \\
\hline & Array, DIMENSION at least max \({ }_{i}\) (indx(i)). \\
\hline
\end{tabular}

\section*{Output Parameters}
```

res COMPLEX for cdotui
DOUBLE COMPLEX for zdotui
Contains the dot product of }x\mathrm{ and }y\mathrm{ , if nz is positive. Otherwise, res
contains 0.

```

\section*{?gthr}

Gathers a full-storage sparse vector's elements into compressed form.

\section*{Syntax}
```

call sgthr (nz, y, x, indx)
call dgthr (nz, y, x, indx)
call cgthr (nz, y, x, indx)
call zgthr (nz, y, x, indx)

```

\section*{Description}

The ? gthr routines gather the specified elements of a full-storage sparse vector \(y\) into compressed form ( \(n z, x\), indx). The routines reference only the elements of \(y\) whose indices are listed in the array indx:
\(x(i)=y(i n d x(i))\), for \(i=1,2, \ldots n z\).

\section*{Input Parameters}
\(n z\)
indx
y
INTEGER. The number of elements of \(y\) to be gathered.
INTEGER. Specifies indices of elements to be gathered. Array, DIMENSION at least nz.

REAL for sgthr DOUBLE PRECISION for dgthr COMPLEX for cgthr DOUBLE COMPLEX for zgthr Array, DIMENSION at least \(\max _{i}\) (indx(i)).

\section*{Output Parameters}
```

x

```

REAL for sgthr DOUBLE PRECISION for dgthr COMPLEX for cgthr DOUBLE COMPLEX for zgthr Array, DIMENSION at least nz. Contains the vector converted to the compressed form.

\section*{?gthrz}

Gathers a sparse vector's elements into compressed form, replacing them by zeros.

\section*{Syntax}
```

call sgthrz (nz, y, x, indx)
call dgthrz (nz, y, x, indx)
call cgthrz (nz, y, x, indx)
call zgthrz (nz, y, x, indx)

```

\section*{Description}

The ?gthrz routines gather the elements with indices specified by the array indx from a full-storage vector \(y\) into compressed form
( \(n z, x\), indx) and overwrite the gathered elements of \(y\) by zeros.
Other elements of \(y\) are not referenced or modified (see also ?gthr).

\section*{Input Parameters}
\(n z \quad\) INTEGER. The number of elements of \(y\) to be gathered.
indx INTEGER. Specifies indices of elements to be gathered.Array, DIMENSION at least \(n z\).
\(y \quad\) REAL for sgthrz
DOUBLE PRECISION for dgthrz
COMPLEX for cgthrz
DOUBLE COMPLEX for \(z g t h r z\)
Array, DIMENSION at least \(\max _{i}\) (indx(i)).

\section*{Output Parameters}

REAL for sgthrz
DOUBLE PRECISION for dgthrz
COMPLEX for cgthrz
DOUBLE COMPLEX for zgthrz
Array, DIMENSION at least \(n z\). Contains the vector converted to the compressed form.

Y
The updated vector \(y\).

\section*{?roti}

Applies Givens rotation to sparse vectors one of which is in compressed form.

\section*{Syntax}
call sroti ( \(n z, x, i n d x, y, c, s)\)
call droti \((n z, x, i n d x, y, c, s)\)

\section*{Description}

The ?roti routines apply the Givens rotation to elements of two real vectors, \(x\) (in compressed form \(n z, x\), indx) and \(y\) (in full storage form):
```

x(i) = C**(i) + s*y(indx(i))

```
\(y(i n d x(i))=c^{*} y(i n d x(i))-s^{*} x(i)\)

The routines reference only the elements of \(y\) whose indices are listed in the array indx. The values in indx must be distinct.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \(n z\) & Integer. The number of elements in \(x\) and indx. \\
\hline \multirow[t]{3}{*}{\(x\)} & REAL for sroti \\
\hline & DOUBLE PRECISION for droti \\
\hline & Array, DIMENSION at least \(n z\). \\
\hline indx & integer. Specifies the indices for the elements of \(x\). Array, DIMENSION at least nz. \\
\hline \multirow[t]{3}{*}{y} & REAL for sroti \\
\hline & DOUBLE PRECISION for droti \\
\hline & Array, dimension at least max \({ }_{i}\) (indx (i) ). \\
\hline \multirow[t]{2}{*}{c} & A scalar: REAL for sroti \\
\hline & DOUBLE PRECISION for droti. \\
\hline \(s\) & A scalar: REAL for sroti \\
\hline & double precision for droti. \\
\hline
\end{tabular}

\section*{Output Parameters}
\(x\) and \(y \quad\) The updated arrays.

\section*{?sctr}

Converts compressed sparse vectors into full storage
form.

\section*{Syntax}
```

call ssctr (nz, x, indx, y)
call dsctr (nz, x, indx, y)
call csctr (nz, x, indx, y)
call zsctr (nz, x, indx, y)

```

\section*{Description}

The ?sctr routines scatter the elements of the compressed sparse vector ( \(n z, x\), indx) to a full-storage vector \(y\). The routines modify only the elements of \(y\) whose indices are listed in the array indx:
\(y(i n d x(i))=x(i)\), for \(i=1,2, \ldots n z\).

\section*{Input Parameters}
\(n z \quad\) INTEGER. The number of elements of \(x\) to be scattered.
indx INTEGER. Specifies indices of elements to be scattered.Array, DIMENSION at least \(n z\).
\(x\) REAL for ssctr
DOUBLE PRECISION for dsctr
COMPLEX for csctr
DOUBLE COMPLEX for zsctr
Array, DIMENSION at least \(n z\).
Contains the vector to be converted to full-storage form.

\section*{Output Parameters}
y
REAL for ssctr
DOUBLE PRECISION for dsctr
COMPLEX for csctr
DOUBLE COMPLEX for zsctr
Array, DIMENSION at least max \({ }_{i}\) (indx (i)).
Contains the vector \(y\) with updated elements.

\section*{LAPACK Routines: Linear Equations}

This chapter describes the Intel \({ }^{\circledR}\) Math Kernel Library implementation of routines from the LAPACK package that are used for solving systems of linear equations and performing a number of related computational tasks. The library includes LAPACK routines for both real and complex data.
Routines are supported for systems of equations with the following types of matrices:
- general
- banded
- symmetric or Hermitian positive-definite (both full and packed storage)
- symmetric or Hermitian positive-definite banded
- symmetric or Hermitian indefinite (both full and packed storage)
- symmetric or Hermitian indefinite banded
- triangular (both full and packed storage)
- triangular banded
- tridiagonal.

For each of the above matrix types, the library includes routines for performing the following computations: factoring the matrix (except for triangular matrices); equilibrating the matrix; solving a system of linear equations; estimating the condition number of a matrix; refining the solution of linear equations and computing its error bounds; inverting the matrix. To solve a particular problem, you can either call two or more computational routines or call a corresponding driver routine that combines several tasks in one call, such as ?gesv for factoring and solving. Thus, to solve a system of linear equations with a general matrix, you can first call ?getrf ( \(L U\) factorization) and then ?getrs (computing the solution). Then, you might wish to call ?gerfs to refine the solution and get the error bounds. Alternatively, you can just use the driver routine ? gesvx which performs all these tasks in one call.

WARNING. LAPACK routines expect that input matrices do not contain INF or NaN values. When input data is inappropriate for LAPACK, problems may arise, including possible hangs.

\section*{Routine Naming Conventions}

For each routine introduced in this chapter, you can use the LAPACK name.
LAPACK names are listed in Table 3-1 and Table 3-2, and have the structure xyyzzz or xyyzz, which is described below.

The initial letter x indicates the data type:
\begin{tabular}{llll} 
s & real, single precision & c & complex, single precision \\
d & real, double precision & z & complex, double precision
\end{tabular}

The second and third letters yy indicate the matrix type and storage scheme:
ge general
gb general band
gt general tridiagonal
po symmetric or Hermitian positive-definite
pp symmetric or Hermitian positive-definite (packed storage)
pb symmetric or Hermitian positive-definite band
pt symmetric or Hermitian positive-definite tridiagonal
sy symmetric indefinite
sp symmetric indefinite (packed storage)
he Hermitian indefinite
hp Hermitian indefinite (packed storage)
tr triangular
tp triangular (packed storage)
tb triangular band
For computational routines, the last three letters zzz indicate the computation performed:
trf form a triangular matrix factorization
trs solve the linear system with a factored matrix
con estimate the matrix condition number
rfs refine the solution and compute error bounds
tri compute the inverse matrix using the factorization
equ equilibrate a matrix.
For example, the routine sgetrf performs the triangular factorization of general real matrices in single precision; the corresponding routine for complex matrices is cgetrf.

For driver routines, the names can end either with -sv (meaning a simple driver), or with -svx (meaning an expert driver).

\section*{Matrix Storage Schemes}

LAPACK routines use the following matrix storage schemes:
- Full storage: a matrix \(A\) is stored in a two-dimensional array \(a\), with the matrix element \(a_{i j}\) stored in the array element \(a(i, j)\).
- Packed storage scheme allows you to store symmetric, Hermitian, or triangular matrices more compactly: the upper or lower triangle of the matrix is packed by columns in a one-dimensional array.
- Band storage: an \(m\) by \(n\) band matrix with kl sub-diagonals and ku super-diagonals is stored compactly in a two-dimensional array \(a b\) with \(k l+k u+1\) rows and \(n\) columns. Columns of the matrix are stored in the corresponding columns of the array, and diagonals of the matrix are stored in rows of the array.

In Chapters 4 and 5, arrays that hold matrices in packed storage have names ending in \(p\); arrays with matrices in band storage have names ending in \(b\).

For more information on matrix storage schemes, see "Matrix Arguments" in Appendix B.

\section*{Mathematical Notation}

Descriptions of LAPACK routines use the following notation:
\begin{tabular}{ll}
\(A x=b\) & \begin{tabular}{l} 
A system of linear equations with an \(n\) by \(n\) matrix \(A=\left\{a_{i j}\right\}\), a \\
right-hand side vector \(b=\left\{b_{i}\right\}\), and an unknown vector \(x=\left\{x_{i}\right\}\).
\end{tabular} \\
\(A X=B\) & \begin{tabular}{l} 
A set of systems with a common matrix \(A\) and multiple right-hand sides. \\
The columns of \(B\) are individual right-hand sides, and the columns of \(X\) \\
are the corresponding solutions.
\end{tabular} \\
the vector with elements \(\left|x_{i}\right|\) (absolute values of \(x_{i}\) ). \\
\(|x|\) & the matrix with elements \(\left|a_{i j}\right|\) (absolute values of \(a_{i j}\) ). \\
\(|A|\) & The infinity-norm of the vector \(x\).
\end{tabular}

\section*{Error Analysis}

In practice, most computations are performed with rounding errors. Besides, you often need to solve a system \(A x=b\) where the data (the elements of \(A\) and \(b\) ) are not known exactly. Therefore, it's important to understand how the data errors and rounding errors can affect the solution \(x\).

Data perturbations. If \(x\) is the exact solution of \(A x=b\), and \(x+\delta x\) is the exact solution of a perturbed problem \((A+\delta A) x=(b+\delta b)\), then
\(\frac{\|\delta x\|}{\|x\|} \leq \kappa(A)\left(\frac{\|\delta A\|}{\|A\|}+\frac{\|\delta b\|}{\|b\|}\right)\), where \(\kappa(A)=\|A\|\left\|A^{-1}\right\|\).

In other words, relative errors in \(A\) or \(b\) may be amplified in the solution vector \(x\) by a factor \(\kappa(A)=\) \(\|A\|\left\|A^{-1}\right\|\) called the condition number of \(A\).

Rounding errors have the same effect as relative perturbations \(c(n) \varepsilon\) in the original data. Here \(\varepsilon\) is the machine precision, and \(c(n)\) is a modest function of the matrix order \(n\). The corresponding solution error is
\(\|\delta x\| /\|x\| \leq c(n) \kappa(A) \varepsilon\). (The value of \(c(n)\) is seldom greater than 10n.)
Thus, if your matrix \(A\) is ill-conditioned (that is, its condition number \(\kappa(A)\) is very large), then the error in the solution \(x\) is also large; you may even encounter a complete loss of precision.
LAPACK provides routines that allow you to estimate \(\kappa(A)\) (see Routines for Estimating the Condition Number) and also give you a more precise estimate for the actual solution error (see Refining the Solution and Estimating Its Error).

\section*{Computational Routines}

Table 3-1 lists the LAPACK computational routines for factorizing, equilibrating, and inverting real matrices, estimating their condition numbers, solving systems of equations with real matrices, refining the solution, and estimating its error.
Table 3-2 lists similar routines for complex matrices.
Table 3-1 Computational Routines for Systems of Equations with Real Matrices
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Matrix type, storage scheme & Factorize matrix & \begin{tabular}{l}
Equilibrat \\
e matrix
\end{tabular} & Solve system & Condition number & Estimate error & Invert matrix \\
\hline general & ? getrf & ? geequ & ? getrs & ? gecon & ? gerfs & ? getri \\
\hline general band & ? gbtrf & ? gbequ & ? gbtrs & ? gbcon & ? gbrfs & \\
\hline general tridiagonal & ? gttrf & & ? gttrs & ? gtcon & ? gtrfs & \\
\hline symmetric positive-definite & ?potrf & ?poequ & ? potrs & ?pocon & ? porfs & ? potri \\
\hline symmetric positive-definite, packed storage & ?pptrf & ?ppequ & ?pptrs & ? ppcon & ? pprfs & ?pptri \\
\hline symmetric positive-definite, band & ?pbtrf & ?pbequ & ?pbtrs & ? pbcon & ? \({ }^{\text {pbrfs }}\) & \\
\hline symmetric positive-definite, tridiagonal & ?pttrf & & ?pttrs & ?ptcon & ?ptrfs & \\
\hline symmetric indefinite & ? Sytrf & & ?sytrs & ?sycon & ?syrfs & ?sytri \\
\hline symmetric indefinite, packed storage & ? sptrf & & ?sptrs & ? spcon & \(\underline{\text { ? sprfs }}\) & ? sptri \\
\hline triangular & & & ? trtrs & ? trcon & ? trrfs & ?trtri \\
\hline triangular, packed storage & & & ?tptrs & ?tpcon & ?tprfs & ?tptri \\
\hline triangular band & & & ?tbtrs & ? tbicon & ? tbrfs & \\
\hline
\end{tabular}

In this table ? denotes \(\mathbf{s}\) (single precision) or \(\mathbf{d}\) (double precision).

\section*{Table 3-2 Computational Routines for Systems of Equations with Complex Matrices}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Matrix type, storage scheme & Factorize matrix & Equilibrat e matrix & Solve system & Condition number & Estimate error & Invert matrix \\
\hline general & ? getrf & ? geequ & ? getrs & ? gecon & ? gerfs & ? getri \\
\hline general band & ? gbtrf & ? gbequ & ? gbtrs & ? gbcon & ? gbrfs & \\
\hline general tridiagonal & ? gttrf & & ? gttrs & ? gtcon & ? gtrfs & \\
\hline Hermitian positive-definite & ?potrf & ?poequ & ?potrs & ? pocon & ? \({ }^{\text {porfs }}\) & ?potri \\
\hline Hermitian positive-definite, packed storage & ?pptrf & ? ppequ & ?pptrs & ? ppcon & ? \({ }^{\text {pprfs }}\) & ?pptri \\
\hline Hermitian positive-definite, band & ?pbtrf & ?pbequ & ?pbtrs & ? pbcon & ?pbrfs & \\
\hline Hermitian positive-definite, tridiagonal & ?pttrf & & ?pttrs & ?ptcon & ?ptrfs & \\
\hline Hermitian indefinite & ?hetrf & & ?hetrs & ?hecon & ?herfs & ?hetri \\
\hline symmetric indefinite & ? sytrf & & ?sytrs & ? sycon & ? syrfs & ?sytri \\
\hline Hermitian indefinite, packed storage & ?hptrf & & ?hptrs & ?hpcon & ?hprfs & ?hptri \\
\hline symmetric indefinite, packed storage & ? sptrf & & ?sptrs & ? spcon & ? sprfs & ?sptri \\
\hline triangular & & & ?trtrs & \(\underline{\text { ?trcon }}\) & \(\underline{\text { ? trrfs }}\) & ?trtri \\
\hline triangular, packed storage & & & ?tptrs & ?tpcon & ?tprfs & ?tptri \\
\hline triangular band & & & ?tbtrs & ? tbocon & ? thbrfs & \\
\hline
\end{tabular}

In this table ? stands for \(\mathbf{c}\) (single precision complex) or \(\mathbf{z}\) (double precision complex).

\section*{Routines for Matrix Factorization}

This section describes the LAPACK routines for matrix factorization. The following factorizations are supported:
- \(L U\) factorization
- Cholesky factorization of real symmetric positive-definite matrices
- Cholesky factorization of Hermitian positive-definite matrices
- Bunch-Kaufman factorization of real and complex symmetric matrices
- Bunch-Kaufman factorization of Hermitian matrices.

You can compute the \(L U\) factorization using full and band storage of matrices; the Cholesky factorization using full, packed, and band storage; and the Bunch-Kaufman factorization using full and packed storage.

\section*{?getrf}

Computes the LU factorization
of a general m by \(n\) matrix.

\section*{Syntax}
```

call sgetrf (m, n, a, lda, ipiv, info)
call dgetrf (m, n, a, lda, ipiv, info)
call cgetrf (m, n, a, lda, ipiv, info)
call zgetrf (m, n, a, lda, ipiv, info)

```

\section*{Description}

The routine forms the \(L U\) factorization of a general \(m\) by \(n\) matrix \(A\) as
\[
A=P L U,
\]
where \(P\) is a permutation matrix, \(L\) is lower triangular with unit diagonal elements (lower trapezoidal if \(m>n\) ) and \(U\) is upper triangular (upper trapezoidal if \(m<n\) ). Usually \(A\) is square ( \(m=\) \(n\) ), and both \(L\) and \(U\) are triangular. The routine uses partial pivoting, with row interchanges.

\section*{Input Parameters}
m
n
a
lda

\section*{Output Parameters}
ipiv
info

Overwritten by \(L\) and \(U\). The unit diagonal elements of \(L\) are not stored.
INTEGER. The number of rows in the matrix \(A(m \geq 0)\).
INTEGER. The number of columns in \(A(n \geq 0)\).
REAL for sgetrf
DOUBLE PRECISION for dgetrf
COMPLEX for cgetrf DOUBLE COMPLEX for zgetrf. Array, DIMENSION (lda,*). Contains the matrix \(A\). The second dimension of a must be at least \(\max (1, n)\). INTEGER. The first dimension of \(a\). INTEGER. Array, DIMENSION at least \(\max (1, \min (m, n))\). The pivot indices: row \(i\) was interchanged with row ipiv(i).

INTEGER. If info \(=0\), the execution is successful. If info \(=-i\), the \(i\) th parameter had an illegal value. If info \(=i, u_{i i}\) is 0 . The factorization has been completed, but \(U\) is exactly singular. Division by 0 will occur if you use the factor \(U\) for solving a system of linear equations.

\section*{Application Notes}

The computed \(L\) and \(U\) are the exact factors of a perturbed matrix \(A+E\), where
\[
|E| \leq c(\min (m, n)) \varepsilon P|L||U|
\]
\(c(n)\) is a modest linear function of \(n\), and \(\varepsilon\) is the machine precision.
The approximate number of floating-point operations for real flavors is
\[
\begin{array}{ll}
(2 / 3) n^{3} & \text { if } m=n \\
(1 / 3) n^{2}(3 m-n) & \text { if } m>n \\
(1 / 3) m^{2}(3 n-m) & \text { if } m<n
\end{array}
\]

The number of operations for complex flavors is 4 times greater.
After calling this routine with \(m=n\), you can call the following:
\begin{tabular}{ll} 
?getrs & to solve \(A X=B\) or \(A^{T} X=B\) or \(A^{H} X=B ;\) \\
\(\underline{\text { ?gecon }}\) & to estimate the condition number of \(A ;\) \\
?getri & to compute the inverse of \(A\).
\end{tabular}

\section*{?gbtrf}

Computes the LU factorization of a general \(m\) by \(n\) band matrix.

\section*{Syntax}
```

call sgbtrf (m, n, kl, ku, ab, ldab, ipiv, info)
call dgbtrf (m, n, kl, ku, ab, ldab, ipiv, info)
call cgbtrf (m, n, kl, ku, ab, ldab, ipiv, info)
call zgbtrf (m, n, kl, ku, ab, ldab, ipiv, info)

```

\section*{Description}

The routine forms the \(L U\) factorization of a general \(m\) by \(n\) band matrix \(A\) with \(k l\) non-zero sub-diagonals and \(k u\) non-zero super-diagonals. Usually \(A\) is square ( \(m=n\) ), and then
\[
A=P L U
\]
where \(P\) is a permutation matrix; \(L\) is lower triangular with unit diagonal elements and at most \(k l\) non-zero elements in each column; \(U\) is an upper triangular band matrix with \(k l+k u\) super-diagonals. The routine uses partial pivoting, with row interchanges (which creates the additional \(k l\) super-diagonals in \(U\) ).

\section*{Input Parameters}
m
n
kl
ku
\(a b\)

INTEGER. The number of rows in the matrix \(A(m \geq 0)\).
INTEGER. The number of columns in \(A(n \geq 0)\).
INTEGER. The number of sub-diagonals within the band of \(A(k I \geq 0)\).
INTEGER. The number of super-diagonals within the band of \(A(k u \geq 0)\).
REAL for sgbtrf
DOUBLE PRECISION for dgbtrf
COMPLEX for cgbtrf

DOUBLE COMPLEX for zgbtrf. Array, DIMENSION (ldab,*).
The array \(a b\) contains the matrix \(A\) in band storage (see Matrix Storage Schemes). The second dimension of \(a b\) must be at least \(\max (1, n)\).

Idab INTEGER. The first dimension of the array \(a b\). \((1 d a b \geq 2 k l+k u+1)\)

\section*{Output Parameters}
\begin{tabular}{|c|c|}
\hline \(a b\) & Overwritten by \(L\) and \(U\). The diagonal and \(k I+k u\) super-diagonals of \(U\) are stored in the first \(1+k I+k u\) rows of \(a b\). The multipliers used to form \(L\) are stored in the next \(k l\) rows. \\
\hline \multirow[t]{3}{*}{ipiv} & INTEGER. \\
\hline & Array, DIMENSION at least max \((1, \min (m, n)\) ). \\
\hline & The pivot indices: row \(i\) was interchanged with row ipiv(i). \\
\hline \multirow[t]{3}{*}{info} & INTEGER. If info \(=0\), the execution is successful. \\
\hline & If info \(=-i\), the \(i\) th parameter had an illegal value. \\
\hline & If info \(=i, u_{i j}\) is 0 . The factorization has been completed, but \(U\) is exactly singular. Division by 0 will occur if you use the factor \(U\) for solving a system of linear equations. \\
\hline
\end{tabular}

\section*{Application Notes}

The computed \(L\) and \(U\) are the exact factors of a perturbed matrix \(A+E\), where
\(|E| \leq C(k l+k u+1) \mathcal{E} P|L||U|\)
\(c(k)\) is a modest linear function of \(k\), and \(\varepsilon\) is the machine precision.
The total number of floating-point operations for real flavors varies between approximately \(2 n(k u+1) k l\) and \(2 n(k l+k u+1) k l\). The number of operations for complex flavors is 4 times greater. All these estimates assume that \(k l\) and \(k u\) are much less than \(\min (m, n)\).

After calling this routine with \(m=n\), you can call the following:
\[
\text { ?gbtrs } \quad \text { to solve } A X=B \text { or } A^{T} X=B \text { or } A^{H} X=B
\]
? gbcon
to estimate the condition number of \(A\).

\section*{?gttrf}

Computes the LU factorization of a tridiagonal matrix.

\section*{Syntax}
```

call sgttrf (n, dl, d, du, du2, ipiv, info)
call dgttrf (n, dl, d, du, du2, ipiv, info)
call cgttrf (n, dl, d, du, du2, ipiv, info)
call zgttrf (n, dl, d, du, du2, ipiv, info)

```

\section*{Description}

The routine computes the \(L U\) factorization of a real or complex tridiagonal matrix \(A\) in the form
\[
A=P L U
\]
where \(P\) is a permutation matrix; \(L\) is lower bidiagonal with unit diagonal elements; and \(U\) is an upper triangular matrix with nonzeroes in only the main diagonal and first two superdiagonals. The routine uses elimination with partial pivoting and row interchanges .

\section*{Input Parameters}
n
\(d l, d, d u \quad\) REAL for sgttrf
DOUBLE PRECISION for dgttrf
COMPLEX for cgttrf
DOUBLE COMPLEX for zgttrf.
Arrays containing elements of A.
The array \(d l\) of dimension \((n-1)\) contains the sub-diagonal elements of \(A\). The array \(d\) of dimension \(n\) contains the diagonal elements of \(A\).
The array \(d u\) of dimension \((n-1)\) contains the super-diagonal elements of \(A\).

\section*{Output Parameters}
dl \(\quad\) Overwritten by the \((n-1)\) multipliers that define the matrix \(L\) from the \(L U\) factorization of A.
d Overwritten by the \(n\) diagonal elements of the upper triangular matrix \(U\) from the \(L U\) factorization of A.
\(d u \quad\) Overwritten by the \((n-1)\) elements of the first super-diagonal of \(U\).
\begin{tabular}{ll} 
du2 & REAL for sgttrf \\
DOUBLE PRECISION for dgttrf \\
COMPLEX for cgttrf \\
DOUBLE COMPLEX for zgttrf. \\
Array, dimension \((n-2)\). On exit, du2 contains \((n-2)\) elements of the second \\
super-diagonal of \(U\).
\end{tabular}

\section*{Application Notes}
\begin{tabular}{ll} 
?gbtrs & to solve \(A X=B\) or \(A^{T} X=B\) or \(A^{H} X=B ;\) \\
?gbcon & to estimate the condition number of \(A\).
\end{tabular}

\section*{?potrf}

Computes the Cholesky factorization of
a symmetric (Hermitian) positive-definite matrix.

\section*{Syntax}
```

call spotrf (uplo, n, a, lda, info)
call dpotrf (uplo, n, a, lda, info)
call cpotrf (uplo, n, a, lda, info)
call zpotrf (uplo, n, a, lda, info)

```

\section*{Description}

This routine forms the Cholesky factorization of a symmetric positive- definite or, for complex data, Hermitian positive-definite matrix \(A\) :
\[
A=U^{H} U \quad \text { if uplo='U' }
\]
\[
A=L L^{H} \quad \text { if uplo='L', }
\]
where \(L\) is a lower triangular matrix and \(U\) is upper triangular.

\section*{Input Parameters}
```

uplo CHARACTER*1. Must be 'U' or 'L'.
Indicates whether the upper or lower triangular part of }A\mathrm{ is stored and how }A\mathrm{ is
factored:
If uplo= 'U', the array a stores the upper triangular part of the matrix }A\mathrm{ , and
A is factored as }\mp@subsup{U}{}{H}U\mathrm{ .
If uplo= 'L', the array a stores the lower triangular part of the matrix }A;A\mathrm{ is
factored as LL H}\mathrm{ .
n INTEGER. The order of matrix A (}n\geq0)\mathrm{ .
a REAL for spotrf
DOUBLE PRECISION for dpotrf
COMPLEX for cpotrf
DOUBLE COMPLEX for zpotrf.
Array, DIMENSION (lda,*).
The array a contains either the upper or the lower triangular part of the matrix
A (see uplo).
The second dimension of a must be at least max(1,n).
lda INTEGER. The first dimension of a.

```

\section*{Output Parameters}

The upper or lower triangular part of \(a\) is overwritten by the Cholesky factor \(U\) or \(L\), as specified by uplo.
info INTEGER. If info \(=0\), the execution is successful. If info \(=-i\), the \(i\) th parameter had an illegal value.
If info \(=i\), the leading minor of order \(i\) (and hence the matrix \(A\) itself) is not positive-definite, and the factorization could not be completed. This may indicate an error in forming the matrix \(A\).

\section*{Application Notes}

If uplo = 'U', the computed factor \(U\) is the exact factor of a perturbed matrix \(A+E\), where
\[
|E| \leq c(n) \varepsilon\left|U^{H}\right||U|, \quad\left|e_{i j}\right| \leq c(n) \varepsilon \sqrt{a_{i i} a_{j j}}
\]
\(c(n)\) is a modest linear function of \(n\), and \(\varepsilon\) is the machine precision.
A similar estimate holds for uplo \(=\) ' L '.

The total number of floating-point operations is approximately \((1 / 3) n^{3}\) for real flavors or \((4 / 3) n^{3}\) for complex flavors.

After calling this routine, you can call the following:
\begin{tabular}{ll} 
?potrs & to solve \(A X=B ;\) \\
?pocon & to estimate the condition number of \(A ;\) \\
?potri & to compute the inverse of \(A\).
\end{tabular}

\section*{?pptrf}

Computes the Cholesky factorization of a symmetric (Hermitian) positive-definite matrix using packed storage.

\section*{Syntax}
```

call spptrf (uplo, n, ap, info)
call dpptrf (uplo, n, ap, info)
call cpptrf (uplo, n, ap, info)
call zpptrf (uplo, n, ap, info)

```

\section*{Description}

This routine forms the Cholesky factorization of a symmetric positive- definite or, for complex data, Hermitian positive-definite packed matrix \(A\) :
\[
\begin{array}{ll}
A=U^{H} U & \text { if uplo='U' } \\
A=L L^{H} & \text { if uplo='L' }
\end{array}
\]
where \(L\) is a lower triangular matrix and \(U\) is upper triangular.

\section*{Input Parameters}
```

uplo CHARACTER*1. Must be 'U' or 'L'.
Indicates whether the upper or lower triangular part of }A\mathrm{ is packed in the array
ap, and how }A\mathrm{ is factored:

```

If uplo=' U ', the array ap stores the upper triangular part of the matrix \(A\), and \(A\) is factored as \(U^{H} U\).
If uplo= 'L', the array ap stores the lower triangular part of the matrix \(A ; A\) is factored as \(L L^{H}\).
n
INTEGER. The order of matrix \(A(n \geq 0)\).
REAL for spptrf
DOUBLE PRECISION for dpptrf
COMPLEX for cpptrf
DOUBLE COMPLEX for zpptrf.
Array, DIMENSION at least max \((1, n(n+1) / 2)\).
The array \(a p\) contains either the upper or the lower triangular part of the matrix \(A\) (as specified by uplo) in packed storage (see Matrix Storage Schemes).

\section*{Output Parameters}

The upper or lower triangular part of \(A\) in packed storage is overwritten by the Cholesky factor \(U\) or \(L\), as specified by uplo.
info INTEGER. If info \(=0\), the execution is successful. If info \(=-i\), the \(i\) th parameter had an illegal value. If info \(=i\), the leading minor of order \(i\) (and hence the matrix \(A\) itself) is not positive-definite, and the factorization could not be completed. This may indicate an error in forming the matrix \(A\).

\section*{Application Notes}

If uplo= ' \(U\) ', the computed factor \(U\) is the exact factor of a perturbed matrix \(A+E\), where
\[
|E| \leq c(n) \varepsilon\left|U^{H}\right||U|, \quad\left|e_{i j}\right| \leq c(n) \varepsilon \sqrt{a_{i i} a_{j j}}
\]
\(c(n)\) is a modest linear function of \(n\), and \(\varepsilon\) is the machine precision.
A similar estimate holds for uplo \(=\) ' L .
The total number of floating-point operations is approximately \((1 / 3) n^{3}\) for real flavors and \((4 / 3) n^{3}\) for complex flavors.

After calling this routine, you can call the following:
\begin{tabular}{ll} 
?pptrs & to solve \(A X=B ;\) \\
?ppcon & to estimate the condition number of \(A ;\) \\
?pptri & to compute the inverse of \(A\).
\end{tabular}

\section*{?pbtrf}

\section*{Computes the Cholesky factorization of} a symmetric (Hermitian) positive-definite band matrix.

\section*{Syntax}
```

call spbtrf (uplo, n, kd, ab, ldab, info)
call dpbtrf (uplo, n, kd, ab, ldab, info)
call cpbtrf (uplo, n, kd, ab, ldab, info)
call zpbtrf (uplo, n, kd, ab, ldab, info)

```

\section*{Description}

This routine forms the Cholesky factorization of a symmetric positive- definite or, for complex data, Hermitian positive-definite band matrix \(A\) :
\[
\begin{array}{ll}
A=U^{H} U & \text { if uplo='U' } \\
A=L L^{H} & \text { if uplo='L' }
\end{array}
\]
where \(L\) is a lower triangular matrix and \(U\) is upper triangular.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{4}{*}{uplo} & ChARACTER*1. Must be 'U' or 'L'. \\
\hline & Indicates whether the upper or lower triangular part of \(A\) is stored in the array \(a b\), and how \(A\) is factored: \\
\hline & If uplo \(=\) ' \(U\) ', the array \(a b\) stores the upper triangular part of the matrix \(A\), and \(A\) is factored as \(U^{H} U\). \\
\hline & If uplo = ' L', the array ab stores the lower triangular part of the matrix \(A\); is factored as \(L L^{H}\). \\
\hline \(n\) & Integer. The order of matrix \(A(\mathrm{n} \geq 0)\). \\
\hline kd & INTEGER. The number of super-diagonals or sub-diagonals in the matrix \(A\) ( \(k d \geq 0\) ). \\
\hline \(a b\) & REAL for spbtrf \\
\hline & DOUBLE PRECISION for dpbtrf \\
\hline & COMPLeX for cpbtrf \\
\hline & double Complex for zpbtrf. \\
\hline & Array, DIMENSION (ldab,*). \\
\hline
\end{tabular}

The array ap contains either the upper or the lower triangular part of the matrix \(A\) (as specified by uplo) in band storage (see Matrix Storage Schemes). The second dimension of \(a b\) must be at least \(\max (1, n)\).

Idab INTEGER. The first dimension of the array \(a b\). (1dab \(\geq k d+1\) )

\section*{Output Parameters}

The upper or lower triangular part of \(A\) (in band storage) is overwritten by the Cholesky factor \(U\) or \(L\), as specified by uplo.
info
INTEGER. If info \(=0\), the execution is successful. If info \(=-i\), the \(i\) th parameter had an illegal value. If info \(=i\), the leading minor of order \(i\) (and hence the matrix \(A\) itself) is not positive-definite, and the factorization could not be completed. This may indicate an error in forming the matrix \(A\).

\section*{Application Notes}

If uplo = 'U', the computed factor \(U\) is the exact factor of a perturbed matrix \(A+E\), where
\[
|E| \leq c(k d+1) \varepsilon\left|U^{H}\right||U|, \quad\left|e_{i j}\right| \leq c(k d+1) \varepsilon \sqrt{a_{i i} a_{j j}}
\]
\(c(n)\) is a modest linear function of \(n\), and \(\varepsilon\) is the machine precision.
A similar estimate holds for uplo \(=\) 'L'.
The total number of floating-point operations for real flavors is approximately \(n(k d+1)^{2}\). The number of operations for complex flavors is 4 times greater. All these estimates assume that \(k d\) is much less than \(n\).

After calling this routine, you can call the following:
\begin{tabular}{ll} 
?pbtrs & to solve \(A X=B ;\) \\
?pbcon & to estimate the condition number of \(A ;\)
\end{tabular}

\section*{?pttrf}

\section*{Computes the factorization of a symmetric (Hermitian) positive-definite tridiagonal matrix.}

\section*{Syntax}
```

call spttrf (n, d, e, info)
call dpttrf (n, d, e, info)
call cpttrf (}n,d,e, info
call zpttrf (n, d, e, info)

```

\section*{Description}

This routine forms the factorization of a symmetric positive-definite or, for complex data, Hermitian positive-definite tridiagonal matrix \(A\) :
\(A=L D L^{H}\), where \(D\) is diagonal and \(L\) is unit lower bidiagonal. The factorization may also be regarded as having the form \(A=U^{H} D U\), where \(D\) is unit upper bidiagonal.

\section*{Input Parameters}
\(n \quad\) INTEGER. The order of the matrix \(A(n \geq 0)\).
d REAL for spttrf, cpttrf
DOUBLE PRECISION for dpttrf, zpttrf.
Array, dimension (n). Contains the diagonal elements of \(A\).
e
REAL for spttrf
DOUBLE PRECISION for dpttrf
COMPLEX for cpttrf
DOUBLE COMPLEX for zpttrf.
Array, dimension (n-1). Contains the sub-diagonal elements of \(A\).

\section*{Output Parameters}
d Overwritten by the \(n\) diagonal elements of the diagonal matrix \(D\) from the \(L D L^{H}\) factorization of A.
e
Overwritten by the ( \(n-1\) ) off-diagonal elements of the unit bidiagonal factor \(L\) or \(U\) from the factorization of A .
info INTEGER. If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\) th parameter had an illegal value.
If \(\operatorname{info}=i\), the leading minor of order \(i\) (and hence the matrix \(A\) itself) is not positive-definite; if \(i<n\), the factorization could not be completed, while if \(i\) \(=n\), the factorization was completed, but \(d(n)=0\).

\section*{?sytrf}

Computes the Bunch-Kaufman factorization of a symmetric matrix.

\section*{Syntax}
```

call ssytrf (uplo, n, a, lda, ipiv, work, lwork, info)
call dsytrf (uplo, n, a, lda, ipiv, work, lwork, info)
call csytrf (uplo, n, a, lda, ipiv, work, lwork, info)
call zsytrf (uplo, n, a, lda, ipiv, work, lwork, info)

```

\section*{Description}

This routine forms the Bunch-Kaufman factorization of a symmetric matrix:
\[
\begin{array}{ll}
\text { if uplo='U', } & A=P U D U^{T} P^{T} \\
\text { if uplo='L', } & A=P L D L^{T} P^{T}
\end{array}
\]
where \(A\) is the input matrix, \(P\) is a permutation matrix, \(U\) and \(L\) are upper and lower triangular matrices with unit diagonal, and \(D\) is a symmetric block-diagonal matrix with 1-by-1 and 2-by-2 diagonal blocks. \(U\) and \(L\) have 2-by-2 unit diagonal blocks corresponding to the 2-by-2 blocks of D.

\section*{Input Parameters}
uplo CHARACTER*1. Must be 'U' or 'L'. Indicates whether the upper or lower triangular part of \(A\) is stored and how \(A\) is factored:
If uplo= 'U', the array a stores the upper triangular part of the matrix \(A\), and \(A\) is factored as \(P U D U^{T} P^{T}\).
If uplo= 'L', the array a stores the lower triangular part of the matrix \(A ; A\) is factored as \(P L D L^{T} P^{T}\).
n
INTEGER. The order of matrix \(A(n \geq 0)\).
```

a
REAL for ssytrf
DOUBLE PRECISION for dsytrf
COMPLEX for csytrf
DOUBLE COMPLEX for zsytrf.
Array, DIMENSION (lda,*).
The array a contains either the upper or the lower triangular part of the matrix
A (see uplo).
The second dimension of a must be at least max(1,n).
lda INTEGER. The first dimension of a; at least max (1,n).
work Same type as a. Workspace array of dimension lwork
lwork
INTEGER. The size of the work array (lwork \geqn)
See Application notes for the suggested value of I work.

```

\section*{Output Parameters}
```

The upper or lower triangular part of a is overwritten by details of the block-diagonal matrix D and the multipliers used to obtain the factor U (or L). If info $=0$, on exit work (1) contains the minimum value of 1 work required for optimum performance. Use this 1 work for subsequent runs.
Array, DIMENSION at least max $(1, n)$.
Contains details of the interchanges and the block structure of D.
If ipiv(i) $=k>0$, then $d_{i i}$ is a 1-by-1 block, and the i th row and column of A was interchanged with the k th row and column.
If uplo $=$ 'U' and ipiv(i) $=\operatorname{ipiv}(i-1)=-m<0$, then D has a 2 -by-2 block in rows/columns i and $i-1$, and ($i-1$) th row and column of A was interchanged with the mth row and column.
If uplo $=$ 'L' and ipiv(i) $\operatorname{ipiv}(i+1)=-m<0$, then D has a 2 -by- 2 block in rows/columns i and $i+1$, and $(i+1)$ th row and column of A was interchanged with the mth row and column. INTEGER. If info $=0$, the execution is successful. If info $=-i$, the i th parameter had an illegal value. If info $=i, d_{i i}$ is 0 . The factorization has been completed, but D is exactly singular. Division by 0 will occur if you use D for solving a system of linear equations.

```

\section*{Application Notes}

For better performance, try using 1 work \(=n \star\) blocksize, where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm.

If you are in doubt how much workspace to supply, use a generous value of 1 work for the first run. On exit, examine work (1) and use this value for subsequent runs.

The 2-by-2 unit diagonal blocks and the unit diagonal elements of \(U\) and \(L\) are not stored. The remaining elements of \(U\) and \(L\) are stored in the corresponding columns of the array a, but additional row interchanges are required to recover \(U\) or \(L\) explicitly (which is seldom necessary).

If \(\operatorname{ipiv}(i)=i\) for all \(i=1 \ldots n\), then all off-diagonal elements of \(U(L)\) are stored explicitly in the corresponding elements of the array \(a\).

If uplo \(=\) ' U', the computed factors \(U\) and \(D\) are the exact factors of a perturbed matrix \(A+E\), where
\[
|E| \leq C(n) \mathcal{E} P|U||D|\left|U^{T}\right| P^{T}
\]
\(c(n)\) is a modest linear function of \(n\), and \(\varepsilon\) is the machine precision.
A similar estimate holds for the computed \(L\) and \(D\) when uplo = 'L'.
The total number of floating-point operations is approximately \((1 / 3) n^{3}\) for real flavors or \((4 / 3) n^{3}\) for complex flavors.

After calling this routine, you can call the following:
\begin{tabular}{ll} 
?sytrs & to solve \(A X=B ;\) \\
\(\underline{\text { ?sycon }}\) & to estimate the condition number of \(A ;\) \\
?sytri & to compute the inverse of \(A\).
\end{tabular}

\section*{?hetrf}

\section*{Computes the Bunch-Kaufman factorization of a} complex Hermitian matrix.

\section*{Syntax}
```

call chetrf (uplo, n, a, lda, ipiv, work, lwork, info)

```
call zhetrf ( uplo, \(n, a, l d a, ~ i p i v, ~ w o r k, ~ l w o r k, ~ i n f o ~) ~\)

\section*{Description}

This routine forms the Bunch-Kaufman factorization of a Hermitian matrix:
```

if uplo='U', $\quad A=P_{U D U}{ }^{H} P^{T}$
if uplo='L', $\quad A=P L D L^{H} P^{T}$

```
where \(A\) is the input matrix, \(P\) is a permutation matrix, \(U\) and \(L\) are upper and lower triangular matrices with unit diagonal, and \(D\) is a Hermitian block-diagonal matrix with 1-by-1 and 2-by-2 diagonal blocks. \(U\) and \(L\) have 2-by-2 unit diagonal blocks corresponding to the 2-by-2 blocks of D.

\section*{Input Parameters}
```

uplo CHARACTER*1. Must be 'U' or 'L'.
Indicates whether the upper or lower triangular part of }A\mathrm{ is stored and how }A\mathrm{ is
factored:
If uplo= 'U', the array a stores the upper triangular part of the matrix }A\mathrm{ , and
A is factored as PUDUH}\mp@subsup{P}{}{H}\mp@subsup{P}{}{T}\mathrm{ .
If uplo = 'L', the array a stores the lower triangular part of the matrix }A;A\mathrm{ is
factored as }PLDL\mp@subsup{L}{}{H}\mp@subsup{P}{}{T}\mathrm{ .
n INTEGER. The order of matrix A (}n\geq0)\mathrm{ .
a COMPLEX for chetrf
DOUBLE COMPLEX for zhetrf.
Array, DIMENSION (lda,*).
The array a contains either the upper or the lower triangular part of the matrix
A (see uplo).
The second dimension of a must be at least max(1,n).
lda
INTEGER. The first dimension of a; at least max (1, n).

```
\begin{tabular}{ll} 
work & Same type as \(a\). Workspace array of dimension lwork \\
I work & INTEGER. The size of the work array \((1\) work \(\geq n)\) \\
& See Application notes for the suggested value of 1 work.
\end{tabular}

\section*{Output Parameters}
a
work(1)
ipiv
info

The upper or lower triangular part of \(a\) is overwritten by details of the block-diagonal matrix \(D\) and the multipliers used to obtain the factor \(U\) (or \(L\) ).

If info \(=0\), on exit work (1) contains the minimum value of 1 work required for optimum performance. Use this 1 work for subsequent runs.

INTEGER.
Array, DIMENSION at least max \((1, n)\).
Contains details of the interchanges and the block structure of \(D\).
If \(\operatorname{ipiv}(i)=k>0\), then \(d_{i i}\) is a 1-by-1 block, and the \(i\) th row and column of \(A\) was interchanged with the \(k\) th row and column.

If uplo='U' and ipiv(i) \(=\operatorname{ipiv}(i-1)=-m<0\), then \(D\) has a 2-by-2 block in rows/columns \(i\) and \(i-1\), and ( \(i-1\) ) th row and column of \(A\) was interchanged with the mth row and column.
If uplo \(=\) 'L' and ipiv(i) \(=\operatorname{ipiv}(i+1)=-m<0\), then \(D\) has a 2 -by-2 block in rows/columns \(i\) and \(i+1\), and \((i+1)\) th row and column of \(A\) was interchanged with the \(m\) th row and column.
INTEGER. If info \(=0\), the execution is successful. If info \(=-i\), the \(i\) th parameter had an illegal value.
If info \(=i, d_{i i}\) is 0 . The factorization has been completed, but \(D\) is exactly singular. Division by 0 will occur if you use \(D\) for solving a system of linear equations.

\section*{Application Notes}

This routine is suitable for Hermitian matrices that are not known to be positive-definite. If \(A\) is in fact positive-definite, the routine does not perform interchanges, and no 2-by-2 diagonal blocks occur in \(D\).

For better performance, try using 1 work \(=n^{*}\) blocksize, where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm.

If you are in doubt how much workspace to supply, use a generous value of 1 work for the first run. On exit, examine work (1) and use this value for subsequent runs.

The 2-by-2 unit diagonal blocks and the unit diagonal elements of \(U\) and \(L\) are not stored. The remaining elements of \(U\) and \(L\) are stored in the corresponding columns of the array a, but additional row interchanges are required to recover \(U\) or \(L\) explicitly (which is seldom necessary).

If \(\operatorname{ipiv}(i)=i\) for all \(i=1 \ldots n\), then all off-diagonal elements of \(U(L)\) are stored explicitly in the corresponding elements of the array \(a\).

If uplo \(=\) ' \(U\) ', the computed factors \(U\) and \(D\) are the exact factors of a perturbed matrix \(A+E\), where
\[
|E| \leq C(n) \varepsilon P|U||D|\left|U^{T}\right| P^{T}
\]
\(c(n)\) is a modest linear function of \(n\), and \(\varepsilon\) is the machine precision.
A similar estimate holds for the computed \(L\) and \(D\) when uplo \(=\) 'L'.
The total number of floating-point operations is approximately \((4 / 3) n^{3}\).
After calling this routine, you can call the following:
\begin{tabular}{ll}
\begin{tabular}{l} 
?hetrs \\
?hecon
\end{tabular} & to solve \(A X=B ;\) \\
?hetri & to estimate the condition number of \(A ;\) \\
\hline
\end{tabular}

\section*{?sptrf}

Computes the Bunch-Kaufman factorization of a symmetric matrix using packed storage.

\section*{Syntax}
```

call ssptrf (uplo, n, ap, ipiv, info)
call dsptrf (uplo, n, ap, ipiv, info)
call csptrf (uplo, n, ap, ipiv, info)
call zsptrf (uplo, n, ap, ipiv, info)

```

\section*{Description}

This routine forms the Bunch-Kaufman factorization of a symmetric matrix \(A\) using packed storage:
\[
\text { if uplo='U', } \quad A=P U D U^{T} P^{T}
\]
```

if uplo='L', $\quad A=P L D L^{T} P^{T}$

```
where \(P\) is a permutation matrix, \(U\) and \(L\) are upper and lower triangular matrices with unit diagonal, and \(D\) is a symmetric block-diagonal matrix with 1-by-1 and 2-by-2 diagonal blocks. \(U\) and \(L\) have 2-by-2 unit diagonal blocks corresponding to the 2-by-2 blocks of \(D\).

\section*{Input Parameters}
uplo CHARACTER*1. Must be 'U' or 'L'.
Indicates whether the upper or lower triangular part of \(A\) is packed in the array \(a p\) and how \(A\) is factored:

If uplo=' U ', the array \(a p\) stores the upper triangular part of the matrix \(A\), and \(A\) is factored as \(P U D U^{T} P^{T}\).
If uplo= 'L', the array ap stores the lower triangular part of the matrix \(A ; A\) is factored as \(P L D L^{T} P^{T}\).
\(n \quad\) INTEGER. The order of matrix \(A(n \geq 0)\).
ap REAL for ssptrf
DOUBLE PRECISION for dsptrf
COMPLEX for csptrf
DOUBLE COMPLEX for zsptrf.
Array, DIMENSION at least max \((1, n(n+1) / 2)\).
The array \(a p\) contains either the upper or the lower triangular part of the matrix A (as specified by uplo) in packed storage (see Matrix Storage Schemes).

\section*{Output Parameters}
\begin{tabular}{|c|c|}
\hline ap & The upper or lower triangle of \(A\) (as specified by uplo) is overwritten by details of the block-diagonal matrix \(D\) and the multipliers used to obtain the factor \(U\) (or \(L\) ). \\
\hline \multirow[t]{6}{*}{ipiv} & INTEGER. \\
\hline & Array, DIMENSION at least max (1,n). \\
\hline & Contains details of the interchanges and the block structure of \(D\). \\
\hline & If \(i p i v(i)=k>0\), then \(d_{i i}\) is a 1 -by- 1 block, and the \(i\) th row and column of \\
\hline & \(A\) was interchanged with the \(k\) th row and column. \\
\hline & If uplo \(=1 \mathrm{U}\) 'and \(\operatorname{ipiv}(i)=\operatorname{ipiv}(i-1)=-m<0\), then \(D\) has a 2-by-2 block in rows/columns \(i\) and \(i-1\), and ( \(i-1\) ) th row and column of \(A\) was interchanged with the \(m\) th row and column. \\
\hline
\end{tabular}

If uplo='L' and \(\operatorname{ipiv}(i)=\operatorname{ipiv}(i+1)=-m<0\), then \(D\) has a 2-by-2 block in rows/columns \(i\) and \(i+1\), and \((i+1)\) th row and column of \(A\) was interchanged with the \(m\) th row and column.
info INTEGER. If info \(=0\), the execution is successful. If info \(=-i\), the \(i\) th parameter had an illegal value. If info \(=i, d_{i i}\) is 0 . The factorization has been completed, but \(D\) is exactly singular. Division by 0 will occur if you use \(D\) for solving a system of linear equations.

\section*{Application Notes}

The 2-by-2 unit diagonal blocks and the unit diagonal elements of \(U\) and \(L\) are not stored. The remaining elements of \(U\) and \(L\) overwrite elements of the corresponding columns of the matrix \(A\), but additional row interchanges are required to recover \(U\) or \(L\) explicitly (which is seldom necessary).

If \(\operatorname{ipiv}(i)=i\) for all \(i=1 \ldots n\), then all off-diagonal elements of \(U(L)\) are stored explicitly in packed form.

If uplo \(=\) ' U', the computed factors \(U\) and \(D\) are the exact factors of a perturbed matrix \(A+E\), where
\[
|E| \leq C(n) \mathcal{E} P|U||D|\left|U^{T}\right| P^{T}
\]
\(c(n)\) is a modest linear function of \(n\), and \(\varepsilon\) is the machine precision.
A similar estimate holds for the computed \(L\) and \(D\) when uplo= 'L'.
The total number of floating-point operations is approximately \((1 / 3) n^{3}\) for real flavors or \((4 / 3) n^{3}\) for complex flavors.

After calling this routine, you can call the following:
?sptrs
to solve \(A X=B\);
?spcon
to estimate the condition number of \(A\);
?sptri
to compute the inverse of \(A\).

\section*{?hptrf}

\section*{Computes the Bunch-Kaufman factorization of a complex Hermitian matrix using packed storage.}

\section*{Syntax}
```

call chptrf (uplo, n, ap, ipiv, info)
call zhptrf (uplo, n, ap, ipiv, info)

```

\section*{Description}

This routine forms the Bunch-Kaufman factorization of a Hermitian matrix using packed storage:
```

if uplo='U', $\quad A=P U D U^{H} P^{T}$
if uplo='L', $\quad A=P L D L^{H} P^{T}$

```
where \(A\) is the input matrix, \(P\) is a permutation matrix, \(U\) and \(L\) are upper and lower triangular matrices with unit diagonal, and \(D\) is a Hermitian block-diagonal matrix with 1-by-1 and 2-by-2 diagonal blocks. \(U\) and \(L\) have 2-by-2 unit diagonal blocks corresponding to the 2-by-2 blocks of D.

\section*{Input Parameters}
```

uplo CHARACTER*1. Must be 'U' or 'L'.
Indicates whether the upper or lower triangular part of }A\mathrm{ is packed and how }
is factored:
If uplo= 'U', the array ap stores the upper triangular part of the matrix }A\mathrm{ ,
and A is factored as PUDU H}\mp@subsup{P}{}{T}\mathrm{ .
If upIo= 'L', the array ap stores the lower triangular part of the matrix A;A
is factored as PLDL H}\mp@subsup{P}{}{T}\mathrm{ .
n INTEGER. The order of matrix A (}n\geq0)\mathrm{ .
ap COMPLEX for chptrf
DOUBLE COMPLEX for zhptrf.
Array, DIMENSION at least max(1,n(n+1)/2).
The array ap contains either the upper or the lower triangular part of the matrix
A (as specified by uplo) in packed storage (see Matrix Storage Schemes).

```

\section*{Output Parameters}
\begin{tabular}{ll} 
ap & \begin{tabular}{l} 
The upper or lower triangle of \(A\) (as specified by uplo) is overwritten by \\
details of the block-diagonal matrix \(D\) and the multipliers used to obtain the \\
factor \(U(\) or \(L)\).
\end{tabular} \\
iniv & INTEGER. \\
Array, DIMENSION at least \(\max (1, n)\). \\
Contains details of the interchanges and the block structure of \(D\). \\
If \(\operatorname{ipiv}(i)=k>0\), then \(d_{i i}\) is a \(1-b y-1\) block, and the ith row and column of \\
\(A\) was interchanged with the \(k\) th row and column.
\end{tabular}

If uplo='U' and \(\operatorname{ipiv}(i)=\operatorname{ipiv}(i-1)=-m<0\), then \(D\) has a 2-by-2 block in rows/columns \(i\) and \(i-1\), and ( \(i-1\) ) th row and column of \(A\) was interchanged with the \(m\) th row and column.

If uplo='L' and \(\operatorname{ipiv}(i)=\operatorname{ipiv}(i+1)=-m<0\), then \(D\) has a 2-by-2 block in rows/columns \(i\) and \(i+1\), and \((i+1)\) th row and column of \(A\) was interchanged with the \(m\) th row and column.
info INTEGER. If info=0, the execution is successful. If info \(=-i\), the \(i\) th parameter had an illegal value. If info \(=i, d_{i i}\) is 0 . The factorization has been completed, but \(D\) is exactly singular. Division by 0 will occur if you use \(D\) for solving a system of linear equations.

\section*{Application Notes}

The 2-by-2 unit diagonal blocks and the unit diagonal elements of \(U\) and \(L\) are not stored. The remaining elements of \(U\) and \(L\) are stored in the corresponding columns of the array a, but additional row interchanges are required to recover \(U\) or \(L\) explicitly (which is seldom necessary).

If \(\operatorname{ipiv}(i)=i\) for all \(i=1 \ldots n\), then all off-diagonal elements of \(U(L)\) are stored explicitly in the corresponding elements of the array \(a\).

If uplo \(=\) ' \(U\) ', the computed factors \(U\) and \(D\) are the exact factors of a perturbed matrix \(A+E\), where
\[
|E| \leq C(n) \mathcal{E} P|U||D|\left|U^{T}\right| P^{T}
\]
\(c(n)\) is a modest linear function of \(n\), and \(\varepsilon\) is the machine precision.
A similar estimate holds for the computed \(L\) and \(D\) when uplo \(=\) ' \(L\) '.
The total number of floating-point operations is approximately \((4 / 3) n^{3}\).
After calling this routine, you can call the following:
?hptrs
?hpcon
?hptri
to solve \(A X=B\);
to estimate the condition number of \(A\);
to compute the inverse of \(A\).

\section*{Routines for Solving Systems of Linear Equations}

This section describes the LAPACK routines for solving systems of linear equations. Before calling most of these routines, you need to factorize the matrix of your system of equations (see Routines for Matrix Factorization in this chapter). However, the factorization is not necessary if your system of equations has a triangular matrix.

\section*{?getrs}

Solves a system of linear equations with an LU-factored square matrix, with multiple right-hand sides.

\section*{Syntax}
```

call sgetrs (trans, n, nrhs, a, lda, ipiv, b, ldb, info)
call dgetrs (trans, n, nrhs, a, lda, ipiv, b, ldb, info)
call cgetrs (trans, n, nrhs, a, lda, ipiv, b, ldb, info)
call zgetrs (trans, n, nrhs, a, lda, ipiv, b, ldb, info)

```

\section*{Description}

This routine solves for \(X\) the following systems of linear equations:
\begin{tabular}{ll}
\(A X=B\) & if trans = ' \(\mathrm{N} '\), \\
\(A^{T} X=B\) & if trans = ' ' ', \\
\(A^{H} X=B\) & if trans = ' ' (for complex matrices only).
\end{tabular}

Before calling this routine, you must call ? getrf to compute the \(L U\) factorization of \(A\).

\section*{Input Parameters}
```

trans CHARACTER*1. Must be 'N' or 'T' or 'C'.
Indicates the form of the equations:
If trans='N', then AX=B is solved for }X\mathrm{ .

```
\begin{tabular}{|c|c|}
\hline & \begin{tabular}{l}
If trans \(=\) ' T ', then \(A^{T} X=B\) is solved for \(X\). \\
If trans \(=\) ' C ', then \(A^{H} X=B\) is solved for \(X\).
\end{tabular} \\
\hline n & INTEGER. The order of \(A\); the number of rows in \(B(n \geq 0)\). \\
\hline nrhs & INTEGER. The number of right-hand sides (nrhs \(\geq 0\) ). \\
\hline \multirow[t]{8}{*}{\(a, b\)} & REAL for sgetrs \\
\hline & DOUBLE PRECISION for dgetrs \\
\hline & COMPLEX for cgetrs \\
\hline & DOUBLE COMPLEX for zgetrs. \\
\hline & Arrays: \(a(l d a, *), b(l d b, *)\). \\
\hline & The array a contains the matrix \(A\). \\
\hline & The array \(b\) contains the matrix \(B\) whose columns are the right-hand sides for the systems of equations. \\
\hline & The second dimension of a must be at least max \((1, n)\), the second dimension of \(b\) at least \(\max (1, n r h s)\). \\
\hline Ida & INTEGER. The first dimension of \(a ; 1 d a \geq \max (1, n)\). \\
\hline 1 db & INTEGER. The first dimension of \(b ; 1 d b \geq \max (1, n)\). \\
\hline \multirow[t]{3}{*}{ipiv} & INTEGER. \\
\hline & Array, DIMENSION at least max \((1, n)\). \\
\hline & The ipiv array, as returned by ? getrf. \\
\hline
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{ll}
\(b\) & Overwritten by the solution matrix \(X\). \\
info & INTEGER. If info \(=0\), the execution is successful. \\
& If info \(=-i\), the \(i\) th parameter had an illegal value
\end{tabular}

\section*{Application Notes}

For each right-hand side \(b\), the computed solution is the exact solution of a perturbed system of equations \((A+E) x=b\) where
\[
|E| \leq C(n) \mathcal{E} P|L||U|
\]
\(c(n)\) is a modest linear function of \(n\), and \(\varepsilon\) is the machine precision.
If \(x_{0}\) is the true solution, the computed solution \(x\) satisfies this error bound:
\[
\frac{\left\|x-x_{0}\right\|_{\infty}}{\|x\|_{\infty}} \leq C(n) \operatorname{cond}(A, x) \varepsilon
\]
where \(\operatorname{cond}(A, x)=\left\|\left|A^{-1}\right||A||x|\right\|_{\infty} /\|x\|_{\infty} \leq\left\|A^{-1}\right\|_{\infty}\|A\|_{\infty}=\kappa_{\infty}(A)\).
Note that \(\operatorname{cond}(A, x)\) can be much smaller than \(\kappa_{\infty}(A)\); the condition number of \(A^{T}\) and \(A^{H}\) might or might not be equal to \(\kappa_{\infty}(A)\).

The approximate number of floating-point operations for one right-hand side vector \(b\) is \(2 \mathrm{n}^{2}\) for real flavors and \(8 n^{2}\) for complex flavors.

To estimate the condition number \(\mathrm{K}_{\infty}(A)\), call ? gecon.
To refine the solution and estimate the error, call ?gerfs.

\section*{?gbtrs}

Solves a system of linear equations with an LU-factored band matrix, with multiple right-hand sides.

\section*{Syntax}
```

call sgbtrs (trans, n, kl, ku, nrhs, ab, ldab, ipiv, b, ldb, info)
call dgbtrs (trans, n, kl, ku, nrhs, ab, ldab, ipiv, b, ldb, info)
call cgbtrs (trans, n, kl, ku, nrhs, ab, ldab, ipiv, b, ldb, info)
call zgbtrs (trans, n, kl, ku, nrhs, ab, ldab, ipiv, b, ldb, info)

```

\section*{Description}

This routine solves for \(X\) the following systems of linear equations:
```

AX=B if trans='N',
A}\mp@subsup{A}{}{T}X=B\quad if trans='T'
A}\mp@subsup{A}{}{H}X=B\quad if trans=' C' (for complex matrices only)

```

Here \(A\) is an \(L U\)-factored general band matrix of order \(n\) with \(k l\) non-zero sub-diagonals and \(k u\) non-zero super-diagonals. Before calling this routine, you must call ?gbtrf to compute the \(L U\) factorization of \(A\).

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline trans & Character*1. Must be 'N' or 'T' or 'C'. \\
\hline \(n\) & Integer. The order of \(A\); the number of rows in \(B(\mathrm{n} \geq 0)\). \\
\hline kl & INTEGER. The number of sub-diagonals within the band of \(A(k l \geq 0)\). \\
\hline ku & INTEGER. The number of super-diagonals within the band of \(A(k u \geq 0)\). \\
\hline nrhs & integer. The number of right-hand sides ( \(n r h s \geq 0\) ). \\
\hline \(a b, b\) & REAL for sgbtrs \\
\hline & DOUBLE PRECISION for dgbtrs \\
\hline & COMPLEX for cgbtrs \\
\hline & double Complex for zgbtrs. \\
\hline & Arrays: \(a b\) ( \(1 d a b, *), b(l d b, *)\). \\
\hline
\end{tabular}

The array \(a b\) contains the matrix \(A\) in band storage (see Matrix Storage Schemes).

The array b contains the matrix \(B\) whose columns are the right-hand sides for the systems of equations.

The second dimension of \(a b\) must be at least \(\max (1, n)\), the second dimension of \(b\) at least max( \(1, n r h s\) ).
ldab INTEGER. The first dimension of the array \(a b\). ( \(1 \mathrm{dab} \geq 2 k l+k u+1\) ).
\(l d b \quad\) INTEGER. The first dimension of \(b ; 1 d b \geq \max (1, n)\).
ipiv Integer. Array, DIMENSION at least max \((1, n)\). The ipiv array, as returned by ?gbtrf.

\section*{Output Parameters}
b Overwritten by the solution matrix \(X\).
info INTEGER. If info \(=0\), the execution is successful. If info \(=-i\), the \(i\) th parameter had an illegal value.

\section*{Application Notes}

For each right-hand side \(b\), the computed solution is the exact solution of a perturbed system of equations \((A+E) x=b\), where
\[
|E| \leq c(k I+k u+1) \varepsilon P|L||U|
\]
\(c(k)\) is a modest linear function of \(k\), and \(\varepsilon\) is the machine precision.

If \(x_{0}\) is the true solution, the computed solution \(x\) satisfies this error bound:
\[
\frac{\left\|x-x_{0}\right\|_{\infty}}{\|x\|_{\infty}} \leq c(k l+k u+1) \text { cond }(A, x) \varepsilon
\]
where \(\operatorname{cond}(A, x)=\left\|\left|A^{-1}\right||A||x|\right\|_{\infty} /\|x\|_{\infty} \leq\left\|A^{-1}\right\|_{\infty}\|A\|_{\infty}=\kappa_{\infty}(A)\).
Note that \(\operatorname{cond}(A, x)\) can be much smaller than \(\kappa_{\infty}(A)\); the condition number of \(A^{T}\) and \(A^{H}\) might or might not be equal to \(K_{\infty}(A)\).

The approximate number of floating-point operations for one right-hand side vector is \(2 \mathrm{n}(\mathrm{ku}+\) \(2 k 1)\) for real flavors. The number of operations for complex flavors is 4 times greater. All these estimates assume that \(k l\) and \(k u\) are much less than \(\min (m, n)\).

To estimate the condition number \(\kappa_{\infty}(A)\), call ? gbcon.
To refine the solution and estimate the error, call ?gbrfs.

\section*{?gttrs}

Solves a system of linear equations with a tridiagonal matrix using the LU factorization computed by ? gttrf.

\section*{Syntax}
```

call sgttrs (trans, n, nrhs, dl, d, du, du2, ipiv, b, ldb, info)
call dgttrs (trans, n, nrhs, dl, d, du, du2, ipiv, b, ldb, info)
call cgttrs (trans, n, nrhs, dl, d, du, du2, ipiv, b, ldb, info)
call zgttrs (trans, n, nrhs, dl, d, du, du2, ipiv, b, ldb, info)

```

\section*{Description}

This routine solves for \(X\) the following systems of linear equations with multiple right hand sides:
```

$A X=B \quad$ if trans=' N ',
$A^{T} X=B \quad$ if trans=' T^{\prime},
$A^{H} X=B \quad$ if t rans $=$ ' C' (for complex matrices only).

```

Before calling this routine, you must call ?gttrf to compute the \(L U\) factorization of \(A\).

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline trans & \begin{tabular}{l}
CHARACTER*1. Must be 'N' or 'T' or 'C'. Indicates the form of the equations: \\
If trans \(=\) ' N ', then \(A X=B\) is solved for \(X\). \\
If trans \(=\) ' T ', then \(A^{T} X=B\) is solved for \(X\). \\
If trans \(=\) ' C ', then \(A^{H} X=B\) is solved for \(X\).
\end{tabular} \\
\hline \(n\) & INTEGER. The order of \(A(n \geq 0)\). \\
\hline nrhs & INTEGER. The number of right-hand sides, i.e., the number of columns in \(B\) (nrhs \(\geq 0\) ). \\
\hline \(d l, d, d u, d u 2, b\) & \begin{tabular}{l}
REAL for sgttrs \\
DOUBLE PRECISION for dgttrs \\
COMPLEX for cgttrs \\
DOUBLE COMPLEX for zgttrf. \\
Arrays: \(d l(n-1), d(n), d u(n-1), d u 2(n-2), b(1 d b, n r h s)\). \\
The array \(d l\) contains the \((n-1)\) multipliers that define the matrix \(L\) from the \(L U\) factorization of \(A\). \\
The array \(d\) contains the \(n\) diagonal elements of the upper triangular matrix \(U\) from the \(L U\) factorization of \(A\). \\
The array \(d u\) contains the \((n-1)\) elements of the first super-diagonal of \(U\). \\
The array du2 contains the \((n-2)\) elements of the second super-diagonal of \(U\). \\
The array \(b\) contains the matrix \(B\) whose columns are the right-hand sides for the systems of equations.
\end{tabular} \\
\hline 1 db & INTEGER. The leading dimension of \(b ; 1 \mathrm{db} \geq \max (1, n)\). \\
\hline ipiv & \begin{tabular}{l}
INTEGER. \\
Array, DIMENSION ( \(n\) ). \\
The ipiv array, as returned by ?gttrf.
\end{tabular} \\
\hline
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{ll} 
b & Overwritten by the solution matrix \(X\). \\
info & INTEGER. If info=0, the execution is successful. \\
& If info \(=-i\), the \(i\) th parameter had an illegal value.
\end{tabular}

\section*{Application Notes}

For each right-hand side \(b\), the computed solution is the exact solution of a perturbed system of equations \((A+E) x=b\) where
\[
|E| \leq c(n) \varepsilon P|L||U|
\]
\(c(n)\) is a modest linear function of \(n\), and \(\varepsilon\) is the machine precision.
If \(x_{0}\) is the true solution, the computed solution \(x\) satisfies this error bound:
\[
\frac{\left\|x-x_{0}\right\|_{\infty}}{\|x\|_{\infty}} \leq C(n) \operatorname{cond}(A, x) \varepsilon
\]
where \(\operatorname{cond}(A, x)=\left\|\left|A^{-1}\right||A||x|\right\|_{\infty} /\|x\|_{\infty} \leq\left\|A^{-1}\right\|_{\infty}\|A\|_{\infty}=\kappa_{\infty}(A)\).
Note that \(\operatorname{cond}(A, x)\) can be much smaller than \(\kappa_{\infty}(A)\); the condition number of \(A^{T}\) and \(A^{H}\) might or might not be equal to \(\kappa_{\infty}(A)\).

The approximate number of floating-point operations for one right-hand side vector \(b\) is \(2 n^{2}\) for real flavors and \(8 n^{2}\) for complex flavors.

To estimate the condition number \(\mathrm{K}_{\infty}(A)\), call ? gecon.
To refine the solution and estimate the error, call ?gerfs.

\section*{?potrs}

Solves a system of linear equations with a Cholesky-factored symmetric (Hermitian) positive-definite matrix.

\section*{Syntax}
```

call spotrs (uplo, n, nrhs, a, lda, b, ldb, info)
call dpotrs (uplo, n, nrhs, a, lda, b, ldb, info)
call cpotrs (uplo, n, nrhs, a, lda, b, ldb, info)
call zpotrs (uplo, n, nrhs, a, lda, b, ldb, info)

```

\section*{Description}

This routine solves for \(X\) the system of linear equations \(A X=B\) with a symmetric positive-definite or, for complex data, Hermitian positive-definite matrix \(A\), given the Cholesky factorization of \(A\) :
\[
\begin{array}{ll}
A=U^{H} U & \text { if uplo='U' } \\
A=L L^{H} & \text { if uplo='L' }
\end{array}
\]
where \(L\) is a lower triangular matrix and \(U\) is upper triangular. The system is solved with multiple right-hand sides stored in the columns of the matrix \(B\).

Before calling this routine, you must call ?potrf to compute the Cholesky factorization of \(A\).

\section*{Input Parameters}
```

uplo CHARACTER*1. Must be 'U' or 'L'.
Indicates how the input matrix }A\mathrm{ has been factored:
If uplo= 'U', the array a stores the factor U of the Cholesky factorization A=
UH}U
If uplo= 'L', the array a stores the factor L of the Cholesky factorization }
= LL H.
n INTEGER. The order of matrix A (}n\geq0)\mathrm{ .
nrhs INTEGER. The number of right-hand sides (nrhs \geq0).
a,b REAL for spotrs
DOUBLE PRECISION for dpotrs
COMPLEX for cpotrs
DOUBLE COMPLEX for zpotrs.
Arrays: a(lda,*), b(ldb,*).
The array a contains the factor }U\mathrm{ or }L\mathrm{ (see uplo).
The array b contains the matrix }B\mathrm{ whose columns are the right-hand sides for
the systems of equations.
The second dimension of a must be at least max((1,n), the second dimension of
b}\mathrm{ at least max(1,nrhs).
lda INTEGER. The first dimension of a; lda \geq max (1, n).
ldb INTEGER. The first dimension of }b;1db\geq\operatorname{max}(1,n)

```

\section*{Output Parameters}
b Overwritten by the solution matrix \(X\).
info INTEGER. If info \(=0\), the execution is successful. If info \(=-i\), the \(i\) th parameter had an illegal value.

\section*{Application Notes}

If uplo = ' U ', the computed solution for each right-hand side \(b\) is the exact solution of a perturbed system of equations \((A+E) x=b\), where
\[
|E| \leq C(n) \varepsilon\left|U^{H}\right||U|
\]
\(c(n)\) is a modest linear function of \(n\), and \(\varepsilon\) is the machine precision.
A similar estimate holds for uplo = ' L' .
If \(x_{0}\) is the true solution, the computed solution \(x\) satisfies this error bound:
\[
\frac{\left\|x-x_{0}\right\|_{\infty}}{\|x\|_{\infty}} \leq C(n) \operatorname{cond}(A, x) \varepsilon
\]
where \(\operatorname{cond}(A, x)=\left\|\left|A^{-1}\right||A||x|\right\|_{\infty} /\|x\|_{\infty} \leq\left\|A^{-1}\right\|_{\infty}\|A\|_{\infty}=\kappa_{\infty}(A)\).
Note that cond \((A, x)\) can be much smaller than \(\kappa_{\infty}(A)\).
The approximate number of floating-point operations for one right-hand side vector \(b\) is \(2 n^{2}\) for real flavors and \(8 n^{2}\) for complex flavors.

To estimate the condition number \(\kappa_{\infty}(A)\), call ?pocon.
To refine the solution and estimate the error, call ?porfs.

\section*{?pptrs}

Solves a system of linear equations with a packed Cholesky-factored symmetric (Hermitian) positive-definite matrix.

\section*{Syntax}
```

call spptrs (uplo, n, nrhs, ap, b, ldb, info)
call dpptrs (uplo, n, nrhs, ap, b, ldb, info)
call cpptrs (uplo, n, nrhs, ap, b, ldb, info)
call zpptrs (uplo, n, nrhs, ap, b, ldb, info)

```

\section*{Description}

This routine solves for \(X\) the system of linear equations \(A X=B\) with a packed symmetric positive-definite or, for complex data, Hermitian positive-definite matrix \(A\), given the Cholesky factorization of \(A\) :
\[
\begin{array}{ll}
A=U^{H} U & \text { if uplo='U' } \\
A=L L^{H} & \text { if uplo='L' }
\end{array}
\]
where \(L\) is a lower triangular matrix and \(U\) is upper triangular. The system is solved with multiple right-hand sides stored in the columns of the matrix \(B\).

Before calling this routine, you must call ?pptrf to compute the Cholesky factorization of \(A\).

\section*{Input Parameters}
```

uplo CHARACTER*1. Must be 'U' or 'L'.
Indicates how the input matrix }A\mathrm{ has been factored:
If uplo='U', the array a stores the packed factor }U\mathrm{ of the Cholesky
factorization }A=\mp@subsup{U}{}{H}U\mathrm{ .
If uplo='L', the array a stores the packed factor L of the Cholesky
factorization }A=L\mp@subsup{L}{}{H}\mathrm{ .
n INTEGER. The order of matrix A (}n\geq0)\mathrm{ .
nrhs INTEGER. The number of right-hand sides (nrhs \geq0).
ap, b REAL for spptrs
DOUBLE PRECISION for dpptrs
COMPLEX for cpptrs
DOUBLE COMPLEX for zpptrs.
Arrays: ap(*), b(ldb,*)
The dimension of ap must be at least max(1,n(n+1)/2).
The array ap contains the factor }U\mathrm{ or }L\mathrm{ , as specified by uplo, in packed
storage (see Matrix Storage Schemes).
The array b contains the matrix }B\mathrm{ whose columns are the right-hand sides for
the systems of equations. The second dimension of b must be at least
max(1,nrhs).
ldb INTEGER. The first dimension of b; ldb \geq max(1,n).

```

\section*{Output Parameters}
b Overwritten by the solution matrix \(X\).
info INTEGER. If info \(=0\), the execution is successful. If info \(=-i\), the \(i\) th parameter had an illegal value.

\section*{Application Notes}

If uplo = ' U ', the computed solution for each right-hand side \(b\) is the exact solution of a perturbed system of equations \((A+E) x=b\), where
\[
|E| \leq C(n) \varepsilon\left|U^{H}\right||U|
\]
\(c(n)\) is a modest linear function of \(n\), and \(\varepsilon\) is the machine precision.
A similar estimate holds for uplo \(=\) ' L '
If \(x_{0}\) is the true solution, the computed solution \(x\) satisfies this error bound:
\[
\frac{\left\|x-x_{0}\right\|_{\infty}}{\|x\|_{\infty}} \leq c(n) \operatorname{cond}(A, x) \varepsilon
\]
where \(\operatorname{cond}(A, x)=\left\|\left|A^{-1}\right||A||x|\right\|_{\infty} /\|x\|_{\infty} \leq\left\|A^{-1}\right\|_{\infty}\|A\|_{\infty}=\kappa_{\infty}(A)\).
Note that \(\operatorname{cond}(A, x)\) can be much smaller than \(\kappa_{\infty}(A)\).
The approximate number of floating-point operations for one right-hand side vector \(b\) is \(2 n^{2}\) for real flavors and \(8 n^{2}\) for complex flavors.

To estimate the condition number \(\mathrm{K}_{\infty}(A)\), call ?ppcon.
To refine the solution and estimate the error, call ?pprfs.

\section*{?pbtrs}

Solves a system of linear equations with a Cholesky-factored symmetric (Hermitian) positive-definite band matrix.

\section*{Syntax}
```

call spbtrs (uplo, n, kd, nrhs, ab, ldab, b, ldb, info)
call dpbtrs (uplo, n, kd, nrhs, ab, ldab, b, ldb, info)
call cpbtrs (uplo, n, kd, nrhs, ab, ldab, b, ldb, info)
call zpbtrs (uplo, n, kd, nrhs, ab, ldab, b, ldb, info)

```

\section*{Description}

This routine solves for \(X\) the system of linear equations \(A X=B\) with a symmetric positive-definite or, for complex data, Hermitian positive-definite band matrix \(A\), given the Cholesky factorization of \(A\) :
```

$A=U^{H} U \quad$ if uplo='U'
$A=L L^{H} \quad$ if uplo= 'L'

```
where \(L\) is a lower triangular matrix and \(U\) is upper triangular. The system is solved with multiple right-hand sides stored in the columns of the matrix \(B\).

Before calling this routine, you must call ?pbtrf to compute the Cholesky factorization of \(A\) in the band storage form.

\section*{Input Parameters}
```

uplo CHARACTER*1. Must be 'U' or 'L'.
Indicates how the input matrix }A\mathrm{ has been factored:
If uplo= 'U', the array a stores the factor U of the factorization A= U'H}U\mathrm{ in
the band storage form.
If uplo = 'L', the array a stores the factor L of the factorization A=LL'H}\mathrm{ in
the band storage form.
INTEGER. The order of matrix A (}\textrm{n}\geq0)\mathrm{ .
kd INTEGER. The number of super-diagonals or sub-diagonals in the matrix }
(kd \geq0).
nrhs INTEGER. The number of right-hand sides (nrhs \geq0).
ab, b REAL for spbtrs
DOUBLE PRECISION for dpbtrs
COMPLEX for cpbtrs
DOUBLE COMPLEX for zpbtrs.
Arrays: ab(ldab,*), b(ldb,*).

```
    The array \(a b\) contains the Cholesky factor, as returned by the factorization
    routine, in band storage form.
    The array b contains the matrix \(B\) whose columns are the right-hand sides for
    the systems of equations.
    The second dimension of \(a b\) must be at least \(\max (1, n)\),
    the second dimension of \(b\) at least \(\max (1, n r h s)\).
ldab INTEGER. The first dimension of the array \(a b\).
    ( \(1 d a b \geq k d+1\) ).
\(1 d b\)
INTEGER. The first dimension of \(b ; 1 d b \geq \max (1, n)\).

\section*{Output Parameters}
b Overwritten by the solution matrix \(X\).
info
INTEGER. If info=0, the execution is successful. If info \(=-i\), the \(i\) th parameter had an illegal value.

\section*{Application Notes}

For each right-hand side \(b\), the computed solution is the exact solution of a perturbed system of equations \((A+E) x=b\), where
\[
|E| \leq C(k d+1) \varepsilon P\left|U^{H}\right||U| \text { or }|E| \leq C(k d+1) \varepsilon P\left|L^{H}\right||L|
\]
\(c(k)\) is a modest linear function of \(k\), and \(\varepsilon\) is the machine precision.
If \(x_{0}\) is the true solution, the computed solution \(x\) satisfies this error bound:
\[
\frac{\left\|x-x_{0}\right\|_{\infty}}{\|x\|_{\infty}} \leq c(k d+1) \operatorname{cond}(A, x) \varepsilon
\]
where cond \((A, x)=\left\|\left|A^{-1}\right||A||x|\right\|_{\infty} /\|x\|_{\infty} \leq\left\|A^{-1}\right\|_{\infty}\|A\|_{\infty}=\kappa_{\infty}(A)\).
Note that \(\operatorname{cond}(A, x)\) can be much smaller than \(\kappa_{\infty}(A)\).
The approximate number of floating-point operations for one right-hand side vector is \(4 n^{*} k d\) for real flavors and \(16 n^{*} k d\) for complex flavors.

To estimate the condition number \(\mathrm{K}_{\infty}(A)\), call ?pbcon.
To refine the solution and estimate the error, call ?pbrfs.

\section*{?pttrs}

Solves a system of linear equations with a symmetric (Hermitian) positive-definite tridiagonal matrix using the factorization computed by ?pttrf.

\section*{Syntax}
```

call spttrs (n, nrhs, d, e, b, ldb, info)
call dpttrs (n, nrhs, d, e, b, ldb, info)
call cpttrs (uplo, n, nrhs, d, e, b, ldb, info)

```
```

call zpttrs (uplo, n, nrhs, d, e, b, ldb, info)

```

\section*{Description}

This routine solves for \(X\) a system of linear equations \(A X=B\) with a symmetric (Hermitian) positive-definite tridiagonal matrix \(A\).
Before calling this routine, you must call ?pttrf to compute the \(L D L^{H}\) or \(U^{H} D U\) factorization of \(A\).

Input Parameters
\begin{tabular}{|c|c|}
\hline \multirow[t]{5}{*}{uplo} & CHARACTER*1. Used for cpttrs/zpttrs only. \\
\hline & Must be 'U' or 'L'. \\
\hline & Specifies whether the superdiagonal or the subdiagonal of the tridiagonal matrix \(A\) is stored and how \(A\) is factored: \\
\hline & If uplo = ' U ', the array e stores the superdiagonal of \(A\), and \(A\) is factored as \(U^{H} D U\); \\
\hline & If uplo = ' L ', the array e stores the subdiagonal of \(A\), and \(A\) is factored as \(L D L^{H}\). \\
\hline \(n\) & INTEGER. The order of \(A(n \geq 0)\). \\
\hline nrhs & INTEGER. The number of right-hand sides, i.e., the number of columns of the matrix \(B\) (nrhs \(\geq 0\) ). \\
\hline \multirow[t]{4}{*}{d} & REAL for spttrs, cpttrs \\
\hline & DOUBLE PRECISION for dpttrs, zpttrs. \\
\hline & Array, dimension (n). Contains the diagonal elements of the diagonal matrix \\
\hline & \(D\) from the factorization computed by ?pttrf. \\
\hline \multirow[t]{7}{*}{\(e, b\)} & REAL for spttrs \\
\hline & DOUBLE PRECISION for dpttrs \\
\hline & COMPLEX for cpttrs \\
\hline & DOUBLE COMPLex for zpttrs. \\
\hline & Arrays: e( \(n-1\) ) , b (ldb, \(n r h s\) ). \\
\hline & The array e contains the \((n-1)\) off-diagonal elements of the unit bidiagonal factor \(U\) or \(L\) from the factorization computed by ? pttrf (see uplo). \\
\hline & The array b contains the matrix \(B\) whose columns are the right-hand sides for the systems of equations. \\
\hline 1 db & INTEGER. The leading dimension of \(b ; 1 d b \geq \max (1, n)\). \\
\hline
\end{tabular}

\section*{Output Parameters}
b
Overwritten by the solution matrix \(X\).
info INTEGER. If info \(=0\), the execution is successful. If info \(=-i\), the \(i\) th parameter had an illegal value.

\section*{?sytrs}

Solves a system of linear equations with a UDU- or LDL-factored symmetric matrix.

\section*{Syntax}
```

call ssytrs (uplo, n, nrhs, a, lda, ipiv, b, ldb, info)
call dsytrs (uplo, n, nrhs, a, lda, ipiv, b, ldb, info)
call csytrs (uplo, n, nrhs, a, lda, ipiv, b, ldb, info)
call zsytrs (uplo, n, nrhs, a, lda, ipiv, b, ldb, info)

```

\section*{Description}

This routine solves for \(X\) the system of linear equations \(A X=B\) with a symmetric matrix \(A\), given the Bunch-Kaufman factorization of \(A\) :
```

if uplo='U', $\quad A=P U D U^{T} P^{T}$
if uplo='L', $\quad A=P L D L^{T} P^{T}$

```
where \(P\) is a permutation matrix, \(U\) and \(L\) are upper and lower triangular matrices with unit diagonal, and \(D\) is a symmetric block-diagonal matrix. The system is solved with multiple right-hand sides stored in the columns of the matrix \(B\). You must supply to this routine the factor \(U\) ( or \(L\) ) and the array ipiv returned by the factorization routine ?sytrf.

\section*{Input Parameters}
\begin{tabular}{ll} 
uplo & CHARACTER*1. Must be ' U ' or ' L '. \\
& Indicates how the input matrix \(A\) has been factored: \\
& If uplo \(=' \mathrm{U}\) ', the array a stores the upper triangular fact \\
& factorization \(A=P U D U^{T} P^{T}\). \\
& If uplo \(=' \mathrm{~L}\) ' , the array a stores the lower triangular factor \\
& factorization \(A=P L D L^{T} P^{T}\). \\
\(n\) & INTEGER. The order of matrix \(A(n \geq 0)\). \\
\(n r h s\) & INTEGER. The number of right-hand sides \((n r h s \geq 0)\).
\end{tabular}
```

ipiv INTEGER. Array, DIMENSION at least max(1,n).
The ipiv array, as returned by ?sytrf.
a, b REAL for ssytrs
DOUBLE PRECISION for dsytrs
COMPLEX for csytrs
DOUBLE COMPLEX for zsytrs.
Arrays: a (lda,*), b(ldb,*).
The array a contains the factor U or L (see uplo).
The array b contains the matrix B whose columns are the right-hand sides for
the system of equations.
The second dimension of a must be at least max(1,n), the second dimension of
b at least max(1,nrhs).
Ida INTEGER. The first dimension of a; lda \geq max (1,n).
ldb INTEGER. The first dimension of b; ldb \geq max(1,n).

```

\section*{Output Parameters}
```

b Overwritten by the solution matrix }X\mathrm{ .

```
info INTEGER. If info=0, the execution is successful.
    If info \(=-i\), the \(i\) th parameter had an illegal value.

\section*{Application Notes}

For each right-hand side \(b\), the computed solution is the exact solution of a perturbed system of equations \((A+E) x=b\), where
\[
|E| \leq C(n) \varepsilon P|U||D|\left|U^{T}\right| P^{T} \text { or }|E| \leq C(n) \mathcal{E} P|L||D|\left|L^{T}\right| P^{T}
\]
\(c(n)\) is a modest linear function of \(n\), and \(\varepsilon\) is the machine precision.
If \(x_{0}\) is the true solution, the computed solution \(x\) satisfies this error bound:
\[
\frac{\left\|x-x_{0}\right\|_{\infty}}{\|x\|_{\infty}} \leq C(n) \operatorname{cond}(A, x) \varepsilon
\]
where \(\operatorname{cond}(A, x)=\left\|\left|A^{-1}\right||A||x|\right\|_{\infty} /\|x\|_{\infty} \leq\left\|A^{-1}\right\|_{\infty}\|A\|_{\infty}=\kappa_{\infty}(A)\).
Note that \(\operatorname{cond}(A, x)\) can be much smaller than \(\kappa_{\infty}(A)\).
The total number of floating-point operations for one right-hand side vector is approximately \(2 \mathrm{n}^{2}\) for real flavors or \(8 n^{2}\) for complex flavors.

To estimate the condition number \(\kappa_{\infty}(A)\), call ? sycon.
To refine the solution and estimate the error, call ?syrfs.

\section*{?hetrs}

Solves a system of linear equations with a UDU- or LDL-factored Hermitian matrix.

\section*{Syntax}
```

call chetrs (uplo, n, nrhs, a, lda, ipiv, b, ldb, info)

```
```

call zhetrs (uplo, n, nrhs, a, lda, ipiv, b, ldb, info)

```

\section*{Description}

This routine solves for \(X\) the system of linear equations \(A X=B\) with a Hermitian matrix \(A\), given the Bunch-Kaufman factorization of \(A\) :
```

if uplo='U', $A=P U D U^{H} P^{T}$
if uplo ='L', $A=P L D L^{H} P^{T}$

```
where \(P\) is a permutation matrix, \(U\) and \(L\) are upper and lower triangular matrices with unit diagonal, and \(D\) is a symmetric block-diagonal matrix. The system is solved with multiple right-hand sides stored in the columns of the matrix \(B\). You must supply to this routine the factor \(U\) (or \(L\) ) and the array ipiv returned by the factorization routine ?hetrf.

\section*{Input Parameters}
```

uplo CHARACTER*1. Must be 'U' or 'L'.
Indicates how the input matrix }A\mathrm{ has been factored:

```
    If uplo= ' U ', the array a stores the upper triangular factor \(U\) of the
        factorization \(A=P U D U^{H} P^{T}\).
        If uplo = 'L', the array a stores the lower triangular factor \(L\) of the
        factorization \(A=P L D L^{H} P^{T}\).
        integer. The order of matrix \(A(n \geq 0)\).
nrhs INTEGER. The number of right-hand sides (nrhs \(\geq 0\) ).
```

ipiv INTEGER. Array, DIMENSION at least max(1,n).
The ipiv array, as returned by ?hetrf.
a, b COMPLEX for chetrs.
DOUBLE COMPLEX for zhetrs.
Arrays: a (lda,*), b(ldb,*).
The array a contains the factor U or L (see uplo).
The array b contains the matrix B whose columns are the right-hand sides for
the system of equations.
The second dimension of a must be at least max(1,n), the second dimension of
b at least max(1,nrhs).
Ida INTEGER. The first dimension of a; Ida \geq max (1, n).
ldb INTEGER. The first dimension of b; ldb \geq max (1,n).

```

\section*{Output Parameters}
b Overwritten by the solution matrix \(X\).
info INTEGER. If info=0, the execution is successful. If \(i n f o=-i\), the \(i\) th parameter had an illegal value.

\section*{Application Notes}

For each right-hand side \(b\), the computed solution is the exact solution of a perturbed system of equations \((A+E) x=b\), where
\[
|E| \leq C(n) \varepsilon P|U||D|\left|U^{H}\right| P^{T} \text { or }|E| \leq C(n) \varepsilon P|L||D|\left|L^{H}\right| P^{T}
\]
\(c(n)\) is a modest linear function of \(n\), and \(\varepsilon\) is the machine precision.
If \(x_{0}\) is the true solution, the computed solution \(x\) satisfies this error bound:
\[
\frac{\left\|x-x_{0}\right\|_{\infty}}{\|x\|_{\infty}} \leq C(n) \operatorname{cond}(A, x) \varepsilon
\]
where \(\operatorname{cond}(A, x)=\left\|\left|A^{-1}\right||A||x|\right\|_{\infty} /\|x\|_{\infty} \leq\left\|A^{-1}\right\|_{\infty}\|A\|_{\infty}=\kappa_{\infty}(A)\).
Note that \(\operatorname{cond}(A, x)\) can be much smaller than \(\kappa_{\infty}(A)\).
The total number of floating-point operations for one right-hand side vector is approximately \(8 n^{2}\).
To estimate the condition number \(\kappa_{\infty}(A)\), call ?hecon.
To refine the solution and estimate the error, call ?herfs.

\section*{?sptrs}

Solves a system of linear equations with a UDU- or LDL-factored symmetric matrix using packed storage.

\section*{Syntax}
```

call ssptrs (uplo, n, nrhs, ap, ipiv, b, ldb, info)
call dsptrs (uplo, n, nrhs, ap, ipiv, b, ldb, info)
call csptrs (uplo, n, nrhs, ap, ipiv, b, ldb, info)
call zsptrs (uplo, n, nrhs, ap, ipiv, b, ldb, info)

```

\section*{Description}

This routine solves for \(X\) the system of linear equations \(A X=B\) with a symmetric matrix \(A\), given the Bunch-Kaufman factorization of \(A\) :
```

if uplo='U', $\quad A=P U D U^{T} P^{T}$
if uplo='L', $\quad A=P L D L^{T} P^{T}$

```
where \(P\) is a permutation matrix, \(U\) and \(L\) are upper and lower packed triangular matrices with unit diagonal, and \(D\) is a symmetric block-diagonal matrix. The system is solved with multiple right-hand sides stored in the columns of the matrix \(B\). You must supply the factor \(U\) (or \(L\) ) and the array ipiv returned by the factorization routine ?sptrf.

\section*{Input Parameters}
```

uplo CHARACTER*1. Must be 'U' or 'L'.
Indicates how the input matrix }A\mathrm{ has been factored:
If uplo = 'U', the array ap stores the packed factor }U\mathrm{ of the factorization }A
PUDUT}\mp@subsup{P}{}{T
If uplo = 'L', the array ap stores the packed factor L of the factorization }A
PLDL'T}\mp@subsup{P}{}{T}\mathrm{ .
n INTEGER. The order of matrix }A(n\geq0)
nrhs INTEGER. The number of right-hand sides (nrhs \geq0).
ipiv INTEGER. Array, DIMENSION at least max(1,n).
The ipiv array, as returned by ?sptrf.
REAL for ssptrs
DOUBLE PRECISION for dsptrs
COMPLEX for csptrs

```

DOUBLE COMPLEX for zsptrs.
Arrays: \(a p(*), b(l d b, *)\)
The dimension of ap must be at least \(\max (1, n(n+1) / 2)\).
The array ap contains the factor \(U\) or \(L\), as specified by uplo, in packed storage (see Matrix Storage Schemes).
The array \(b\) contains the matrix \(B\) whose columns are the right-hand sides for the system of equations. The second dimension of \(b\) must be at least \(\max (1, n r h s)\).
\(I d b \quad\) INTEGER. The first dimension of \(b ; l d b \geq \max (1, n)\).

\section*{Output Parameters}
```

b Overwritten by the solution matrix }X\mathrm{ .
info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

```

\section*{Application Notes}

For each right-hand side \(b\), the computed solution is the exact solution of a perturbed system of equations \((A+E) x=b\), where
\[
|E| \leq C(n) \varepsilon P|U||D|\left|U^{T}\right| P^{T} \text { or }|E| \leq C(n) \mathcal{E} P|L||D|\left|L^{T}\right| P^{T}
\]
\(c(n)\) is a modest linear function of \(n\), and \(\varepsilon\) is the machine precision.
If \(x_{0}\) is the true solution, the computed solution \(x\) satisfies this error bound:
\[
\frac{\left\|x-x_{0}\right\|_{\infty}}{\|x\|_{\infty}} \leq C(n) \operatorname{cond}(A, x) \varepsilon
\]
where \(\operatorname{cond}(A, x)=\left\|\left|A^{-1}\right||A||x|\right\|_{\infty} /\|x\|_{\infty} \leq\left\|A^{-1}\right\|_{\infty}\|A\|_{\infty}=\kappa_{\infty}(A)\).
Note that \(\operatorname{cond}(A, x)\) can be much smaller than \(\kappa_{\infty}(A)\).
The total number of floating-point operations for one right-hand side vector is approximately \(2 n^{2}\) for real flavors or \(8 \mathrm{n}^{2}\) for complex flavors.

To estimate the condition number \(\kappa_{\infty}(A)\), call ? spcon.
To refine the solution and estimate the error, call ?sprfs.

\section*{?hptrs}

Solves a system of linear equations with a UDU- or LDL-factored Hermitian matrix using packed storage.

\section*{Syntax}
```

call chptrs (uplo, n, nrhs, ap, ipiv, b, ldb, info)
call zhptrs (uplo, n, nrhs, ap, ipiv, b, ldb, info)

```

\section*{Description}

This routine solves for \(X\) the system of linear equations \(A X=B\) with a Hermitian matrix \(A\), given the Bunch-Kaufman factorization of \(A\) :
if uplo='U', \(A=P U D U^{H} P^{T}\)
if uplo='L', \(A=P L D L^{H} P^{T}\)
where \(P\) is a permutation matrix, \(U\) and \(L\) are upper and lower packed triangular matrices with unit diagonal, and \(D\) is a symmetric block-diagonal matrix. The system is solved with multiple right-hand sides stored in the columns of the matrix \(B\).

You must supply to this routine the arrays \(a p\) (containing \(U\) or \(L\) ) and ipiv in the form returned by the factorization routine ?hptrf.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{4}{*}{uplo} & CHARACTER*1. Must be 'U' or 'L' \\
\hline & Indicates how the input matrix \(A\) has been factored: \\
\hline & If uplo \(=\) ' \(U\) ', the array ap stores the packed factor \(U\) of \(P U D U^{H} P^{T}\). \\
\hline & If uplo \(=\) ' L ', the array \(a p\) stores the packed factor \(L\) of \(P L D L^{H} P^{T}\). \\
\hline n & Integer. The order of matrix \(A(n \geq 0)\). \\
\hline nrhs & INTEGER. The number of right-hand sides (nrhs \(\geq 0\) ). \\
\hline ipiv & INTEGER. Array, DIMENSION at least max \((1, \mathrm{n})\). The ipiv array, as returned by ?hptrf. \\
\hline \(a p, b\) & COMPLEX for chptrs. DOUBLE COMPLEX for zhptrs. Arrays: \(a p(*), b(l d b, *)\) \\
\hline
\end{tabular}

The dimension of ap must be at least \(\max (1, n(n+1) / 2)\).
The array ap contains the factor \(U\) or \(L\), as specified by uplo, in packed storage (see Matrix Storage Schemes).
The array \(b\) contains the matrix \(B\) whose columns are the right-hand sides for the system of equations. The second dimension of \(b\) must be at least \(\max (1, n r h s)\).
\(1 d b\)
INTEGER. The first dimension of \(b ; l d b \geq \max (1, n)\).

\section*{Output Parameters}
\begin{tabular}{ll}
\(b\) & Overwritten by the solution matrix \(X\). \\
info & INTEGER. If info \(=0\), the execution is successful. \\
& If info \(=-i\), the \(i\) th parameter had an illegal value.
\end{tabular}

\section*{Application Notes}

For each right-hand side \(b\), the computed solution is the exact solution of a perturbed system of equations \((A+E) x=b\), where
\[
|E| \leq C(n) \mathcal{E} P|U||D|\left|U^{H}\right| P^{T} \text { or }|E| \leq C(n) \mathcal{E} P|L||D|\left|L^{H}\right| P^{T}
\]
\(c(n)\) is a modest linear function of \(n\), and \(\varepsilon\) is the machine precision.
If \(x_{0}\) is the true solution, the computed solution \(x\) satisfies this error bound:
\[
\frac{\left\|x-x_{0}\right\|_{\infty}}{\|x\|_{\infty}} \leq C(n) \operatorname{cond}(A, x) \varepsilon
\]
where \(\operatorname{cond}(A, x)=\left\|\left|A^{-1}\right||A||x|\right\|_{\infty} /\|x\|_{\infty} \leq\left\|A^{-1}\right\|_{\infty}\|A\|_{\infty}=\kappa_{\infty}(A)\).
Note that \(\operatorname{cond}(A, x)\) can be much smaller than \(\kappa_{\infty}(A)\).
The total number of floating-point operations for one right-hand side vector is approximately \(8 n^{2}\) for complex flavors.

To estimate the condition number \(\kappa_{\infty}(A)\), call ?hpcon.
To refine the solution and estimate the error, call ?hprfs.

\section*{?trtrs}

Solves a system of linear equations with a triangular matrix, with multiple right-hand sides.

\section*{Syntax}
```

call strtrs (uplo,trans,diag,n,nrhs,a,lda,b,ldb,info)
call dtrtrs (uplo,trans,diag,n,nrhs,a,lda,b,ldb,info)
call ctrtrs (uplo,trans,diag,n,nrhs,a,lda,b,ldb,info)
call ztrtrs (uplo,trans,diag,n,nrhs,a,lda,b,ldb,info)

```

\section*{Description}

This routine solves for \(X\) the following systems of linear equations with a triangular matrix \(A\), with multiple right-hand sides stored in \(B\) :
```

$A X=B \quad$ if trans= 'N',
$A^{T} X=B \quad$ if trans=' ${ }^{\prime}$ ',
$A^{H} X=B \quad$ if trans= ' C' (for complex matrices only).

```

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline uplo & CHARACTER*1. Must be 'U' or 'L'. \\
\hline & Indicates whether \(A\) is upper or lower triangular: \\
\hline & \begin{tabular}{l}
If uplo = ' U ', then \(A\) is upper triangular. \\
If uplo = 'L', then \(A\) is lower triangular.
\end{tabular} \\
\hline trans

diag & \begin{tabular}{l}
CHARACTER*1. Must be 'N' or 'T' or 'C'. \\
If trans \(=\) ' N ', then \(A X=B\) is solved for \(X\). \\
If trans \(=\) ' T ', then \(A^{T} X=B\) is solved for \(X\). \\
If trans \(=' \mathrm{C}\) ', then \(A^{H} X=B\) is solved for \(X\). \\
CHARACTER*1. Must be 'N' or 'U'
\end{tabular} \\
\hline
\end{tabular}

If diag \(=\) ' \(N\) ', then \(A\) is not a unit triangular matrix.
If diag \(=\) ' U ', then \(A\) is unit triangular: diagonal elements of \(A\) are assumed to be 1 and not referenced in the array \(a\).
\(n \quad\) INTEGER. The order of \(A\); the number of rows in \(B(n \geq 0)\).
nrhs INTEGER. The number of right-hand sides (nrhs \(\geq 0\) ).
```

a, b REAL for strtrs
DOUBLE PRECISION for dtrtrs
COMPLEX for ctrtrs
DOUBLE COMPLEX for ztrtrs.
Arrays: a(lda,*), b(ldb,*).
The array a contains the matrix }A\mathrm{ .
The array b contains the matrix }B\mathrm{ whose columns are the right-hand sides for
the systems of equations.
The second dimension of a must be at least max(1,n), the second dimension of
b at least max(1,nrhs).
INTEGER. The first dimension of a; lda \geq max(1,n).
INTEGER. The first dimension of b; ldb \geq max (1,n).

```

\section*{Output Parameters}
```

b Overwritten by the solution matrix X.
info INTEGER. If info $=0$, the execution is successful. If info $=-i$, the i th parameter had an illegal value.

```

\section*{Application Notes}

For each right-hand side \(b\), the computed solution is the exact solution of a perturbed system of equations \((A+E) x=b\) where
\[
|E| \leq C(n) \mathcal{E}|A|
\]
\(c(n)\) is a modest linear function of \(n\), and \(\varepsilon\) is the machine precision.
If \(x_{0}\) is the true solution, the computed solution \(x\) satisfies this error bound:
\[
\frac{\left\|x-x_{0}\right\|_{\infty}}{\|x\|_{\infty}} \leq C(n) \operatorname{cond}(A, x) \varepsilon, \text { provided } C(n) \operatorname{cond}(A, x) \varepsilon<1
\]
where \(\operatorname{cond}(A, x)=\left\|\left|A^{-1}\right||A||x|\right\|_{\infty} /\|x\|_{\infty} \leq\left\|A^{-1}\right\|_{\infty}\|A\|_{\infty}=\kappa_{\infty}(A)\).
Note that cond \((A, x)\) can be much smaller than \(\kappa_{\infty}(A)\); the condition number of \(A^{T}\) and \(A^{H}\) might or might not be equal to \(\kappa_{\infty}(A)\).

The approximate number of floating-point operations for one right-hand side vector \(b\) is \(n^{2}\) for real flavors and \(4 n^{2}\) for complex flavors.

To estimate the condition number \(\kappa_{\infty}(A)\), call ?trcon.
To estimate the error in the solution, call ?trrfs.

\section*{?tptrs}

Solves a system of linear equations with a packed triangular matrix, with multiple right-hand sides.

\section*{Syntax}
```

call stptrs (uplo, trans, diag, n, nrhs, ap, b, ldb, info)
call dtptrs (uplo, trans, diag, n, nrhs, ap, b, ldb, info)
call ctptrs (uplo, trans, diag, n, nrhs, ap, b, ldb, info)
call ztptrs (uplo, trans, diag, n, nrhs, ap, b, ldb, info)

```

\section*{Description}

This routine solves for \(X\) the following systems of linear equations with a packed triangular matrix \(A\), with multiple right-hand sides stored in \(B\) :
\(A X=B \quad\) if trans=' N ',
\(A^{T} X=B \quad\) if trans=' \({ }^{\prime}\) ',
\(A^{H} X=B \quad\) if trans = ' C' (for complex matrices only).

\section*{Input Parameters}
uplo CHARACTER*1. Must be 'U' or 'L'. Indicates whether \(A\) is upper or lower triangular:

If uplo = ' U ', then \(A\) is upper triangular. If uplo = ' L', then \(A\) is lower triangular.
trans CHARACTER*1. Must be 'N' or 'T' or 'C'. If trans \(=' \mathrm{~N}\) ', then \(A X=B\) is solved for \(X\). If trans \(=\) ' \(T\) ', then \(A^{T} X=B\) is solved for \(X\). If trans \(=\) ' C ', then \(A^{H} X=B\) is solved for \(X\).
diag CHARACTER*1. Must be 'N' or 'U'.
If diag \(=\) ' N ', then \(A\) is not a unit triangular matrix.
If \(\operatorname{diag}=\) ' U ', then \(A\) is unit triangular: diagonal elements are assumed to be 1 and not referenced in the array ap.
```

n
nrhs
ap, b
ldb
INTEGER. The order of }A\mathrm{ ; the number of rows in B (}n\geq0)\mathrm{ .
INTEGER. The number of right-hand sides (nrhs \geq0).
REAL for stptrs
DOUBLE PRECISION for dtptrs
COMPLEX for ctptrs
DOUBLE COMPLEX for ztptrs.
Arrays: ap (*), b(ldb,*)
The dimension of ap must be at least max(1,n(n+1)/2).
The array ap contains the matrix A in packed storage
(see Matrix Storage Schemes).
The array b contains the matrix B whose columns are the right-hand sides for the system of equations. The second dimension of b must be at least $\max (1, n r h s)$.

Output Parameters

```
b Overwritten by the solution matrix \(X\).
info INTEGER. If info \(=0\), the execution is successful. If info \(=-i\), the \(i\) th parameter had an illegal value.
```


Application Notes

For each right-hand side b, the computed solution is the exact solution of a perturbed system of equations $(A+E) x=b$ where

$$
|E| \leq C(n) \varepsilon|A|
$$

$c(n)$ is a modest linear function of n, and ε is the machine precision.
If x_{0} is the true solution, the computed solution x satisfies this error bound:

$$
\frac{\left\|x-x_{0}\right\|_{\infty}}{\|x\|_{\infty}} \leq C(n) \operatorname{cond}(A, x) \varepsilon, \text { provided } C(n) \operatorname{cond}(A, x) \varepsilon<1
$$

where $\operatorname{cond}(A, x)=\left\|\left|A^{-1}\right||A||x|\right\|_{\infty} /\|x\|_{\infty} \leq\left\|A^{-1}\right\|_{\infty}\|A\|_{\infty}=\kappa_{\infty}(A)$.
Note that $\operatorname{cond}(A, x)$ can be much smaller than $\kappa_{\infty}(A)$; the condition number of A^{T} and A^{H} might or might not be equal to $\kappa_{\infty}(A)$.

The approximate number of floating-point operations for one right-hand side vector b is n^{2} for real flavors and $4 n^{2}$ for complex flavors.

To estimate the condition number $\kappa_{\infty}(A)$, call ?tpcon.
To estimate the error in the solution, call ?tprfs.

?tbtrs

Solves a system of linear equations with a band triangular matrix, with multiple right-hand sides.

Syntax

```
call stbtrs (uplo, trans, diag, n, kd, nrhs, ab, ldab, b, ldb, info)
call dtbtrs (uplo, trans, diag, n, kd, nrhs, ab, ldab, b, ldb, info)
call ctbtrs (uplo, trans, diag, n, kd, nrhs, ab, ldab, b, ldb, info)
call ztbtrs (uplo, trans, diag, n, kd, nrhs, ab, ldab, b, ldb, info)
```


Description

This routine solves for X the following systems of linear equations with a band triangular matrix A, with multiple right-hand sides stored in B :

```
\(A X=B \quad\) if \(t r a n s=' \mathrm{~N} '\),
\(A^{T} X=B \quad\) if trans=' \(\mathrm{T}^{\prime}\),
\(A^{H} X=B \quad\) if \(t\) rans \(=\) ' C' (for complex matrices only).
```


Input Parameters

	If diag $=$ ' U ', then A is unit triangular: diagonal elements are assumed to be 1 and not referenced in the array $a b$.
n	INTEGER. The order of A; the number of rows in $B(\mathrm{n} \geq 0)$.
$k d$	INTEGER. The number of super-diagonals or sub-diagonals in the matrix A ($k d \geq 0$).
nrhs	INTEGER. The number of right-hand sides (nrhs ≥ 0).
$a b, b$	REAL for stbtrs
	DOUBLE PRECISION for dtbtrs
	COMPLEX for ctbtrs
	DOUBLE COMPLEX for ztbtrs.
	Arrays: $\mathrm{ab}(1 \mathrm{dab}, *), \mathrm{b}(1 \mathrm{db}, *)$.
	The array ab contains the matrix A in band storage form.
	The array b contains the matrix B whose columns are the right-hand sides for the systems of equations.
	The second dimension of $a b$ must be at least $\max (1, n)$, the second dimension of b at least max(1,nrhs).
1 dab	INTEGER. The first dimension of $a b ; 1 d a b \geq k d+1$.
$1 d \mathrm{~b}$	INTEGER. The first dimension of $b ; 1 d b \geq \max (1, n)$.
Output Parameters	
b	Overwritten by the solution matrix X.
info	INTEGER. If info $=0$, the execution is successful. If $\operatorname{info}=-i$, the i th parameter had an illegal value.

Application Notes

For each right-hand side b, the computed solution is the exact solution of a perturbed system of equations $(A+E) x=b$ where

$$
|E| \leq C(n) \mathcal{E}|A|
$$

$c(n)$ is a modest linear function of n, and ε is the machine precision.
If x_{0} is the true solution, the computed solution x satisfies this error bound:

$$
\frac{\left\|x-x_{0}\right\|_{\infty}}{\|x\|_{\infty}} \leq C(n) \operatorname{cond}(A, x) \varepsilon, \text { provided } C(n) \operatorname{cond}(A, x) \varepsilon<1
$$

where $\operatorname{cond}(A, x)=\left\|\left|A^{-1}\right||A||x|\right\|_{\infty} /\|x\|_{\infty} \leq\left\|A^{-1}\right\|_{\infty}\|A\|_{\infty}=\kappa_{\infty}(A)$.
Note that $\operatorname{cond}(A, x)$ can be much smaller than $\mathrm{K}_{\infty}(A)$; the condition number of A^{T} and A^{H} might or might not be equal to $K_{\infty}(A)$.

The approximate number of floating-point operations for one right-hand side vector b is $2 n * k d$ for real flavors and $8 n^{*} k d$ for complex flavors.

To estimate the condition number $\kappa_{\infty}(A)$, call ?tbcon.
To estimate the error in the solution, call ? tbrfs.

Routines for Estimating the Condition Number

This section describes the LAPACK routines for estimating the condition number of a matrix. The condition number is used for analyzing the errors in the solution of a system of linear equations (see Error Analysis). Since the condition number may be arbitrarily large when the matrix is nearly singular, the routines actually compute the reciprocal condition number.

?gecon

Estimates the reciprocal of the condition number of a general matrix in either the 1-norm or the infinity-norm.

Syntax

```
call sgecon ( norm, n, a, lda, anorm, rcond, work, iwork, info )
call dgecon ( norm, n, a, lda, anorm, rcond, work, iwork, info )
call cgecon ( norm, n, a, lda, anorm, rcond, work, rwork, info )
call zgecon ( norm, n, a, lda, anorm, rcond, work, rwork, info )
```


Description

This routine estimates the reciprocal of the condition number of a general matrix A in either the 1-norm or infinity-norm:

$$
\begin{aligned}
& \kappa_{1}(A)=\|A\|_{1}\left\|A^{-1}\right\|_{1}=\kappa_{\infty}\left(A^{T}\right)=\kappa_{\infty}\left(A^{H}\right) \\
& \kappa_{\infty}(A)=\|A\|_{\infty}\left\|A^{-1}\right\|_{\infty}=\kappa_{1}\left(A^{T}\right)=\kappa_{1}\left(A^{H}\right) .
\end{aligned}
$$

Before calling this routine:

- compute anorm (either $\|A\|_{1}=\max _{j} \Sigma_{i}\left|a_{i j}\right|$ or $\left.\|A\|_{\infty}=\max _{i} \Sigma_{j}\left|a_{i j}\right|\right)$
- call ? getrf to compute the $L U$ factorization of A.

Input Parameters

norm	CHARACTER*1. Must be '1' or '0' or 'I'.
	If norm = '1' or ' O^{\prime}, then the routine estimates $\kappa_{1}(A)$.
	If norm = ' 1 ', then the routine estimates $\mathrm{K}_{\infty}(A)$.
n	INTEGER. The order of the matrix $A(n \geq 0)$.
a, work	REAL for sgecon
	DOUBLE PRECISION for dgecon
	COMPLEX for cgecon
	DOUBLE COMPLEX for zgecon.
	Arrays: a (lda,*), work (*).

The array a contains the $L U$-factored matrix A, as returned by ?getrf. The second dimension of a must be at least max $(1, n)$. The array work is a workspace for the routine.

The dimension of work must be at least $\max \left(1,4 *_{n}\right)$ for real flavors and $\max \left(1,2 *_{n}\right)$ for complex flavors.
anorm REAL for single precision flavors. DOUBLE PRECISION for double precision flavors. The norm of the original matrix A (see Description).
lda INTEGER. The first dimension of $a ; 1 d a \geq \max (1, n)$.
iwork INTEGER.
Workspace array, DIMENSION at least $\max (1, n)$.
rwork REAL for cgecon
DOUBLE PRECISION for zgecon
Workspace array, DIMENSION at least $\max \left(1,2 *_{n}\right)$.

Output Parameters

rcond REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal of the condition number. The routine sets rcond $=0$ if the estimate underflows; in this case the matrix is singular (to working precision). However, anytime rcond is small compared to 1.0 , for the working precision, the matrix may be poorly conditioned or even singular.
info INTEGER. If info $=0$, the execution is successful. If info $=-i$, the i th parameter had an illegal value.

Application Notes

The computed rcond is never less than ρ (the reciprocal of the true condition number) and in practice is nearly always less than 10ρ. A call to this routine involves solving a number of systems of linear equations $A x=b$ or $A^{H} x=b$; the number is usually 4 or 5 and never more than 11. Each solution requires approximately $2 n^{2}$ floating-point operations for real flavors and $8 n^{2}$ for complex flavors.

?gbcon

Estimates the reciprocal of the condition number of a
band matrix in either the 1-norm or the infinity-norm.

Syntax

```
call sgbcon (norm, n, kl, ku, ab, ldab, ipiv, anorm, rcond, work, iwork, info)
call dgbcon (norm, n, kl, ku, ab, ldab, ipiv, anorm, rcond, work, iwork, info)
call cgbcon (norm, n, kl, ku, ab, ldab, ipiv, anorm, rcond, work, rwork, info)
call zgbcon (norm, n, kl, ku, ab, ldab, ipiv, anorm, rcond, work, rwork, info)
```


Description

This routine estimates the reciprocal of the condition number of a general band matrix A in either the 1-norm or infinity-norm:

$$
\begin{aligned}
& \kappa_{1}(A)=\|A\|_{1}\left\|A^{-1}\right\|_{1}=\kappa_{\infty}\left(A^{T}\right)=\kappa_{\infty}\left(A^{H}\right) \\
& \kappa_{\infty}(A)=\|A\|_{\infty}\left\|A^{-1}\right\|_{\infty}=\kappa_{1}\left(A^{T}\right)=\kappa_{1}\left(A^{H}\right) .
\end{aligned}
$$

Before calling this routine:

- compute anorm (either $\|A\|_{1}=\max _{j} \Sigma_{i}\left|a_{i j}\right|$ or $\left.\|A\|_{\infty}=\max _{i} \Sigma_{j}\left|a_{i j}\right|\right)$
- call ?gbtrf to compute the $L U$ factorization of A.

Input Parameters

norm
CHARACTER*1. Must be '1' or 'O' or 'I'.
If norm = ' 1 ' or ' 0 ', then the routine estimates $\kappa_{1}(A)$.
If norm $=$ ' I ', then the routine estimates $\kappa_{\infty}(A)$.

n	INTEGER. The order of the matrix $A(n \geq 0)$.
$k I$	INTEGER. The number of sub-diagonals within the band of $A(k I \geq 0)$.
$k u$	INTEGER. The number of super-diagonals within the band of $A(k u \geq 0)$.
ldab	INTEGER. The first dimension of the array ab.
(ldab $\geq 2 k I+k u+1)$.	

info INTEGER. If info $=0$, the execution is successful. If info $=-i$, the i th parameter had an illegal value.

Application Notes

The computed rcond is never less than ρ (the reciprocal of the true condition number) and in practice is nearly always less than 10ρ. A call to this routine involves solving a number of systems of linear equations $A x=b$ or $A^{H} x=b$; the number is usually 4 or 5 and never more than 11 . Each solution requires approximately $2 n(k u+2 k l)$ floating-point operations for real flavors and $8 n(k u$ $+2 k l$) for complex flavors.

?gtcon

Estimates the reciprocal of the condition number of a tridiagonal matrix using the factorization computed by ?gttrf.

Syntax

```
call sgtcon ( norm, n, dl, d, du, du2, ipiv, anorm, rcond, work, iwork, info )
call dgtcon ( norm, n, dl, d, du, du2, ipiv, anorm, rcond, work, iwork, info )
call cgtcon ( norm, n, dl, d, du, du2, ipiv, anorm, rcond, work, info )
call zgtcon ( norm, n, dl, d, du, du2, ipiv, anorm, rcond, work, info )
```


Description

This routine estimates the reciprocal of the condition number of a real or complex tridiagonal matrix A in either the 1 -norm or infinity-norm:

$$
\begin{aligned}
& \kappa_{1}(A)=\|A\|_{1}\left\|A^{-1}\right\|_{1} \\
& \kappa_{\infty}(A)=\|A\|_{\infty}\left\|A^{-1}\right\|_{\infty}
\end{aligned}
$$

An estimate is obtained for $\left\|A^{-1}\right\|$, and the reciprocal of the condition number is computed as rcond $=1 /\left(\|A\|\left\|A^{-1}\right\|\right)$.
Before calling this routine:

- compute anorm (either $\|A\|_{1}=\max _{j} \Sigma_{i}\left|a_{i j}\right|$ or $\|A\|_{\infty}=\max _{i} \Sigma_{j}\left|a_{i j}\right|$)
- call ?gttrf to compute the $L U$ factorization of A.

Input Parameters

norm	CHARACTER*1. Must be '1' or 'O' or 'I'.
	If norm $=$ ' 1 ' or ' O^{\prime} ', then the routine estimates $\kappa_{1}(A)$.
	If norm = 'I', then the routine estimates $\kappa_{\infty}(A)$.
n	INTEGER. The order of the matrix $A(n \geq 0)$.
$d 1, d, d u, d u 2$	REAL for sgtcon
	DOUBLE PRECISION for dgtcon
	COMPLEX for cgtcon
	DOUBLE COMPLEX for zgtcon.
	Arrays: $d l(n-1), d(n), d u(n-1), d u 2(n-2)$.
	The array $d l$ contains the $(n-1)$ multipliers that define the matrix L from the $L U$ factorization of A as computed by ?gttrf.
	The array d contains the n diagonal elements of the upper triangular matrix U from the $L U$ factorization of A.
	The array du contains the (n-1) elements of the first super-diagonal of U.
	The array du2 contains the $(n-2)$ elements of the second super-diagonal of U.
ipiv	INTEGER.
	Array, DIMENSION (n).
	The array of pivot indices, as returned by ? gttrf.
anorm	REAL for single precision flavors.
	DOUBLE PRECISION for double precision flavors.
	The norm of the original matrix A (see Description).
work	REAL for sgtcon
	DOUBLE PRECISION for dgtcon
	COMPLEX for cgtcon
	DOUBLE COMPLEX for zgtcon.
	Workspace array, DIMENSION ($2 *_{n}$) .
iwork	INTEGER.
	Workspace array, DIMENSION (n).
	Used for real flavors only.

Output Parameters

rcond REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal of the condition number. The routine sets rcond $=0$ if the estimate underflows; in this case the matrix is singular (to working
precision). However, anytime rcond is small compared to 1.0 , for the working precision, the matrix may be poorly conditioned or even singular.
info
INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the i th parameter had an illegal value.

Application Notes

The computed rcond is never less than ρ (the reciprocal of the true condition number) and in practice is nearly always less than 10ρ. A call
to this routine involves solving a number of systems of linear equations
$A x=b$; the number is usually 4 or 5 and never more than 11. Each solution requires approximately $2 \mathrm{n}^{2}$ floating-point operations for real flavors and $8 \mathrm{n}^{2}$ for complex flavors.

?pocon

Estimates the reciprocal of the condition number of a

 symmetric (Hermitian) positive-definite matrix.
Syntax

```
call spocon ( uplo, n, a, lda, anorm, rcond, work, iwork, info )
call dpocon ( uplo, n, a, lda, anorm, rcond, work, iwork, info )
call cpocon ( uplo, n, a, lda, anorm, rcond, work, rwork, info )
call zpocon ( uplo, n, a, lda, anorm, rcond, work, rwork, info )
```


Description

This routine estimates the reciprocal of the condition number of a symmetric (Hermitian) positive-definite matrix A :
$\kappa_{1}(A)=\|A\|_{1}\left\|A^{-1}\right\|_{1}$ (since A is symmetric or Hermitian, $\kappa_{\infty}(A)=\kappa_{1}(A)$).
Before calling this routine:

- compute anorm (either $\|A\|_{1}=\max _{j} \Sigma_{i}\left|a_{i j}\right|$ or $\left.\|A\|_{\infty}=\max _{i} \Sigma_{j}\left|a_{i j}\right|\right)$
- call ?potrf to compute the Cholesky factorization of A.

Input Parameters

```
uplo CHARACTER*1. Must be 'U' or 'L'.
    Indicates how the input matrix }A\mathrm{ has been factored:
    If uplo= 'U', the array a stores the upper triangular factor U of the
    factorization }A=\mp@subsup{U}{}{H}U\mathrm{ .
    If uplo= 'L', the array a stores the lower triangular factor L of the
    factorization }A=L\mp@subsup{L}{}{H}\mathrm{ .
n INTEGER. The order of the matrix A( }n\geq0)\mathrm{ .
a, work REAL for spocon
    DOUBLE PRECISION for dpocon
    COMPLEX for cpocon
    DOUBLE COMPLEX for zpocon.
    Arrays: a(lda,*), work(*).
```

 The array a contains the factored matrix \(A\), as returned by ?potrf.
 The second dimension of a must be at least max \((1, n)\).
 The array work is a workspace for the routine.
 The dimension of work must be at least \(\max \left(1,3 *_{n}\right)\) for real flavors and
 \(\max \left(1,2 *_{n}\right)\) for complex flavors.
 lda INTEGER. The first dimension of \(a ; 1 d a \geq \max (1, n)\).
 anorm REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
The norm of the original matrix A (see Description).
iwork INTEGER.
Workspace array, DIMENSION at least max $(1, n)$.
rwork REAL for cpocon
DOUBLE PRECISION for zpocon
Workspace array, DIMENSION at least max $(1, n)$.

Output Parameters

rcond REAL for single precision flavors. DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal of the condition number. The routine sets rcond $=0$ if the estimate underflows; in this case the matrix is singular (to working
precision). However, anytime rcond is small compared to 1.0 , for the working precision, the matrix may be poorly conditioned or even singular.
info
INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the i th parameter had an illegal value.

Application Notes

The computed rcond is never less than ρ (the reciprocal of the true condition number) and in practice is nearly always less than 10ρ. A call
to this routine involves solving a number of systems of linear equations $A x=b$; the number is usually 4 or 5 and never more than 11. Each solution requires approximately $2 n^{2}$ floating-point operations for real flavors and $8 n^{2}$ for complex flavors.

?ppcon

Estimates the reciprocal of the condition number of a packed symmetric (Hermitian) positive-definite matrix.

Syntax

```
call sppcon ( uplo, n, ap, anorm, rcond, work, iwork, info )
call dppcon ( uplo, n, ap, anorm, rcond, work, iwork, info )
call cppcon ( uplo, n, ap, anorm, rcond, work, rwork, info )
call zppcon ( uplo, n, ap, anorm, rcond, work, rwork, info )
```


Description

This routine estimates the reciprocal of the condition number of a packed symmetric (Hermitian) positive-definite matrix A :
$\kappa_{1}(A)=\|A\|_{1}\left\|A^{-1}\right\|_{1}$ (since A is symmetric or Hermitian, $\kappa_{\infty}(A)=\kappa_{1}(A)$).
Before calling this routine:

- compute anorm (either $\|A\|_{1}=\max _{j} \Sigma_{i}\left|a_{i j}\right|$ or $\left.\|A\|_{\infty}=\max _{i} \Sigma_{j}\left|a_{i j}\right|\right)$
- call ?pptrf to compute the Cholesky factorization of A.

Input Parameters

uplo	CHARACTER*1. Must be 'U' or 'L'. Indicates how the input matrix A has been factored:
	If uplo= 'U', the array $a p$ stores the upper triangular factor U of the factorization $A=U^{H} U$.
	If $u p l o=$ ' L ', the array $a p$ stores the lower triangular factor L of the factorization $A=L L^{H}$.
n	Integer. The order of the matrix $A(\mathrm{n} \geq 0)$.
ap, work	REAL for sppcon
	DOUBLE PRECISION for dppcon
	COMPLEX for cppeon
	DOUBLE COMPLEX for zppcon.
	Arrays: ap (*) , work (*)

The array $a p$ contains the packed factored matrix A, as returned by ?pptrf. The dimension of $a p$ must be at least $\max (1, n(n+1) / 2)$.
The array work is a workspace for the routine.
The dimension of work must be at least $\max \left(1,3 *_{n}\right)$ for real flavors and $\max \left(1,2 *_{n}\right)$ for complex flavors.
anorm REAL for single precision flavors. DOUBLE PRECISION for double precision flavors. The norm of the original matrix A (see Description).

INTEGER.
Workspace array, DIMENSION at least max $(1, n)$.
rwork
REAL for cppcon
DOUBLE PRECISION for zppcon
Workspace array, DIMENSION at least max $(1, n)$.

Output Parameters

rcond REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal of the condition number. The routine sets rcond $=0$ if the estimate underflows; in this case the matrix is singular (to working precision). However, anytime rcond is small compared to 1.0 , for the working precision, the matrix may be poorly conditioned or even singular.

info INTEGER.

If info $=0$, the execution is successful.
If info $=-i$, the i th parameter had an illegal value.

Application Notes

The computed rcond is never less than ρ (the reciprocal of the true condition number) and in practice is nearly always less than 10ρ. A call
to this routine involves solving a number of systems of linear equations $A x=b$; the number is usually 4 or 5 and never more than 11 . Each solution requires approximately $2 n^{2}$ floating-point operations for real flavors and $8 n^{2}$ for complex flavors.

?pbcon

Estimates the reciprocal of the condition number of a symmetric (Hermitian) positive-definite band matrix.

Syntax

```
call spbcon (uplo, n, kd, ab, ldab, anorm, rcond, work, iwork, info)
call dpbcon (uplo, n, kd, ab, ldab, anorm, rcond, work, iwork, info)
call cpbcon (uplo, n, kd, ab, ldab, anorm, rcond, work, rwork, info)
call zpbcon (uplo, n, kd, ab, ldab, anorm, rcond, work, rwork, info)
```


Description

This routine estimates the reciprocal of the condition number of a symmetric (Hermitian) positive-definite band matrix A :
$\kappa_{1}(A)=\|A\|_{1}\left\|A^{-1}\right\|_{1} \quad\left(\right.$ since A is symmetric or Hermitian, $\left.\kappa_{\infty}(A)=\kappa_{1}(A)\right)$.
Before calling this routine:

- compute anorm (either $\|A\|_{1}=\max _{j} \Sigma_{i}\left|a_{i j}\right|$ or $\|A\|_{\infty}=\max _{i} \Sigma_{j}\left|a_{i j}\right|$)
- call ?pbtrf to compute the Cholesky factorization of A.

Input Parameters

```
uplo CHARACTER*1. Must be 'U' or 'L'.
    Indicates how the input matrix }A\mathrm{ has been factored:
    If uplo= 'U', the array ab stores the upper triangular factor }U\mathrm{ of the
```

	Cholesky factorization $A=U^{H} U$. If uplo= 'L', the array ab stores the lower triangular factor L of the factorization $A=L L^{H}$.
n	INTEGER. The order of the matrix $A(n \geq 0)$.
kd	INTEGER. The number of super-diagonals or sub-diagonals in the matrix A ($k d \geq 0$).
ldab	INTEGER. The first dimension of the array $a b$. (1 dab $\geq k d+1$).
ab, work	REAL for spbcon
	DOUBLE PRECISION for dpbcon
	COMPLEX for cpbcon
	DOUBLE COMPLEX for zpbcon.
	Arrays: ab (ldab, *) , work (*).
	The array $a b$ contains the factored matrix A in band form, as returned by ?pbtrf.
	The second dimension of $a b$ must be at least max $(1, n)$,
	The array work is a workspace for the routine.
	The dimension of work must be at least $\max \left(1,3 *_{n}\right)$ for real flavors and $\max \left(1,2 *_{n}\right)$ for complex flavors.
anorm	REAL for single precision flavors.
	DOUBLE PRECISION for double precision flavors.
	The norm of the original matrix A (see Description).
iwork	INTEGER.
	Workspace array, DIMENSION at least max $(1, n)$.
rwork	REAL for cpbcon
	DOUBLE PRECISION for zpbcon.
	Workspace array, DIMENSION at least max $(1, n)$.
Output Parameters	
rcond	REAL for single precision flavors.
	DOUBLE PRECISION for double precision flavors.
	An estimate of the reciprocal of the condition number. The routine sets rcond $=0$ if the estimate underflows; in this case the matrix is singular (to working precision). However, anytime rcond is small compared to 1.0 , for the working precision, the matrix may be poorly conditioned or even singular.

info INTEGER. If info $=0$, the execution is successful. If info $=-i$, the i th parameter had an illegal value.

Application Notes

The computed rcond is never less than ρ (the reciprocal of the true condition number) and in practice is nearly always less than 10ρ. A call
to this routine involves solving a number of systems of linear equations $A x=b$; the number is usually 4 or 5 and never more than 11. Each solution requires approximately $4 n(k d+1)$ floating-point operations for real flavors and $16 n(k d+1)$ for complex flavors.

?ptcon

Estimates the reciprocal of the condition number of a symmetric (Hermitian) positive-definite tridiagonal matrix.

Syntax

```
call sptcon ( }n,d,e, anorm, rcond, work, info
call dptcon (n, d, e, anorm, rcond, work, info)
call cptcon ( }n,d,e, anorm, rcond, work, info
call zptcon ( }n,d,e, anorm, rcond, work, info
```


Description

This routine computes the reciprocal of the condition number (in the 1-norm) of a real symmetric or complex Hermitian positive-definite tridiagonal matrix using the factorization $A=L D L^{H}$ or A $=U^{H} D U$ computed by ?pttrf :

$$
\kappa_{1}(A)=\|A\|_{1}\left\|A^{-1}\right\|_{1}\left(\text { since } A \text { is symmetric or Hermitian, } \kappa_{\infty}(A)=\kappa_{1}(A)\right) .
$$

The norm $\left\|A^{-1}\right\|$ is computed by a direct method, and the reciprocal of the condition number is computed as rcond $=1 /\left(\|A\|\left\|A^{-1}\right\|\right)$.
Before calling this routine:

- compute anorm as $\|A\|_{1}=\max _{j} \Sigma_{i}\left|a_{i j}\right|$
- call ?pttrf to compute the factorization of A.

Input Parameters

$n \quad$ INTEGER. The order of the matrix $A(n \geq 0)$.
d, work REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Arrays, dimension (n).
The array d contains the n diagonal elements of the diagonal matrix D from the factorization of A, as computed by ?pttrf ;
work is a workspace array.
e REAL for sptcon
DOUBLE PRECISION for dptcon
COMPLEX for cptcon
double complex for zptcon.
Array, DIMENSION ($n-1$).
Contains off-diagonal elements of the unit bidiagonal factor U or L from the factorization computed by ?pttrf.
anorm REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
The 1-norm of the original matrix A (see Description).

Output Parameters

rcond REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal of the condition number. The routine sets rcond $=0$ if the estimate underflows; in this case the matrix is singular (to working precision). However, anytime rcond is small compared to 1.0 , for the working precision, the matrix may be poorly conditioned or even singular.
info INTEGER.
If $\operatorname{info}=0$, the execution is successful.
If info $=-i$, the i th parameter had an illegal value.

Application Notes

The computed rcond is never less than ρ (the reciprocal of the true condition number) and in practice is nearly always less than 10ρ. A call
to this routine involves solving a number of systems of linear equations
$A x=b$; the number is usually 4 or 5 and never more than 11. Each solution requires approximately $4 n(k d+1)$ floating-point operations for real flavors and $16 n(k d+1)$ for complex flavors.

?sycon

Estimates the reciprocal of the condition number of a symmetric matrix.

Syntax

```
call ssycon (uplo, n, a, lda, ipiv, anorm, rcond, work, iwork, info)
call dsycon (uplo, n, a, lda, ipiv, anorm, rcond, work, iwork, info)
call csycon (uplo, n, a, lda, ipiv, anorm, rcond, work, rwork, info)
call zsycon (uplo, n, a, lda, ipiv, anorm, rcond, work, rwork, info)
```


Description

This routine estimates the reciprocal of the condition number of a symmetric matrix A :

$$
\kappa_{1}(A)=\|A\|_{1}\left\|A^{-1}\right\|_{1}\left(\text { since } A \text { is symmetric, } \kappa_{\infty}(A)=\kappa_{1}(A)\right) .
$$

Before calling this routine:

- compute anorm (either $\|A\|_{1}=\max _{j} \Sigma_{i}\left|a_{i j}\right|$ or $\left.\|A\|_{\infty}=\max _{i} \Sigma_{j}\left|a_{i j}\right|\right)$
- call ?sytrf to compute the factorization of A.

Input Parameters

uplo	CHARACTER*1. Must be 'U' or 'L'.
	Indicates how the input matrix A has been factored:
	If upIo = ' U ', the array a stores the upper triangular factor U of the factorization $A=P U D U^{T} P^{T}$.
	If uplo = ' L', the array a stores the lower triangular factor L of the factorization $A=P L D L^{T} P^{T}$.
n	INTEGER. The order of matrix $A(n \geq 0)$.
a, work	REAL for ssycon
	DOUBLE PRECISION for dsycon
	COMPLEX for csycon
	double Complex for zsycon.
	Arrays: a (lda,*), work (*).
	The array a contains the factored matrix A, as returned by ?sytrf. The second dimension of a must be at least max $(1, n)$.
	The array work is a workspace for the routine.

	The dimension of work must be at least max $\left(1,2 *_{n}\right)$.
Ida	INTEGER. The first dimension of $a ; 1 d a \geq \max (1, n)$.
ipiv	INTEGER. Array, DIMENSION at least max $(1, n)$. The array ipiv, as returned by ?sytrf.
anorm	REAL for single precision flavors. DOUBLE PRECISION for double precision flavors. The norm of the original matrix A (see Description).
iwork	INTEGER. Workspace array, DIMENSION at least max $(1, n)$.
rwork	REAL for csycon DOUBLE PRECISION for zsycon. Workspace array, DIMENSION at least max $(1, n)$.
Output Parameters	
rcond	REAL for single precision flavors. DOUBLE PRECISION for double precision flavors. An estimate of the reciprocal of the condition number. The routine sets rcond $=0$ if the estimate underflows; in this case the matrix is singular (to working precision). However, anytime rcond is small compared to 1.0 , for the working precision, the matrix may be poorly conditioned or even singular.
info	INTEGER. If info $=0$, the execution is successful. If info $=-i$, the i th parameter had an illegal value.

Application Notes

The computed rcond is never less than ρ (the reciprocal of the true condition number) and in practice is nearly always less than 10ρ. A call to this routine involves solving a number of systems of linear equations $A x=b$; the number is usually 4 or 5 and never more than 11 . Each solution requires approximately $2 n^{2}$ floating-point operations for real flavors and $8 n^{2}$ for complex flavors.

?hecon

Estimates the reciprocal of the condition number of a

 Hermitian matrix.
Syntax

call zhecon (uplo, $n, a, ~ l d a, ~ i p i v, ~ a n o r m, ~ r c o n d, ~ w o r k, ~ r w o r k, ~ i n f o) ~$

Description

This routine estimates the reciprocal of the condition number of a Hermitian matrix A :
$\kappa_{1}(A)=\|A\|_{1}\left\|A^{-1}\right\|_{1} \quad$ (since A is Hermitian, $\kappa_{\infty}(A)=\kappa_{1}(A)$).
Before calling this routine:

- compute anorm (either $\|A\|_{1}=\max _{j} \Sigma_{i}\left|a_{i j}\right|$ or $\left.\|A\|_{\infty}=\max _{i} \Sigma_{j}\left|a_{i j}\right|\right)$
- call ?hetrf to compute the factorization of A.

Input Parameters

uplo	CHARACTER*1. Must be 'U' or 'L'. Indicates how the input matrix A has been factored:
	If uplo= ' U ', the array a stores the upper triangular factor U of the factorization $A=P U D U^{H} P^{T}$.
	If uplo= ' L', the array a stores the lower triangular factor L of the factorization $A=P L D L^{H} P^{T}$.
n	INTEGER. The order of matrix $A(n \geq 0)$.
a, work	COMPLEX for checon
	DOUBLE COMPLEX for zhecon.
	Arrays: a (lda,*) , work (*).
	The array a contains the factored matrix A, as returned by ?hetrf.
	The second dimension of a must be at least max $(1, n)$.
	The array work is a workspace for the routine.
	The dimension of work must be at least max $\left(1,2 *_{n}\right)$.
Ida	INTEGER. The first dimension of $a ; 1 d a \geq \max (1, n)$.

ipiv	INTEGER. Array, DIMENSION at least max $(1, n)$. The array ipiv, as returned by ?hetrf.
anorm	REAL for single precision flavors. DOUBLE PRECISION for double precision flavors.
	The norm of the original matrix A (see Discussion).
	REAL for checon DOUBLE PRECISION for zhecon Workspace array, DIMENSION at least $\max (1, n)$.

Output Parameters

rcond	REAL for single precision flavors.
	DOUBLE PRECISION for double precision flavors.
	An estimate of the reciprocal of the condition number. The routine sets rcond
	$=0$ if the estimate underflows; in this case the matrix is singular (to working precision). However, anytime rcond is small compared to 1.0 ,
	for the working precision, the matrix may be poorly conditioned or even singular.
info	INTEGER.
	If info $=0$, the execution is successful.
	If info $=-i$, the i th parameter had an illegal value.

Application Notes

The computed rcond is never less than ρ (the reciprocal of the true condition number) and in practice is nearly always less than 10ρ. A call to this routine involves solving a number of systems of linear equations $A x=b$; the number is usually 5 and never more than 11 . Each solution requires approximately $8 n^{2}$ floating-point operations.

?spcon

Estimates the reciprocal of the condition number of a packed symmetric matrix.

Syntax

```
call sspcon ( uplo, n, ap, ipiv, anorm, rcond, work, iwork, info )
```

```
call dspcon ( uplo, n, ap, ipiv, anorm, rcond, work, iwork, info )
call cspcon ( uplo, n, ap, ipiv, anorm, rcond, work, rwork, info )
call zspcon ( uplo, n, ap, ipiv, anorm, rcond, work, rwork, info )
```


Description

This routine estimates the reciprocal of the condition number of a packed symmetric matrix A :
$\kappa_{1}(A)=\|A\|_{1}\left\|A^{-1}\right\|_{1} \quad\left(\right.$ since A is symmetric, $\left.\kappa_{\infty}(A)=\kappa_{1}(A)\right)$.
Before calling this routine:

- compute anorm (either $\|A\|_{1}=\max _{j} \Sigma_{i}\left|a_{i j}\right|$ or $\|A\|_{\infty}=\max _{i} \Sigma_{j}\left|a_{i j}\right|$)
- call ?sptrf to compute the factorization of A.

Input Parameters

uplo	CHARACTER*1. Must be 'U' or 'L'.
	Indicates how the input matrix A has been factored:
	If uplo = ' U ', the array $a p$ stores the packed upper triangular factor U of the factorization $A=P U D U^{T} P^{T}$.
	If uplo = 'L', the array $a p$ stores the packed lower triangular factor L of the factorization $A=P L D L^{T} P^{T}$.
n	INTEGER. The order of matrix $A(n \geq 0)$.
ap, work	REAL for sspcon
	DOUBLE PRECISION for dspcon
	COMPLEX for cspcon
	DOUBLE COMPLEX for zspcon.
	Arrays: ap (*) , work (*).
	The array ap contains the packed factored matrix A, as returned by ?sptrf. The dimension of ap must be at least $\max (1, n(n+1) / 2)$.
	The array work is a workspace for the routine.
	The dimension of work must be at least max $\left(1,2 *_{n}\right)$.
ipiv	INTEGER. Array, DIMENSION at least max $(1, n)$.
	The array ipiv, as returned by ? sptrf.
anorm	REAL for single precision flavors.
	DOUBLE PRECISION for double precision flavors.
	The norm of the original matrix A (see Discussion).

iwork	INTEGER.
Workspace array, DIMENSION at least $\max (1, n)$.	
rwork	REAL for cspcon
	DOUBLE PRECISION for zspcon
	Workspace array, DIMENSION at least $\max (1, n)$.

Output Parameters

rcond	REAL for single precision flavors.
	DOUBLE PRECISION for double precision flavors.
	An estimate of the reciprocal of the condition number. The routine sets rcond
	$=0$ if the estimate underflows; in this case the matrix is singular (to working precision). However, anytime rcond is small compared to 1.0 ,
	for the working precision, the matrix may be poorly conditioned or even singular.
info	INTEGER.
	If info $=0$, the execution is successful.
	If info $=-i$, the i th parameter had an illegal value.

Application Notes

The computed rcond is never less than ρ (the reciprocal of the true condition number) and in practice is nearly always less than 10ρ. A call to this routine involves solving a number of systems of linear equations $A x=b$; the number is usually 4 or 5 and never more than 11 . Each solution requires approximately $2 n^{2}$ floating-point operations for real flavors and $8 n^{2}$ for complex flavors.

?hpcon

Estimates the reciprocal of the condition number of a packed Hermitian matrix.

Syntax

```
call chpcon ( uplo, n, ap, ipiv, anorm, rcond, work, rwork, info )
call zhpcon ( uplo, n, ap, ipiv, anorm, rcond, work, rwork, info )
```


Description

This routine estimates the reciprocal of the condition number of a Hermitian matrix A :

$$
\kappa_{1}(A)=\|A\|_{1}\left\|A^{-1}\right\|_{1} \quad\left(\text { since } A \text { is Hermitian, } \kappa_{\infty}(A)=\kappa_{1}(A)\right) \text {. }
$$

Before calling this routine:

- compute anorm (either $\|A\|_{1}=\max _{j} \Sigma_{i}\left|a_{i j}\right|$ or $\|A\|_{\infty}=\max _{i} \Sigma_{j}\left|a_{i j}\right|$)
- call ?hptrf to compute the factorization of A.

Input Parameters

uplo	CHARACTER*1. Must be 'U' or 'L'.
	Indicates how the input matrix A has been factored:
	If uplo = ' U ', the array $a p$ stores the packed upper triangular factor U of the factorization $A=P U D U^{T} P^{T}$.
	If uplo= 'L', the array ap stores the packed lower triangular factor L of the factorization $A=P L D L^{T} P^{T}$.
n	INTEGER. The order of matrix $A(\mathrm{n} \geq 0)$.
ap, work	COMPLEX for chpcon
	DOUBLE COMPLEX for zhpcon.
	Arrays: ap(*), work (*).
	The array $a p$ contains the packed factored matrix A, as returned by ?hptrf. The dimension of $a p$ must be at least $\max (1, n(n+1) / 2)$.
	The array work is a workspace for the routine.
	The dimension of work must be at least max $\left(1,2 *_{n}\right)$.
ipiv	INTEGER. Array, dimension at least max $(1, n)$.
	The array ipiv, as returned by ?hptrf.
anorm	REAL for single precision flavors.
	DOUBLE PRECISION for double precision flavors.
	The norm of the original matrix A (see Discussion).
rwork	REAL for chpcon
	DOUBLE PRECISION for zhpcon.
	Workspace array, DIMENSION at least max $(1, n)$.

Output Parameters

rcond	REAL for single precision flavors.
	DOUBLE PRECISION for double precision flavors.
	An estimate of the reciprocal of the condition number. The routine sets rcond
	$=0$ if the estimate underflows; in this case the matrix is singular (to working precision). However, anytime rcond is small compared to 1.0 ,
	for the working precision, the matrix may be poorly conditioned or even singular.
info	INTEGER.
	If info $=0$, the execution is successful.
	If info $=-i$, the i th parameter had an illegal value.

Application Notes

The computed rcond is never less than ρ (the reciprocal of the true condition number) and in practice is nearly always less than 10ρ. A call to this routine involves solving a number of systems of linear equations $A x=b$; the number is usually 5 and never more than 11 . Each solution requires approximately $8 n^{2}$ floating-point operations.

?trcon

Estimates the reciprocal of the condition number of a triangular matrix.

Syntax

```
call strcon (norm, uplo, diag, N, a, lda, rcond, work, iwork, info)
call dtrcon (norm, uplo, diag, N, a, lda, rcond, work, iwork, info)
call ctrcon (norm, uplo, diag, N, a, lda, rcond, work, rwork, info)
call ztrcon (norm, uplo, diag, N, a, lda, rcond, work, rwork, info)
```


Description

This routine estimates the reciprocal of the condition number of a triangular matrix A in either the 1-norm or infinity-norm:

$$
\kappa_{1}(A)=\|A\|_{1}\left\|A^{-1}\right\|_{1}=\kappa_{\infty}\left(A^{T}\right)=\kappa_{\infty}\left(A^{H}\right)
$$

$$
\kappa_{\infty}(A)=\|A\|_{\infty}\left\|A^{-1}\right\|_{\infty}=\kappa_{1}\left(A^{T}\right)=\kappa_{1}\left(A^{H}\right) .
$$

Input Parameters

norm	CHARACTER*1. Must be '1' or 'O' or 'I'. If norm $=$ ' 1 ' or ' O^{\prime}, then the routine estimates $\kappa_{1}(A)$. If norm $=$ ' I ', then the routine estimates $\kappa_{\infty}(A)$.
uplo	CHARACTER*1. Must be 'U' or 'L'. Indicates whether A is upper or lower triangular:
	If uplo='U', the array a stores the upper triangle of A, other array elements are not referenced.
	If uplo = 'L', the array a stores the lower triangle of A, other array elements are not referenced.
diag	CHARACTER*1. Must be 'N' or 'U'.
	If diag $=$ ' N ', then A is not a unit triangular matrix.
	If diag= ' U ', then A is unit triangular: diagonal elements are assumed to be 1 and not referenced in the array a.
n	INTEGER. The order of the matrix $A(n \geq 0)$.
a, work	REAL for strcon
	DOUBLE PRECISION for dtrcon
	COMPLEX for ctrcon
	DOUBLE COMPLEX for ztrcon.
	Arrays: a (lda,*) , work (*).
	The array a contains the matrix A.
	The second dimension of a must be at least max $(1, n)$.
	The array work is a workspace for the routine.
	The dimension of work must be at least $\max \left(1,3 *_{n}\right)$ for real flavors and $\max \left(1,2 \star_{n}\right)$ for complex flavors.
lda	INTEGER. The first dimension of $a ; 1 d a \geq \max (1, n)$.
iwork	INTEGER.
	Workspace array, DIMENSION at least max $(1, n)$.
rwork	REAL for ctrcon
	DOUBLE PRECISION for ztrcon.
	Workspace array, DIMENSION at least max $(1, n)$.

Output Parameters

```
rcond REAL for single precision flavors.
    DOUBLE PRECISION for double precision flavors.
    An estimate of the reciprocal of the condition number. The routine sets rcond
    =0 if the estimate underflows; in this case the matrix is singular (to working
    precision). However, anytime rcond is small compared to 1.0,
    for the working precision, the matrix may be poorly conditioned or even
    singular.
info INTEGER.
    If info = 0, the execution is successful.
    If info =-i, the ith parameter had an illegal value.
```


Application Notes

The computed rcond is never less than ρ (the reciprocal of the true condition number) and in practice is nearly always less than 10ρ. A call to this routine involves solving a number of systems of linear equations $A x=b$; the number is usually 4 or 5 and never more than 11. Each solution requires approximately n^{2} floating-point operations for real flavors and $4 n^{2}$ operations for complex flavors.

?tpcon

Estimates the reciprocal of the condition number of a packed triangular matrix.

Syntax

```
call stpcon (norm, uplo, diag, n, ap, rcond, work, iwork, info)
call dtpcon (norm, uplo, diag, n, ap, rcond, work, iwork, info)
call ctpcon (norm, uplo, diag, n, ap, rcond, work, rwork, info)
call ztpcon (norm, uplo, diag, n, ap, rcond, work, rwork, info)
```


Description

This routine estimates the reciprocal of the condition number of a packed triangular matrix A in either the 1 -norm or infinity-norm:

$$
\begin{aligned}
& \kappa_{1}(A)=\|A\|_{1}\left\|A^{-1}\right\|_{1}=\kappa_{\infty}\left(A^{T}\right)=\kappa_{\infty}\left(A^{H}\right) \\
& \kappa_{\infty}(A)=\|A\|_{\infty}\left\|A^{-1}\right\|_{\infty}=\kappa_{1}\left(A^{T}\right)=\kappa_{1}\left(A^{H}\right) .
\end{aligned}
$$

Input Parameters

norm	CHARACTER*1. Must be '1' or 'O' or 'I'. If norm $=$ ' 1 ' or ' 0 ', then the routine estimates $\kappa_{1}(A)$. If norm $=$ ' I ', then the routine estimates $\kappa_{\infty}(A)$.
uplo	CHARACTER*1. Must be 'U' or 'L'. Indicates whether A is upper or lower triangular:
diag	If uplo = 'L', the array ap stores the lower triangle of A in packed form. CHARACTER* ${ }^{\text {a }}$. Must be 'N' or 'U'.
	If diag = ' N ', then A is not a unit triangular matrix.
	If diag = ' U ', then A is unit triangular: diagonal elements are assumed to be 1 and not referenced in the array ap.
n	integer. The order of the matrix $A(n \geq 0)$.
ap, work	REAL for stpcon
	DOUBLE PRECISION for dtpcon
	COMPLEX for ctpcon
	double Complex for ztpcon.
	Arrays: ap (*), work (*).
	The array ap contains the packed matrix A.
	The dimension of $a p$ must be at least $\max (1, n(n+1) / 2)$.
	The array work is a workspace for the routine.
	The dimension of work must be at least $\max \left(1,3 *_{n}\right)$ for real flavors and $\max \left(1,2 *_{n}\right)$ for complex flavors.
iwork	INTEGER.
	Workspace array, DIMENSION at least max $(1, n)$.
rwork	REAL for ctpcon
	DOUBLE PRECISION for ztpcon
	Workspace array, DIMENSION at least max $(1, n)$.

Output Parameters

rcond REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal of the condition number. The routine sets rcond
$=0$ if the estimate underflows; in this case the matrix is singular (to working
precision). However, anytime rcond is small compared to 1.0 , for the working precision, the matrix may be poorly conditioned or even singular.
info
INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the i th parameter had an illegal value.

Application Notes

The computed rcond is never less than ρ (the reciprocal of the true condition number) and in practice is nearly always less than 10ρ. A call to this routine involves solving a number of systems of linear equations $A x=b$; the number is usually 4 or 5 and never more than 11. Each solution requires approximately n^{2} floating-point operations for real flavors and $4 n^{2}$ operations for complex flavors.

?tbcon

Estimates the reciprocal of the condition number of a triangular band matrix.

Syntax

```
call stbcon (norm, uplo, diag, n, kd, ab, ldab, rcond, work, iwork, info)
call dtbcon (norm, uplo, diag, n, kd, ab, ldab, rcond, work, iwork, info)
call ctbcon (norm, uplo, diag, n, kd, ab, ldab, rcond, work, rwork, info)
call ztbcon (norm, uplo, diag, n, kd, ab, ldab, rcond, work, rwork, info)
```


Description

This routine estimates the reciprocal of the condition number of a triangular band matrix A in either the 1 -norm or infinity-norm:

$$
\begin{aligned}
& \kappa_{1}(A)=\|A\|_{1}\left\|A^{-1}\right\|_{1}=\kappa_{\infty}\left(A^{T}\right)=\kappa_{\infty}\left(A^{H}\right) \\
& \kappa_{\infty}(A)=\|A\|_{\infty}\left\|A^{-1}\right\|_{\infty}=\kappa_{1}\left(A^{T}\right)=\kappa_{1}\left(A^{H}\right) .
\end{aligned}
$$

Input Parameters

```
norm
CHARACTER*1. Must be '1' or 'O' or 'I'.
If norm = '1' or '0', then the routine estimates }\mp@subsup{\kappa}{1}{}(A)\mathrm{ .
If norm = 'I', then the routine estimates }\mp@subsup{\kappa}{\infty}{}(A)\mathrm{ .
```

```
uplo CHARACTER*1. Must be 'U' or 'L'
    Indicates whether }A\mathrm{ is upper or lower triangular:
    If uplo='U', the array ap stores the upper triangle of A in packed form.
    If uplo='L', the array ap stores the lower triangle of }A\mathrm{ in packed form.
diag CHARACTER*1. Must be 'N' or 'U'.
    If diag= 'N', then }A\mathrm{ is not a unit triangular matrix.
    If diag= 'U', then A is unit triangular: diagonal elements are assumed to be 1
    and not referenced in the array ab.
    INTEGER. The order of the matrix A(n\geq0).
    INTEGER. The number of super-diagonals or sub-diagonals in the matrix }
    (kd 
ab, work REAL for stbcon
    DOUBLE PRECISION for dtbcon
    COMPLEX for ctbcon
    DOUBLE COMPLEX for ztbcon.
    Arrays: ab(ldab,*),work(*).
    The array ab contains the band matrix }A\mathrm{ .
    The second dimension of ab must be at least max(1,n)).
    The array work is a workspace for the routine.
    The dimension of work must be at least max(1,3*n) for real flavors and
    max(1,2*n) for complex flavors.
Idab INTEGER. The first dimension of the array ab.
    (ldab }\geqkd+1)
iwork INTEGER.
    Workspace array, DIMENSION at least max (1,n).
rwork REAL for ctbcon
    DOUBLE PRECISION for ztbcon.
    Workspace array, DIMENSION at least max (1,n).
```


Output Parameters

```
rcond REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal of the condition number. The routine sets rcond \(=0\) if the estimate underflows; in this case the matrix is singular (to working
```

precision). However, anytime rcond is small compared to 1.0 , for the working precision, the matrix may be poorly conditioned or even singular.
info INTEGER. If info $=0$, the execution is successful. If info $=-i$, the i th parameter had an illegal value.

Application Notes

The computed rcond is never less than ρ (the reciprocal of the true condition number) and in practice is nearly always less than 10ρ. A call to this routine involves solving a number of systems of linear equations $A x=b$; the number is usually 4 or 5 and never more than 11. Each solution requires approximately $2 n(k d+1)$ floating-point operations for real flavors and $8 n(k d+1)$ operations for complex flavors.

Refining the Solution and Estimating Its Error

This section describes the LAPACK routines for refining the computed solution of a system of linear equations and estimating the solution error. You can call these routines after factorizing the matrix of the system of equations and computing the solution (see Routines for Matrix Factorization and Routines for Solving Systems of Linear Equations).

?gerfs

Refines the solution of a system of linear equations with
a general matrix and estimates its error.

```
Syntax
call sgerfs (trans, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx,
    ferr, berr, work, iwork, info)
call dgerfs (trans, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx,
    ferr, berr, work, iwork, info)
call cgerfs (trans, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx,
    ferr, berr, work, rwork, info)
call zgerfs (trans, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx,
    ferr, berr, work, rwork, info)
```


Description

This routine performs an iterative refinement of the solution to a system of linear equations $A X=B$ or $A^{T} X=B$ or $A^{H} X=B$ with a general matrix A, with multiple right-hand sides. For each computed solution vector x, the routine computes the component-wise backward error β. This error is the smallest relative perturbation in elements of A and b such that x is the exact solution of the perturbed system:
$\left|\delta a_{i j} /\left|a_{i j}\right| \leq \beta\right| a_{i j}\left|,\left|\delta b_{i}\right|\right|\left|b_{i}\right| \leq \beta\left|b_{i}\right|$ such that $(A+\delta A) x=(b+\delta b)$.
Finally, the routine estimates the component-wise forward error in the computed solution $\| x-$ $x_{\mathrm{e}}\left\|_{\infty} /\right\| x \|_{\infty}$ (here x_{e} is the exact solution).

Before calling this routine:

- call the factorization routine ? getrf
- call the solver routine ?getrs.

Input Parameters

```
trans CHARACTER*1. Must be 'N' or 'T' or 'C'.
    Indicates the form of the equations:
    If trans='N', the system has the form AX=B.
    If trans=' T', the system has the form }\mp@subsup{A}{}{T}X=B\mathrm{ .
    If trans=' 'C', the system has the form }\mp@subsup{A}{}{H}X=B\mathrm{ .
n INTEGER. The order of the matrix A(n\geq0).
nrhs
a,af,b,x,work
    REAL for sgerfs
    DOUBLE PRECISION for dgerfs
    COMPLEX for cgerfs
    DOUBLE COMPLEX for zgerfs.
    Arrays:
    a(lda,*) contains the original matrix }A\mathrm{ , as supplied
    to ?getrf.
    af(ldaf,*) contains the factored matrix }A\mathrm{ , as returned by ?getrf.
    b}(Idb,*) contains the right-hand side matrix B
    x(Idx,*) contains the solution matrix X.
    work (*) is a workspace array.
```

```
    The second dimension of a and af must be at least max}(1,n); the second
    dimension of b and x must be at least max(1,nrhs); the dimension of work
    must be at least max (1, 3*n) for real flavors and max (1, 2*n) for complex
    flavors.
Ida INTEGER. The first dimension of a; Ida \geqmax (1, n).
ldaf INTEGER. The first dimension of af; ldaf \geq max(1,n).
ldb INTEGER. The first dimension of b; ldb \geqmax(1,n).
ldx INTEGER. The first dimension of }x;ldx\geq\operatorname{max}(1,n)
ipiv INTEGER.
    Array, DIMENSION at least max(1,n).
    The ipiv array, as returned by ?getrf.
iwork INTEGER.
    Workspace array, DIMENSION at least max(1,n).
rwork REAL for cgerfs
    DOUBLE PRECISION for zgerfs.
    Workspace array, DIMENSION at least max(1, n).
Output Parameters
x The refined solution matrix }X\mathrm{ .
ferr, berr REAL for single precision flavors.
    DOUBLE PRECISION for double precision flavors.
    Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise
    forward and backward errors, respectively, for each solution vector.
info INTEGER.
    If info = 0, the execution is successful.
    If info = -i, the ith parameter had an illegal value.
```


Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate the actual error.

For each right-hand side, computation of the backward error involves a minimum of $4 n^{2}$ floating-point operations (for real flavors) or $16 n^{2}$ operations (for complex flavors). In addition, each step of iterative refinement involves $6 n^{2}$ operations (for real flavors) or $24 n^{2}$ operations (for complex flavors); the number of iterations may range from 1 to 5 . Estimating the forward error involves solving a number of systems of linear equations $A x=b$; the number is usually 4 or 5 and never more than 11. Each solution requires approximately $2 n^{2}$ floating-point operations for real flavors or $8 n^{2}$ for complex flavors.

?gbrfs

Refines the solution of a system of linear equations with a general band matrix and estimates its error.

Syntax

```
call sgbrfs (trans, n, kl, ku, nrhs, ab, ldab, afb, ldafb, ipiv, b, ldb,
    x, ldx, ferr, berr, work, iwork, info)
call dgbrfs (trans, n, kl, ku, nrhs, ab, ldab, afb, ldafb, ipiv, b, ldb,
    x, ldx, ferr, berr, work, iwork, info)
call cgbrfs (trans, n, kl, ku, nrhs, ab, ldab, afb, ldafb, ipiv, b, ldb,
    x, ldx, ferr, berr, work, rwork, info)
call zgbrfs (trans, n, kl, ku, nrhs, ab, ldab, afb, ldafb, ipiv, b, ldb,
    x, ldx, ferr, berr, work, rwork, info)
```


Description

This routine performs an iterative refinement of the solution to a system of linear equations $A X=B$ or $A^{T} X=B$ or $A^{H} X=B$ with a band matrix A, with multiple right-hand sides. For each computed solution vector x, the routine computes the component-wise backward error β. This error is the smallest relative perturbation in elements of A and b such that x is the exact solution of the perturbed system:
$\left|\delta a_{i j}\right|\left|a_{i j}\right| \leq \beta\left|a_{i j}\right|,\left|\delta b_{i}\right|| | b_{i}|\leq \beta| b_{i} \mid$ such that $(A+\delta A) x=(b+\delta b)$.
Finally, the routine estimates the component-wise forward error in the computed solution $\| x-$ $x_{\mathrm{e}}\left\|_{\infty} /\right\| x \|_{\infty}$ (here x_{e} is the exact solution).

Before calling this routine:

- call the factorization routine ?gbtrf
- call the solver routine ?gbtrs.

Input Parameters

trans	CHARACTER*1. Must be 'N' or 'T' or 'C'.
	Indicates the form of the equations:
	If trans $=$ ' N ', the system has the form $A X=B$.
	If trans $=$ ' T ', the system has the form $A^{T} X=B$.
	If trans = ' C ', the system has the form $A^{H} X=B$.
n	integer. The order of the matrix $A(n \geq 0)$.
kl	INTEGER. The number of sub-diagonals within the band of $A(k I \geq 0)$.
ku	INTEGER. The number of super-diagonals within the band of A ($k u \geq 0$).
nrhs	INTEGER. The number of right-hand sides (nrhs ≥ 0).
ab, afb, b, x, work	REAL for sgbrfs
	DOUBLE PRECISION for dgbrfs
	COMPLEX for cgbrfs
	double Complex for zgbrfs.
	Arrays:
	$a b(I d a b, *)$ contains the original band matrix A, as supplied to ? ${ }^{\text {gbtrf }}$, but stored in rows from 1 to $k l+k u+1$.
	$a f b$ (ldafb,*) contains the factored band matrix A, as returned by ? gbtrf.
	$b(1 d b, *)$ contains the right-hand side matrix B.
	$x(1 d x, *)$ contains the solution matrix X.
	work (*) is a workspace array.
	The second dimension of $a b$ and $a f b$ must be at least $\max (1, n)$; the second dimension of b and x must be at least max ($1, n r h s$); the dimension of work must be at least $\max \left(1,3 *_{n}\right)$ for real flavors and $\max \left(1,2 *_{n}\right)$ for complex flavors.
1 dab	Integer. The first dimension of $a b$.
$1 d a f b$	Integer. The first dimension of afb.
1 db	INTEGER. The first dimension of $b ; 1 d b \geq \max (1, n)$.
$1 d x$	INTEGER. The first dimension of $x ; 1 d x \geq \max (1, n)$.
ipiv	Integer.
	Array, DIMENSION at least max ($1, n$).
	The ipiv array, as returned by ?gbtrf.

```
iwork INTEGER
    Workspace array, DIMENSION at least max(1, n).
rwork REAL for cgbrfs
    DOUBLE PRECISION for zgbrfs
    Workspace array, DIMENSION at least max (1,n).
```


Output Parameters

```
x
```

x
The refined solution matrix }X\mathrm{ .
The refined solution matrix }X\mathrm{ .
ferr, berr REAL for single precision flavors.
ferr, berr REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise
Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise
forward and backward errors, respectively, for each solution vector.
forward and backward errors, respectively, for each solution vector.
info
info
INTEGER.
INTEGER.
If info =0, the execution is successful.
If info =0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

```
    If info = -i, the ith parameter had an illegal value.
```


Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate the actual error.

For each right-hand side, computation of the backward error involves a minimum of $4 n(k I+k u)$ floating-point operations (for real flavors) or $16 n(k l+k u)$ operations (for complex flavors). In addition, each step of iterative refinement involves $2 n(4 k l+3 k u)$ operations (for real flavors) or $8 n(4 k l+3 k u)$ operations (for complex flavors); the number of iterations may range from 1 to 5 . Estimating the forward error involves solving a number of systems of linear equations $A x=b$; the number is usually 4 or 5 and never more than 11 . Each solution requires approximately $2 n^{2}$ floating-point operations for real flavors or $8 n^{2}$ for complex flavors.

?gtrfs

Refines the solution of a system of linear equations with a tridiagonal matrix and estimates its error.

Syntax

```
call sgtrfs (trans, n, nrhs, dl, d, du, dlf, df, duf, du2, ipiv, b, ldb,
    x, ldx, ferr, berr, work, iwork, info)
```

```
call dgtrfs (trans, n, nrhs, dl, d, du, dlf, df, duf, du2, ipiv, b, ldb,
    x, ldx, ferr, berr, work, iwork, info)
call cgtrfs (trans, n, nrhs, dl, d, du, dlf, df, duf, du2, ipiv, b, ldb,
    x, ldx, ferr, berr, work, rwork, info)
call zgtrfs (trans, n, nrhs, dl, d, du, dlf, df, duf, du2, ipiv, b, ldb,
    x, ldx, ferr, berr, work, rwork, info)
```


Description

This routine performs an iterative refinement of the solution to a system of linear equations $A X=B$ or $A^{T} X=B$ or $A^{H} X=B$ with a tridiagonal matrix A, with multiple right-hand sides. For each computed solution vector x, the routine computes the component-wise backward error β. This error is the smallest relative perturbation in elements of A and b such that x is the exact solution of the perturbed system:
$\left|\delta a_{i j} /\left|\left|a_{i j}\right| \leq \beta\right| a_{i j}\right|,\left|\delta b_{i}\right| /\left|b_{i}\right| \leq \beta\left|b_{i}\right|$ such that $(A+\delta A) x=(b+\delta b)$.
Finally, the routine estimates the component-wise forward error in the computed solution $\| x-$ $x_{\mathrm{e}}\left\|_{\infty} /\right\| x \|_{\infty}$ (here x_{e} is the exact solution).

Before calling this routine:

- call the factorization routine ?gttrf
- call the solver routine ?gttrs.

Input Parameters

```
trans CHARACTER*1. Must be 'N' or 'T' or 'C'.
    Indicates the form of the equations:
    If trans = 'N', the system has the form AX=B.
    If trans='T', the system has the form }\mp@subsup{A}{}{T}X=B\mathrm{ .
    If trans = 'C', the system has the form }\mp@subsup{A}{}{H}X=B\mathrm{ .
n
nrhs INTEGER. The number of right-hand sides,i.e., the number of columns of the
    matrix B (nrhs \geq0).
dl,d,du,dlf,df,
duf,du2,b,x,work REAL for sgtrfs
                                    DOUBLE PRECISION for dgtrfs
                                    COMPLEX for cgtrfs
                                    DOUBLE COMPLEX for zgtrfs.
                                    Arrays:
                                    dl, dimension (n-1), contains the subdiagonal elements of }A\mathrm{ .
```

d, dimension (n), contains the diagonal elements of A.
$d u$, dimension ($n-1$), contains the superdiagonal elements of A.
dlf, dimension $(n-1)$, contains the $(n-1)$ multipliers that define the matrix L from the $L U$ factorization of A as computed by ?gttrf.
$d f$, dimension (n), contains the n diagonal elements of the upper triangular matrix U from the $L U$ factorization of A.
duf, dimension ($n-1$), contains the $(n-1)$ elements of the first super-diagonal of U.
du2, dimension ($n-2$), contains the ($n-2$) elements of the second super-diagonal of U.
b ($1 \mathrm{db}, \mathrm{nrhs}$) contains the right-hand side matrix B.
$x(I d x, n r h s)$ contains the solution matrix X, as computed by ?gttrs.
work (*) is a workspace array;
the dimension of work must be at least $\max (1,3 * n)$ for real flavors and $\max \left(1,2 *_{n}\right)$ for complex flavors.
1 db
INTEGER. The first dimension of $b ; 1 d b \geq \max (1, n)$.
INTEGER. The first dimension of $x ; l d x \geq \max (1, n)$.
INTEGER.
Array, DIMENSION at least $\max (1, n)$.
The ipiv array, as returned by ?gttrf.
iwork INTEGER.
Workspace array, DIMENSION (n). Used for real flavors only.
rwork REAL for cgtrfs
DOUBLE PRECISION for zgtrfs.
Workspace array, DIMENSION (n). Used for complex flavors only.

Output Parameters

$x \quad$ The refined solution matrix X.
ferr, berr REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise forward and backward errors, respectively, for each solution vector.
info
INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the i th parameter had an illegal value.

?porfs

Refines the solution of a system of linear equations with a symmetric (Hermitian) positive-definite matrix and estimates its error.

Syntax

```
call sporfs (uplo, n, nrhs, a, lda, af, ldaf, b, ldb, x, ldx, ferr, berr,
    work, iwork, info)
call dporfs (uplo, n, nrhs, a, lda, af, ldaf, b, ldb, x, ldx, ferr, berr,
    work, iwork, info)
call cporfs (uplo, n, nrhs, a, lda, af, ldaf, b, ldb, x, ldx, ferr, berr,
    work, rwork, info)
call zporfs (uplo, n, nrhs, a, lda, af, ldaf, b, ldb, x, ldx, ferr, berr,
    work, rwork, info)
```


Description

This routine performs an iterative refinement of the solution to a system of linear equations $A X=B$ with a symmetric (Hermitian) positive definite matrix A, with multiple right-hand sides. For each computed solution vector x, the routine computes the component-wise backward error β. This error is the smallest relative perturbation in elements of A and b such that x is the exact solution of the perturbed system:
$\left|\delta a_{i j}\right|\left|a_{i j}\right| \leq \beta\left|a_{i j}\right|,\left|\delta b_{i}\right|| | b_{i}|\leq \beta| b_{i} \mid$ such that $(A+\delta A) x=(b+\delta b)$.
Finally, the routine estimates the component-wise forward error in the computed solution $\| x$ $x_{\mathrm{e}}\left\|_{\infty} /\right\| x \|_{\infty}$ (here x_{e} is the exact solution).

Before calling this routine:

- call the factorization routine ?potrf
- call the solver routine ?potrs.

Input Parameters

uplo CHARACTER*1. Must be ' U ' or 'L'.

If uplo= ' U ', the array af stores the factor U of the Cholesky factorization A $=U^{H} U$.
If uplo= 'L', the array af stores the factor L of the Cholesky factorization A $=L L^{H}$.
n
nrhs
$a, a f, b, x, w o r k$
Integer. The order of the matrix $A(n \geq 0)$.
INTEGER. The number of right-hand sides (nrhs ≥ 0).
REAL for sporfs
DOUBLE PRECISION for dporfs
COMPLEX for cporfs
DOUBLE COMPLEX for zporfs.
Arrays:
$a(l d a, *)$ contains the original matrix A, as supplied
to ?potrf.
af(ldaf,*) contains the factored matrix A, as returned by ? potrf.
$\mathrm{b}(1 \mathrm{db}, *)$ contains the right-hand side matrix B.
$x(l d x, *)$ contains the solution matrix X.
work (*) is a workspace array.
The second dimension of a and af must be at least max $(1, n)$; the second dimension of b and x must be at least max(1, nrhs); the dimension of work must be at least $\max \left(1,3 *_{n}\right)$ for real flavors and $\max \left(1,2 \star_{n}\right)$ for complex flavors.
lda INTEGER. The first dimension of $a ; 1 d a \geq \max (1, n)$.
ldaf INTEGER. The first dimension of $a f ; 1 d a f \geq \max (1, n)$.
$1 d b \quad$ INTEGER. The first dimension of $b ; 1 d b \geq \max (1, n)$.
$l d x \quad$ INTEGER. The first dimension of $x ; 1 d x \geq \max (1, n)$.
iwork INTEGER.
Workspace array, DIMENSION at least max $(1, n)$.
rwork REAL for cporfs
DOUBLE PRECISION for zporfs
Workspace array, DIMENSION at least max $(1, n)$.

Output Parameters

$x \quad$ The refined solution matrix X.

```
ferr, berr REAL for single precision flavors.
    DOUBLE PRECISION for double precision flavors.
    Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise
    forward and backward errors, respectively, for each solution vector.
info INTEGER
    If info = 0, the execution is successful.
    If info =-i, the ith parameter had an illegal value.
```


Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate the actual error.

For each right-hand side, computation of the backward error involves a minimum of $4 n^{2}$ floating-point operations (for real flavors) or $16 n^{2}$ operations (for complex flavors). In addition, each step of iterative refinement involves $6 n^{2}$ operations (for real flavors) or $24 n^{2}$ operations (for complex flavors); the number of iterations may range from 1 to 5 . Estimating the forward error involves solving a number of systems of linear equations $A x=b$; the number is usually 4 or 5 and never more than 11 . Each solution requires approximately $2 n^{2}$ floating-point operations for real flavors or $8 n^{2}$ for complex flavors.

?pprfs

Refines the solution of a system of linear equations with a packed symmetric (Hermitian) positive-definite matrix and estimates its error.

```
Syntax
call spprfs (uplo, n, nrhs, ap, afp, b, ldb, x, ldx, ferr, berr, work,
    iwork, info)
call dpprfs (uplo, n, nrhs, ap, afp, b, ldb, x, ldx, ferr, berr, work,
    iwork, info)
call cpprfs (uplo, n, nrhs, ap, afp, b, ldb, x, ldx, ferr, berr, work,
    rwork, info)
call zpprfs (uplo, n, nrhs, ap, afp, b, ldb, x, ldx, ferr, berr, work,
    rwork, info)
```


Description

This routine performs an iterative refinement of the solution to a system of linear equations $A X=B$ with a packed symmetric (Hermitian) positive definite matrix A, with multiple right-hand sides. For each computed solution vector x, the routine computes the component-wise backward error β. This error is the smallest relative perturbation in elements of A and b such that x is the exact solution of the perturbed system:
$\left|\delta a_{i j}\right|\left|a_{i j}\right| \leq \beta\left|a_{i j}\right|,\left|\delta b_{i}\right|| | b_{i}|\leq \beta| b_{i} \mid$ such that $(A+\delta A) x=(b+\delta b)$.
Finally, the routine estimates the component-wise forward error in the computed solution $\| x-$ $x_{\mathrm{e}}\left\|_{\infty} /\right\| x \|_{\infty}$ (here x_{e} is the exact solution).

Before calling this routine:

- call the factorization routine ?pptrf
- call the solver routine ?pptrs.

Input Parameters

```
uplo CHARACTER*1. Must be 'U' or 'L'.
    Indicates how the input matrix }A\mathrm{ has been factored:
    If upIo='U', the array afp stores the packed factor U of the Cholesky
    factorization }A=\mp@subsup{U}{}{H}U\mathrm{ .
    If uplo= 'L', the array afp stores the packed factor L of the Cholesky
    factorization A}=L\mp@subsup{L}{}{H}\mathrm{ .
n INTEGER. The order of the matrix A( }n\geq0)\mathrm{ .
nrhs INTEGER. The number of right-hand sides (nrhs }\geq0\mathrm{ ).
ap,afp,b,x,work REAL for spprfs
    DOUBLE PRECISION for dpprfs
    COMPLEX for cpprfs
    DOUBLE COMPLEX for zpprfs.
    Arrays:
    ap(*) contains the original packed matrix }A\mathrm{ , as supplied to ?pptrf.
    afp(*) contains the factored packed matrix }A\mathrm{ , as returned by ?pptrf.
    b}(ldb,*) contains the right-hand side matrix B
    x(ldx,*) contains the solution matrix }X\mathrm{ .
    work (*) is a workspace array.
```

	The dimension of arrays $a p$ and $a f p$ must be at least $\max (1, n(n+1) / 2)$; the second dimension of b and x must be at least $\max (1, n r h s)$; the dimension of work must be at least $\max \left(1,3 *_{n}\right)$ for real flavors and $\max \left(1,2 *_{n}\right)$ for complex flavors.
1 db	INTEGER. The first dimension of $b ; 1 d b \geq \max (1, n)$.
$1 d x$	INTEGER. The first dimension of $x ; l d x \geq \max (1, n)$.
iwork	INTEGER. Workspace array, DIMENSION at least $\max (1, n)$.
rwork	REAL for cpprfs DOUBLE PRECISION for zpprfs Workspace array, DIMENSION at least max $(1, n)$.
Output Parameters	
x	The refined solution matrix X.
ferr, berr	REAL for single precision flavors. DOUBLE PRECISION for double precision flavors. Arrays, DIMENSION at least max($1, n r h s$). Contain the component-wise forward and backward errors, respectively, for each solution vector.
info	INTEGER. If info $=0$, the execution is successful. If info $=-i$, the i th parameter had an illegal value.

Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate the actual error.

For each right-hand side, computation of the backward error involves a minimum of $4 n^{2}$ floating-point operations (for real flavors) or $16 n^{2}$ operations (for complex flavors). In addition, each step of iterative refinement involves $6 n^{2}$ operations (for real flavors) or $24 n^{2}$ operations (for complex flavors); the number of iterations may range from 1 to 5 .

Estimating the forward error involves solving a number of systems of linear equations $A x=b$; the number of systems is usually 4 or 5 and never more than 11 . Each solution requires approximately $2 n^{2}$ floating-point operations for real flavors or $8 n^{2}$ for complex flavors.

?pbrfs

Refines the solution of a system of linear equations with a band symmetric (Hermitian) positive-definite matrix and estimates its error.

Syntax

```
call spbrfs (uplo, n, kd, nrhs, ab, ldab, afb, ldafb, b, ldb, x, ldx,
    ferr, berr, work, iwork, info)
call dpbrfs (uplo, n, kd, nrhs, ab, ldab, afb, ldafb, b, ldb, x, ldx,
    ferr, berr, work, iwork, info)
call cpbrfs (uplo, n, kd, nrhs, ab, ldab, afb, ldafb, b, ldb, x, ldx,
    ferr, berr, work, rwork, info)
call zpbrfs (uplo, n, kd, nrhs, ab, ldab, afb, ldafb, b, ldb, x, ldx,
    ferr, berr, work, rwork, info)
```


Description

This routine performs an iterative refinement of the solution to a system of linear equations $A X=B$ with a symmetric (Hermitian) positive definite band matrix A, with multiple right-hand sides. For each computed solution vector x, the routine computes the component-wise backward error β. This error is the smallest relative perturbation in elements of A and b such that x is the exact solution of the perturbed system:
$\left|\delta a_{i j}\right|\left|a_{i j}\right| \leq \beta\left|a_{i j}\right|,\left|\delta b_{i}\right|| | b_{i}|\leq \beta| b_{i} \mid$ such that $(A+\delta A) x=(b+\delta b)$.
Finally, the routine estimates the component-wise forward error in the computed solution $\| x-$ $x_{\mathrm{e}}\left\|_{\infty} /\right\| x \|_{\infty}$ (here x_{e} is the exact solution).

Before calling this routine:

- call the factorization routine ?pbtrf
- call the solver routine ?pbtrs.

Input Parameters

```
uplo CHARACTER*1. Must be 'U' or 'L'.
    Indicates how the input matrix }A\mathrm{ has been factored:
```

	If uplo='U', the array afb stores the factor U of the Cholesky factorization $A=U^{H} U$. If uplo= 'L', the array $a f b$ stores the factor L of the Cholesky factorization $A=L L^{H}$.
n	INTEGER. The order of the matrix $A(n \geq 0)$.
$k d$	INTEGER. The number of super-diagonals or sub-diagonals in the matrix A ($k d \geq 0$).
nrhs	INTEGER. The number of right-hand sides (nrhs ≥ 0).
ab, afb, b, x, work	REAL for spbrfs
	DOUBLE PRECISION for dpbrfs
	COMPLEX for cpbrfs
	DOUBLE COMPLEX for zpbrfs.
	Arrays:
	$a b(l d a b, *)$ contains the original band matrix A, as supplied to ? pbtrf.
	$a f b$ (ldafb, *) contains the factored band matrix A, as returned by ? pbtrf.
	$b(1 d b, *)$ contains the right-hand side matrix B.
	$x(I d x, *)$ contains the solution matrix X.
	work (*) is a workspace array.
	The second dimension of $a b$ and $a f b$ must be at least $\max (1, n)$; the second dimension of b and x must be at least max(1, nrhs); the dimension of work must be at least $\max \left(1,3 *_{n}\right)$ for real flavors and $\max \left(1,2 *_{n}\right)$ for complex flavors.
1 dab	INTEGER. The first dimension of $a b ; 1 d a b \geq k d+1$.
Idafb	INTEGER. The first dimension of $a f b ; 1 d a f b \geq k d+1$.
1 db	INTEGER. The first dimension of $b ; 1 d b \geq \max (1, n)$.
$1 d x$	INTEGER. The first dimension of $x ; 1 d x \geq \max (1, n)$.
iwork	INTEGER.
	Workspace array, DIMENSION at least max $(1, n)$.
rwork	REAL for cpbrfs
	DOUBLE PRECISION for zpbrfs
	Workspace array, DIMENSION at least max $(1, n)$.
Output Parameters	
	The refined solution matrix X.

```
ferr, berr REAL for single precision flavors.
    DOUBLE PRECISION for double precision flavors.
    Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise
    forward and backward errors, respectively, for each solution vector.
info INTEGER.
    If infO =0, the execution is successful.
    If info = -i, the ith parameter had an illegal value.
```


Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate the actual error.

For each right-hand side, computation of the backward error involves a minimum of $8 n * k d$ floating-point operations (for real flavors) or $32 n * k d$ operations (for complex flavors). In addition, each step of iterative refinement involves $12 n * k d$ operations (for real flavors) or $48 n * k d$ operations (for complex flavors); the number of iterations may range from 1 to 5 .

Estimating the forward error involves solving a number of systems of linear equations $A x=b$; the number is usually 4 or 5 and never more than 11. Each solution requires approximately $4 n * k d$ floating-point operations for real flavors or $16 n^{*} k d$ for complex flavors.

?ptrfs

Refines the solution of a system of linear equations with a symmetric (Hermitian) positive-definite tridiagonal matrix and estimates its error.

Syntax

```
call sptrfs (n, nrhs, d, e, df, ef, b, ldb, x, ldx, ferr, berr, work,
    info)
call dptrfs (n, nrhs, d, e, df, ef, b, ldb, x, ldx, ferr, berr, work,
    info)
call cptrfs (uplo, n, nrhs, d, e, df, ef, b, ldb, x, ldx, ferr, berr,
    work, rwork, info)
call cptrfs (uplo, n, nrhs, d, e, df, ef, b, ldb, x, ldx, ferr, berr,
    work, rwork, info)
```


Description

This routine performs an iterative refinement of the solution to a system of linear equations $A X=B$ with a symmetric (Hermitian) positive definite tridiagonal matrix A, with multiple right-hand sides. For each computed solution vector x, the routine computes the component-wise backward error β. This error is the smallest relative perturbation in elements of A and b such that x is the exact solution of the perturbed system:
$\left|\delta a_{i j}\right|\left|a_{i j}\right| \leq \beta\left|a_{i j}\right|,\left|\delta b_{i}\right|| | b_{i}|\leq \beta| b_{i} \mid$ such that $(A+\delta A) x=(b+\delta b)$.
Finally, the routine estimates the component-wise forward error in the computed solution $\| x-$ $x_{\mathrm{e}}\left\|_{\infty} /\right\| x \|_{\infty}$ (here x_{e} is the exact solution).

Before calling this routine:

- call the factorization routine ?pttrf
- call the solver routine ?pttrs.

Input Parameters

```
uplo CHARACTER*1. Used for complex flavors only.
    Must be 'U' or 'L'.
    Specifies whether the superdiagonal or the subdiagonal of the tridiagonal
    matrix }A\mathrm{ is stored and how }A\mathrm{ is factored:
    If uplo = 'U', the array e stores the superdiagonal of }A\mathrm{ , and }A\mathrm{ is factored as
    UHDU;
    If uplo = 'L', the array e stores the subdiagonal of }A\mathrm{ , and }A\mathrm{ is factored as
    LDL'H.
n INTEGER. The order of the matrix A(n\geq0).
nrhs INTEGER. The number of right-hand sides (nrhs \geq0).
d,df,rwork REAL for single precision flavors
    DOUBLE PRECISION for double precision flavors
    Arrays: d(n),df(n),rwork(n).
    The array d contains the n diagonal elements of the tridiagonal matrix }A\mathrm{ .
    The array df contains the ndiagonal elements of the diagonal matrix D from
    the factorization of }A\mathrm{ as computed by ?pttrf.
    The array rwork is a workspace array used for complex flavors only.
e,ef,b,x,work REAL for sptrfs
    DOUBLE PRECISION for dptrfs
    COMPLEX for cptrfs
    DOUBLE COMPLEX for zptrfs.
    Arrays: e(n-1), ef(n-1),b(ldb,nrhs), x(ldx,nrhs), work(*).
```

The array e contains the ($n-1$) off-diagonal elements of the tridiagonal matrix A (see uplo).
The array ef contains the ($n-1$) off-diagonal elements of the unit bidiagonal factor U or L from the factorization computed by ?pttrf (see uplo).
The array b contains the matrix B whose columns are the right-hand sides for the systems of equations.
The array x contains the solution matrix X as computed by ?pttrs.
The array work is a workspace array. The dimension of work must be at least $2 *_{n}$ for real flavors, and at least n for complex flavors.
$I d b \quad$ INTEGER. The leading dimension of $b ; 1 d b \geq \max (1, n)$.
$I d x \quad$ INTEGER. The leading dimension of $x ; I d x \geq \max (1, n)$.

Output Parameters

x	The refined solution matrix X.
ferr, berr	REAL for single precision flavors.
	DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise	
info	forward and backward errors, respectively, for each solution vector.
	INTEGER.
	If info $=0$, the execution is successful.
	If info $=-i$, the ith parameter had an illegal value.

?syrfs

Refines the solution of a system of linear equations with a symmetric matrix and estimates its error.

Syntax

```
call ssyrfs (uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx, ferr,
    berr, work, iwork, info)
call dsyrfs (uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx, ferr,
    berr, work, iwork, info)
call csyrfs (uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx, ferr,
    berr, work, rwork, info)
call zsyrfs (uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx, ferr,
    berr, work, rwork, info)
```


Discussion

This routine performs an iterative refinement of the solution to a system of linear equations $A X=B$ with a symmetric full-storage matrix A, with multiple right-hand sides. For each computed solution vector x, the routine computes the component-wise backward error β. This error is the smallest relative perturbation in elements of A and b such that x is the exact solution of the perturbed system:
$\left|\delta a_{i j}\right|\left|a_{i j}\right| \leq \beta\left|a_{i j}\right|,\left|\delta b_{i}\right|| | b_{i}|\leq \beta| b_{i} \mid$ such that $(A+\delta A) x=(b+\delta b)$.
Finally, the routine estimates the component-wise forward error in the computed solution $\| x-$ $x_{\mathrm{e}}\left\|_{\infty} /\right\| x \|_{\infty}$ (here x_{e} is the exact solution).

Before calling this routine:

- call the factorization routine ?sytrf
- call the solver routine ?sytrs.

Input Parameters

```
uplo CHARACTER*1. Must be 'U' or 'L'.
    Indicates how the input matrix }A\mathrm{ has been factored:
    If uplo='U', the array af stores the Bunch-Kaufman factorization A=
    PUDUTPT
    If uplo= 'L', the array af stores the Bunch-Kaufman factorization }A
    PLDL'P}\mp@subsup{}{}{T}\mathrm{ .
n
nrhs
a,af,b,x,work
REAL for ssyrfs
DOUBLE PRECISION for dsyrfs
COMPLEX for csyrfs
DOUBLE COMPLEX for zsyrfs.
Arrays:
a(lda,*) contains the original matrix }A\mathrm{ , as supplied
to ?sytrf.
af(ldaf,*) contains the factored matrix }A\mathrm{ , as returned by ?sytrf.
b}(ldb,*) contains the right-hand side matrix B
x(ldx,*) contains the solution matrix X.
work (*) is a workspace array.
```

Ida INTEGER. The first dimension of $a ; I d a \geq \max (1, n)$.
Idaf INTEGER. The first dimension of $a f ; \operatorname{ldaf} \geq \max (1, n)$.
$I d b \quad$ INTEGER. The first dimension of $b ; 1 d b \geq \max (1, n)$.
$l d x \quad$ INTEGER. The first dimension of $x ; l d x \geq \max (1, n)$.
ipiv
INTEGER.
Array, DIMENSION at least max $(1, n)$.
The ipiv array, as returned by ?sytrf.
iwork INTEGER.
Workspace array, DIMENSION at least max $(1, n)$.
rwork REAL for csyrfs
DOUBLE PRECISION for zsyrfs.
Workspace array, DIMENSION at least $\max (1, n)$.

Output Parameters

$x \quad$ The refined solution matrix X.
ferr, berr REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max($1, n r h s$). Contain the component-wise forward and backward errors, respectively, for each solution vector.
info INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the i th parameter had an illegal value.

Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate the actual error.

For each right-hand side, computation of the backward error involves a minimum of $4 n^{2}$ floating-point operations (for real flavors) or $16 n^{2}$ operations (for complex flavors). In addition, each step of iterative refinement involves $6 n^{2}$ operations (for real flavors) or $24 n^{2}$ operations (for complex flavors); the number of iterations may range from 1 to 5 . Estimating the forward error involves solving a number of systems of linear equations $A x=b$; the number is usually 4 or 5 and never more than 11 . Each solution requires approximately $2 n^{2}$ floating-point operations for real flavors or $8 n^{2}$ for complex flavors.

?herfs

Refines the solution of a system of linear equations with a complex Hermitian matrix and estimates its error.

Syntax

```
call cherfs (uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx, ferr,
    berr, work, rwork, info)
call zherfs (uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx, ferr,
    berr, work, rwork, info)
```


Description

This routine performs an iterative refinement of the solution to a system of linear equations $A X=B$ with a complex Hermitian full-storage matrix A, with multiple right-hand sides. For each computed solution vector x, the routine computes the component-wise backward error β. This error is the smallest relative perturbation in elements of A and b such that x is the exact solution of the perturbed system:
$\left|\delta a_{i j}\right|\left|a_{i j}\right| \leq \beta\left|a_{i j}\right|,\left|\delta b_{i}\right|| | b_{i}|\leq \beta| b_{i} \mid$ such that $(A+\delta A) x=(b+\delta b)$.
Finally, the routine estimates the component-wise forward error in the computed solution $\| x-$ $x_{\mathrm{e}}\left\|_{\infty} /\right\| x \|_{\infty}$ (here x_{e} is the exact solution).

Before calling this routine:

- call the factorization routine ?hetrf
- call the solver routine ?hetrs.

Input Parameters

```
uplo CHARACTER*1. Must be 'U' or 'L'.
    Indicates how the input matrix }A\mathrm{ has been factored:
    If uplo= 'U', the array af stores the Bunch-Kaufman factorization }A
    PUDUH}\mp@subsup{P}{}{T}
    If uplo= 'L', the array af stores the Bunch-Kaufman factorization A=
    PLDL L}\mp@subsup{P}{}{T}\mathrm{ .
n INTEGER. The order of the matrix A(n\geq0).
nrhs INTEGER. The number of right-hand sides (nrhs \geq0).
a,af,b,x,work COMPLEX for cherfs
DOUBLE COMPLEX for zherfs.
```

Arrays:
$a(l d a, *)$ contains the original matrix A, as supplied
to ?hetrf.
af(Idaf,*) contains the factored matrix A, as returned by ?hetrf.
$\mathrm{b}(1 \mathrm{db}, *)$ contains the right-hand side matrix B.
$x(I d x, *)$ contains the solution matrix X.
work (*) is a workspace array.
The second dimension of a and af must be at least max $(1, n)$; the second dimension of b and x must be at least max(1, nrhs); the dimension of work must be at least $\max (1,2 * n)$.

Ida
ldaf
$1 d b$
ldx
ipiv
rwork

INTEGER. The first dimension of $a ; 1 d a \geq \max (1, n)$.
INTEGER. The first dimension of $a f ; 1 d a f \geq \max (1, n)$.
INTEGER. The first dimension of $b ; 1 d b \geq \max (1, n)$.
INTEGER. The first dimension of $x ; l d x \geq \max (1, n)$.
INTEGER.
Array, DIMENSION at least max $(1, n)$.
The ipiv array, as returned by ?hetrf.
REAL for cherfs
DOUBLE PRECISION for zherfs.
Workspace array, DIMENSION at least max $(1, n)$.

Output Parameters

```
x The refined solution matrix }X\mathrm{ .
ferr, berr REAL for cherfs
    DOUBLE PRECISION for zherfs.
    Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise
    forward and backward errors, respectively, for each solution vector.
info INTEGER.
    If info = 0, the execution is successful.
    If info =-i, the ith parameter had an illegal value.
```


Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate the actual error.

For each right-hand side, computation of the backward error involves a minimum of $16 n^{2}$ operations. In addition, each step of iterative refinement involves $24 n^{2}$ operations; the number of iterations may range from 1 to 5 .

Estimating the forward error involves solving a number of systems of linear equations $A x=b$; the number is usually 4 or 5 and never more than 11 . Each solution requires approximately $8 n^{2}$ floating-point operations.

The real counterpart of this routine is ssyrfs / dsyrfs.

?sprfs

Refines the solution of a system of linear equations with a packed symmetric matrix and estimates the solution error.

Syntax

```
call ssprfs (uplo, n, nrhs, ap, afp, ipiv, b, ldb, x, ldx, ferr, berr,
    work, iwork, info)
call dsprfs (uplo, n, nrhs, ap, afp, ipiv, b, ldb, x, ldx, ferr, berr,
    work, iwork, info)
call csprfs (uplo, n, nrhs, ap, afp, ipiv, b, ldb, x, ldx, ferr, berr,
    work, rwork, info)
call zsprfs (uplo, n, nrhs, ap, afp, ipiv, b, ldb, x, ldx, ferr, berr,
    work, rwork, info)
```


Description

This routine performs an iterative refinement of the solution to a system of linear equations $A X=B$ with a packed symmetric matrix A, with multiple right-hand sides. For each computed solution vector x, the routine computes the component-wise backward error β. This error is the smallest relative perturbation in elements of A and b such that x is the exact solution of the perturbed system:
$\left|\delta a_{i j}\right|\left|a_{i j}\right| \leq \beta\left|a_{i j}\right|,\left|\delta b_{i}\right|| | b_{i}|\leq \beta| b_{i} \mid$ such that $(A+\delta A) x=(b+\delta b)$.
Finally, the routine estimates the component-wise forward error in the computed solution $\| x$ $x_{\mathrm{e}}\left\|_{\infty} /\right\| x \|_{\infty}$ (here x_{e} is the exact solution).

Before calling this routine:

- call the factorization routine ?sptrf
- call the solver routine ?sptrs.

Input Parameters

uplo	CHARACTER*1. Must be 'U' or 'L'. Indicates how the input matrix A has been factored: If uplo = ' U ', the array $a f p$ stores the packed Bunch-Kaufman factorization $A=P U D U^{T} P^{T}$. If uplo = 'L', the array afp stores the packed Bunch-Kaufman factorization $A=P L D L^{T} P^{T}$.
n	INTEGER. The order of the matrix $A(n \geq 0)$.
nrhs	INTEGER. The number of right-hand sides (nrhs ≥ 0).
ap, afp, b, x, work	REAL for ssprfs DOUBLE PRECISION for dsprfs COMPLEX for csprfs DOUBLE COMPLEX for zsprfs.
	Arrays: $a p(*)$ contains the original packed matrix A, as supplied to ?sptrf. $\operatorname{afp}(*)$ contains the factored packed matrix A, as returned by ?sptrf. $b(I d b, *)$ contains the right-hand side matrix B. $x(I d x, *)$ contains the solution matrix X. work (*) is a workspace array.
	The dimension of arrays $a p$ and $a f p$ must be at least $\max (1, n(n+1) / 2)$; the second dimension of b and x must be at least max $(1, n r h s)$; the dimension of work must be at least $\max \left(1,3 *_{n}\right)$ for real flavors and $\max \left(1,2 *_{n}\right)$ for complex flavors.
1 ldb	INTEGER. The first dimension of $b ; 1 d b \geq \max (1, n)$.
$1 d x$	INTEGER. The first dimension of $x ; 1 d x \geq \max (1, n)$.
ipiv	INTEGER. Array, DIMENSION at least max $(1, n)$. The ipiv array, as returned by ?sptrf.
iwork	INTEGER. Workspace array, DIMENSION at least max $(1, n)$.
rwork	REAL for csprfs DOUBLE PRECISION for zsprfs Workspace array, DIMENSION at least $\max (1, n)$.

Output Parameters

x	The refined solution matrix X.
ferr, berr	REAL for single precision flavors.
	DOUBLE PRECISION for double precision flavors.
	Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise
forward and backward errors, respectively, for each solution vector.	
info	INTEGER.
	If info $=0$, the execution is successful.
	If info $=-i$, the ith parameter had an illegal value.

Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate the actual error.

For each right-hand side, computation of the backward error involves a minimum of $4 n^{2}$
floating-point operations (for real flavors) or $16 n^{2}$ operations (for complex flavors). In addition, each step of iterative refinement involves $6 n^{2}$ operations (for real flavors) or $24 n^{2}$ operations (for complex flavors); the number of iterations may range from 1 to 5 .

Estimating the forward error involves solving a number of systems of linear equations $A x=b$; the number of systems is usually 4 or 5 and never more than 11. Each solution requires approximately $2 n^{2}$ floating-point operations for real flavors or $8 n^{2}$ for complex flavors.

?hprfs

Refines the solution of a system of linear equations with a packed complex Hermitian matrix and estimates the solution error.

Syntax

```
call chprfs (uplo, n, nrhs, ap, afp, ipiv, b, ldb, x, ldx, ferr, berr,
    work, rwork, info)
call zhprfs (uplo, n, nrhs, ap, afp, ipiv, b, ldb, x, ldx, ferr, berr,
    work, rwork, info)
```


Description

This routine performs an iterative refinement of the solution to a system of linear equations $A X=B$ with a packed complex Hermitian matrix A, with multiple right-hand sides. For each computed solution vector x, the routine computes the component-wise backward error β. This error is the smallest relative perturbation in elements of A and b such that x is the exact solution of the perturbed system:
$\left|\delta a_{i j} /\left|a_{i j}\right| \leq \beta\right| a_{i j}\left|,\left|\delta b_{i}\right|\right|\left|b_{i}\right| \leq \beta\left|b_{i}\right|$ such that $(A+\delta A) x=(b+\delta b)$.
Finally, the routine estimates the component-wise forward error in the computed solution $\| x-$ $x_{\mathrm{e}}\left\|_{\infty} /\right\| x \|_{\infty}$ (here x_{e} is the exact solution).

Before calling this routine:

- call the factorization routine ?hptrf
- call the solver routine ?hptrs.

Input Parameters

```
uplo CHARACTER*1. Must be 'U' or 'L'.
    Indicates how the input matrix }A\mathrm{ has been factored:
    If upIO='U', the array afp stores the packed Bunch-Kaufman factorization
    A = PUDUH}\mp@subsup{|}{}{H
    If uplo= 'L', the array afp stores the packed Bunch-Kaufman factorization
    A = PLDL }\mp@subsup{}{}{H}\mp@subsup{P}{}{T}\mathrm{ .
n INTEGER. The order of the matrix A( }n\geq0)\mathrm{ .
nrhs INTEGER. The number of right-hand sides (nrhs }\geq0\mathrm{ ).
ap,afp,b,x,work COMPLEx for chprfs
    DOUBLE COMPLEX for zhprfs.
    Arrays:
    ap(*) contains the original packed matrix }A\mathrm{ , as supplied to ?hptrf.
    afp(*) contains the factored packed matrix }A\mathrm{ , as returned by ?hptrf.
    b}(Idb,*) contains the right-hand side matrix B
    x(ldx,*) contains the solution matrix }X\mathrm{ .
    work (*) is a workspace array.
    The dimension of arrays ap and afp must be at least max(1,n(n+1)/2); the
    second dimension of b and x must be at least max(1,nrhs); the dimension of
    work must be at least max(1, 2*n).
ldb INTEGER. The first dimension of b; ldb \geq max (1,n).
```

$1 d x$	INTEGER. The first dimension of $x ; 1 d x \geq \max (1, n)$.
ipiv	INTEGER.
	Array, DIMENSION at least max $(1, n)$.
	The ipiv array, as returned by ?hptrf.
rwork	REAL for chprfs
	DOUBLE PRECISION for zhprfs
	Workspace array, DIMENSION at least max $(1, n)$.
Output Parameters	
x	The refined solution matrix X.
ferr, berr	REAL for chprfs.
	DOUBLE PRECISION for zhprfs.
	Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise forward and backward errors, respectively, for each solution vector.
info	INTEGER.
	If $\operatorname{info}=0$, the execution is successful.
	If info $=-i$, the i th parameter had an illegal value.

Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate the actual error.

For each right-hand side, computation of the backward error involves a minimum of $16 n^{2}$ operations. In addition, each step of iterative refinement involves $24 n^{2}$ operations; the number of iterations may range from 1 to 5 .

Estimating the forward error involves solving a number of systems of linear equations $A x=b$; the number is usually 4 or 5 and never more than 11 . Each solution requires approximately $8 n^{2}$ floating-point operations.

The real counterpart of this routine is $\operatorname{ssprfs} / \underline{d s p r f s}$.

?trrfs

Estimates the error in the solution of

 a system of linear equations with a triangular matrix.
Syntax

```
call strrfs (uplo, trans, diag, n, nrhs, a, lda, b, ldb, x, ldx, ferr,
    berr, work, iwork, info)
call dtrrfs (uplo, trans, diag, n, nrhs, a, lda, b, ldb, x, ldx, ferr,
    berr, work, iwork, info)
call ctrrfs (uplo, trans, diag, n, nrhs, a, lda, b, ldb, x, ldx, ferr,
    berr, work, rwork, info)
call ztrrfs (uplo, trans, diag, n, nrhs, a, lda, b, ldb, x, ldx, ferr,
    berr, work, rwork, info)
```


Description

This routine estimates the errors in the solution to a system of linear equations $A X=B$ or $A^{T} X=B$ or $A^{H} X=B$ with a triangular matrix A, with multiple right-hand sides. For each computed solution vector x, the routine computes the component-wise backward error β. This error is the smallest relative perturbation in elements of A and b such that x is the exact solution of the perturbed system:
$\left|\delta a_{i j} /\left|a_{i j}\right| \leq \beta\right| a_{i j}\left|,\left|\delta b_{i}\right| /\left|b_{i}\right| \leq \beta\right| b_{i} \mid$ such that $(A+\delta A) x=(b+\delta b)$.
The routine also estimates the component-wise forward error in the computed solution $\| x-$ $x_{\mathrm{e}}\left\|_{\infty} /\right\| x \|_{\infty}$ (here x_{e} is the exact solution).

Before calling this routine, call the solver routine ?trtrs.

Input Parameters

uplo	CHARACTER*1. Must be 'U' or 'L'. Indicates whether A is upper or lower triangular:
	If uplo = ' U ', then A is upper triangular. If uplo = ' L ', then A is lower triangular.
trans	CHARACTER*1. Must be 'N' or 'T' or 'C'. Indicates the form of the equations: If trans = ' N ', the system has the form $A X=B$. If trans $=$ ' T ', the system has the form $A^{T} X=B$.

diag	If trans $=$ ' C ', the system has the form $A^{H} X=B$. CHARACTER*1. Must be 'N' or 'U'. If diag = ' N ', then A is not a unit triangular matrix.
	If diag $=$ ' U ', then A is unit triangular: diagonal elements of A are assumed to be 1 and not referenced in the array a.
n	integer. The order of the matrix $A(n \geq 0)$.
nrhs	INTEGER. The number of right-hand sides (nrhs ≥ 0).
a, b, x, work	ReAL for strrfs DOUBLE PRECISION for dtrrfs COMPLEX for ctrrfs DOUBLE COMPLEX for ztrrfs.
	Arrays:
	$a(I d a, *)$ contains the upper or lower triangular matrix A, as specified by uplo.
	$b(l d b, *)$ contains the right-hand side matrix B.
	$x(l d x, *)$ contains the solution matrix X.
	work (*) is a workspace array.
	The second dimension of a must be at least $\max (1, n)$; the second dimension of b and x must be at least max(1, nrhs); the dimension of work must be at least $\max \left(1,3 *_{n}\right)$ for real flavors and $\max \left(1,2 *_{n}\right)$ for complex flavors.
$1 d \mathrm{a}$	Integer. The first dimension of $a ; 1 d a \geq \max (1, n)$.
1 db	INTEGER. The first dimension of $b ; 1 d b \geq \max (1, n)$.
$1 d x$	Integer. The first dimension of $x ; 1 d x \geq \max (1, n)$.
iwork	INTEGER.
rwork	REAL for ctrrfs
	DOUBLE PRECISION for ztrrfs
	Workspace array, DIMENSION at least max $(1, n)$.

Output Parameters

```
ferr, berr REAL for single precision flavors.
    DOUBLE PRECISION for double precision flavors.
    Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise
    forward and backward errors, respectively, for each solution vector.
info
INTEGER.
    If infO = 0, the execution is successful.
    If info =-i, the ith parameter had an illegal value.
```


Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate the actual error.

A call to this routine involves, for each right-hand side, solving a number of systems of linear equations $A x=b$; the number of systems is usually 4 or 5 and never more than 11 . Each solution requires approximately n^{2} floating-point operations for real flavors or $4 n^{2}$ for complex flavors.

?tprfs

Estimates the error in the solution of
a system of linear equations with a packed triangular matrix.

Syntax

```
call stprfs (uplo, trans, diag, n, nrhs, ap, b, ldb, x, ldx, ferr, berr,
    work, iwork, info)
call dtprfs (uplo, trans, diag, n, nrhs, ap, b, ldb, x, ldx, ferr, berr,
    work, iwork, info)
call ctprfs (uplo, trans, diag, n, nrhs, ap, b, ldb, x, ldx, ferr, berr,
    work, rwork, info)
call ztprfs (uplo, trans, diag, n, nrhs, ap, b, ldb, x, ldx, ferr, berr,
    work, rwork, info)
```


Description

This routine estimates the errors in the solution to a system of linear equations $A X=B$ or $A^{T} X=B$ or $A^{H} X=B$ with a packed triangular matrix A, with multiple right-hand sides. For each computed solution vector x, the routine computes the component-wise backward error β. This error is the smallest relative perturbation in elements of A and b such that x is the exact solution of the perturbed system:
$\left|\delta a_{i j} /\left|a_{i j}\right| \leq \beta\right| a_{i j}\left|,\left|\delta b_{i}\right|\right|\left|b_{i}\right| \leq \beta\left|b_{i}\right|$ such that $(A+\delta A) x=(b+\delta b)$.
The routine also estimates the component-wise forward error in the computed solution $\| x$ $x_{\mathrm{e}}\left\|_{\infty} /\right\| x \|_{\infty}$ (here x_{e} is the exact solution).

Before calling this routine, call the solver routine ?tptrs.
Input Parameters

```
uplo CHARACTER*1. Must be 'U' or 'L'.
    Indicates whether }A\mathrm{ is upper or lower triangular:
    If uplo= 'U', then A is upper triangular.
    If uplo='L', then A is lower triangular.
trans CHARACTER*1. Must be 'N' or 'T' or 'C'.
    Indicates the form of the equations:
    If trans='N', the system has the form AX=B.
    If trans=' 'T', the system has the form }\mp@subsup{A}{}{T}X=B\mathrm{ .
    If trans=' 'C', the system has the form }\mp@subsup{A}{}{H}X=B\mathrm{ .
diag CHARACTER*1. Must be 'N' or 'U'.
        If diag='N', }A\mathrm{ is not a unit triangular matrix.
        If diag= 'U', }A\mathrm{ is unit triangular: diagonal elements of }A\mathrm{ are assumed to be
        1 \text { and not referenced in the array ap.}
        INTEGER. The order of the matrix }A(n\geq0)
nrhs INTEGER. The number of right-hand sides (nrhs \geq0).
ap, b, x, work REAL for strrfs
    DOUBLE PRECISION for dtrrfs
    COMPLEX for ctrrfs
    DOUBLE COMPLEX for ztrrfs.
    Arrays:
    ap(*) contains the upper or lower triangular matrix }A\mathrm{ , as specified by uplo.
    b}(Idb,*) contains the right-hand side matrix B
    x(ldx,*) contains the solution matrix }X\mathrm{ .
```

	work (*) is a workspace array.
	The dimension of ap must be at least $\max (1, n(n+1) / 2)$; the second dimension of b and x must be at least $\max (1, n r h s)$; the dimension of work must be at least $\max \left(1,3 *_{n}\right)$ for real flavors and $\max \left(1,2 *_{n}\right)$ for complex flavors.
1 db	INTEGER. The first dimension of $b ; 1 d b \geq \max (1, n)$.
$1 d x$	INTEGER. The first dimension of $x ; 1 d x \geq \max (1, n)$.
iwork	INTEGER. Workspace array, DIMENSION at least $\max (1, n)$.
rwork	REAL for ctrrfs DOUBLE PRECISION for ztrrfs Workspace array, DIMENSION at least $\max (1, n)$.
Output Para	ers
ferr, berr	REAL for single precision flavors. DOUBLE PRECISION for double precision flavors. Arrays, DIMENSION at least $\max (1, n r h s)$. Contain the component-wise forward and backward errors, respectively, for each solution vector.
info	INTEGER. If info $=0$, the execution is successful. If info $=-i$, the i th parameter had an illegal value.

Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate the actual error.

A call to this routine involves, for each right-hand side, solving a number of systems of linear equations $A x=b$; the number of systems is usually 4 or 5 and never more than 11 . Each solution requires approximately n^{2} floating-point operations for real flavors or $4 n^{2}$ for complex flavors.

?tbrfs

Estimates the error in the solution of a system of linear equations with a triangular band matrix.

Syntax

```
call stbrfs (uplo, trans, diag, n, kd, nrhs, ab, ldab, b, ldb, x, ldx,
    ferr, berr, work, iwork, info)
call dtbrfs (uplo, trans, diag, n, kd, nrhs, ab, ldab, b, ldb, x, ldx,
    ferr, berr, work, iwork, info)
call ctbrfs (uplo, trans, diag, n, kd, nrhs, ab, ldab, b, ldb, x, ldx,
    ferr, berr, work, rwork, info)
call ztbrfs (uplo, trans, diag, n, kd, nrhs, ab, ldab, b, ldb, x, ldx,
    ferr, berr, work, rwork, info)
```


Description

This routine estimates the errors in the solution to a system of linear equations $A X=B$ or $A^{T} X=B$ or $A^{H} X=B$ with a triangular band matrix A, with multiple right-hand sides. For each computed solution vector x, the routine computes the component-wise backward error β. This error is the smallest relative perturbation in elements of A and b such that x is the exact solution of the perturbed system:
$\left|\delta a_{i j}\right|\left|a_{i j}\right| \leq \beta\left|a_{i j}\right|,\left|\delta b_{i}\right|| | b_{i}|\leq \beta| b_{i} \mid$ such that $(A+\delta A) x=(b+\delta b)$.
The routine also estimates the component-wise forward error in the computed solution $\| x$ $x_{\mathrm{e}}\left\|_{\infty} /\right\| x \|_{\infty}$ (here x_{e} is the exact solution).

Before calling this routine, call the solver routine ? ?tbtrs.

Input Parameters

```
uplo CHARACTER*1. Must be 'U' or 'L'.
    Indicates whether }A\mathrm{ is upper or lower triangular:
    If uplo = ' U', then A is upper triangular.
    If uplo='L', then A is lower triangular.
trans CHARACTER*1. Must be 'N' or 'T' or 'C'.
    Indicates the form of the equations:
    If trans= 'N', the system has the form AX=B.
    If trans=' T', the system has the form }\mp@subsup{A}{}{T}X=B\mathrm{ .
    If trans=' C', the system has the form }\mp@subsup{A}{}{H}X=B\mathrm{ .
diag CHARACTER*1. Must be 'N' or 'U'.
    If diag='N', A is not a unit triangular matrix.
    If diag= 'U', }A\mathrm{ is unit triangular: diagonal elements of }A\mathrm{ are assumed to be 1
    and not referenced in the array ab.
n INTEGER. The order of the matrix A( }n\geq0)\mathrm{ .
kd INTEGER. The number of super-diagonals or sub-diagonals in the matrix }
    (kd \geq0).
nrhs INTEGER. The number of right-hand sides (nrhs \geq0).
ab, b, x, work REAL for stbrfs
DOUBLE PRECISION for dtbrfs
COMPLEX for ctbrfs
DOUBLE COMPLEX for ztbrfs.
Arrays:
ab(ldab,*) contains the upper or lower triangular matrix }A\mathrm{ , as specified by
uplo, in band storage format.
b}(ldb,*) contains the right-hand side matrix B
x(ldx,*) contains the solution matrix }X\mathrm{ .
work (*) is a workspace array.
The second dimension of a must be at least max(1,n);
the second dimension of b and x must be at least max(1,nrhs).
The dimension of work must be at least max}(1,3*n)\mathrm{ for real flavors and
max}(1,2*n)\mathrm{ for complex flavors.
ldab INTEGER. The first dimension of the array ab.
(ldab \geqkd +1).
```

$l d b$	INTEGER. The first dimension of $b ; l d b \geq \max (1, n)$.
$l d x$	INTEGER. The first dimension of $x ; l d x \geq \max (1, n)$.
iwork	INTEGER.
rwork	Workspace array, DIMENSION at least $\max (1, n)$.
	REAL for ctbrfs
	DOUBLE PRECISION for ztbrfs
	Workspace array, DIMENSION at least max $(1, n)$.

Output Parameters

ferr, berr REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max($1, n r h s$). Contain the component-wise forward and backward errors, respectively, for each solution vector.
info INTEGER.
If info $=0$, the execution is successful. If info $=-i$, the i th parameter had an illegal value.

Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate the actual error.

A call to this routine involves, for each right-hand side, solving a number of systems of linear equations $A x=b$; the number of systems is usually 4 or 5 and never more than 11 . Each solution requires approximately $2 n * k d$ floating-point operations for real flavors or $8 n * k d$ operations for complex flavors.

Routines for Matrix Inversion

It is seldom necessary to compute an explicit inverse of a matrix.
In particular, do not attempt to solve a system of equations $A x=b$ by first computing A^{-1} and then forming the matrix-vector product $x=A^{-1} b$.
Call a solver routine instead (see Routines for Solving Systems of Linear Equations); this is more efficient and more accurate.

However, matrix inversion routines are provided for the rare occasions when an explicit inverse matrix is needed.

?getri

Computes the inverse of an $L U$-factored general matrix.

Syntax

```
call sgetri (n, a, lda, ipiv, work, lwork, info)
call dgetri (n, a, lda, ipiv, work, lwork, info)
call cgetri (n, a, lda, ipiv, work, lwork, info)
call zgetri (n, a, lda, ipiv, work, lwork, info)
```


Description

This routine computes the inverse $\left(A^{-1}\right)$ of a general matrix A.
Before calling this routine, call ?getrf to factorize A.

Input Parameters

a, work

INTEGER. The order of the matrix $A(n \geq 0)$.
REAL for sgetri
DOUBLE PRECISION for dgetri
COMPLEX for cgetri
DOUBLE COMPLEX for zgetri.
Arrays: a(lda,*), work(lwork).
a (lda, *) contains the factorization of the matrix A, as returned by ? getrf: A $=P L U$.
The second dimension of a must be at least $\max (1, n)$.
work (lwork) is a workspace array.

Ida	INTEGER. The first dimension of $a ;$ lda $\geq \max (1, n)$.
ipiv	INTEGER.
	Array, DIMENSION at least $\max (1, n)$.
I work	The ipiv array, as returned by ? getrf.
	INTEGER. The size of the work array $(1$ work $\geq n)$
	See Application notes for the suggested value of lwork.

Output Parameters

a	Overwritten by the n by n matrix A^{-1}.
If info $=0$, on exit work (1) contains the minimum value of 1 work required	
for optimum performance.	
Use this 1 work for subsequent runs.	
info	InTEGER. If info $=0$, the execution is successful. If info $=-i, ~ t h e ~$ th parameter had an illegal value. If info $=i, ~ t h e ~$ th diagonal element of the factor U is zero, U is singular, and the inversion could not be completed.

Application Notes

For better performance, try using 1 work $=n *$ blocksize, where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm.

If you are in doubt how much workspace to supply, use a generous value of 1 work for the first run. On exit, examine work (1) and use this value for subsequent runs.

The computed inverse X satisfies the following error bound:

$$
|X A-I| \leq C(n) \mathcal{E}|X| P|L||U|
$$

where $c(n)$ is a modest linear function of $n ; \varepsilon$ is the machine precision;
I denotes the identity matrix; P, L, and U are the factors of the matrix factorization $A=P L U$.
The total number of floating-point operations is approximately $(4 / 3) n^{3}$ for real flavors and $(16 / 3) n^{3}$ for complex flavors.

?potri

Computes the inverse of a symmetric (Hermitian) positive-definite matrix.

Syntax

```
call spotri (uplo, n, a, lda, info)
call dpotri (uplo, n, a, lda, info)
call cpotri (uplo, n, a, lda, info)
call zpotri (uplo, n, a, lda, info)
```


Discussion

This routine computes the inverse $\left(A^{-1}\right)$ of a symmetric positive definite or, for complex flavors, Hermitian positive-definite matrix A.
Before calling this routine, call ?potr£ to factorize A.

Input Parameters

```
uplo CHARACTER*1. Must be 'U' or 'L'.
```

 Indicates how the input matrix \(A\) has been factored:
 If uplo=' U ', the array a stores the factor \(U\) of the Cholesky factorization \(A=\)
 \(U^{H} U\).
 If uplo='L', the array a stores the factor \(L\) of the Cholesky factorization \(A=\)
 \(L L^{H}\).
 $n \quad$ INTEGER. The order of the matrix $A(n \geq 0)$.
a REAL for spotri
DOUBLE PRECISION for dpotri
COMPLEX for cpotri
DOUBLE COMPLEX for zpotri.
Array: a(lda,*).
Contains the factorization of the matrix A, as returned by ?potrf.
The second dimension of a must be at least $\max (1, n)$.
lda INTEGER. The first dimension of $a ; 1 d a \geq \max (1, n)$.

Output Parameters

```
a Overwritten by the n by n matrix }\mp@subsup{A}{}{-1}\mathrm{ .
info INTEGER.
    If info = 0, the execution is successful.
    If info = -i, the ith parameter had an illegal value.
    If info = i, the ith diagonal element of the Cholesky factor (and hence the
    factor itself) is zero, and the inversion could not be completed.
```


Application Notes

The computed inverse X satisfies the following error bounds:

$$
\|X A-I\|_{2} \leq C(n) \varepsilon \kappa_{2}(A), \quad\|A X-I\|_{2} \leq C(n) \varepsilon \kappa_{2}(A)
$$

where $c(n)$ is a modest linear function of n, and ε is the machine precision; I denotes the identity matrix.

The 2-norm $\|A\|_{2}$ of a matrix A is defined by $\|A\|_{2}=\max _{x: x=1}(A x \cdot A x)^{1 / 2}$, and the condition number $\kappa_{2}(A)$ is defined by $\kappa_{2}(A)=\|A\|_{2}\left\|A^{-1}\right\|_{2}$.
The total number of floating-point operations is approximately $(2 / 3) n^{3}$ for real flavors and $(8 / 3) n^{3}$ for complex flavors.

?pptri

Computes the inverse of a packed symmetric (Hermitian) positive-definite matrix

Syntax

```
call spptri (uplo, n, ap, info)
call dpptri (uplo, n, ap, info)
call cpptri (uplo, n, ap, info)
```

call zpptri (uplo, $n, a p, i n f o)$

Description

This routine computes the inverse $\left(A^{-1}\right)$ of a symmetric positive definite or, for complex flavors, Hermitian positive-definite matrix A in packed form. Before calling this routine, call ?pptrf to factorize A.

Input Parameters

```
uplo CHARACTER*1. Must be 'U' or 'L'.
```

 Indicates how the input matrix \(A\) has been factored:
 If uplo = ' \(U\) ', the array ap stores the packed factor \(U\) of the Cholesky
 factorization \(A=U^{H} U\).
 If uplo = 'L', the array ap stores the packed factor \(L\) of the Cholesky
 factorization \(A=L L^{H}\).
 $n \quad$ INTEGER. The order of the matrix $A(n \geq 0)$.
ap REAL for spptri
DOUBLE PRECISION for dpptri
COMPLEX for cpptri
DOUBLE COMPLEX for zpptri.
Array, DIMENSION at least $\max (1, n(n+1) / 2)$.
Contains the factorization of the packed matrix A,
as returned by ?pptrf.
The dimension ap must be at least $\max (1, n(n+1) / 2)$.

Output Parameters

ap	Overwritten by the packed n by n matrix A^{-1}.
info	INTEGER.
If info $=0$, the execution is successful.	
If info $=-i$, the i th parameter had an illegal value.	
If info i, the i th diagonal element of the Cholesky factor (and hence the	
factor itself) is zero, and the inversion could not be completed.	

Application Notes

The computed inverse X satisfies the following error bounds:

$$
\|X A-I\|_{2} \leq C(n) \varepsilon \kappa_{2}(A), \quad\|A X-I\|_{2} \leq C(n) \varepsilon \kappa_{2}(A)
$$

where $c(n)$ is a modest linear function of n, and ε is the machine precision; I denotes the identity matrix.

The 2 -norm $\|A\|_{2}$ of a matrix A is defined by $\|A\|_{2}=\max _{x: x=1}(A x \cdot A x)^{1 / 2}$, and the condition number $\kappa_{2}(A)$ is defined by $\kappa_{2}(A)=\|A\|_{2}\left\|A^{-1}\right\|_{2}$.

The total number of floating-point operations is approximately $(2 / 3) n^{3}$ for real flavors and $(8 / 3) n^{3}$ for complex flavors.

?sytri

Computes the inverse of a symmetric matrix.

Syntax

```
call ssytri (uplo, n, a, lda, ipiv, work, info)
call dsytri (uplo, n, a, lda, ipiv, work, info)
call csytri (uplo, n, a, lda, ipiv, work, info)
call zsytri (uplo, n, a, lda, ipiv, work, info)
```


Description

This routine computes the inverse $\left(A^{-1}\right)$ of a symmetric matrix A.
Before calling this routine, call ?sytrf to factorize A.
Input Parameters

uplo	CHARACTER*1. Must be 'U' or 'L'.
	Indicates how the input matrix A has been factored:
	If uplo = ' U ', the array a stores the Bunch-Kaufman factorization $A=$ $P U D U^{T} P^{T}$.
	If uplo= 'L', the array a stores the Bunch-Kaufman factorization $A=$ PLDL ${ }^{T} P^{T}$.
n	INTEGER. The order of the matrix $A(n \geq 0)$.
a, work	REAL for ssytri
	DOUBLE PRECISION for dsytri
	COMPLEX for csytri
	DOUBLE COMPLEX for zsytri.
	Arrays:

```
INTEGER. The first dimension of \(a ;\) lda \(\geq \max (1, n)\).
INTEGER.
Array, DIMENSION at least max \((1, n)\).
The ipivarray, as returned by ?sytrf.
```

$a(l d a, *)$ contains the factorization of the matrix A, as returned by ?sytrf.
The second dimension of a must be at least $\max (1, n)$.
work (*) is a workspace array.
The dimension of work must be at least $\max \left(1,2 \star_{n}\right)$.

Output Parameters

Overwritten by the n by n matrix A^{-1}.
info
INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the i th parameter had an illegal value.
If info $=i$, the i th diagonal element of D is zero, D is singular, and the inversion could not be completed.

Application Notes

The computed inverse X satisfies the following error bounds:

$$
\left|D U^{T} P^{T} X P U-I\right| \leq C(n) \varepsilon\left(|D|\left|U^{T}\right| P^{T}|X| P|U|+|D|\left|D^{-1}\right|\right)
$$

for uplo='U', and

$$
\left|D L^{T} P^{T} X P L-I\right| \leq C(n) \mathcal{E}\left(|D|\left|L^{T}\right| P^{T}|X| P|L|+|D|\left|D^{-1}\right|\right)
$$

for uplo = 'L'. Here $c(n)$ is a modest linear function of n, and ε is the machine precision; I denotes the identity matrix.

The total number of floating-point operations is approximately $(2 / 3) n^{3}$ for real flavors and $(8 / 3) n^{3}$ for complex flavors.

?hetri

Computes the inverse of a complex Hermitian matrix.

Syntax

```
call chetri (uplo, n, a, lda, ipiv, work, info)
```

call zhetri (uplo, n, a, lda, ipiv, work, info)

Description

This routine computes the inverse $\left(A^{-1}\right)$ of a complex Hermitian matrix A.
Before calling this routine, call ?hetrf to factorize A.

Input Parameters

uplo	CHARACTER*1. Must be 'U' or 'L'.
	Indicates how the input matrix A has been factored:
	If uplo = ' U ', the array a stores the Bunch-Kaufman PUDU ${ }^{H} P^{T}$.
	If uplo = ' L', the array a stores the Bunch-Kaufman $P L D L^{H} P^{T}$.
n	INTEGER. The order of the matrix $A(\mathrm{n} \geq 0)$.
a, work	COMPLEX for chetri
	DOUBLE COMPLEX for zhetri.
	Arrays:
	$a(I d a, *)$ contains the factorization of the matrix A, as returned by ?hetrf.
	The second dimension of a must be at least $\max (1, n)$.
	work (*) is a workspace array.
	The dimension of work must be at least max (1,n).
Ida	Integer. The first dimension of $a ; 1 d a \geq \max (1, n)$.
ipiv	INTEGER.
	Array, DIMEnsion at least max (1,n).
	The ipiv array, as returned by ?hetrf.

Output Parameters

a \quad Overwritten by the n by n matrix A^{-1}.
info
INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the i th parameter had an illegal value.
If info $=i$, the i th diagonal element of D is zero, D is singular, and the inversion could not be completed.

Application Notes

The computed inverse X satisfies the following error bounds:

$$
\left|D U^{H} P^{T} X P U-I\right| \leq C(n) \varepsilon\left(|D|\left|U^{F}\right| P^{T}|X| P|U|+|D|\left|D^{-1}\right|\right)
$$

for uplo= 'U', and

$$
\left|D L^{H} P^{T} X P L-I\right| \leq C(n) \mathcal{E}\left(|D|\left|L^{H}\right| P^{T}|X| P|L|+|D|\left|D^{-1}\right|\right)
$$

for uplo = 'L'. Here $c(n)$ is a modest linear function of n, and ε is the machine precision; I denotes the identity matrix.

The total number of floating-point operations is approximately $(2 / 3) n^{3}$ for real flavors and $(8 / 3) n^{3}$ for complex flavors.

The real counterpart of this routine is ?sytri.

?sptri

Computes the inverse of a symmetric matrix using packed storage.

Syntax

```
call ssptri (uplo, n, ap, ipiv, work, info)
call dsptri (uplo, n, ap, ipiv, work, info)
call csptri (uplo, n, ap, ipiv, work, info)
call zsptri (uplo, n, ap, ipiv, work, info)
```


Description

This routine computes the inverse $\left(A^{-1}\right)$ of a packed symmetric matrix A.
Before calling this routine, call ?sptrf to factorize A.

Input Parameters

```
uplo CHARACTER*1. Must be 'U' or 'L'.
    Indicates how the input matrix }A\mathrm{ has been factored:
    If uplo='U', the array ap stores the Bunch-Kaufman factorization A=
    PUDUTP}\mp@subsup{P}{}{T}\mathrm{ .
    If uplo = 'L', the array ap stores the Bunch-Kaufman factorization }A
    PLDLT}\mp@subsup{P}{}{T}\mathrm{ .
```

n INTEGER. The order of the matrix $A(n \geq 0)$.
ap, work REAL for ssptri
DOUBLE PRECISION for dsptri
COMPLEX for csptri
DOUBLE COMPLEX for zsptri.
Arrays:
$a p$ (*) contains the factorization of the matrix A,
as returned by ?sptrf.
The dimension of ap must be at least $\max (1, n(n+1) / 2)$.
work (*) is a workspace array.
The dimension of work must be at least $\max (1, n)$.
ipiv
INTEGER.
Array, DIMENSION at least max $(1, \mathrm{n})$.
The ipiv array, as returned by ?sptrf.

Output Parameters

ap	Overwritten by the n by n matrix A^{-1} in packed form.
info	INTEGER.
	If info $=0$, the execution is successful.
	If info $=-i$, the i th parameter had an illegal value.
	If info $=i$, the i th diagonal element of D is zero, D is singular, and the
	inversion could not be completed.

Application Notes

The computed inverse X satisfies the following error bounds:

$$
\left|D U^{T} P^{T} X P U-I\right| \leq C(n) \mathcal{E}\left(|D|\left|U^{T}\right| P^{T}|X| P|U|+|D|\left|D^{-1}\right|\right)
$$

for uplo= 'U', and

$$
\left|D L^{T} P^{T} X P L-I\right| \leq C(n) \mathcal{E}\left(|D|\left|L^{T}\right| P^{T}|X| P|L|+|D|\left|D^{-1}\right|\right)
$$

for uplo = 'L'. Here $c(n)$ is a modest linear function of n, and ε is the machine precision; I denotes the identity matrix.
The total number of floating-point operations is approximately $(2 / 3) n^{3}$ for real flavors and $(8 / 3) n^{3}$ for complex flavors.

?hptri

Computes the inverse of a complex Hermitian matrix using packed storage.

Syntax

```
call chptri (uplo, n, ap, ipiv, work, info)
```

call zhptri (uplo, $n, a p, i p i v, ~ w o r k, ~ i n f o) ~$

Description

This routine computes the inverse $\left(A^{-1}\right)$ of a complex Hermitian matrix A using packed storage. Before calling this routine, call ?hptrf to factorize A.

Input Parameters

uplo	CHARACTER* 1 . Must be ' U ' or ' L '
Indicates how the input matrix A has been factored:	
	If upIo $=' U$ ', the array ap stores the packed Bunch-Kaufman factorization A
	$=P U D U^{H} P^{T}$.

```
ap, work COMPLEX for chptri
    DOUBLE COMPLEX for zhptri.
    Arrays:
    ap(*) contains the factorization of the matrix }A\mathrm{ ,
    as returned by ?hptrf.
    The dimension of ap must be at least max(1,n(n+1)/2).
    work (*) is a workspace array.
    The dimension of work must be at least max(1,n).
ipiv INTEGER.
    Array, DIMENSION at least max(1,n).
    The ipiv array, as returned by ?hptrf.
```


Output Parameters

```
ap \(\quad\) Overwritten by the \(n\) by \(n\) matrix \(A^{-1}\).
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\) th parameter had an illegal value.
If info \(=i\), the \(i\) th diagonal element of \(D\) is zero, \(D\) is singular, and the inversion could not be completed.
```


Application Notes

The computed inverse X satisfies the following error bounds:

$$
\left|D U^{H} P^{T} X P U-I\right| \leq C(n) \varepsilon\left(|D|\left|U^{H}\right| P^{T}|X| P|U|+|D|\left|D^{-1}\right|\right)
$$

for uplo='U', and

$$
\left|D L^{H} P^{T} X P L-I\right| \leq c(n) \varepsilon\left(|D|\left|L^{H}\right| P^{T}|X| P|L|+|D|\left|D^{-1}\right|\right)
$$

for uplo = 'L'. Here $c(n)$ is a modest linear function of n, and ε is the machine precision; I denotes the identity matrix.

The total number of floating-point operations is approximately $(2 / 3) n^{3}$ for real flavors and $(8 / 3) n^{3}$ for complex flavors.

The real counterpart of this routine is ?sptri.

?trtri

Computes the inverse of a triangular matrix.

Syntax

```
call strtri (uplo, diag, n, a, lda, info)
call dtrtri (uplo, diag, n, a, lda, info)
call ctrtri (uplo, diag, n, a, lda, info)
call ztrtri (uplo, diag, n, a, lda, info)
```


Description

This routine computes the inverse $\left(A^{-1}\right)$ of a triangular matrix A.

Input Parameters

```
uplo CHARACTER*1. Must be 'U' or 'L'.
    Indicates whether }A\mathrm{ is upper or lower triangular:
    If uplo='U', then A is upper triangular.
    If uplo = 'L', then A is lower triangular.
diag CHARACTER*1. Must be 'N' or 'U'.
    If diag = 'N', then }A\mathrm{ is not a unit triangular matrix.
    If diag='U', }A\mathrm{ is unit triangular: diagonal elements of }A\mathrm{ are assumed to be 1
    and not referenced in the array a.
    INTEGER. The order of the matrix A(n\geq0).
    REAL for strtri
    DOUBLE PRECISION for dtrtri
    COMPLEX for ctrtri
    DOUBLE COMPLEX for ztrtri.
    Array: DIMENSION (Ida,*).
    Contains the matrix }A\mathrm{ .
    The second dimension of a must be at least max}(1,n)\mathrm{ .
    INTEGER. The first dimension of a; Ida \geq max (1,n).
```


Output Parameters

```
a
info
Overwritten by the \(n\) by \(n\) matrix \(A^{-1}\). INTEGER. If info \(=0\), the execution is successful. If info \(=-i\), the \(i\) th parameter had an illegal value. If \(\operatorname{info}=i\), the \(i\) th diagonal element of \(A\) is zero, \(A\) is singular, and the inversion could not be completed.
```


Application Notes

The computed inverse X satisfies the following error bounds:

$$
\begin{gathered}
|X A-I| \leq C(n) \varepsilon|X||A| \\
\left|X-A^{-1}\right| \leq C(n) \varepsilon\left|A^{-1}\right||A||X|
\end{gathered}
$$

where $c(n)$ is a modest linear function of $n ; \varepsilon$ is the machine precision; I denotes the identity matrix.
The total number of floating-point operations is approximately $(1 / 3) n^{3}$ for real flavors and $(4 / 3) n^{3}$ for complex flavors.

?tptri

Computes the inverse of a triangular matrix using packed storage.

Syntax

```
call stptri (uplo, diag, n, ap, info)
call dtptri (uplo, diag, n, ap, info)
call ctptri (uplo, diag, n, ap, info)
call ztptri (uplo, diag, n, ap, info)
```


Description

This routine computes the inverse $\left(A^{-1}\right)$ of a packed triangular matrix A.

Input Parameters

```
uplo CHARACTER*1. Must be 'U' or 'L'.
    Indicates whether }A\mathrm{ is upper or lower triangular:
    If uplo = 'U', then A is upper triangular.
    If uplo= 'L', then A is lower triangular.
diag CHARACTER*1. Must be 'N' or 'U'.
    If diag= 'N', then }A\mathrm{ is not a unit triangular matrix.
    If diag= 'U', }A\mathrm{ is unit triangular: diagonal elements of }A\mathrm{ are assumed to be 1
    and not referenced in the array ap.
n
    INTEGER. The order of the matrix }A(n\geq0)
REAL for stptri
    DOUBLE PRECISION for dtptri
    COMPLEX for ctptri
    DOUBLE COMPLEX for ztptri.
    Array: DIMENSION at least max(1,n(n+1)/2).
    Contains the packed triangular matrix }A\mathrm{ .
```


Output Parameters

```
ap Overwritten by the packed n by n matrix }\mp@subsup{A}{}{-1}\mathrm{ .
info INTEGER.
    If info = 0, the execution is successful.
    If info = -i, the ith parameter had an illegal value.
    If info = i, the ith diagonal element of }A\mathrm{ is zero, }A\mathrm{ is singular, and the
    inversion could not be completed.
```


Application Notes

The computed inverse X satisfies the following error bounds:

$$
\begin{gathered}
|X A-I| \leq C(n) \varepsilon|X||A| \\
\left|X-A^{-1}\right| \leq C(n) \varepsilon\left|A^{-1}\right||A||X|
\end{gathered}
$$

where $c(n)$ is a modest linear function of $n ; \varepsilon$ is the machine precision; I denotes the identity matrix.
The total number of floating-point operations is approximately $(1 / 3) n^{3}$ for real flavors and $(4 / 3) n^{3}$ for complex flavors.

Routines for Matrix Equilibration

Routines described in this section are used to compute scaling factors needed to equilibrate a matrix. Note that these routines do not actually scale the matrices.

?geequ

Computes row and column scaling factors intended to
equilibrate a matrix and reduce its condition number.

Syntax

```
call sgeequ (m, n, a, lda, r, c, rowcnd, colcnd, amax, info)
call dgeequ (m, n, a, lda, r, c, rowcnd, colcnd, amax, info)
call cgeequ (m, n, a, lda, r, c, rowcnd, colcnd, amax, info)
call zgeequ (m, n, a, lda, r, c, rowcnd, colcnd, amax, info)
```


Description

This routine computes row and column scalings intended to equilibrate an m-by-n matrix A and reduce its condition number. The output array r returns the row scale factors and the array c the column scale factors. These factors are chosen to try to make the largest element in each row and column of the matrix B with elements $b_{i j}=r(\mathrm{i}) * a_{i j} * c(\mathrm{j})$ have absolute value 1 .

Input Parameters

```
m INTEGER. The number of rows of the matrix A, m\geq0.
n
a REAL for sgeequ
    DOUBLE PRECISION for dgeequ
    COMPLEX for cgeequ
    DOUBLE COMPLEX for zgeequ.
    Array: DIMENSION (lda,*).
    Contains the m-by-n matrix }A\mathrm{ whose equilibration factors are to be computed.
    The second dimension of a must be at least max (1,n).
Ida INTEGER. The leading dimension of a; Ida \geq max(1,m).
```


Output Parameters

$r, \quad c$	REAL for single precision flavors; DOUBLE PRECISION for double precision flavors. Arrays: $r(m), c(n)$. If info $=0$, or info $>m$, the array r contains the row scale factors of the matrix A. If info $=0$, the array c contains the column scale factors of the matrix A.
rowend	REAL for single precision flavors; DOUBLE PRECISION for double precision flavors. If info $=0$ or info $>m$, rowend contains the ratio of the smallest $r(i)$ to the largest $r(i)$.
colcnd	REAL for single precision flavors; DOUBLE PRECISION for double precision flavors. If info $=0$, colcnd contains the ratio of the smallest $c(i)$ to the largest $c(i)$.
amax	REAL for single precision flavors; DOUBLE PRECISION for double precision flavors. Absolute value of the largest element of the matrix A.
info	INTEGER. If $\operatorname{info}=0$, the execution is successful. If info $=-i$, the i th parameter had an illegal value. If info $=i$ and $i \leq m$, the i th row of A is exactly zero; $i>m$, the $(i-m)$ th column of A is exactly zero.

Application Notes

All the components of r and c are restricted to be between SMLNUM $=$ smallest safe number and BIGNUM = largest safe number. Use of these scaling factors is not guaranteed to reduce the condition number of A but works well in practice.

If rowend ≥ 0.1 and amax is neither too large nor too small, it is not worth scaling by r. If colcnd ≥ 0.1, it is not worth scaling by c.

If amax is very close to overflow or very close to underflow, the matrix A should be scaled.

?gbequ

Computes row and column scaling factors intended to

 equilibrate a band matrix and reduce its condition number.
Syntax

```
call sgbequ (m, n, kl, ku, ab, ldab, r, c, rowcnd, colcnd, amax, info)
call dgbequ (m, n, kl, ku, ab, ldab, r, c, rowcnd, colcnd, amax, info)
call cgbequ (m, n, kl, ku, ab, ldab, r, c, rowcnd, colcnd, amax, info)
call zgbequ (m, n, kl, ku, ab, ldab, r, c, rowcnd, colcnd, amax, info)
```


Description

This routine computes row and column scalings intended to equilibrate an m-by-n band matrix A and reduce its condition number. The output array r returns the row scale factors and the array c the column scale factors. These factors are chosen to try to make the largest element in each row and column of the matrix B with elements $b_{i j}=r(\mathrm{i}) * a_{i j}{ }^{*} c(\mathrm{j})$ have absolute value 1 .

Input Parameters

m	INTEGER. The number of rows of the matrix $\mathrm{A}, \mathrm{m} \geq 0$.
n	INTEGER. The number of columns of the matrix A,
$k l$	$n \geq 0$.
kl	INTEGER. The number of sub-diagonals within the band of $A(k l \geq 0)$.
	INTEGER. The number of super-diagonals within the band of $A(k u \geq 0)$.
	REAL for sgbequ
	DOUBLE PRECISION for dgbequ
	COMPLEX for cgbequ
	DOUBLE COMPLEX for zgbequ.
	Array, DIMENSION (ldab,*).
	Contains the original band matrix A stored in rows
	from 1 to $k I+k u+1$.

Idab INTEGER. The leading dimension of $a b$, $l d a b \geq k l+k u+1$.

Output Parameters

r, C	REAL for single precision flavors; DOUBLE PRECISION for double precision flavors. Arrays: $r(m), c(n)$. If info $=0$, or info $>m$, the array r contains the row scale factors of the matrix A. If info $=0$, the array c contains the column scale factors of the matrix A.
rowend	REAL for single precision flavors; DOUBLE PRECISION for double precision flavors. If info $=0$ or info $>m$, rowend contains the ratio of the smallest $r(i)$ to the largest $r(i)$.
colcnd	REAL for single precision flavors; DOUBLE PRECISION for double precision flavors. If info $=0$, col cnd contains the ratio of the smallest $c(i)$ to the largest $c(i)$.
amax	REAL for single precision flavors; DOUBLE PRECISION for double precision flavors. Absolute value of the largest element of the matrix A.
info	INTEGER. If info $=0$, the execution is successful. If info $=-i$, the i th parameter had an illegal value. If info $=i$ and $i \leq m$, the i th row of A is exactly zero; $i>m$, the $(i-m)$ th column of A is exactly zero.

Application Notes

All the components of r and c are restricted to be between SMLNUM = smallest safe number and BIGNUM = largest safe number. Use of these scaling factors is not guaranteed to reduce the condition number of A but works well in practice.

If rowend ≥ 0.1 and amax is neither too large nor too small, it is not worth scaling by r. If colcnd ≥ 0.1, it is not worth scaling by c.

If amax is very close to overflow or very close to underflow, the matrix A should be scaled.

?poequ

Computes row and column scaling factors intended to equilibrate a symmetric (Hermitian) positive definite matrix and reduce its condition number.

Syntax

```
call spoequ (n, a, lda, s, scond, amax, info)
```

call dpoequ ($n, ~ a, ~ l d a, ~ s, ~ s c o n d, ~ a m a x, ~ i n f o) ~(~) ~$
call cpoequ ($n, a, l d a, s, s c o n d, ~ a m a x, ~ i n f o) ~$
call zpoequ ($n, ~ a, ~ l d a, ~ s, ~ s c o n d, ~ a m a x, ~ i n f o) ~$

Description

This routine computes row and column scalings intended to equilibrate a symmetric (Hermitian) positive definite matrix A and reduce its condition number (with respect to the two-norm). The output array s returns scale factors computed as

$$
s(i)=\frac{1}{\sqrt{a_{i, i}}}
$$

These factors are chosen so that the scaled matrix B with elements $b_{i j}=s(\mathrm{i}) * a_{i j} * s(\mathrm{j})$ has diagonal elements equal to 1 .

This choice of s puts the condition number of B within a factor n of the smallest possible condition number over all possible diagonal scalings.

Input Parameters

n	INTEGER. The order of the matrix $A, n \geq 0$.
a	REAL for spoequ
	DOUBLE PRECISION for dpoequ
	COMPLEX for Cpoequ
	DOUBLE COMPLEX for zpoequ.

Array: DIMENSION (lda,*).
Contains the n-by- n symmetric or Hermitian positive definite matrix A whose scaling factors are to be computed. Only diagonal elements of A are referenced.
The second dimension of a must be at least $\max (1, n)$.
lda
INTEGER. The leading dimension of $a ; 1 d a \geq \max (1, m)$.

Output Parameters

s	REAL for single precision flavors;
	DOUBLE PRECISION for double precision flavors.
	Array, DIMENSION (n).
	If info $=0$, the array s contains the scale factors for A.
scond	REAL for single precision flavors;
	DOUBLE PRECISION for double precision flavors.
	If info $=0$, scond contains the ratio of the smallest $s(i)$ to the largest $s(i)$.
amax	REAL for single precision flavors;
	DOUBLE PRECISION for double precision flavors.
	Absolute value of the largest element of the matrix A.
info	INTEGER.
	If info $=0$, the execution is successful.
	If info $=-i$, the i th parameter had an illegal value.
	If info $=i$, the i th diagonal element of A is nonpositive.

Application Notes

If scond ≥ 0.1 and amax is neither too large nor too small, it is not worth scaling by s.
If amax is very close to overflow or very close to underflow, the matrix A should be scaled.

?ppequ

Computes row and column scaling factors intended to equilibrate a symmetric (Hermitian) positive definite matrix in packed storage and reduce its condition number.

Syntax

```
call sppequ (uplo, n, ap, s, scond, amax, info)
call dppequ (uplo, n, ap, s, scond, amax, info)
call cppequ (uplo, n, ap, s, scond, amax, info)
call zppequ (uplo, n, ap, s, scond, amax, info)
```


Description

This routine computes row and column scalings intended to equilibrate a symmetric (Hermitian) positive definite matrix A in packed storage and reduce its condition number (with respect to the two-norm). The output array s returns scale factors computed as

$$
s(i)=\frac{1}{\sqrt{a_{i, i}}}
$$

These factors are chosen so that the scaled matrix B with elements $b_{i j}=s(\mathrm{i}) * a_{i j} * s(\mathrm{j})$ has diagonal elements equal to 1 .

This choice of s puts the condition number of B within a factor n of the smallest possible condition number over all possible diagonal scalings.

Input Parameters

uplo	CHARACTER*1. Must be 'U' or 'L'.
	Indicates whether the upper or lower triangular part of A is packed in the array ap:
	If uplo = 'U', the array ap stores the upper triangular part of the matrix A.
	If uplo = 'L', the array ap stores the lower triangular part of the matrix A.
n	Integer. The order of matrix $A(\mathrm{n} \geq 0)$.
ap	REAL for sppequ
	DOUBLE PRECISION for dppequ
	COMPLEX for cppequ

DOUBLE COMPLEX for zppequ.
Array, DIMENSION at least $\max (1, n(n+1) / 2)$.
The array $a p$ contains either the upper or the lower triangular part of the matrix A (as specified by uplo) in packed storage (see Matrix Storage Schemes).

Output Parameters

S
REAL for single precision flavors; DOUBLE PRECISION for double precision flavors.
Array, DIMENSION (n). If info $=0$, the array s contains the scale factors for A.
scond REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
If info $=0$, scond contains the ratio of the smallest $s(i)$ to the largest $s(i)$.
amax REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
Absolute value of the largest element of the matrix A.
info INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the i th parameter had an illegal value.
If $i n f \circ=i$, the i th diagonal element of A is nonpositive.

Application Notes

If scond ≥ 0.1 and amax is neither too large nor too small, it is not worth scaling by s.
If amax is very close to overflow or very close to underflow, the matrix A should be scaled.

?pbequ

Computes row and column scaling factors intended to
equilibrate a symmetric (Hermitian) positive definite
band matrix and reduce its condition number.

Syntax

```
call spbequ (uplo, n, kd, ab, ldab, s, scond, amax, info)
call dpbequ (uplo, n, kd, ab, ldab, s, scond, amax, info)
```

```
call cpbequ (uplo, n, kd, ab, ldab, s, scond, amax, info)
call zpbequ (uplo, n, kd, ab, ldab, s, scond, amax, info)
```


Description

This routine computes row and column scalings intended to equilibrate a symmetric (Hermitian) positive definite matrix A in packed storage and reduce its condition number (with respect to the two-norm). The output array s returns scale factors computed as
$s(i)=\frac{1}{\sqrt{a_{i, i}}}$

These factors are chosen so that the scaled matrix B with elements $b_{i j}=s(\mathrm{i}) * a_{i j}{ }^{*} s(\mathrm{j})$ has diagonal elements equal to 1 .
This choice of s puts the condition number of B within a factor n of the smallest possible condition number over all possible diagonal scalings.

Input Parameters

uplo	CHARACTER*1. Must be 'U' or 'L'.
	Indicates whether the upper or lower triangular part of A is packed in the array $a b$:
	If uplo = 'U', the array $a b$ stores the upper triangular part of the matrix A.
	If uplo = 'L', the array $a b$ stores the lower triangular part of the matrix A.
	INTEGER. The order of matrix $A(n \geq 0)$.
kd	INTEGER. The number of super-diagonals or sub-diagonals in the matrix A ($k d \geq 0$).
$a b$	REAL for spbequ
	DOUBLE PRECISION for dpbequ
	COMPLEX for cpbequ
	DOUBLE COMPLEX for zpbequ.
	Array, DIMENSION (Idab,*).
	The array ap contains either the upper or the lower triangular part of the matrix
	A (as specified by uplo) in band storage (see Matrix Storage Schemes).
	The second dimension of $a b$ must be at least max $(1, n)$.
1 dab	INTEGER. The leading dimension of the array $a b$.

Output Parameters

s	REAL for single precision flavors;
	DOUBLE PRECISION for double precision flavors.
	Array, DIMENSION (n).
	If info $=0$, the array s contains the scale factors for A.
scond	REAL for single precision flavors;
	DOUBLE PRECISION for double precision flavors.
	If info $=0$, scond contains the ratio of the smallest $s(\mathrm{i})$ to the largest $s(\mathrm{i})$.
amax	REAL for single precision flavors;
	DOUBLE PRECISION for double precision flavors.
	Absolute value of the largest element of the matrix A.
info	INTEGER.
	If $\operatorname{info}=0$, the execution is successful.
	If info $=-i$, the i th parameter had an illegal value.
	If info $=i$, the i th diagonal element of A is nonpositive.

Application Notes

If scond ≥ 0.1 and amax is neither too large nor too small, it is not worth scaling by s.
If amax is very close to overflow or very close to underflow, the matrix A should be scaled.

Driver Routines

Table 3-3 lists the LAPACK driver routines for solving systems of linear equations with real or complex matrices.

Table 3-3 Driver Routines for Solving Systems of Linear Equations

Matrix type, storage scheme	Simple Driver	Expert Driver
general	? gesv	? gesvx
general band	? gbsv	? gbsvx
general tridiagonal	? gtsv	? gtsvx
symmetric/Hermitian positive-definite	? posv	? posvx
symmetric/Hermitian positive-definite, packed storage	? ppsv	? ppsvx
symmetric/Hermitian positive-definite, band	? pbsv	? pbsvx
symmetric/Hermitian positive-definite, tridiagonal	?ptsv	?ptsvx
symmetric/Hermitian indefinite	? Sysv l?hesv	?sysvx [?hesvx
symmetric/Hermitian indefinite, packed storage	?spsv ? hpsv	? spsvx ${ }^{\text {? }}$ hpsvx
complex symmetric	? Sysv	? Sysvx
complex symmetric, packed storage	? spsv	? spsvx

In this table ? stands for \mathbf{s} (single precision real), \mathbf{d} (double precision real), \mathbf{c} (single precision complex), or \mathbf{z} (double precision complex).

?gesv

Computes the solution to the system of linear equations
with a square matrix A and multiple right-hand sides.

Syntax

```
call sgesv (n, nrhs, a, lda, ipiv, b, ldb, info)
call dgesv (n, nrhs, a, lda, ipiv, b, ldb, info)
call cgesv (n, nrhs, a, lda, ipiv, b, ldb, info)
call zgesv (n, nrhs, a, lda, ipiv, b, ldb, info)
```


Description

This routine solves for X the system of linear equations $A X=B$, where A is an n-by- n matrix, the columns of matrix B are individual right-hand sides, and the columns of X are the corresponding solutions.

The $L U$ decomposition with partial pivoting and row interchanges is used to factor A as $A=P L$ U, where P is a permutation matrix, L is unit lower triangular, and U is upper triangular. The factored form of A is then used to solve the system of equations $A X=B$.

Input Parameters

n
nrhs
a, b

INTEGER. The order of A; the number of rows in B ($n \geq 0$).

INTEGER. The number of right-hand sides; the number of columns in B (nrhs ≥ 0).
REAL for sgesv
DOUBLE PRECISION for dgesv
COMPLEX for cgesv
DOUBLE COMPLEX for zgesv.
Arrays: $a(l d a, *), b(l d b, *)$.
The array a contains the matrix A.
The array b contains the matrix B whose columns are the right-hand sides for the systems of equations.
The second dimension of a must be at least $\max (1, n)$, the second dimension of b at least $\max (1, n r h s)$.

Ida INTEGER. The first dimension of $a ; I d a \geq \max (1, n)$.
$I d b \quad$ INTEGER. The first dimension of $b ; 1 d b \geq \max (1, n)$.

Output Parameters

Overwritten by the factors L and U from the factorization of $A=P L U$; the unit diagonal elements of L are not stored .
b
Overwritten by the solution matrix X.
INTEGER.
Array, DIMENSION at least $\max (1, n)$.
The pivot indices that define the permutation matrix P; row i of the matrix was interchanged with row ipiv(i).
info INTEGER. If info=0, the execution is successful. If info $=-i$, the i th parameter had an illegal value.
If info $=i, U(i, i)$ is exactly zero. The factorization has been completed, but the factor U is exactly singular, so the solution could not be computed.

?gesvx

Computes the solution to the system of linear equations with a square matrix A and multiple right-hand sides, and provides error bounds on the solution.

Syntax

```
call sgesvx (fact, trans, n, nrhs, a, lda, af, ldaf, ipiv, equed, r, c,
    b, ldb, x, ldx, rcond, ferr, berr, work, iwork, info)
call dgesvx (fact, trans, n, nrhs, a, lda, af, ldaf, ipiv, equed, r, c,
    b, ldb, x, ldx, rcond, ferr, berr, work, iwork, info)
call cgesvx (fact, trans, n, nrhs, a, lda, af, ldaf, ipiv, equed, r, c,
    b, ldb, x, ldx, rcond, ferr, berr, work, rwork, info)
call zgesvx (fact, trans, n, nrhs, a, lda, af, ldaf, ipiv, equed, r, c,
    b, ldb, x, ldx, rcond, ferr, berr, work, rwork, info)
```


Description

This routine uses the $L U$ factorization to compute the solution to a real or complex system of linear equations $A X=B$, where A is an n-by- n matrix, the columns of matrix B are individual right-hand sides, and the columns of X are the corresponding solutions.

Error bounds on the solution and a condition estimate are also provided.
The routine ?gesvx performs the following steps:

1. If fact $=$ ' E ', real scaling factors r and c are computed to equilibrate the system:
```
trans \(=\) ' N ': \(\quad \operatorname{diag}(r) * A * \operatorname{diag}(c) * \operatorname{diag}(c)^{-1} * X=\operatorname{diag}(r) * B\)
trans \(=\) ' T ': \((\operatorname{diag}(r) * A * \operatorname{diag}(c))^{\mathrm{T}} * \operatorname{diag}(r)^{-1} * X=\operatorname{diag}(c) * B\)
trans \(=\) ' \(C^{\prime}: \quad(\operatorname{diag}(r) * A * \operatorname{diag}(c))^{\mathrm{H}} * \operatorname{diag}(r)^{-1} * X=\operatorname{diag}(c) * B\)
```

Whether or not the system will be equilibrated depends on the scaling of the matrix A, but if equilibration is used, A is overwritten by $\operatorname{diag}(r) * A * \operatorname{diag}(c)$ and B by $\operatorname{diag}(r) * B$ (if $t r a n s={ }^{\prime} \mathrm{N}^{\prime}$) or $\operatorname{diag}(c) \star B$ (if trans $=$ ' T ' or ' C ').
2. If fact $=$ ' N ' or ' E ', the $L U$ decomposition is used to factor the matrix A (after equilibration if fact $=$ ' E ') as $A=P L U$, where P is a permutation matrix, L is a unit lower triangular matrix, and U is upper triangular.
3. If some $U_{i, i}=0$, so that U is exactly singular, then the routine returns with info $=i$. Otherwise, the factored form of A is used to estimate the condition number of the matrix A. If the reciprocal of the condition number is less than machine precision, info $=n+1$ is returned as a warning, but the routine still goes on to solve for X and compute error bounds as described below.
4. The system of equations is solved for X using the factored form of A.
5. Iterative refinement is applied to improve the computed solution matrix and calculate error bounds and backward error estimates for it.
6. If equilibration was used, the matrix X is premultiplied by $\operatorname{diag}(c)$ (if $t r a n s=$ ' N ') or $\operatorname{diag}(r)$ (if trans = ' T ' or ' ' C ') so that it solves the original system before equilibration.

Input Parameters

fact CHARACTER*1. Must be 'F', 'N', or 'E'.
Specifies whether or not the factored form of the matrix A is supplied on entry, and if not, whether the matrix A should be equilibrated before it is factored.

If fact $={ }^{\prime} \mathrm{F}^{\prime}$: on entry, af and ipiv contain the factored form of A. If equed is not ' n ', the matrix A has been equilibrated with scaling factors given by r and c.
$a, a f$, and ipiv are not modified.
If fact $=$ ' N ', the matrix A will be copied to $a f$ and factored.
If fact $=' \mathrm{E}$ ', the matrix A will be equilibrated if necessary, then copied to af and factored.
trans
n
$a, a f, b$, work

CHARACTER*1. Must be 'N', 'T', or 'C'.
Specifies the form of the system of equations:
If trans = 'N', the system has the form $A X=B$
(No transpose);
If trans $=$ ' T ', the system has the form $A^{\mathrm{T}} X=B$ (Transpose); If trans $=$ ' C ', the system has the form $A^{\mathrm{H}} X=B$ (Conjugate transpose);
integer. The number of linear equations; the order of the matrix $A(n \geq 0)$.
INTEGER. The number of right hand sides; the number of columns of the matrices B and X (nrhs ≥ 0).

REAL for sgesvx
DOUBLE PRECISION for dgesvx
COMPLEX for cgesvx
DOUBLE COMPLEX for zgesvx.
Arrays: $a(l d a, *), a f(l d a f, *), b(l d b, *)$, work(*).
The array a contains the matrix A. If fact = ' F ' and equed is not ' N ', then A must have been equilibrated by the scaling factors in r and/or c. The second dimension of a must be at least max $(1, n)$.
The array $a f$ is an input argument if $f a c t=$ ' F ' . It contains the factored form of the matrix A, i.e., the factors L and U from the factorization $A=P L U$ as computed by ? getrf. If equed is not ' N ', then af is the factored form of the equilibrated matrix A. The second dimension of af must be at least max $(1, n)$. The array b contains the matrix B whose columns are the right-hand sides for the systems of equations. The second dimension of b must be at least $\max (1, n r h s)$.
work (*) is a workspace array.
The dimension of work must be at least $\max \left(1,4 *_{n}\right)$ for real flavors, and at least $\max \left(1,2 *_{n}\right)$ for complex flavors.

Ida
INTEGER. The first dimension of $a ; 1 d a \geq \max (1, n)$.

ldaf	INTEGER. The first dimension of $a f ; 1 d a f \geq \max (1, n)$.
1 db	INTEGER. The first dimension of $b ; 1 d b \geq \max (1, n)$.
ipiv	INTEGER. Array, DIMENSION at least max $(1, n)$. The array ipiv is an input argument if fact $=$ ' F '. It contains the pivot indices from the factorization $A=P L U$ as computed by ?getrf; row i of the matrix was interchanged with row ipiv(i).
equed	CHARACTER*1. Must be 'N', 'R', 'C', or 'B'. equed is an input argument if fact $=$ ' F ' . It specifies the form of equilibration that was done: If equed $=$ ' N ', no equilibration was done (always true if fact $=$ ' N '); If equed $=$ ' R ', row equilibration was done and A has been premultiplied by $\operatorname{diag}(r)$; If equed $=$ ' C ', column equilibration was done and A has been postmultiplied by $\operatorname{diag}(c)$; If equed $=$ ' B ', both row and column equilibration was done; A has been replaced by $\operatorname{diag}(r) * A * \operatorname{diag}(c)$.
r, C	REAL for single precision flavors; DOUBLE PRECISION for double precision flavors. Arrays: $r(n), c(n)$. The array r contains the row scale factors for A, and the array c contains the column scale factors for A. These arrays are input arguments if fact $=$ ' F ' only; otherwise they are output arguments. If equed $=$ ' R ' or ' B^{\prime}, A is multiplied on the left by $\operatorname{diag}(r)$; if equed $=' \mathrm{~N}^{\prime}$ or ' C^{\prime}, r is not accessed. If fact $=$ ' F ' and equed $=$ ' R ' or ' B ', each element of r must be positive. If equed $=$ ' C ' or ' B ', A is multiplied on the right by $\operatorname{diag}(c)$; if equed $=' \mathrm{~N}$ ' or ' R^{\prime}, c is not accessed. If fact $=$ ' F ' and equed $={ }^{\prime} C$ ' or ' B ', each element of c must be positive.
$1 d x$	INTEGER. The first dimension of the output array $x ; l d x \geq m a x(1, n)$.
iwork	INTEGER. Workspace array, DIMENSION at least $\max (1, n)$; used in real flavors only.

```
rwork
REAL for single precision flavors; DOUBLE PRECISION for double precision flavors.
Workspace array, DIMENSION at least \(\max \left(1,2 *_{n}\right)\); used in complex flavors only.
```


Output Parameters

x
REAL for sgesvx
DOUBLE PRECISION for dgesvx
COMPLEX for cgesvx
DOUBLE COMPLEX for zgesvx.
Array, DIMENSION (ldx,*).
If info $=0$ or info $=n+1$, the array x contains the solution matrix X to the original system of equations. Note that A and B are modified on exit if equed \neq ' N^{\prime}, and the solution to the equilibrated system is:
$\operatorname{diag}(c)^{-1} \star X$, if trans $=' \mathrm{~N}$ ' and equed $=$ ' C ' or ' B '; $\operatorname{diag}(r)^{-1} \star X$, if trans $=$ 'T' or 'C' and equed $=$ 'R' or 'B'.
The second dimension of x must be at least $\max (1, n r h s)$.
Array a is not modified on exit if fact $=$ ' F ' or ' N ', or if fact $=$ ' E ' and equed $=$ ' N '.
If equed $\neq{ }^{\prime} \mathrm{N}^{\prime}, A$ is scaled on exit as follows:
equed $='^{\prime}$ ': $A=\operatorname{diag}(r) \star A$
equed $={ }^{\prime} \mathrm{C}^{\prime}: A=A * \operatorname{diag}(c)$
equed $=$ ' B ': $A=\operatorname{diag}(r) * A * \operatorname{diag}(c)$
af
If fact $=$ ' N ' or ' E', then $a f$ is an output argument and on exit returns the factors L and U from the factorization $A=P L U$ of the original matrix A (if fact $=$ ' N ') or of the equilibrated matrix A (if fact $=$ ' E '). See the description of a for the form of the equilibrated matrix.
b
Overwritten by $\operatorname{diag}(r) * B$ if trans $=' N$ ' and equed = 'R' or 'B'; overwritten by $\operatorname{diag}(c) \star B$ if trans $=$ 'T' and equed $=$ ' C ' or ' B '; not changed if equed $=$ ' N '.
$r, \quad c$
rcond

These arrays are output arguments if fact \neq ' F '. See the description of r, c in Input Arguments section.
REAL for single precision flavors. DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal condition number of the matrix A after equilibration (if done). The routine sets rcond $=0$ if the estimate underflows;

ferr, berr	REAL for single precision flavors. DOUBLE PRECISION for double precision flavors. Arrays, DIMENSION at least max($1, n r h s$). Contain the component-wise forward and relative backward errors, respectively, for each solution vector.
ipiv	If fact $=$ ' N ' or ' E ', then ipiv is an output argument and on exit contains the pivot indices from the factorization $A=P L U$ of the original matrix A (if fact $=$ ' N ') or of the equilibrated matrix A (if fact $=$ ' E ').
equed	If fact \neq ' F ', then equed is an output argument. It specifies the form of equilibration that was done (see the description of equed in Input Arguments section).
work, rwork	On exit, work(1) for real flavors, or rwork(1) for complex flavors, contains the reciprocal pivot growth factor norm $(A) / \operatorname{norm}(U)$. The "max absolute element" norm is used. If work(1) for real flavors, or rwork(1) for complex flavors is much less than 1 , then the stability of the $L U$ factorization of the (equilibrated) matrix A could be poor. This also means that the solution x, condition estimator rcond, and forward error bound ferr could be unreliable. If factorization fails with $0<$ info $\leq n$, then work(1) for real flavors, or $\operatorname{rwork}(1)$ for complex flavors contains the reciprocal pivot growth factor for the leading info columns of A.
info	INTEGER. If info $=0$, the execution is successful. If $i n f o=-i$, the i th parameter had an illegal value. If info $=i$, and $i \leq n$, then $U(i, i)$ is exactly zero. The factorization has been completed, but the factor U is exactly singular, so the solution and error bounds could not be computed; rcond $=0$ is returned. If info $=i$, and $i=n+1$, then U is nonsingular, but rcond is less than machine precision, meaning that the matrix is singular to working precision. Nevertheless, the solution and error bounds are computed because there are a number of situations where the computed solution can be more accurate than the value of rcond would suggest.

?gbsv

Computes the solution to the system of linear equations
with a band matrix A and multiple right-hand sides.

Syntax

```
call sgbsv (n, kl, ku, nrhs, ab, ldab, ipiv, b, ldb, info)
call dgbsv (n, kl, ku, nrhs, ab, ldab, ipiv, b, ldb, info)
call cgbsv (n, kl, ku, nrhs, ab, ldab, ipiv, b, ldb, info)
call zgbsv (n, kl, ku, nrhs, ab, ldab, ipiv, b, ldb, info)
```


Description

This routine solves for X the real or complex system of linear equations $A X=B$, where A is an $n-b y-n$ band matrix with $k l$ subdiagonals and $k u$ superdiagonals, the columns of matrix B are individual right-hand sides, and the columns of X are the corresponding solutions.

The $L U$ decomposition with partial pivoting and row interchanges is used to factor A as $A=L U$, where L is a product of permutation and unit lower triangular matrices with kl subdiagonals, and U is upper triangular with $k l+k u$ superdiagonals. The factored form of A is then used to solve the system of equations $A X=B$.

Input Parameters

The second dimension of $a b$ must be at least $\max (1, n)$.
The array b contains the matrix B whose columns are the right-hand sides for the systems of equations.
The second dimension of b must be at least max(1, nrhs).
ldab INTEGER. The first dimension of the array $a b$.
$(1 d a b \geq 2 k l+k u+1)$
$1 d b \quad$ INTEGER. The first dimension of $b ; 1 d b \geq \max (1, n)$.

Output Parameters

$a b$	Overwritten by L and U. The diagonal and $k I+k u$ super-diagonals of U are stored in the first $1+k I+k u$ rows of $a b$. The multipliers used to form L are stored in the next $k l$ rows.
b	Overwritten by the solution matrix X.
ipiv	INTEGER. Array, DIMENSION at least max $(1, n)$. The pivot indices: row i was interchanged with row ipiv(i).
info	INTEGER. If info=0, the execution is successful. If info $=-i$, the i th parameter had an illegal value. If info $=i, U(i, i)$ is exactly zero. The factorization has been completed, but the factor U is exactly singular, so the solution could not be computed.

?gbsvx

Computes the solution to the real or complex system of linear equations with a band matrix A and multiple right-hand sides, and provides error bounds on the solution.

```
call sgbsvx (fact, trans, n, kl, ku, nrhs, ab, ldab, afb, ldafb, ipiv,
    equed, r, c, b, ldb, x, ldx, rcond, ferr, berr, work, iwork, info)
call dgbsvx (fact, trans, n, kl, ku, nrhs, ab, ldab, afb, ldafb, ipiv,
    equed, r, c, b, ldb, x, ldx, rcond, ferr, berr, work, iwork, info)
call cgbsvx (fact, trans, n, kl, ku, nrhs, ab, ldab, afb, ldafb, ipiv,
    equed, r, c, b, ldb, x, ldx, rcond, ferr, berr, work, rwork, info)
```

```
call zgbsvx (fact, trans, n, kl, ku, nrhs, ab, ldab, afb, ldafb, ipiv,
```


Description

This routine uses the $L U$ factorization to compute the solution to a real or complex system of linear equations $A X=B, A^{T} X=B$, or $A^{H} X=B$, where A is a band matrix of order n with $k I$ subdiagonals and $k u$ superdiagonals, the columns of matrix B are individual right-hand sides, and the columns of X are the corresponding solutions.

Error bounds on the solution and a condition estimate are also provided.
The routine ? gbsvx performs the following steps:

1. If fact $=$ ' E ', real scaling factors r and c are computed to equilibrate the system:
```
trans \(=\) ' N ': \(\quad \operatorname{diag}(r) * A * \operatorname{diag}(c) * \operatorname{diag}(c)^{-1} * X=\operatorname{diag}(r) * B\)
trans \(=\) ' \(T\) ': \(\quad(\operatorname{diag}(r) * A * \operatorname{diag}(c))^{\mathrm{T}} * \operatorname{diag}(r)^{-1} * X=\operatorname{diag}(c) * B\)
trans \(=\) ' C ': \(\left(\operatorname{diag}(r) \star A^{*} \operatorname{diag}(c)\right)^{\mathrm{H}} \star \operatorname{diag}(r)^{-1} \star X=\operatorname{diag}(c) \star B\)
```

Whether or not the system will be equilibrated depends on the scaling of the matrix A, but if equilibration is used, A is overwritten by $\operatorname{diag}(r) * A * \operatorname{diag}(c)$ and B by $\operatorname{diag}(r) * B$ (if $t r a n s={ }^{\prime} \mathrm{N}^{\prime}$) or $\operatorname{diag}(c) * B$ (if trans $=$ ' T ' or ' C ').
2. If fact $=$ ' N ' or ' E ', the $L U$ decomposition is used to factor the matrix A (after equilibration if fact = ' E ') as $A=L U$, where L is a product of permutation and unit lower triangular matrices with $k l$ subdiagonals, and U is upper triangular with $k l+k u$ superdiagonals.
3. If some $U_{i, i}=0$, so that U is exactly singular, then the routine returns with info $=i$. Otherwise, the factored form of A is used to estimate the condition number of the matrix A. If the reciprocal of the condition number is less than machine precision, info $=n+1$ is returned as a warning, but the routine still goes on to solve for X and compute error bounds as described below.
4. The system of equations is solved for X using the factored form of A.
5. Iterative refinement is applied to improve the computed solution matrix and calculate error bounds and backward error estimates for it.
6. If equilibration was used, the matrix X is premultiplied by $\operatorname{diag}(c)$ (if trans $={ }^{\prime} \mathrm{N}$ ') or $\operatorname{diag}(r)$ (if trans $=$ ' T ' or ' C ') so that it solves the original system before equilibration.

Input Parameters

fact	CHARACTER*1. Must be 'F', 'N', or 'E'
	Specifies whether or not the factored form of the matrix A is supplied on entry, and if not, whether the matrix A should be equilibrated before it is factored.
	If fact $=$ ' F^{\prime} : on entry, afb and ipiv contain the factored form of A. If equed is not ' n ', the matrix A has been equilibrated with scaling factors given by r and c. $a b, a f b$, and ipiv are not modified.
	If fact $={ }^{\prime} \mathrm{N}^{\prime}$, the matrix A will be copied to $a f b$ and factored. If fact $=$ ' E ', the matrix A will be equilibrated if necessary, then copied to $a f b$ and factored.
trans	CHARACTER*1. Must be 'N', 'T', or 'C'.
	Specifies the form of the system of equations:
	If trans $=$ ' N ', the system has the form $A X=B$ (No transpose); If trans $=$ ' T ', the system has the form $A^{\mathrm{T}} X=B$ (Transpose); If trans $=$ ' C ', the system has the form $A^{\mathrm{H}} X=B$ (Conjugate transpose);
n	INTEGER. The number of linear equations; the order of the matrix $A(n \geq 0)$.
kl	INTEGER. The number of sub-diagonals within the band of $A(k I \geq 0)$.
ku	INTEGER. The number of super-diagonals within the band of $A(k u \geq 0)$.
nrhs	INTEGER. The number of right hand sides; the number of columns of the matrices B and X (nrhs ≥ 0).
ab, afb, b, work	REAL for sgesvx
	DOUBLE PRECISION for dgesvx
	COMPLEX for cgesvx
	DOUBLE COMPLEX for zgesvx.
	Arrays: $a(l d a, *), a f(l d a f, *), b(l d b, *)$, work (*).
	The array $a b$ contains the matrix A in band storage (see Matrix Storage Schemes).
	The second dimension of $a b$ must be at least $\max (1, n)$. If fact = ' F ' and equed is not ' N ', then A must have been equilibrated by the scaling factors in r and/or c.
	The array $a f b$ is an input argument if fact $=$ ' F '. The second dimension of afb must be at least max $(1, n)$. It contains the factored form of the matrix A, i.e., the factors L and U from the

factorization $A=L U$ as computed by ?gbtrf. U is stored as an upper triangular band matrix with $k l+k u$ super-diagonals in the first $1+k l+k u$ rows of $a f b$. The multipliers used during the factorization are stored in the next $k l$ rows. If equed is not ' N ', then $a f b$ is the factored form of the equilibrated matrix A.

The array b contains the matrix B whose columns are the right-hand sides for the systems of equations. The second dimension of b must be at least $\max (1, n r h s)$.
work (*) is a workspace array.
The dimension of work must be at least $\max \left(1,3 *_{n}\right)$ for real flavors, and at least $\max \left(1,2 *_{n}\right)$ for complex flavors.

Idab
Idafb
ldb
r, c

INTEGER. The first dimension of $a b ; 1 d a b \geq k l+k u+1$.
INTEGER. The first dimension of afb; 1 dafb $\geq 2 * k I+k u+1$.

INTEGER. The first dimension of $b ; l d b \geq \max (1, n)$.
INTEGER.
Array, DIMENSION at least max $(1, n)$.
The array $i p i v$ is an input argument if fact $=$ ' F ' .
It contains the pivot indices from the factorization
$A=L U$ as computed by ?gbtrf; row i of the matrix was interchanged with row ipiv(i).

CHARACTER*1. Must be 'N', 'R', 'C', or 'B'.
equed is an input argument if fact = ' F ' . It specifies the form of equilibration that was done:
If equed = ' N ', no equilibration was done (always
true if fact = 'N');
If equed = ' R ', row equilibration was done and A has been premultiplied by $\operatorname{diag}(r)$;
If equed $=$ ' C ', column equilibration was done and A has been postmultiplied by diag(c);
If equed = 'B', both row and column equilibration was done; A has been replaced by $\operatorname{diag}(r) * A * \operatorname{diag}(c)$.

REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
Arrays: $r(n), c(n)$.
The array r contains the row scale factors for A, and the array c contains the column scale factors for A. These arrays are input arguments if fact $=$ ' F ' only;

$l d x$	INTEGER. The first dimension of the output array $x ; I d x \geq \max (1, n)$.
iwork	INTEGER.
Ywork	Workspace array, DIMENSION at least $\max (1, n) ;$ used in real flavors only. REAL for single precision flavors; DOUBLE PRECISION for double precision flavors. Workspace array, DIMENSION at least max $(1, n)$; used in complex flavors only.

Output Parameters

REAL for sgbsvx
DOUBLE PRECISION for dgbsvx
COMPLEX for cgbsvx
DOUBLE COMPLEX for zgbsvx.
Array, DIMENSION (ldx,*).
If info $=0$ or info $=n+1$, the array x contains the solution matrix X to the original system of equations. Note that A and B are modified on exit if equed $\neq{ }^{\prime} \mathrm{N}^{\prime}$, and the solution to the equilibrated system is:
$\operatorname{diag}(c)^{-1} \star X$, if trans $='^{\prime} \mathrm{N}^{\prime}$ and equed $=$ ' C ' or ' B '; $\operatorname{diag}(r)^{-1} \star X$, if trans $=$ 'T' or 'C' and equed $=$ ' R^{\prime} or ' B '.
The second dimension of x must be at least $\max (1, n r h s)$.
Array $a b$ is not modified on exit if fact = ' F ' or ' N ', or if fact = ' E ' and equed $=$ ' N '.
If equed $\neq{ }^{\prime} \mathrm{N}^{\prime}, A$ is scaled on exit as follows:
equed $=$ 'R': $A=\operatorname{diag}(x) \star A$
equed $='^{\prime} '^{\prime}: A=A * \operatorname{diag}(c)$
equed $=' \mathrm{~B} ': A=\operatorname{diag}(r) * A * \operatorname{diag}(c)$
If fact $=$ ' N ' or ' E', then $a f b$ is an output argument and on exit returns details of the $L U$ factorization of the original matrix A (if fact = ' N ') or of the equilibrated matrix A (if fact $=$ ' E '). See the description of $a b$ for the form of the equilibrated matrix.

	```Overwritten by diag(r)*b if trans= 'N' and equed = 'R' or 'B'; overwritten by diag(c)*b if trans = 'T' and equed = 'C' or 'B'; not changed if equed = 'N'.```
$r, \quad c$	These arrays are output arguments if fact $\neq \mathcal{F}^{\prime} \mathrm{F}^{\prime}$. See the description of $r, c$ in Input Arguments section.
rcond	REAL for single precision flavors.   DOUBLE PRECISION for double precision flavors.   An estimate of the reciprocal condition number of the matrix $A$ after equilibration (if done).   If $r$ cond is less than the machine precision (in particular, if $r$ cond $=0$ ), the matrix is singular to working precision. This condition is indicated by a return code of info $>0$.
ferr, berr	REAL for single precision flavors.   DOUBLE PRECISION for double precision flavors.   Arrays, DIMENSION at least max( $1, \mathrm{nrhs}$ ). Contain the component-wise forward and relative backward errors, respectively, for each solution vector.
ipiv	If fact = ' N ' or ' E ', then ipiv is an output argument and on exit contains the pivot indices from the factorization $A=L U$ of the original matrix $A$ (if fact $=$ ' N ') or of the equilibrated matrix $A$ (if fact = ' E ').
equed	If fact $\neq{ }^{\prime} F^{\prime}$, then equed is an output argument. It specifies the form of equilibration that was done (see the description of equed in Input Arguments section).
work, rwork	On exit, work(1) for real flavors, or $\operatorname{rwork}(1)$ for complex flavors, contains the reciprocal pivot growth factor norm $(A) /$ norm $(U)$. The "max absolute element" norm is used. If work(1) for real flavors, or rwork(1) for complex flavors is much less than 1 , then the stability of the $L U$ factorization of the (equilibrated) matrix $A$ could be poor. This also means that the solution $x$, condition estimator rcond, and forward error bound ferr could be unreliable. If factorization fails with $0<\operatorname{info} \leq n$, then work(1) for real flavors, or $r w o r k(1)$ for complex flavors contains the reciprocal pivot growth factor for the leading info columns of $A$.
info	INTEGER. If info $=0$, the execution is successful.   If info $=-i$, the $i$ th parameter had an illegal value.   If info $=i$, and $i \leq n$, then $U(i, i)$ is exactly zero. The factorization has been completed, but the factor $U$ is exactly singular, so the solution and error bounds could not be computed; $r$ cond $=0$ is returned.   If $\operatorname{info}=i$, and $i=n+1$, then $U$ is nonsingular, but $r$ cond is less than

machine precision, meaning that the matrix is singular to working precision. Nevertheless, the solution and error bounds are computed because there are a number of situations where the computed solution can be more accurate than the value of rcond would suggest.

## ?gtsv

Computes the solution to the system of linear equations with a tridiagonal matrix $A$ and multiple right-hand sides.

## Syntax

```
call sgtsv (n, nrhs, dl, d, du, b, ldb, info)
call dgtsv (n, nrhs, dl, d, du, b, ldb, info)
call cgtsv (n, nrhs, dl, d, du, b, ldb, info)
call zgtsv (n, nrhs, dl, d, du, b, ldb, info)
```


## Description

This routine solves for $X$ the system of linear equations $A X=B$, where A is an n -by-n tridiagonal matrix, the columns of matrix $B$ are individual right-hand sides, and the columns of $X$ are the corresponding solutions.
The routine uses Gaussian elimination with partial pivoting.
Note that the equation $A^{\mathrm{T}} X=B$ may be solved by interchanging the order of the arguments $d u$ and $d$.

## Input Parameters

```
n INTEGER. The order of }A\mathrm{ ; the number of rows in }
 (}n\geq0)\mathrm{ .
nrhs INTEGER. The number of right-hand sides; the number of columns in B
 (nrhs\geq0).
dl, d, du, b REAL for sgtsv
 DOUBLE PRECISION for dgtsv
 COMPLEX for cgtsv
 DOUBLE COMPLEX for zgtsv.
```

Arrays: $d l(n-1), a(n), d u(n-1), b(l d b, *)$.
The array $d l$ contains the $(n-1)$ subdiagonal elements of $A$.
The array $d$ contains the diagonal elements of $A$.
The array $d u$ contains the $(n-1)$ superdiagonal elements of $A$.
The array $b$ contains the matrix $B$ whose columns are the right-hand sides for the systems of equations.
The second dimension of $b$ must be at least max ( 1, nrhs).
$1 d b$
INTEGER. The first dimension of $b ; 1 d b \geq \max (1, n)$.

## Output Parameters

$d l$	Overwritten by the $(n-2)$ elements of the second superdiagonal of the upper   triangular matrix $U$ from the $L U$ factorization of A. These elements are stored   in $d l(1), \ldots, d l(n-2)$.
$d$	Overwritten by the $n$ diagonal elements of $U$.
$d u$	Overwritten by the $(n-1)$ elements of the first superdiagonal of $U$.
$b$	Overwritten by the solution matrix $X$.

## ?gtsvx

Computes the solution to the real or complex system of linear equations with a tridiagonal matrix $A$ and multiple right-hand sides, and provides error bounds on the solution.

```
Syntax
call sgtsvx (fact, trans, n, nrhs, dl, d, du, dlf, df, duf, du2, ipiv, b,
 ldb, x, ldx, rcond, ferr, berr, work, iwork, info)
call dgtsvx (fact, trans, n, nrhs, dl, d, du, dlf, df, duf, du2, ipiv, b,
 ldb, x, ldx, rcond, ferr, berr, work, iwork, info)
call cgtsvx (fact, trans, n, nrhs, dl, d, du, dlf, df, duf, du2, ipiv, b,
 ldb, x, ldx, rcond, ferr, berr, work, rwork, info)
```

call zgtsvx (fact, trans, n, nrhs, dl, d, du, dlf, df, duf, du2, ipiv, b, ldb, $x$, ldx, rcond, ferr, berr, work, rwork, info)

## Description

This routine uses the $L U$ factorization to compute the solution to a real or complex system of linear equations $A X=B, A^{T} X=B$, or $A^{H} X=B$, where A is a tridiagonal matrix of order n , the columns of matrix $B$ are individual right-hand sides, and the columns of $X$ are the corresponding solutions.

Error bounds on the solution and a condition estimate are also provided.
The routine ?gtsvx performs the following steps:

1. If fact = ' N ', the $L U$ decomposition is used to factor the matrix $A$ as $A=L U$, where $L$ is a product of permutation and unit lower bidiagonal matrices and $U$ is an upper triangular matrix with nonzeroes in only the main diagonal and first two superdiagonals.
2. If some $U_{i, i}=0$, so that $U$ is exactly singular, then the routine returns with info $=i$. Otherwise, the factored form of $A$ is used to estimate the condition number of the matrix $A$. If the reciprocal of the condition number is less than machine precision, info $=n+1$ is returned as a warning, but the routine still goes on to solve for $X$ and compute error bounds as described below.
3. The system of equations is solved for $X$ using the factored form of $A$.
4. Iterative refinement is applied to improve the computed solution matrix and calculate error bounds and backward error estimates for it.

## Input Parameters

fact	CHARACTER*1. Must be 'F' or 'N'.
	Specifies whether or not the factored form of the matrix $A$ has been supplied on entry.
	If fact $={ }^{\prime} \mathrm{F}^{\prime}:$ on entry, dlf, df, duf, du2, and ipiv contain the factored form of $A$; arrays $d l, d, d u, d l f, d f, d u f, d u 2$, and ipiv will not be modified.
trans	If fact $=$ ' N ', the matrix $A$ will be copied to $d l f, d f$, and $d u f$ and factored. CHARACTER*1. Must be 'N', 'T', or 'C'.
	Specifies the form of the system of equations:

If trans = 'N', the system has the form $A X=B$
(No transpose);
If trans $=$ ' T ', the system has the form $A^{\mathrm{T}} X=B$ (Transpose); If trans $=$ ' C ', the system has the form $A^{\mathrm{H}} X=B$ (Conjugate transpose);
n
nrhs
$d l, d, d u, d l f, d f$, duf, du2, b, x, work REAL for sgtsvx

DOUBLE PRECISION for dgtsvx
COMPLEX for cgtsvx
DOUBLE COMPLEX for zgtsvx.
Arrays:
dl, dimension ( $n-1$ ), contains the subdiagonal elements of $A$.
$d$, dimension ( $n$ ), contains the diagonal elements of $A$.
$d u$, dimension ( $n-1$ ), contains the superdiagonal elements of $A$.
$d l f$, dimension $(n-1)$. If fact $=$ ' $F$ ', then $d l f$ is an input argument and on entry contains the $(n-1)$ multipliers that define the matrix $L$ from the $L U$ factorization of $A$ as computed by ?gttrf.
$d f$, dimension $(n)$. If fact $=' F$ ', then $d f$ is an input argument and on entry
contains the $n$ diagonal elements of the upper triangular matrix $U$ from the $L U$
$d f$, dimension $(n)$. If fact $=$ ' $F$ ', then $d f$ is an input argument and on entry
contains the $n$ diagonal elements of the upper triangular matrix $U$ from the $L U$ factorization of $A$.
duf, dimension $(n-1)$. If fact $=$ ' $F$ ', then duf is an input argument and on entry contains the $(n-1)$ elements of the first super-diagonal of $U$.
du2, dimension $(n-2)$. If fact $=$ ' $F$ ', then du2 is an input argument and on entry contains the $(n-2)$ elements of the second super-diagonal of $U$.
$b(I d b, *)$ contains the right-hand side matrix $B$. The second dimension of $b$ must be at least max(1,nrhs).
$x(I d x, *)$ contains the solution matrix $X$. The second dimension of $x$ must be at least $\max (1, n r h s)$.
work (*) is a workspace array;
the dimension of work must be at least $\max \left(1,3 *_{n}\right)$ for real flavors and $\max \left(1,2 *_{n}\right)$ for complex flavors.
$1 d b$ $l d x$ integer. The number of linear equations; the order of the matrix $A(n \geq 0)$.
integer. The number of right hand sides; the number of columns of the matrices $B$ and $X$ (nrhs $\geq 0$ ).

INTEGER. The first dimension of $b ; 1 d b \geq \max (1, n)$.
INTEGER. The first dimension of $x ; I d x \geq \max (1, n)$.

ipiv	INTEGER.   Array, DIMENSION at least $\max (1, n)$. If fact $=' F$ ', then ipiv is an input argument and on entry contains the pivot indices, as returned by ?gttrf.
iwork	INTEGER.
	Workspace array, DIMENSION (n). Used for real flavors only.
rwork	REAL for cgtsvx
	DOUBLE PRECISION for zgtsvx.
	Workspace array, DIMENSION (n). Used for complex flavors only.
Output Parameters	
$x$	REAL for sgtsvx
	DOUBLE PRECISION for dgtsvx
	COMPLEX for cgtsvx
	DOUBLE COMPLEX for zgtsvx.
	Array, DIMENSION ( $1 d x$ *).
	If info $=0$ or info $=n+1$, the array $x$ contains the solution matrix $X$. The second dimension of $x$ must be at least max $(1, n r h s)$.
dlf	If fact $=$ ' N ', then $d l f$ is an output argument and on exit contains the $(n-1)$ multipliers that define the matrix $L$ from the $L U$ factorization of $A$.
$d f$	If fact $=$ ' $N$ ', then $d f$ is an output argument and on exit contains the $n$ diagonal elements of the upper triangular matrix $U$ from the $L U$ factorization of $A$.
duf	If fact $=$ ' $N$ ', then duf is an output argument and on exit contains the ( $n-1$ ) elements of the first super-diagonal of $U$.
du2	If fact $=$ ' N ', then $d u 2$ is an output argument and on exit contains the $(n-2)$ elements of the second super-diagonal of $U$.
ipiv	The array ipiv is an output argument if fact = ' N ' and, on exit, contains the pivot indices from the factorization   $A=L U$; row i of the matrix was interchanged with row ipiv(i). The value of $i p i v(i)$ will always be either $i$ or $i+1$; $i p i v(i)=i$ indicates a row interchange was not required.
rcond	REAL for single precision flavors.
	DOUBLE PRECISION for double precision flavors.
	An estimate of the reciprocal condition number of the matrix $A$.



## ?posv

Computes the solution to the system of linear equations with a symmetric or Hermitian positive definite matrix $A$ and multiple right-hand sides.

## Syntax

```
call sposv (uplo, n, nrhs, a, lda, b, ldb, info)
call dposv (uplo, n, nrhs, a, lda, b, ldb, info)
call cposv (uplo, n, nrhs, a, lda, b, ldb, info)
call zposv (uplo, n, nrhs, a, lda, b, ldb, info)
```


## Description

This routine solves for $X$ the real or complex system of linear equations
$A X=B$, where A is an $n$-by-n symmetric/Hermitian positive definite matrix, the columns of matrix $B$ are individual right-hand sides, and the columns of $X$ are the corresponding solutions.

The Cholesky decomposition is used to factor A as $A=U^{H} U$ if uplo $=$ ' U '
or $A=L L^{H}$ if up $10=$ ' $L$ ', where $U$ is an upper triangular matrix and $L$ is a lower triangular matrix. The factored form of $A$ is then used to solve the system of equations $A X=B$.

## Input Parameters

uplo CHARACTER*1. Must be 'U' or 'L'.
Indicates whether the upper or lower triangular part of $A$ is stored and how $A$ is factored:
If uplo= 'U', the array a stores the upper triangular part of the matrix $A$, and $A$ is factored as $U^{H} U$.
If uplo = ' L ', the array a stores the lower triangular part of the matrix $A ; A$ is factored as $L L^{H}$.
$n \quad$ INTEGER. The order of matrix $A(n \geq 0)$.
nrhs $\quad$ INTEGER. The number of right-hand sides; the number of columns in $B$ ( $n r h s \geq 0$ ).
$a, b \quad$ REAL for sposv
DOUBLE PRECISION for dposv
COMPLEX for cposv
DOUBLE COMPLEX for zposv.
Arrays: $a(l d a, *), b(l d b, *)$.
The array a contains either the upper or the lower triangular part of the matrix $A$ (see uplo).
The second dimension of a must be at least max $(1, n)$.
The array b contains the matrix $B$ whose columns are the right-hand sides for the systems of equations.
The second dimension of $b$ must be at least max ( $1, n r h s$ ).
lda INTEGER. The first dimension of $a ; 1 d a \geq \max (1, n)$.
$1 d b \quad$ INTEGER. The first dimension of $b ; 1 d b \geq \max (1, n)$.

## Output Parameters

a	If info=0, the upper or lower triangular part of $a$ is overwritten by the		
Cholesky factor $U$ or $L$, as specified by upIo.			
O	Overwritten by the solution matrix $X$.	$\quad$	INTEGER. If info=0, the execution is successful.
:---			
If info $=-i$, the $i$ th parameter had an illegal value.			
If info $=i$, the leading minor of order $i$ (and hence the matrix $A$ itself) is not			
positive definite, so the factorization could not be completed, and the solution			
has not been computed.			

## ?posvx

> Uses the Cholesky factorization to compute the solution to the system of linear equations with a symmetric or Hermitian positive definite matrix A, and provides error bounds on the solution.

## Syntax

```
call sposvx (fact, uplo, n, nrhs, a, lda, af, ldaf, equed, s, b, ldb, x,
 ldx, rcond, ferr, berr, work, iwork, info)
call dposvx (fact, uplo, n, nrhs, a, lda, af, ldaf, equed, s, b, ldb, x,
 ldx, rcond, ferr, berr, work, iwork, info)
call cposvx (fact, uplo, n, nrhs, a, lda, af, ldaf, equed, s, b, ldb, x,
 ldx, rcond, ferr, berr, work, rwork, info)
call zposvx (fact, uplo, n, nrhs, a, lda, af, ldaf, equed, s, b, ldb, x,
 ldx, rcond, ferr, berr, work, rwork, info)
```


## Description

This routine uses the Cholesky factorization $A=U^{H} U$ or $A=L L^{H}$ to compute the solution to a real or complex system of linear equations $A X=B$, where A is a $n$-by- $n$ real symmetric/Hermitian positive definite matrix, the columns of matrix $B$ are individual right-hand sides, and the columns of $X$ are the corresponding solutions.

Error bounds on the solution and a condition estimate are also provided.
The routine ?posvx performs the following steps:

1. If fact $=$ ' E ', real scaling factors $s$ are computed to equilibrate
the system:

$$
\operatorname{diag}(s) * A * \operatorname{diag}(s) * \operatorname{diag}(s)^{-1} * X=\operatorname{diag}(s) * B
$$

Whether or not the system will be equilibrated depends on the scaling of the matrix $A$, but if equilibration is used, $A$ is overwritten by $\operatorname{diag}(s) \star A * \operatorname{diag}(s)$ and $B$ by $\operatorname{diag}(s) * B$.
2. If fact = ' N ' or ' E ', the Cholesky decomposition is used to factor the matrix $A$ (after equilibration if fact $=$ ' $E$ ') as
$A=U^{H} U$, if uplo ' ' U ', or
$A=L L^{H}$, if uplo $=$ ' L ',
where $U$ is an upper triangular matrix and $L$ is a lower triangular matrix.
3. If the leading $i$-by- $i$ principal minor is not positive definite, then the routine returns with info $=i$. Otherwise, the factored form of $A$ is used to estimate the condition number of the matrix $A$. If the reciprocal of the condition number is less than machine precision, info $=n+1$ is returned as a warning, but the routine still goes on to solve for $X$ and compute error bounds as described below.
4. The system of equations is solved for $X$ using the factored form of $A$.
5. Iterative refinement is applied to improve the computed solution matrix and calculate error bounds and backward error estimates for it.
6. If equilibration was used, the matrix $X$ is premultiplied by $\operatorname{diag}(s)$ so that it solves the original system before equilibration.

## Input Parameters

```
fact CHARACTER*1.Must be 'F','N', or 'E'.
 Specifies whether or not the factored form of the matrix }A\mathrm{ is supplied on entry,
 and if not, whether the matrix }A\mathrm{ should be equilibrated before it is factored.
 If fact = ' F':on entry, af contains the factored form of }A\mathrm{ . If equed = 'Y',
 the matrix }A\mathrm{ has been equilibrated with scaling factors given by s.
 a and af will not be modified.
 If fact = 'N', the matrix }A\mathrm{ will be copied to af and factored.
 If fact = ' E', the matrix }A\mathrm{ will be equilibrated if necessary, then copied to af
 and factored.
uplo CHARACTER*1. Must be 'U' or 'L'.
 Indicates whether the upper or lower triangular part of }A\mathrm{ is stored and how }A\mathrm{ is
 factored:
 If uplo= 'U', the array a stores the upper triangular part of the matrix }A\mathrm{ , and
 A is factored as }\mp@subsup{U}{}{H}U\mathrm{ .
 If uplo= 'L', the array a stores the lower triangular part of the matrix A;A is
 factored as }L\mp@subsup{L}{}{H}\mathrm{ .
n INTEGER. The order of matrix A (}n\geq0)\mathrm{ .
nrhs INTEGER. The number of right-hand sides; the number of columns in }
(nrhs\geq0).
```

```
a,af,b,work
REAL for sposvx
DOUBLE PRECISION for dposvx
COMPLEX for cposvx
DOUBLE COMPLEX for zposvx.
Arrays: a(lda,*), af(ldaf,*), b(ldb,*), work(*).
The array a contains the matrix \(A\) as specified by uplo. If fact \(=\) ' \(F\) ' and equed = ' Y ', then \(A\) must have been equilibrated by the scaling factors in \(s\), and a must contain the equilibrated matrix \(\operatorname{diag}(s) * A * \operatorname{diag}(s)\). The second dimension of a must be at least max \((1, n)\).
The array \(a f\) is an input argument if \(f a c t=\) ' \(F\) ' .
It contains the triangular factor \(U\) or \(L\) from the Cholesky factorization of \(A\) in the same storage format as \(A\). If equed is not ' n ', then \(a f\) is the factored form of the equilibrated matrix \(\operatorname{diag}(s) * A * \operatorname{diag}(s)\). The second dimension of af must be at least max \((1, n)\).
The array b contains the matrix \(B\) whose columns are the right-hand sides for the systems of equations. The second dimension of \(b\) must be at least \(\max (1, n r h s)\).
work (*) is a workspace array.
The dimension of work must be at least \(\max \left(1,3 *_{n}\right)\) for real flavors, and at least \(\max (1,2 * n)\) for complex flavors.
integer. The first dimension of \(a ; 1 d a \geq \max (1, n)\).
INTEGER. The first dimension of \(a f ; 1 d a f \geq \max (1, n)\).
INTEGER. The first dimension of \(b ; l d b \geq \max (1, n)\).
CHARACTER*1. Must be 'N' or 'Y'.
equed is an input argument if fact \(=\) ' \(F\) ' . It specifies the form of equilibration that was done:
If equed = ' N ', no equilibration was done (always
true if fact = ' N ');
If equed \(=\) ' \(\mathrm{Y}^{\prime}\), equilibration was done and \(A\) has been replaced by \(\operatorname{diag}(s) * A * \operatorname{diag}(s)\).
REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
Array, DIMENSION (n).
The array \(s\) contains the scale factors for \(A\). This array is an input argument if
```

$l d x$	INTEGER. The first dimension of the output array $x ; l d x \geq \max (1, n)$.
iwork	INTEGER.
rwork	Workspace array, DIMENSION at least max $(1, n)$; used in real flavors only.
	REAL for CPOSvx;      DOUBLE PRECISION for zposvx.   Workspace array, DIMENSION at least max $(1, n)$; used in complex flavors   only.

## Output Parameters

$x$

REAL for sposvx
DOUBLE PRECISION for dposvx
COMPLEX for cposvx
DOUBLE COMPLEX for zposvx.
Array, DIMENSION (ldx,*).
If info $=0$ or info $=n+1$, the array $x$ contains the solution matrix $X$ to the original system of equations. Note that if equed $=' Y$ ', $A$ and $B$ are modified on exit, and the solution to the equilibrated system is $\operatorname{diag}(s)^{-1} \star X$.
The second dimension of $x$ must be at least max (1,nrhs).
Array a is not modified on exit if fact = ' F ' or ' N ', or if fact = ' E ' and equed $=$ ' N '.
If fact $=$ ' E ' and equed $=$ ' Y ', $A$ is overwritten by $\operatorname{diag}(s) * A * \operatorname{diag}(s)$
If fact $=$ ' $N$ ' or 'E', then $a f$ is an output argument and on exit returns the triangular factor $U$ or $L$ from the Cholesky factorization $A=U^{H} U$ or $A=L L^{H}$ of the original matrix $A($ if fact $=' \mathrm{~N}$ '), or of the equilibrated matrix $A$ (if fact $=$ ' $E$ '). See the description of a for the form of the equilibrated matrix.
b Overwritten by $\operatorname{diag}(s) \star B$, if equed $=' Y$ '; not changed if equed $=$ ' $N$ '.
This array is an output argument if fact $\neq{ }^{\prime} F^{\prime}$.
See the description of $s$ in Input Arguments section.
REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal condition number of the matrix $A$ after

ferr, berr	equilibration (if done). If $r$ cond is less than the machine precision (in particular, if $r$ cond $=0$ ), the matrix is singular to working precision. This condition is indicated by a return code of info $>0$.
	REAL for single precision flavors.
	DOUBLE PRECISION for double precision flavors.
	Arrays, DIMENSION at least max ( 1, nrhs $)$. Contain the component-wise forward and relative backward errors, respectively, for each solution vector.
equed	If fact $\neq{ }^{\prime} F^{\prime}$, then equed is an output argument. It specifies the form of equilibration that was done (see the description of equed in Input Arguments section).
info	INTEGER. If info $=0$, the execution is successful.
	If info $=-i$, the $i$ th parameter had an illegal value.
	If info $=i$, and $i \leq n$, the leading minor of order $i$ (and hence the matrix $A$ itself) is not positive definite, so the factorization could not be completed, and the solution and error bounds could not be computed; rcond $=0$ is returned.
	If info $=i$, and $i=n+1$, then $U$ is nonsingular, but rcond is less than machine precision, meaning that the matrix is singular to working precision.
	Nevertheless, the solution and error bounds are computed because there are a number of situations where the computed solution can be more accurate than the value of rcond would suggest.

## ?ppsv

> Computes the solution to the system of linear equations with a symmetric (Hermitian) positive definite packed matrix $A$ and multiple right-hand sides.

## Syntax

```
call sppsv (uplo, n, nrhs, ap, b, ldb, info)
call dppsv (uplo, n, nrhs, ap, b, ldb, info)
call cppsv (uplo, n, nrhs, ap, b, ldb, info)
call zppsv (uplo, n, nrhs, ap, b, ldb, info)
```


## Description

This routine solves for $X$ the real or complex system of linear equations
$A X=B$, where A is an $n$-by-n real symmetric/Hermitian positive definite matrix stored in packed format, the columns of matrix $B$ are individual right-hand sides, and the columns of $X$ are the corresponding solutions.

The Cholesky decomposition is used to factor A as $A=U^{H} U$ if upIo $=$ ' U '
or $A=L L^{H}$ if up $10=$ ' L ', where $U$ is an upper triangular matrix and $L$ is a lower triangular matrix. The factored form of $A$ is then used to solve the system of equations $A X=B$.

## Input Parameters

uplo	CHARACTER*1. Must be 'U' or 'L'.
	Indicates whether the upper or lower triangular part of $A$ is stored and how $A$ is factored:
	If uplo = ' U ', the array a stores the upper triangular part of the matrix $A$, and $A$ is factored as $U^{H} U$.
	If uplo = ' L ', the array a stores the lower triangular part of the matrix $A ; A$ is factored as $L L^{H}$.
n	INTEGER. The order of matrix $A(n \geq 0)$.
nrhs	INTEGER. The number of right-hand sides; the number of columns in $B$ (nrhs $\geq 0$ ).
$a p, b$	REAL for sppsv
	DOUBLE PRECISION for dppsv
	COMPLEX for cppsv
	DOUBLE COMPLEX for zppsv.
	Arrays: $a p(*), b(l d b, *)$.
	The array ap contains either the upper or the lower triangular part of the matrix
	$A$ (as specified by uplo) in packed storage (see Matrix Storage Schemes).
	The dimension of ap must be at least max (1,n(n+1)/2).
	The array b contains the matrix $B$ whose columns are the right-hand sides for the systems of equations.
	The second dimension of $b$ must be at least max (1,nrhs).
1 db	INTEGER. The first dimension of $b ; 1 d b \geq \max (1, n)$.

## Output Parameters

If info $=0$, the upper or lower triangular part of $A$ in packed storage is overwritten by the Cholesky factor $U$ or $L$, as specified by uplo.

```
b Overwritten by the solution matrix }X\mathrm{ .
info INTEGER. If info=0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, the leading minor of order i (and hence the matrix }A\mathrm{ itself) is not
positive definite, so the factorization could not be completed, and the solution
has not been computed.
```


## ?ppsvx

Uses the Cholesky factorization to compute the solution to the system of linear equations with a symmetric (Hermitian) positive definite packed matrix $A$, and provides error bounds on the solution.

## Syntax

```
call sppsvx (fact, uplo, n, nrhs, ap, afp, equed, s, b, ldb, x, ldx,
 rcond, ferr, berr, work, iwork, info)
call dppsvx (fact, uplo, n, nrhs, ap, afp, equed, s, b, ldb, x, ldx,
 rcond, ferr, berr, work, iwork, info)
call cppsvx (fact, uplo, n, nrhs, ap, afp, equed, s, b, ldb, x, ldx,
 rcond, ferr, berr, work, rwork, info)
call zppsvx (fact, uplo, n, nrhs, ap, afp, equed, s, b, ldb, x, ldx,
 rcond, ferr, berr, work, rwork, info)
```


## Description

This routine uses the Cholesky factorization $A=U^{H} U$ or $A=L L^{H}$ to compute the solution to a real or complex system of linear equations $A X=B$, where A is a $n$-by-n symmetric or Hermitian positive definite matrix stored in packed format, the columns of matrix $B$ are individual right-hand sides, and the columns of $X$ are the corresponding solutions.

Error bounds on the solution and a condition estimate are also provided.
The routine ?ppsvx performs the following steps:

1. If fact $=$ ' E ', real scaling factors s are computed to equilibrate the system:

$$
\operatorname{diag}(s) * A * \operatorname{diag}(s) * \operatorname{diag}(s)^{-1} * X=\operatorname{diag}(s) * B
$$

Whether or not the system will be equilibrated depends on the scaling of the matrix $A$, but if equilibration is used, $A$ is overwritten by $\operatorname{diag}(s) * A * \operatorname{diag}(s)$ and $B$ by $\operatorname{diag}(s) * B$.
2. If fact = ' N ' or ' E ', the Cholesky decomposition is used to factor the matrix $A$ (after equilibration if fact $=$ ' $E$ ') as
$A=U^{H} U$, if uplo = ' U ', or
$A=L L^{H}$, if uplo $=$ ' L ',
where $U$ is an upper triangular matrix and $L$ is a lower triangular matrix.
3. If the leading $i$-by- $i$ principal minor is not positive definite, then the routine returns with info $=i$. Otherwise, the factored form of $A$ is used to estimate the condition number of the matrix $A$. If the reciprocal of the condition number is less than machine precision, $\operatorname{info}=n+1$ is returned as a warning, but the routine still goes on to solve for $X$ and compute error bounds as described below.
4. The system of equations is solved for $X$ using the factored form of $A$.
5. Iterative refinement is applied to improve the computed solution matrix and calculate error bounds and backward error estimates for it.
6. If equilibration was used, the matrix $X$ is premultiplied by $\operatorname{diag}(s)$ so that it solves the original system before equilibration.

## Input Parameters

```
fact CHARACTER*1.Must be 'F','N', or 'E'.
Specifies whether or not the factored form of the matrix \(A\) is supplied on entry, and if not, whether the matrix \(A\) should be equilibrated before it is factored.
If fact \(=1 \mathrm{~F}\) ': on entry, afp contains the factored form of \(A\). If equed \(=' \mathrm{Y}\) ', the matrix \(A\) has been equilibrated with scaling factors given by \(s\). \(a p\) and \(a f p\) will not be modified.
If fact \(=' \mathrm{~N}\) ', the matrix \(A\) will be copied to afp and factored. If fact \(=\) ' E ', the matrix \(A\) will be equilibrated if necessary, then copied to \(a f p\) and factored.
uplo CHARACTER*1. Must be 'U' or 'L'.
Indicates whether the upper or lower triangular part of \(A\) is stored and how \(A\) is factored:
```

	If uplo= 'U', the array ap stores the upper triangular part of the matrix $A$, and $A$ is factored as $U^{H} U$.   If uplo = 'L', the array ap stores the lower triangular part of the matrix $A ; A$ is factored as $L L^{H}$.
$n$	INTEGER. The order of matrix $A(n \geq 0)$.
nrhs	INTEGER. The number of right-hand sides; the number of columns in $B$ (nrhs $\geq 0$ ).
$a p, a f p, b$, work	REAL for sppsvx
	DOUBLE PRECISION for dppsvx
	COMPLEX for cppsvx
	DOUBLE COMPLEX for zppsvx.
	Arrays: $\mathrm{ap}(*)$, $\mathrm{afp}(*), \mathrm{b}$ ( 1 db , *) , work (*).
	The array $a p$ contains the upper or lower triangle of the original symmetric/Hermitian matrix A in packed storage (see Matrix Storage Schemes). In case when fact = ' F ' and equed $=$ ' Y ', ap must contain the equilibrated matrix $\operatorname{diag}(s) * A * \operatorname{diag}(s)$.
	The array $a f p$ is an input argument if $f a c t=' F$ ' and contains the triangular factor $U$ or $L$ from the Cholesky factorization of $A$ in the same storage format as $A$. If equed is not ' N ', then $\operatorname{afp}$ is the factored form of the equilibrated matrix $A$.
	The array $b$ contains the matrix $B$ whose columns are the right-hand sides for the systems of equations.   work (*) is a workspace array.
	The dimension of arrays $a p$ and $a f p$ must be at least $\max (1, n(n+1) / 2)$; the second dimension of $b$ must be at least max( 1, nrhs ); the dimension of work must be at least $\max \left(1,3 *_{n}\right)$ for real flavors and $\max \left(1,2 *_{n}\right)$ for complex flavors.
1 db	INTEGER. The first dimension of $b ; 1 d b \geq \max (1, n)$.
equed	CHARACTER*1. Must be 'N' or 'Y'.   equed is an input argument if $f a c t=$ ' $F$ '. It specifies the form of equilibration that was done:
	If equed $=$ ' $N$ ', no equilibration was done (always true if fact $=$ ' N ');
	If equed $=' Y$ ', equilibration was done and $A$ has been replaced by $\operatorname{diag}(s) * A * \operatorname{diag}(s)$.

REAL for single precision flavors; DOUBLE PRECISION for double precision flavors.
Array, DIMENSION (n).
The array $s$ contains the scale factors for $A$. This array is an input argument if fact = ' $F$ ' only; otherwise it is an output argument.
If equed $=' N$ ', $s$ is not accessed.
If fact $=$ ' $F$ ' and equed $=$ ' $Y$ ', each element of $s$ must be positive.
INTEGER. The first dimension of the output array $x ; l d x \geq \max (1, n)$.
INTEGER.
Workspace array, DIMENSION at least $\max (1, n)$; used in real flavors only.
REAL for cppsvx;
DOUBLE PRECISION for zppsvx.
Workspace array, DIMENSION at least $\max (1, n)$; used in complex flavors only.

## Output Parameters

b
s

REAL for sppsvx
DOUBLE PRECISION for dppsvx
COMPLEX for cppsvx
DOUBLE COMPLEX for zppsvx.
Array, DIMENSION (ldx,*).
If info $=0$ or info $=n+1$, the array $x$ contains the solution matrix $X$ to the original system of equations. Note that if equed $='^{\prime}, A$ and $B$ are modified on exit, and the solution to the equilibrated system is $\operatorname{diag}(s)^{-1} \star X$.
The second dimension of $x$ must be at least max(1,nrhs).
Array ap is not modified on exit if fact $=$ ' $F$ ' or ' $N$ ', or if $f a c t=$ ' $E$ ' and equed $=$ ' N '.
If fact $=$ ' E ' and equed $=$ ' Y ', $A$ is overwritten by $\operatorname{diag}(s) * A * \operatorname{diag}(s)$
$\operatorname{afp} \quad$ If fact $=$ ' $N$ ' or ' $E$ ', then $a f p$ is an output argument and on exit returns the triangular factor $U$ or $L$ from the Cholesky factorization $A=U^{H} U$ or $A=L L^{H}$ of the original matrix $A($ if fact $=' \mathrm{~N}$ '), or of the equilibrated matrix $A$ (if fact $=$ ' $E$ '). See the description of $a p$ for the form of the equilibrated matrix.
Overwritten by $\operatorname{diag}(s) \star B$, if equed $=' Y$ '; not changed if equed $={ }^{\prime} \mathrm{N}$ '.
This array is an output argument if fact $\neq{ }^{\prime} F^{\prime}$. See the description of $s$ in Input Arguments section.

rcond	REAL for single precision flavors.
	DOUBLE PRECISION for double precision flavors.
	An estimate of the reciprocal condition number of the matrix $A$ after equilibration (if done). If rcond is less than the machine precision (in particular, if rcond $=0$ ), the matrix is singular to working precision. This condition is indicated by a return code of info $>0$.
ferr, berr	REAL for single precision flavors.
	DOUBLE PRECISION for double precision flavors.
	Arrays, DIMENSION at least max ( 1, nrhs). Contain the component-wise forward and relative backward errors, respectively, for each solution vector.
equed	If fact $\neq$ ' $F$ ', then equed is an output argument. It specifies the form of equilibration that was done (see the description of equed in Input Arguments section).
info	INTEGER. If info $=0$, the execution is successful.
	If info $=-i$, the $i$ th parameter had an illegal value.
	If info $=i$, and $i \leq n$, the leading minor of order $i$ (and hence the matrix $A$ itself) is not positive definite, so the factorization could not be completed, and the solution and error bounds could not be computed; rcond $=0$ is returned.
	If info $=i$, and $i=n+1$, then $U$ is nonsingular, but rcond is less than machine precision, meaning that the matrix is singular to working precision.
	Nevertheless, the solution and error bounds are computed because there are a number of situations where the computed solution can be more accurate than the value of rcond would suggest.

## ?pbsv

> Computes the solution to the system of linear equations with a symmetric or Hermitian positive definite band matrix $A$ and multiple right-hand sides.

## Syntax

```
call spbsv (uplo, n, kd, nrhs, ab, ldab, b, ldb, info)
call dpbsv (uplo, n, kd, nrhs, ab, ldab, b, ldb, info)
call cpbsv (uplo, n, kd, nrhs, ab, ldab, b, ldb, info)
call zpbsv (uplo, n, kd, nrhs, ab, ldab, b, ldb, info)
```


## Description

This routine solves for $X$ the real or complex system of linear equations
$A X=B$, where A is an n -by- n symmetric/Hermitian positive definite band matrix, the columns of matrix $B$ are individual right-hand sides, and the columns of $X$ are the corresponding solutions.

The Cholesky decomposition is used to factor A as $A=U^{H} U$ if uplo $=$ ' U '
or $A=L L^{H}$ if uplo='L', where $U$ is an upper triangular band matrix and $L$ is a lower triangular band matrix, with the same number of superdiagonals or subdiagonals as $A$. The factored form of $A$ is then used to solve the system of equations $A X=B$.

## Input Parameters

uplo	CHARACTER*1. Must be 'U' or 'L'.
	Indicates whether the upper or lower triangular part of $A$ is stored in the array $a b$, and how $A$ is factored:
	If uplo= 'U', the array ab stores the upper triangular part of the matrix $A$, and $A$ is factored as $U^{H} U$.
	If uplo='L', the array ab stores the lower triangular part of the matrix $A ; A$ is factored as $L L^{H}$.
n	Integer. The order of matrix $A(n \geq 0)$.
kd	INTEGER. The number of superdiagonals of the matrix $A$ if uplo = 'U', or the number of subdiagonals if uplo='L' ( $k d \geq 0$ ).
nrhs	INTEGER. The number of right-hand sides; the number of columns in $B$ (nrhs $\geq 0$ ).
$a b, b$	REAL for spbsv
	DOUBLE PRECISION for dpbsv
	COMPLEx for cpbsv
	double Complex for zpbsv.
	Arrays: $a b(l d a b, *), b(l d b, *)$.
	The array $a b$ contains either the upper or the lower triangular part of the matrix $A$ (as specified by uplo) in band storage (see Matrix Storage Schemes).
	The second dimension of $a b$ must be at least $\max (1, n)$. The array $b$ contains the matrix $B$ whose columns are the right-hand sides for the systems of equations.
	The second dimension of $b$ must be at least max(1,nrhs).
Idab	INTEGER. The first dimension of the array $a b$. ( $1 \mathrm{dab} \geq k d+1$ )
1 db	INTEGER. The first dimension of $b ; 1 d b \geq \max (1, n)$.

## Output Parameters

ab	The upper or lower triangular part of $A$ (in band storage) is overwritten by the   Cholesky factor $U$ or $L$, as specified by uplo, in the same storage format as $A$.		
b	Overwritten by the solution matrix $X$.	$\quad$	INTEGER. If info=0, the execution is successful.
:---			
If info $=-i$, the $i$ th parameter had an illegal value.			
If info $=i$, the leading minor of order $i$ (and hence the matrix $A$ itself) is not			
positive definite, so the factorization could not be completed, and the solution			
has not been computed.			

## ?pbsvx

> Uses the Cholesky factorization to compute the solution to the system of linear equations with a symmetric (Hermitian) positive definite band matrix $A$, and provides error bounds on the solution.

## Syntax

```
call spbsvx (fact, uplo, n, kd, nrhs, ab, ldab, afb, ldafb, equed, s, b,
 ldb, x, ldx, rcond, ferr, berr, work, iwork, info)
call dpbsvx (fact, uplo, n, kd, nrhs, ab, ldab, afb, ldafb, equed, s, b,
 ldb, x, ldx, rcond, ferr, berr, work, iwork, info)
call cpbsvx (fact, uplo, n, kd, nrhs, ab, ldab, afb, ldafb, equed, s, b,
 ldb, x, ldx, rcond, ferr, berr, work, iwork, info)
call zpbsvx (fact, uplo, n, kd, nrhs, ab, ldab, afb, ldafb, equed, s, b,
 ldb, x, ldx, rcond, ferr, berr, work, iwork, info)
```


## Description

This routine uses the Cholesky factorization $A=U^{H} U$ or $A=L L^{H}$ to compute the solution to a real or complex system of linear equations $A X=B$, where A is a $n$-by- $n$ symmetric or Hermitian positive definite band matrix, the columns of matrix $B$ are individual right-hand sides, and the columns of $X$ are the corresponding solutions.

Error bounds on the solution and a condition estimate are also provided.
The routine ?pbsvx performs the following steps:

1. If fact $=$ ' E ', real scaling factors $s$ are computed to equilibrate the system:

$$
\operatorname{diag}(s) * A * \operatorname{diag}(s) * \operatorname{diag}(s)^{-1} \star X=\operatorname{diag}(s) \star B
$$

Whether or not the system will be equilibrated depends on the scaling of the matrix $A$, but if equilibration is used, $A$ is overwritten by $\operatorname{diag}(s) \star A \star \operatorname{diag}(s)$ and $B$ by $\operatorname{diag}(s) \star B$.
2. If fact = ' $N$ ' or ' E ', the Cholesky decomposition is used to factor the matrix $A$ (after equilibration if fact $=$ ' $E$ ') as
$A=U^{H} U$, if uplo $=$ ' U ', or
$A=L L^{H}$, if uplo $=$ ' L ',
where $U$ is an upper triangular band matrix and $L$ is a lower triangular band matrix.
3. If the leading $i$-by- $i$ principal minor is not positive definite, then the routine returns with info $=i$. Otherwise, the factored form of $A$ is used to estimate the condition number of the matrix $A$. If the reciprocal of the condition number is less than machine precision, info $=n+1$ is returned as a warning, but the routine still goes on to solve for $X$ and compute error bounds as described below.
4. The system of equations is solved for $X$ using the factored form of $A$.
5. Iterative refinement is applied to improve the computed solution matrix and calculate error bounds and backward error estimates for it.
6. If equilibration was used, the matrix $X$ is premultiplied by $\operatorname{diag}(s)$ so that it solves the original system before equilibration.

## Input Parameters

```
fact CHARACTER*1.Must be 'F','N', or 'E'.
 Specifies whether or not the factored form of the matrix }A\mathrm{ is supplied on entry,
 and if not, whether the matrix }A\mathrm{ should be equilibrated before it is factored.
 If fact = ' F': on entry, afb contains the factored form of A. If equed='Y',
 the matrix }A\mathrm{ has been equilibrated with scaling factors given by s.
 ab}\mathrm{ and afb will not be modified.
 If fact = 'N', the matrix A will be copied to afb and factored.
 If fact = ' E', the matrix }A\mathrm{ will be equilibrated if necessary, then copied to
 afb and factored.
uplo CHARACTER*1. Must be 'U' or 'L'.
```

Indicates whether the upper or lower triangular part of $A$ is stored and how $A$ is factored:
If uplo= ' U ', the array $a b$ stores the upper triangular part of the matrix $A$, and $A$ is factored as $U^{H} U$.
If uplo= 'L', the array ab stores the lower triangular part of the matrix $A ; A$ is factored as $L L^{H}$.
n kd
nrhs

INTEGER. The order of matrix $A(n \geq 0)$.
INTEGER. The number of super-diagonals or sub-diagonals in the matrix $A$ ( $k d \geq 0$ ).

INTEGER. The number of right-hand sides; the number of columns in $B$ (nrhs $\geq 0$ ).
$a b, a f b, b$, work REAL for spbsvx
DOUBLE PRECISION for dpbsvx
COMPLEX for cpbsvx
DOUBLE COMPLEX for zpbsvx.
Arrays: $a b(l d a b, *)$, $a f b(l d a b, *), b(l d b, *)$, work(*).
The array $a b$ contains the upper or lower triangle of the matrix $A$ in band storage (see Matrix Storage Schemes).
If fact = ' F ' and equed $=$ ' Y ', then $a b$ must contain the equilibrated matrix $\operatorname{diag}(s) * A * \operatorname{diag}(s)$. The second dimension of $a b$ must be at least $\max (1, n)$. The array $a f b$ is an input argument if fact $=$ ' $F$ ' .
It contains the triangular factor $U$ or $L$ from the Cholesky factorization of the band matrix $A$ in the same storage format as $A$. If equed = ' Y ', then $a f b$ is the factored form of the equilibrated matrix $A$. The second dimension of $a f b$ must be at least $\max (1, n)$.

The array b contains the matrix $B$ whose columns are the right-hand sides for the systems of equations. The second dimension of $b$ must be at least $\max (1, n r h s)$.
work (*) is a workspace array.
The dimension of work must be at least $\max \left(1,3 *_{n}\right)$ for real flavors, and at least $\max \left(1,2 *_{n}\right)$ for complex flavors.

Idab INTEGER. The first dimension of $a b ; ~ I d a b \geq k d+1$.
Idafb INTEGER. The first dimension of $a f b ;$ Idafb $\geq k d+1$.
$1 d b$
INTEGER. The first dimension of $b ; l d b \geq \max (1, n)$.

```
equed CHARACTER*1. Must be 'N' or 'Y'.
 equed is an input argument if fact = 'F'. It specifies the form of equilibration
 that was done:
 If equed= 'N', no equilibration was done (always
 true if fact = 'N');
 If equed = 'Y', equilibration was done and }A\mathrm{ has been replaced by
 diag(s)* }A*\operatorname{diag}(s)
S
 REAL for single precision flavors;
 DOUBLE PRECISION for double precision flavors.
 Array, DIMENSION (n).
 The array s contains the scale factors for }A\mathrm{ . This array is an input argument if
 fact = 'F' only; otherwise it is an output argument.
 If equed = 'N', s is not accessed.
 If fact = 'F' and equed = 'Y', each element of s must be positive.
Idx INTEGER. The first dimension of the output array x; ldx \geqmax(1,n).
iwork INTEGER.
 Workspace array, DIMENSION at least max(1,n); used in real flavors only.
rwork REAL for cpbsvx;
 DOUBLE PRECISION for zpbsvx.
 Workspace array, DIMENSION at least max (1,n); used in complex flavors
 only.
```


## Output Parameters

REAL for spbsvx
DOUBLE PRECISION for dpbsvx
COMPLEX for cpbsvx
DOUBLE COMPLEX for zpbsvx.
Array, DIMENSION (Idx,*).
If info $=0$ or info $=n+1$, the array $x$ contains the solution matrix $X$ to the original system of equations. Note that if equed $={ }^{\prime} \mathrm{Y}^{\prime}, A$ and $B$ are modified on exit, and the solution to the equilibrated system is $\operatorname{diag}(s)^{-1} \star X$.
The second dimension of $x$ must be at least max(1,nrhs).
$a b$
On exit, if fact $=$ ' E ' and equed $=$ ' Y ', $A$ is overwritten by $\operatorname{diag}(s) * A * \operatorname{diag}(s)$
$a f b$
If fact $=$ ' $N$ ' or ' $E$ ', then $a f b$ is an output argument and on exit returns the triangular factor $U$ or $L$ from the Cholesky factorization $A=U^{H} U$ or $A=L L^{H}$ of the original matrix $A$ (if fact $=$ ' N '), or of the equilibrated matrix $A$ (if fact $=$ ' $E$ '). See the description of $a b$ for the form of the equilibrated matrix.

b	Overwritten by $\operatorname{diag}(s) * B$, if equed $=' Y^{\prime}$; not changed if equed $=$ ' $N$ '.
s	This array is an output argument if fact $\neq{ }^{\prime} F^{\prime}$.
	See the description of $s$ in Input Arguments section.
rcond	REAL for single precision flavors.
	DOUBLE PRECISION for double precision flavors.
	An estimate of the reciprocal condition number of the matrix $A$ after equilibration (if done). If rcond is less than the machine precision (in particular, if rcond $=0$ ), the matrix is singular to working precision. This condition is indicated by a return code of info $>0$.
ferr, berr	REAL for single precision flavors.
	DOUBLE PRECISION for double precision flavors.
	Arrays, DIMENSION at least max( $1, n r h s$ ). Contain the component-wise forward and relative backward errors, respectively, for each solution vector.
equed	If $f a c t \neq$ ' $F$ ' , then equed is an output argument. It specifies the form of equilibration that was done (see the description of equed in Input Arguments section).
info	INTEGER. If info $=0$, the execution is successful.
	If info $=-i$, the $i$ th parameter had an illegal value.
	If info $=i$, and $i \leq n$, the leading minor of order $i$ (and hence the matrix $A$ itself) is not positive definite, so the factorization could not be completed, and the solution and error bounds could not be computed; $r$ cond $=0$ is returned.
	If info $=i$, and $i=n+1$, then $U$ is nonsingular, but rcond is less than machine precision, meaning that the matrix is singular to working precision.
	Nevertheless, the solution and error bounds are computed because there are a number of situations where the computed solution can be more accurate than the value of rcond would suggest.

## ?ptsv

Computes the solution to the system of linear equations
with a symmetric or Hermitian positive definite
tridiagonal matrix A and multiple right-hand sides.

## Syntax

```
call sptsv (n, nrhs, d, e, b, ldb, info)
```

```
call dptsv (n, nrhs, d, e, b, ldb, info)
call cptsv (n, nrhs, d, e, b, ldb, info)
call zptsv (n, nrhs, d, e, b, ldb, info)
```


## Description

This routine solves for $X$ the real or complex system of linear equations $A X=B$, where A is an $n$-by-n symmetric/Hermitian positive definite tridiagonal matrix, the columns of matrix $B$ are individual right-hand sides, and the columns of $X$ are the corresponding solutions.
$A$ is factored as $A=L D L^{H}$, and the factored form of $A$ is then used to solve the system of equations $A X=B$.

## Input Parameters

n
nrhs INTEGER. The number of right-hand sides; the number of columns in $B$ (nrhs $\geq 0$ ).
d REAL for single precision flavors. DOUBLE PRECISION for double precision flavors. Array, dimension at least $\max (1, n)$. Contains the diagonal elements of the tridiagonal matrix $A$.
$e, b$

1 db
REAL for sptsv
DOUBLE PRECISION for dptsv
COMPLEX for cptsv
DOUBLE COMPLEX for zptsv.
Arrays: $e(n-1), b(l d b, *)$.
The array e contains the ( $n-1$ ) subdiagonal elements of $A$.
The array b contains the matrix $B$ whose columns are the right-hand sides for the systems of equations.
The second dimension of $b$ must be at least $\max (1, n r h s)$.
INTEGER. The first dimension of $b ; 1 d b \geq \max (1, n)$.

## Output Parameters

d
Overwritten by the $n$ diagonal elements of the diagonal matrix $D$ from the $L D L^{H}$ factorization of A.

e	Overwritten by the $(n-1)$ subdiagonal elements of the unit bidiagonal factor $L$   from the factorization of A.
b	Overwritten by the solution matrix $X$.

## ?ptsvx

Uses the factorization $A=L D L^{H}$ to compute the solution to the system of linear equations with a symmetric (Hermitian) positive definite tridiagonal matrix $A$, and provides error bounds on the solution.

## Syntax

```
call sptsvx (fact, n, nrhs, d, e, df, ef, b, ldb, x, ldx, rcond, ferr,
 berr, work, info)
call dptsvx (fact, n, nrhs, d, e, df, ef, b, ldb, x, ldx, rcond, ferr,
 berr, work, info)
call cptsvx (fact, n, nrhs, d, e, df, ef, b, ldb, x, ldx, rcond, ferr,
 berr, work, rwork, info)
call zptsvx (fact, n, nrhs, d, e, df, ef, b, ldb, x, ldx, rcond, ferr,
 berr, work, rwork, info)
```


## Description

This routine uses the Cholesky factorization $A=L D L^{H}$ to compute the solution to a real or complex system of linear equations $A X=B$, where A is a $n$-by- $n$ symmetric or Hermitian positive definite tridiagonal matrix, the columns of matrix $B$ are individual right-hand sides, and the columns of $X$ are the corresponding solutions.

Error bounds on the solution and a condition estimate are also provided.
The routine ?ptsvx performs the following steps:

1. If fact $=$ ' N ', the matrix A is factored as $A=L D L^{H}$, where $L$ is a unit lower bidiagonal matrix and $D$ is diagonal. The factorization can also be regarded as having the form $A=U^{H} D U$.
2. If the leading $i$-by- $i$ principal minor is not positive definite, then the routine returns with info $=i$. Otherwise, the factored form of $A$ is used to estimate the condition number of the matrix $A$. If the reciprocal of the condition number is less than machine precision, info $=n+1$ is returned as a warning, but the routine still goes on to solve for $X$ and compute error bounds as described below.
3. The system of equations is solved for $X$ using the factored form of $A$.
4. Iterative refinement is applied to improve the computed solution matrix and calculate error bounds and backward error estimates for it.

Input Parameters

fact	CHARACTER*1. Must be 'F' or 'N'.
	Specifies whether or not the factored form of the matrix $A$ is supplied on entry.
	If fact $='^{\prime}$ ': on entry, $d f$ and ef contain the factored form of $A$. Arrays $d$, $e, d f$, and ef will not be modified.
	If fact $=$ ' N ', the matrix $A$ will be copied to $d f$ and ef and factored.
$n$	Integer. The order of matrix $A(n \geq 0)$.
nrhs	INTEGER. The number of right-hand sides; the number of columns in $B$ ( $n r h s \geq 0$ ).
d, df,rwork	REAL for single precision flavors
	DOUBLE PRECISION for double precision flavors
	Arrays: $d(n), d f(n), \operatorname{rwork}(n)$.
	The array d contains the n diagonal elements of the tridiagonal matrix $A$.
	The array $d f$ is an input argument if $f a c t=' F$ ' and on entry contains the $n$ diagonal elements of the diagonal matrix $D$ from the $L D L^{H}$ factorization of $A$. The array rwork is a workspace array used for complex flavors only.
$e, e f, b$, work	REAL for sptsvx
	DOUBLE PRECISION for dptsvx
	COMPLex for cptsvx
	double complex for zptsvx.
	Arrays: $e(n-1)$, ef $(n-1), b(1 d b, *)$, work(*).
	The array $e$ contains the $(n-1)$ subdiagonal elements of the tridiagonal matrix $A$.

The array ef is an input argument if fact $=' F$ ' and on entry contains the ( $n$ -1) subdiagonal elements of the unit bidiagonal factor $L$ from the $L D L^{H}$ factorization of $A$.
The array b contains the matrix $B$ whose columns are the right-hand sides for the systems of equations.
The array work is a workspace array. The dimension of work must be at least $2 *_{n}$ for real flavors, and at least $n$ for complex flavors.
$1 d b \quad$ Integer. The leading dimension of $b ; 1 d b \geq \max (1, n)$.
$I d x \quad$ INTEGER. The leading dimension of $x ; \operatorname{ldx} \geq \max (1, n)$.

## Output Parameters

$x$	REAL for sptsvx
	DOUBLE PRECISION for dptsvx
	COMPLEX for cptsvx
	DOUBLE COMPLEX for zptsvx.
	Array, DIMENSION (ldx,*).
	If info $=0$ or info $=n+1$, the array $x$ contains the solution matrix $X$ to the system of equations. The second dimension of $x$ must be at least $\max (1, n r h s)$.
$d f, e f$	These arrays are output arguments if fact $=$ ' N '
	See the description of df, ef in Input Arguments section.
rcond	REAL for single precision flavors.
	DOUBLE PRECISION for double precision flavors.
	An estimate of the reciprocal condition number of the matrix $A$ after equilibration (if done). If rcond is less than the machine precision (in particular, if rcond $=0$ ), the matrix is singular to working precision. This condition is indicated by a return code of info $>0$.
ferr, berr	REAL for single precision flavors.
	DOUBLE PRECISION for double precision flavors.
	Arrays, DIMENSION at least max( $1, n r h s$ ). Contain the component-wise forward and relative backward errors, respectively, for each solution vector.
info	INTEGER. If info $=0$, the execution is successful.
	If info $=-i$, the $i$ th parameter had an illegal value.
	If info $=i$, and $i \leq n$, the leading minor of order $i$ (and hence the matrix $A$ itself) is not positive definite, so the factorization could not be completed, and the solution and error bounds could not be computed; rcond $=0$ is returned.
	If info $=i$, and $i=n+1$, then $U$ is nonsingular, but rcond is less than machine precision, meaning that the matrix is singular to working precision.

Nevertheless, the solution and error bounds are computed because there are a number of situations where the computed solution can be more accurate than the value of rcond would suggest.

## ?sysv

Computes the solution to the system of linear equations with a real or complex symmetric matrix $A$ and multiple right-hand sides.

## Syntax

```
call ssysv (uplo, n, nrhs, a, lda, ipiv, b, ldb, work, lwork, info)
call dsysv (uplo, n, nrhs, a, lda, ipiv, b, ldb, work, lwork, info)
call csysv (uplo, n, nrhs, a, lda, ipiv, b, ldb, work, lwork, info)
call zsysv (uplo, n, nrhs, a, lda, ipiv, b, ldb, work, lwork, info)
```


## Description

This routine solves for $X$ the real or complex system of linear equations $A X=B$, where A is an $n$-by-n symmetric matrix, the columns of matrix $B$ are individual right-hand sides, and the columns of $X$ are the corresponding solutions.

The diagonal pivoting method is used to factor $A$ as $A=U D U^{T}$ or
$A=L D L^{T}$, where $U($ or $L)$ is a product of permutation and unit upper (lower) triangular matrices, and $D$ is symmetric and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.

The factored form of $A$ is then used to solve the system of equations $A X=B$.

## Input Parameters

```
uplo CHARACTER*1. Must be 'U' or 'L'.
 Indicates whether the upper or lower triangular part of }A\mathrm{ is stored and how }A\mathrm{ is
 factored:
 If uplo= 'U', the array a stores the upper triangular part of the matrix }A\mathrm{ , and
 A is factored as }UD\mp@subsup{U}{}{T}\mathrm{ .
 If uplo= 'L', the array a stores the lower triangular part of the matrix A;A is
 factored as }LD\mp@subsup{L}{}{T}\mathrm{ .
 n INTEGER. The order of matrix A (}n\geq0)
```

nrhs	INTEGER. The number of right-hand sides; the number of columns in $B$ (nrhs $\geq 0$ ).
a, b, work	REAL for ssysv
	DOUBLE PRECISION for dsysv
	COMPLEX for csysv
	DOUBLE COMPLEX for zsysv.
	Arrays: $a(l d a, *), b(l d b, *)$, work(lwork).
	The array a contains either the upper or the lower triangular part of the symmetric matrix $A$ (see uplo).
	The second dimension of a must be at least max $(1, n)$.
	The array $b$ contains the matrix $B$ whose columns are the right-hand sides for the systems of equations.
	The second dimension of $b$ must be at least max $(1, n r h s)$. work ( 1 work) is a workspace array.
Ida	INTEGER. The first dimension of $a ; 1 d a \geq \max (1, n)$.
1 db	INTEGER. The first dimension of $b ; 1 d b \geq \max (1, n)$.
lwork	INTEGER. The size of the work array ( 1 work $\geq 1$ )
	See Application notes for the suggested value of Iwork.
Output Parameters	
a	If info $=0$, a is overwritten by the block-diagonal matrix $D$ and the multipliers used to obtain the factor $U$ (or $L$ ) from the factorization of $A$ as computed by ?sytrf.
b	If info $=0, b$ is overwritten by the solution matrix $X$.
ipiv	INTEGER.
	Array, DIMENSION at least max $(1, n)$.
	Contains details of the interchanges and the block structure of $D$, as determined by ?sytrf.
	If $\operatorname{ipiv}(i)=k>0$, then $d_{i i}$ is a 1-by-1 diagonal block, and the $i$ th row and column of $A$ was interchanged with the $k$ th row and column.
	If uplo $=' \mathrm{U}$ ' and $\operatorname{ipiv}(i)=\operatorname{ipiv}(i-1)=-m<0$, then $D$ has a 2 -by-2 block in rows/columns $i$ and $i-1$, and (i-1) th row and column of $A$ was interchanged with the $m$ th row and column.
	If uplo $=$ 'L' and $\operatorname{ipiv}(i)=\operatorname{ipiv}(i+1)=-m<0$, then $D$ has a 2 -by-2 block in rows/columns $i$ and $i+1$, and $(i+1)$ th row and column of $A$ was interchanged with the $m$ th row and column.
work(1)	If info=0, on exit work (1) contains the minimum value of 1 work required for optimum performance. Use this 1 work for subsequent runs.

info INTEGER. If info $=0$, the execution is successful.
If info $=-i$, the $i$ th parameter had an illegal value.
If info $=i, d_{i i}$ is 0 . The factorization has been completed, but $D$ is exactly singular, so the solution could not be computed.

## Application Notes

For better performance, try using 1 work $=n *$ blocksize, where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm.

If you are in doubt how much workspace to supply, use 1 work $=-1$ for the first run. In this case, a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry work (1) of the work array, and no error message related to lwork is issued by XERBLA. On exit, examine work (1) and use this value for subsequent runs.

## ?sysvx

> Uses the diagonal pivoting factorization to compute the solution to the system of linear equations with a real or complex symmetric matrix $A$, and provides error bounds on the solution.

## Syntax

```
call ssysvx (fact, uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx,
 rcond, ferr, berr, work, lwork, iwork, info)
call dsysvx (fact, uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx,
 rcond, ferr, berr, work, lwork, iwork, info)
call csysvx (fact, uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx,
 rcond, ferr, berr, work, lwork, rwork, info)
call zsysvx (fact, uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx,
 rcond, ferr, berr, work, lwork, rwork, info)
```


## Description

This routine uses the diagonal pivoting factorization to compute the solution to a real or complex system of linear equations $A X=B$, where A is a $n$-by- $n$ symmetric matrix, the columns of matrix $B$ are individual right-hand sides, and the columns of $X$ are the corresponding solutions.

Error bounds on the solution and a condition estimate are also provided.

The routine ?sysvx performs the following steps:

1. If fact $=$ ' N ', the diagonal pivoting method is used to factor the matrix A . The form of the factorization is $A=U D U^{T}$ or $A=L D L^{T}$, where $U($ or $L)$ is a product of permutation and unit upper (lower) triangular matrices, and $D$ is symmetric and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.
2. If some $d_{i, i}=0$, so that $D$ is exactly singular, then the routine returns with info $=i$. Otherwise, the factored form of $A$ is used to estimate the condition number of the matrix $A$. If the reciprocal of the condition number is less than machine precision, $\operatorname{infO}=n+1$ is returned as a warning, but the routine still goes on to solve for $X$ and compute error bounds as described below.
3. The system of equations is solved for $X$ using the factored form of $A$.
4. Iterative refinement is applied to improve the computed solution matrix and calculate error bounds and backward error estimates for it.

## Input Parameters

fact	RACTER*1. Must be 'F' or
	Specifies whether or not the factored form of the matrix $A$ has been supplied on entry.
	If fact $=$ ' $F$ ': on entry, af and ipiv contain the factored form of $A$. Arrays a, af, and ipiv will not be modified.
	If fact $=1 \mathrm{~N}$ ', the matrix $A$ will be copied to af and factored.
uplo	CHARACTER*1. Must be 'U' or 'L'.   Indicates whether the upper or lower triangular part of $A$ is stored and how $A$ is factored:
	If uplo = 'U', the array a stores the upper triangular part of the symmetric matrix $A$, and $A$ is factored as $U D U^{T}$.
	If uplo = 'L', the array a stores the lower triangular part of the symmetric matrix $A ; A$ is factored as $L D L^{T}$.
$n$	INTEGER. The order of matrix $A$ ( $n \geq 0$ ).
nrhs	INTEGER. The number of right-hand sides; the number of columns in $B$ (nrhs $\geq 0$ ).


$a, a f, b$, work	REAL for ssysvx
	DOUBLE PRECISION for dsysvx
	COMPLEX for csysvx
	DOUBLE COMPLEX for zsysvx.
	The array a contains either the upper or the lower triangular part of the symmetric matrix $A$ (see uplo).
	The second dimension of a must be at least max $(1, n)$.
	The array af is an input argument if fact = ' $F$ ' . It contains he block diagonal matrix $D$ and the multipliers used to obtain the factor $U$ or $L$ from the factorization $A=U D U^{T}$ or $A=L D L^{T}$ as computed by ?sytrf. The second dimension of af must be at least $\max (1, n)$.
	The array $b$ contains the matrix $B$ whose columns are the right-hand sides for the systems of equations. The second dimension of $b$ must be at least $\max (1, n r h s)$.
	work (*) is a workspace array of dimension (lwork).
Ida	INTEGER. The first dimension of $a ; 1 d a \geq \max (1, n)$.
Idaf	INTEGER. The first dimension of $a f ; 1 d a f \geq \max (1, n)$.
$1 d \mathrm{~b}$	INTEGER. The first dimension of $b ; 1 d b \geq \max (1, n)$.
ipiv	INTEGER.
	Array, DIMENSION at least max $(1, n)$.
	The array ipiv is an input argument if fact $=$ ' F ' .
	It contains details of the interchanges and the block structure of $D$, as determined by ?sytrf.
	If $\operatorname{ipiv}(i)=k>0$, then $d_{i i}$ is a 1-by- 1 diagonal block, and the $i$ th row and column of $A$ was interchanged with the $k$ th row and column.
	If uplo $=$ 'U' and $\operatorname{ipiv}(i)=\operatorname{ipiv}(i-1)=-m<0$, then $D$ has a 2-by-2 block in rows/columns $i$ and $i-1$, and ( $i-1$ ) th row and column of $A$ was interchanged with the mth row and column.
	If uplo $=$ 'L' and $\operatorname{ipiv}(i)=\operatorname{ipiv}(i+1)=-m<0$, then $D$ has a 2-by-2 block in rows/columns $i$ and $i+1$, and $(i+1)$ th row and column of $A$ was interchanged with the mth row and column.
$1 d x$	INTEGER. The leading dimension of the output array $x ; 1 d x \geq m a x(1, n)$.
lwork	INTEGER. The size of the work array .
	See Application notes for the suggested value of 1 work.


iwork	INTEGER.
Wwork	Workspace array, DIMENSION at least $\max (1, n)$; used in real flavors only.
	REAL for csysvx;               DOUBLE PRECISION for zsysvx.   Workspace array, DIMENSION at least $\max (1, n)$; used in complex flavors

## Output Parameters

$x$
rcond
ferr, berr REAL for single precision flavors.
REAL for ssysvx
DOUBLE PRECISION for dsysvx
COMPLEX for csysvx
DOUBLE COMPLEX for zsysvx.
Array, DIMENSION (Idx,*).
If info $=0$ or info $=n+1$, the array $x$ contains the solution matrix $X$ to the system of equations. The second dimension of $x$ must be at least $\max (1, n r h s)$.

These arrays are output arguments if fact $=$ ' N '.
See the description of af, ipiv in Input Arguments section.
REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal condition number of the matrix $A$. If rcond is less than the machine precision (in particular, if $r$ cond $=0$ ), the matrix is singular to working precision. This condition is indicated by a return code of info>0.

DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max( $1, n r h s$ ). Contain the component-wise forward and relative backward errors, respectively, for each solution vector. work (1) If info=0, on exit work (1) contains the minimum value of lwork required for optimum performance. Use this lwork for subsequent runs.
info INTEGER. If info $=0$, the execution is successful.
If info $=-i$, the $i$ th parameter had an illegal value.
If info $=i$, and $i \leq n$, then $d_{i i}$ is exactly zero. The factorization has been completed, but the block diagonal matrix $D$ is exactly singular, so the solution and error bounds could not be computed; rcond $=0$ is returned.
If $i n f o=i$, and $i=n+1$, then $D$ is nonsingular, but rcond is less than machine precision, meaning that the matrix is singular to working precision.

Nevertheless, the solution and error bounds are computed because there are a number of situations where the computed solution can be more accurate than the value of rcond would suggest.

## Application Notes

For real flavors, 1 work must be at least $3 * n$, and for complex flavors at least $2 *_{n}$. For better performance, try using 1 work $=n *$ blocksize, where blocksize is the optimal block size for ?sytrf.

If you are in doubt how much workspace to supply, use 1 work $=-1$ for the first run. In this case, a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry work (1) of the work array, and no error message related to lwork is issued by XERBLA. On exit, examine work (1) and use this value for subsequent runs.

## ?hesv

Computes the solution to the system of linear equations
with a Hermitian matrix $A$ and multiple right-hand
sides.

## Syntax




## Description

This routine solves for $X$ the real or complex system of linear equations $A X=B$, where A is an $n$-by-n symmetric matrix, the columns of matrix $B$ are individual right-hand sides, and the columns of $X$ are the corresponding solutions.
The diagonal pivoting method is used to factor $A$ as $A=U D U^{H}$ or $A=L D L^{H}$, where $U($ or $L)$ is a product of permutation and unit upper (lower) triangular matrices, and $D$ is Hermitian and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.

The factored form of $A$ is then used to solve the system of equations $A X=B$.

## Input Parameters

uplo CHARACTER*1. Must be 'U' or 'L'.

Indicates whether the upper or lower triangular part of $A$ is stored and how $A$ is factored:
If uplo= ' U ', the array a stores the upper triangular part of the matrix $A$, and $A$ is factored as $U D U^{H}$.
If uplo= ' L ', the array a stores the lower triangular part of the matrix $A ; A$ is factored as $L D L^{H}$.
n
nrhs
a, b, work
lda
ldb
lwork

INTEGER. The order of matrix $A(n \geq 0)$.
INTEGER. The number of right-hand sides; the number of columns in $B$ (nrhs $\geq 0$ ).

COMPLEX for chesv
DOUBLE COMPLEX for zhesv.
Arrays: $a(l d a, *), b(l d b, *)$, work(lwork).
The array a contains either the upper or the lower triangular part of the Hermitian matrix $A$ (see uplo).
The second dimension of a must be at least max $(1, n)$.
The array $b$ contains the matrix $B$ whose columns are the right-hand sides for the systems of equations.
The second dimension of $b$ must be at least max( 1, nrhs $)$.
work (lwork) is a workspace array.
INTEGER. The first dimension of $a ; 1 d a \geq \max (1, n)$.
INTEGER. The first dimension of $b ; 1 d b \geq \max (1, n)$.
INTEGER. The size of the work array ( 1 work $\geq 1$ )
See Application notes for the suggested value of 1 work.

## Output Parameters

If info $=0, a$ is overwritten by the block-diagonal matrix $D$ and the multipliers used to obtain the factor $U$ (or $L$ ) from the factorization of $A$ as computed by ?hetrf.
b
ipiv

If info $=0, b$ is overwritten by the solution matrix $X$.
INTEGER.
Array, DIMENSION at least max $(1, n)$.
Contains details of the interchanges and the block structure of $D$, as determined by ?hetrf.
If $\operatorname{ipiv}(i)=k>0$, then $d_{i j}$ is a 1-by- 1 diagonal block, and the $i$ th row and column of $A$ was interchanged with the $k$ th row and column.

If uplo='U' and ipiv(i)=ipiv(i-1) $=-m<0$, then $D$ has a 2-by-2 block in rows/columns $i$ and $i-1$, and ( $i-1$ ) th row and column of $A$ was interchanged with the mth row and column.
If uplo='L' and ipiv(i)=ipiv(i+1)=-m<0, then $D$ has a 2-by-2 block in rows/columns $i$ and $i+1$, and $(i+1)$ th row and column of $A$ was interchanged with the mth row and column.
work(1)
info
If info $=0$, on exit work (1) contains the minimum value of 1 work required for optimum performance. Use this lwork for subsequent runs. INTEGER. If info $=0$, the execution is successful. If info $=-i$, the $i$ th parameter had an illegal value. If info $=i, d_{i i}$ is 0 . The factorization has been completed, but $D$ is exactly singular, so the solution could not be computed.

## Application Notes

For better performance, try using 1 work $=n \star$ blocksize, where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm.

If you are in doubt how much workspace to supply, use 1 work $=-1$ for the first run. In this case, a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry work (1) of the work array, and no error message related to lwork is issued by XERBLA. On exit, examine work (1) and use this value for subsequent runs.

## ?hesvx

Uses the diagonal pivoting factorization to compute
the solution to the complex system of linear equations with a Hermitian matrix $A$, and provides error bounds on the solution.

## Syntax

call chesvx (fact, uplo, $n, ~ n r h s, a, l d a, ~ a f, ~ l d a f, ~ i p i v, ~ b, ~ l d b, ~ x, ~ l d x$, rcond, ferr, berr, work, lwork, rwork, info)
call zhesvx (fact, uplo, $n, ~ n r h s, a, l d a, ~ a f, ~ l d a f, ~ i p i v, ~ b, ~ l d b, ~ x, ~ l d x, ~$ rcond, ferr, berr, work, lwork, rwork, info)

## Description

This routine uses the diagonal pivoting factorization to compute the solution to a complex system of linear equations $A X=B$, where A is a $n$-by- $n$ Hermitian matrix, the columns of matrix $B$ are individual right-hand sides, and the columns of $X$ are the corresponding solutions.

Error bounds on the solution and a condition estimate are also provided.
The routine ?hesvx performs the following steps:

1. If fact = ' N ', the diagonal pivoting method is used to factor the matrix A . The form of the factorization is $A=U D U^{H}$ or $A=L D L^{H}$, where $U($ or $L)$ is a product of permutation and unit upper (lower) triangular matrices, and $D$ is Hermitian and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.
2. If some $d_{\mathrm{i}, \mathrm{i}}=0$, so that $D$ is exactly singular, then the routine returns with info $=\mathrm{i}$. Otherwise, the factored form of $A$ is used to estimate the condition number of the matrix $A$. If the reciprocal of the condition number is less than machine precision, $\operatorname{info}=n+1$ is returned as a warning, but the routine still goes on to solve for $X$ and compute error bounds as described below.
3. The system of equations is solved for $X$ using the factored form of $A$.
4. Iterative refinement is applied to improve the computed solution matrix and calculate error bounds and backward error estimates for it.

## Input Parameters

fact	CHARACTER*1. Must be 'F' or 'N'
	Specifies whether or not the factored form of the matrix $A$ has been supplied on entry.
	If fact $=' F$ ': on entry, af and ipiv contain the factored form of $A$. Arrays a, af, and ipiv will not be modified.
	If fact $={ }^{\prime} \mathrm{N}$ ', the matrix $A$ will be copied to af and factored.
uplo	CHARACTER*1. Must be 'U' or 'L'.   Indicates whether the upper or lower triangular part of $A$ is stored and how $A$ is factored:
	If uplo= 'U', the array a stores the upper triangular part of the Hermitian matrix $A$, and $A$ is factored as $U D U^{H}$.
	If uplo = 'L', the array a stores the lower triangular part of the Hermitian matrix $A ; A$ is factored as $L D L^{H}$.
	INTEGER. The order of matrix $A(\mathrm{n} \geq 0)$.


nrhs	INTEGER. The number of right-hand sides; the number of columns in $B$ (nrhs $\geq 0$ ).
$a, a f, b$, work	COMPLEX for chesvx
	DOUBLE COMPLEX for zhesvx.
	Arrays: $\mathrm{a}(1 \mathrm{da}, *), \mathrm{af}(1 \mathrm{daf}, *), \mathrm{b}(1 \mathrm{db}, *)$, work(*).
	The array a contains either the upper or the lower triangular part of the Hermitian matrix $A$ (see uplo).
	The second dimension of a must be at least max $(1, n)$.
	The array af is an input argument if fact $=$ ' $F$ ' . It contains he block diagonal matrix $D$ and the multipliers used to obtain the factor $U$ or $L$ from the factorization $A=U D U^{H}$ or $A=L D L^{H}$ as computed by ?hetrf. The second dimension of af must be at least $\max (1, n)$.
	The array $b$ contains the matrix $B$ whose columns are the right-hand sides for the systems of equations. The second dimension of $b$ must be at least $\max (1, n r h s)$.
	work (*) is a workspace array of dimension (lwork).
Ida	INTEGER. The first dimension of $a ; 1 d a \geq \max (1, n)$.
Idaf	INTEGER. The first dimension of $a f ; 1 d a f \geq \max (1, n)$.
1 db	INTEGER. The first dimension of $b ; 1 d b \geq \max (1, n)$.
ipiv	INTEGER.
	Array, DIMENSION at least max $(1, n)$.
	The array ipiv is an input argument if fact = 'F'.
	It contains details of the interchanges and the block structure of $D$, as determined by ?hetrf.
	If $\operatorname{ipiv}(i)=k>0$, then $d_{i i}$ is a 1-by-1 diagonal block, and the $i$ th row and column of $A$ was interchanged with the $k$ th row and column.
	If uplo ='U' and $\operatorname{ipiv}(i)=\operatorname{ipiv}(i-1)=-m<0$, then $D$ has a 2-by-2 block in rows/columns $i$ and $i-1$, and ( $i-1$ ) th row and column of $A$ was interchanged with the $m$ th row and column.
	If uplo $=$ 'L' and $\operatorname{ipiv}(i)=\operatorname{ipiv}(i+1)=-m<0$, then $D$ has a 2 -by-2 block in rows/columns $i$ and $i+1$, and $(i+1)$ th row and column of $A$ was interchanged with the mth row and column.
$1 d x$	INTEGER. The leading dimension of the output array $x ; l d x \geq m a x(1, n)$.
Iwork	INTEGER. The size of the work array
	See Application notes for the suggested value of 1 work.


rwork	REAL for chesvx;   DOUBLE PRECISION for zhesvx.   Workspace array, DIMENSION at least max $(1, n)$.
Output Parameters	
x	COMPLEX for chesvx DOUBLE COMPLEX for zhesvx. Array, DIMENSION ( $1 d x, *$ ).
	If info $=0$ or info $=n+1$, the array $x$ contains the solution matrix $X$ to the system of equations. The second dimension of $x$ must be at least $\max (1, n r h s)$.
af, ipiv	These arrays are output arguments if fact $=$ ' N '. See the description of af, ipiv in Input Arguments section.
rcond	REAL for chesvx;   DOUBLE PRECISION for zhesvx.   An estimate of the reciprocal condition number of the matrix $A$. If rcond is less than the machine precision (in particular, if $r$ cond $=0$ ), the matrix is singular to working precision. This condition is indicated by a return code of info $>0$.
ferr, berr	REAL for chesvx;   DOUBLE PRECISION for zhesvx.   Arrays, DIMENSION at least max ( $1, n r h s$ ). Contain the component-wise forward and relative backward errors, respectively, for each solution vector.
work(1)	If info $=0$, on exit work ( 1 ) contains the minimum value of 1 work required for optimum performance. Use this 1 work for subsequent runs.
info	INTEGER. If info $=0$, the execution is successful.   If info $=-i$, the $i$ th parameter had an illegal value.   If info $=i$, and $i \leq n$, then $d_{i i}$ is exactly zero. The factorization has been completed, but the block diagonal matrix $D$ is exactly singular, so the solution and error bounds could not be computed; $r$ rond $=0$ is returned. If info $=i$, and $i=n+1$, then $D$ is nonsingular, but rcond is less than machine precision, meaning that the matrix is singular to working precision. Nevertheless, the solution and error bounds are computed because there are a number of situations where the computed solution can be more accurate than the value of rcond would suggest.

## Application Notes

The value of 1 work must be at least $2 * n$. For better performance, try using 1 work $=n *$ blocksize, where blocksize is the optimal block size for ?hetrf.

If you are in doubt how much workspace to supply, use 1 work $=-1$ for the first run. In this case, a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry work (1) of the work array, and no error message related to lwork is issued by XERBLA. On exit, examine work (1) and use this value for subsequent runs.

## ?spsv

Computes the solution to the system of linear equations
with a real or complex symmetric matrix $A$ stored in packed format, and multiple right-hand sides.

## Syntax

```
call sspsv (uplo, n, nrhs, ap, ipiv, b, ldb, info)
call dspsv (uplo, n, nrhs, ap, ipiv, b, ldb, info)
call cspsv (uplo, n, nrhs, ap, ipiv, b, ldb, info)
call zspsv (uplo, n, nrhs, ap, ipiv, b, ldb, info)
```


## Description

This routine solves for $X$ the real or complex system of linear equations
$A X=B$, where A is an n -by-n symmetric matrix stored in packed format, the columns of matrix $B$ are individual right-hand sides, and the columns of $X$ are the corresponding solutions.

The diagonal pivoting method is used to factor $A$ as $A=U D U^{T}$ or
$A=L D L^{T}$, where $U($ or $L)$ is a product of permutation and unit upper (lower) triangular matrices, and $D$ is symmetric and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.

The factored form of $A$ is then used to solve the system of equations $A X=B$.

## Input Parameters

[^1]If uplo= ' U ', the array $a p$ stores the upper triangular part of the matrix $A$, and $A$ is factored as $U D U^{T}$.
If uplo= 'L', the array ap stores the lower triangular part of the matrix $A ; A$ is factored as $L D L^{T}$.
n
nrhs
$a p, \quad b$
$1 d b$

INTEGER. The order of matrix $A(n \geq 0)$.
Integer. The number of right-hand sides; the number of columns in $B$ ( $n r h s \geq 0$ ).
REAL for sspsv DOUBLE PRECISION for dspsv COMPLEX for cspsv DOUBLE COMPLEX for zspsv. Arrays: $a p(*), b(l d b, *)$ The dimension of ap must be at least $\max (1, n(n+1) / 2)$.
The array ap contains the factor $U$ or $L$, as specified by uplo, in packed storage (see Matrix Storage Schemes).
The array b contains the matrix $B$ whose columns are the right-hand sides for the systems of equations. The second dimension of $b$ must be at least $\max (1, n r h s)$.

INTEGER. The first dimension of $b ; 1 d b \geq \max (1, n)$.

## Output Parameters

The block-diagonal matrix $D$ and the multipliers used to obtain the factor $U$ (or $L)$ from the factorization of $A$ as computed by ?sptrf, stored as a packed triangular matrix in the same storage format as $A$.
b
If info $=0, b$ is overwritten by the solution matrix $X$.
INTEGER.
Array, DIMENSION at least max $(1, n)$.
Contains details of the interchanges and the block structure of $D$, as determined by ?sptrf.
If $\operatorname{ipiv}(i)=k>0$, then $d_{i j}$ is a 1-by- 1 block, and the $i$ th row and column of $A$ was interchanged with the $k$ th row and column.
 in rows/columns $i$ and $i-1$, and ( $i-1$ ) th row and column of $A$ was interchanged with the $m$ th row and column.
If uplo='L' and ipiv(i) $=\operatorname{ipiv}(i+1)=-m<0$, then $D$ has a 2 -by-2 block in rows/columns $i$ and $i+1$, and $(i+1)$ th row and column of $A$ was interchanged with the $m$ th row and column.

```
info INTEGER. If info=0, the execution is successful.
 If info = -i, the ith parameter had an illegal value.
 If info = i, dii is 0. The factorization has been completed, but D is exactly
 singular, so the solution could not be computed.
```


## ?spsvx

Uses the diagonal pivoting factorization to compute the solution to the system of linear equations with a real or complex symmetric matrix A stored in packed format, and provides error bounds on the solution.

## Syntax

```
call sspsvx (fact, uplo, n, nrhs, ap, afp, ipiv, b, ldb, x, ldx, rcond,
 ferr, berr, work, iwork, info)
call dspsvx (fact, uplo, n, nrhs, ap, afp, ipiv, b, ldb, x, ldx, rcond,
 ferr, berr, work, iwork, info)
call cspsvx (fact, uplo, n, nrhs, ap, afp, ipiv, b, ldb, x, ldx, rcond,
 ferr, berr, work, rwork, info)
call zspsvx (fact, uplo, n, nrhs, ap, afp, ipiv, b, ldb, x, ldx, rcond,
 ferr, berr, work, rwork, info)
```


## Description

This routine uses the diagonal pivoting factorization to compute the solution to a real or complex system of linear equations $A X=B$, where A is a $n$-by- n symmetric matrix stored in packed format, the columns of matrix $B$ are individual right-hand sides, and the columns of $X$ are the corresponding solutions.

Error bounds on the solution and a condition estimate are also provided.
The routine ?spsvx performs the following steps:

1. If fact $=$ ' N ', the diagonal pivoting method is used to factor the matrix A . The form of the factorization is $A=U D U^{T}$ or $A=L D L^{T}$, where $U($ or $L)$ is a product of permutation and unit upper (lower) triangular matrices, and $D$ is symmetric and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.
2. If some $d_{i, i}=0$, so that $D$ is exactly singular, then the routine returns with info $=i$. Otherwise, the factored form of $A$ is used to estimate the condition number of the matrix $A$. If the reciprocal of the condition number is less than machine precision, info $=n+1$ is returned as a warning, but the routine still goes on to solve for $X$ and compute error bounds as described below.
3. The system of equations is solved for $X$ using the factored form of $A$.
4. Iterative refinement is applied to improve the computed solution matrix and calculate error bounds and backward error estimates for it.

Input Parameters

fact	CHARACTER*1. Must be 'F' or 'N'.
	Specifies whether or not the factored form of the matrix $A$ has been supplied on entry.
	If fact $=$ 'F': on entry, afp and ipiv contain the factored form of $A$. Arrays $a p, a f p$, and ipiv will not be modified.
	If fact $=$ ' $N$ ', the matrix $A$ will be copied to afp and factored.
uplo	CHARACTER*1. Must be 'U' or 'L'.   Indicates whether the upper or lower triangular part of $A$ is stored and how $A$ is factored:
	If uplo= 'U', the array $a p$ stores the upper triangular part of the symmetric matrix $A$, and $A$ is factored   as $U D U^{T}$.
	If uplo = 'L', the array ap stores the lower triangular part of the symmetric matrix $A ; A$ is factored as $L D L^{T}$.
$n$	INTEGER. The order of matrix $A(n \geq 0)$.
nrhs	INTEGER. The number of right-hand sides; the number of columns in $B$ (nrhs $\geq 0$ ).
ap,afp, b, work	REAL for sspsvx
	DOUBLE PRECISION for dspsvx
	COMPLEX for cspsvx
	DOUBLE COMPLEX for zspsvx.
	Arrays: ap (*) , afp(*), b(ldb,*), work (*).

The array ap contains the upper or lower triangle of the symmetric matrix A in packed storage (see Matrix Storage Schemes).

1 db	INTEGER. The first dimension of $b ; 1 d b \geq \max (1, n)$.
ipiv	INTEGER.
	Array, DIMENSION at least max $(1, n)$.
	The array ipiv is an input argument if fact $=$ ' F '
	It contains details of the interchanges and the block structure of $D$, as determined by ?sptrf.
	If ipiv(i) $=k>0$, then $d_{i i}$ is a 1-by-1 diagonal block, and the $i$ th row and column of $A$ was interchanged with the $k$ th row and column.
	If uplo $=$ 'U' and $\operatorname{ipiv}(i)=\operatorname{ipiv}(i-1)=-m<0$, then $D$ has a 2-by-2 block in rows/columns $i$ and $i-1$, and ( $i-1$ ) th row and column of $A$ was interchanged with the $m$ th row and column.
	If uplo $=$ 'L' and $\operatorname{ipiv}(i)=\operatorname{ipiv}(i+1)=-m<0$, then $D$ has a 2 -by-2 block in rows/columns $i$ and $i+1$, and $(i+1)$ th row and column of $A$ was interchanged with the $m$ th row and column.
$1 d x$	INTEGER. The leading dimension of the output array $x ; 1 d x \geq \max (1, n)$.
iwork	INTEGER.
	Workspace array, DIMENSION at least max $(1, n)$; used in real flavors only.
rwork	REAL for cspsvx;
	DOUBLE PRECISION for zspsvx.
	Workspace array, DIMENSION at least max $(1, n)$; used in complex flavors only.

## Output Parameters

$x$	REAL for sspsvx
	DOUBLE PRECISION for dspsvx
	COMPLEX for cspsvx
	DOUBLE COMPLEX for zspsvx.
	Array, DIMENSION (ldx,*).
	If info $=0$ or info $=n+1$, the array $x$ contains the solution matrix $X$ to the system of equations. The second dimension of $x$ must be at least $\max (1, n r h s)$.
afp, ipiv	These arrays are output arguments if fact = ' N ' .
	See the description of afp, ipiv in Input Arguments section.
rcond	REAL for single precision flavors.
	DOUBLE PRECISION for double precision flavors.
	An estimate of the reciprocal condition number of the matrix $A$. If rcond is less than the machine precision (in particular, if $r$ cond $=0$ ), the matrix is singular to working precision. This condition is indicated by a return code of info $>0$.
ferr, berr	REAL for single precision flavors.
	DOUBLE PRECISION for double precision flavors.
	Arrays, DIMENSION at least max(1,nrhs). Contain the component-wise forward and relative backward errors, respectively, for each solution vector.
info	INTEGER. If info $=0$, the execution is successful.
	If info $=-i$, the $i$ th parameter had an illegal value.
	If info $=i$, and $i \leq n$, then $d_{i i}$ is exactly zero. The factorization has been completed, but the block diagonal matrix $D$ is exactly singular, so the solution and error bounds could not be computed; rcond $=0$ is returned.
	If info $=i$, and $i=n+1$, then $D$ is nonsingular, but rcond is less than machine precision, meaning that the matrix is singular to working precision.
	Nevertheless, the solution and error bounds are computed because there are a number of situations where the computed solution can be more accurate than the value of rcond would suggest.

## ?hpsv

Computes the solution to the system of linear equations with a Hermitian matrix $A$ stored in packed format, and multiple right-hand sides.

## Syntax

```
call chpsv (uplo, n, nrhs, ap, ipiv, b, ldb, info)
```

call zhpsv (uplo, $n, ~ n r h s, ~ a p, ~ i p i v, ~ b, ~ l d b, ~ i n f o) ~(~) ~$

## Description

This routine solves for $X$ the system of linear equations $A X=B$, where A is an $n$-by-n Hermitian matrix stored in packed format, the columns of matrix $B$ are individual right-hand sides, and the columns of $X$ are the corresponding solutions.
The diagonal pivoting method is used to factor $A$ as $A=U D U^{H}$ or $A=L D L^{H}$, where $U($ or $L$ ) is a product of permutation and unit upper (lower) triangular matrices, and $D$ is Hermitian and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.

The factored form of $A$ is then used to solve the system of equations $A X=B$.

## Input Parameters

```
uplo CHARACTER*1. Must be 'U' or 'L'.
 Indicates whether the upper or lower triangular part of }A\mathrm{ is stored and how }A\mathrm{ is
 factored:
 If uplo= 'U', the array ap stores the upper triangular part of the matrix }A\mathrm{ ,
 and }A\mathrm{ is factored as UDU'H}\mathrm{ .
 If uplo= 'L', the array ap stores the lower triangular part of the matrix }A;
 is factored as }LD\mp@subsup{L}{}{H}\mathrm{ .
n INTEGER. The order of matrix A (}n\geq0)\mathrm{ .
nrhs INTEGER. The number of right-hand sides; the number of columns in B
 (nrhs \geq0).
ap, b COMPLEX for chpsv
 DOUBLE COMPLEX for zhpsv.
 Arrays: ap(*),b(ldb,*)
 The dimension of ap must be at least max(1,n(n+1)/2).
 The array ap contains the factor U or L, as specified by uplo, in packed
```

storage (see Matrix Storage Schemes).
The array $b$ contains the matrix $B$ whose columns are the right-hand sides for the systems of equations.
The second dimension of $b$ must be at least max( $1, n r h s$ ).
1 db
INTEGER. The first dimension of $b ; 1 d b \geq \max (1, n)$.

## Output Parameters

ap	The block-diagonal matrix $D$ and the multipliers used to obtain the factor $U$ (or
$L$ ) from the factorization of $A$ as computed by ? hptrf, stored as a packed	
triangular matrix in the same storage format as $A$.	
$b$	If info $=0, b$ is overwritten by the solution matrix $X$.
ipiv	INTEGER.
Array, DIMENSION at least $\max (1, n)$.	
Contains details of the interchanges and the block structure of $D$, as	
determined by ?hptrf.	
If $i p i v(i)=k>0$, then $d_{i j}$ is a 1-by- 1 block, and the $i$ th row and column of	
$A$ was interchanged with the $k$ th row and column.	

If uplo='U' and $\operatorname{ipiv}(i)=\operatorname{ipiv}(i-1)=-m<0$, then $D$ has a 2 -by-2 block in rows/columns $i$ and $i-1$, and $(i-1)$ th row and column of $A$ was interchanged with the $m$ th row and column.

If uplo= 'L' and $\operatorname{ipiv}(i)=\operatorname{ipiv}(i+1)=-m<0$, then $D$ has a 2 -by-2 block in rows/columns $i$ and $i+1$, and $(i+1)$ th row and column of $A$ was interchanged with the $m$ th row and column.
info INTEGER. If info $=0$, the execution is successful. If info $=-i$, the $i$ th parameter had an illegal value. If info $=i, d_{i i}$ is 0 . The factorization has been completed, but $D$ is exactly singular, so the solution could not be computed.

## ?hpsvx

Uses the diagonal pivoting factorization to compute the solution to the system of linear equations with a Hermitian matrix A stored in packed format, and provides error bounds on the solution.

## Syntax

```
call chpsvx (fact, uplo, n, nrhs, ap, afp, ipiv, b, ldb, x, ldx, rcond,
 ferr, berr, work, rwork, info)
call zhpsvx (fact, uplo, n, nrhs, ap, afp, ipiv, b, ldb, x, ldx, rcond,
 ferr, berr, work, rwork, info)
```


## Description

This routine uses the diagonal pivoting factorization to compute the solution to a complex system of linear equations $A X=B$, where A is a $n$-by- $n$ Hermitian matrix stored in packed format, the columns of matrix $B$ are individual right-hand sides, and the columns of $X$ are the corresponding solutions.

Error bounds on the solution and a condition estimate are also provided.
The routine ?hpsvx performs the following steps:

1. If fact = ' N ', the diagonal pivoting method is used to factor the matrix A . The form of the factorization is $A=U D U^{H}$ or $A=L D L^{H}$, where $U($ or $L)$ is a product of permutation and unit upper (lower) triangular matrices, and $D$ is Hermitian and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.
2. If some $d_{i, i}=0$, so that $D$ is exactly singular, then the routine returns with info $=i$. Otherwise, the factored form of $A$ is used to estimate the condition number of the matrix $A$. If the reciprocal of the condition number is less than machine precision, $\operatorname{infO}=n+1$ is returned as a warning, but the routine still goes on to solve for $X$ and compute error bounds as described below.
3. The system of equations is solved for $X$ using the factored form of $A$.
4. Iterative refinement is applied to improve the computed solution matrix and calculate error bounds and backward error estimates for it.

## Input Parameters

```
fact CHARACTER*1.Must be 'F' or 'N'.
 Specifies whether or not the factored form of the matrix }A\mathrm{ has been supplied on
 entry.
 If fact='F': on entry, afp and ipiv contain the factored form of }A\mathrm{ .
 Arrays ap, afp, and ipiv will not be modified.
 If fact = 'N', the matrix }A\mathrm{ will be copied to afp and factored.
uplo CHARACTER*1. Must be 'U' or 'L'.
 Indicates whether the upper or lower triangular part of }A\mathrm{ is stored and how }A\mathrm{ is
 factored:
 If upIo= 'U', the array ap stores the upper triangular part of the Hermitian
 matrix }A\mathrm{ , and }A\mathrm{ is factored
 as UDU'H.
 If uplo = 'L', the array ap stores the lower triangular part of the Hermitian
 matrix A;A is factored as LDL L
 n INTEGER. The order of matrix A (}n\geq0)\mathrm{ .
nrhs INTEGER. The number of right-hand sides; the number of columns in B
 (nrhs \geq0).
ap,afp,b,work COMPLEX for chpsvx
DOUBLE COMPLEX for zhpsvx.
Arrays: ap(*), afp(*),b(ldb,*), work (*).
```

The array $a p$ contains the upper or lower triangle of the Hermitian matrix A in packed storage (see Matrix Storage Schemes).
The array afp is an input argument if fact = ' F ' . It contains the block diagonal matrix $D$ and the multipliers used to obtain the factor $U$ or $L$ from the factorization
$A=U D U^{H}$ or $A=L D L^{H}$ as computed by ?hptrf, in the same storage format as $A$.
The array b contains the matrix $B$ whose columns are the right-hand sides for the systems of equations.
work (*) is a workspace array.
The dimension of arrays $a p$ and $a f p$ must be at least $\max (1, n(n+1) / 2)$; the second dimension of $b$ must be at least max $(1, n r h s)$; the dimension of work must be at least $\max (1,2 * n)$.
$1 d b$ INTEGER. The first dimension of $b ; 1 d b \geq \max (1, n)$.

ipiv	INTEGER.   Array, DIMENSION at least max $(1, n)$.   The array ipiv is an input argument if fact $=$ ' $F$ '.   It contains details of the interchanges and the block structure of $D$, as determined by ?hptrf.   If $\operatorname{ipiv}(i)=k>0$, then $d_{i i}$ is a 1-by-1 diagonal block, and the $i$ th row and column of $A$ was interchanged with the $k$ th row and column.   If uplo $=$ 'U' and ipiv(i) $=\operatorname{ipiv}(i-1)=-m<0$, then $D$ has a 2 -by-2 block in rows/columns $i$ and $i-1$, and ( $i-1$ ) th row and column of $A$ was interchanged with the $m$ th row and column.   If uplo $=$ 'L' and ipiv(i) $=\operatorname{ipiv}(i+1)=-m<0$, then $D$ has a 2 -by-2 block in rows/columns $i$ and $i+1$, and $(i+1)$ th row and column of $A$ was interchanged with the $m$ th row and column.
$1 d x$	INTEGER. The leading dimension of the output array $x ; I d x \geq m a x(1, n)$.
rwork	REAL for chpsvx;   DOUBLE PRECISION for zhpsvx.   Workspace array, DIMENSION at least max $(1, n)$.
Output Par	
$x$	COMPLEX for chpsvx   DOUBLE COMPLEX for zhpsvx.   Array, DIMENSION (ldx,*).   If info $=0$ or info $=n+1$, the array $x$ contains the solution matrix $X$ to the system of equations. The second dimension of $x$ must be at least $\max (1, n r h s)$.
afp, ipiv	These arrays are output arguments if fact $=$ ' N '. See the description of afp, ipiv in Input Arguments section.
rcond	REAL for chpsvx;   DOUBLE PRECISION for zhpsvx.   An estimate of the reciprocal condition number of the matrix $A$. If rcond is less than the machine precision (in particular, if $r$ cond $=0$ ), the matrix is singular to working precision. This condition is indicated by a return code of info $>0$.
ferr, berr	REAL for chpsvx;   DOUBLE PRECISION for zhpsvx.   Arrays, DIMENSION at least max( $1, n r h s$ ). Contain the component-wise forward and relative backward errors, respectively, for each solution vector.

info INTEGER. If info $=0$, the execution is successful. If info $=-i$, the $i$ th parameter had an illegal value. If info $=i$, and $i \leq n$, then $d_{i i}$ is exactly zero. The factorization has been completed, but the block diagonal matrix $D$ is exactly singular, so the solution and error bounds could not be computed; rcond $=0$ is returned. If $i n f O=i$, and $i=n+1$, then $D$ is nonsingular, but rcond is less than machine precision, meaning that the matrix is singular to working precision. Nevertheless, the solution and error bounds are computed because there are a number of situations where the computed solution can be more accurate than the value of rcond would suggest.

## LAPACK Routines: Least Squares and Eigenvalue Problems

This chapter describes the Intel ${ }^{\circledR}$ Math Kernel Library implementation of routines from the LAPACK package that are used for solving linear least-squares problems, eigenvalue and singular value problems, as well as performing a number of related computational tasks.

Sections in this chapter include descriptions of LAPACK computational routines and driver routines.

For full reference on LAPACK routines and related information see [ $\underline{L U G}]$.
Least-Squares Problems. A typical least-squares problem is as follows: given a matrix $A$ and a vector $b$, find the vector $x$ that minimizes the sum of squares $\Sigma_{i}\left((A x)_{i}-b_{i}\right)^{2}$ or, equivalently, find the vector $x$ that minimizes the 2 -norm $\|A x-b\|_{2}$.

In the most usual case, $A$ is an $m$ by $n$ matrix with $m \geq n$ and $\operatorname{rank}(A)=n$. This problem is also referred to as finding the least-squares solution to an overdetermined system of linear equations (here we have more equations than unknowns). To solve this problem, you can use the $Q R$ factorization of the matrix A (see QR Factorization).

If $m<n$ and $\operatorname{rank}(A)=m$, there exist an infinite number of solutions $x$ which exactly satisfy $A x=b$, and thus minimize the norm $\|A x-b\|_{2}$. In this case it is often useful to find the unique solution that minimizes $\|x\|_{2}$. This problem is referred to as finding the minimum-norm solution to an underdetermined system of linear equations (here we have more unknowns than equations). To solve this problem, you can use the $L Q$ factorization of the matrix A (see LQ Factorization).

In the general case you may have a rank-deficient least-squares problem, with $\operatorname{rank}(A)<\min (m$, $n$ ): find the minimum-norm least-squares solution that minimizes both $\|x\|_{2}$ and $\|A x-b\|_{2}$. In this case (or when the rank of A is in doubt) you can use the $Q R$ factorization with pivoting or singular value decomposition (see Singular Value Decomposition).

Intel® Math Kernel Library Reference Manual

Eigenvalue Problems (from German eigen "own") are stated as follows: given a matrix $A$, find the eigenvalues $\lambda$ and the corresponding eigenvectors $z$ that satisfy the equation

$$
A z=\lambda z \text { (right eigenvectors } z)
$$

or the equation

$$
z^{H} A=\lambda z^{H} \text { (left eigenvectors } z \text { ). }
$$

If $A$ is a real symmetric or complex Hermitian matrix, the above two equations are equivalent, and the problem is called a symmetric eigenvalue problem. Routines for solving this type of problems are described in the section "Symmetric Eigenvalue Problems".

Routines for solving eigenvalue problems with nonsymmetric or non-Hermitian matrices are described in the section "Nonsymmetric Eigenvalue Problems".

The library also includes routines that handle generalized symmetric- definite eigenvalue problems: find the eigenvalues $\lambda$ and the corresponding eigenvectors $x$ that satisfy one of the following equations:

$$
A z=\lambda B z, \quad A B z=\lambda z, \text { or } B A z=\lambda z
$$

where $A$ is symmetric or Hermitian, and $B$ is symmetric positive-definite or Hermitian positive-definite. Routines for reducing these problems to standard symmetric eigenvalue problems are described in the section "Generalized Symmetric-Definite Eigenvalue Problems".

To solve a particular problem, you usually call several computational routines. Sometimes you need to combine the routines of this chapter with other LAPACK routines described in Chapter 3 as well as with BLAS routines (Chapter 2).

For example, to solve a set of least-squares problems minimizing $\|A x-b\|_{2}$ for all columns $b$ of a given matrix $B$ (where $A$ and $B$ are real matrices), you can call ?geqrf to form the factorization $A$ $=Q R$, then call ?ormqr to compute $C=Q^{H} B$, and finally call the BLAS routine ?trsm to solve for $X$ the system of equations $R X=C$.

Another way is to call an appropriate driver routine that performs several tasks in one call. For example, to solve the least-squares problem the driver routine ?gels can be used.

WARNING. LAPACK routines expect that input matrices do not contain InF or nan values. When input data is inappropriate for LAPACK, problems may arise, including possible hangs.

## Routine Naming Conventions

For each routine in this chapter, you can use the LAPACK name.
LAPACK names have the structure xyyzzz, which is described below.
The initial letter x indicates the data type:
s real, single precisionc complex, single precision
d real, double precisionz complex, double precision
The second and third letters yy indicate the matrix type and storage scheme:
bd bidiagonal matrix
ge general matrix
gb general band matrix
hs upper Hessenberg matrix
or (real) orthogonal matrix
op (real) orthogonal matrix (packed storage)
un (complex) unitary matrix
up (complex) unitary matrix (packed storage)
pt symmetric or Hermitian positive-definite tridiagonal matrix
sy symmetric matrix
$\mathrm{sp} \quad$ symmetric matrix (packed storage)
sb (real) symmetric band matrix
st (real) symmetric tridiagonal matrix
he Hermitian matrix
hp Hermitian matrix (packed storage)
hb (complex) Hermitian band matrix
tr triangular or quasi-triangular matrix.
The last three letters zzz indicate the computation performed, for example:
qrf form the $Q R$ factorization
lqf form the $L Q$ factorization.
Thus, the routine sgeqre forms the $Q R$ factorization of general real matrices in single precision; the corresponding routine for complex matrices is cgeqre.

## Matrix Storage Schemes

LAPACK routines use the following matrix storage schemes:

- Full storage: a matrix $A$ is stored in a two-dimensional array a, with the matrix element $a_{i j}$ stored in the array element $a(i, j)$.
- Packed storage scheme allows you to store symmetric, Hermitian, or triangular matrices more compactly: the upper or lower triangle of the matrix is packed by columns in a one-dimensional array.
- Band storage: an $m$ by $n$ band matrix with kl sub-diagonals and ku super-diagonals is stored compactly in a two-dimensional array $a b$ with $k l+k u+1$ rows and $n$ columns. Columns of the matrix are stored in the corresponding columns of the array, and diagonals of the matrix are stored in rows of the array.

In Chapters 3 and 4, arrays that hold matrices in packed storage have names ending in $p$; arrays with matrices in band storage have names ending in $b$.

For more information on matrix storage schemes, see "Matrix Arguments" in Appendix B.

## Mathematical Notation

In addition to the mathematical notation used in previous chapters, descriptions of routines in this chapter use the following notation:


## Computational Routines

In the sections that follow, the descriptions of LAPACK computational routines are given. These routines perform distinct computational tasks that can be used for:

```
Orthogonal Factorizations
Singular Value Decomposition
Symmetric Eigenvalue Problems
Generalized Symmetric-Definite Eigenvalue Problems
Nonsymmetric Eigenvalue Problems
Generalized Nonsymmetric Eigenvalue Problems
Generalized Singular Value Decomposition
```

See also the respective driver routines.

## Orthogonal Factorizations

This section describes the LAPACK routines for the $Q R(R Q)$ and $L Q(Q L)$ factorization of matrices. Routines for the $R Z$ factorization as well as for generalized $Q R$ and $R Q$ factorizations are also included.

QR Factorization. Assume that $A$ is an $m$ by $n$ matrix to be factored.
If $m \geq n$, the $Q R$ factorization is given by

$$
A=Q\binom{R}{0}=\left(Q_{1}, Q_{2}\right)\binom{R}{0}
$$

where $R$ is an $n$ by $n$ upper triangular matrix with real diagonal elements, and $Q$ is an $m$ by $m$ orthogonal (or unitary) matrix.

You can use the $Q R$ factorization for solving the following least-squares problem: minimize $\| A x-$ $b \|_{2}$ where A is a full-rank $m$ by $n$ matrix $(m \geq n)$. After factoring the matrix, compute the solution $x$ by solving $R x=\left(Q_{1}\right)^{T} b$.

If $m<n$, the $Q R$ factorization is given by

$$
A=Q R=Q\left(R_{1} R_{2}\right)
$$

where $R$ is trapezoidal, $R_{1}$ is upper triangular and $R_{2}$ is rectangular.
The LAPACK routines do not form the matrix $Q$ explicitly. Instead, $Q$ is represented as a product of $\min (m, n)$ elementary reflectors. Routines are provided to work with $Q$ in this representation.

LQ Factorization. LQ factorization of an $m$ by $n$ matrix $A$ is as follows. If $m \leq n$,

$$
A=(L, 0) Q=(L, 0)\binom{Q_{1}}{Q_{2}}=L Q_{1}
$$

where $L$ is an $m$ by $m$ lower triangular matrix with real diagonal elements, and $Q$ is an $n$ by $n$ orthogonal (or unitary) matrix.

If $m>n$, the $L Q$ factorization is

$$
A=\binom{L_{1}}{L_{2}} Q
$$

where $L_{1}$ is an $n$ by $n$ lower triangular matrix, $L_{2}$ is rectangular, and $Q$ is an $n$ by $n$ orthogonal (or unitary) matrix.

You can use the $L Q$ factorization to find the minimum-norm solution of an underdetermined system of linear equations $A x=b$ where $A$ is an $m$ by $n$ matrix of rank $m(m<n)$. After factoring the matrix, compute the solution vector $x$ as follows: solve $L y=b$ for $y$, and then compute $x=$ $\left(Q_{1}\right)^{H} y$.

Table 5-1 lists LAPACK routines that perform orthogonal factorization of matrices.
Table 4-1 Computational Routines for Orthogonal Factorization

Matrix type, factorization	Factorize   without pivoting	Factorize   with pivoting	Generate   matrix Q	Apply   matrix Q
general matrices,   QR factorization   general matrices,	$\underline{\text { ?geqrf }}$			

## ?geqrf

Computes the $Q R$ factorization of a general $m$ by $n$ matrix.

## Syntax

```
call sgeqrf (m, n, a, lda, tau, work, lwork, info)
call dgeqrf (m, n, a, lda, tau, work, lwork, info)
call cgeqrf (m, n, a, lda, tau, work, lwork, info)
call zgeqrf (m, n, a, lda, tau, work, lwork, info)
```


## Description

The routine forms the $Q R$ factorization of a general $m$ by $n$ matrix $A$ (see Orthogonal Factorizations). No pivoting is performed.

The routine does not form the matrix $Q$ explicitly. Instead, $Q$ is represented as a product of $\min (m, n)$ elementary reflectors. Routines are provided to work with $Q$ in this representation.

## Input Parameters

INTEGER. The number of rows in the matrix $A(m \geq 0)$.
INTEGER. The number of columns in $A(n \geq 0)$.
REAL for sgeqrf
DOUBLE PRECISION for dgeqrf
COMPLEX for cgeqrf
DOUBLE COMPLEX for zgeqrf.
Arrays:
a(lda,*) contains the matrix $A$. The second dimension of a must be at least $\max (1, n)$.
work (lwork) is a workspace array.
INTEGER. The first dimension of $a$; at least $\max (1, m)$.
INTEGER. The size of the work array ( 1 work $\geq n$ )
See Application notes for the suggested value of 1 work.

## Output Parameters

```
a Overwritten by the factorization data as follows:
 If m\geqn, the elements below the diagonal are overwritten by the details of the
 unitary matrix }Q\mathrm{ , and the upper triangle is overwritten by the corresponding
 elements of the upper triangular matrix }R\mathrm{ .
 If m<n, the strictly lower triangular part is overwritten by the details of the
 unitary matrix }Q\mathrm{ , and the remaining elements are overwritten by the
 corresponding elements of the m by n upper trapezoidal matrix R}R\mathrm{ .
tau
 REAL for sgeqrf
 DOUBLE PRECISION for dgeqrf
 COMPLEX for cgeqrf
 DOUBLE COMPLEX for zgeqrf.
 Array, DIMENSION at least max (1, min(m,n)).
 Contains additional information on the matrix Q
work(1) If info = 0, on exit work (1) contains the minimum value of lwork required
 for optimum performance. Use this Iwork for subsequent runs.
info INTEGER
 If info = 0, the execution is successful.
 If info = -i, the ith parameter had an illegal value.
```


## Application Notes

For better performance, try using 1 work $=n *$ blocksize, where blocksize is a machine-dependent value (typically, 16 to 64 ) required for optimum performance of the blocked algorithm.

If you are in doubt how much workspace to supply, use a generous value of 1 work for the first run. On exit, examine work (1) and use this value for subsequent runs.

The computed factorization is the exact factorization of a matrix $A+E$, where $\|E\|_{2}=O(\varepsilon)\|A\|_{2}$.

The approximate number of floating-point operations for real flavors is

$$
\begin{array}{ll}
(4 / 3) n^{3} & \text { if } m=n, \\
(2 / 3) n^{2}(3 m-n) & \text { if } m>n, \\
(2 / 3) m^{2}(3 n-m) & \text { if } m<n .
\end{array}
$$

The number of operations for complex flavors is 4 times greater.

To solve a set of least-squares problems minimizing $\|A x-b\|_{2}$ for all columns $b$ of a given matrix $B$, you can call the following:
?geqr£ (this routine) to factorize $A=Q R$;
?ormqx $\quad$ to compute $C=Q^{T} B$ (for real matrices);
?unmqx to compute $C=Q^{H} B$ (for complex matrices);
? trsm (a BLAS routine) to solve $R X=C$.
(The columns of the computed $X$ are the least-squares solution vectors $x$.)
To compute the elements of $Q$ explicitly, call

?orgqr	(for real matrices)
?ungq.	(for complex matrices).

## ?geqpf

Computes the QR factorization of a general m by $n$ matrix with pivoting.

## Syntax

```
call sgeqpf (m, n, a, lda, jpvt, tau, work, info)
call dgeqpf (m, n, a, lda, jpvt, tau, work, info)
call cgeqpf (m, n, a, lda, jpvt, tau, work, rwork, info)
call zgeqpf (m, n, a, lda, jpvt, tau, work, rwork, info)
```


## Description

This routine is deprecated and has been replaced by routine ? geqp3.
The routine ? geqpf forms the $Q R$ factorization of a general $m$ by $n$ matrix $A$ with column pivoting: $A P=Q R$ (see Orthogonal Factorizations). Here $P$ denotes an $n$ by $n$ permutation matrix.

The routine does not form the matrix $Q$ explicitly. Instead, $Q$ is represented as a product of $\min (m, n)$ elementary reflectors. Routines are provided to work with $Q$ in this representation.

## Input Parameters

m
$n$
a, work
lda

I work
jpvt
rwork

INTEGER. The number of rows in the matrix $A(m \geq 0)$.
INTEGER. The number of columns in $A(n \geq 0)$.
REAL for sgeqpf
DOUBLE PRECISION for dgeqpf
COMPLEX for cgeqpf
DOUBLE COMPLEX for zgeqpf.
Arrays:
a (lda,*) contains the matrix $A$.
The second dimension of a must be at least $\max (1, n)$.
work (lwork) is a workspace array.
INTEGER. The first dimension of $a$; at least $\max (1, m)$.
INTEGER. The size of the work array; must be at least $\max (1,3 * n)$.
INTEGER. Array, DIMENSION at least $\max (1, n)$.
On entry, if jpvt ( $i$ ) $>0$, the $i$ th column of $A$ is moved to the beginning of $A P$ before the computation, and fixed in place during the computation.
If jpvt (i) $=0$, the $i$ th column of $A$ is a free column (that is, it may be interchanged during the computation with any other free column).
REAL for cgeqpf
DOUBLE PRECISION for zgeqpf.
A workspace array, DIMENSION at least max $\left(1,2 *_{n}\right)$.

## Output Parameters

Overwritten by the factorization data as follows:
If $m \geq n$, the elements below the diagonal are overwritten by the details of the unitary (orthogonal) matrix $Q$, and the upper triangle is overwritten by the corresponding elements of the upper triangular matrix $R$.

If $m<n$, the strictly lower triangular part is overwritten by the details of the matrix $Q$, and the remaining elements are overwritten by the corresponding elements of the $m$ by $n$ upper trapezoidal matrix $R$.
tau REAL for sgeqpf
DOUBLE PRECISION for dgeqpf
COMPLEX for cgeqpf

```
 DOUBLE COMPLEX for zgeqpf.
 Array, DIMENSION at least max (1, min (m,n)).
 Contains additional information on the matrix }Q\mathrm{ .
jpvt Overwritten by details of the permutation matrix P in the factorization AP=
 QR. More precisely, the columns of AP are the columns of }A\mathrm{ in the following
 order:
 jpvt(1), jpvt(2), ...,jpvt(n).
info INTEGER.
 If info = 0, the execution is successful.
 If info = -i, the ith parameter had an illegal value.
```


## Application Notes

The computed factorization is the exact factorization of a matrix $A+E$, where $\|E\|_{2}=O(\varepsilon)\|A\|_{2}$.
The approximate number of floating-point operations for real flavors is

$(4 / 3) n^{3}$	if $m=n$,
$(2 / 3) n^{2}(3 m-n)$	if $m>n$,
$(2 / 3) m^{2}(3 n-m)$	if $m<n$.

The number of operations for complex flavors is 4 times greater.
To solve a set of least-squares problems minimizing $\|A x-b\|_{2}$ for all columns $b$ of a given matrix $B$, you can call the following:
?geqp $($ this routine) to factorize $A P=Q R$;
?ormqr $\quad$ to compute $C=Q^{T} B$ (for real matrices);
?unmqx $\quad$ to compute $C=Q^{H} B$ (for complex matrices);
? trsm (a BLAS routine) to solve $R X=C$.
(The columns of the computed $X$ are the permuted least-squares solution vectors $x$; the output array jpvt specifies the permutation order.)
To compute the elements of $Q$ explicitly, call

?orgqx	(for real matrices)
?ungqx	(for complex matrices).

## ?geqp3

Computes the $Q R$ factorization of a general $m$ by $n$ matrix with column pivoting using Level 3 BLAS.

## Syntax

```
call sgeqp3 (m, n, a, lda, jpvt, tau, work, lwork, info)
call dgeqp3 (m, n, a, lda, jpvt, tau, work, lwork, info)
call cgeqp3 (m, n, a, lda, jpvt, tau, work, lwork, rwork, info)
call zgeqp3 (m, n, a, lda, jpvt, tau, work, lwork, rwork, info)
```


## Description

The routine forms the $Q R$ factorization of a general $m$ by $n$ matrix $A$ with column pivoting: $A P=$ $Q R$ (see Orthogonal Factorizations) using Level 3 BLAS. Here $P$ denotes an $n$ by $n$ permutation matrix.
Use this routine instead of ?geqpf for better performance.
The routine does not form the matrix $Q$ explicitly. Instead, $Q$ is represented as a product of $\min (m$, n) elementary reflectors. Routines are provided to work with $Q$ in this representation.

## Input Parameters

m
$n$
a, work
lda
l work

INTEGER. The number of rows in the matrix $A(m \geq 0)$.
INTEGER. The number of columns in $A(n \geq 0)$.
REAL for sgeqp3
DOUBLE PRECISION for dgeqp3
COMPLEX for cgeqp3
DOUBLE COMPLEX for zgeqp3.
Arrays:
a (lda,*) contains the matrix $A$.
The second dimension of a must be at least $\max (1, n)$.
work (lwork) is a workspace array.
INTEGER. The first dimension of $a$; at least $\max (1, m)$.
INTEGER. The size of the work array; must be at least $\max (1,3 * n+1)$ for real flavors, and at least $\max (1, n+1)$ for complex flavors.

```
jpvt
rwork
INTEGER. Array, DIMENSION at least max \((1, n)\).
On entry, if jpvt \((i) \neq 0\), the \(i\) th column of \(A\) is moved to the beginning of \(A P\) before the computation, and fixed in place during the computation. If jpvt (i) \(=0\), the \(i\) th column of \(A\) is a free column (that is, it may be interchanged during the computation with any other free column).
rwork REAL for cgeqp3
DOUBLE PRECISION for zgeqp3.
A workspace array, DIMENSION at least \(\max (1,2 * n)\). Used in complex flavors only.
```


## Output Parameters

Overwritten by the factorization data as follows:
If $m \geq n$, the elements below the diagonal are overwritten by the details of the unitary (orthogonal) matrix $Q$, and the upper triangle is overwritten by the corresponding elements of the upper triangular matrix $R$.
If $m<n$, the strictly lower triangular part is overwritten by the details of the matrix $Q$, and the remaining elements are overwritten by the corresponding elements of the $m$ by $n$ upper trapezoidal matrix $R$.
tau REAL for sgeqp3
DOUBLE PRECISION for dgeqp3
COMPLEX for cgeqp3
DOUBLE COMPLEX for zgeqp3.
Array, DIMENSION at least max $(1, \min (m, n))$.
Contains scalar factors of the elementary reflectors for the matrix $Q$.
jpvt Overwritten by details of the permutation matrix $P$ in the factorization $A P=$ $Q R$. More precisely, the columns of $A P$ are the columns of $A$ in the following order:
jpvt (1), jpvt(2), ..., jpvt(n).
info
INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$ th parameter had an illegal value.

```

\section*{Application Notes}

To solve a set of least-squares problems minimizing \(\|A x-b\|_{2}\) for all columns \(b\) of a given matrix \(B\), you can call the following:
?geqp3 (this routine) to factorize \(A P=Q R\);
```

?ormqr to compute C= QTB (for real matrices);
?unmgr to compute C= Q H}B\mathrm{ (for complex matrices);

```
?trim (a BLAS routine) to solve \(R X=C\).
(The columns of the computed \(X\) are the permuted least-squares solution vectors \(x\); the output array jpvt specifies the permutation order.)

To compute the elements of \(Q\) explicitly, call
?orgqr
?ungqr
(for real matrices)
(for complex matrices).

\section*{?orgqr}

Generates the real orthogonal matrix \(Q\) of the \(Q R\) factorization formed by ?geqrf.

\section*{Syntax}
```

call sorgqr ( m, n, k, a, lda, tau, work, lwork, info )

```
```

call dorgqr ( m, n, k, a, lda, tau, work, lwork, info )

```

\section*{Description}

The routine generates the whole or part of \(m\) by \(m\) orthogonal matrix \(Q\) of the \(Q R\) factorization formed by the routines sgeqr£/dgeqr£ or sgeqp \(£ /\) dgeqp \(£\). Use this routine after a call to sgeqrf/dgeqrf or sgeqpf/dgeqpf.

Usually \(Q\) is determined from the \(Q R\) factorization of an \(m\) by \(p\) matrix \(A\) with \(m \geq p\). To compute the whole matrix \(Q\), use:
```

call ?orgqr ( m, m, p, a, lda, tau, work, lwork, info )

```

To compute the leading \(p\) columns of \(Q\) (which form an orthonormal basis in the space spanned by the columns of \(A\)):
```

call ?orgqr ( m, p, p, a, lda, tau, work, lwork, info )

```

To compute the matrix \(Q^{k}\) of the \(Q R\) factorization of \(A\) 's leading \(k\) columns:
```

call ?orgqr ( m, m, k, a, lda, tau, work, lwork, info )

```

To compute the leading \(k\) columns of \(Q^{k}\) (which form an orthonormal basis in the space spanned by \(A\) 's leading \(k\) columns):
call ?orgqr (\(m, k, k, a, l d a, ~ t a u, ~ w o r k, ~ l w o r k, ~ i n f o ~) ~\)

\section*{Input Parameters}
m
n
k

INTEGER. The order of the orthogonal matrix \(Q(m \geq 0)\).
INTEGER. The number of columns of \(Q\) to be computed \((0 \leq n \leq m)\).
INTEGER. The number of elementary reflectors whose product defines the matrix \(Q(0 \leq k \leq n)\).
```

a, tau, work REAL for sorgqr
DOUBLE PRECISION for dorgqr
Arrays:
a(lda,*) and tau(*) are the arrays returned by sgeqrf/dgeqrf or
sgeqpf / dgeqpf.
The second dimension of a must be at least max(1,n).
The dimension of tau must be at least max (1,k).
work (lwork) is a workspace array.
Ida INTEGER. The first dimension of a; at least max (1,m).
lwork INTEGER. The size of the work array (lwork \geqn)
See Application notes for the suggested value of lwork.

```

\section*{Output Parameters}
a
work(1)
info
```

Overwritten by $n$ leading columns of the $m$ by $m$ orthogonal matrix $Q$.
If info $=0$, on exit work (1) contains the minimum value of 1 work required for optimum performance. Use this lwork for subsequent runs.
INTEGER.
If $\operatorname{info}=0$, the execution is successful.
If info $=-i$, the $i$ th parameter had an illegal value.

```

\section*{Application Notes}

For better performance, try using 1 work \(=n *\) blocksize, where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm. If you are in doubt how much workspace to supply, use a generous value of 1 work for the first run. On exit, examine work (1) and use this value for subsequent runs.

The computed \(Q\) differs from an exactly orthogonal matrix by a matrix \(E\) such that \(\|E\|_{2}=O(\varepsilon)\) \(\|A\|_{2}\) where \(\varepsilon\) is the machine precision.

The total number of floating-point operations is approximately
\(4 * m{ }^{*} n * k-2 *(m+n) * k^{2}+(4 / 3) * k^{3}\).
If \(n=k\), the number is approximately \((2 / 3) * n^{2} *(3 m-n)\).
The complex counterpart of this routine is ?ungqr.

\section*{?ormqr}

\section*{Multiplies a real matrix by the orthogonal matrix \(Q\) of the}
\(Q R\) factorization formed by ?geqre or ?geqpf.

\section*{Syntax}
call sormqr (side,trans,m,n,k,a,lda,tau, c,ldc, work,lwork, info)
call dormqr (side,trans,m,n,k,a,lda,tau, c,ldc,work,lwork,info)

\section*{Description}

The routine multiplies a real matrix \(C\) by \(Q\) or \(Q^{T}\), where \(Q\) is the orthogonal matrix \(Q\) of the \(Q R\) factorization formed by the routines sgeqr£/dgeqr£ or sgeqp \(£\) /dgeqp \(£\).

Depending on the parameters side and trans, the routine can form one of the matrix products \(Q C, Q^{T} C, C Q\), or \(C Q^{T}\) (overwriting the result on \(C\)).

\section*{Input Parameters}
```

side CHARACTER*1. Must be either 'L' or 'R'.
If side = 'L',Q or }\mp@subsup{Q}{}{T}\mathrm{ is applied to C from the left.
If side = 'R',Q or }\mp@subsup{Q}{}{T}\mathrm{ is applied to C from the right.
trans CHARACTER*1. Must be either 'N' or 'T'.
If trans='N', the routine multiplies C by Q.
If trans = 'T', the routine multiplies C by Q }\mp@subsup{Q}{}{T}\mathrm{ .
m INTEGER. The number of rows in the matrix C (m\geq0).
n INTEGER. The number of columns in C ( }n\geq0)\mathrm{ .
k INTEGER. The number of elementary reflectors whose product defines the
matrix Q. Constraints:
0\leqk\leqm if side='L';
0\leqk\leqn if side='R'.
a,work, tau,c REAL for sgeqrf
DOUBLE PRECISION for dgeqrf.
Arrays:
a(lda,*) and tau(*) are the arrays returned by sgeqrf/ dgeqrf or

```
sgeqpf / dgeqpf.
The second dimension of a must be at least \(\max (1, k)\).
The dimension of \(t a u\) must be at least \(\max (1, k)\).
\(c(l d c, *)\) contains the matrix \(C\).
The second dimension of \(c\) must be at least \(\max (1, n)\)
work (lwork) is a workspace array.
Ida INTEGER. The first dimension of a. Constraints:
\(l d a \geq \max (1, m)\) if \(s i d e=' L '\);
\(l d a \geq \max (1, n)\) if \(s i d e=' R\) '.
ldc INTEGER. The first dimension of \(c\). Constraint: \(l d c \geq \max (1, m)\).
lwork INTEGER. The size of the work array. Constraints: lwork \(\geq \max (1, n)\) if side = 'L'; lwork \(\geq \max (1, m)\) if side ='R'.
See Application notes for the suggested value of 1 work.

\section*{Output Parameters}

Overwritten by the product \(Q C, Q^{T} C, C Q\), or \(C Q^{T}\) (as specified by side and trans).
work(1) If info \(=0\), on exit work (1) contains the minimum value of 1 work required for optimum performance. Use this 1 work for subsequent runs.
info
INTEGER.
If info \(=0\), the execution is successful. If info \(=-i\), the \(i\) th parameter had an illegal value.

\section*{Application Notes}

For better performance, try using 1 work \(=n *\) blocksize (if side \(=' L '\)) or 1 work \(=m *\) blocksize (if side \(=\) 'R') where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm. If you are in doubt how much workspace to supply, use a generous value of lwork for the first run. On exit, examine work (1) and use this value for subsequent runs.

The complex counterpart of this routine is ?unmqr.

\section*{?ungqr}

Generates the complex unitary matrix \(Q\) of the \(Q R\) factorization formed by ?geqrf.

\section*{Syntax}
```

call cungqr ( m, n, k, a, lda, tau, work, lwork, info )

```
```

call zungqr ( m, n, k, a, lda, tau, work, lwork, info )

```

\section*{Description}

The routine generates the whole or part of \(m\) by \(m\) unitary matrix \(Q\) of the \(Q R\) factorization formed by the routines \(\operatorname{cgeqrf} / \underline{z g e q r f}\) or \(\underline{c g e q p f} / \underline{z g e q p £}\). Use this routine after a call to cgeqrf/zgeqrf or cgeqpf/zgeqpf.

Usually \(Q\) is determined from the \(Q R\) factorization of an \(m\) by \(p\) matrix \(A\) with \(m \geq p\). To compute the whole matrix \(Q\), use:
```

call ?ungqr ( m, m, p, a, lda, tau, work, lwork, info )

```

To compute the leading \(p\) columns of \(Q\) (which form an orthonormal basis in the space spanned by the columns of \(A\)):
```

call ?ungqr ( m, p, p, a, lda, tau, work, lwork, info )

```

To compute the matrix \(Q^{k}\) of the \(Q R\) factorization of \(A\) 's leading \(k\) columns:
```

call ?ungqr ( m, m, k, a, lda, tau, work, lwork, info )

```

To compute the leading \(k\) columns of \(Q^{k}\) (which form an orthonormal basis in the space spanned by \(A\) 's leading \(k\) columns):
```

call ?ungqr ( m, k, k, a, lda, tau, work, lwork, info )

```

\section*{Input Parameters}

INTEGER. The order of the unitary matrix \(Q(m \geq 0)\).
INTEGER. The number of columns of \(Q\) to be computed \((0 \leq n \leq m)\).
INTEGER. The number of elementary reflectors whose product defines the matrix \(Q(0 \leq k \leq n)\).
```

a, tau, work COMPLEX for cungqr
DOUBLE COMPLEX for zungqr
Arrays:
a(lda,*) and tau(*) are the arrays returned by cgeqrf/zgeqrf or
cgeqpf/zgeqpf.
The second dimension of a must be at least max(1,n).
The dimension of tau must be at least max (1,k).
work (lwork) is a workspace array.
Ida INTEGER. The first dimension of a; at least max (1,m).
lwork INTEGER. The size of the work array (lwork \geqn)
See Application notes for the suggested value of lwork.

```

\section*{Output Parameters}
a
work(1)
info
```

Overwritten by $n$ leading columns of the $m$ by $m$ unitary matrix $Q$.
If info $=0$, on exit work (1) contains the minimum value of 1 work required for optimum performance. Use this lwork for subsequent runs.
INTEGER.
If info $=0$, the execution is successful. If info $=-i$, the $i$ th parameter had an illegal value.

```

\section*{Application Notes}

For better performance, try using 1 work \(=n *\) blocksize, where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm. If you are in doubt how much workspace to supply, use a generous value of 1 work for the first run. On exit, examine work (1) and use this value for subsequent runs.

The computed \(Q\) differs from an exactly unitary matrix by a matrix \(E\) such that \(\|E\|_{2}=O(\varepsilon)\|A\|_{2}\) where \(\varepsilon\) is the machine precision.

The total number of floating-point operations is approximately
\(16 * m{ }^{*} n * k-8 *(m+n) * k^{2}+(16 / 3) * k^{3}\).
If \(n=k\), the number is approximately \((8 / 3) * n^{2} *(3 m-n)\).
The real counterpart of this routine is ?orgqr.

\section*{?unmqr}

\section*{Multiplies a complex matrix by the unitary matrix \(Q\) of the}
\(Q R\) factorization formed by ?geqre.

\section*{Syntax}
```

call cunmqr ( side,trans,m,n,k,a,lda,tau,c,ldc,work,lwork,info )

```
```

call zunmqr ( side,trans,m,n,k,a,lda,tau,c,ldc,work,lwork,info )

```

\section*{Description}

The routine multiplies a rectangular complex matrix \(C\) by \(Q\) or \(Q^{H}\), where \(Q\) is the unitary matrix \(Q\) of the \(Q R\) factorization formed by the routines cgeqr£ \(/\) zgeqre or cgeqp \(£ /\) zgeqp \(£\).

Depending on the parameters side and trans, the routine can form one of the matrix products \(Q C, Q^{H} C, C Q\), or \(C Q^{H}\) (overwriting the result on \(C\)).

\section*{Input Parameters}
```

side CHARACTER*1. Must be either 'L' or 'R'.
If side='L',Q or Q Q is applied to C from the left.
If side ='R',Q or Q 直 is applied to C from the right.
trans CHARACTER*1.Must be either 'N' or 'C'.
If trans='N', the routine multiplies C by Q.
If trans=' C', the routine multiplies C by Q '
m INTEGER. The number of rows in the matrix C ( }m\geq0)\mathrm{ .
n INTEGER. The number of columns in C ( }n\geq0)\mathrm{ .
k integer. The number of elementary reflectors whose product defines the
matrix Q. Constraints:
0\leqk\leqm if side ='L';
0\leqk\leqn if side='R'.
a,work,tau,c COMPLEX for cgeqre
DOUBLE COMPLEX for zgeqrf.
Arrays:
a(lda,*) and tau(*) are the arrays returned by cgeqrf / zgeqrf or

```
cgeqpf / zgeqpf.
The second dimension of a must be at least \(\max (1, k)\).
The dimension of \(t a u\) must be at least \(\max (1, k)\).
\(c(l d c, *)\) contains the matrix \(C\).
The second dimension of \(c\) must be at least \(\max (1, n)\)
work (lwork) is a workspace array.
Ida INTEGER. The first dimension of a. Constraints:
\(l d a \geq \max (1, m)\) if \(s i d e=' L ' ;\)
\(l d a \geq \max (1, n)\) if \(s i d e=' R\) '.
Idc INTEGER. The first dimension of \(c\). Constraint: \(l d c \geq \max (1, m)\).
lwork INTEGER. The size of the work array. Constraints: lwork \(\geq \max (1, n)\) if side = 'L'; lwork \(\geq \max (1, m)\) if side = 'R'.
See Application notes for the suggested value of 1 work.

\section*{Output Parameters}

Overwritten by the product \(Q C, Q^{H} C, C Q\), or \(C Q^{H}\) (as specified by side and trans).
work(1) If info \(=0\), on exit work (1) contains the minimum value of 1 work required for optimum performance. Use this 1 work for subsequent runs.
info
INTEGER.
If info \(=0\), the execution is successful. If info \(=-i\), the \(i\) th parameter had an illegal value.

\section*{Application Notes}

For better performance, try using 1 work \(=n *\) blocksize (if side \(=' L '\)) or 1 work \(=m *\) blocksize (if side \(=\) 'R') where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm. If you are in doubt how much workspace to supply, use a generous value of 1 work for the first run. On exit, examine work (1) and use this value for subsequent runs.

The real counterpart of this routine is ?ormqr.

\section*{?gelqf}

Computes the LQ factorization of a general \(m\) by \(n\) matrix.

\section*{Syntax}
```

call sgelqf ( m, n, a, lda, tau, work, lwork, info )
call dgelqf ( m, n, a, lda, tau, work, lwork, info )
call cgelqf ( m, n, a, lda, tau, work, lwork, info )
call zgelqf ( m, n, a, lda, tau, work, lwork, info )

```

\section*{Description}

The routine forms the \(L Q\) factorization of a general \(m\) by \(n\) matrix \(A\) (see Orthogonal Factorizations on page 4-5). No pivoting is performed.

The routine does not form the matrix \(Q\) explicitly. Instead, \(Q\) is represented as a product of \(\min (m\), n) elementary reflectors. Routines are provided to work with \(Q\) in this representation.

\section*{Input Parameters}
a, work
lda
lwork
\(n \quad\) INTEGER. The number of columns in \(A(n \geq 0)\).
INTEGER. The number of rows in the matrix \(A\) (\(m \geq 0\)).

REAL for sgelqf
DOUBLE PRECISION for dgelqf
COMPLEX for cgelqf
DOUBLE COMPLEX for zgelqf.
Arrays:
a (lda,*) contains the matrix \(A\). The second dimension of a must be at least \(\max (1, n)\).
work (lwork) is a workspace array.
integer. The first dimension of \(a\); at least max \((1, m)\).
INTEGER. The size of the work array; at least max \((1, m)\). See Application notes for the suggested value of 1 work.

\section*{Output Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{a} & Overwritten by the factorization data as follows: \\
\hline & If \(m \leq n\), the elements above the diagonal are overwritten by the details of the unitary (orthogonal) matrix \(Q\), and the lower triangle is overwritten by the corresponding elements of the lower triangular matrix \(L\). \\
\hline & If \(m>n\), the strictly upper triangular part is overwritten by the details of the matrix \(Q\), and the remaining elements are overwritten by the corresponding elements of the \(m\) by \(n\) lower trapezoidal matrix \(L\). \\
\hline \multirow[t]{6}{*}{tau} & REAL for sgelqf \\
\hline & DOUBLE PRECISION for dgelqf \\
\hline & COMPLEX for cgelqf \\
\hline & DOUBLE COMPLEX for zgelqf. \\
\hline & Array, DIMENSION at least max \((1, \min (m, n))\). \\
\hline & Contains additional information on the matrix \(Q\). \\
\hline work(1) & If info \(=0\), on exit work(1) contains the minimum value of 1 work required for optimum performance. Use this 1 work for subsequent runs. \\
\hline \multirow[t]{3}{*}{info} & INTEGER. \\
\hline & If info \(=0\), the execution is successful. \\
\hline & If info \(=-i\), the \(i\) th parameter had an illegal value. \\
\hline
\end{tabular}

\section*{Application Notes}

For better performance, try using 1 work \(=m *\) blocksize, where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm.

If you are in doubt how much workspace to supply, use a generous value of 1 work for the first run. On exit, examine work (1) and use this value for subsequent runs.

The computed factorization is the exact factorization of a matrix \(A+E\), where \(\|E\|_{2}=O(\varepsilon)\|A\|_{2}\).

The approximate number of floating-point operations for real flavors is
\begin{tabular}{ll}
\((4 / 3) n^{3}\) & if \(m=n\), \\
\((2 / 3) n^{2}(3 m-n)\) & if \(m>n\), \\
\((2 / 3) m^{2}(3 n-m)\) & if \(m<n\).
\end{tabular}

The number of operations for complex flavors is 4 times greater.
To find the minimum-norm solution of an underdetermined least-squares problem minimizing \(\| A x\) \(-b \|_{2}\) for all columns \(b\) of a given matrix \(B\), you can call the following:
? gelqf (this routine) to factorize \(A=L Q\);
?trsm (a BLAS routine) to solve \(L Y=B\) for \(Y\);
?ormlq to compute \(X=\left(Q_{1}\right)^{T} Y\) (for real matrices);
?unmlq to compute \(X=\left(Q_{1}\right)^{H} Y\) (for complex matrices).
(The columns of the computed \(X\) are the minimum-norm solution vectors \(x\). Here \(A\) is an by \(n\) matrix with \(m<n ; Q_{1}\) denotes the first \(m\) columns of \(Q\)).

To compute the elements of \(Q\) explicitly, call
\begin{tabular}{ll}
?orglq & (for real matrices) \\
?unglq & (for complex matrices).
\end{tabular}

\section*{?orglq}

Generates the real orthogonal matrix \(Q\) of the \(L Q\) factorization formed by ?gelqf.

\section*{Syntax}
```

call sorglq ( m, n, k, a, lda, tau, work, lwork, info )

```
call dorglq (m, n, k, a, lda, tau, work, lwork, info)

\section*{Description}

The routine generates the whole or part of \(n\) by \(n\) orthogonal matrix \(Q\) of the \(L Q\) factorization formed by the routines sgelqf/dgelqf. Use this routine after a call to sgelqf/dgelqf.

Usually \(Q\) is determined from the \(L Q\) factorization of an \(p\) by \(n\) matrix \(A\) with \(n \geq p\). To compute the whole matrix \(Q\), use:
```

call ?orglq ( n, n, p, a, lda, tau, work, lwork, info )

```

To compute the leading \(p\) rows of \(Q\) (which form an orthonormal basis in the space spanned by the rows of \(A\)):
```

call ?orglq ( p, n, p, a, lda, tau, work, lwork, info )

```

To compute the matrix \(Q^{k}\) of the \(L Q\) factorization of \(A\) 's leading \(k\) rows:
```

call ?orglq ( n, n, k, a, lda, tau, work, lwork, info )

```

To compute the leading \(k\) rows of \(Q^{k}\) (which form an orthonormal basis in the space spanned by \(A\) 's leading \(k\) rows):
```

call ?orgqr ( k, n, k, a, lda, tau, work, lwork, info )

```

\section*{Input Parameters}

INTEGER. The number of rows of \(Q\) to be computed (\(0 \leq m \leq n\)).
INTEGER. The order of the orthogonal matrix \(Q(n \geq m)\).
integer. The number of elementary reflectors whose product defines the matrix \(Q(0 \leq k \leq m)\).
```

a, tau, work REAL for sorglq
DOUBLE PRECISION for dorglq
Arrays:
a(lda,*) and tau(*) are the arrays returned by sgelqf/dgelqf.
The second dimension of a must be at least max(1,n).
The dimension of tau must be at least max (1,k).
work (lwork) is a workspace array.
Ida INTEGER. The first dimension of a; at least max (1,m).
lwork INTEGER. The size of the work array; at least max(1,m).
See Application notes for the suggested value of lwork.

```

\section*{Output Parameters}
work(1)
info
```

Overwritten by $m$ leading rows of the $n$ by $n$ orthogonal matrix $Q$.
If info $=0$, on exit work (1) contains the minimum value of 1 work required for optimum performance. Use this lwork for subsequent runs.
INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$ th parameter had an illegal value.

```

\section*{Application Notes}

For better performance, try using 1 work \(=m *\) blocksize, where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm. If you are in doubt how much workspace to supply, use a generous value of lwork for the first run. On exit, examine work (1) and use this value for subsequent runs.

The computed \(Q\) differs from an exactly orthogonal matrix by a matrix \(E\) such that \(\|E\|_{2}=O(\varepsilon)\) \(\|A\|_{2}\) where \(\varepsilon\) is the machine precision.

The total number of floating-point operations is approximately
\(4 \star_{m}{ }^{n}{ }^{*} k-2 *(m+n) * k^{2}+(4 / 3) * k^{3}\).
If \(m=k\), the number is approximately \((2 / 3) \star m^{2} \star(3 n-m)\).
The complex counterpart of this routine is ?unglq.

\section*{?ormlq}

Multiplies a real matrix by the orthogonal matrix \(Q\) of the LQ factorization formed by ?gelqf.

\section*{Syntax}
call sormlq (side,trans, \(m, n, k, a, l d a, t a u, c, l d c, w o r k, l w o r k, i n f o ~) ~\)
call dormlq (side,trans,m,n,k,a,lda,tau, c,ldc,work,lwork,info)

\section*{Description}

The routine multiplies a real m-by-n matrix \(C\) by \(Q\) or \(Q^{T}\), where \(Q\) is the orthogonal matrix \(Q\) of the \(L Q\) factorization formed by the routine \(\operatorname{sgelqf} / \mathrm{dgelqf}\).

Depending on the parameters side and trans, the routine can form one of the matrix products \(Q C, Q^{T} C, C Q\), or \(C Q^{T}\) (overwriting the result on \(C\)).

\section*{Input Parameters}
```

side CHARACTER*1. Must be either 'L' or 'R'.
If side='L',Q or QT is applied to C from the left.
If side='R',Q or Q 要 is applied to C from the right.
trans CHARACTER*1.Must be either 'N' or 'T'.
If trans='N', the routine multiplies C by Q.
If trans='T', the routine multiplies C by Q 'T
m INTEGER. The number of rows in the matrix C ( m\geq0).
n INTEGER. The number of columns in C ( }n\geq0)\mathrm{ .
k INTEGer. The number of elementary reflectors whose product defines the
matrix Q. Constraints:
0\leqk\leqm if side ='L';
0\leqk\leqn if side='R'.
a,work,tau,c REAL for sormlq
DOUBLE PRECISION for dormlq.
Arrays:
a(lda,*) and tau(*) are arrays returned by ?gelqf.
The second dimension of a must be:

```
\begin{tabular}{|c|c|}
\hline Ida & INTEGER. The first dimension of \(a ; 1 d a \geq \max (1, k)\). \\
\hline Idc & INTEGER. The first dimension of \(c ; 1 d c \geq m a x(1, m)\). \\
\hline \multirow[t]{4}{*}{lwork} & INTEGER. The size of the work array. Constraints: \\
\hline & l work \(\geq \max (1, n)\) if side = 'L'; \\
\hline & l work \(\geq \max (1, m)\) if side = 'R'. \\
\hline & See Application notes for the suggested value of 1 work. \\
\hline \multicolumn{2}{|l|}{Output Parameters} \\
\hline C & Overwritten by the product \(Q C, Q^{T} C, C Q\), or \(C Q^{T}\) (as specified by side and trans). \\
\hline work(1) & If info \(=0\), on exit work (1) contains the minimum value of 1 work required for optimum performance. Use this 1 work for subsequent runs. \\
\hline info & INTEGER. \\
\hline & If info \(=0\), the execution is successful. \\
\hline & If info \(=-i\), the \(i\) th parameter had an illegal value. \\
\hline
\end{tabular}

\section*{Application Notes}

For better performance, try using lwork \(=n *\) blocksize (if side \(=L^{\prime}\)) or 1 work \(=m *\) blocksize (if side \(=\) 'R') where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm. If you are in doubt how much workspace to supply, use a generous value of 1 work for the first run. On exit, examine work (1) and use this value for subsequent runs.
The complex counterpart of this routine is ?unmlq.

Intel® Math Kernel Library Reference Manual

\section*{?unglq}

Generates the complex unitary matrix \(Q\) of the \(L Q\) factorization formed by ?gelqf.

\section*{Syntax}
```

call cunglq ( m, n, k, a, lda, tau, work, lwork, info )

```
call zunglq (\(m, n, k, a, l d a, ~ t a u, ~ w o r k, ~ l w o r k, ~ i n f o ~) ~\)

\section*{Description}

The routine generates the whole or part of \(n\) by \(n\) unitary matrix \(Q\) of the \(L Q\) factorization formed by the routines \(\subset \underline{c g e l q} £ / \underline{z g e l q} £\). Use this routine after a call to cgelqf/zgelqf.

Usually \(Q\) is determined from the \(L Q\) factorization of an \(p\) by \(n\) matrix \(A\) with \(n \geq p\). To compute the whole matrix \(Q\), use:
```

call ?unglq ( n, n, p, a, lda, tau, work, lwork, info )

```

To compute the leading \(p\) rows of \(Q\) (which form an orthonormal basis in the space spanned by the rows of \(A\)):
```

call ?unglq ( p, n, p, a, lda, tau, work, lwork, info )

```

To compute the matrix \(Q^{k}\) of the \(L Q\) factorization of \(A\) 's leading \(k\) rows:
```

call ?unglq ( n, n, k, a, lda, tau, work, lwork, info )

```

To compute the leading \(k\) rows of \(Q^{k}\) (which form an orthonormal basis in the space spanned by \(A\) 's leading \(k\) rows):
```

call ?ungqr ( k, n, k, a, lda, tau, work, lwork, info )

```

\section*{Input Parameters}

INTEGER. The number of rows of \(Q\) to be computed (\(0 \leq m \leq n\)).
INTEGER. The order of the unitary matrix \(Q(n \geq m)\).
INTEGER. The number of elementary reflectors whose product defines the matrix \(Q(0 \leq k \leq m)\).
```

a, tau, work COMPLEX for cunglq
DOUBLE COMPLEX for zunglq
Arrays:
a(lda,*) and tau(*) are the arrays returned by sgelqf/dgelqf.
The second dimension of a must be at least max(1,n).
The dimension of tau must be at least max (1,k).
work (lwork) is a workspace array.
Ida INTEGER. The first dimension of a; at least max (1,m).
lwork INTEGER. The size of the work array; at least max (1,m).
See Application notes for the suggested value of lwork.

```

\section*{Output Parameters}
Overwritten by \(m\) leading rows of the \(n\) by \(n\) unitary matrix \(Q\).
work(1) If info \(=0\), on exit work(1) contains the minimum value of lwork required for optimum performance. Use this lwork for subsequent runs.
info INTEGER.
If \(\operatorname{info}=0\), the execution is successful.
If info \(=-i\), the \(i\) th parameter had an illegal value.
```


## Application Notes

For better performance, try using 1 work $=m \star$ blocksize, where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm. If you are in doubt how much workspace to supply, use a generous value of lwork for the first run. On exit, examine work (1) and use this value for subsequent runs.

The computed $Q$ differs from an exactly unitary matrix by a matrix $E$ such that $\|E\|_{2}=O(\varepsilon)\|A\|_{2}$ where $\varepsilon$ is the machine precision.

The total number of floating-point operations is approximately
$16 * m * n * k-8 *(m+n) * k^{2}+(16 / 3) * k^{3}$.
If $m=k$, the number is approximately $(8 / 3) \star m^{2} \star(3 n-m)$.
The real counterpart of this routine is ?orglq.

## ?unmlq

Multiplies a complex matrix by the unitary matrix $Q$ of the LQ factorization formed by ?gelqf.

## Syntax

call cunmlq ( side,trans, $m, n, k, a, l d a, t a u, c, l d c, w o r k, l w o r k, i n f o ~) ~$
call zunmlq ( side,trans,m,n,k,a,lda,tau, c,ldc,work,lwork,info )

## Description

The routine multiplies a real m-by-n matrix $C$ by $Q$ or $Q^{H}$, where $Q$ is the unitary matrix $Q$ of the $L Q$ factorization formed by the routine $\subset \mathrm{cgelq}_{\mathrm{f}} / \mathrm{zgelqf}$.

Depending on the parameters side and trans, the routine can form one of the matrix products $Q C, Q^{H} C, C Q$, or $C Q^{H}$ (overwriting the result on $C$ ).

## Input Parameters

```
side CHARACTER*1. Must be either 'L' or 'R'.
 If side='L',Q or Q Q is applied to C from the left.
 If side='R',Q or Q 直 is applied to C from the right.
trans CHARACTER*1. Must be either 'N' or 'C'.
 If trans='N', the routine multiplies C by Q.
 If trans =' C', the routine multiplies C by Q '
m INTEGER. The number of rows in the matrix C (m\geq0).
n INTEGER. The number of columns in C (}n\geq0)\mathrm{ .
k INTEGER. The number of elementary reflectors whose product defines the
 matrix Q. Constraints:
 0\leqk\leqm if side='L';
 0\leqk\leqn if side='R'.
 a,work,tau,c COMPLEX for cunmlq
 DOUBLE COMPLEX for zunmlq.
 Arrays:
 a(lda,*) and tau(*) are arrays returned by ?gelqf.
 The second dimension of a must be:
```

Ida	INTEGER. The first dimension of $a ; 1 d a \geq \max (1, k)$.
Idc	INTEGER. The first dimension of $c ; 1 d c \geq \max (1, m)$.
lwork	INTEGER. The size of the work array. Constraints:
	l work $\geq \max (1, n)$ if side = 'L';
	l work $\geq \max (1, m)$ if side = 'R'.
	See Application notes for the suggested value of 1 work.
Output Parameters	
C	Overwritten by the product $Q C, Q^{H} C, C Q$, or $C Q^{H}$ (as specified by side and trans).
work(1)	If $\operatorname{info}=0$, on exit work (1) contains the minimum value of 1 work required for optimum performance. Use this 1 work for subsequent runs.
info	INTEGER.
	If info $=0$, the execution is successful.
	If info $=-i$, the $i$ th parameter had an illegal value.

## Application Notes

For better performance, try using lwork $=n *$ blocksize (if side $=L^{\prime}$ ) or 1 work $=m *$ blocksize (if side $=$ 'R') where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm. If you are in doubt how much workspace to supply, use a generous value of 1 work for the first run. On exit, examine work (1) and use this value for subsequent runs.
The real counterpart of this routine is ?ormlq.

## ?geqlf

Computes the QL factorization of a general $m$ by $n$ matrix.

## Syntax

```
call sgeqlf (m, n, a, lda, tau, work, lwork, info)
call dgeqlf (m, n, a, lda, tau, work, lwork, info)
call cgeqlf (m, n, a, lda, tau, work, lwork, info)
call zgeqlf (m, n, a, lda, tau, work, lwork, info)
```


## Description

The routine forms the $Q L$ factorization of a general $m-b y-n$ matrix $A$. No pivoting is performed.

The routine does not form the matrix $Q$ explicitly. Instead, $Q$ is represented as a product of $\min (m$, n) elementary reflectors. Routines are provided to work with $Q$ in this representation.

## Input Parameters

INTEGER. The number of rows in the matrix $A(m \geq 0)$.
INTEGER. The number of columns in $A(n \geq 0)$.
REAL for sgeqlf
DOUBLE PRECISION for dgeqlf
COMPLEX for cgeqlf
DOUBLE COMPLEX for zgeqlf.
Arrays:
a(lda,*) contains the matrix $A$. The second dimension of a must be at least $\max (1, n)$.
work (lwork) is a workspace array.
INTEGER. The first dimension of $a$; at least $\max (1, m)$.
INTEGER. The size of the work array; at least $\max (1, n)$. See Application notes for the suggested value of lwork.

## Output Parameters

```
a Overwritten on exit by the factorization data as follows:
 if m\geqn, the lower triangle of the subarray
 a(m-n+1:m, 1:n) contains the n-by-n lower triangular matrix L;
 if m\leqn, the elements on and below the (n-m)th superdiagonal contain the
 m-by-n lower trapezoidal matrix L;
 in both cases, the remaining elements, with the array tau, represent the
 orthogonal/unitary matrix Q as a product of elementary reflectors.
tau REAL for sgeqlf
 DOUBLE PRECISION for dgeqlf
 COMPLEX for cgeqlf
 DOUBLE COMPLEX for zgeqlf.
 Array, DIMENSION at least max(1, min(m,n)).
 Contains scalar factors of the elementary reflectors for the matrix Q.
work(1) If info=0, on exit work(1) contains the minimum value of l work required
 for optimum performance.
info INTEGER.
 If info = 0, the execution is successful.
 If info =-i, the ith parameter had an illegal value.
```


## Application Notes

For better performance, try using 1 work $=n *$ blocksize, where blocksize is a machine-dependent value (typically, 16 to 64 ) required for optimum performance of the blocked algorithm. If you are in doubt how much workspace to supply, use a generous value of lwork for the first run. On exit, examine work (1) and use this value for subsequent runs.
Related routines include:
?orgql to generate matrix Q (for real matrices);
?ungql to generate matrix Q (for complex matrices);
?ormql to apply matrix Q (for real matrices);
?unmql to apply matrix Q (for complex matrices).

## ?orgql

Generates the real matrix Q of the QL factorization formed by ?geqlf.

## Syntax

```
call sorgql (m, n, k, a, lda, tau, work, lwork, info)
call dorgql (m, n, k, a, lda, tau, work, lwork, info)
```


## Description

The routine generates an $m$-by-n real matrix $Q$ with orthonormal columns, which is defined as the last $n$ columns of a product of $k$ elementary reflectors $H_{i}$ of order $m: Q=H_{k} \cdots H_{2} H_{1}$ as returned by the routines $\underline{s g e q l f}$ _dgeqlf. Use this routine after a call to sgeqlf/dgeqlf.

## Input Parameters

INTEGER. The number of rows of the matrix $Q$ ( $m \geq 0$ ).
n
INTEGER. The number of columns of the matrix $Q$ ( $m \geq n \geq 0$ ).
$k \quad$ INTEGER. The number of elementary reflectors whose product defines the matrix $Q(n \geq k \geq 0)$.
a, tau, work REAL for sorgql
DOUBLE PRECISION for dorgql
Arrays: a(lda,*), tau(*), work(lwork).
On entry, the $(n-k+i)$ th column of a must contain the vector which defines the elementary reflector $H_{\mathrm{i}}$, for $\mathrm{i}=1,2, \ldots, k$, as returned by sgeqlf/dgeqlf in the last $k$ columns of its array argument $a$;
tau(i) must contain the scalar factor of the elementary reflector $H_{i}$, as returned by sgeqlf/dgeqlf;

The second dimension of a must be at least $\max (1, n)$. The dimension of tau must be at least $\max (1, k)$.
work (lwork) is a workspace array.
Ida
INTEGER. The first dimension of $a$; at least $\max (1, m)$.

Iwork	INTEGER. The size of the work array; at least $\max (1, n)$. See Application notes for the suggested value of 1 work.
Output Parameters	
a	Overwritten by the m-by-n matrix $Q$.
work(1)	If info $=0$, on exit work (1) contains the minimum value of 1 work required for optimum performance. Use this lwork for subsequent runs.
info	INTEGER.   If info $=0$, the execution is successful.   If info $=-i$, the $i$ th parameter had an illegal value.

## Application Notes

For better performance, try using 1 work $=n *$ blocksize, where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm. If you are in doubt how much workspace to supply, use a generous value of lwork for the first run. On exit, examine work (1) and use this value for subsequent runs.

The complex counterpart of this routine is ?ungql.

## ?ungql

Generates the complex matrix $Q$ of the QL factorization formed by ?geqle.

## Syntax

```
call cungql (m, n, k, a, lda, tau, work, lwork, info)
```

call zungql ( $m, n, k, a, l d a, ~ t a u, ~ w o r k, ~ l w o r k, ~ i n f o ~) ~$

## Description

The routine generates an m-by-n complex matrix $Q$ with orthonormal columns, which is defined as the last $n$ columns of a product of $k$ elementary reflectors $H_{\mathrm{i}}$ of order $m$ : $Q=H_{k} \cdots H_{2} H_{1}$ as returned by the routines $\mathrm{cgeq} \mathrm{f} £ \mathrm{zg}$ eqlf . Use this routine after a call to cgeqlf/zgeqlf.

## Input Parameters

INTEGER. The number of rows of the matrix $Q$ ( $m \geq 0$ ).
n
INTEGER. The number of columns of the matrix $Q$ ( $m \geq n \geq 0$ ).
k
a, tau, work COMPLEX for cungql
DOUBLE COMPLEX for zungql
Arrays: a(lda,*), tau(*), work(lwork).
On entry, the $(n-k+i)$ th column of a must contain the vector which defines the elementary reflector $H_{\mathrm{i}}$, for $\mathrm{i}=1,2, \ldots, k$, as returned by cgeqlf/zgeqle in the last $k$ columns of its array argument $a$;
$\operatorname{tau}(\mathrm{i})$ must contain the scalar factor of the elementary reflector $H_{\mathrm{i}}$, as returned by cgeqlf/zgeqlf;

The second dimension of a must be at least $\max (1, n)$. The dimension of tau must be at least $\max (1, k)$.
work (lwork) is a workspace array.
Ida
INTEGER. The first dimension of $a$; at least $\max (1, m)$.

I work	INTEGER. The size of the work array; at least max $(1, n)$.
See Application notes for the suggested value of lwork.	
Output Parameters	
a	
work(1)	Overwritten by the m-by-n matrix $Q$.   If info $=0$, on exit work (1) contains the minimum value of 1 work required   for optimum performance. Use this 1 work for subsequent runs.
	INTEGER.   If info $=0$, the execution is successful.   If info $=-i, ~ t h e ~ i t h ~ p a r a m e t e r ~ h a d ~ a n ~ i l l e g a l ~ v a l u e . ~$

## Application Notes

For better performance, try using 1 work $=n *$ blocksize, where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm. If you are in doubt how much workspace to supply, use a generous value of lwork for the first run. On exit, examine work (1) and use this value for subsequent runs.

The real counterpart of this routine is ?orgql.

## ?ormql

Multiplies a real matrix by the orthogonal matrix $Q$ of the QL factorization formed by ?geqle.

## Syntax

```
call sormql (side,trans,m,n,k,a,lda,tau,c,ldc,work,lwork,info)
```

call dormql ( side,trans,m,n,k,a,lda,tau, c,ldc,work,lwork,info )

## Description

This routine multiplies a real m-by-n matrix $C$ by $Q$ or $Q^{T}$, where $Q$ is the orthogonal matrix $Q$ of the $Q L$ factorization formed by the routine sgeqlildgeqle.

Depending on the parameters side and trans, the routine ?ormql can form one of the matrix products $Q C, Q^{T} C, C Q$, or $C Q^{T}$ (overwriting the result over $C$ ).

## Input Parameters

```
side CHARACTER*1. Must be either 'L' or 'R'.
 If side='L',Q or Q Q is applied to C from the left.
 If side ='R',Q or Q 索 is applied to C from the right.
trans CHARACTER*1. Must be either 'N' or 'T'.
 If trans='N', the routine multiplies C by Q.
 If trans='T', the routine multiplies C by Q 'T
m
 INTEGER. The number of rows in the matrix C (}m\geq0)\mathrm{ .
 INTEGER. The number of columns in C (}n\geq0)\mathrm{ .
 INTEGER. The number of elementary reflectors whose product defines the
 matrix Q. Constraints:
 0\leqk\leqm if side ='L';
 0\leqk\leqn if side='R'.
a,tau,c,work REAL for sormql
 DOUBLE PRECISION for dormq1.
 Arrays:a(lda,*), tau(*), c(ldc,*), work(lwork).
```

On entry, the $i$ th column of a must contain the vector which defines the elementary reflector $H_{\mathrm{i}}$, for $\mathrm{i}=1,2, \ldots, k$, as returned by sgeqlf/dgeqlf in the last $k$ columns of its array argument $a$.
The second dimension of a must be at least $\max (1, k)$.
$\operatorname{tau}(\mathrm{i})$ must contain the scalar factor of the elementary reflector $H_{\mathrm{i}}$, as returned by sgeqlf/dgeqlf.
The dimension of tau must be at least $\max (1, k)$.
$c(l d c, *)$ contains the $m$-by-n matrix $C$.
The second dimension of $c$ must be at least $\max (1, n)$
work (lwork) is a workspace array.
INTEGER. The first dimension of $a$;
if side ='L', lda $\geq \max (1, m)$;
if side $={ }^{\prime} \mathrm{R}^{\prime}, \quad l d a \geq \max (1, n)$.
INTEGER. The first dimension of $c ; l d c \geq \max (1, m)$.
INTEGER. The size of the work array. Constraints:
lwork $\geq \max (1, n)$ if side $=$ 'L';
lwork $\geq \max (1, m)$ if side = 'R'.
See Application notes for the suggested value of 1 work.

## Output Parameters

Overwritten by the product $Q C, Q^{T} C, C Q$, or $C Q^{T}$ (as specified by side and trans).
work(1)
If info $=0$, on exit work (1) contains the minimum value of 1 work required for optimum performance. Use this 1 work for subsequent runs.
info
INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$ th parameter had an illegal value.

## Application Notes

For better performance, try using lwork $=n *$ blocksize (if side $=L^{\prime}$ ) or 1 work $=m *$ blocksize (if side = 'R') where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm. If you are in doubt how much workspace to supply, use a generous value of 1 work for the first run. On exit, examine work (1) and use this value for subsequent runs.
The complex counterpart of this routine is ?unmql.

## ?unmql

Multiplies a complex matrix by the unitary matrix $Q$ of the QL factorization formed by ?geqle.

## Syntax

```
call cunmql (side,trans,m,n,k,a,lda,tau,c,ldc,work,lwork,info)
```

call zunmql ( side,trans,m,n,k,a,lda,tau, c,ldc,work,lwork,info )

## Description

The routine multiplies a complex m-by-n matrix $C$ by $Q$ or $Q^{H}$, where $Q$ is the unitary matrix $Q$ of the $Q L$ factorization formed by the routine cgeql $£$ _zgeqlf.

Depending on the parameters side and trans, the routine ?unmql can form one of the matrix products $Q C, Q^{H} C, C Q$, or $C Q^{H}$ (overwriting the result over $C$ ).

## Input Parameters

```
side CHARACTER*1. Must be either 'L' or 'R'.
 If side='L',Q or Q Q is applied to C from the left.
 If side='R',Q or Q 直 is applied to C from the right.
trans CHARACTER*1. Must be either 'N' or 'C'.
 If trans='N', the routine multiplies C by Q.
 If trans = ' C', the routine multiplies C by Q '
m INTEGER. The number of rows in the matrix C (m\geq0).
n INTEGER. The number of columns in C (}n\geq0)\mathrm{ .
k INTEGER. The number of elementary reflectors whose product defines the
 matrix Q. Constraints:
 0\leqk\leqm if side ='L';
 0\leqk\leqn if side='R'.
a,tau,c,work COMPLEX for cunmql
DOUBLE COMPLEX for zunmql.
Arrays:a(lda,*), tau(*), c(ldc,*), work(lwork).
```

On entry, the $i$ th column of a must contain the vector which defines the elementary reflector $H_{\mathrm{i}}$, for $\mathrm{i}=1,2, \ldots, k$, as returned by cgeqlf/zgeqlf in the last $k$ columns of its array argument $a$.
The second dimension of a must be at least $\max (1, k)$.
$\operatorname{tau}(\mathrm{i})$ must contain the scalar factor of the elementary reflector $H_{\mathrm{i}}$, as returned by cgeqlf/zgeqlf.
The dimension of $t a u$ must be at least $\max (1, k)$.
$c(l d c, *)$ contains the $m$-by-n matrix $C$.
The second dimension of $c$ must be at least $\max (1, n)$
work (lwork) is a workspace array.
INTEGER. The first dimension of $a$;
if side ='L', lda $\geq \max (1, m)$;
if side $={ }^{\prime} \mathrm{R}^{\prime}, \quad l d a \geq \max (1, n)$.
INTEGER. The first dimension of $c ; l d c \geq \max (1, m)$.
INTEGER. The size of the work array. Constraints:
lwork $\geq \max (1, n)$ if side $=$ 'L';
lwork $\geq \max (1, m)$ if side = 'R'.
See Application notes for the suggested value of 1 work.

## Output Parameters

Overwritten by the product $Q C, Q^{H} C, C Q$, or $C Q^{H}$ (as specified by side and trans).
work(1)
If info $=0$, on exit work (1) contains the minimum value of 1 work required for optimum performance. Use this 1 work for subsequent runs.
info
INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$ th parameter had an illegal value.

## Application Notes

For better performance, try using 1 work $=n \star$ blocksize (if side $=' \mathrm{~L}$ ) or 1 work $=m *$ blocksize (if side = 'R') where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm. If you are in doubt how much workspace to supply, use a generous value of 1 work for the first run. On exit, examine work (1) and use this value for subsequent runs.
The real counterpart of this routine is ?ormql.

## ?gerqf

Computes the RQ factorization of a general m by $n$ matrix.

## Syntax

```
call sgerqf (m, n, a, lda, tau, work, lwork, info)
call dgerqf (m, n, a, lda, tau, work, lwork, info)
call cgerqf (m, n, a, lda, tau, work, lwork, info)
call zgerqf (m, n, a, lda, tau, work, lwork, info)
```


## Description

The routine forms the $R Q$ factorization of a general $m-b y-n$ matrix $A$. No pivoting is performed.

The routine does not form the matrix $Q$ explicitly. Instead, $Q$ is represented as a product of $\min (m, n)$ elementary reflectors. Routines are provided to work with $Q$ in this representation.

## Input Parameters

INTEGER. The number of rows in the matrix $A(m \geq 0)$.
INTEGER. The number of columns in $A(n \geq 0)$.
REAL for sgerqf
DOUBLE PRECISION for dgerqf
COMPLEX for cgerqf
DOUBLE COMPLEX for zgerqf.
Arrays:
a(lda,*) contains the $m$-by-n matrix $A$. The second dimension of a must be at least $\max (1, n)$.
work (lwork) is a workspace array.
INTEGER. The first dimension of $a$; at least $\max (1, m)$.
INTEGER. The size of the work array;
lwork $\geq \max (1, m)$.
See Application notes for the suggested value of 1 work.

## Output Parameters

```
a Overwritten on exit by the factorization data as follows:
 if m\leqn, the upper triangle of the subarray
 a(1:m,n-m+1:n) contains the m-by-m upper triangular matrix R;
 if m\geqn, the elements on and above the (m-n)th subdiagonal contain the
 m-by-n upper trapezoidal matrix R;
 in both cases, the remaining elements, with the array tau, represent the
 orthogonal/unitary matrix }Q\mathrm{ as a product of min}(m,n) elementary reflectors
tau REAL for sgerqf
 DOUBLE PRECISION for dgerqf
 COMPLEX for cgerqf
 DOUBLE COMPLEX for zgerqf.
 Array, DIMENSION at least max (1, min(m,n)).
 Contains scalar factors of the elementary reflectors for the matrix }Q\mathrm{ .
work(1) If info = 0, on exit work(1) contains the minimum value of lwork required
 for optimum performance.
info INTEGER.
 If info = 0, the execution is successful.
 If info = -i, the ith parameter had an illegal value.
```


## Application Notes

For better performance, try using 1 work $=m \star$ blocksize, where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm. If you are in doubt how much workspace to supply, use a generous value of lwork for the first run. On exit, examine work (1) and use this value for subsequent runs.
Related routines include:

?orgrq   ? ungrq   ?ormrq	to generate matrix Q (for real matrices);
?	to generate matrix Q (for complex matrices);

## ?orgrq

Generates the real matrix Q of the RQ factorization formed by ?gerqf.

## Syntax

```
call sorgrq (m, n, k, a, lda, tau, work, lwork, info)
call dorgrq (m, n, k, a, lda, tau, work, lwork, info)
```


## Description

The routine generates an $m$-by- $n$ real matrix $Q$ with orthonormal rows, which is defined as the last $m$ rows of a product of $k$ elementary reflectors $H_{i}$ of order $n: Q=H_{1} H_{2} \cdots H_{k}$ as returned by the routines $\underline{s g e r q f}$ _dgerqf. Use this routine after a call to sgerqf/dgerqf.

## Input Parameters

INTEGER. The number of rows of the matrix $Q$ ( $m \geq 0$ ).
n
INTEGER. The number of columns of the matrix $Q$ ( $n \geq m$ ).
$k \quad$ INTEGER. The number of elementary reflectors whose product defines the matrix $Q(m \geq k \geq 0)$.
a, tau, work REAL for sorgrq DOUBLE PRECISION for dorgrq Arrays: a(lda,*), tau(*), work(lwork).

On entry, the $(m-k+i)$ th row of a must contain the vector which defines the elementary reflector $H_{\mathrm{i}}$, for $\mathrm{i}=1,2, \ldots, k$, as returned by sgerqf/dgerqf in the last $k$ rows of its array argument $a$; tau(i) must contain the scalar factor of the elementary reflector $H_{i}$, as returned by sgerqf/dgerqf;

The second dimension of a must be at least $\max (1, n)$. The dimension of tau must be at least $\max (1, k)$.
work ( 1 work) is a workspace array.
Ida
INTEGER. The first dimension of $a$; at least $\max (1, m)$.

Iwork	INTEGER. The size of the work array; at least $\max (1, m)$. See Application notes for the suggested value of 1 work.
Output Parameters	
a	Overwritten by the m-by-n matrix $Q$.
work(1)	If info $=0$, on exit work (1) contains the minimum value of 1 work required for optimum performance. Use this lwork for subsequent runs.
info	INTEGER.   If info $=0$, the execution is successful.   If info $=-i$, the $i$ th parameter had an illegal value.

## Application Notes

For better performance, try using 1 work $=m *$ blocksize, where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm. If you are in doubt how much workspace to supply, use a generous value of lwork for the first run. On exit, examine work (1) and use this value for subsequent runs.

The complex counterpart of this routine is ?ungrq.

Intel ${ }^{\circledR}$ Math Kernel Library Reference Manual

## ?ungrq

Generates the complex matrix $Q$ of the RQ factorization formed by ?gerqf.

## Syntax

```
call cungrq (m, n, k, a, lda, tau, work, lwork, info)
```

call zungrq ( m, $n, k, a, l d a, ~ t a u, ~ w o r k, ~ l w o r k, ~ i n f o ~) ~$

## Description

The routine generates an $m$-by- $n$ complex matrix $Q$ with orthonormal rows, which is defined as the last $m$ rows of a product of $k$ elementary reflectors $H_{\mathrm{i}}$ of order $n: Q=H_{1}{ }^{H} H_{2}{ }^{H} \cdots H_{k}{ }^{H}$ as returned by the routines sgerq£ $_$dgerqf. Use this routine after a call to sgerqf/dgerqf.

## Input Parameters

INTEGER. The number of rows of the matrix $Q$ ( $m \geq 0$ ).

INTEGER. The number of columns of the matrix $Q$ ( $n \geq m$ ).
$k \quad$ INTEGER. The number of elementary reflectors whose product defines the matrix $Q(m \geq k \geq 0)$.
a, tau, work REAL for cungrq DOUBLE PRECISION for zungrq Arrays: a(lda,*), tau(*), work(lwork).

On entry, the $(m-k+i)$ th row of a must contain the vector which defines the elementary reflector $H_{\mathrm{i}}$, for $\mathrm{i}=1,2, \ldots, k$, as returned by sgerqf/dgerqf in the last $k$ rows of its array argument $a$; tau(i) must contain the scalar factor of the elementary reflector $H_{i}$, as returned by sgerqf/dgerqf;

The second dimension of a must be at least $\max (1, n)$. The dimension of tau must be at least $\max (1, k)$.
work (Iwork) is a workspace array.
INTEGER. The first dimension of $a$; at least $\max (1, m)$.

I work	INTEGER. The size of the work array; at least max $(1, m)$.
See Application notes for the suggested value of lwork.	
Output Parameters	
a	
work(1)	Overwritten by the m-by-n matrix $Q$.   If info $=0$, on exit work (1) contains the minimum value of 1 work required   for optimum performance. Use this 1 work for subsequent runs.
	INTEGER.   If info $=0$, the execution is successful.   If info $=-i, ~ t h e ~ i t h ~ p a r a m e t e r ~ h a d ~ a n ~ i l l e g a l ~ v a l u e . ~$

## Application Notes

For better performance, try using 1 work $=m *$ blocksize, where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm. If you are in doubt how much workspace to supply, use a generous value of lwork for the first run. On exit, examine work (1) and use this value for subsequent runs.

The real counterpart of this routine is ?orgrq.

## ?ormrq

Multiplies a real matrix by the orthogonal matrix $Q$ of the $R Q$ factorization formed by ?gerqf.

## Syntax

```
call sormrq (side,trans,m,n,k,a,lda,tau,c,ldc,work,lwork,info)
```

call dormrq ( side,trans,m,n,k,a,lda,tau, c,ldc,work,lwork,info )

## Description

The routine multiplies a real $m$-by- $n$ matrix $C$ by $Q$ or $Q^{T}$, where $Q$ is the real orthogonal matrix defined as a product of $k$ elementary reflectors $H_{\mathrm{i}}: Q=H_{1} H_{2} \cdots H_{k}$ as returned by the $R Q$ factorization routine sgerqf $/$ dgerqf.

Depending on the parameters side and trans, the routine can form one of the matrix products $Q C, Q^{T} C, C Q$, or $C Q^{T}$ (overwriting the result over $C$ ).

## Input Parameters

```
side CHARACTER*1. Must be either 'L' or 'R'.
 If side='L',Q or QT is applied to C from the left.
 If side ='R',Q or Q 要 is applied to C from the right.
trans CHARACTER*1. Must be either 'N' or 'T'.
 If trans='N', the routine multiplies C by Q.
 If trans='T', the routine multiplies C by Q 'T
m INTEGER. The number of rows in the matrix C (m\geq0).
n INTEGER. The number of columns in C (}n\geq0)\mathrm{ .
k INTEGER. The number of elementary reflectors whose product defines the
 matrix Q. Constraints:
 0\leqk\leqm, if side='L';
 0\leqk\leqn, if side='R'.
a,tau,c,work REAL for sormrq
DOUBLE PRECISION for dormrq.
Arrays:a(lda,*), tau(*), c(ldc,*), work(lwork).
```

On entry, the $i$ th row of a must contain the vector which defines the elementary reflector $H_{\mathrm{i}}$, for $\mathrm{i}=1,2, \ldots, k$, as returned by sgerqf/dgerqf in the last $k$ rows of its array argument $a$.
The second dimension of a must be at least $\max (1, m)$ if side $=$ ' L , and at least $\max (1, n)$ if side $=$ ' ${ }^{\prime}$.
$\operatorname{tau}(\mathrm{i})$ must contain the scalar factor of the elementary reflector $H_{\mathrm{i}}$, as returned by sgerqf/dgerqf.
The dimension of tau must be at least $\max (1, k)$.
$c(l d c, *)$ contains the $m-b y-n$ matrix $C$.
The second dimension of $c$ must be at least $\max (1, n)$
work (lwork) is a workspace array.
INTEGER. The first dimension of $a ; \quad l d a \geq \max (1, k)$.
INTEGER. The first dimension of $c ; 1 d c \geq \max (1, m)$.
INTEGER. The size of the work array. Constraints:
1 work $\geq \max (1, n)$ if side $=$ 'L';
1 work $\geq \max (1, m)$ if side $=$ ' $^{\prime}$ '.
See Application notes for the suggested value of 1 work.

## Output Parameters

Overwritten by the product $Q C, Q^{T} C, C Q$, or $C Q^{T}$ (as specified by side and trans).
work (1) If info $=0$, on exit work (1) contains the minimum value of lwork required for optimum performance. Use this 1 work for subsequent runs.
info INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$ th parameter had an illegal value.

## Application Notes

For better performance, try using 1 work $=n \star$ blocksize (if side $=1 \mathrm{~L}$ ) or 1 work $=m *$ blocksize (if side = 'R') where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm. If you are in doubt how much workspace to supply, use a generous value of 1 work for the first run. On exit, examine work (1) and use this value for subsequent runs.

The complex counterpart of this routine is ?unmrq.

## ?unmrq

Multiplies a complex matrix by the unitary matrix $Q$ of the RQ factorization formed by ?gerqf.

## Syntax

```
call cunmrq (side,trans,m,n,k,a,lda,tau,c,ldc,work,lwork,info)
call zunmrq (side,trans,m,n,k,a,lda,tau,c,ldc,work,lwork,info)
```


## Description

The routine multiplies a complex m-by-n matrix $C$ by $Q$ or $Q^{H}$, where $Q$ is the complex unitary matrix defined as a product of $k$ elementary reflectors $H_{\mathrm{i}}: Q=H_{1}{ }^{H} H_{2}{ }^{H} \cdots H_{k}{ }^{H}$ as returned by the $R Q$ factorization routine cgerqf(zgerqf.

Depending on the parameters side and trans, the routine can form one of the matrix products $Q C, Q^{H} C, C Q$, or $C Q^{H}$ (overwriting the result over $C$ ).

## Input Parameters

```
side CHARACTER*1. Must be either 'L' or 'R'.
 If side='L',Q or Q Q is applied to C from the left.
 If side ='R',Q or Q 直 is applied to C from the right.
trans CHARACTER*1. Must be either 'N' or 'C'.
 If trans='N', the routine multiplies C by Q.
 If trans='C', the routine multiplies C by Q '
 m INTEGER. The number of rows in the matrix C (m\geq0).
n INTEGER. The number of columns in C (}n\geq0)\mathrm{ .
k INTEGER. The number of elementary reflectors whose product defines the
 matrix Q. Constraints:
 0\leqk\leqm, if side ='L';
 0\leqk\leqn, if side='R'.
 a,tau,c,work COMPLEX for cunmrq
 DOUBLE COMPLEX for zunmrq.
 Arrays: a(lda,*), tau(*), c(ldc,*), work(lwork).
```

On entry, the $i$ th row of a must contain the vector which defines the elementary reflector $H_{\mathrm{i}}$, for $\mathrm{i}=1,2, \ldots, k$, as returned by cgerqf/zgerqf in the last $k$ rows of its array argument $a$.
The second dimension of a must be at least $\max (1, m)$ if side $=$ ' $L$ ', and at least $\max (1, n)$ if side $=$ ' ${ }^{\prime}$.
$\operatorname{tau}(\mathrm{i})$ must contain the scalar factor of the elementary reflector $H_{\mathrm{i}}$, as returned by cgerqf/zgerqf.
The dimension of tau must be at least $\max (1, k)$.
$c(l d c, *)$ contains the $m-b y-n$ matrix $C$.
The second dimension of $c$ must be at least $\max (1, n)$
work (lwork) is a workspace array.
INTEGER. The first dimension of $a ; \quad l d a \geq \max (1, k)$.
INTEGER. The first dimension of $c ; 1 d c \geq \max (1, m)$.
INTEGER. The size of the work array. Constraints:
1 work $\geq \max (1, n)$ if side $=$ 'L';
1 work $\geq \max (1, m)$ if side $=$ ' $^{\prime}$ '.
See Application notes for the suggested value of 1 work.

## Output Parameters

Overwritten by the product $Q C, Q^{H} C, C Q$, or $C Q^{H}$ (as specified by side and trans).
work (1) If info $=0$, on exit work (1) contains the minimum value of lwork required for optimum performance. Use this 1 work for subsequent runs.
info
INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$ th parameter had an illegal value.

## Application Notes

For better performance, try using 1 work $=n \star$ blocksize (if side $=1 \mathrm{~L}$ ) or 1 work $=m *$ blocksize (if side = 'R') where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm. If you are in doubt how much workspace to supply, use a generous value of 1 work for the first run. On exit, examine work (1) and use this value for subsequent runs.

The real counterpart of this routine is ?ormrq.

## ?tzrzf

Reduces the upper trapezoidal matrix $A$ to upper triangular form.

## Syntax

```
call stzrzf (m, n, a, lda, tau, work, lwork, info)
call dtzrzf (m, n, a, lda, tau, work, lwork, info)
call ctzrzf (m, n, a, lda, tau, work, lwork, info)
call ztzrzf (m, n, a, lda, tau, work, lwork, info)
```


## Description

This routine reduces the $m$-by- $n(m \leq n)$ real/complex upper trapezoidal matrix $A$ to upper triangular form by means of orthogonal/unitary transformations. The upper trapezoidal matrix $A$ is factored as

$$
A=\left(\begin{array}{ll}
R & 0
\end{array}\right) * Z,
$$

where $Z$ is an $n$-by- $n$ orthogonal/unitary matrix and $R$ is an $m$-by- $m$ upper triangular matrix.

## Input Parameters

```
m INTEGER. The number of rows in the matrix A (m\geq0).
n INTEGER. The number of columns in A (}n\geqm)\mathrm{ .
a, work REAL for stzrzf
 DOUBLE PRECISION for dtzrzf
 COMPLEX for ctzrzf
 DOUBLE COMPLEX for ztzrzf.
 Arrays: a(lda,*), work(lwork).
 The leading m-by-n upper trapezoidal part of the array a contains the matrix }
 to be factorized.
 The second dimension of a must be at least max}(1,n)\mathrm{ .
 work is a workspace array.
Ida INTEGER. The first dimension of a; at least max(1,m).
lwork INTEGER. The size of the work array;
```

lwork $\geq \max (1, m)$.
See Application notes for the suggested value of 1 work.

## Output Parameters

a
Overwritten on exit by the factorization data as follows:
the leading $m$-by-m upper triangular part of a contains the upper triangular matrix $R$, and elements $m+1$ to $n$ of the first $m$ rows of $a$, with the array tau, represent the orthogonal matrix $Z$ as a product of $m$ elementary reflectors.
tau REAL for stzrzf
DOUBLE PRECISION for dtzrzf
COMPLEX for ctzrzf
DOUBLE COMPLEX for ztzrzf.
Array, DIMENSION at least max $(1, m)$. Contains scalar factors of the elementary reflectors for the matrix $Z$.
work (1) If info $=0$, on exit work (1) contains the minimum value of 1 work required for optimum performance. Use this lwork for subsequent runs.
info INTEGER.
If $\operatorname{info}=0$, the execution is successful.
If info $=-i$, the $i$ th parameter had an illegal value.

## Application Notes

For better performance, try using 1 work $=m *$ blocksize, where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm.
If you are in doubt how much workspace to supply, use a generous value of 1 work for the first run. On exit, examine work (1) and use this value for subsequent runs.
Related routines include:

?ormrz	to apply matrix Q (for real matrices);
?unmrz	to apply matrix Q (for complex matrices).

## ?ormrz

## Multiplies a real matrix by the orthogonal matrix defined

 from the factorization formed by ? tzrzf.
## Syntax

```
call sormrz (side,trans,m,n,k,l,a,lda,tau,c,ldc,work,lwork,info)
```

call dormrz ( side,trans,m,n,k,l,a,lda,tau, c,ldc,work,lwork,info )

## Description

The routine multiplies a real $m$-by- $n$ matrix $C$ by $Q$ or $Q^{T}$, where $Q$ is the real orthogonal matrix defined as a product of $k$ elementary reflectors $H_{\mathrm{i}}: Q=H_{1} H_{2} \cdots H_{k}$ as returned by the factorization routine stzrzfldtzrzf.

Depending on the parameters side and trans, the routine can form one of the matrix products $Q C, Q^{T} C, C Q$, or $C Q^{T}$ (overwriting the result over $C$ ).

The matrix $Q$ is of order $m$ if side $=$ 'L' and of order $n$ if side $={ }^{\prime} \mathrm{R}^{\prime}$.

## Input Parameters

```
side CHARACTER*1. Must be either 'L' or 'R'.
 If side ='L',Q or Q 蓑 applied to C from the left.
 If side ='R',Q or QT is applied to C from the right.
trans CHARACTER*1. Must be either 'N' or 'T'.
 If trans='N', the routine multiplies C by Q.
 If trans='T', the routine multiplies C by Q Q
m INTEGER. The number of rows in the matrix C (m\geq0).
n INTEGER. The number of columns in C (}n\geq0)\mathrm{ .
k INTEGER. The number of elementary reflectors whose product defines the
 matrix Q. Constraints:
 0\leqk\leqm, if side='L';
 0\leqk\leqn, if side='R'.
 INTEGER.
```

	The number of columns of the matrix $A$ containing the meaningful part of the Householder reflectors. Constraints: $\begin{aligned} & 0 \leq I \leq m, \text { if side }=\text { 'L'; } \\ & 0 \leq I \leq n, \text { if side }=\text { 'R'. } \end{aligned}$
a,tau, c, work	REAL for sormrz
	DOUBLE PRECISION for dormrz.
	Arrays: $\mathrm{a}(1 \mathrm{da}, *)$, tau(*), c(ldc,*), work(lwork).
	On entry, the $i$ th row of a must contain the vector which defines the elementary reflector $H_{i}$, for $\mathrm{i}=1,2, \ldots, k$, as returned by stzrzf/dtzrzf in the last $k$ rows of its array argument $a$.
	The second dimension of a must be at least $\max (1, m)$ if side $=$ ' L ', and at least $\max (1, n)$ if side $='^{\prime}$ '.
	tau(i) must contain the scalar factor of the elementary reflector $H_{\mathrm{i}}$, as returned by stzrzf/dtzrzf.
	The dimension of tau must be at least max $(1, k)$.
	$c(l d c, *)$ contains the m-by-n matrix $C$.
	The second dimension of $c$ must be at least max $(1, n)$
	work (lwork) is a workspace array.
Ida	INTEGER. The first dimension of $a ; \quad l d a \geq \max (1, k)$.
Idc	INTEGER. The first dimension of $c ; 1 d c \geq m a x(1, m)$.
Iwork	INTEGER. The size of the work array. Constraints:
	1 work $\geq \max (1, n)$ if side = L';
	1 work $\geq \max (1, m)$ if side = 'R'.
	See Application notes for the suggested value of 1 work.
Output Parameters	
C	Overwritten by the product $Q C, Q^{T} C, C Q$, or $C Q^{T}$ (as specified by side and trans).
work(1)	If $\operatorname{info}=0$, on exit work (1) contains the minimum value of 1 work required for optimum performance. Use this 1 work for subsequent runs.
info	INTEGER.
	If info $=0$, the execution is successful.
	If info $=-i$, the $i$ th parameter had an illegal value.

## Application Notes

For better performance, try using 1 work $=n *$ blocksize (if side $=$ ' L ) or 1 work $=m *$ blocksize (if side = 'R') where blocksize is a machine-dependent value (typically, 16 to 64 ) required for optimum performance of the blocked algorithm. If you are in doubt how much workspace to supply, use a generous value of 1 work for the first run. On exit, examine work (1) and use this value for subsequent runs.

The complex counterpart of this routine is ?unmrz.

## ?unmrz

Multiplies a complex matrix by the unitary matrix defined from the factorization formed by ? tzrzf.

## Syntax

```
call cunmrz (side,trans,m,n,k,l,a,lda,tau,c,ldc,work,lwork,info)
call zunmrz (side,trans,m,n,k,l,a,lda,tau,c,ldc,work,lwork,info)
```


## Description

The routine multiplies a complex m-by-n matrix $C$ by $Q$ or $Q^{H}$, where $Q$ is the unitary matrix defined as a product of $k$ elementary reflectors $H_{\mathrm{i}}$ : $Q=H_{1}{ }^{H} H_{2}{ }^{H} \cdots H_{k}{ }^{H}$ as returned by the factorization routine ctzrzflztzrzf.

Depending on the parameters side and trans, the routine can form one of the matrix products $Q C, Q^{H} C, C Q$, or $C Q^{H}$ (overwriting the result over $C$ ).

The matrix $Q$ is of order $m$ if side = 'L' and of order $n$ if side ='R'.

## Input Parameters

```
side CHARACTER*1. Must be either 'L' or 'R'.
 If side='L',Q or Q Q is applied to C from the left.
 If side='R',Q or Q 炭 is applied to C from the right.
trans CHARACTER*1. Must be either 'N' or 'C'.
 If trans ='N', the routine multiplies C by Q.
 If trans =' C' , the routine multiplies C by Q }\mp@subsup{Q}{}{H}\mathrm{ .
m INTEGER. The number of rows in the matrix C(m\geq0).
n INTEGER. The number of columns in C (}n\geq0)\mathrm{ .
k INTEGER. The number of elementary reflectors whose product defines the
 matrix Q. Constraints:
 0\leqk\leqm, if side ='L';
 0\leqk\leqn, if side='R'.
I
 INTEGER.
```

```
 The number of columns of the matrix }A\mathrm{ containing the meaningful part of the
 Householder reflectors. Constraints:
 0\leql\leqm, if side ='L';
 0\leq1\leqn, if side='R'.
a,tau,c,work COMPLEX for cunmrz
DOUBLE COMPLEX for zunmrz.
Arrays: a(lda,*), tau(*), c(ldc,*), work(lwork).
On entry, the \(i\) th row of a must contain the vector which defines the elementary reflector \(H_{\mathrm{i}}\), for \(\mathrm{i}=1,2, \ldots, k\), as returned by ctzrzf/ztzrzf in the last \(k\) rows of its array argument \(a\).
The second dimension of a must be at least \(\max (1, m)\) if side \(=\) ' L ', and at least \(\max (1, n)\) if side \(={ }^{\prime} R^{\prime}\).
\(\operatorname{tau}(\mathrm{i})\) must contain the scalar factor of the elementary reflector \(H_{\mathrm{i}}\), as returned by ctzrzf/ztzrzf.
The dimension of tau must be at least \(\max (1, k)\).
\(c(l d c, *)\) contains the \(m\)-by-n matrix \(C\).
The second dimension of \(c\) must be at least \(\max (1, n)\)
work (lwork) is a workspace array.
lda INTEGER. The first dimension of \(a ; \quad l d a \geq \max (1, k)\).
ldc INTEGER. The first dimension of \(c ; 1 d c \geq \max (1, m)\).
lwork INTEGER. The size of the work array. Constraints:
1 work \(\geq \max (1, n)\) if side \(=\) 'L';
1 work \(\geq \max (1, m)\) if side \(='^{\prime}\) '.
See Application notes for the suggested value of 1 work.
```


## Output Parameters

Overwritten by the product $Q C, Q^{H} C, C Q$, or $C Q^{H}$ (as specified by side and trans).
work (1) If info $=0$, on exit work (1) contains the minimum value of 1 work required for optimum performance. Use this I work for subsequent runs.
info
INTEGER.
If info $=0$, the execution is successful. If info $=-i$, the $i$ th parameter had an illegal value.

```

\section*{Application Notes}

For better performance, try using 1 work \(=n *\) blocksize (if side \(=\mathrm{L} \cdot\)) or 1 work \(=m *\) blocksize (if side = 'R') where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm. If you are in doubt how much workspace to supply, use a generous value of 1 work for the first run. On exit, examine work (1) and use this value for subsequent runs.

The real counterpart of this routine is ?ormrz.

\section*{?ggqrf}

Computes the generalized QR factorization of two matrices.

\section*{Syntax}
```

call sggqrf (n, m, p, a, lda, taua, b, ldb, taub, work, lwork, info)
call dggqrf (n, m, p, a, lda, taua, b, ldb, taub, work, lwork, info)
call cggqrf (n, m, p, a, lda, taua, b, ldb, taub, work, lwork, info)
call zggqrf (n, m, p, a, lda, taua, b, ldb, taub, work, lwork, info)

```

\section*{Description}

The routine forms the generalized \(Q R\) factorization of an \(n\)-by-m matrix \(A\) and an \(n\)-by- \(p\) matrix \(B\) as \(A=Q R, \quad B=Q T Z\),
where \(Q\) is an \(n\)-by-n orthogonal/unitary matrix, \(Z\) is a \(p\)-by-p orthogonal/unitary matrix, and \(R\) and \(T\) assume one of the forms:
\[
R=\begin{gathered}
m \\
n-m
\end{gathered}\binom{R_{11}}{0}, \quad \text { if } n \geq m
\]
or
\[
\begin{gathered}
n \quad m-n \\
\left.R=n \quad \begin{array}{ll}
R_{11} & R_{12}
\end{array}\right) \quad, \text { if } n<m,
\end{gathered}
\]
where \(R_{11}\) is upper triangular, and
\[
\begin{gathered}
p-n l \\
T=n
\end{gathered} \begin{array}{ll}
& \left(0 \quad T_{12}\right), \quad \text { if } n \leq p, \text { or }
\end{array}
\]
\[
\left.T=\begin{array}{c}
p \\
p-p
\end{array} \begin{array}{c}
p \\
T_{11} \\
T_{21}
\end{array}\right) \quad, \quad \text { if } n>p
\]
where \(T_{12}\) or \(T_{21}\) is a \(p\)-by- \(p\) upper triangular matrix.
In particular, if \(B\) is square and nonsingular, the \(G Q R\) factorization of \(A\) and \(B\) implicitly gives the \(Q R\) factorization of \(B^{-1} A\) as:
\[
B^{-1} A=\mathrm{Z}^{H}\left(T^{-1} R\right)
\]

\section*{Input Parameters}
n
\(m \quad\) INTEGER. The number of columns in \(A(m \geq 0)\).
\(p \quad\) INTEGER. The number of columns in \(B(p \geq 0)\).
a, b, work
REAL for sggqrf
DOUBLE PRECISION for dggqre
COMPLEX for cggqrf
DOUBLE COMPLEX for zggqrf.
Arrays:
a (lda,*) contains the matrix \(A\).
The second dimension of a must be at least \(\max (1, m)\).
\(b(1 d b, *)\) contains the matrix \(B\).
The second dimension of \(b\) must be at least \(\max (1, p)\).
work (Iwork) is a workspace array.
Ida INTEGER. The first dimension of \(a\); at least \(\max (1, n)\).
\(I d b \quad\) INTEGER. The first dimension of \(b\); at least \(\max (1, n)\).
lwork INTEGER. The size of the work array; must be at least \(\max (1, n, m, p)\) See Application notes for the suggested value of 1 work.

\section*{Output Parameters}
\(a, b \quad\) Overwritten by the factorization data as follows:
on exit, the elements on and above the diagonal of the array a contain the \(\min (n, m)\)-by-m upper trapezoidal matrix \(R(R\) is upper triangular if \(n \geq m)\); the elements below the diagonal, with the array taua, represent the orthogonal/unitary matrix \(Q\) as a product of \(\min (n, m)\) elementary reflectors ;
if \(n \leq p\), the upper triangle of the subarray \(b(1: n, p-n+1: p)\) contains the \(n\)-by- \(n\) upper triangular matrix \(T\); if \(n>p\), the elements on and above the \((n-p)\) th subdiagonal contain the \(n\)-by- \(p\) upper trapezoidal matrix \(T\); the remaining elements, with the array taub, represent the orthogonal/unitary matrix \(Z\) as a product of elementary reflectors.
taua, taub REAL for sggqrf
DOUBLE PRECISION for dggqrf
COMPLEX for cggqrf
DOUBLE COMPLEX for zggqrf.
Arrays, DIMENSION at least max \((1, \min (n, m))\) for taua and at least max \((1\), \(\min (n, p)\)) for taub.
The array taua contains the scalar factors of the elementary reflectors which represent the orthogonal/unitary matrix \(Q\).

The array taub contains the scalar factors of the elementary reflectors which represent the orthogonal/unitary matrix \(Z\).
work (1) If info \(=0\), on exit work (1) contains the minimum value of 1 work required for optimum performance. Use this lwork for subsequent runs.
info
INTEGER.
If info \(=0\), the execution is successful. If info \(=-i\), the \(i\) th parameter had an illegal value.

\section*{Application Notes}

For better performance, try using
lwork \(\geq \max (n, m, p) * \max (n b 1, n b 2, n b 3)\),
where \(n b 1\) is the optimal blocksize for the \(Q R\) factorization of an \(n\)-by-m matrix, \(n b 2\) is the optimal blocksize for the \(R Q\) factorization of an \(n\)-by- \(p\) matrix, and \(n b 3\) is the optimal blocksize for a call of ?ormqr/? unmqr.

\section*{?ggrqf}

Computes the generalized RQ factorization of two matrices.

\section*{Syntax}
```

call sggrqf (m, p, n, a, lda, taua, b, ldb, taub, work, lwork, info)
call dggrqf (m, p, n, a, lda, taua, b, ldb, taub, work, lwork, info)
call cggrqf (m, p, n, a, lda, taua, b, ldb, taub, work, lwork, info)
call zggrqf (m, p, n, a, lda, taua, b, ldb, taub, work, lwork, info)

```

\section*{Description}

The routine forms the generalized \(R Q\) factorization of an \(m\)-by- \(n\) matrix \(A\) and an \(p\)-by-n matrix \(B\) as \(A=R Q, \quad B=Z T Q\), where \(Q\) is an \(n\)-by- \(n\) orthogonal/unitary matrix, \(Z\) is a \(p\)-by- \(p\) orthogonal/unitary matrix, and \(R\) and \(T\) assume one of the forms:
\[
\begin{aligned}
& n-m \quad m \\
& R=m \quad\left(0 \quad R_{12}\right), \quad \text { if } m \leq n,
\end{aligned}
\]
or
\[
R=\underset{n}{m-n}\left(\begin{array}{c}
n \\
R_{11} \\
R_{21}
\end{array}\right) \quad, \quad \text { if } m>n
\]
where \(R_{11}\) or \(R_{21}\) is upper triangular, and
\[
T=\begin{gathered}
n \\
p-n \\
n
\end{gathered}\left(\begin{array}{c}
n \\
T_{11} \\
0
\end{array}\right) \quad, \quad \text { if } p \geq n
\]
or
\[
\begin{gathered}
p \quad n-p \\
T=p \quad\left(\begin{array}{ll}
T_{11} & T_{12}
\end{array}\right) \quad, \text { if } p<n,
\end{gathered}
\]
where \(T_{11}\) is upper triangular.
In particular, if \(B\) is square and nonsingular, the \(G R Q\) factorization of \(A\) and \(B\) implicitly gives the \(R Q\) factorization of \(A B^{-1}\) as:
\[
A B^{-1}=\left(R T^{-1}\right) \mathrm{Z}^{H}
\]

\section*{Input Parameters}
\(m \quad\) INTEGER. The number of rows of the matrix \(A(m \geq 0)\).
\(p \quad\) INTEGER. The number of rows in \(B(p \geq 0)\).
\(n \quad\) INTEGER. The number of columns of the matrices \(A\) and \(B(n \geq 0)\).
\(a, b\), work REAL for sggrqf
DOUBLE PRECISION for dggrqf
COMPLEX for cggrqf
DOUBLE COMPLEX for zggrqf.
Arrays:
a (lda,*) contains the \(m\)-by-n matrix \(A\).
The second dimension of a must be at least \(\max (1, n)\).
\(\mathrm{b}(1 \mathrm{db}, *)\) contains the \(p\)-by-n matrix \(B\).
The second dimension of \(b\) must be at least \(\max (1, n)\).
work (1 work) is a workspace array.
Ida Integer. The first dimension of \(a\); at least \(\max (1, m)\).
ldb Integer. The first dimension of \(b\); at least \(\max (1, p)\).
lwork INTEGER. The size of the work array; must be at least max \((1, n, m, p)\) See Application notes for the suggested value of 1 work.

\section*{Output Parameters}
\(a, b \quad\) Overwritten by the factorization data as follows:
on exit, if \(m \leq n\), the upper triangle of the subarray \(a(1: m, n-m+1: n)\) contains the \(m\)-by- \(m\) upper triangular matrix \(R\);
if \(m>n\), the elements on and above the \((m-n)\) th subdiagonal contain the \(m-\) by- \(n\) upper trapezoidal matrix \(R\); the remaining elements, with the array taua, represent the orthogonal/unitary matrix \(Q\) as a product of elementary reflectors;
the elements on and above the diagonal of the array \(b\) contain the \(\min (p, n)\)-by- \(n\) upper trapezoidal matrix \(T\) (\(T\) is upper triangular if \(p \geq n\)); the elements below the diagonal, with the array taub, represent the orthogonal/unitary matrix \(Z\) as a product of elementary reflectors.
taua, taub REAL for sggrqf
DOUBLE PRECISION for dggrqf
COMPLEX for cggrqf
DOUBLE COMPLEX for zggrqf.
Arrays, DIMENSION at least max \((1, \min (m, n))\) for taua and at least max \((1\), \(\min (p, n)\)) for taub.
The array taua contains the scalar factors of the elementary reflectors which represent the orthogonal/unitary matrix \(Q\).

The array taub contains the scalar factors of the elementary reflectors which represent the orthogonal/unitary matrix \(Z\).
work (1) If info \(=0\), on exit work (1) contains the minimum value of 1 work required for optimum performance. Use this lwork for subsequent runs.
info
INTEGER.
If \(\operatorname{info}=0\), the execution is successful.
If info \(=-i\), the \(i\) th parameter had an illegal value.

\section*{Application Notes}

For better performance, try using
lwork \(\geq \max (n, m, p) * \max (n b 1, n b 2, n b 3)\),
where \(n b 1\) is the optimal blocksize for the \(R Q\) factorization of an \(m\)-by- \(n\) matrix, \(n b 2\) is the optimal blocksize for the \(Q R\) factorization of an \(p\)-by-n matrix, and \(n b 3\) is the optimal blocksize for a call of ?ormrq/ ? unmrq.
If you are in doubt how much workspace to supply, use a generous value of 1 work for the first run. On exit, examine work (1) and use this value for subsequent runs.

\section*{Singular Value Decomposition}

This section describes LAPACK routines for computing the singular value decomposition (SVD) of a general \(m\) by \(n\) matrix \(A\) :
\[
A=U \Sigma V^{H} .
\]

In this decomposition, \(U\) and \(V\) are unitary (for complex \(A\)) or orthogonal (for real \(A\)); \(\Sigma\) is an \(m\) by \(n\) diagonal matrix with real diagonal elements \(\sigma_{i}\) :
\[
\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{\min (m, n)} \geq 0 .
\]

The diagonal elements \(\sigma_{i}\) are singular values of \(A\). The first \(\min (m, n)\) columns of the matrices \(U\) and \(V\) are, respectively, left and right singular vectors of \(A\). The singular values and singular vectors satisfy
\[
A v_{i}=\sigma_{i} u_{i} \text { and } A^{H} u_{i}=\sigma_{i} v_{i}
\]
where \(u_{i}\) and \(v_{i}\) are the \(i\) th columns of \(U\) and \(V\), respectively.
To find the SVD of a general matrix \(A\), call the LAPACK routine ?gebrd or ? gbbra for reducing \(A\) to a bidiagonal matrix \(B\) by a unitary (orthogonal) transformation: \(A=Q B P^{H}\). Then call ?bdsqr, which forms the SVD of a bidiagonal matrix: \(B=U_{1} \Sigma V_{1}^{H}\).

Thus, the sought-for SVD of \(A\) is given by \(A=U \Sigma V^{H}=\left(Q U_{1}\right) \Sigma\left(V_{1}^{H} P^{H}\right)\).
Table 4-2 Computational Routines for Singular Value Decomposition (SVD)
\begin{tabular}{|c|c|c|}
\hline Operation & Real matrices & Complex matrices \\
\hline Reduce \(A\) to a bidiagonal matrix \(B\) : \(A=Q B P^{H}\) (full storage) & ? gebrd & ? gebrd \\
\hline Reduce \(A\) to a bidiagonal matrix \(B\) : \(A=Q B P^{H}\) (band storage) & ? gbbrd & ? gbbrd \\
\hline Generate the orthogonal (unitary) matrix \(Q\) or \(P\) & ? orgbr & ? ungbr \\
\hline Apply the orthogonal (unitary) matrix \(Q\) or \(P\) & ? ormbr & ? unmbr \\
\hline Form singular value decomposition of the bidiagonal matrix \(B\) :
\[
B=U \Sigma V^{H}
\] & \[
\frac{\text { ?bdsqr }}{\text { ?bdsdc }}
\] & \(\underline{? ~ b d s q r ~}\) \\
\hline
\end{tabular}

Figure 4-1 Decision Tree: Singular Value Decomposition

Figure 4-1 presents a decision tree that helps you choose the right sequence of routines for SVD, depending on whether you need singular values only or singular vectors as well, whether \(A\) is real or complex, and so on.

You can use the SVD to find a minimum-norm solution to a (possibly) rank-deficient least-squares problem of minimizing \(\|A x-b\|_{2}\). The effective rank \(k\) of the matrix \(A\) can be determined as the number of singular values which exceed a suitable threshold. The minimum-norm solution is
\[
x=V_{k}\left(\Sigma_{k}\right)^{-1} c
\]
where \(\Sigma_{k}\) is the leading \(k\) by \(k\) submatrix of \(\Sigma\), the matrix \(V_{k}\) consists of the first \(k\) columns of \(V=\) \(P V_{1}\), and the vector \(c\) consists of the first \(k\) elements of \(U^{H} b=U_{1}^{H} Q^{H} b\).

\section*{?gebrd}

Reduces a general matrix to bidiagonal form.

\section*{Syntax}
```

call sgebrd ( m, n, a, lda, d, e, tauq, taup, work, lwork, info )
call dgebrd ( m, n, a, lda, d, e, tauq, taup, work, lwork, info )
call cgebrd ( m, n, a, lda, d, e, tauq, taup, work, lwork, info )
call zgebrd ( m, n, a, lda, d, e, tauq, taup, work, lwork, info )

```

\section*{Description}

The routine reduces a general \(m\) by \(n\) matrix \(A\) to a bidiagonal matrix \(B\) by an orthogonal (unitary) transformation.
If \(m \geq n\), the reduction is given by \(A=Q B P^{H}=Q\binom{B_{1}}{0} P^{H}=Q_{1} B_{1} P^{H}\),
where \(B_{1}\) is an \(n\) by \(n\) upper diagonal matrix, \(Q\) and \(P\) are orthogonal or, for a complex \(A\), unitary matrices; \(Q_{1}\) consists of the first \(n\) columns of \(Q\).

If \(m<n\), the reduction is given by
\[
A=Q B P^{H}=Q\left(B_{1} 0\right) P^{H}=Q_{1} B_{1} P_{1}^{H},
\]
where \(B_{1}\) is an \(m\) by \(m\) lower diagonal matrix, \(Q\) and \(P\) are orthogonal or, for a complex \(A\), unitary matrices; \(P_{1}\) consists of the first \(m\) rows of \(P\).

The routine does not form the matrices \(Q\) and \(P\) explicitly, but represents them as products of elementary reflectors. Routines are provided to work with the matrices \(Q\) and \(P\) in this representation:

If the matrix \(A\) is real,
- to compute \(Q\) and \(P\) explicitly, call ?orgbr.
- to multiply a general matrix by \(Q\) or \(P\), call ?ormbr.

If the matrix \(A\) is complex,
- to compute \(Q\) and \(P\) explicitly, call ?ungbr.
- to multiply a general matrix by \(Q\) or \(P\), call ?unmbr.

\section*{Input Parameters}
\(m\)
\(n\)
a, work

Ida
lwork

INTEGER. The number of rows in the matrix \(A(m \geq 0)\).
INTEGER. The number of columns in \(A(n \geq 0)\).
REAL for sgebrd
DOUBLE PRECISION for dgebrd
COMPLEX for cgebrd
DOUBLE COMPLEX for zgebrd.
Arrays:
\(a(l d a, *)\) contains the matrix \(A\).
The second dimension of a must be at least \(\max (1, n)\).
work (lwork) is a workspace array.
INTEGER. The first dimension of \(a\); at least \(\max (1, m)\).
INTEGER. The dimension of work; at least \(\max (1, m, n)\).
See Application notes for the suggested value of lwork.

\section*{Output Parameters}

If \(m \geq n\), the diagonal and first super-diagonal of a are overwritten by the upper bidiagonal matrix \(B\). Elements below the diagonal are overwritten by details of \(Q\), and the remaining elements are overwritten by details of \(P\).
If \(m<n\), the diagonal and first sub-diagonal of a are overwritten by the lower bidiagonal matrix \(B\). Elements above the diagonal are overwritten by details of \(P\), and the remaining elements are overwritten by details of \(Q\).
d
REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors. Array, DIMENSION at least \(\max (1, \min (m, n))\).
Contains the diagonal elements of \(B\).
REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors. Array, DIMENSION at least \(\max (1, \min (m, n)-1)\).
Contains the off-diagonal elements of \(B\).
tauq, taup REAL for sgebrd
DOUBLE PRECISION for dgebrd
COMPLEX for cgebrd

DOUBLE COMPLEX for zgebrd.
Arrays, DIMENSION at least max \((1, \min (m, n))\).
Contain further details of the matrices \(Q\) and \(P\).
work(1) If info \(=0\), on exit work (1) contains the minimum value of lwork required for optimum performance. Use this lwork for subsequent runs.
info
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\) th parameter had an illegal value.

\section*{Application Notes}

For better performance, try using lwork \(=(m+n) \star\) blocksize, where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm.

If you are in doubt how much workspace to supply, use a generous value of 1 work for the first run. On exit, examine work (1) and use this value for subsequent runs.

The computed matrices \(Q, B\), and \(P\) satisfy \(Q B P^{H}=A+E\), where \(\|E\|_{2}=c(n) \varepsilon\|A\|_{2}, c(n)\) is a modestly increasing function of \(n\), and \(\varepsilon\) is the machine precision.

The approximate number of floating-point operations for real flavors is
\((4 / 3) * n^{2} *(3 * m-n)\) for \(m \geq n\),
\((4 / 3) * m^{2} *(3 * n-m)\) for \(m<n\).
The number of operations for complex flavors is four times greater.
If \(n\) is much less than \(m\), it can be more efficient to first form the \(Q R\) factorization of \(A\) by calling ? geqre and then reduce the factor \(R\) to bidiagonal form. This requires approximately \(2 * n^{2} *(m+\) n) floating-point operations.

If \(m\) is much less than \(n\), it can be more efficient to first form the \(L Q\) factorization of \(A\) by calling ? gelqf and then reduce the factor \(L\) to bidiagonal form. This requires approximately \(2 * m^{2} *(m+\) \(n\)) floating-point operations.

\section*{?gbbrd}

\section*{Reduces a general band matrix to bidiagonal form.}

\section*{Syntax}
```

call sgbbrd ( vect, m, n, ncc, kl, ku, ab, ldab, d, e, q, ldq, pt,
ldpt, c, ldc, work, info )
call dgbbrd ( vect, m, n, ncc, kl, ku, ab, ldab, d, e, q, ldq, pt,
ldpt, c, ldc, work, info )
call cgbbrd ( vect, m, n, ncc, kl, ku, ab, ldab, d, e, q, ldq, pt,
ldpt, c, ldc, work, rwork, info )
call zgbbrd ( vect, m, n, ncc, kl, ku, ab, ldab, d, e, q, ldq, pt,
ldpt, c, ldc, work, rwork, info )

```

\section*{Description}

This routine reduces an \(m\) by \(n\) band matrix \(A\) to upper bidiagonal matrix \(B: A=Q B P^{H}\). Here the matrices \(Q\) and \(P\) are orthogonal (for real \(A\)) or unitary (for complex \(A\)). They are determined as products of Givens rotation matrices, and may be formed explicitly by the routine if required. The routine can also update a matrix \(C\) as follows: \(C=Q^{H} C\).

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline vect & \begin{tabular}{l}
CHARACTER*1. Must be 'N' or 'Q' or 'P' or 'B'. \\
If vect \(={ }^{\prime} \mathrm{N}^{\prime}\), neither \(Q\) nor \(P^{H}\) is generated. \\
If vect \(=\) ' \(Q\) ', the routine generates the matrix \(Q\). \\
If vect \(=\) ' P ', the routine generates the matrix \(P^{H}\). \\
If vect \(=\) ' B ', the routine generates both \(Q\) and \(P^{H}\).
\end{tabular} \\
\hline m & INTEGER. The number of rows in the matrix \(A(m \geq 0)\). \\
\hline n & INTEGER. The number of columns in \(A(n \geq 0)\). \\
\hline ncc & Integer. The number of columns in \(C\) (\(\mathrm{nCC} \geq 0\)). \\
\hline kl & INTEGER. The number of sub-diagonals within the band of \(A(k I \geq 0)\). \\
\hline ku & INTEGER. The number of super-diagonals within the band of \(A(k u \geq 0)\). \\
\hline ab, c, work & REAL for sgbbrd \\
\hline & DOUBLE PRECISION for dgbbrd \\
\hline & COMPLEX for cgbbrd \\
\hline & DOUBLE COMPLEX for zgbbrd. \\
\hline
\end{tabular}

\section*{Arrays:}
\(a b(l d a b, *)\) contains the matrix \(A\) in band storage
(see Matrix Storage Schemes).
The second dimension of a must be at least \(\max (1, n)\).
\(c(l d c, *)\) contains an \(m\) by ncc matrix \(C\).
If \(n c c=0\), the array \(c\) is not referenced. The second dimension of \(c\) must be at least \(\max (1\), ncc).
work (*) is a workspace array.
The dimension of work must be at least \(2 * \max (m, n)\) for real flavors, or \(\max (m\), n) for complex flavors.
ldab INTEGER. The first dimension of the array \(a b\) (ldab \(\geq k l+k u+1\)).
\(1 d q \quad\) INTEGER. The first dimension of the output array \(q\). \(l d q \geq \max (1, m)\) if vect \(=\) ' \(Q\) ' or ' \(B\) ', \(1 d q \geq 1\) otherwise.
ldpt INTEGER. The first dimension of the output array \(p t\). \(l d p t \geq \max (1, n)\) if vect \(=' P\) ' or 'B', \(1 d p t \geq 1\) otherwise.
ldc INTEGER. The first dimension of the array \(c\). \(l d c \geq \max (1, m)\) if \(n c c>0 ; 1 d c \geq 1\) if \(n c c=0\).
rwork REAL for cgbbrd
DOUBLE PRECISION for zgbbrd.
A workspace array, DIMENSION at least max \((m, n)\).

\section*{Output Parameters}
e

Overwritten by values generated during the reduction.
REAL for single-precision flavors
DOUbLE PRECISION for double-precision flavors. Array, DIMENSION at least \(\max (1, \min (m, n)\)).
Contains the diagonal elements of the matrix \(B\).
REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors. Array, DIMENSION at least \(\max (1, \min (m, n)-1)\).
Contains the off-diagonal elements of \(B\).
\begin{tabular}{ll}
\(q, p t \quad\) & REAL for sgebrd \\
DOUBLE PRECISION for dgebrd \\
COMPLEX for cgebrd \\
& DOUBLE COMPLEX for zgebrd. \\
Arrays: \\
& \(q(I d q, *)\) contains the output \(m\) by \(m\) matrix \(Q\). \\
The second dimension of \(q\) must be at least max \((1, m)\). \\
& \(p(I d p t, *)\) contains the output \(n\) by \(n\) matrix \(P^{H}\). \\
& The second dimension of \(p t\) must be at least max \((1, n)\). \\
& INTEGER. \\
& If info \(=0\), the execution is successful. \\
& If info \(=-i\), the \(i\) ith parameter had an illegal value.
\end{tabular}

\section*{Application Notes}

The computed matrices \(Q, B\), and \(P\) satisfy \(Q B P^{H}=A+E\), where \(\|E\|_{2}=c(n) \varepsilon\|A\|_{2}, c(n)\) is a modestly increasing function of \(n\), and \(\varepsilon\) is the machine precision.

If \(m=n\), the total number of floating-point operations for real flavors is approximately the sum of:
\(6 *_{n}{ }^{2} *(k I+k u) \quad\) if vect \(=' N '\) and \(n c c=0\),
\(3 \star^{2}{ }^{2}{ }_{n C C}{ }^{\star}(k I+k u-1) /(k I+k u)\) if \(C\) is updated, and
\(3{ }^{*} n^{3} *(k I+k u-1) /(k I+k u) \quad\) if either \(Q\) or \(P^{H}\) is generated
(double this if both).
To estimate the number of operations for complex flavors, use the same formulas with the coefficients 20 and 10 (instead of 6 and 3).

\section*{?orgbr}

Generates the real orthogonal matrix \(Q\) or \(P^{T}\) determined by ?gebrd.

\section*{Syntax}
```

call sorgbr ( vect, m, n, k, a, lda, tau, work, lwork, info )
call dorgbr ( vect, m, n, k, a, lda, tau, work, lwork, info )

```

\section*{Description}

The routine generates the whole or part of the orthogonal matrices \(Q\) and \(P^{T}\) formed by the routines sgebrd/dgebrd. Use this routine after a call to sgebrd/dgebrd. All valid combinations of arguments are described in Input parameters. In most cases you'll need the following:

To compute the whole \(m\) by \(m\) matrix \(Q\) :
call ?orgbr ('Q', m, m, n, a ...)
(note that the array a must have at least \(m\) columns).
To form the \(n\) leading columns of \(Q\) if \(m>n\) :
call ?orgbr ('Q', m, n, n, a ...)
To compute the whole \(n\) by \(n\) matrix \(P^{T}\) :
call ?orgbr ('P', n, n, m, a ...)
(note that the array a must have at least \(n\) rows).
To form the \(m\) leading rows of \(P^{T}\) if \(m<n\) :
call ?orgbr ('P', m, n, m, a ...)

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline vect & CHARACTER*1. Must be 'Q' or 'P' \\
\hline & \begin{tabular}{l}
If vect \(=\) ' \(Q\) ', the routine generates the matrix \(Q\). \\
If vect \(=\) ' P ', the routine generates the matrix \(P^{T}\).
\end{tabular} \\
\hline m & INTEGER. The number of required rows of \(Q\) or \(P^{T}\). \\
\hline \(n\) & INTEGER. The number of required columns of \(Q\) or \(P^{T}\). \\
\hline k & \begin{tabular}{l}
INTEGER. One of the dimensions of \(A\) in ?gebrd: \\
If vect \(=\) ' \(Q\) ', the number of columns in \(A\); \\
If vect \(=\) ' P ', the number of rows in \(A\).
\end{tabular} \\
\hline
\end{tabular}
a, work REAL for sorgbr
DOUBLE PRECISION for dorgbr.
Arrays:
\(a(l d a, *)\) is the array a as returned by ?gebrd.
The second dimension of a must be at least \(\max (1, n)\).
work (lwork) is a workspace array.
Ida INTEGER. The first dimension of \(a\); at least \(\max (1, m)\).
tau REAL for sorgbr
DOUBLE PRECISION for dorgbr.
For vect = 'Q', the array tauq as returned by ?gebrd. For vect \(=\) ' \(P\) ', the array taup as returned by ?gebrd.
The dimension of \(t a u\) must be at least \(\max (1, \min (m, k))\)
for vect \(=' Q\) ', or \(\max (1, \min (m, k))\) for vect \(=' P^{\prime}\).
lwork INTEGER. The size of the work array.
See Application notes for the suggested value of lwork.

\section*{Output Parameters}
a
work(1)
info

Overwritten by the orthogonal matrix \(Q\) or \(P^{T}\) (or the leading rows or columns thereof) as specified by vect, \(m\), and \(n\).
If info \(=0\), on exit work (1) contains the minimum value of 1 work required for optimum performance. Use this 1 work for subsequent runs.

INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\) th parameter had an illegal value.

\section*{Application Notes}

For better performance, try using 1 work \(=\min (m, n) *\) blocksize, where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm.

If you are in doubt how much workspace to supply, use a generous value of 1 work for the first run. On exit, examine work (1) and use this value for subsequent runs.

The computed matrix \(Q\) differs from an exactly orthogonal matrix by a matrix \(E\) such that \(\|E\|_{2}=\) \(O(\varepsilon)\).

The approximate numbers of floating-point operations for the cases listed in Description are as follows:

To form the whole of \(Q\) :
\[
\begin{array}{ll}
(4 / 3) n\left(3 m^{2}-3 m \star n+n^{2}\right) & \text { if } m>n ; \\
(4 / 3) m^{3} & \text { if } m \leq n .
\end{array}
\]

To form the \(n\) leading columns of \(Q\) when \(m>n\) :
\[
(2 / 3) n^{2}\left(3 m-n^{2}\right) \quad \text { if } m>n
\]

To form the whole of \(P^{T}\) :
\[
\begin{array}{ll}
(4 / 3) n^{3} & \text { if } m \geq n ; \\
(4 / 3) m\left(3 n^{2}-3 m \star n+m^{2}\right) & \text { if } m<n .
\end{array}
\]

To form the \(m\) leading columns of \(P^{T}\) when \(m<n\) :
\[
(2 / 3) n^{2}\left(3 m-n^{2}\right) \quad \text { if } m>n
\]

The complex counterpart of this routine is ?ungbr.

\section*{?ormbr}

\section*{Multiplies an arbitrary real matrix by the real} orthogonal matrix \(Q\) or \(P^{T}\) determined by ?gebrd.

\section*{Syntax}
call sormbr (vect, side, trans, m, \(n, k, a, l d a, t a u, c, l d c, w o r k, l w o r k, i n f o)\)
call dormbr (vect,side,trans,m,n,k,a,lda,tau, c,ldc,work,lwork,info)

\section*{Description}

Given an arbitrary real matrix \(C\), this routine forms one of the matrix products \(Q C, Q^{T} C, C Q, C Q^{T}\), \(P C, P^{T} C, C P\), or \(C P^{T}\), where \(Q\) and \(P\) are orthogonal matrices computed by a call to sgebrd/dgebrd. The routine overwrites the product on \(C\).

\section*{Input Parameters}

In the descriptions below, \(r\) denotes the order of \(Q\) or \(P^{T}\) :
If side \(=L^{\prime}, r=m\); if side \(={ }^{\prime}\) ', \(r=n\).
vect CHARACTER*1. Must be ' \(Q\) ' or 'P'. If vect \(=\) ' \(Q\) ', then \(Q\) or \(Q^{T}\) is applied to \(C\). If vect \(=\mathrm{P}^{\prime}\), then \(P\) or \(P^{T}\) is applied to \(C\).
side CHARACTER*1. Must be 'L' or 'R'. If side \(=\mathrm{L} \mathrm{L}\), multipliers are applied to \(C\) from the left. If side \(={ }^{\prime} \mathrm{R}^{\prime}\), they are applied to \(C\) from the right.
trans CHARACTER*1. Must be 'N' or 'T'. If trans =' N ', then \(Q\) or \(P\) is applied to \(C\). If trans = ' \(T\) ', then \(Q^{T}\) or \(P^{T}\) is applied to \(C\).
\(m \quad\) INTEGER. The number of rows in \(C\).
\(n \quad\) INTEGER. The number of columns in \(C\).
\(k \quad\) INTEGER. One of the dimensions of \(A\) in ?gebrd:
If vect = ' \(Q\) ', the number of columns in \(A\);
If vect = ' P ', the number of rows in \(A\).
Constraints: \(m \geq 0, n \geq 0, k \geq 0\).
\begin{tabular}{|c|c|}
\hline a, c, work & \begin{tabular}{l}
REAL for sormbr \\
DOUBLE PRECISION for dormbr. \\
Arrays: \\
\(a(l d a, *)\) is the array a as returned by ?gebrd. \\
Its second dimension must be at least \(\max (1, \min (r, k))\) for vect \(=\) ' Q ', or \(\max (1, r))\) for vect \(={ }^{\prime} \mathrm{P}^{\prime}\). \\
\(c(I d c, *)\) holds the matrix \(C\). \\
Its second dimension must be at least \(\max (1, n)\). \\
work (lwork) is a workspace array.
\end{tabular} \\
\hline 1 da & \begin{tabular}{l}
integer. The first dimension of a. Constraints: \(l d a \geq \max (1, r)\) if vect = ' \(Q^{\prime}\); \\
\(l d a \geq \max (1, \min (r, k))\) if vect \(='^{\prime}\).
\end{tabular} \\
\hline 1 dc & Integer. The first dimension of \(c ; 1 d c \geq \max (1, m)\). \\
\hline tau & \begin{tabular}{l}
REAL for sormbr \\
DOUBLE PRECISION for dormbr. \\
Array, DIMENSION at least max \((1, \min (r, k))\). \\
For vect \(=\) ' \(Q\) ', the array tauq as returned by ?gebrd. For vect \(=' P\) ', the array taup as returned by ?gebrd.
\end{tabular} \\
\hline lwork & \begin{tabular}{l}
INTEGER. The size of the work array. Constraints: \\
1 work \(\geq \max (1, n)\) if side \(=\) 'L'; \\
1 work \(\geq \max (1, m)\) if side \(='^{\prime}\) '. \\
See Application notes for the suggested value of 1 work.
\end{tabular} \\
\hline \multicolumn{2}{|l|}{Output Parameters} \\
\hline c & Overwritten by the product \(Q C, Q^{T} C, C Q, C Q^{T}, P C, P^{T} C, C P\), or \(C P^{T}\), as specified by vect, side, and trans. \\
\hline work(1) & If info \(=0\), on exit work (1) contains the minimum value of 1 work required for optimum performance. Use this 1 work for subsequent runs. \\
\hline info & \begin{tabular}{l}
INTEGER. \\
If info \(=0\), the execution is successful. \\
If info \(=-i\), the \(i\) th parameter had an illegal value.
\end{tabular} \\
\hline
\end{tabular}

\section*{Application Notes}

For better performance, try using
1 work \(=n *\) blocksize for side \(=1 \mathrm{~L}\) ', or
1 work \(=m *\) blocksize for side \(={ }^{\prime}\) R',
where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm.

If you are in doubt how much workspace to supply, use a generous value of 1 work for the first run. On exit, examine work (1) and use this value for subsequent runs.

The computed product differs from the exact product by a matrix \(E\) such that \(\|E\|_{2}=O(\varepsilon)\|C\|_{2}\).
The total number of floating-point operations is approximately
\begin{tabular}{|c|c|}
\hline \(2 * n^{*} k(2 * m-k)\) & if side \(=\) 'L' and \(m \geq k\); \\
\hline \(2 * m^{*} k(2 * n-k)\) & if side \(={ }^{\prime} \mathrm{R}^{\prime}\) and \(n \geq k\); \\
\hline \(2 * m^{2} *_{n}\) & if side \(=\) 'L' and \(m<k\); \\
\hline \(2 *_{n}{ }^{2} *_{m}\) & if side \(=\) 'R' and \(n<k\). \\
\hline
\end{tabular}

The complex counterpart of this routine is ?unmbr.

\section*{?ungbr}

Generates the complex unitary matrix \(Q\) or \(P^{H}\)
determined by ?gebrd.

\section*{Syntax}
```

call cungbr ( vect, m, n, k, a, lda, tau, work, lwork, info )
call zungbr ( vect, m, n, k, a, lda, tau, work, lwork, info )

```

\section*{Description}

The routine generates the whole or part of the unitary matrices \(Q\) and \(P^{H}\) formed by the routines cgebrd/zgebrd. Use this routine after a call to cgebrd/zgebrd. All valid combinations of arguments are described in Input Parameters; in most cases you'll need the following:

To compute the whole \(m\) by \(m\) matrix \(Q\) :
call ?ungbr ('Q', m, m, \(\mathrm{n}, \mathrm{a} . .\).)
(note that the array a must have at least \(m\) columns).
To form the \(n\) leading columns of \(Q\) if \(m>n\) :
call ?ungbr ('Q', m, \(n, \mathrm{n}, \mathrm{a} . . \mathrm{C}\))
To compute the whole \(n\) by \(n\) matrix \(P^{H}\) :
call ?ungbr ('P', n, \(n, m, a \ldots\))
(note that the array a must have at least \(n\) rows).
To form the \(m\) leading rows of \(P^{H}\) if \(m<n\) :
call ?ungbr ('P', m, n, m, a ...)

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{vect} & CHARACTER*1. Must be 'Q' or 'P'. \\
\hline & If vect \(=\) ' \(Q\) ', the routine generates the matrix \(Q\). \\
\hline & If vect \(=\) ' P', the routine generates the matrix \(P^{H}\). \\
\hline m & INTEGER. The number of required rows of \(Q\) or \(P^{H}\). \\
\hline n & INTEGER. The number of required columns of \(Q\) or \(P^{H}\). \\
\hline \(k\) & \begin{tabular}{l}
INTEGER. One of the dimensions of \(A\) in ? gebrd: \\
If vect \(=\) ' Q ', the number of columns in \(A\); \\
If vect \(=\) ' P ', the number of rows in \(A\).
\end{tabular} \\
\hline
\end{tabular}
a, work COMPLEX for cungbr
DOUBLE COMPLEX for zungbr.
Arrays:
a (lda,*) is the array a as returned by ?gebrd.
The second dimension of a must be at least \(\max (1, n)\).
work (lwork) is a workspace array.
Ida INTEGER. The first dimension of \(a\); at least \(\max (1, m)\).
tau COMPLEX for cungbr
DOUBLE COMPLEX for zungbr.
For vect = 'Q', the array tauq as returned by ?gebrd. For vect = ' P', the array taup as returned by ?gebrd.
The dimension of \(t a u\) must be at least \(\max (1, \min (m, k))\)
for vect \(=\) ' \(Q\) ', or \(\max (1, \min (m, k))\) for vect \(=' P^{\prime}\).
lwork INTEGER. The size of the work array.
Constraint: 1 work \(\geq \max (1, \min (m, n))\).
See Application notes for the suggested value of lwork.

\section*{Output Parameters}
a
work(1)
info

Overwritten by the orthogonal matrix \(Q\) or \(P^{T}\) (or the leading rows or columns thereof) as specified by vect, \(m\), and \(n\).
If info \(=0\), on exit work (1) contains the minimum value of lwork required for optimum performance. Use this 1 work for subsequent runs.

INTEGER.
If \(\operatorname{info}=0\), the execution is successful.
If info \(=-i\), the \(i\) th parameter had an illegal value.

\section*{Application Notes}

For better performance, try using 1 work \(=\min (m, n) *\) blocksize, where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm.

If you are in doubt how much workspace to supply, use a generous value of 1 work for the first run. On exit, examine work (1) and use this value for subsequent runs.

The computed matrix \(Q\) differs from an exactly orthogonal matrix by a matrix \(E\) such that \(\|E\|_{2}=\) \(O(\varepsilon)\).

The approximate numbers of floating-point operations for the cases listed in Description are as follows:

To form the whole of \(Q\) :
\[
\begin{array}{ll}
(16 / 3) n\left(3 m^{2}-3 m^{*} n+n^{2}\right) & \text { if } m>n ; \\
(16 / 3) m^{3} & \text { if } m \leq n .
\end{array}
\]

To form the \(n\) leading columns of \(Q\) when \(m>n\) :
\[
(8 / 3) n^{2}\left(3 m-n^{2}\right) \quad \text { if } m>n
\]

To form the whole of \(P^{T}\) :
\[
\begin{array}{ll}
(16 / 3) n^{3} & \text { if } m \geq n ; \\
(16 / 3) m\left(3 n^{2}-3 m \star n+m^{2}\right) & \text { if } m<n .
\end{array}
\]

To form the \(m\) leading columns of \(P^{T}\) when \(m<n\) :
\[
(8 / 3) n^{2}\left(3 m-n^{2}\right) \quad \text { if } m>n
\]

The real counterpart of this routine is ?orgbr.

\section*{? unmbr}

Multiplies an arbitrary complex matrix by the unitary matrix \(Q\) or \(P\) determined by ? gebrd.

\section*{Syntax}
call cunmbr (vect, side, trans,m,n,k,a,lda,tau, c,ldc, work, lwork, info)
call zunmbr (vect,side,trans,m,n,k,a,lda,tau,c,ldc,work,lwork,info)

\section*{Description}

Given an arbitrary complex matrix \(C\), this routine forms one of the matrix products \(Q C, Q^{H} C, C Q\), \(C Q^{H}, P C, P^{H} C, C P\), or \(C P^{H}\), where \(Q\) and \(P\) are orthogonal matrices computed by a call to cgebrd/zgebrd. The routine overwrites the product on \(C\).

\section*{Input Parameters}

In the descriptions below, \(r\) denotes the order of \(Q\) or \(P^{H}\) :
If side \(=\mathrm{L}\) ', \(r=m\); if side \(=\mathrm{I}^{\prime}\) ', \(r=n\).
vect CHARACTER*1. Must be 'Q' or 'P'. If vect \(=' Q\) ', then \(Q\) or \(Q^{H}\) is applied to \(C\). If vect \(=' \mathrm{P}\) ', then \(P\) or \(P^{H}\) is applied to \(C\).
side CHARACTER*1. Must be 'L' or 'R'. If side \(=\) ' L ', multipliers are applied to \(C\) from the left. If side \(=\) ' R ', they are applied to \(C\) from the right.
trans CHARACTER*1. Must be 'N' or 'C'. If trans \(=\) ' N ', then \(Q\) or \(P\) is applied to \(C\). If trans = ' C ', then \(Q^{H}\) or \(P^{H}\) is applied to \(C\).
\(m \quad\) Integer. The number of rows in \(C\).
\(n \quad\) INTEGER. The number of columns in \(C\).
k Integer. One of the dimensions of \(A\) in ?gebrd: If vect = ' \(Q\) ', the number of columns in \(A\); If vect \(=\) ' P ', the number of rows in \(A\).

Constraints: \(m \geq 0, n \geq 0, k \geq 0\).

\section*{Application Notes}

For better performance, try using
1 work \(=n *\) blocksize for side \(=1 \mathrm{~L}\) ', or
1 work \(=m *\) blocksize for side \(={ }^{\prime}\) R',
where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm.

If you are in doubt how much workspace to supply, use a generous value of 1 work for the first run. On exit, examine work (1) and use this value for subsequent runs.

The computed product differs from the exact product by a matrix \(E\) such that \(\|E\|_{2}=O(\varepsilon)\|C\|_{2}\).
The total number of floating-point operations is approximately
\begin{tabular}{|c|c|}
\hline \(8 * n^{*} k(2 * m-k)\) & if side \(=\) 'L' and \(m \geq k\); \\
\hline \(8 * m^{*} k(2 * n-k)\) & if side \(={ }^{\prime} \mathrm{R}^{\prime}\) and \(n \geq k\); \\
\hline \(8 * m^{2} *_{n}\) & if side \(=\) 'L' and \(m<k\); \\
\hline \(8 *_{n}{ }^{2} *_{m}\) & if side \(=\) 'R' and \(n<k\). \\
\hline
\end{tabular}

The real counterpart of this routine is ?ormbr.

\section*{?bdsqr}

Computes the singular value decomposition of a general matrix that has been reduced to bidiagonal form.

\section*{Syntax}
```

call sbdsqr ( uplo, n, ncvt, nru, ncc, d, e, vt, ldvt, u, ldu,
c, ldc, work, info )
call dbdsqr ( uplo, n, ncvt, nru, ncc, d, e, vt, ldvt, u, ldu,
c, ldc, work, info )
call cbdsqr ( uplo, n, ncvt, nru, ncc, d, e, vt, ldvt, u, ldu,
c, ldc, work, info )
call zbdsqr ( uplo, n, ncvt, nru, ncc, d, e, vt, ldvt, u, ldu,
c, ldc, work, info )

```

\section*{Description}

This routine computes the singular values and, optionally, the right and/or left singular vectors from the Singular Value Decomposition (SVD) of a real \(n\)-by- \(n\) (upper or lower) bidiagonal matrix \(B\) using the implicit zero-shift \(Q R\) algorithm. The SVD of \(B\) has the form \(B=Q * S * P^{H}\) where \(S\) is the diagonal matrix of singular values, \(Q\) is an orthogonal matrix of left singular vectors, and \(P\) is an orthogonal matrix of right singular vectors. If left singular vectors are requested, this subroutine actually returns \(U * Q\) instead of \(Q\), and, if right singular vectors are requested, this subroutine returns
\(P^{H} * V T\) instead of \(P^{H}\), for given real/complex input matrices \(U\) and \(V T\). When \(U\) and \(V T\) are the orthogonal/unitary matrices that reduce a general matrix \(A\) to bidiagonal form: \(A=U * B * V T\), as computed by ? gebrd, then
\[
A=(U * Q) * S *\left(P^{H} * V T\right)
\]
is the SVD of \(A\). Optionally, the subroutine may also compute \(Q^{H}{ }^{*} C\) for a given real/complex input matrix \(C\).

\section*{Input Parameters}
uplo CHARACTER*1. Must be 'U' or 'L'.
If uplo \(={ }^{\prime} U ', B\) is an upper bidiagonal matrix. If uplo \(=\) ' L ', \(B\) is a lower bidiagonal matrix.
n INTEGER. The order of the matrix \(B \quad(n \geq 0)\).
\begin{tabular}{|c|c|}
\hline ncvt & \begin{tabular}{l}
INTEGER. The number of columns of the matrix \(V T\), that is, the number of right singular vectors (ncvt \(\geq 0\)). \\
Set ncvt \(=0\) if no right singular vectors are required.
\end{tabular} \\
\hline nru & \begin{tabular}{l}
INTEGER. The number of rows in \(U\), that is, the number of left singular vectors (\(n r u \geq 0\)). \\
Set \(n r u=0\) if no left singular vectors are required.
\end{tabular} \\
\hline ncc & integer. The number of columns in the matrix \(C\) used for computing the product \(Q^{H} C(n c c \geq 0)\). Set ncc \(=0\) if no matrix \(C\) is supplied. \\
\hline d, e, work & \begin{tabular}{l}
REAL for single-precision flavors \\
DOUBLE PRECISION for double-precision flavors. \\
Arrays: \\
\(d(*)\) contains the diagonal elements of \(B\). \\
The dimension of \(d\) must be at least \(\max (1, n)\). \\
\(e(*)\) contains the \((n-1)\) off-diagonal elements of \(B\). \\
The dimension of \(e\) must be at least \(\max (1, n)\). \\
\(e(n)\) is used for workspace. \\
work (*) is a workspace array. \\
The dimension of work must be at least \(\max \left(1,2 *_{n}\right)\) if \(n c v t=n r u=n c c=0\); \(\max (1,4 *(n-1))\) otherwise.
\end{tabular} \\
\hline vt, u, c & \begin{tabular}{l}
REAL for sbdsqr \\
DOUBLE PRECISION for dbdsqr \\
COMPLEX for cbdsqr \\
DOUBLE COMPLEX for zbdsqr. \\
Arrays: \\
\(v t(l d v t, *)\) contains an \(n\) by ncvt matrix \(V T\). \\
The second dimension of \(v t\) must be at least \\
\(\max (1, n c v t)\). \\
\(v t\) is not referenced if \(n c v t=0\). \\
\(u(I d u, *)\) contains an nru by \(n\) unit matrix \(U\). \\
The second dimension of \(u\) must be at least \(\max (1, n)\). \\
\(u\) is not referenced if \(n r u=0\). \\
\(c(I d c, *)\) contains the matrix \(C\) for computing the product \(Q^{H} * C\). The second dimension of \(c\) must be at least \(\max (1, n c c)\). The array is not referenced if \(n c c=0\).
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{ll}
ldvt & INTEGER. The first dimension of \(v t\). Constraints: \\
& \(l d v t \geq \max (1, n)\) if \(n c v t>0 ;\) \\
& \(l d v t \geq 1\) if \(n c v t=0\). \\
& \\
& \\
& \(I N T E G E R\). The first dimension of \(u\). Constraint: \\
& \(l d u \geq \max (1, n r u)\). \\
& \\
& \(I N T E G E R\). The first dimension of \(c\). Constraints: \\
& \(l d c \geq \max (1, n)\) if \(n c c>0 ;\) \\
& \(l d c \geq 1\) otherwise.
\end{tabular}

\section*{Output Parameters}

On exit, if info \(=0\), overwritten by the singular values in decreasing order (see info).

On exit, if info \(=0\), e is destroyed. See also info below.
Overwritten by the product \(Q^{H} * C\).
On exit, this array is overwritten by \(P^{H} * V T\).
u
On exit, this array is overwritten by \(U * Q\).
info
INTEGER. If \(\operatorname{info}=0\), the execution is successful. If info \(=-i\), the \(i\) th parameter had an illegal value. If info \(=i\), the algorithm failed to converge; i specifies how many off-diagonals did not converge. In this case, \(d\) and e contain on exit the diagonal and off-diagonal elements, respectively, of a bidiagonal matrix orthogonally equivalent to \(B\).

\section*{Application Notes}

Each singular value and singular vector is computed to high relative accuracy. However, the reduction to bidiagonal form (prior to calling the routine) may decrease the relative accuracy in the small singular values of the original matrix if its singular values vary widely in magnitude.

If \(\sigma_{i}\) is an exact singular value of \(B\), and \(s_{i}\) is the corresponding computed value, then
\[
\left|s_{i}-\sigma_{i}\right| \leq p(m, n) \varepsilon \sigma_{i}
\]
where \(p(m, n)\) is a modestly increasing function of \(m\) and \(n\), and \(\varepsilon\) is the machine precision. If only singular values are computed, they are computed more accurately than when some singular vectors are also computed (that is, the function \(p(m, n)\) is smaller).

If \(u_{i}\) is the corresponding exact left singular vector of \(B\), and \(w_{i}\) is the corresponding computed left singular vector, then the angle \(\theta\left(u_{i}, w_{i}\right)\) between them is bounded as follows:
\[
\theta\left(u_{i}, w_{i}\right) \leq p(m, n) \varepsilon / \min _{i \neq j}\left(\left|\sigma_{i}-\sigma_{j}\right| /\left|\sigma_{i}+\sigma_{j}\right|\right) .
\]

Here \(\min _{i \neq j}\left(\left|\sigma_{i}-\sigma_{j} /\left|\sigma_{i}+\sigma_{j}\right|\right)\right.\) is the relative gap between \(\sigma_{i}\) and the other singular values. A similar error bound holds for the right singular vectors.

The total number of real floating-point operations is roughly proportional to \(n^{2}\) if only the singular values are computed. About \(6 n^{2} * n r u\) additional operations (\(12 n^{2} \star_{n r u}\) for complex flavors) are required to compute the left singular vectors and about \(6 n^{2} *_{n C v t}\) operations \(\left(12 n^{2} *_{n C v t}\right.\) for complex flavors) to compute the right singular vectors.

\section*{?bdsdc}

Computes the singular value decomposition of a real bidiagonal matrix using a divide and conquer method.

\section*{Syntax}
```

call sbdsdc ( uplo, compq, n, d, e, u, ldu, vt, ldvt, q, iq, work,
iwork, info )
call dbdsdc ( uplo, compq, n, d, e, u, ldu, vt, ldvt, q, iq, work,
iwork, info )

```

\section*{Description}

This routine computes the Singular Value Decomposition (SVD) of a real \(n\)-by-n (upper or lower) bidiagonal matrix \(B: B=U \Sigma V^{\mathrm{T}}\), using a divide and conquer method, where \(\Sigma\) is a diagonal matrix with non-negative diagonal elements (the singular values of \(B\)), and \(U\) and \(V\) are orthogonal matrices of left and right singular vectors, respectively. ?bdsdc can be used to compute all singular values, and optionally, singular vectors or singular vectors in compact form.

\section*{Input Parameters}
uplo CHARACTER*1. Must be 'U' or 'L'.
If uplo= ' U ', \(B\) is an upper bidiagonal matrix. If uplo= 'L', \(B\) is a lower bidiagonal matrix.
compq CHARACTER*1. Must be 'N', 'P', or 'I'.
If compq \(=\) ' \(N\) ', compute singular values only. If compq \(=\) ' P ', compute singular values and compute singular vectors in compact form.
If compq = 'I', compute singular values and singular vectors.
\(n \quad\) INTEGER. The order of the matrix \(B(n \geq 0)\).
d, e, work
REAL for sbdsdc
DOUBLE PRECISION for sbdsdc.
Arrays:
\(d(*)\) contains the \(n\) diagonal elements of the bidiagonal matrix \(B\). The dimension of \(d\) must be at least \(\max (1, n)\).
\begin{tabular}{ll}
\(I d u\) & INTEGER. The first dimension of the output array \(u ; l d u \geq 1\). If singular \\
& vectors are desired, then \\
& \(I d u \geq \max (1, n)\). \\
Idvt & INTEGER. The first dimension of the output array \(v t ; l d v t \geq 1\). If singular \\
& vectors are desired, then \\
& \(I d v t \geq \max (1, n)\). \\
& INTEGER. \\
& Workspace array, dimension at least \(\max (1,8 * n)\).
\end{tabular}

\section*{Output Parameters}
d
e
\(u, v t, q\)
iq

If info \(=0\), overwritten by the singular values of \(B\).
On exit, e is overwritten.
REAL for sbdsdc
DOUBLE PRECISION for sbdsdc.
Arrays: \(u(l d u, *)\), \(v t(l d v t, *), q(*)\).
If compq = ' I' , then on exit \(u\) contains the left singular vectors of the bidiagonal matrix \(B\), unless info \(\neq 0\) (see info). For other values of compq, \(u\) is not referenced. The second dimension of \(u\) must be at least \(\max (1, n)\).
If compq = ' I' , then on exit \(v t\) contains the right singular vectors of the bidiagonal matrix \(B\), unless info \(\neq 0\) (see info). For other values of compq, vt is not referenced. The second dimension of \(v t\) must be at least \(\max (1, n)\).
If compq \(=' P\) ', then on exit, if info \(=0, q\) and iq contain the left and right singular vectors in a compact form. Specifically, \(q\) contains all the REAL (for sbdsdc) or DOUBLE PRECISION (for dbdsdc) data for singular vectors. For other values of compq, \(q\) is not referenced. See Application notes for details.

Array: iq(*).
If compq \(=' P\) ', then on exit, if info \(=0, q\) and iqcontain the left and right
singular vectors in a compact form. Specifically, iq contains all the INTEGER data for singular vectors. For other values of comp, iq is not referenced. See Application notes for details.

INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\) th parameter had an illegal value.
If info \(=i\), the algorithm failed to compute a singular value. The update process of divide and conquer failed.

\section*{Symmetric Eigenvalue Problems}

Symmetric eigenvalue problems are posed as follows: given an \(n\) by \(n\) real symmetric or complex Hermitian matrix \(A\), find the eigenvalues \(\lambda\) and the corresponding eigenvectors \(z\) that satisfy the equation
\[
\left.A z=\lambda z \text {. (or, equivalently, } z^{H} A=\lambda z^{H}\right) .
\]

In such eigenvalue problems, all \(n\) eigenvalues are real not only for real symmetric but also for complex Hermitian matrices \(A\), and there exists an orthonormal system of \(n\) eigenvectors. If \(A\) is a symmetric or Hermitian positive-definite matrix, all eigenvalues are positive.

To solve a symmetric eigenvalue problem with LAPACK, you usually need to reduce the matrix to tridiagonal form and then solve the eigenvalue problem with the tridiagonal matrix obtained. LAPACK includes routines for reducing the matrix to a tridiagonal form by an orthogonal (or unitary) similarity transformation \(A=Q T Q^{H}\) as well as for solving tridiagonal symmetric eigenvalue problems. These routines are listed in Table 4-3.

There are different routines for symmetric eigenvalue problems, depending on whether you need all eigenvectors or only some of them or eigenvalues only, whether the matrix \(A\) is positive-definite or not, and so on.
These routines are based on three primary algorithms for computing eigenvalues and eigenvectors of symmetric problems: the divide and conquer algorithm, the QR algorithm, and bisection followed by inverse iteration. The divide and conquer algorithm is generally more efficient and is recommended for computing all eigenvalues and eigenvectors.
Furthermore, to solve an eigenvalue problem using the divide and conquer algorithm, you need to call only one routine. In general, more than one routine has to be called if the QR algorithm or bisection followed by inverse iteration is used.

Decision tree in Figure 4-2 will help you choose the right routine or sequence of routines for eigenvalue problems with real symmetric matrices. A similar decision tree for complex Hermitian matrices is presented in Figure 4-3.

Figure 4-2 Decision Tree: Real Symmetric Eigenvalue Problems

Figure 4-3 Decision Tree: Complex Hermitian Eigenvalue Problems

Table 4-3 Computational Routines for Solving Symmetric Eigenvalue Problems
\begin{tabular}{|c|c|c|}
\hline Operation & Real symmetric matrices & Complex Hermitian matrices \\
\hline Reduce to tridiagonal form \(A=Q T Q^{H}\) (full storage) & ?sytrd & ?hetrd \\
\hline Reduce to tridiagonal form \(A=Q T Q^{H}\) (packed storage) & ? sptrd & ?hptrd \\
\hline Reduce to tridiagonal form \(A=Q T Q^{H}\) (band storage). & ?sbtrd & ?hbtrd \\
\hline Generate matrix \(Q\) (full storage) & ?orgtr & ?ungtr \\
\hline Generate matrix Q (packed storage) & ? opgtr & ?upgtr \\
\hline Apply matrix \(Q\) (full storage) & ? ormtr & ? unmtr \\
\hline Apply matrix \(Q\) (packed storage) & ? opmtr & ?upmtr \\
\hline Find all eigenvalues of a tridiagonal matrix \(T\) & ?sterf & \\
\hline Find all eigenvalues and eigenvectors of a tridiagonal matrix \(T\) & ?steqr ?stedc & ?steqr ? \({ }^{\text {? }}\) \\
\hline Find all eigenvalues and eigenvectors of a tridiagonal positive-definite matrix \(T\). & ?pteqr & ?pteqr \\
\hline Find selected eigenvalues of a tridiagonal matrix \(T\) & \[
\frac{\text { ?stebz }}{\text { ?stegr }}
\] & ?stegr \\
\hline Find selected eigenvectors of a tridiagonal matrix \(T\) & \[
\frac{\text { ?stein }}{\text { ?stegr }}
\] & \(\frac{\text { ?stein }}{\text { ?stegr }}\) \\
\hline Compute the reciprocal condition numbers for the eigenvectors & ?disna & ?disna \\
\hline
\end{tabular}

\section*{?sytrd}

Reduces a real symmetric matrix to tridiagonal form.

\section*{Syntax}
```

call ssytrd ( uplo,n,a,lda,d,e,tau,work,lwork,info )
call dsytrd ( uplo,n,a,lda,d,e,tau,work,lwork,info )

```

\section*{Description}

This routine reduces a real symmetric matrix \(A\) to symmetric tridiagonal form \(T\) by an orthogonal similarity transformation: \(A=Q T Q^{T}\). The orthogonal matrix \(Q\) is not formed explicitly but is represented as a product of \(n-1\) elementary reflectors. Routines are provided for working with \(Q\) in this representation. (They are described later in this section.)

\section*{Input Parameters}
```

uplo CHARACTER*1. Must be 'U' or 'L'.
If uplo='U', a stores the upper triangular part of }A\mathrm{ .
If uplo= 'L', a stores the lower triangular part of A.
n INTEGER. The order of the matrix A ( }n\geq0)\mathrm{ .
a, work REAL for ssytrd
DOUBLE PRECISION for dsytrd.
a(lda,*) is an array containing either upper or lower triangular part of the
matrix }A\mathrm{ , as specified by uplo.
The second dimension of a must be at least max(1,n).
work(lwork) is a workspace array.
Ida INTEGER. The first dimension of a; at least max (1, n).
lwork INTEGER. The size of the work array (lwork }\geqn
See Application notes for the suggested value of lwork.

```

\section*{Output Parameters}
a Overwritten by the tridiagonal matrix \(T\) and details of the orthogonal matrix \(Q\), as specified by uplo.
```

d, e, tau
work(1) If info=0, on exit work(1) contains the minimum value of 1 work required
info
REAL for ssytrd
DOUBLE PRECISION for dsytrd.
Arrays:
d(*) contains the diagonal elements of the matrix T.
The dimension of d must be at least max(1,n).
e (*) contains the off-diagonal elements of T.
The dimension of e must be at least max(1,n-1).
tau(*) stores further details of the orthogonal matrix Q. The dimension of
tau must be at least max(1, n-1).
for optimum performance. Use this lwork for subsequent runs.
INTEGER.
If info = 0, the execution is successful.
If info =-i, the ith parameter had an illegal value.

```

\section*{Application Notes}

For better performance, try using 1 work \(=n *\) blocksize, where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm. If you are in doubt how much workspace to supply, use a generous value of 1 work for the first run. On exit, examine work (1) and use this value for subsequent runs.

The computed matrix \(T\) is exactly similar to a matrix \(A+E\), where \(\|E\|_{2}=c(n) \varepsilon\|A\|_{2}, c(n)\) is a modestly increasing function of \(n\), and \(\varepsilon\) is the machine precision.

The approximate number of floating-point operations is \((4 / 3) n^{3}\).
After calling this routine, you can call the following:
\begin{tabular}{ll}
?orgtr & to form the computed matrix \(Q\) explicitly; \\
\(\underline{\text { ?ormtr }}\) & to multiply a real matrix by \(Q\).
\end{tabular}

The complex counterpart of this routine is ?hetrd.

\section*{?orgtr}

Generates the real orthogonal matrix \(Q\) determined by
?sytrd.

\section*{Syntax}
```

call sorgtr ( uplo, n, a, lda, tau, work, lwork, info )
call dorgtr ( uplo, n, a, lda, tau, work, lwork, info )

```

\section*{Description}

The routine explicitly generates the \(n\) by \(n\) orthogonal matrix \(Q\) formed by ?sytrd when reducing a real symmetric matrix \(A\) to tridiagonal form: \(A=Q T Q^{T}\). Use this routine after a call to ?sytrd.

\section*{Input Parameters}
```

uplo CHARACTER*1. Must be 'U' or 'L'.
Use the same uplo as supplied to ?sytrd.
n INTEGER. The order of the matrix Q ( }n\geq0)\mathrm{ .
a, tau, work REAL for sorgtr
DOUBLE PRECISION for dorgtr.
Arrays:
a(lda,*) is the array a as returned by ?sytrd.
The second dimension of a must be at least max(1,n).
tau(*) is the array tau as returned by ?sytrd.
The dimension of tau must be at least max(1,n-1).
work (lwork) is a workspace array.
Ida INTEGER. The first dimension of a; at least max (1,n).
lwork INTEGER. The size of the work array (lwork \geqn)
See Application notes for the suggested value of lwork.

```

\section*{Output Parameters}
a Overwritten by the orthogonal matrix \(Q\).
work (1) If info \(=0\), on exit work (1) contains the minimum value of 1 work required for optimum performance. Use this lwork for subsequent runs.
```

info INTEGER
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

```

\section*{Application Notes}

For better performance, try using 1 work \(=(n-1) *\) blocksize, where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm.

If you are in doubt how much workspace to supply, use a generous value of 1 work for the first run. On exit, examine work (1) and use this value for subsequent runs.

The computed matrix \(Q\) differs from an exactly orthogonal matrix by a matrix \(E\) such that \(\|E\|_{2}=O(\varepsilon)\), where \(\varepsilon\) is the machine precision.

The approximate number of floating-point operations is \((4 / 3) n^{3}\).
The complex counterpart of this routine is ?ungtr.

\section*{?ormtr}

\section*{Multiplies a real matrix by the real orthogonal matrix \(Q\)}
determined by ?sytrd.

\section*{Syntax}
call sormtr (side, uplo,trans,m,n, a,lda,tau, c,ldc, work,lwork, info)
call dormtr (side,uplo,trans,m,n,a,lda,tau, c,ldc,work,lwork, info)

\section*{Description}

The routine multiplies a real matrix \(C\) by \(Q\) or \(Q^{T}\), where \(Q\) is the orthogonal matrix \(Q\) formed by ?sytrd when reducing a real symmetric matrix \(A\) to tridiagonal form: \(A=Q T Q^{T}\). Use this routine after a call to ? sytrd.

Depending on the parameters side and trans, the routine can form one of the matrix products \(Q C, Q^{T} C, C Q\), or \(C Q^{T}\) (overwriting the result on \(C\)).

\section*{Input Parameters}

In the descriptions below, \(r\) denotes the order of \(Q\) :
\[
\text { If side }=L^{\prime}, r=m \text {; if } s i d e='^{\prime}, r=n .
\]
\begin{tabular}{|c|c|}
\hline side & CHARACTER*1. Must be either 'L' or 'R'. \\
\hline & \begin{tabular}{l}
If side ='L',\(Q\) or \(Q^{T}\) is applied to \(C\) from the left. \\
If side = 'R', \(Q\) or \(Q^{T}\) is applied to \(C\) from the right
\end{tabular} \\
\hline uplo & \begin{tabular}{l}
CHARACTER*1. Must be ' U ' or 'L'. \\
Use the same uplo as supplied to ?sytrd.
\end{tabular} \\
\hline trans & \begin{tabular}{l}
CHARACTER*1. Must be either ' N ' or ' T '. \\
If trans \(=\) ' \(N\) ', the routine multiplies \(C\) by \(Q\). \\
If trans \(=\) ' \(T\) ', the routine multiplies \(C\) by \(Q^{T}\).
\end{tabular} \\
\hline
\end{tabular}
\(m \quad\) INTEGER. The number of rows in the matrix \(C\) (\(m \geq 0\)).
\(n \quad\) INTEGER. The number of columns in \(C(n \geq 0)\).
a, work, tau, c REAL for sormtr DOUBLE PRECISION for dormtr. a(lda,*) and tau are the arrays returned by ?sytrd.

The second dimension of a must be at least \(\max (1, r)\).
The dimension of tau must be at least \(\max (1, r-1)\).
\(c(l d c, *)\) contains the matrix \(C\).
The second dimension of \(c\) must be at least max \((1, n)\)
work (lwork) is a workspace array.
lda
ldc
lwork
INTEGER. The first dimension of \(a ; 1 d a \geq \max (1, r)\).
INTEGER. The first dimension of \(c ; 1 d c \geq \max (1, n)\).
INTEGER. The size of the work array. Constraints:
lwork \(\geq \max (1, n)\) if side \(=\) 'L';
1 work \(\geq \max (1, m)\) if side \(='^{\prime}\) '.
See Application notes for the suggested value of 1 work.

\section*{Output Parameters}

Overwritten by the product \(Q C, Q^{T} C, C Q\), or \(C Q^{T}\) (as specified by side and trans).
work (1) If info \(=0\), on exit work (1) contains the minimum value of 1 work required for optimum performance. Use this 1 work for subsequent runs.
info INTEGER.
If info \(=0\), the execution is successful. If info \(=-i\), the \(i\) th parameter had an illegal value.

\section*{Application Notes}

For better performance, try using 1 work \(=n *\) blocksize for side \(=1 \mathrm{~L}\), or 1 work \(=m^{*}\) blocksize for side \(={ }^{\prime} \mathrm{R}^{\prime}\), where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm. If you are in doubt how much workspace to supply, use a generous value of 1 work for the first run. On exit, examine work (1) and use this value for subsequent runs.

The computed product differs from the exact product by a matrix \(E\) such that \(\mid\) \(\mid E\left\|_{2}=O(\varepsilon)\right\| C \|_{2}\).

The total number of floating-point operations is approximately \(2 *^{2} *_{n}\) if side \(=L^{\prime} '\) or \(2 \star^{2} \star^{2} m\) if side \(='^{\prime}\).

The complex counterpart of this routine is ?unmtr.

\section*{?hetrd}

Reduces a complex Hermitian matrix to tridiagonal form.

\section*{Syntax}
```

call chetrd ( uplo,n,a,lda,d,e,tau,work,lwork,info )

```
```

call zhetrd ( uplo,n,a,lda,d,e,tau,work,lwork,info )

```

\section*{Description}

This routine reduces a complex Hermitian matrix \(A\) to symmetric tridiagonal form \(T\) by a unitary similarity transformation: \(A=Q T Q^{H}\). The unitary matrix \(Q\) is not formed explicitly but is represented as a product of \(n-1\) elementary reflectors. Routines are provided to work with \(Q\) in this representation. (They are described later in this section.)

\section*{Input Parameters}
```

uplo CHARACTER*1. Must be 'U' or 'L'.
If uplo='U', a stores the upper triangular part of }A\mathrm{ .
If uplo= 'L', a stores the lower triangular part of A.
n INTEGER. The order of the matrix A ( }n\geq0)\mathrm{ .
a, work COMPLEX for chetrd
DOUBLE COMPLEX for zhetrd.
a(lda,*) is an array containing either upper or lower triangular part of the
matrix }A\mathrm{ , as specified by uplo.
The second dimension of a must be at least max (1,n).
work(lwork) is a workspace array.
Ida INTEGER. The first dimension of a; at least max (1, n).
lwork INTEGER. The size of the work array (lwork }\geqn
See Application notes for the suggested value of lwork.

```

\section*{Output Parameters}
a Overwritten by the tridiagonal matrix \(T\) and details of the unitary matrix \(Q\), as specified by uplo.
\begin{tabular}{|c|c|}
\hline \multirow[t]{7}{*}{d, e} & REAL for chetrd \\
\hline & DOUBLE PRECISION for zhetrd. \\
\hline & Arrays: \\
\hline & \(d(*)\) contains the diagonal elements of the matrix \(T\). \\
\hline & The dimension of \(d\) must be at least max \((1, n)\). \\
\hline & \(e(*)\) contains the off-diagonal elements of \(T\). \\
\hline & The dimension of \(e\) must be at least \(\max (1, n-1)\). \\
\hline \multirow[t]{4}{*}{tau} & COMPLEX for chetrd \\
\hline & DOUBLE COMPLEX for zhetrd. \\
\hline & Array, DIMENSION at least max (\(1, n-1\)). \\
\hline & Stores further details of the unitary matrix \(Q\). \\
\hline work (1) & If info \(=0\), on exit work (1) contains the minimum value of 1 work required for optimum performance. Use this lwork for subsequent runs. \\
\hline \multirow[t]{3}{*}{info} & INTEGER. \\
\hline & If info \(=0\), the execution is successful. \\
\hline & If info \(=-i\), the \(i\) th parameter had an illegal value. \\
\hline
\end{tabular}

\section*{Application Notes}

For better performance, try using 1 work \(=n *\) blocksize, where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm. If you are in doubt how much workspace to supply, use a generous value of 1 work for the first run. On exit, examine work (1) and use this value for subsequent runs.

The computed matrix \(T\) is exactly similar to a matrix \(A+E\), where \(\|E\|_{2}=c(n) \varepsilon\|A\|_{2}, c(n)\) is a modestly increasing function of \(n\), and \(\varepsilon\) is the machine precision.

The approximate number of floating-point operations is \((16 / 3) n^{3}\).
After calling this routine, you can call the following:
\begin{tabular}{ll}
?ungtr & to form the computed matrix \(Q\) explicitly; \\
?unmtr & to multiply a complex matrix by \(Q\).
\end{tabular}

The real counterpart of this routine is ?sytrd.

\section*{? ungtr}

\section*{Generates the complex unitary matrix \(Q\) determined by}
?hetrd.

\section*{Syntax}
```

call cungtr ( uplo, n, a, lda, tau, work, lwork, info )
call zungtr ( uplo, n, a, lda, tau, work, lwork, info )

```

\section*{Description}

The routine explicitly generates the \(n\) by \(n\) unitary matrix \(Q\) formed by ?hetrd when reducing a complex Hermitian matrix \(A\) to tridiagonal form: \(A=Q T Q^{H}\). Use this routine after a call to ?hetrd.

\section*{Input Parameters}
```

uplo CHARACTER*1. Must be 'U' or 'L'.
Use the same uplo as supplied to ?hetrd.
n INTEGER. The order of the matrix Q ( }n\geq0)\mathrm{ .
a, tau, work COMPLEX for cungtr
DOUBLE COMPLEX for zungtr.
Arrays:
a(lda,*) is the array a as returned by ?hetrd.
The second dimension of a must be at least max(1,n).
tau(*) is the array tau as returned by ?hetrd.
The dimension of tau must be at least max(1,n-1).
work (lwork) is a workspace array.
Ida INTEGER. The first dimension of a; at least max (1,n).
lwork INTEGER. The size of the work array (lwork }\geqn
See Application notes for the suggested value of lwork.

```

\section*{Output Parameters}
a Overwritten by the unitary matrix \(Q\).
work (1) If info \(=0\), on exit work (1) contains the minimum value of 1 work required for optimum performance. Use this lwork for subsequent runs.
```

info INTEGER
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

```

\section*{Application Notes}

For better performance, try using 1 work \(=(n-1) *\) blocksize, where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm.

If you are in doubt how much workspace to supply, use a generous value of 1 work for the first run. On exit, examine work (1) and use this value for subsequent runs.

The computed matrix \(Q\) differs from an exactly unitary matrix by a matrix \(E\) such that \(\|E\|_{2}=O(\varepsilon)\), where \(\varepsilon\) is the machine precision.
The approximate number of floating-point operations is \((16 / 3) n^{3}\).
The real counterpart of this routine is ?orgtr.

\section*{? unmtr}

\section*{Multiplies a complex matrix by the complex unitary matrix} \(Q\) determined by ?hetrd.

\section*{Syntax}
```

call cunmtr ( side,uplo,trans,m,n,a,lda,tau,c,ldc,work,lwork,info )

```
call zunmtr (side,uplo,trans,m,n,a,lda,tau, c,ldc,work,lwork, info)

\section*{Description}

The routine multiplies a complex matrix \(C\) by \(Q\) or \(Q^{H}\), where \(Q\) is the unitary matrix \(Q\) formed by ?hetrd when reducing a complex Hermitian matrix \(A\) to tridiagonal form: \(A=Q T Q^{H}\). Use this routine after a call to ?hetrd.

Depending on the parameters side and trans, the routine can form one of the matrix products \(Q C, Q^{H} C, C Q\), or \(C Q^{H}\) (overwriting the result on \(C\)).

\section*{Input Parameters}

In the descriptions below, \(r\) denotes the order of \(Q\) :
\[
\text { If side }=L^{\prime}, r=m \text {; if } s i d e='^{\prime}, r=n .
\]
\begin{tabular}{|c|c|}
\hline side & CHARACTER*1. Must be either 'L' or 'R \\
\hline & If side \(=\) 'L',\(Q\) or \(Q^{H}\) is applied to \(C\) from the left. If side = 'R', \(Q\) or \(Q^{H}\) is applied to \(C\) from the right. \\
\hline uplo & CHARACTER*1. Must be 'U' or 'L'. Use the same uplo as supplied to ?hetra. \\
\hline trans & \begin{tabular}{l}
CHARACTER*1. Must be either ' N ' or ' T '. \\
If trans \(=\) ' \(N\) ', the routine multiplies \(C\) by \(Q\). \\
If trans \(=\) ' \(T\) ', the routine multiplies \(C\) by \(Q^{H}\).
\end{tabular} \\
\hline
\end{tabular}
\(m \quad\) INTEGER. The number of rows in the matrix \(C(m \geq 0)\).
\(n \quad\) INTEGER. The number of columns in \(C(n \geq 0)\).
a, work, tau, c COMPLEX for cunmtr DOUBLE COMPLEX for zunmtr. a (Ida,*) and tau are the arrays returned by ?hetrd.

The second dimension of a must be at least \(\max (1, r)\).
The dimension of tau must be at least \(\max (1, r-1)\).
\(c(l d c, *)\) contains the matrix \(C\).
The second dimension of \(c\) must be at least max \((1, n)\)
work (lwork) is a workspace array.
lda
ldc
lwork
INTEGER. The first dimension of \(a ; 1 d a \geq \max (1, r)\).
INTEGER. The first dimension of \(c ; 1 d c \geq \max (1, n)\).
INTEGER. The size of the work array. Constraints:
lwork \(\geq \max (1, n)\) if side \(=\) 'L';
1 work \(\geq \max (1, m)\) if side \(='^{\prime}\) '.
See Application notes for the suggested value of 1 work.

\section*{Output Parameters}

Overwritten by the product \(Q C, Q^{H} C, C Q\), or \(C Q^{H}\) (as specified by side and trans).
work (1) If info \(=0\), on exit work (1) contains the minimum value of 1 work required for optimum performance. Use this 1 work for subsequent runs.
info INTEGER.
If info \(=0\), the execution is successful. If info \(=-i\), the \(i\) th parameter had an illegal value.

\section*{Application Notes}

For better performance, try using 1 work \(=n *\) blocksize (for side \(=1 \mathrm{~L}\) ') or 1 work \(=m *\) blocksize (for side \(=\) 'R') where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm. If you are in doubt how much workspace to supply, use a generous value of 1 work for the first run. On exit, examine work (1) and use this value for subsequent runs.

The computed product differs from the exact product by a matrix \(E\) such that \(\|E\|_{2}=O(\varepsilon)\|C\|_{2}\), where \(\varepsilon\) is the machine precision.

The total number of floating-point operations is approximately \(8 * m^{2} *_{n}\) if side \(=L^{\prime}\) or \(8 * n^{2} * m\) if side \(='^{\prime}\).

The real counterpart of this routine is ?ormtr.

\section*{?sptrd}

Reduces a real symmetric matrix to tridiagonal form using packed storage.

\section*{Syntax}
```

call ssptrd ( uplo,n,ap,d,e,tau,info )

```
```

call dsptrd ( uplo,n,ap,d,e,tau,info )

```
```

call dsptrd ( uplo,n,ap,d,e,tau,info )

```

\section*{Description}

This routine reduces a packed real symmetric matrix \(A\) to symmetric tridiagonal form \(T\) by an orthogonal similarity transformation: \(A=Q T Q^{T}\). The orthogonal matrix \(Q\) is not formed explicitly but is represented as a product of \(n-1\) elementary reflectors. Routines are provided for working with \(Q\) in this representation. (They are described later in this section.)

\section*{Input Parameters}
```

uplo CHARACTER*1. Must be 'U' or'L'.
If uplo='U',ap stores the packed upper triangle of }A\mathrm{ .
If uplo='L', ap stores the packed lower triangle of }A\mathrm{ .
n INTEGER. The order of the matrix A ( }n\geq0)\mathrm{ .
ap REAL for ssptrd
DOUBLE PRECISION for dsptrd.
Array, DIMENSION at least max(1,n(n+1)/2).
Contains either upper or lower triangle of }A\mathrm{ (as specified by uplo) in packed
form.

```

\section*{Output Parameters}
```

ap
Overwritten by the tridiagonal matrix T and details of the orthogonal matrix Q,
as specified by uplo.
d, e, tau REAL for ssptrd
DOUBLE PRECISION for dsptrd.
Arrays:
d(*) contains the diagonal elements of the matrix T.
The dimension of d must be at least max}(1,n)\mathrm{ .

```
\begin{tabular}{|c|c|}
\hline & \(e(*)\) contains the off-diagonal elements of \(T\). \\
\hline & The dimension of e must be at least max (1, \(n-1\)). \\
\hline & \(\operatorname{tau}(*)\) stores further details of the matrix \(Q\). \\
\hline & The dimension of tau must be at least max \((1, n-1)\). \\
\hline info & INTEGER. \\
\hline & If info \(=0\), the execution is successful. \\
\hline & If info \(=-i\), the \(i\) th parameter had an illegal value. \\
\hline
\end{tabular}

\section*{Application Notes}

The computed matrix \(T\) is exactly similar to a matrix \(A+E\), where \(\|E\|_{2}=c(n) \varepsilon\|A\|_{2}, c(n)\) is a modestly increasing function of \(n\), and \(\varepsilon\) is the machine precision.

The approximate number of floating-point operations is \((4 / 3) n^{3}\).
After calling this routine, you can call the following:
\begin{tabular}{ll}
?opgtr & to form the computed matrix \(Q\) explicitly; \\
?opmtr & to multiply a real matrix by \(Q\).
\end{tabular}

The complex counterpart of this routine is ?hptrd.

\section*{?opgtr}

\section*{Generates the real orthogonal matrix \(Q\) determined by ?sptrd.}

\section*{Syntax}
```

call sopgtr ( uplo, n, ap, tau, q, ldq, work, info )
call dopgtr ( uplo, n, ap, tau, q, ldq, work, info )

```

\section*{Description}

The routine explicitly generates the \(n\) by \(n\) orthogonal matrix \(Q\) formed by ?sptrd when reducing a packed real symmetric matrix \(A\) to tridiagonal form: \(A=Q T Q^{T}\). Use this routine after a call to ?sptrd.

\section*{Input Parameters}
```

uplo CHARACTER*1. Must be 'U' or 'L'.
Use the same uplo as supplied to ?sptrd.
n INTEGER. The order of the matrix Q ( }n\geq0)\mathrm{ .
ap, tau REAL for sopgtr
DOUBLE PRECISION for dopgtr.
Arrays ap and tau, as returned by ?sptrd.
The dimension of ap must be at least max(1,n(n+1)/2).
The dimension of tau must be at least max(1,n-1).
ldq INTEGER. The first dimension of the output array q;
at least max(1,n).
work REAL for sopgtr
DOUBLE PRECISION for dopgtr.
Workspace array, DIMENSION at least max(1,n-1).

```

\section*{Output Parameters}
```

q
REAL for sopgtr
DOUBLE PRECISION for dopgtr.
Array, DIMENSION (Idq,*).
Contains the computed matrix Q.
The second dimension of q must be at least max}(1,n)\mathrm{ .

```
```

info INTEGER
If info = 0, the execution is successful
If info = -i, the ith parameter had an illegal value.

```

\section*{Application Notes}

The computed matrix \(Q\) differs from an exactly orthogonal matrix by a matrix \(E\) such that \(\|E\|_{2}=O(\varepsilon)\), where \(\varepsilon\) is the machine precision.

The approximate number of floating-point operations is \((4 / 3) n^{3}\).
The complex counterpart of this routine is ?upgtr.

\section*{?opmtr}

Multiplies a real matrix by the real orthogonal matrix \(Q\)
determined by ?sptrd.

\section*{Syntax}
call sopmtr (side, uplo,trans, m, \(n, a p, t a u, c, l d c\), work, info)
call dopmtr (side,uplo,trans,m,n,ap,tau,c,ldc,work,info)

\section*{Description}

The routine multiplies a real matrix \(C\) by \(Q\) or \(Q^{T}\), where \(Q\) is the orthogonal matrix \(Q\) formed by ? sptrd when reducing a packed real symmetric matrix \(A\) to tridiagonal form: \(A=Q T Q^{T}\). Use this routine after a call to ?sptrd.

Depending on the parameters side and trans, the routine can form one of the matrix products \(Q C, Q^{T} C, C Q\), or \(C Q^{T}\) (overwriting the result on \(C\)).

\section*{Input Parameters}

In the descriptions below, \(r\) denotes the order of \(Q\) :
If side \(=L^{\prime}, r=m\); if side \(='^{\prime}\) ', \(r=n\).
```

side CHARACTER*1. Must be either 'L' or 'R'.
If side ='L',Q or Q Q is applied to C from the left.
If side = 'R',Q or }\mp@subsup{Q}{}{T}\mathrm{ is applied to C from the right.

```
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{uplo} & CHARACTER*1. Must be 'U' or 'L'. \\
\hline & Use the same uplo as supplied to ? sptrd. \\
\hline \multirow[t]{3}{*}{trans} & CHARACTER*1. Must be either 'N' or 'T'. \\
\hline & If trans \(=\) ' \({ }^{\prime}\) ', the routine multiplies \(C\) by \(Q\). \\
\hline & If trans = ' T ', the routine multiplies \(C\) by \(Q^{T}\). \\
\hline m & INTEGER. The number of rows in the matrix \(C(m \geq 0)\). \\
\hline \(n\) & INTEGER. The number of columns in \(C(n \geq 0)\). \\
\hline \multirow[t]{11}{*}{ap,work, tau, c} & REAL for sopmtr \\
\hline & DOUBLE PRECISION for dopmtr. \\
\hline & \(a p\) and tau are the arrays returned by ? sptrd. \\
\hline & The dimension of \(a p\) must be at least max \((1, r(r+1) / 2)\). \\
\hline & The dimension of tau must be at least \(\max (1, r-1)\). \\
\hline & \(c(I d c, *)\) contains the matrix \(C\). \\
\hline & The second dimension of \(c\) must be at least max \((1, n)\) \\
\hline & work (*) is a workspace array. \\
\hline & The dimension of work must be at least \\
\hline & \(\max (1, n)\) if side \(=\mathrm{L}^{\prime}\); \\
\hline & \(\max (1, m)\) if side = 'R'. \\
\hline Idc & INTEGER. The first dimension of \(c ; 1 d c \geq \max (1, n)\). \\
\hline \multicolumn{2}{|l|}{Output Parameters} \\
\hline C & Overwritten by the product \(Q C, Q^{T} C, C Q\), or \(C Q^{T}\) (as specified by side and trans). \\
\hline \multirow[t]{3}{*}{info} & INTEGER. \\
\hline & If info \(=0\), the execution is successful. \\
\hline & If info \(=-i\), the \(i\) th parameter had an illegal value. \\
\hline
\end{tabular}

\section*{Application Notes}

The computed product differs from the exact product by a matrix \(E\) such that \(\|E\|_{2}=O(\varepsilon)\|C\|_{2}\), where \(\varepsilon\) is the machine precision.
The total number of floating-point operations is approximately \(2 * m^{2} \star_{n}\) if side \(=L^{\prime}\) or \(2 \star^{2} \star_{m}\) if side \(=\prime^{\prime}\).

The complex counterpart of this routine is ?upmtr.

\section*{? hptrd}

\section*{Reduces a complex Hermitian matrix to tridiagonal form} using packed storage.

\section*{Syntax}
```

call chptrd ( uplo,n,ap,d,e,tau,info )
call zhptrd ( uplo,n,ap,d,e,tau,info )

```

\section*{Description}

This routine reduces a packed complex Hermitian matrix \(A\) to symmetric tridiagonal form \(T\) by a unitary similarity transformation: \(A=Q T Q^{H}\). The unitary matrix \(Q\) is not formed explicitly but is represented as a product of \(n-1\) elementary reflectors. Routines are provided for working with \(Q\) in this representation. (They are described later in this section.)

\section*{Input Parameters}
```

uplo CHARACTER*1. Must be 'U' or 'L'.
If uplo='U', ap stores the packed upper triangle of }A\mathrm{ .
If uplo='L', ap stores the packed lower triangle of }A\mathrm{ .
n INTEGER. The order of the matrix A ( }n\geq0)\mathrm{ .
ap COMPLEX for chptrd
DOUBLE COMPLEX for zhptrd.
Array, DIMENSION at least max(1,n(n+1)/2).
Contains either upper or lower triangle of }A\mathrm{ (as specified by uplo) in packed
form.

```

\section*{Output Parameters}
\(a p \quad\)\begin{tabular}{l}
Overwritten by the tridiagonal matrix \(T\) and details of the orthogonal matrix \(Q\), \\
as specified by uplo. \\
\(d, e \quad\) REAL for chptrd \\
DOUBLE PRECISION for zhptrd. \\
Arrays: \\
\(d(*)\) contains the diagonal elements of the matrix \(T\). \\
The dimension of \(d\) must be at least \(\max (1, \mathrm{n})\).
\end{tabular}.
\begin{tabular}{ll}
& \(e(*)\) contains the off-diagonal elements of \(T\). \\
The dimension of e must be at least \(\max (1, n-1)\). \\
tau \(\quad\) & COMPLEX for chptrd \\
& DOUBLE COMPLEX for zhptrd. \\
Arrays, DIMENSION at least max \((1, n-1)\). \\
Contains further details of the orthogonal matrix \(Q\). \\
info & INTEGER. \\
& If info \(=0\), the execution is successful. \\
& If info \(=-i\), the \(i\) ith parameter had an illegal value.
\end{tabular}

\section*{Application Notes}

The computed matrix \(T\) is exactly similar to a matrix \(A+E\), where
\(\|E\|_{2}=c(n) \varepsilon\|A\|_{2}, c(n)\) is a modestly increasing function of \(n\), and \(\varepsilon\) is the machine precision.
The approximate number of floating-point operations is \((16 / 3) n^{3}\).
After calling this routine, you can call the following:
?upgtr \(\quad\) to form the computed matrix \(Q\) explicitly;
?upmtr \(\quad\) to multiply a complex matrix by \(Q\).
The real counterpart of this routine is ?sptrd.

\section*{?upgtr}

Generates the complex unitary matrix \(Q\) determined by
?hptrd.

\section*{Syntax}
```

call cupgtr ( uplo, n, ap, tau, q, ldq, work, info )

```
call zupgtr (uplo, \(n, a p, t a u, q, l d q, ~ w o r k, ~ i n f o ~) ~\)

\section*{Description}

The routine explicitly generates the \(n\) by \(n\) unitary matrix \(Q\) formed by ?hptrd when reducing a packed complex Hermitian matrix \(A\) to tridiagonal form: \(A=Q T Q^{H}\). Use this routine after a call to ?hptrd.

\section*{Input Parameters}
```

uplo CHARACTER*1. Must be 'U' or 'L'.
Use the same uplo as supplied to ?sptrd.
n INTEGER. The order of the matrix Q ( }n\geq0)\mathrm{ .
ap, tau COMPLEX for cupgtr
DOUBLE COMPLEX for zupgtr.
Arrays ap and tau, as returned by ?hptrd.
The dimension of ap must be at least max(1, n(n+1)/2).
The dimension of tau must be at least max(1,n-1).
ldq INTEGER. The first dimension of the output array q;
at least max (1, n).
work COMPLEX for cupgtr
DOUBLE COMPLEX for zupgtr.
Workspace array, DIMENSION at least max(1,n-1).

```

\section*{Output Parameters}
\(q \quad\)\begin{tabular}{l}
COMPLEX for cupgtr \\
DOUBLE COMPLEX for zupgtr. \\
Array, DIMENSION \((1 d q, *)\). \\
Contains the computed matrix \(Q\). \\
\\
The second dimension of \(q\) must be at least \(\max (1, n)\).
\end{tabular}

\section*{info INTEGER.}

If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\) th parameter had an illegal value.

\section*{Application Notes}

The computed matrix \(Q\) differs from an exactly orthogonal matrix by a matrix \(E\) such that \(\|E\|_{2}=\) \(O(\varepsilon)\), where \(\varepsilon\) is the machine precision.

The approximate number of floating-point operations is \((16 / 3) n^{3}\).
The real counterpart of this routine is ?opgtr.

\section*{?upmtr}

\section*{Multiplies a complex matrix by the unitary matrix \(Q\) \\ determined by ?hptrd.}

\section*{Syntax}
```

call cupmtr (side,uplo,trans,m,n,ap,tau,c,ldc,work,info)

```
```

call zupmtr (side,uplo,trans,m,n,ap,tau,c,ldc,work,info)

```

\section*{Description}

The routine multiplies a complex matrix \(C\) by \(Q\) or \(Q^{H}\), where \(Q\) is the unitary matrix \(Q\) formed by ?hptrd when reducing a packed complex Hermitian matrix \(A\) to tridiagonal form: \(A=Q T Q^{H}\). Use this routine after a call to ?hptrd.

Depending on the parameters side and trans, the routine can form one of the matrix products \(Q C, Q^{H} C, C Q\), or \(C Q^{H}\) (overwriting the result on \(C\)).

\section*{Input Parameters}

In the descriptions below, \(r\) denotes the order of \(Q\) :
\[
\text { If side }=L^{\prime}, r=m \text {; if } s i d e='^{\prime}, r=n .
\]
```

side CHARACTER*1. Must be either 'L' or 'R'.
If side='L',Q or Q Q is applied to C from the left.
If side ='R',Q or Q 直 is applied to C from the right.

```
```

uplo CHARACTER*1.Must be 'U' or 'L'.
Use the same uplo as supplied to ?hptrd.
trans CHARACTER*1. Must be either 'N' or 'T'.
If trans='N', the routine multiplies C by Q.
If trans = 'T', the routine multiplies C by Q Q .
m
INTEGER. The number of rows in the matrix C ( }m\geq0)\mathrm{ .
INTEGER. The number of columns in C ( }n\geq0)\mathrm{ .
ap,tau,c,work COMPLEX for cupmtr
DOUBLE COMPLEX for zupmtr.
ap and tau are the arrays returned by ?hptrd.
The dimension of ap must be at least max(1,r(r+1)/2).
The dimension of tau must be at least max(1,r-1).
c(ldc,*) contains the matrix C.
The second dimension of c must be at least max (1,n)
work(*) is a workspace array.
The dimension of work must be at least
max(1,n) if side ='L';
max(1,m) if side='R'.
ldc
INTEGER. The first dimension of c; ldc \geq max (1,n).

```

\section*{Output Parameters}
```

c	
info $\quad$	Overwritten by the product $Q C, Q^{H} C, C Q$, or $C Q^{H}$   (as specified by side and trans).
	INTEGER.
	If info $=0$, the execution is successful.
	If info $=-i$, the ith parameter had an illegal value.

```

\section*{Application Notes}

The computed product differs from the exact product by a matrix \(E\) such that \(\|E\|_{2}=O(\varepsilon)\|C\|_{2}\), where \(\varepsilon\) is the machine precision.
The total number of floating-point operations is approximately \(8 * m^{2}{ }^{n} n\) if side \(=\prime^{\prime}\) or \(8 * n^{2} * m\) if side = 'R'.

The real counterpart of this routine is ?opmtr.

\section*{?sbtrd}

Reduces a real symmetric band matrix to tridiagonal form.

\section*{Syntax}
call ssbtrd (vect, uplo, \(n, k d, a b, l d a b, d, e, q, l d q, w o r k, i n f o)\)
call dsbtrd (vect,uplo,n,kd,ab,ldab,d,e,q,ldq,work,info)

\section*{Description}

This routine reduces a real symmetric band matrix \(A\) to symmetric tridiagonal form \(T\) by an orthogonal similarity transformation: \(A=Q T Q^{T}\). The orthogonal matrix \(Q\) is determined as a product of Givens rotations. If required, the routine can also form the matrix \(Q\) explicitly.

\section*{Input Parameters}
```

vect CHARACTER*1. Must be 'V' or 'N'.
If vect = 'V', the routine returns the explicit matrix Q.
If vect = 'N', the routine does not return Q.
uplo CHARACTER*1. Must be 'U' or 'L'.
If uplo='U', ab stores the upper triangular part of }A\mathrm{ .
If uplo= 'L', ab stores the lower triangular part of A.
n
kd INTEGER. The number of super- or sub-diagonals in }
(kd }\geq0)\mathrm{ .
ab, work REAL for ssbtrd
DOUBLE PRECISION for dsbtrd.
ab (ldab,*) is an array containing either upper or lower triangular part of the
matrix A (as specified by uplo) in band storage format.
The second dimension of ab must be at least max(1,n).
work (*) is a workspace array.
The dimension of work must be at least max (1,n).
Idab INTEGER. The first dimension of ab; at least kd+1.
ldq INTEGER. The first dimension of q. Constraints:
ldq}\geq\operatorname{max}(1,n) if vect = 'V'
ldq\geq1 if vect='N'.

```

\section*{Output Parameters}
\begin{tabular}{|c|c|}
\hline \(a b\) & On exit, the array \(a b\) is overwritten. \\
\hline \multirow[t]{12}{*}{d, e, \(q\)} & REAL for ssbtrd \\
\hline & DOUBLE PRECISION for dsbtrd. \\
\hline & Arrays: \\
\hline & \(d(*)\) contains the diagonal elements of the matrix \(T\). \\
\hline & The dimension of \(d\) must be at least max \((1, n)\). \\
\hline & \(e(*)\) contains the off-diagonal elements of \(T\). \\
\hline & The dimension of e must be at least max (1, \(n-1\)). \\
\hline & \(q(l d q, *)\) is not referenced if vect \(={ }^{\prime} \mathrm{N}\) ' . \\
\hline & If vect \(=^{\prime} \mathrm{V}^{\prime}\), \(q\) contains the \(n\) by \(n\) matrix \(Q\). \\
\hline & The second dimension of \(q\) must be: \\
\hline & at least \(\max (1, n)\) if vect \(=' \mathrm{~V}\) '; \\
\hline & at least 1 if vect \(=1 \mathrm{~N}\) '. \\
\hline \multirow[t]{3}{*}{info} & INTEGER. \\
\hline & If info \(=0\), the execution is successful. \\
\hline & If info \(=-i\), the \(i\) th parameter had an illegal value. \\
\hline
\end{tabular}

\section*{Application Notes}

The computed matrix \(T\) is exactly similar to a matrix \(A+E\), where
\(\|E\|_{2}=c(n) \varepsilon\|A\|_{2}, c(n)\) is a modestly increasing function of \(n\), and \(\varepsilon\) is the machine precision. The computed matrix \(Q\) differs from an exactly orthogonal matrix by a matrix \(E\) such that \(\|E\|_{2}=O(\varepsilon)\).

The total number of floating-point operations is approximately \(6 n^{2} * k d\) if vect \(=' N\) ', with \(3 n^{3} *(k d-1) / k d\) additional operations if vect \(=' \mathrm{~V} \cdot\).

The complex counterpart of this routine is ?hbtrd.

\section*{?hbtrd}

\section*{Reduces a complex Hermitian band matrix to tridiagonal} form.

\section*{Syntax}
```

call chbtrd (vect,uplo,n,kd,ab,ldab,d,e,q,ldq,work,info)

```
call zhbtrd (vect, uplo, n, kd, ab,ldab,d,e,q,ldq,work,info)

\section*{Description}

This routine reduces a complex Hermitian band matrix \(A\) to symmetric tridiagonal form \(T\) by a unitary similarity transformation: \(A=Q T Q^{H}\). The unitary matrix \(Q\) is determined as a product of Givens rotations. If required, the routine can also form the matrix \(Q\) explicitly.

\section*{Input Parameters}
```

vect CHARACTER*1. Must be 'V' or 'N'.
If vect = 'V', the routine returns the explicit matrix Q.
If vect = 'N', the routine does not return Q.
uplo CHARACTER*1. Must be 'U' or 'L'.
If uplo='U', ab stores the upper triangular part of }A\mathrm{ .
If uplo= 'L',ab stores the lower triangular part of A.
n
kd INTEGER. The number of super- or sub-diagonals in }
(kd \geq0).
ab, work COMPLEX for chbtrd
DOUBLE COMPLEX for zhbtrd.
ab (ldab,*) is an array containing either upper or lower triangular part of the
matrix A (as specified by uplo) in band storage format.
The second dimension of ab must be at least max(1,n).
work (*) is a workspace array.
The dimension of work must be at least max(1,n).
Idab INTEGER. The first dimension of ab; at least kd+1.
ldq INTEGER. The first dimension of q. Constraints:
ldq}\geq\operatorname{max}(1,n) if vect = 'V'
ldq}\geq1 if vect='N'

```

\section*{Output Parameters}
\begin{tabular}{|c|c|}
\hline \(a b\) & On exit, the array \(a b\) is overwritten. \\
\hline \multirow[t]{7}{*}{d, e} & REAL for chbtrd \\
\hline & DOUBLE PRECISION for zhbtrd. \\
\hline & Arrays: \\
\hline & \(d(*)\) contains the diagonal elements of the matrix \(T\). \\
\hline & The dimension of \(d\) must be at least \(\max (1, n)\). \\
\hline & \(e(*)\) contains the off-diagonal elements of \(T\). \\
\hline & The dimension of e must be at least max (1, \(n-1\)). \\
\hline \multirow[t]{8}{*}{q} & COMPLEX for chbtrd \\
\hline & DOUBLE COMPLEX for zhbtrd. \\
\hline & Array, DIMENSION (ldq,*). \\
\hline & If vect \(=N^{\prime}{ }^{\prime}, q\) is not referenced. \\
\hline & If vect \(=1 \mathrm{~V}\) ', \(q\) contains the \(n\) by \(n\) matrix \(Q\). \\
\hline & The second dimension of \(q\) must be: \\
\hline & at least \(\max (1, n)\) if vect \(=' \mathrm{~V}\) '; \\
\hline & at least 1 if vect \(=1 \mathrm{~N}\) '. \\
\hline \multirow[t]{3}{*}{info} & INTEGER. \\
\hline & If info \(=0\), the execution is successful. \\
\hline & If info \(=-i\), the \(i\) th parameter had an illegal value \\
\hline
\end{tabular}

\section*{Application Notes}

The computed matrix \(T\) is exactly similar to a matrix \(A+E\), where
\(\|E\|_{2}=c(n) \varepsilon\|A\|_{2}, c(n)\) is a modestly increasing function of \(n\), and \(\varepsilon\) is the machine precision. The computed matrix \(Q\) differs from an exactly unitary matrix by a matrix \(E\) such that \(\|E\|_{2}=O(\varepsilon)\).

The total number of floating-point operations is approximately \(20 \mathrm{n}^{2}{ }^{2} k d\) if vect \(=' \mathrm{~N}{ }^{\prime}\), with \(10 n^{3} *(k d-1) / k d\) additional operations if vect \(=\prime \mathrm{V}^{\prime}\).

The real counterpart of this routine is ? sbtrd.

\section*{?sterf}

Computes all eigenvalues of a real symmetric tridiagonal matrix using QR algorithm.

\section*{Syntax}
```

call ssterf ( n, d, e, info )
call dsterf ( n, d, e, info )

```

\section*{Description}

This routine computes all the eigenvalues of a real symmetric tridiagonal matrix \(T\) (which can be obtained by reducing a symmetric or Hermitian matrix to tridiagonal form). The routine uses a square-root-free variant of the \(Q R\) algorithm.

If you need not only the eigenvalues but also the eigenvectors, call ?steqr.

\section*{Input Parameters}
n
\(d, e\)

INTEGER. The order of the matrix \(T(n \geq 0)\).
REAL for ssterf
DOUBLE PRECISION for dsterf.
Arrays:
\(d(*)\) contains the diagonal elements of \(T\). The dimension of \(d\) must be at least \(\max (1, n)\).
\(e(*)\) contains the off-diagonal elements of \(T\).
The dimension of \(e\) must be at least \(\max (1, n-1)\).

\section*{Output Parameters}
\begin{tabular}{ll}
\(d\) & \begin{tabular}{l}
The \(n\) eigenvalues in ascending order, unless info \(>0\). \\
See also info.
\end{tabular} \\
\(e\) & On exit, the array is overwritten; see info. \\
info & \begin{tabular}{l}
INTEGER. \\
If info \(=0, ~ t h e ~ e x e c u t i o n ~ i s ~ s u c c e s s f u l . ~\)
\end{tabular} \\
If info \(=i, ~ t h e ~ a l g o r i t h m ~ f a i l e d ~ t o ~ f i n d ~ a l l ~ t h e ~ e i g e n v a l u e s ~ a f t e r ~ 30 n ~ i t e r a t i o n s: ~\) \\
\(i\) off-diagonal elements have not converged to zero. On exit, \(d\) and \(e\) contain,
\end{tabular}
respectively, the diagonal and off-diagonal elements of a tridiagonal matrix orthogonally similar to \(T\).
If info \(=-i\), the \(i\) th parameter had an illegal value.

\section*{Application Notes}

The computed eigenvalues and eigenvectors are exact for a matrix \(T+E\) such that \(\|E\|_{2}=O(\varepsilon)\) \(\|T\|_{2}\), where \(\varepsilon\) is the machine precision.

If \(\lambda_{i}\) is an exact eigenvalue, and \(\mu_{i}\) is the corresponding computed value, then
\[
\left|\mu_{i}-\lambda_{i}\right| \leq c(n) \varepsilon\|T\|_{2}
\]
where \(c(n)\) is a modestly increasing function of \(n\).
The total number of floating-point operations depends on how rapidly the algorithm converges. Typically, it is about \(14 \mathrm{n}^{2}\).

\section*{?steqr}

\section*{Computes all eigenvalues and eigenvectors of a symmetric or Hermitian matrix reduced to tridiagonal form \\ (QR algorithm).}

\section*{Syntax}
```

call ssteqr ( compz, n, d, e, z, ldz, work, info )
call dsteqr ( compz, n, d, e, z, ldz, work, info )
call csteqr ( compz, n, d, e, z, ldz, work, info )
call zsteqr ( compz, n, d, e, z, ldz, work, info )

```

\section*{Description}

This routine computes all the eigenvalues and (optionally) all the eigenvectors of a real symmetric tridiagonal matrix \(T\). In other words, the routine can compute the spectral factorization: \(T=Z \Lambda Z^{T}\). Here \(\Lambda\) is a diagonal matrix whose diagonal elements are the eigenvalues \(\lambda_{i} ; Z\) is an orthogonal matrix whose columns are eigenvectors. Thus,
\[
T z_{i}=\lambda_{i} z_{i} \text { for } i=1,2, \ldots, n
\]
(The routine normalizes the eigenvectors so that \(\left\|z_{i}\right\|_{2}=1\).)
You can also use the routine for computing the eigenvalues and eigenvectors of an arbitrary real symmetric (or complex Hermitian) matrix \(A\) reduced to tridiagonal form \(T: A=Q T Q^{H}\). In this case, the spectral factorization is as follows: \(A=Q T Q^{H}=(Q Z) \Lambda(Q Z)^{H}\). Before calling ? steqr, you must reduce \(A\) to tridiagonal form and generate the explicit matrix \(Q\) by calling the following routines:
\begin{tabular}{ll}
for real matrices: & for complex matrices: \\
?sytrd, ?orgtr & ?hetrd, ?ungtr \\
?sptrd, ?opgtr & ?hptrd, ?upgtr \\
?sbtrd (vect='V') & ?hbtrd (vect='V')
\end{tabular}

If you need eigenvalues only, it's more efficient to call ?sterf. If \(T\) is positive-definite, ?pteqr can compute small eigenvalues more accurately than ?steqr.

To solve the problem by a single call, use one of the divide and conquer routines ?stevd, ?syevd, ?spevd, or ?sbevd for real symmetric matrices or ?heevd, ?hpevd, or ?hbevd for complex Hermitian matrices.

\section*{Input Parameters}
```

compz CHARACTER*1. Must be 'N' or 'I' or 'V'.
If compz='N', the routine computes eigenvalues only.
If compz='I', the routine computes the eigenvalues and eigenvectors of the
tridiagonal matrix T.
If compz='V', the routine computes the eigenvalues and eigenvectors of }
(and the array z must contain the matrix Q on entry).
n
d,e,work REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
Arrays:
d(*) contains the diagonal elements of T.
The dimension of d must be at least max (1,n).
e(*) contains the off-diagonal elements of T.
The dimension of e must be at least max(1,n-1).
work (*) is a workspace array.
The dimension of work must be:
at least 1 if compz = 'N';
at least max(1,2*n-2) if compz ='V' or 'I'.
REAL for ssteqr
DOUBLE PRECISION for dsteqr
COMPLEX for csteqr
DOUBLE COMPLEX for zsteqr.
Array, DIMENSION (ldz,*)
If compz='N' or 'I', z need not be set.
If vect ='v', z must contain the n by n matrix Q.
The second dimension of z must be:
at least 1 if compz = 'N';
at least max(1,n) if compz='V' or 'I'.
work (lwork) is a workspace array.
INTEGER. The first dimension of z. Constraints:
ldz\geq1 if compz = 'N';
ldz\geqmax(1,n) if compz='V' or 'I'.

```

\section*{Output Parameters}
```

d The n eigenvalues in ascending order, unless info >0.
See also info.
On exit, the array is overwritten; see info.
If info = 0, contains the n orthonormal eigenvectors, stored by columns. (The
ith column corresponds to the ith eigenvalue.)
info INTEGER
If info = 0, the execution is successful.
If info= i, the algorithm failed to find all the eigenvalues after 30n iterations:
i off-diagonal elements have not converged to zero. On exit, d and e contain,
respectively, the diagonal and off-diagonal elements of a tridiagonal matrix
orthogonally similar to T.
If info = -i, the ith parameter had an illegal value.

```

\section*{Application Notes}

The computed eigenvalues and eigenvectors are exact for a matrix \(T+E\) such that \(\|E\|_{2}=O(\varepsilon)\) \(\|T\|_{2}\), where \(\varepsilon\) is the machine precision.

If \(\lambda_{i}\) is an exact eigenvalue, and \(\mu_{i}\) is the corresponding computed value, then
\[
\left|\mu_{i}-\lambda_{i}\right| \leq c(n) \varepsilon\|T\|_{2}
\]
where \(c(n)\) is a modestly increasing function of \(n\).
If \(z_{i}\) is the corresponding exact eigenvector, and \(w_{i}\) is the corresponding computed vector, then the angle \(\theta\left(z_{i}, w_{i}\right)\) between them is bounded as follows:
\[
\theta\left(z_{i}, w_{i}\right) \leq c(n) \varepsilon\|T\|_{2} / \min _{i \neq j}\left|\lambda_{i}-\lambda_{j}\right| .
\]

The total number of floating-point operations depends on how rapidly the algorithm converges.
Typically, it is about
\[
\begin{aligned}
& 24 \mathrm{n}^{2} \text { if compz }=\text { 'N'; } \\
& 7 \mathrm{n}^{3}\left(\text { for complex flavors, } 14 \mathrm{n}^{3}\right) \text { if compz }=\text { 'V' or 'I'. }
\end{aligned}
\]

\section*{?stedc}

Computes all eigenvalues and eigenvectors of a symmetric tridiagonal matrix using the divide and conquer method.

\section*{Syntax}
```

call sstedc(compz, n, d, e, z, ldz, work, lwork, iwork, liwork,info)
call dstedc(compz, n, d, e, z, ldz, work, lwork, iwork, liwork,info)
call cstedc(compz, n, d, e, z, ldz, work, lwork, rwork, lrwork,
iwork, liwork,info)
call zstedc(compz, n, d, e, z, ldz, work, lwork, rwork, lrwork,
iwork, liwork,info)

```

\section*{Description}

This routine computes all the eigenvalues and (optionally) all the eigenvectors of a symmetric tridiagonal matrix using the divide and conquer method.
The eigenvectors of a full or band real symmetric or complex Hermitian matrix can also be found if ? sytrd/?hetrd or ?sptrd/?hptrd or ?sbtrd/?hbtrd has been used to reduce this matrix to tridiagonal form.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline compz & CHARACTER*1. Must be 'N' or 'I' or \\
\hline & If compz \(=\) ' \(\mathrm{N}^{\prime}\), the routine computes eigenvalues only. \\
\hline & If compz \(=\) I I , the routine computes the eigenvalues and eigenvectors of the tridiagonal matrix. \\
\hline & If compz \(={ }^{\prime} \mathrm{V}^{\prime}\), the routine computes the eigenvalues and eigenvectors of original symmetric/Hermitian matrix. On entry, the array \(z\) must contain the orthogonal/unitary matrix used to reduce the original matrix to tridiagonal form. \\
\hline \(n\) & INTEGER. The order of the symmetric tridiagonal matrix (\(n \geq 0\)). \\
\hline d, e, rwork & REAL for single-precision flavors \\
\hline & DOUBLE PRECISION for double-precision flavors. \\
\hline & Arrays: \\
\hline & \(d\) (*) contains the diagonal elements of the tridiagonal matrix. The dimension of \(d\) must be at least \(\max (1, n)\). \\
\hline
\end{tabular}
\(e(*)\) contains the subdiagonal elements of the tridiagonal matrix. The dimension of \(e\) must be at least \(\max (1, n-1)\).
rwork (lrwork) is a workspace array used in complex flavors only.

Irwork
iwork

REAL for sstedc
DOUBLE PRECISION for dstedc
COMPLEX for cstedc
DOUBLE COMPLEX for zstedc.
Arrays: \(z(l d z, *)\), work (*).
If \(c o m p z=' V\) ', then, on entry, \(z\) must contain the orthogonal/unitary matrix used to reduce the original matrix to tridiagonal form.
The second dimension of \(z\) must be at least \(\max (1, n)\).
work (lwork) is a workspace array.
INTEGER. The first dimension of \(z\). Constraints:
\(l d z \geq 1\) if \(c o m p z=' N\) ';
\(l d z \geq \max (1, n)\) if \(c o m p z={ }^{\prime} V^{\prime}\) or 'I'.
INTEGER. The dimension of the array work.
See Application Notes for the required value of 1 work.
INTEGER. The dimension of the array rwork (used for complex flavors only). See Application Notes for the required value of lrwork.

INTEGER. Workspace array, DIMENSION (liwork).
INTEGER. The dimension of the array iwork.
See Application Notes for the required value of liwork.

\section*{Output Parameters}

The \(n\) eigenvalues in ascending order, unless info \(\neq 0\). See also info.

On exit, the array is overwritten; see info.
If info \(=0\), then if compz \(={ }^{\prime} \mathrm{V}^{\prime}, z\) contains the orthonormal eigenvectors of the original symmetric/Hermitian matrix, and if compz \(=1 I^{\prime}, z\) contains the orthonormal eigenvectors of the symmetric tridiagonal matrix. If compz \(=\mathrm{N}^{\prime}\), \(z\) is not referenced.
work (1) On exit, if info \(=0\), then work (1) returns the optimal Iwork.
rwork (1) On exit, if info \(=0\), then rwork (1) returns the optimal lrwork (for complex flavors only).
iwork (1) On exit, if info \(=0\), then \(i\) work (1) returns the optimal liwork.
info
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\) th parameter had an illegal value.If info \(=i\), the algorithm failed to compute an eigenvalue while working on the submatrix lying in rows and columns \(i /(n+1)\) through \(\bmod (i, n+1)\).

\section*{Application Notes}

The required size of workspace arrays must be as follows.
For sstedc/dstedc:
If compz \(=\) 'N' or \(n \leq 1\) then lwork must be at least 1 .
If compz \(=\) ' V ' and \(n>1\) then lwork must be at least
\(\left(1+3 n+2 n \cdot \lg n+3 n^{2}\right)\), where \(\lg (n)=\) smallest integer \(k\) such that \(2^{k} \geq n\).
If compz \(=\) ' I' and \(n>1\) then 1 work must be at least \(\left(1+4 n+n^{2}\right)\).
If compz \(={ }^{\prime} \mathrm{N}\) ' or \(n \leq 1\) then liwork must be at least 1 .
If compz \(=\) ' \(V\) ' and \(n>1\) then liwork must be at least (\(6+6 n+5 n \cdot \lg n\)).
If compz \(=\) ' I' and \(n>1\) then liwork must be at least (\(3+5 n\)).
For cstedc/zstedc:
If compz='N' or'I', or \(n \leq 1,1\) work must be at least 1 .
If compz \(=1 \mathrm{~V}\) ' and \(n>1\), 1 work must be at least \(n^{2}\).
If compz='N' or \(n \leq 1\), lrwork must be at least 1 .
If compz \(=\) ' V ' and \(n>1\), lrwork must be at least
\(\left(1+3 n+2 n \cdot \lg n+3 n^{2}\right)\), where \(\lg (n)=\) smallest integer \(k\) such that \(2^{k} \geq n\).
If compz \(=\) ' I' and \(n>1\), lrwork must be at least \(\left(1+4 n+2 n^{2}\right)\).
The required value of liwork for complex flavors is the same as for real flavors.

\section*{?stegr}

Computes selected eigenvalues and eigenvectors of a real symmetric tridiagonal matrix.

Syntax
```

call sstegr (jobz, range, n, d, e, vl, vu, il, iu, abstol, m, w, z,
ldz, isuppz, work, lwork, iwork, liwork, info)
call dstegr (jobz, range, n, d, e, vl, vu, il, iu, abstol, m, w, z,
ldz, isuppz, work, lwork, iwork, liwork, info)
call cstegr (jobz, range, n, d, e, vl, vu, il, iu, abstol, m, w, z,
ldz, isuppz, work, lwork, iwork, liwork, info)
call zstegr (jobz, range, n, d, e, vl, vu, il, iu, abstol, m, w, z,
ldz, isuppz, work, lwork, iwork, liwork, info)

```

\section*{Description}

This routine computes selected eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix \(T\). Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues. The eigenvalues are computed by the \(d q d s\) algorithm, while orthogonal eigenvectors are computed from various "good" \(L D L^{T}\) representations (also known as Relatively Robust Representations). Gram-Schmidt orthogonalization is avoided as far as possible. More specifically, the various steps of the algorithm are as follows. For the i-th unreduced block of \(T\),
(a) Compute \(T-\sigma_{\mathrm{i}}=L_{\mathrm{i}} D_{\mathrm{i}} L_{\mathrm{i}}^{T}\), such that \(L_{\mathrm{i}} D_{\mathrm{i}} L_{\mathrm{i}}^{T}\) is a relatively robust representation;
(b) Compute the eigenvalues, \(\lambda_{\mathrm{j}}\), of \(L_{\mathrm{i}} D_{\mathrm{i}} L_{\mathrm{i}}^{T}\) to high relative accuracy by the \(d q d s\) algorithm;
(c) If there is a cluster of close eigenvalues, "choose" \(\sigma_{\mathrm{i}}\) close to the cluster, and go to step (a);
(d) Given the approximate eigenvalue \(\lambda_{\mathrm{j}}\) of \(L_{\mathrm{i}} D_{\mathrm{i}} L_{\mathrm{i}}^{T}\), compute the corresponding eigenvector by forming a rank-revealing twisted factorization.

The desired accuracy of the output can be specified by the input parameter abstol.

\section*{Input Parameters}
```

jobz CHARACTER*1. Must be 'N' or 'V'.
If job='N', then only eigenvalues are computed.
If job='V', then eigenvalues and eigenvectors are computed.
range CHARACTER*1. Must be 'A' or 'V' or 'I'.
If range ='A', the routine computes all eigenvalues.
If range ='V', the routine computes eigenvalues }\mp@subsup{\lambda}{i}{}\mathrm{ in the half-open interval:
vl< 就\leqvu.
If range = I'', the routine computes eigenvalues with indices il to iu.
n
d, e, work
vl, vu REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
If range = 'V', the lower and upper bounds of the interval to be searched for
eigenvalues.
Constraint: vl< vu.
If range ='A' or 'I', vl and vu are not referenced.
il, iu INTEGER.
If range = ' I ', the indices in ascending order of the smallest and largest
eigenvalues to be returned.
Constraint: 1 < il }\leqiu\leqn, if n>0; il=1 and iu=
if }n=0\mathrm{ .
If range ='A' or 'V', il and iu are not referenced.
abstol REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
The absolute tolerance to which each eigenvalue/eigenvector is required.
If jobz='V', the eigenvalues and eigenvectors output have residual norms

```
\begin{tabular}{|c|c|}
\hline \(1 d z\) & \begin{tabular}{l}
INTEGER. The leading dimension of the output array \(z\). Constraints: \(l d z \geq 1\) if \(j o b z=' N^{\prime}\); \\
\(l d z \geq \max (1, n)\) if \(j o b z=V^{\prime} V^{\prime}\).
\end{tabular} \\
\hline 1 work & INTEGER. The dimension of the array work, I work \(\geq \max (1,18 n)\). \\
\hline iwork & \begin{tabular}{l}
INTEGER. \\
Workspace array, DIMENSION (liwork).
\end{tabular} \\
\hline I iwork & INTEGER. The dimension of the array iwork, I work \(\geq \max (1,10 n)\). \\
\hline
\end{tabular}

\section*{Output Parameters}
\(d, e \quad\) On exit, \(d\) and \(e\) are overwritten.
m

W
z
bounded by abstol, and the dot products between different eigenvectors are bounded by abstol. If abstol \(<n \varepsilon\|T\|_{1}\), then \(n \varepsilon\|T\|_{1}\) will be used in its place, where \(\varepsilon\) is the machine precision. The eigenvalues are computed to an accuracy of \(\varepsilon\|T\|_{1}\) irrespective of abstol. If high relative accuracy is important, set abstol to ?lamch ('Safe minimum').

INTEGER. The leading dimension of the output array z. Constraints:
\(l d z \geq 1\) if jobz='N'; \(l d z \geq \max (1, n)\) if \(j o b z=' V '\).

INTEGER. The dimension of the array work, lwork \(\geq \max (1,18 n)\).

INTEGER. Workspace array, DIMENSION (liwork).

INTEGER. The dimension of the array \(i w o r k\), 1 work \(\geq \max (1,10 n)\).

INTEGER. The total number of eigenvalues found, \(0 \leq m \leq n\). If range \(=\) ' \(A\) ',\(m=n\), and if range \(=\) 'I', \(m=i u-i l+1\).

REAL for single precision flavors DOUBLE PRECISION for double precision flavors.
Array, DIMENSION at least max \((1, n)\).
The selected eigenvalues in ascending order, stored in \(w(1)\) to \(w(m)\).
REAL for sstegr
DOUBLE PRECISION for dstegr
COMPLEX for cstegr
DOUBLE COMPLEX for zstegr.
Array \(z(l d z, *)\), the second dimension of \(z\) must be at least \(\max (1, m)\).
If \(j o b z=' V '\), then if info \(=0\), the first \(m\) columns of \(z\) contain the orthonormal eigenvectors of the matrix \(T\) corresponding to the selected eigenvalues, with the \(i\)-th column of \(z\) holding the eigenvector associated with \(w(i)\). If jobz \(=\) ' \(N\) ', then \(z\) is not referenced.
Note: you must ensure that at least \(\max (1, m)\) columns are supplied in the array \(z\); if range \(=' \mathrm{~V}\) ', the exact value of \(m\) is not known in advance and an upper bound must be used.
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{isuppz} & INTEGER. \\
\hline & Array, DIMENSION at least \(2 * \max (1, m)\). \\
\hline & The support of the eigenvectors in \(z\), i.e., the indices indicating the nonzero elements in \(z\). The i-th eigenvector is nonzero only in elements isuppz(2i-1) through isuppz(2i). \\
\hline work(1) & On exit, if info \(=0\), then work (1) returns the required minimal size of lwork. \\
\hline iwork(1) & On exit, if info \(=0\), then iwork (1) returns the required minimal size of liwork. \\
\hline \multirow[t]{4}{*}{info} & INTEGER. \\
\hline & If info \(=0\), the execution is successful. \\
\hline & If info \(=-i\), the \(i\) th parameter had an illegal value. \\
\hline & \begin{tabular}{l}
If info \(=1\), internal error in slarre occurred, \\
If info \(=2\), internal error in ?larrv occurred.
\end{tabular} \\
\hline
\end{tabular}

\section*{Application Notes}

Currently ? stegr is only set up to find all the \(n\) eigenvalues and eigenvectors of \(T\) in \(\mathrm{O}\left(n^{2}\right)\) time, that is, only range \(=\) ' A ' is supported.

Currently the routine ?stein is called when an appropriate \(\sigma_{i}\) cannot be chosen in step (c) above. ?stein invokes modified Gram-Schmidt when eigenvalues are close.
?stegr works only on machines which follow IEEE-754 floating-point standard in their handling of infinities and NaNs. Normal execution of ? stegr may create NaNs and infinities and hence may abort due to a floating point exception in environments which do not conform to the IEEE-754 standard.

\section*{?pteqr}

Computes all eigenvalues and (optionally) all eigenvectors
of a real symmetric positive-definite tridiagonal matrix.

\section*{Syntax}
```

call spteqr ( compz, n, d, e, z, ldz, work, info )

```
call dpteqr (compz, \(n, d, e, z, l d z\), work, info)
call cpteqr (compz, \(n, d, e, z, l d z\), work, info)
```

call zpteqr ( compz, n, d, e, z, ldz, work, info )

```

\section*{Description}

This routine computes all the eigenvalues and (optionally) all the eigenvectors of a real symmetric positive-definite tridiagonal matrix \(T\). In other words, the routine can compute the spectral factorization: \(T=Z \wedge Z^{T}\).
Here \(\Lambda\) is a diagonal matrix whose diagonal elements are the eigenvalues \(\lambda_{i} ; Z\) is an orthogonal matrix whose columns are eigenvectors. Thus,
\[
T z_{i}=\lambda_{i} z_{i} \text { for } i=1,2, \ldots, n .
\]
(The routine normalizes the eigenvectors so that \(\left\|z_{i}\right\|_{2}=1\).)
You can also use the routine for computing the eigenvalues and eigenvectors of real symmetric (or complex Hermitian) positive-definite matrices \(A\) reduced to tridiagonal form \(T: A=Q T Q^{H}\). In this case, the spectral factorization is as follows: \(A=Q T Q^{H}=(Q Z) \Lambda(Q Z)^{H}\). Before calling ?pteqr, you must reduce \(A\) to tridiagonal form and generate the explicit matrix \(Q\) by calling the following routines:
\begin{tabular}{lll}
& for real matrices: & for complex matrices: \\
full storage & ?sytrd, ?orgtr & ?hetrd,?ungtr \\
packed storage & ?sptrd, ?opgtr & ?hptrd,?upgtr \\
band storage & ?sbtrd (vect='V') & ?hbtrd (vect='V')
\end{tabular}

The routine first factorizes \(T\) as \(L D L^{H}\) where \(L\) is a unit lower bidiagonal matrix, and \(D\) is a diagonal matrix. Then it forms the bidiagonal matrix
\(B=L D^{1 / 2}\) and calls ?bdsqr to compute the singular values of \(B\), which are the same as the eigenvalues of \(T\).

\section*{Input Parameters}
```

compz CHARACTER*1. Must be 'N' or 'I' or 'V'.
If compz='N', the routine computes eigenvalues only.
If compz='I', the routine computes the eigenvalues and eigenvectors of the
tridiagonal matrix }T\mathrm{ .
If compz='V', the routine computes the eigenvalues and eigenvectors of }
(and the array z must contain the matrix Q on entry).
n
d,e,work REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
Arrays:
d(*) contains the diagonal elements of T.
The dimension of d must be at least max (1,n).
e(*) contains the off-diagonal elements of T.
The dimension of e must be at least max(1,n-1).
work (*) is a workspace array.
The dimension of work must be:
at least 1 if compz = 'N';
at least max(1,4*n-4) if compz ='V' or 'I'.
z REAL for spteqr
DOUBLE PRECISION for dpteqr
COMPLEX for cpteqr
DOUBLE COMPLEX for zpteqr.
Array, DIMENSION (ldz,*)
If compz='N' or 'I', z need not be set.
If vect ='v', z must contains the n by n matrix Q.
The second dimension of z must be:
at least 1 if compz = 'N';
at least max(1,n) if compz ='V' or 'I'.
ldz INTEGER. The first dimension of z. Constraints:
ldz\geq1 if compz = 'N';
ldz\geqmax(1,n) if compz='V' or 'I'.

```

\section*{Output Parameters}

The \(n\) eigenvalues in descending order, unless info \(>0\).
See also info.
e
z
info

On exit, the array is overwritten.
If info \(=0\), contains the \(n\) orthonormal eigenvectors, stored by columns. (The \(i\) th column corresponds to the \(i\) th eigenvalue.)

INTEGER.
If info \(=0\), the execution is successful.
If info \(=i\), the leading minor of order \(i\) (and hence \(T\) itself) is not positive-definite.
If info \(=n+i\), the algorithm for computing singular values failed to converge; \(i\) off-diagonal elements have not converged to zero. If info \(=-i\), the \(i\) th parameter had an illegal value.

\section*{Application Notes}

If \(\lambda_{i}\) is an exact eigenvalue, and \(\mu_{i}\) is the corresponding computed value, then
\[
\left|\mu_{i}-\lambda_{i}\right| \leq c(n) \varepsilon K \lambda_{i}
\]
where \(c(n)\) is a modestly increasing function of \(n, \varepsilon\) is the machine precision, and \(K=\|D T D\|_{2}\) \(\left\|(D T D)^{-1}\right\|_{2}, D\) is diagonal with \(d_{i i}=t_{i i}^{-1 / 2}\).

If \(z_{i}\) is the corresponding exact eigenvector, and \(w_{i}\) is the corresponding computed vector, then the angle \(\theta\left(z_{i}, w_{i}\right)\) between them is bounded as follows:
\[
\theta\left(u_{i}, w_{i}\right) \leq c(n) \varepsilon K / \min _{i \neq j}\left(\left|\lambda_{i}-\lambda_{j}\right| /\left|\lambda_{i}+\lambda_{j}\right|\right)
\]

Here \(\min _{i \neq j}\left(\left|\lambda_{i}-\lambda_{j}\right| /\left|\lambda_{i}+\lambda_{j}\right|\right)\) is the relative gap between \(\lambda_{i}\) and the other eigenvalues.
The total number of floating-point operations depends on how rapidly the algorithm converges.
Typically, it is about
\(30 n^{2}\) if compz \(=\) ' \(N\) ';
\(6 n^{3}\) (for complex flavors, \(12 n^{3}\)) if compz ='V' or 'I'.

\section*{?stebz}

Computes selected eigenvalues of a real symmetric
tridiagonal matrix by bisection.

\section*{Syntax}
```

call sstebz (range, order, n, vl, vu, il, iu, abstol,
d, e, m, nsplit, w, iblock, isplit, work, iwork, info)
call dstebz (range, order, n, vl, vu, il, iu, abstol,
d, e, m, nsplit, w, iblock, isplit, work, iwork, info)

```

\section*{Description}

This routine computes some (or all) of the eigenvalues of a real symmetric tridiagonal matrix \(T\) by bisection. The routine searches for zero or negligible off-diagonal elements to see if \(T\) splits into block-diagonal form
\(T=\operatorname{diag}\left(T_{1}, T_{2}, \ldots\right)\). Then it performs bisection on each of the blocks \(T_{i}\) and returns the block index of each computed eigenvalue, so that a subsequent call to ? stein can also take advantage of the block structure.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{4}{*}{range} & CHARACTER*1. Must be 'A' or 'V' or \\
\hline & If range \(=\) ' A ', the routine computes all eigenvalues. \\
\hline & If range \(=\) ' V ', the routine computes eigenvalues \(\lambda_{i}\) in the half-open interval: \(\mathrm{v} 1<\lambda_{i} \leq \mathrm{vu}\). \\
\hline & If range \(=\) ' I' , the routine computes eigenvalues with indices il to iu. CHARACTER*1. Must be 'B' or 'E'. \\
\hline & If order \(=\) ' \(\mathrm{B}^{\prime}\), the eigenvalues are to be ordered from smallest to largest within each split-off block. \\
\hline & If order \(=1 \mathrm{E}\) ', the eigenvalues for the entire matrix are to be ordered from smallest to largest. \\
\hline n & INTEGER. The order of the matrix \(T(n \geq 0)\). \\
\hline \multirow[t]{4}{*}{vl, vu} & REAL for sstebz \\
\hline & DOUBLE PRECISION for dstebz. \\
\hline & If range \(=\) ' V ', the routine computes eigenvalues \(\lambda_{i}\) in the half-open interval: \(\mathrm{v} l<\lambda_{i} \leq \mathrm{vu}\). \\
\hline & If range \(=\) ' A ' or ' I ', vl and vu are not referenced. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline il, iu & \begin{tabular}{l}
INTEGER. Constraint: \(1 \leq i 1 \leq i u \leq n\). \\
If range \(=\) ' I' , the routine computes eigenvalues \(\lambda_{i}\) such that \(i 1 \leq i \leq i u\) (assuming that the eigenvalues \(\lambda_{i}\) are in ascending order).
\end{tabular} \\
\hline & If range \(=\) ' A ' or 'V', il and iu are not referenced. \\
\hline abstol & REAL for sstebz \\
\hline & DOUBLE PRECISION for dstebz. \\
\hline & The absolute tolerance to which each eigenvalue is required. An eigenvalue (or cluster) is considered to have converged if it lies in an interval of width abstol. If abstol \(\leq 0.0\), then the tolerance is taken as \(\varepsilon\|T\|_{1}\), where \(\varepsilon\) is the machine precision. \\
\hline d, e, work & REAL for sstebz \\
\hline & DOUBLE PRECISION for dstebz. \\
\hline & Arrays: \\
\hline & \(d(*)\) contains the diagonal elements of \(T\). \\
\hline & The dimension of \(d\) must be at least max \((1, n)\). \\
\hline & \(e(*)\) contains the off-diagonal elements of \(T\). \\
\hline & The dimension of e must be at least max (1, \(n-1\)). \\
\hline & work (*) is a workspace array. \\
\hline & The dimension of work must be at least max \((1,4 n)\). \\
\hline iwork & INTEGER. Workspace. \\
\hline & Array, DIMENSION at least max (1,3n). \\
\hline Output Parame & ters \\
\hline m & INTEGER. The actual number of eigenvalues found. \\
\hline nsplit & INTEGER. The number of diagonal blocks detected in \(T\). \\
\hline w & REAL for sstebz \\
\hline & DOUBLE PRECISION for dstebz. \\
\hline & Array, DIMENSION at least max \((1, n)\). \\
\hline & The computed eigenvalues, stored in \(w(1)\) to \(w(m)\). \\
\hline iblock,isplit & INTEGER. \\
\hline & Arrays, DIMENSION at least max (1, n). \\
\hline & A positive value iblock(\(i\)) is the block number of the eigenvalue stored in w(i) (see also info). \\
\hline & The leading nsplit elements of isplit contain points at which \(T\) splits into \\
\hline
\end{tabular}
```

blocks $T_{i}$ as follows: the block
$T_{1}$ contains rows/columns 1 to isplit(1); the block $T_{2}$ contains rows/columns isplit(1)+1 to isplit(2), and so on.
info INTEGER.
If info $=0$, the execution is successful.
If info $=1$, for range $=$ ' A ' or ' V ', the algorithm failed to compute some of the required eigenvalues to the desired accuracy; iblock (i)<0 indicates that the eigenvalue stored in $w(i)$ failed to converge. If info $=2$, for range $=$ I $I$ ', the algorithm failed to compute some of the required eigenvalues. Try calling the routine again with range $={ }^{\prime} \mathrm{A}$ '. If info $=3$ :
for range $=$ 'A' or ' V ', same as info $=1$;
for range $=$ 'I', same as info $=2$.
If $\operatorname{info}=4$, no eigenvalues have been computed. The floating-point arithmetic on the computer is not behaving as expected.
If info $=-i$, the $i$ th parameter had an illegal value.

```

\section*{Application Notes}

The eigenvalues of \(T\) are computed to high relative accuracy which means that if they vary widely in magnitude, then any small eigenvalues will be computed more accurately than, for example, with the standard \(Q R\) method. However, the reduction to tridiagonal form (prior to calling the routine) may exclude the possibility of obtaining high relative accuracy in the small eigenvalues of the original matrix if its eigenvalues vary widely in magnitude.

\section*{?stein}

Computes the eigenvectors corresponding to specified eigenvalues of a real symmetric tridiagonal matrix.

\section*{Syntax}
```

call sstein ( }n,d,e,m, w, iblock, isplit, z, ldz
work, iwork, ifailv, info )
call dstein ( }n,d,e,m, w, iblock, isplit, z, ldz
work, iwork, ifailv, info )
call cstein ( }n,d,e,m,w, iblock, isplit, z, ldz
work, iwork, ifailv, info )
call zstein ( n, d, e, m, w, iblock, isplit, z, ldz,
work, iwork, ifailv, info )

```

\section*{Description}

This routine computes the eigenvectors of a real symmetric tridiagonal matrix \(T\) corresponding to specified eigenvalues, by inverse iteration. It is designed to be used in particular after the specified eigenvalues have been computed by ? stebz with order =' B ', but may also be used when the eigenvalues have been computed by other routines. If you use this routine after ?stebz, it can take advantage of the block structure by performing inverse iteration on each block \(T_{i}\) separately, which is more efficient than using the whole matrix \(T\).

If \(T\) has been formed by reduction of a full symmetric or Hermitian matrix \(A\) to tridiagonal form, you can transform eigenvectors of \(T\) to eigenvectors of \(A\) by calling ?ormtr or ?opmtr (for real flavors) or by calling ?unmtr or ? upmtr (for complex flavors).

\section*{Input Parameters}
\begin{tabular}{ll}
\(n\) & \\
\(m\) & INTEGER. The order of the matrix \(T(n \geq 0)\). \\
\(d, e, w\) & INTEGER. The number of eigenvectors to be returned. \\
REAL for single-precision flavors \\
DOUBLE PRECISION for double-precision flavors. \\
Arrays: \\
\(d(*)\) contains the diagonal elements of \(T\). \\
The dimension of \(d\) must be at least \(\max (1, n)\).
\end{tabular}
\(e(*)\) contains the off-diagonal elements of \(T\).
The dimension of \(e\) must be at least \(\max (1, n-1)\).
\(w(*)\) contains the eigenvalues of \(T\), stored in \(w(1)\)
to \(w(m)\) (as returned by ?stebz). Eigenvalues of \(T_{1}\) must be supplied first, in non-decreasing order, then those of \(T_{2}\), again in non-decreasing order, and so on. Constraint: if \(i b l o c k(i)=i b l o c k(i+1), w(i) \leq w(i+1)\).

The dimension of \(w\) must be at least \(\max (1, n)\).
iblock,isplit INTEGER.
Arrays, DIMENSION at least max \((1, n)\).
The arrays iblock and isplit, as returned by ?stebz with order='B'.
If you did not call ? stebz with order = 'B', set all elements of iblock to 1 , and isplit(1) to \(n\).)
\(l d z \quad\) INTEGER. The first dimension of the output array \(z ; l d z \geq \max (1, n)\).
work REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors. Workspace array, dimension at least max \((1,5 n)\).
iwork INTEGER.
Workspace array, DIMENSION at least \(\max (1, n)\).

\section*{Output Parameters}
z
REAL for sstein
DOUBLE PRECISION for dstein
COMPLEX for cstein
DOUBLE COMPLEX for zstein.
Array, DIMENSION (ldz, *).
If info \(=0, z\) contains the \(m\) orthonormal eigenvectors, stored by columns. (The \(i\) th column corresponds to the \(i\) th specified eigenvalue.)
ifailv INTEGER. Array, DIMENSION at least max \((1, m)\).
If info \(=i>0\), the first \(i\) elements of ifailv contain the indices of any eigenvectors that failed to converge.
info
INTEGER.
If info \(=0\), the execution is successful.
If info \(=i\), then \(i\) eigenvectors (as indicated by the parameter ifailv) each
failed to converge in 5 iterations. The current iterates are stored in the corresponding columns of the array \(z\).
If info \(=-i\), the \(i\) th parameter had an illegal value.

\section*{Application Notes}

Each computed eigenvector \(z_{i}\) is an exact eigenvector of a matrix \(T+E_{i}\), where \(\left\|E_{i}\right\|_{2}=O(\varepsilon)\|T\|_{2}\). However, a set of eigenvectors computed by this routine may not be orthogonal to so high a degree of accuracy as those computed by ?steqr.

\section*{?disna}

Computes the reciprocal condition numbers for the eigenvectors of a symmetric/ Hermitian matrix or for the left or right singular vectors of a general matrix.

\section*{Syntax}
call sdisna (job, \(m, n, d\), sep, info)
call ddisna (job, \(m, n, d, s e p, i n f o)\)

\section*{Description}

This routine computes the reciprocal condition numbers for the eigenvectors of a real symmetric or complex Hermitian matrix or for the left or right singular vectors of a general m-by-n matrix.

The reciprocal condition number is the 'gap' between the corresponding eigenvalue or singular value and the nearest other one.

The bound on the error, measured by angle in radians, in the \(i\)-th computed vector is given by
```

slamch('E' ) * (anorm/ sep(i) )

```
where anorm \(=\|A\|_{2}=\max (|d(\mathrm{j})|)\). sep(i) is not allowed to be smaller than slamch('E')* anorm in order to limit the size of the error bound.
?disna may also be used to compute error bounds for eigenvectors of the generalized symmetric definite eigenproblem.

\section*{Input Parameters}
job CHARACTER*1. Must be 'E','L', or 'R'.
Specifies for which problem the reciprocal condition numbers should be computed:
job='E': for the eigenvectors of a symmetric/Hermitian matrix ;
\(j 0 b=\) 'L': for the left singular vectors of a general matrix;
\(j 0 b=R^{\prime}\) ': for the right singular vectors of a general matrix .
INTEGER. The number of rows of the matrix (\(m \geq 0\)).
INTEGER. If job \(=\) 'L', or 'R', the number of columns of the matrix (\(n \geq 0\)). Ignored if \(j o b={ }^{\prime} \mathrm{E}^{\prime}\).
REAL for sdisna
DOUBLE PRECISION for ddisna.
Array, dimension at least \(\max (1, m)\) if \(j o b=' E '\), and at least \(\max (1\), \(\min (m, n)\)) if job \(=\) 'L'or 'R'.
This array must contain the eigenvalues (if \(\mathrm{job}=\mathrm{I}^{\prime} \mathrm{E}^{\prime}\)) or singular values (if \(j 0 b=\) 'L' or 'R') of the matrix, in either increasing or decreasing order. If singular values, they must be non-negative.

\section*{Output Parameters}
```

sep REAL for sdisna
DOUBLE PRECISION for ddisna.
Array, dimension at least max (1,m) if job =' }\textrm{E}\mathrm{ ', and at least max (1, min}(m,n)
if job='L'or'R'.
The reciprocal condition numbers of the vectors.
info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

```

\section*{Generalized Symmetric-Definite Eigenvalue Problems}

Generalized symmetric-definite eigenvalue problems are as follows: find the eigenvalues \(\lambda\) and the corresponding eigenvectors \(z\) that satisfy one of these equations:
\[
A z=\lambda B z, \quad A B z=\lambda z, \text { or } B A z=\lambda z
\]
where \(A\) is an \(n\) by \(n\) symmetric or Hermitian matrix, and \(B\) is an \(n\) by \(n\) symmetric positive-definite or Hermitian positive-definite matrix.

In these problems, there exist \(n\) real eigenvectors corresponding to real eigenvalues (even for complex Hermitian matrices \(A\) and \(B\)).

Routines described in this section allow you to reduce the above generalized problems to standard symmetric eigenvalue problem \(C y=\lambda y\),
which you can solve by calling LAPACK routines described earlier in this chapter (see page 4-95).
Different routines allow the matrices to be stored either conventionally or in packed storage. Prior to reduction, the positive-definite matrix \(B\) must first be factorized using either ?potrf or ?pptrf.
The reduction routine for the banded matrices \(A\) and \(B\) uses a split Cholesky factorization for which a specific routine ?pbstf is provided. This refinement halves the amount of work required to form matrix \(C\).

Table 4-4 Computational Routines for Reducing Generalized Eigenproblems to Standard Problems
\begin{tabular}{lllll}
\hline & \begin{tabular}{l}
Reduce to standard \\
problems \\
(full storage)
\end{tabular} & \begin{tabular}{l}
Reduce to standard \\
problems \\
(packed storage)
\end{tabular} & \begin{tabular}{l}
Reduce to standard \\
problems \\
(band matrices)
\end{tabular} & \begin{tabular}{l}
Factorize \\
band \\
matrix
\end{tabular} \\
\hline \begin{tabular}{l}
real \\
symmetric \\
matrices
\end{tabular} & \(\underline{\text { ?sygst }}\) & \(\underline{\text { ?spgst }}\) & \(\underline{\text { ?sbgst }}\) & \(\underline{\text { ?pbstf }}\) \\
\begin{tabular}{l}
complex \\
Hermitian \\
matrices
\end{tabular} & \(\underline{\text { ?hegst } /}\) & \(\underline{\text { ?hpgst }}\) & \(\underline{\text { ?h.bgst }}\) & \(\underline{\text { ?pbstf }}\) \\
\hline
\end{tabular}

\section*{?sygst}

\section*{Reduces a real symmetric-definite generalized} eigenvalue problem to the standard form.

\section*{Syntax}
```

call ssygst ( itype, uplo, n, a, lda, b, ldb, info )
call dsygst ( itype, uplo, n, a, lda, b, ldb, info )

```

\section*{Description}

This routine reduces real symmetric-definite generalized eigenproblems
\[
A z=\lambda B z, \quad A B z=\lambda z, \text { or } B A z=\lambda z
\]
to the standard form \(C y=\lambda y\). Here \(A\) is a real symmetric matrix, and \(B\) is a real symmetric positive-definite matrix. Before calling this routine, call ?potrf to compute the Cholesky factorization: \(B=U^{T} U\) or \(B=L L^{T}\).

\section*{Input Parameters}
```

itype INTEGER. Must be 1 or 2 or 3.
If itype=1, the generalized eigenproblem is Az=\lambdaBz;
for uplo='U':C=U-T}A\mp@subsup{U}{}{-1},z=\mp@subsup{U}{}{-1}y\mathrm{ ;
for uplo= 'L':C= L'- ALLT,}z=\mp@subsup{L}{}{-T
If itype=2, the generalized eigenproblem is ABz=\lambdaz;
for uplo= 'U': C=UAU', z= U-1
for uplo= 'L':}C=\mp@subsup{L}{}{T}AL,z=\mp@subsup{L}{}{-T}y
If itype =3, the generalized eigenproblem is BAz=\lambdaz;
for uplo= 'U':C=UAU', z=U'T;
for uplo= 'L':C=LT
uplo CHARACTER*1. Must be 'U' or 'L'.
If uplo='U', the array a stores the upper triangle of }A\mathrm{ ; you must supply B in
the factored form }B=\mp@subsup{U}{}{T}U\mathrm{ .
If uplo = 'L', the array a stores the lower triangle of }A\mathrm{ ; you must supply B in
the factored form B=LLT
n
INTEGER. The order of the matrices A and B ( }n\geq0)\mathrm{ .

```
```

a,b REAL for ssygst
DOUBLE PRECISION for dsygst.
Arrays:
a (Ida,*) contains the upper or lower triangle of }A\mathrm{ .
The second dimension of a must be at least max(1,n).
b(Idb,*) contains the Cholesky-factored matrix B:
B= U'T}U\mathrm{ or B=LL'T (as returned by ?potrf).
The second dimension of }b\mathrm{ must be at least max(1,n).
Ida INTEGER. The first dimension of a; at least max (1,n).
Idb INTEGER. The first dimension of b; at least max (1,n).

```

\section*{Output Parameters}
The upper or lower triangle of \(A\) is overwritten by the upper or lower triangle of \(C\), as specified by the arguments itype and uplo.
info
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\) th parameter had an illegal value.
```


## Application Notes

Forming the reduced matrix $C$ is a stable procedure. However, it involves implicit multiplication by $B^{-1}$ (if $i$ type $=1$ ) or $B$ (if itype $=2$ or 3 ). When the routine is used as a step in the computation of eigenvalues and eigenvectors of the original problem, there may be a significant loss of accuracy if $B$ is ill-conditioned with respect to inversion.
The approximate number of floating-point operations is $n^{3}$.

## ?hegst

## Reduces a complex Hermitian-definite generalized

 eigenvalue problem to the standard form.
## Syntax

```
call chegst (itype, uplo, n, a, lda, b, ldb, info)
call zhegst (itype, uplo, n, a, lda, b, ldb, info)
```


## Description

This routine reduces complex Hermitian-definite generalized eigenvalue problems

$$
A z=\lambda B z, \quad A B z=\lambda z, \text { or } B A z=\lambda z
$$

to the standard form $C y=\lambda y$. Here the matrix $A$ is complex Hermitian, and $B$ is complex Hermitian positive-definite. Before calling this routine, you must call ?potrf to compute the Cholesky factorization: $B=U^{H} U$ or $B=L L^{H}$.

## Input Parameters

```
itype INTEGER. Must be 1 or 2 or 3.
 If itype=1, the generalized eigenproblem is Az=\lambdaBz;
 for uplo= 'U':C=U-H}A\mp@subsup{U}{}{-1},z=\mp@subsup{U}{}{-1}y
 for uplo= 'L':C=L'-
If itype=2, the generalized eigenproblem is ABz=\lambdaz;
 for uplo='U':C=UAU'H,z=U-1}y
 for uplo= 'L':}C=\mp@subsup{L}{}{H}AL,z=\mp@subsup{L}{}{-H}y
If itype =3, the generalized eigenproblem is BAz=\lambdaz;
 foruplo= 'U':C=UAU'H,z=UH}\mp@subsup{|}{}{H
 for uplo= 'L':C=LHAL, z=Ly.
uplo CHARACTER*1. Must be 'U' or 'L'.
 If uplo= 'U', the array a stores the upper triangle of }A\mathrm{ ; you must supply B in
 the factored form B=U U}U\mathrm{ .
 If uplo = 'L', the array a stores the lower triangle of }A\mathrm{ ; you must supply B in
 the factored form B=LLL
 n
 INTEGER. The order of the matrices A and B (}n\geq0)\mathrm{ .
```

```
a,b COMPLEX for chegst
 DOUBLE COMPLEX for zhegst.
 Arrays:
 a (Ida,*) contains the upper or lower triangle of }A\mathrm{ .
 The second dimension of a must be at least max(1,n).
 b(ldb,*) contains the Cholesky-factored matrix B:
 B= U'H}U\mathrm{ or B=LL H}\mathrm{ (as returned by ?potrf).
 The second dimension of }b\mathrm{ must be at least max(1,n).
Ida INTEGER. The first dimension of a; at least max (1,n).
Idb INTEGER. The first dimension of b; at least max (1,n).
```


## Output Parameters

The upper or lower triangle of $A$ is overwritten by the upper or lower triangle of $C$, as specified by the arguments itype and uplo.
info
INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$ th parameter had an illegal value.

```

\section*{Application Notes}

Forming the reduced matrix \(C\) is a stable procedure. However, it involves implicit multiplication by \(B^{-1}\) (if itype \(=1\)) or \(B\) (if itype \(=2\) or 3). When the routine is used as a step in the computation of eigenvalues and eigenvectors of the original problem, there may be a significant loss of accuracy if \(B\) is ill-conditioned with respect to inversion.
The approximate number of floating-point operations is \(n^{3}\).

\section*{?spgst}

\section*{Reduces a real symmetric-definite generalized eigenvalue problem to the standard form using packed storage.}

\section*{Syntax}
```

call sspgst ( itype, uplo, n, ap, bp, info )
call dspgst ( itype, uplo, n, ap, bp, info )

```

\section*{Description}

This routine reduces real symmetric-definite generalized eigenproblems
\[
A z=\lambda B z, \quad A B z=\lambda z, \text { or } B A z=\lambda z
\]
to the standard form \(C y=\lambda y\), using packed matrix storage. Here \(A\) is a real symmetric matrix, and \(B\) is a real symmetric positive-definite matrix. Before calling this routine, call ?pptrf to compute the Cholesky factorization: \(B=U^{T} U\) or \(B=L L^{T}\).

\section*{Input Parameters}
```

itype INTEGER. Must be 1 or 2 or 3.
If itype = 1, the generalized eigenproblem is Az=\lambdaBz;
foruplo='U':C= U-T}A\mp@subsup{U}{}{-1},z=\mp@subsup{U}{}{-1}y
foruplo='L':C C L L'1}A\mp@subsup{L}{}{-T},z=\mp@subsup{L}{}{-T
If itype =2, the generalized eigenproblem is ABz=\lambdaz;
foruplo='U':C=UAU',
foruplo = 'L': C= LT}AL,z=\mp@subsup{L}{}{-T}y
If itype =3, the generalized eigenproblem is BAz=\lambdaz;

```

```

    foruplo= 'L':C=LTAL, z=Ly.
    uplo CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', ap stores the packed upper triangle of }A\mathrm{ ;
you must supply B in the factored form B = U}\mp@subsup{U}{}{T}U\mathrm{ .
If uplo = 'L', ap stores the packed lower triangle of }A\mathrm{ ;
you must supply B in the factored form B=LL'T
n
INTEGER. The order of the matrices A and B ( }n\geq0)\mathrm{ .

```
```

ap, bp REAL for sspgst
DOUBLE PRECISION for dspgst.
Arrays:
ap (*) contains the packed upper or lower triangle of }A\mathrm{ .
The dimension of ap must be at least max(1, n* (n+1)/2).
bp (*) contains the packed Cholesky factor of B
(as returned by ?pptrf with the same uplo value).
The dimension of bp must be at least max(1, n* (n+1)/2).

```

\section*{Output Parameters}
The upper or lower triangle of \(A\) is overwritten by the upper or lower triangle of \(C\), as specified by the arguments itype and uplo.
info
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\) th parameter had an illegal value.
```


## Application Notes

Forming the reduced matrix $C$ is a stable procedure. However, it involves implicit multiplication by $B^{-1}$ (if itype $=1$ ) or $B$ (if itype $=2$ or 3 ). When the routine is used as a step in the computation of eigenvalues and eigenvectors of the original problem, there may be a significant loss of accuracy if $B$ is ill-conditioned with respect to inversion.

The approximate number of floating-point operations is $n^{3}$.

## ?hpgst

## Reduces a complex Hermitian-definite generalized eigenvalue problem to the standard form using packed storage.

## Syntax

```
call chpgst (itype, uplo, n, ap, bp, info)
call zhpgst (itype, uplo, n, ap, bp, info)
```


## Description

This routine reduces real symmetric-definite generalized eigenproblems

$$
A z=\lambda B z, \quad A B z=\lambda z, \text { or } B A z=\lambda z
$$

to the standard form $C y=\lambda y$, using packed matrix storage. Here $A$ is a real symmetric matrix, and $B$ is a real symmetric positive-definite matrix. Before calling this routine, you must call ?pptrf to compute the Cholesky factorization: $B=U^{H} U$ or $B=L L^{H}$.

## Input Parameters

```
itype Integer. Must be 1 or 2 or 3.
 If itype \(=1\), the generalized eigenproblem is \(A z=\lambda B z\);
 for uplo = 'U': \(C=U^{-H} A U^{-1}, z=U^{-1} y\);
 for uplo = 'L': \(C=L^{-1} A L^{-H}, z=L^{-H} y\).
 If itype \(=2\), the generalized eigenproblem is \(A B z=\lambda z\);
 for uplo = 'U': \(C=U A U^{H}, z=U^{-1} y\);
 for uplo = 'L': \(C=L^{H} A L, z=L^{-H} y\).
If itype \(=3\), the generalized eigenproblem is \(B A z=\lambda z\);
 for uplo = 'U': \(C=U A U^{H}, z=U^{H} y\);
 for uplo = 'L': \(C=L^{H} A L, z=L y\).
uplo CHARACTER*1. Must be 'U' or 'L'.
 If uplo='U', ap stores the packed upper triangle of \(A\); you must supply \(B\) in
 the factored form \(B=U^{H} U\).
 If uplo = 'L', ap stores the packed lower triangle of \(A\); you must supply \(B\) in
 the factored form \(B=L L^{H}\).
 n
 INTEGER. The order of the matrices \(A\) and \(B(n \geq 0)\).
```

```
ap, bp COMPLEX for chpgst
 DOUBLE COMPLEX for zhpgst.
 Arrays:
 ap (*) contains the packed upper or lower triangle of }A\mathrm{ .
 The dimension of a must be at least max(1, n* (n+1)/2).
 bp (*) contains the packed Cholesky factor of B
 (as returned by ?pptrf with the same uplo value).
 The dimension of b must be at least max(1, n* (n+1)/2).
```


## Output Parameters

The upper or lower triangle of $A$ is overwritten by the upper or lower triangle of $C$, as specified by the arguments itype and uplo.
info INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$ th parameter had an illegal value.

```

\section*{Application Notes}

Forming the reduced matrix \(C\) is a stable procedure. However, it involves implicit multiplication by \(B^{-1}\) (if itype \(=1\)) or \(B\) (if itype \(=2\) or 3). When the routine is used as a step in the computation of eigenvalues and eigenvectors of the original problem, there may be a significant loss of accuracy if \(B\) is ill-conditioned with respect to inversion.

The approximate number of floating-point operations is \(n^{3}\).

\section*{?sbgst}

Reduces a real symmetric-definite generalized eigenproblem for banded matrices to the standard form using the factorization performed by ?pbstf.

\section*{Syntax}
```

call ssbgst ( vect, uplo, n, ka, kb, ab, ldab, bb, ldbb, x, ldx,
work, info )
call dsbgst ( vect, uplo, n, ka, kb, ab, ldab, bb, ldbb, x, ldx,
work, info )

```

\section*{Description}

To reduce the real symmetric-definite generalized eigenproblem \(A z=\lambda B z\) to the standard form \(C y=\lambda y\), where \(A, B\) and \(C\) are banded, this routine must be preceded by a call to spbstf/dpbstf, which computes the split Cholesky factorization of the positive-definite matrix \(B: B=S^{T} S\). The split Cholesky factorization, compared with the ordinary Cholesky factorization, allows the work to be approximately halved.

This routine overwrites \(A\) with \(C=X^{T} A X\), where \(X=S^{-1} Q\) and \(Q\) is an orthogonal matrix chosen (implicitly) to preserve the bandwidth of \(A\).
The routine also has an option to allow the accumulation of \(X\), and then, if \(z\) is an eigenvector of \(C\), \(X z\) is an eigenvector of the original system.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline vect & CHARACTER*1. Must be 'n' or 'v'. \\
\hline & If vect \(=1 \mathrm{~N}\) ', then matrix \(X\) is not returned; \\
\hline & If vect \(=\) ' V ', then matrix \(X\) is returned. \\
\hline uplo & CHARACTER*1. Must be 'U' or 'L'. \\
\hline & If uplo = ' \({ }^{\prime}\) ', ab stores the upper triangular part of \(A\). \\
\hline & If uplo = 'L', ab stores the lower triangular part of \(A\). \\
\hline n & Integer. The order of the matrices \(A\) and \(B(n \geq 0)\). \\
\hline ka & InTEGER. The number of super- or sub-diagonals in \(A\) (\(k a \geq 0\)). \\
\hline kb & INTEGER. The number of super- or sub-diagonals in \(B\) (\(k a \geq k b \geq 0\)). \\
\hline ab, bb, work & ReAL for ssbgst \\
\hline & DOUBLE PRECISION for dsbgst \\
\hline & \(a b\) (\(1 \mathrm{dab}, *\)) is an array containing either upper or lower triangular part of the symmetric matrix \(A\) (as specified by uplo) in band storage format. The second dimension of the array \(a b\) must be at least \(\max (1, n)\). \\
\hline & \begin{tabular}{l}
\(\mathrm{bb}(1 \mathrm{dbb}, *)\) is an array containing the banded split Cholesky factor of \(B\) as specified by uplo, \(n\) and \(k b\) and returned by spbstf/dpbstf. The second dimension of the array \(b b\) must be at least \(\max (1, n)\). \\
work (*) is a workspace array, DIMENSION at least max \(\left(1,2^{*} n\right)\)
\end{tabular} \\
\hline ldab & INTEGER. The first dimension of the array \(a b\); must be at least ka+1. \\
\hline ldbb & INTEGER. The first dimension of the array bb; must be at least kb+1. \\
\hline
\end{tabular}
```

ldx
The first dimension of the output array $x$. Constraints:
if vect $=' \mathrm{~N}$ ', then $l d x \geq 1$; if vect $=' \mathrm{~V}$ ', then $1 d x \geq \max (1, n)$.

```

\section*{Output Parameters}
\begin{tabular}{|c|c|}
\hline \(a b\) & On exit, this array is overwritten by the upper or lower triangle of \(C\) as specified by uplo. \\
\hline \multirow[t]{8}{*}{x} & REAL for ssbgst \\
\hline & DOUBLE PRECISION for dsbgst \\
\hline & Array. \\
\hline & If vect \(=\mathrm{V}^{\prime}\), then \(\mathrm{x}(1 \mathrm{dx}, *)\) contains the \(n\) by \(n\) matrix \(X=S^{-1} Q\). \\
\hline & If vect \(=\) ' \(N\) ', then \(x\) is not referenced. \\
\hline & The second dimension of \(x\) must be: \\
\hline & at least max (\(1, n\)), if vect \(=1 \mathrm{~V}^{\prime}\); \\
\hline & at least 1 , if vect \(={ }^{\prime} \mathrm{N}^{\prime}\). \\
\hline \multirow[t]{3}{*}{info} & INTEGER. \\
\hline & If info \(=0\), the execution is successful. \\
\hline & If info \(=-i\), the \(i\) th parameter had an illegal value. \\
\hline
\end{tabular}

\section*{Application Notes}

Forming the reduced matrix \(C\) involves implicit multiplication by \(B^{-1}\). When the routine is used as a step in the computation of eigenvalues and eigenvectors of the original problem, there may be a significant loss of accuracy if \(B\) is ill-conditioned with respect to inversion.
The total number of floating-point operations is approximately \(6 n^{2} * k b\), when vect \(=' \mathrm{~N}\). . Additional \((3 / 2) n^{3} \star(k b / k a)\) operations are required when vect \(=^{\prime} \mathrm{V}^{\prime}\). All these estimates assume that both ka and kb are much less than n .

Intel® Math Kernel Library Reference Manual

\section*{?hbgst}

> Reduces a complex Hermitian-definite generalized eigenproblem for banded matrices to the standard form using the factorization performed by ?pbst f .

\section*{Syntax}
```

call chbgst ( vect, uplo, n, ka, kb, ab, ldab, bb, ldbb, x, ldx,
work, rwork, info )
call zhbgst ( vect, uplo, n, ka, kb, ab, ldab, bb, ldbb, x, ldx,
work, rwork, info )

```

\section*{Description}

To reduce the complex Hermitian-definite generalized eigenproblem \(A z=\lambda B z\) to the standard form \(C y=\lambda y\), where \(A, B\) and \(C\) are banded, this routine must be preceded by a call to cpbstf/zpbstf, which computes the split Cholesky factorization of the positive-definite matrix \(B: B=S^{H} S\). The split Cholesky factorization, compared with the ordinary Cholesky factorization, allows the work to be approximately halved.

This routine overwrites \(A\) with \(C=X^{H} A X\), where \(X=S^{-1} Q\) and \(Q\) is a unitary matrix chosen (implicitly) to preserve the bandwidth of \(A\).
The routine also has an option to allow the accumulation of \(X\), and then, if \(z\) is an eigenvector of \(C\), \(X z\) is an eigenvector of the original system.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{vect} & CHARACTER*1. Must be 'N' or 'V'. \\
\hline & If vect \(=\) ' \(\mathrm{N}^{\prime}\), then matrix \(X\) is not returned; \\
\hline & If vect \(\prime^{\prime} \mathrm{V}\) ', then matrix \(X\) is returned. \\
\hline \multirow[t]{3}{*}{uplo} & CHARACTER*1. Must be 'U' or 'L'. \\
\hline & If uplo = 'U', ab stores the upper triangular part of \(A\). \\
\hline & If uplo = 'L', ab stores the lower triangular part of \(A\). \\
\hline \(n\) & INTEGER. The order of the matrices \(A\) and \(B(n \geq 0)\). \\
\hline ka & INTEGER. The number of super- or sub-diagonals in \(A\) (\(k a \geq 0\)). \\
\hline kb & INTEGER. The number of super- or sub-diagonals in \(B\) (\(k a \geq k b \geq 0\)). \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multirow[t]{5}{*}{ab, bb, work} & COMPLEX for chbgst \\
\hline & DOUBLE COMPLEX for zhbgst \\
\hline & \(a b(l d a b, *)\) is an array containing either upper or lower triangular part of the \\
\hline & Hermitian matrix \(A\) (as specified by uplo) in band storage format. The second dimension of the array \(a b\) must be at least \(\max (1, n)\). \\
\hline & \(b b(l d b b, *)\) is an array containing the banded split Cholesky factor of \(B\) as specified by uplo, \(n\) and \(k b\) and returned by cpbstf/zpbstf. The second dimension of the array \(b b\) must be at least \(\max (1, n)\). work (*) is a workspace array, DIMENSION at least \(\max (1, n)\) \\
\hline \(1 d a b\) & INTEGER. The first dimension of the array ab; must be at least ka+1. \\
\hline 1 dbb & INTEGER. The first dimension of the array bb; must be at least \(k b+1\). \\
\hline \(1 d x\) & \begin{tabular}{l}
The first dimension of the output array x . Constraints: \\
if vect \(=' \mathrm{~N}\) ', then \(l d x \geq 1\); \\
if vect \(=' V{ }^{\prime}\), then \(1 d x \geq \max (1, n)\).
\end{tabular} \\
\hline \multirow[t]{3}{*}{rwork} & REAL for chbgst \\
\hline & DOUBLE PRECISION for zhbgst \\
\hline & Workspace array, DIMENSION at least max \((1, n)\) \\
\hline Output Para & ters \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \(a b\) & On exit, this array is overwritten by the upper or lower triangle of \(C\) as specified by uplo. \\
\hline \multirow[t]{8}{*}{\(x\)} & COMPLEX for chbgst \\
\hline & DOUBLE COMPLEX for zhbgst \\
\hline & Array. \\
\hline & If vect \(=\mathrm{V}^{\prime}\), then \(\mathrm{x}(1 d x, *)\) contains the \(n\) by \(n\) matrix \(X=S^{-1} Q\). \\
\hline & If vect \(=\) 'N', then \(x\) is not referenced. \\
\hline & The second dimension of \(x\) must be: \\
\hline & at least max \((1, n)\), if vect \(=1 \mathrm{~V}^{\prime}\); \\
\hline & at least 1 , if vect \(=\) ' \(\mathrm{N}^{\prime}\). \\
\hline \multirow[t]{3}{*}{info} & INTEGER. \\
\hline & If info \(=0\), the execution is successful. \\
\hline & If info \(=-i\), the \(i\) th parameter had an illegal value \\
\hline
\end{tabular}

\section*{Application Notes}

Forming the reduced matrix \(C\) involves implicit multiplication by \(B^{-1}\). When the routine is used as a step in the computation of eigenvalues and eigenvectors of the original problem, there may be a significant loss of accuracy if \(B\) is ill-conditioned with respect to inversion.

The total number of floating-point operations is approximately \(20 n^{2} * k b\), when vect \(=' N\) '. Additional \(5 n^{3} *(\mathrm{~kb} / \mathrm{ka})\) operations are required when vect \(=\mathrm{V}^{\prime}\) '. All these estimates assume that both \(k a\) and \(k b\) are much less than \(n\).

\section*{?pbstf}

> Computes a split Cholesky factorization of a real symmetric or complex Hermitian positive-definite banded matrix used in ? sbgst/?hbgst .

\section*{Syntax}
```

call spbstf ( uplo, n, kb, bb, ldbb, info )
call dpbstf ( uplo, n, kb, bb, ldbb, info )
call cpbstf ( uplo, n, kb, bb, ldbb, info )
call zpbstf ( uplo, n, kb, bb, ldbb, info )

```

\section*{Description}

This routine computes a split Cholesky factorization of a real symmetric or complex Hermitian positive-definite band matrix \(B\). It is to be used in conjunction with ? sbgst/?hbgst.

The factorization has the form \(B=S^{T} S\) (or \(B=S^{H} S\) for complex flavors), where \(S\) is a band matrix of the same bandwidth as \(B\) and the following structure: \(S\) is upper triangular in the first \((n+k b) / 2\) rows and lower triangular in the remaining rows.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{uplo} & CHARACTER*1. Must be 'U' or 'L'. \\
\hline & If uplo = ' \({ }^{\prime}\), bb stores the upper triangular part of \(B\). \\
\hline & If uplo = 'L', bb stores the lower triangular part of \(B\). \\
\hline \(n\) & INTEGER. The order of the matrix \(B(n \geq 0)\). \\
\hline kb & INTEGER. The number of super- or sub-diagonals in \(B\) (\(k b \geq 0\)). \\
\hline \multirow[t]{4}{*}{bb} & REAL for spbstf \\
\hline & DOUBLE PRECISION for dpbstf \\
\hline & COMPLEX for cpbstf \\
\hline & DOUBLE COMPLEX for zpbstf. \\
\hline
\end{tabular}
\(b b(1 d b b, *)\) is an array containing either upper or lower triangular part of the matrix \(B\) (as specified by uplo) in band storage format.
The second dimension of the array \(b b\) must be at least \(\max (1, n)\).
ldbb INTEGER. The first dimension of \(b b ;\) must be at least \(k b+1\).

\section*{Output Parameters}

On exit, this array is overwritten by the elements of the split Cholesky factor \(S\).
INTEGER.
If info \(=0\), the execution is successful.
If info \(=i\), then the factorization could not be completed, because the updated element \(b_{i i}\) would be the square root of a negative number; hence the matrix \(B\) is not positive-definite.
If info \(=-i\), the \(i\) th parameter had an illegal value.

\section*{Application Notes}

The computed factor \(S\) is the exact factor of a perturbed matrix \(B+E\), where
\[
|E| \leq c(k b+1) \varepsilon\left|S^{H}\right||S|, \quad\left|e_{i j}\right| \leq c(k b+1) \varepsilon \sqrt{b_{i i} b_{j j}}
\]
\(c(n)\) is a modest linear function of \(n\), and \(\varepsilon\) is the machine precision.
The total number of floating-point operations for real flavors is approximately \(n(k b+1)^{2}\). The number of operations for complex flavors is 4 times greater. All these estimates assume that \(k b\) is much less than \(n\).

After calling this routine, you can call ?sbgst/?hbgst to solve the generalized eigenproblem \(A z\) \(=\lambda B z\), where \(A\) and \(B\) are banded and \(B\) is positive-definite.

\section*{Nonsymmetric Eigenvalue Problems}

This section describes LAPACK routines for solving nonsymmetric eigenvalue problems, computing the Schur factorization of general matrices, as well as performing a number of related computational tasks.

A nonsymmetric eigenvalue problem is as follows: given a nonsymmetric (or non-Hermitian) matrix \(A\), find the eigenvalues \(\lambda\) and the corresponding eigenvectors \(z\) that satisfy the equation
\[
A z=\lambda z \quad \text { (right eigenvectors } z)
\]
or the equation
\[
\left.z^{H} A=\lambda z^{H} \text { (left eigenvectors } z\right)
\]

Nonsymmetric eigenvalue problems have the following properties:
- The number of eigenvectors may be less than the matrix order (but is not less than the number of distinct eigenvalues of \(A\)).
- Eigenvalues may be complex even for a real matrix \(A\).
- If a real nonsymmetric matrix has a complex eigenvalue \(a+b i\) corresponding to an eigenvector \(z\), then \(a-b i\) is also an eigenvalue.
The eigenvalue \(a-b i\) corresponds to the eigenvector whose elements are complex conjugate to the elements of \(z\).

To solve a nonsymmetric eigenvalue problem with LAPACK, you usually need to reduce the matrix to the upper Hessenberg form and then solve the eigenvalue problem with the Hessenberg matrix obtained. Table 4-5 lists LAPACK routines for reducing the matrix to the upper Hessenberg form by an orthogonal (or unitary) similarity transformation \(A=Q H Q^{H}\) as well as routines for solving eigenvalue problems with Hessenberg matrices, forming the Schur factorization of such matrices and computing the corresponding condition numbers.

Decision tree in Figure 4-4 helps you choose the right routine or sequence of routines for an eigenvalue problem with a real nonsymmetric matrix.
If you need to solve an eigenvalue problem with a complex non-Hermitian matrix, use the decision tree shown in Figure 4-5.

Table 4-5 Computational Routines for Solving Nonsymmetric Eigenvalue Problems
\begin{tabular}{|c|c|c|}
\hline Operation performed & Routines for real matrices & Routines for complex matrices \\
\hline Reduce to Hessenberg form \(A=Q H Q^{H}\) & ? gehrd, & ? gehrd \\
\hline Generate the matrix \(Q\) & ?orghr & ?unghr \\
\hline Apply the matrix \(Q\) & ? ormhr & ? \({ }^{\text {unmhr }}\) \\
\hline Balance matrix & ? gebal & ? gebal \\
\hline Transform eigenvectors of balanced matrix to those of the original matrix & ? gebak & ? gebak \\
\hline Find eigenvalues and Schur factorization (QR algorithm) & ? hseqr & ? hseqr \\
\hline Find eigenvectors from Hessenberg form (inverse iteration) & \(\xrightarrow{\text { ?hsein }}\) & ?hsein \\
\hline Find eigenvectors from Schur factorization & ?trevc & ?trevc \\
\hline Estimate sensitivities of eigenvalues and eigenvectors & ?trsna & ?trsna \\
\hline Reorder Schur factorization & ?trexc & ?trexc \\
\hline Reorder Schur factorization, find the invariant subspace and estimate sensitivities & ?trsen & ?trsen \\
\hline Solves Sylvester's equation. & ?trsyl & ?trsyl \\
\hline
\end{tabular}

Figure 4-4 Decision Tree: Real Nonsymmetric Eigenvalue Problems

Figure 4-5 Decision Tree: Complex Non-Hermitian Eigenvalue Problems

\section*{?gehrd}

Reduces a general matrix to upper Hessenberg form.

\section*{Syntax}
```

call sgehrd ( n, ilo, ihi, a, lda, tau, work, lwork, info )
call dgehrd ( n, ilo, ihi, a, lda, tau, work, lwork, info )
call cgehrd ( n, ilo, ihi, a, lda, tau, work, lwork, info )
call zgehrd ( n, ilo, ihi, a, lda, tau, work, lwork, info )

```

\section*{Description}

The routine reduces a general matrix \(A\) to upper Hessenberg form \(H\) by an orthogonal or unitary similarity transformation \(A=Q H Q^{H}\). Here \(H\) has real subdiagonal elements.

The routine does not form the matrix \(Q\) explicitly. Instead, \(Q\) is represented as a product of elementary reflectors. Routines are provided to work with \(Q\) in this representation.

\section*{Input Parameters}
a, work REAL for sgehrd
n
ilo, ihi
lda
lwork

INTEGER. The order of the matrix \(A(n \geq 0)\).
INTEGER. If \(A\) has been output by ?gebal, then ilo and ihi must contain the values returned by that routine. Otherwise ilo= 1 and ihi \(=n\). (If \(n>0\), then \(1 \leq i l o \leq i h i \leq n\); if \(n=0\), ilo \(=1\) and ihi \(=\) 0.\()\)

DOUBLE PRECISION for dgehrd
COMPLEX for cgehrd
DOUBLE COMPLEX for zgehrd.
Arrays:
a (lda,*) contains the matrix \(A\). The second dimension of a must be at least \(\max (1, n)\).
work (lwork) is a workspace array.
INTEGER. The first dimension of \(a\); at least \(\max (1, n)\).
INTEGER. The size of the work array; at least max \((1, n)\). See Application notes for the suggested value of lwork.

\section*{Output Parameters}
```

a Overwritten by the upper Hessenberg matrix }H\mathrm{ and details of the matrix Q. The
subdiagonal elements of }H\mathrm{ are real.
tau REAL for sgehrd
DOUBLE PRECISION for dgehrd
COMPLEX for cgehrd
DOUBLE COMPLEX for zgehrd.
Array, DIMENSION at least max (1,n-1).
Contains additional information on the matrix Q.
work(1) If info = 0, on exit work (1) contains the minimum value of l work required
for optimum performance. Use this l work for subsequent runs.
info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

```

\section*{Application Notes}

For better performance, try using 1 work \(=n *\) blocksize, where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm. If you are in doubt how much workspace to supply, use a generous value of 1 work for the first run. On exit, examine work (1) and use this value for subsequent runs.

The computed Hessenberg matrix \(H\) is exactly similar to a nearby matrix \(A+E\), where \(\|E\|_{2}<c(n) \varepsilon\|A\|_{2}, c(n)\) is a modestly increasing function of \(n\), and \(\varepsilon\) is the machine precision.

The approximate number of floating-point operations for real flavors is (2/3)(ihi -ilo) \()^{2}(2 i h i+\) \(2 i l o+3 n\)); for complex flavors it is 4 times greater.

\section*{? orghr}

Generates the real orthogonal matrix \(Q\) determined by ?gehrd.

\section*{Syntax}
```

call sorghr ( n, ilo, ihi, a, lda, tau, work, lwork, info )
call dorghr ( n, ilo, ihi, a, lda, tau, work, lwork, info )

```

\section*{Description}

This routine explicitly generates the orthogonal matrix \(Q\) that has been determined by a preceding call to sgehrd/dgehrd. (The routine ?gehrd reduces a real general matrix \(A\) to upper Hessenberg form \(H\) by an orthogonal similarity transformation, \(A=Q H Q^{T}\), and represents the matrix \(Q\) as a product of ihi-ilo elementary reflectors. Here ilo and ihi are values determined by sgebal/dgebal when balancing the matrix; if the matrix has not been balanced, ilo=1 and ihi \(=n\).)

The matrix \(Q\) generated by ?orghr has the structure:
\[
Q=\left[\begin{array}{ccc}
I & 0 & 0 \\
0 & Q_{22} & 0 \\
0 & 0 & I
\end{array}\right]
\]
where \(Q_{22}\) occupies rows and columns ilo to ihi.
Input Parameters
\begin{tabular}{|c|c|}
\hline \(n\) & INTEGER. The order of the matrix \(Q(n \geq 0)\). \\
\hline ilo, ihi & INTEGER. These must be the same parameters ilo and ihi, respectively, as supplied to ?gehrd. (If \(n>0\), then \(1 \leq i l o \leq i h i \leq n\); if \(n=0\), ilo \(=1\) and ihi =0.) \\
\hline \multirow[t]{5}{*}{a, tau, work} & REAL for sorghr \\
\hline & DOUBLE PRECISION for dorghr \\
\hline & Arrays: \\
\hline & \(a(l d a, *)\) contains details of the vectors which define the elementary reflectors, as returned by ?gehrd. \\
\hline & The second dimension of a must be at least \(\max (1, n)\). \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Ida & INTEGER. The first dimension of \(a\); at least max (1, \(n\)) . \\
\hline \multirow[t]{3}{*}{I work} & INTEGER. The size of the work array; \\
\hline & lwork \(\geq\) max (1,ihi-ilo). \\
\hline & See Application notes for the suggested value of I work. \\
\hline \multicolumn{2}{|l|}{Output Parameters} \\
\hline a & Overwritten by the \(n\) by \(n\) orthogonal matrix \(Q\). \\
\hline work(1) & If \(\operatorname{info}=0\), on exit work (1) contains the minimum value of 1 work required for optimum performance. Use this 1 work for subsequent runs. \\
\hline \multirow[t]{3}{*}{info} & INTEGER. \\
\hline & If info \(=0\), the execution is successful. \\
\hline & If info \(=-i\), the \(i\) th parameter had an illegal value. \\
\hline
\end{tabular}

\section*{Application Notes}

For better performance, try using 1 work \(=(\) ihi-ilo)*blocksize, where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm. If you are in doubt how much workspace to supply, use a generous value of 1 work for the first run. On exit, examine work (1) and use this value for subsequent runs.

The computed matrix \(Q\) differs from the exact result by a matrix \(E\) such that \(\|E\|_{2}=O(\varepsilon)\), where \(\varepsilon\) is the machine precision.

The approximate number of floating-point operations is \((4 / 3)(\text { ihi-ilo })^{3}\).
The complex counterpart of this routine is ?unghr.

\section*{?ormhr}

\section*{Multiplies an arbitrary real matrix \(C\) by the real} orthogonal matrix \(Q\) determined by ?gehrd.

\section*{Syntax}
```

call sormhr ( side, trans, m, n, ilo, ihi, a, lda, tau, c, ldc,
work, lwork, info )
call dormhr ( side, trans, m, n, ilo, ihi, a, lda, tau, c, ldc,
work, lwork, info )

```

\section*{Description}

This routine multiplies a matrix \(C\) by the orthogonal matrix \(Q\) that has been determined by a preceding call to sgehrd/dgehrd. (The routine ?gehrd reduces a real general matrix \(A\) to upper Hessenberg form \(H\) by an orthogonal similarity transformation, \(A=Q H Q^{T}\), and represents the matrix \(Q\) as a product of ihi-ilo elementary reflectors. Here ilo and ihi are values determined by sgebal/dgebal when balancing the matrix; if the matrix has not been balanced, \(i l o=1\) and ihi \(=n\).)

With ?ormhr, you can form one of the matrix products \(Q C, Q^{T} C, C Q\), or \(C Q^{T}\), overwriting the result on \(C\) (which may be any real rectangular matrix).

A common application of ?ormhr is to transform a matrix \(V\) of eigenvectors of \(H\) to the matrix \(Q V\) of eigenvectors of \(A\).

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{side} & CHARACTER*1. Must be 'L' or 'R'. \\
\hline & If side \(=\) ' L ', then the routine forms \(Q C\) or \(Q^{T} \mathrm{C}\). \\
\hline & If side \(=\) ' R ', then the routine forms \(C Q\) or \(C Q^{T}\). \\
\hline \multirow[t]{3}{*}{trans} & CHARACTER*1. Must be 'N' or 'T'. \\
\hline & If trans \(=\) ' N ', then \(Q\) is applied to \(C\). \\
\hline & If trans \(=\) ' \(T\) ', then \(Q^{T}\) is applied to \(C\). \\
\hline m & INTEGER. The number of rows in \(C(m \geq 0)\). \\
\hline n & Integer. The number of columns in \(C(n \geq 0)\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline ilo, ihi & \begin{tabular}{l}
INTEGER. These must be the same parameters ilo and ihi, respectively, as supplied to ?gehrd. \\
If \(m>0\) and side \(=\) 'L', then \(1 \leq i l o \leq i h i \leq m\). \\
If \(m=0\) and side \(=\) 'L', then ilo \(=1\) and \(i h i=0\). \\
If \(n>0\) and side \(='^{\prime}\) ', then \(1 \leq i l o \leq i h i \leq n\). \\
If \(n=0\) and side \(='^{\prime}\) ', then ilo \(=1\) and ihi \(=0\).
\end{tabular} \\
\hline \multirow[t]{12}{*}{a, tau, c, work} & REAL for sormhr \\
\hline & DOUBLE PRECISION for dormhr \\
\hline & Arrays: \\
\hline & a (Ida,*) contains details of the vectors which define the elementary reflectors, as returned by ?gehrd. \\
\hline & The second dimension of a must be at least \(\max (1, m)\) if side \(=' L\) ' and at least \(\max (1, n)\) if side \(='\) ' . \\
\hline & tau (*) contains further details of the elementary reflectors, as returned by \\
\hline & ?gehrd. \\
\hline & \\
\hline & if side \(=\) 'L' and at least \(\max (1, n-1)\) if side \(='^{\prime}\). \\
\hline & \(c(l d c, *)\) contains the \(m\) by \(n\) matrix \(C\). \\
\hline & The second dimension of \(c\) must be at least max \((1, n)\). \\
\hline & work (lwork) is a workspace array. \\
\hline Ida & INTEGER. The first dimension of \(a\); at least \(\max (1, m)\) if side \(=\) ' \(L^{\prime}\) and at least max \((1, n)\) if side \(='^{\prime}\) '. \\
\hline \(1 d \mathrm{c}\) & INTEGER. The first dimension of \(c\); at least max \((1, m)\). \\
\hline \multirow[t]{4}{*}{Iwork} & INTEGER. The size of the work array. \\
\hline & If side \(=\) 'L', lwork \(\geq \max (1, n)\). \\
\hline & If side = 'R', lwork \(\geq \max (1, m)\). \\
\hline & See Application notes for the suggested value of 1 work. \\
\hline \multicolumn{2}{|l|}{Output Parameters} \\
\hline c & \(C\) is overwritten by \(Q C\) or \(Q^{T} C\) or \(C Q^{T}\) or \(C Q\) as specified by side and trans. \\
\hline work(1) & If \(\operatorname{info}=0\), on exit work (1) contains the minimum value of 1 work required for optimum performance. Use this 1 work for subsequent runs. \\
\hline \multirow[t]{3}{*}{info} & INTEGER. \\
\hline & If info \(=0\), the execution is successful. \\
\hline & If info \(=-i\), the \(i\) th parameter had an illegal value. \\
\hline
\end{tabular}

\section*{Application Notes}

For better performance, 1 work should be at least \(n *\) blocksize if side \(=1 \mathrm{~L}\) ' and at least \(m^{\star}\) blocksize if side \(=\) 'R', where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm. If you are in doubt how much workspace to supply, use a generous value of 1 work for the first run. On exit, examine work (1) and use this value for subsequent runs.

The computed matrix \(Q\) differs from the exact result by a matrix \(E\) such that \(\|E\|_{2}=O(\varepsilon)\|C\|_{2}\), where \(\varepsilon\) is the machine precision.

The approximate number of floating-point operations is
\(2 n(\text { ihi-ilo })^{2}\) if side \(=\) 'L';
\(2 m(\text { ihi-ilo })^{2}\) if side \(=\) 'R'.
The complex counterpart of this routine is ?unmhr.

\section*{?unghr}

Generates the complex unitary matrix \(Q\) determined by
?gehrd.

\section*{Syntax}
```

call cunghr ( n, ilo, ihi, a, lda, tau, work, lwork, info )
call zunghr ( n, ilo, ihi, a, lda, tau, work, lwork, info )

```

\section*{Description}

This routine is intended to be used following a call to cgehrd/zgehrd, which reduces a complex matrix \(A\) to upper Hessenberg form \(H\) by a unitary similarity transformation: \(A=Q H Q^{H}\). ? gehrd represents the matrix \(Q\) as a product of ihi-ilo elementary reflectors. Here ilo and ihi are values determined by cgebal/zgebal when balancing the matrix; if the matrix has not been balanced, \(i l o=1\) and \(i h i=n\).

Use the routine ?unghr to generate \(Q\) explicitly as a square matrix. The matrix \(Q\) has the structure:
\[
Q=\left[\begin{array}{ccc}
I & 0 & 0 \\
0 & Q_{22} & 0 \\
0 & 0 & I
\end{array}\right]
\]
where \(Q_{22}\) occupies rows and columns ilo to ihi.

\section*{Input Parameters}
\(n \quad\) integer. The order of the matrix \(Q(n \geq 0)\).
ilo, ihi INTEGER. These must be the same parameters ilo and ihi, respectively, as supplied to ? gehrd. (If \(n>0\), then \(1 \leq i l o \leq i h i \leq n\). If \(n=0\), then ilo=1 and \(i h i=0\).)
a, tau, work COMPLEX for cunghr DOUBLE COMPLEX for zunghr.
Arrays:
a (lda,*) contains details of the vectors which define the elementary reflectors, as returned by ?gehrd.
The second dimension of a must be at least \(\max (1, n)\).
tau(*) contains further details of the elementary reflectors, as returned by ?gehrd.
The dimension of \(t a u\) must be at least \(\max (1, n-1)\).
work (lwork) is a workspace array.
Ida Integer. The first dimension of \(a\); at least \(\max (1, n)\).
lwork INTEGER. The size of the work array; lwork \(\geq \max (1\), ihi-ilo).
See Application notes for the suggested value of 1 work.

\section*{Output Parameters}
a
work(1)
info

Overwritten by the \(n\) by \(n\) unitary matrix \(Q\).
If info \(=0\), on exit work (1) contains the minimum value of 1 work required for optimum performance. Use this 1 work for subsequent runs.

INTEGER.
If \(\operatorname{info}=0\), the execution is successful. If info \(=-i\), the \(i\) th parameter had an illegal value.

\section*{Application Notes}

For better performance, try using lwork = (ihi-ilo)*blocksize, where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm. If you are in doubt how much workspace to supply, use a generous value of 1 work for the first run. On exit, examine work (1) and use this value for subsequent runs.

The computed matrix \(Q\) differs from the exact result by a matrix \(E\) such that \(\|E\|_{2}=O(\varepsilon)\), where \(\varepsilon\) is the machine precision.

The approximate number of real floating-point operations is \((16 / 3)(\text { ihi-ilo })^{3}\).
The real counterpart of this routine is ?orghr.

\section*{? unmhr}

Multiplies an arbitrary complex matrix C by the complex unitary matrix \(Q\) determined by ? gehrd.

\section*{Syntax}
```

call cunmhr ( side, trans, m, n, ilo, ihi, a, lda, tau, c, ldc,
work, lwork, info )
call zunmhr ( side, trans, m, n, ilo, ihi, a, lda, tau, c, ldc,
work, lwork, info )

```

\section*{Description}

This routine multiplies a matrix \(C\) by the unitary matrix \(Q\) that has been determined by a preceding call to cgehrd/zgehrd. (The routine ?gehrd reduces a real general matrix \(A\) to upper Hessenberg form \(H\) by an orthogonal similarity transformation, \(A=Q H Q^{H}\), and represents the matrix \(Q\) as a product of ihi-ilo elementary reflectors. Here ilo and ihi are values determined by cgebal/zgebal when balancing the matrix; if the matrix has not been balanced, \(i l o=1\) and ihi \(=n\).)

With ?unmhr, you can form one of the matrix products \(Q C, Q^{H} C, C Q\), or \(C Q^{H}\), overwriting the result on \(C\) (which may be any complex rectangular matrix). A common application of this routine is to transform a matrix \(V\) of eigenvectors of \(H\) to the matrix \(Q V\) of eigenvectors of \(A\).

\section*{Input Parameters}
```

side CHARACTER*1.Must be 'L' or 'R'.
If side = 'L', then the routine forms QC or Q 炭.
If side= 'R', then the routine forms }CQ\mathrm{ or }C\mp@subsup{Q}{}{H}\mathrm{ .
trans CHARACTER*1.Must be 'N' or 'C'.
If trans='N', then Q is applied to C
If trans = 'T', then Q 咅 applied to C.
m
INTEGER. The number of rows in C (m\geq0).
INTEGER. The number of columns in C( }n\geq0)\mathrm{ .
ilo, ihi INTEGER. These must be the same parameters ilo and ihi, respectively, as
supplied to ?gehrd.
If m>0 and side ='L', then 1\leqilo\leqihi\leqm.

```
\begin{tabular}{|c|c|}
\hline & If \(m=0\) and side \(=\) 'L', then \(i l o=1\) and ihi \(=0\). If \(n>0\) and side \(=\) 'R', then \(1 \leq i l o \leq i h i \leq n\). If \(n=0\) and side \(=\) 'R', then ilo \(=1\) and ihi \(=0\). \\
\hline \multirow[t]{11}{*}{a,tau, c, work} & COMPLEX for cunmhr \\
\hline & DOUBLE COMPLEX for zunmhr. \\
\hline & Arrays: \\
\hline & a (lda,*) contains details of the vectors which define the elementary reflectors, as returned by ?gehrd. \\
\hline & The second dimension of a must be at least \(\max (1, m)\) if side \(=\) ' L ' and at least \(\max (1, n)\) if side \(='^{\prime}\). \\
\hline & \(\operatorname{tau}(*)\) contains further details of the elementary reflectors, as returned by ?gehrd. \\
\hline & The dimension of tau must be at least max (1,m-1) \\
\hline & if side \(=\) 'L' and at least max \((1, n-1)\) if side \(=\) 'R'. \\
\hline & \(c(l d c, *)\) contains the \(m\) by \(n\) matrix \(C\). \\
\hline & The second dimension of \(c\) must be at least max \((1, n)\). \\
\hline & work (lwork) is a workspace array. \\
\hline Ida & INTEGER. The first dimension of \(a\); at least \(\max (1, m)\) if side \(=\) 'L' and at least max \((1, n)\) if side \(=' R\). \\
\hline \(1 d c\) & INTEGER. The first dimension of \(c\); at least max \((1, m)\). \\
\hline \multirow[t]{4}{*}{Iwork} & INTEGER. The size of the work array. \\
\hline & If side \(=\) 'L', lwork \(\geq \max (1, n)\). \\
\hline & If side = 'R', lwork \(\geq \max (1, m)\). \\
\hline & See Application notes for the suggested value of 1 work. \\
\hline \multicolumn{2}{|l|}{Output Parameters} \\
\hline c & \(C\) is overwritten by \(Q C\) or \(Q^{H} C\) or \(C Q^{H}\) or \(C Q\) as specified by side and trans. \\
\hline work(1) & If info \(=0\), on exit work (1) contains the minimum value of 1 work required for optimum performance. Use this lwork for subsequent runs. \\
\hline \multirow[t]{3}{*}{info} & INTEGER. \\
\hline & If info \(=0\), the execution is successful. \\
\hline & If info \(=-i\), the \(i\) th parameter had an illegal value. \\
\hline
\end{tabular}

\section*{Application Notes}

For better performance, 1 work should be at least \(n *\) blocksize if side \(=\) ' L ' and at least \(\mathrm{m}^{*}\) blocksize if side \(=\) ' R ', where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm. If you are in doubt how much workspace to supply, use a generous value of 1 work for the first run. On exit, examine work (1) and use this value for subsequent runs.

The computed matrix \(Q\) differs from the exact result by a matrix \(E\) such that \(\|E\|_{2}=O(\varepsilon)\|C\|_{2}\), where \(\varepsilon\) is the machine precision.

The approximate number of floating-point operations is
\(8 n(\text { ihi-ilo })^{2}\) if side \(=\) L' \(^{2}\);
\(8 m(\text { ihi-ilo })^{2}\) if side \(='^{\prime}\) '.
The real counterpart of this routine is ?ormhr.

\section*{?gebal}

Balances a general matrix to improve the accuracy of computed eigenvalues and eigenvectors.

\section*{Syntax}
```

call sgebal ( job, n, a, lda, ilo, ihi, scale, info )
call dgebal ( job, n, a, lda, ilo, ihi, scale, info )
call cgebal ( job, n, a, lda, ilo, ihi, scale, info )
call zgebal ( job, n, a, lda, ilo, ihi, scale, info )

```

\section*{Description}

This routine balances a matrix \(A\) by performing either or both of the following two similarity transformations:
(1) The routine first attempts to permute \(A\) to block upper triangular form:
\[
P A P^{T}=A^{\prime}=\left[\begin{array}{ccc}
A_{11}^{\prime} & A_{12}^{\prime} & A_{13}^{\prime} \\
0 & A_{22}^{\prime} & A_{23}^{\prime} \\
0 & 0 & A_{33}^{\prime}
\end{array}\right]
\]
where \(P\) is a permutation matrix, and \(A_{11}^{\prime}\) and \(A_{33}^{\prime}\) are upper triangular. The diagonal elements of \(A_{11}^{\prime}\) and \(A_{33}^{\prime}\) are eigenvalues of \(A\). The rest of the eigenvalues of \(A\) are the eigenvalues of the central diagonal block \(A_{22}^{\prime}\), in rows and columns ilo to ihi. Subsequent operations to compute the eigenvalues of \(A\) (or its Schur factorization) need only be applied to these rows and columns; this can save a significant amount of work if \(i l o>1\) and \(i h i<n\). If no suitable permutation exists (as is often the case), the routine sets ilo=1 and ihi=n, and \(A_{22}^{\prime}\) is the whole of \(A\).
(2) The routine applies a diagonal similarity transformation to \(A^{\prime}\), to make the rows and columns of \(A_{22}^{\prime}\) as close in norm as possible:
\[
A^{\prime \prime}=D A^{\prime} D^{-1}=\left[\begin{array}{ccc}
I & 0 & 0 \\
0 & D_{22} & 0 \\
0 & 0 & I
\end{array}\right] \times\left[\begin{array}{ccc}
A_{11}^{\prime} & A_{12}^{\prime} & A_{13}^{\prime} \\
0 & A_{22}^{\prime} & A_{23}^{\prime} \\
0 & 0 & A_{33}^{\prime}
\end{array}\right] \times\left[\begin{array}{ccc}
I & 0 & 0 \\
0 & D_{22}^{-1} & 0 \\
0 & 0 & I
\end{array}\right]
\]

This scaling can reduce the norm of the matrix (that is, \(\left.\left\|A_{22}^{\prime \prime}\right\|<\left\|A_{22}^{\prime}\right\|\right)\), and hence reduce the effect of rounding errors on the accuracy of computed eigenvalues and eigenvectors.

\section*{Input Parameters}
job CHARACTER*1. Must be 'N' or 'P' or 'S' or 'B'.
If job \(={ }^{\prime} N^{\prime}\), then \(A\) is neither permuted nor scaled (but ilo, ihi, and scale get their values).
If job \(=\) ' \(\mathrm{P}^{\prime}\), then \(A\) is permuted but not scaled.
If job='S', then \(A\) is scaled but not permuted.
If \(j o b=' \mathrm{~B}\) ', then \(A\) is both scaled and permuted.
\(n\)
INTEGER. The order of the matrix \(A(n \geq 0)\).
a
REAL for sgebal
DOUBLE PRECISION for dgebal
COMPLEX for cgebal
DOUBLE COMPLEX for zgebal.
Arrays:
a (lda,*) contains the matrix \(A\).
The second dimension of a must be at least \(\max (1, n)\).
\(a\) is not referenced if job \(=I^{\prime} N^{\prime}\).
Ida INTEGER. The first dimension of \(a\); at least \(\max (1, n)\).

\section*{Output Parameters}
ilo, ihi INTEGER. The values ilo and ihi such that on exit \(a(i, j)\) is zero if \(i>j\) and \(1 \leq j<i l o\) or \(i h i<i \leq n\). If job='N' or 'S', then ilo= 1 and ihi= n.
scale REAL for single-precision flavors DOUBLE PRECISION for double-precision flavors Array, DIMENSION at least max \((1, n)\).
Contains details of the permutations and scaling factors.
More precisely, if \(p_{j}\) is the index of the row and column interchanged with row and column \(j\), and \(d_{j}\) is the scaling factor used to balance row and column \(j\), then
scale \((j)=p_{j}\) for \(j=1,2, \ldots\), ilo- 1 , ihi+1, .., \(n\);
scale \((j)=d_{j}\) for \(j=i l o\), ilo \(+1, \ldots\), ihi.
The order in which the interchanges are made is \(n\) to ihi +1 , then 1 to ilo- 1 .
```

info INTEGER.
If info = 0, the execution is successful
If info = -i, the ith parameter had an illegal value.

```

\section*{Application Notes}

The errors are negligible, compared with those in subsequent computations.
If the matrix \(A\) is balanced by this routine, then any eigenvectors computed subsequently are eigenvectors of the matrix \(A^{\prime \prime}\) and hence you must call ? gebak to transform them back to eigenvectors of \(A\).

If the Schur vectors of \(A\) are required, do not call this routine with \(j o b=' S\) ' or ' B ', because then the balancing transformation is not orthogonal (not unitary for complex flavors). If you call this routine with job \(=\) ' \(\mathrm{P}^{\prime}\), then any Schur vectors computed subsequently are Schur vectors of the matrix \(A^{\prime \prime}\), and you'll need to call ?gebak (with side \(=\) ' \({ }^{\prime}\) ') to transform them back to Schur vectors of \(A\).
The total number of floating-point operations is proportional to \(n^{2}\).

\section*{?gebak}

Transforms eigenvectors of a balanced matrix to those of the original nonsymmetric matrix.

\section*{Syntax}
```

call sgebak ( job,side,n,ilo,ihi,scale,m,v,ldv,info )
call dgebak ( job,side,n,ilo,ihi,scale,m,v,ldv,info )
call cgebak ( job,side,n,ilo,ihi,scale,m,v,ldv,info )

```
```

call zgebak ( job,side,n,ilo,ihi,scale,m,v,ldv,info )

```
```

call zgebak ( job,side,n,ilo,ihi,scale,m,v,ldv,info )

```

\section*{Description}

This routine is intended to be used after a matrix \(A\) has been balanced by a call to ?gebal, and eigenvectors of the balanced matrix \(A_{22}^{\prime \prime}\) have subsequently been computed. For a description of balancing, see ? gebal. The balanced matrix \(A^{\prime \prime}\) is obtained as \(A^{\prime \prime}=\) \(D P A P^{T} D^{-1}\), where \(P\) is a permutation matrix and \(D\) is a diagonal scaling matrix. This routine transforms the eigenvectors as follows:
if \(x\) is a right eigenvector of \(A^{\prime \prime}\), then \(P^{T} D^{-1} x\) is a right eigenvector of \(A\); if \(x\) is a left eigenvector of \(A^{\prime \prime}\), then \(P^{T} D y\) is a left eigenvector of \(A\).

\section*{Input Parameters}
```

job CHARACTER*1.Must be 'N' or 'P' or 'S' or 'B'.
The same parameter job as supplied to ?gebal.
side CHARACTER*1.Must be 'L' or 'R'.
If side = 'L', then left eigenvectors are transformed.
If side= 'R', then right eigenvectors are transformed.
INTEGER. The number of rows of the matrix of eigenvectors ( }n\geq0)\mathrm{ .
ilo, ihi INTEGER. The values ilo and ihi, as returned by ?gebal. (If n>0, then 1\leq
ilo\leqihi\leqn;
if n=0, then ilo=1 and ihi=0.)
scale REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors
Array, DIMENSION at least max(1,n).

```

Contains details of the permutations and/or the scaling factors used to balance the original general matrix, as returned by ?gebal.
m
V
ldv

\section*{Output Parameters}
\(v \quad\) Overwritten by the transformed eigenvectors.
info
REAL for sgebak
DOUBLE PRECISION for dgebak
COMPLEX for cgebak
DOUBLE COMPLEX for zgebak.
Arrays: The second dimension of \(v\) must be at least \(\max (1, m)\).

INTEGER. The first dimension of \(v\); at least max \((1, n)\).

INTEGER.

INTEGER. The number of columns of the matrix of eigenvectors (\(m \geq 0\)).
\(v(l d v, *)\) contains the matrix of left or right eigenvectors to be transformed.

If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\) th parameter had an illegal value.

\section*{Application Notes}

The errors in this routine are negligible.
The approximate number of floating-point operations is approximately proportional to \(m^{\star} n\).

\section*{?hseqr}

Computes all eigenvalues and (optionally) the Schur factorization of a matrix reduced to Hessenberg form.

\section*{Syntax}
call shseqr (job, compz,n,ilo,ihi,h,ldh,wr,wi,z,ldz,work,lwork, info)
call dhseqr (job, compz,n,ilo,ihi,h,ldh,wr,wi,z,ldz,work,lwork,info)
call chseqr (job, compz,n,ilo,ihi,h,ldh,w,z,ldz,work,lwork,info)
call zhseqr (job, compz,n,ilo,ihi,h,ldh,w,z,ldz,work,lwork,info)

\section*{Description}

This routine computes all the eigenvalues, and optionally the Schur factorization, of an upper Hessenberg matrix \(H\) : \(H=Z T Z^{H}\), where \(T\) is an upper triangular (or, for real flavors, quasi-triangular) matrix (the Schur form of \(H\)), and \(Z\) is the unitary or orthogonal matrix whose columns are the Schur vectors \(z_{i}\).

You can also use this routine to compute the Schur factorization of a general matrix \(A\) which has been reduced to upper Hessenberg form \(H\) :
\(A=Q H Q^{H}\), where \(Q\) is unitary (orthogonal for real flavors);
\(A=(Q Z) T(Q Z)^{H}\).
In this case, after reducing \(A\) to Hessenberg form by ? gehrd, call ?orghr to form \(Q\) explicitly and then pass \(Q\) to ?hseqr with compz \(=\prime \mathrm{V} '\).

You can also call ?gebal to balance the original matrix before reducing it to Hessenberg form by ?hseqr, so that the Hessenberg matrix \(H\) will have the structure:
\[
\left[\begin{array}{ccc}
H_{11} & H_{12} & H_{13} \\
0 & H_{22} & H_{23} \\
0 & 0 & H_{33}
\end{array}\right]
\]
where \(H_{11}\) and \(H_{33}\) are upper triangular.

If so, only the central diagonal block \(H_{22}\) (in rows and columns ilo to ihi) needs to be further reduced to Schur form (the blocks \(H_{12}\) and \(H_{23}\) are also affected). Therefore the values of ilo and ihi can be supplied to ?hseqr directly. Also, after calling this routine you must call ?gebak to permute the Schur vectors of the balanced matrix to those of the original matrix.

If ? gebal has not been called, however, then ilo must be set to 1 and ihi to \(n\). Note that if the Schur factorization of \(A\) is required, ? gebal must not be called with job='S' or 'B', because the balancing transformation is not unitary (for real flavors, it is not orthogonal).
?hseqr uses a multishift form of the upper Hessenberg \(Q R\) algorithm. The Schur vectors are normalized so that \(\left\|z_{i}\right\|_{2}=1\), but are determined only to within a complex factor of absolute value 1 (for the real flavors, to within a factor \(\pm 1\)).

Input Parameters
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{job} & CHARACTER*1. Must be 'E' or 'S'. \\
\hline & If \(j 0 b=1 E\) ', then eigenvalues only are required. \\
\hline & If job \(=\) 'S', then the Schur form \(T\) is required. \\
\hline \multirow[t]{4}{*}{compz} & CHARACTER*1. Must be 'N' or 'I' or 'V'. \\
\hline & If compz \(=\) ' \(N\) ', then no Schur vectors are computed (and the array \(z\) is not referenced). \\
\hline & If compz ='I', then the Schur vectors of \(H\) are computed (and the array \(z\) is initialized by the routine). \\
\hline & If compz \(=\) ' \(V\) ', then the Schur vectors of \(A\) are computed (and the array \(z\) must contain the matrix \(Q\) on entry). \\
\hline n & integer. The order of the matrix \(H\) (\(n \geq 0)\). \\
\hline ilo, ihi & INTEGER. If \(A\) has been balanced by ?gebal, then ilo and ihi must contain the values returned by ?gebal. Otherwise, ilo must be set to 1 and ihi to \(n\). \\
\hline \multirow[t]{10}{*}{h, z, work} & REAL for shseqr \\
\hline & DOUBLE PRECISION for dhseqr \\
\hline & COMPLEX for chseqr \\
\hline & double COMPLEX for zhseqr. \\
\hline & Arrays: \\
\hline & \(h(1 d h, *)\) The \(n\) by \(n\) upper Hessenberg matrix \(H\). \\
\hline & The second dimension of \(h\) must be at least max (\(1, n\)). \\
\hline & \(z(1 d z, *)\) \\
\hline & If compz \(=\) ' \(V\) ', then \(z\) must contain the matrix \(Q\) from the reduction to Hessenberg form. \\
\hline & If compz \(=\) ' I ', then \(z\) need not be set. \\
\hline
\end{tabular}

If \(c o m p z=' N\) ', then \(z\) is not referenced.
The second dimension of \(z\) must be at least \(\max (1, n)\) if \(c o m p z=' V '\) or 'I'; at least 1 if \(c o m p z=N^{\prime}\).
work (lwork) is a workspace array.
The dimension of work must be at least max \((1, n)\).
INTEGER. The first dimension of \(h\); at least \(\max (1, n)\).
INTEGER. The first dimension of \(z\);
If compz \(={ }^{\prime} N\) ', then \(I d z \geq 1\).
If \(c o m p z=' V\) ' or 'I', then \(I d z \geq \max (1, n)\).
INTEGER. The dimension of the array work.
1 work \(\geq \max (1, n)\). If 1 work \(=-1\), then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to lwork is issued by xerbla.

\section*{Output Parameters}

COMPLEX for chseqr DOUBLE COMPLEX for zhseqr.
Array, DIMENSION at least max \((1, n)\).
Contains the computed eigenvalues, unless info>0. The eigenvalues are stored in the same order as on the diagonal of the Schur form \(T\) (if computed).

REAL for shseqr
DOUBLE PRECISION for dhseqr
Arrays, DIMENSION at least max \((1, n)\) each.
Contain the real and imaginary parts, respectively, of the computed eigenvalues, unless info \(>0\). Complex conjugate pairs of eigenvalues appear consecutively with the eigenvalue having positive imaginary part first. The eigenvalues are stored in the same order as on the diagonal of the Schur form \(T\) (if computed).
If compz \(=\) 'V' or 'I', then \(z\) contains the unitary (orthogonal) matrix of the required Schur vectors, unless info \(>0\). If compz \(=\) ' \(N\) ', then \(z\) is not referenced.

On exit, if info \(=0\), then work (1) returns the optimal Iwork.

\section*{info INTEGER.}

If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\) th parameter had an illegal value.
If info \(>0\), the algorithm has failed to find all the eigenvalues after a total \(30(i h i-i l o+1)\) iterations. If info \(=i\), elements \(1,2, \ldots, i l o-1\) and \(i+1, i+2\), \(\ldots, n\) of wr and wi contain the real and imaginary parts of the eigenvalues which have been found.

\section*{Application Notes}

The computed Schur factorization is the exact factorization of a nearby matrix \(H+E\), where \(\|E\|_{2}\) \(<O(\varepsilon)\|H\|_{2} / s_{i}\), and \(\varepsilon\) is the machine precision.
If \(\lambda_{i}\) is an exact eigenvalue, and \(\mu_{i}\) is the corresponding computed value, then \(\left|\lambda_{i}-\mu_{i}\right| \leq c(n) \varepsilon\) \(\|H\|_{2} / s_{i}\) where \(c(n)\) is a modestly increasing function of \(n\), and \(s_{i}\) is the reciprocal condition number of \(\lambda_{i}\). You can compute the condition numbers \(s_{i}\) by calling ?trsna.

The total number of floating-point operations depends on how rapidly the algorithm converges; typical numbers are as follows.
\begin{tabular}{ll}
If only eigenvalues are computed: & \(7 n^{3}\) for real flavors \\
& \(25 n^{3}\) for complex flavors. \\
If the Schur form is computed: & \(10 n^{3}\) for real flavors \\
& \(35 n^{3}\) for complex flavors. \\
If the full Schur factorization is computed: & \(20 n^{3}\) for real flavors \\
& \(70 n^{3}\) for complex flavors.
\end{tabular}

\section*{?hsein}

Computes selected eigenvectors of an upper
Hessenberg matrix that correspond to specified eigenvalues.

\section*{Syntax}
```

call shsein ( job, eigsrc, initv, select, n, h, ldh, wr, wi, vl,
ldvl, vr, ldvr, mm, m, work, ifaill, ifailr, info )
call dhsein ( job, eigsrc, initv, select, n, h, ldh, wr, wi, vl,
ldvl, vr, ldvr, mm, m, work, ifaill, ifailr, info )
call chsein ( job, eigsrc, initv, select, n, h, ldh, w, vl,
ldvl, vr, ldvr, mm, m, work, rwork, ifaill, ifailr, info )
call zhsein ( job, eigsrc, initv, select, n, h, ldh, w, vl,
ldvl, vr, ldvr, mm, m, work, rwork, ifaill, ifailr, info )

```

\section*{Description}

This routine computes left and/or right eigenvectors of an upper Hessenberg matrix \(H\), corresponding to selected eigenvalues.

The right eigenvector \(x\) and the left eigenvector \(y\), corresponding to an eigenvalue \(\lambda\), are defined by: \(H x=\lambda x\) and \(y^{H} H=\lambda y^{H}\) (or \(H^{H} y=\lambda^{*} y\)).
Here \(\lambda^{*}\) denotes the conjugate of \(\lambda\).
The eigenvectors are computed by inverse iteration. They are scaled so that, for a real eigenvector \(x, \max \left|x_{i}\right|=1\), and for a complex eigenvector, \(\max \left(\left|\operatorname{Rex} x_{i}\right|+\left|\operatorname{Im} x_{i}\right|\right)=1\).

If \(H\) has been formed by reduction of a general matrix A to upper Hessenberg form, then eigenvectors of \(H\) may be transformed to eigenvectors of \(A\) by ?ormhr or ?unmhr.

\section*{Input Parameters}
```

job CHARACTER*1. Must be 'R' or 'L' or 'B'.
If job='R', then only right eigenvectors are computed.
If job='L', then only left eigenvectors are computed.
If job ='B', then all eigenvectors are computed.
eigsrc CHARACTER*1. Must be 'Q' or 'N'.
If eigsrc ='Q', then the eigenvalues of H}\mathrm{ were found using ?hseqr; thus if
H}\mathrm{ has any zero sub-diagonal elements (and so is block triangular), then the jth

```
\begin{tabular}{|c|c|}
\hline & eigenvalue can be assumed to be an eigenvalue of the block containing the \(j\) th row/column. This property allows the routine to perform inverse iteration on just one diagonal block. \\
\hline & If eigsrc \(=\) ' \(\mathrm{N}^{\prime}\), then no such assumption is made and the routine performs inverse iteration using the whole matrix. \\
\hline initv & \begin{tabular}{l}
CHARACTER*1. Must be ' \(N\) ' or 'U'. \\
If initv \(=\) ' N ', then no initial estimates for the selected eigenvectors are supplied. \\
If initv='U', then initial estimates for the selected eigenvectors are supplied in \(v l\) and/or vr.
\end{tabular} \\
\hline select & \begin{tabular}{l}
LOGICAL. \\
Array, DIMENSION at least max \((1, n)\). \\
Specifies which eigenvectors are to be computed. \\
For real flavors: \\
To obtain the real eigenvector corresponding to the real eigenvalue \(w r(j)\), set select(j) to .TRUE. \\
To select the complex eigenvector corresponding to the complex eigenvalue (\(w r(j), w i(j))\) with complex conjugate (\(w r(j+1), w i(j+1))\), set select \((j)\) and/or select \((j+1)\) to . TRUE.; the eigenvector corresponding to the first eigenvalue in the pair is computed. \\
For complex flavors: \\
To select the eigenvector corresponding to the eigenvalue \(w(j)\), set select (j) to . TRUE.
\end{tabular} \\
\hline & integer. The order of the matrix \(H(\mathrm{n} \geq 0)\). \\
\hline h, vl, vr, work & \begin{tabular}{l}
REAL for shsein \\
DOUBLE PRECISION for dhsein \\
COMPLEX for chsein \\
double complex for zhsein. \\
Arrays: \\
\(h(l d h, *)\) The \(n\) by \(n\) upper Hessenberg matrix \(H\). \\
The second dimension of \(h\) must be at least \(\max (1, n)\).
\end{tabular} \\
\hline & \begin{tabular}{l}
vl(ldvl,*) \\
If initv='V' and job='L' or 'B', then vl must contain starting vectors for inverse iteration for the left eigenvectors. Each starting vector must be stored in the same column or columns as will be used to store the corresponding eigenvector. \\
If initv='N', then vl need not be set.
\end{tabular} \\
\hline
\end{tabular}

The second dimension of vl must be at least \(\max (1, m m)\) if \(j o b=\) ' L ' or ' B ' and at least 1 if job='R'.
The array \(v l\) is not referenced if \(j o b=\prime^{\prime} R^{\prime}\).
vr(ldvr,*)
If initv='V' and job='R' or 'B', then vr must contain starting vectors for inverse iteration for the right eigenvectors. Each starting vector must be stored in the same column or columns as will be used to store the corresponding eigenvector.
If initv='N', then vr need not be set.
The second dimension of vr must be at least \(\max (1, m m)\) if \(j o b=' R\) ' or ' \(B\) ' and at least 1 if job='L'.
The array \(v r\) is not referenced if \(j o b=' L '\).
work (*) is a workspace array.
DIMENSION at least max \((1, n *(n+2))\) for real flavors and at least max \((1, n * n)\) for complex flavors.

INTEGER. The first dimension of \(h\); at least \(\max (1, n)\).
COMPLEX for chsein
DOUBLE COMPLEX for zhsein.
Array, DIMENSION at least max \((1, n)\).
Contains the eigenvalues of the matrix \(H\).
If eigsrc ='Q', the array must be exactly as returned by ?hseqr.
REAL for shsein
DOUBLE PRECISION for dhsein
Arrays, DIMENSION at least max \((1, n)\) each.
Contain the real and imaginary parts, respectively, of the eigenvalues of the matrix \(H\). Complex conjugate pairs of values must be stored in consecutive elements of the arrays. If eigsrc \(=\) ' \(Q\) ', the arrays must be exactly as returned by ?hseqr.

INTEGER. The first dimension of \(v 1\).
If \(j o b=\) 'L' or 'B', \(l d v l \geq \max (1, n)\).
If job='R', ldvl \(\geq 1\).
INTEGER. The first dimension of \(v r\).
If job='R' or 'B', Idvr \(\geq \max (1, n)\).
If job='L', ldvr \(\geq 1\).
INTEGER. The number of columns in vl and/or vr.
Must be at least \(m\), the actual number of columns required (see Output Parameters below).

For real flavors, \(m\) is obtained by counting 1 for each selected real eigenvector and 2 for each selected complex eigenvector (see select).
For complex flavors, \(m\) is the number of selected eigenvectors (see select). Constraint: \(0 \leq m m \leq n\).
rwork
REAL for chsein
DOUBLE PRECISION for zhsein.
Array, DIMENSION at least max \((1, n)\)

\section*{Output Parameters}
select Overwritten for real flavors only. If a complex eigenvector was selected as specified above, then select \((j)\) is set to . TRUE. and select \((j+1)\) to . FALSE .
w
The real parts of some elements of \(w\) may be modified, as close eigenvalues are perturbed slightly in searching for independent eigenvectors.
\(w r \quad\) Some elements of wr may be modified, as close eigenvalues are perturbed slightly in searching for independent eigenvectors.
\(v l, ~ v r \quad\) If \(j o b=' L '\) or 'B', vl contains the computed left eigenvectors (as specified by select).
If job='R' or 'B', vr contains the computed right eigenvectors (as specified by select).

The eigenvectors are stored consecutively in the columns of the array, in the same order as their eigenvalues.
For real flavors: a real eigenvector corresponding to a selected real eigenvalue occupies one column;
a complex eigenvector corresponding to a selected complex eigenvalue occupies two columns: the first column holds the real part and the second column holds the imaginary part.
m
INTEGER. For real flavors: the number of columns of \(v l\) and/or vr required to store the selected eigenvectors.
For complex flavors: the number of selected eigenvectors.
ifaill,ifailr INTEGER.
Arrays, DIMENSION at least max \((1, \mathrm{~mm})\) each.
ifaill(i) \(=0\) if the \(i\) th column of vl converged;
ifaill (i) \(=j>0\) if the eigenvector stored in the \(i\) th column of \(v l\)
(corresponding to the \(j\) th eigenvalue) failed to converge.
ifailr(i) \(=0\) if the \(i\) th column of vr converged;
ifailr(i) \(=j>0\) if the eigenvector stored in the \(i\) th column of \(v r\)
(corresponding to the \(j\) th eigenvalue) failed to converge.
For real flavors: if the \(i\) th and (\(i+1\))th columns of \(v l\) contain a selected complex eigenvector, then ifaill(i) and ifaill (i+1) are set to the same value. A similar rule holds for vr and ifailr.

The array ifaill is not referenced if job='R'. The array ifailr is not referenced if job='L'.
info INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\) th parameter had an illegal value.
If info \(>0\), then \(i\) eigenvectors (as indicated by the parameters ifaill and/or ifailr above) failed to converge. The corresponding columns of \(v l\) and/or vr contain no useful information.

\section*{Application Notes}

Each computed right eigenvector \(x_{i}\) is the exact eigenvector of a nearby matrix \(A+E_{i}\), such that \(\left\|E_{i}\right\|<O(\varepsilon)\|A\|\). Hence the residual is small: \(\left\|A x_{i}-\lambda_{i} x_{i}\right\|=O(\varepsilon)\|A\|\).

However, eigenvectors corresponding to close or coincident eigenvalues may not accurately span the relevant subspaces.

Similar remarks apply to computed left eigenvectors.

\section*{?trevc}

Computes selected eigenvectors of an upper (quasi-)
triangular matrix computed by ?hseqr.

\section*{Syntax}
```

call strevc ( side, howmny, select, n, t, ldt, vl, ldvl, vr, ldvr,
mm, m, work, info )
call dtrevc ( side, howmny, select, n, t, ldt, vl, ldvl, vr, ldvr,
mm, m, work, info )
call ctrevc ( side, howmny, select, n, t, ldt, vl, ldvl, vr, ldvr
mm, m, work, rwork, info )
call ztrevc ( side, howmny, select, n, t, ldt, vl, ldvl, vr, ldvr,
mm, m, work, rwork, info )

```

\section*{Description}

This routine computes some or all of the right and/or left eigenvectors of an upper triangular matrix \(T\) (or, for real flavors, an upper quasi-triangular matrix \(T\)). Matrices of this type are produced by the Schur factorization of a general matrix: \(A=Q T Q^{H}\), as computed by ?hseqr.

The right eigenvector \(x\) and the left eigenvector \(y\) of \(T\) corresponding to an eigenvalue \(w\), are defined by:
\(T x=w x, \quad y^{H} T=w y^{H}\)
where \(y^{H}\) denotes the conjugate transpose of \(y\).
The eigenvalues are not input to this routine, but are read directly from the diagonal blocks of \(T\).
This routine returns the matrices \(X\) and/or \(Y\) of right and left eigenvectors of \(T\), or the products \(Q X\) and/or \(Q Y\), where \(Q\) is an input matrix.
If \(Q\) is the orthogonal/unitary factor that reduces a matrix \(A\) to Schur form \(T\), then \(Q X\) and \(Q Y\) are the matrices of right and left eigenvectors of \(A\).

\section*{Input Parameters}
```

side
CHARACTER*1. Must be 'R' or 'L' or 'B'.
If side ='R', then only right eigenvectors are computed.
If side='L', then only left eigenvectors are computed.
If side='B', then all eigenvectors are computed.

```
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{howmny} & CHARACTER*1. Must be 'A' or 'B' or 'S'. \\
\hline & If howmny = 'A', then all eigenvectors (as specified by side) are computed. If howmny = ' B', then all eigenvectors (as specified by side) are computed and backtransformed by the matrices supplied in vl and vr . If howmny \(=\) ' S ', then selected eigenvectors (as specified by side and select) are computed. \\
\hline \multirow[t]{9}{*}{select} & LOGICAL. \\
\hline & Array, DIMENSION at least max (\(1, n\)). \\
\hline & If howmny \(=\) 'S', select specifies which eigenvectors are to be computed. \\
\hline & If howmny = 'A' or 'B', select is not referenced. \\
\hline & For real flavors: \\
\hline & If \(\omega_{j}\) is a real eigenvalue, the corresponding real eigenvector is computed if select \((j)\) is .TRUE.. \\
\hline & If \(\omega_{j}\) and \(\omega_{j+l}\) are the real and imaginary parts of a complex eigenvalue, the corresponding complex eigenvector is computed if either select \((j)\) or select \((j+1)\) is .TRUE., and on exit select \((j)\) is set to .TRUE. and select \((j+1)\) is set to . FALSE.. \\
\hline & For complex flavors: \\
\hline & The eigenvector corresponding to the \(j\)-th eigenvalue is computed if select \((j)\) is .TRUE.. \\
\hline \(n\) & INTEGER. The order of the matrix \(T(n \geq 0)\). \\
\hline \multirow[t]{14}{*}{\(t, v 1, v r, w o r k\)} & REAL for strevc \\
\hline & DOUBLE PRECISION for dtrevc \\
\hline & COMPLEX for ctrevc \\
\hline & DOUBLE COMPLEX for ztrevc. \\
\hline & Arrays: \\
\hline & \(t\) (ldt,*) contains the \(n\) by \(n\) matrix \(T\) in Schur canonical form. \\
\hline & The second dimension of \(t\) must be at least max \((1, n)\). \\
\hline & \(v \mathrm{l}\) (ldvl,*) \\
\hline & If howmny \(=\) ' B ' and side \(=\) ' L ' or ' B ', then \(v \mathrm{l}\) must contain an n by matrix \\
\hline & \begin{tabular}{l}
\(Q\) (usually the matrix of Schur vectors returned by ?hseqr). \\
If howmny ='A' or 'S', then vl need not be set.
\end{tabular} \\
\hline & The second dimension of \(v l\) must be at least \(\max (1, \mathrm{~mm})\) if side \(=\) ' L ' or ' B ' and at least 1 if side \(='^{\prime}\) '. \\
\hline & The array vl is not referenced if side = 'R'. \\
\hline & vr (ldvr,*) \\
\hline & If howmny \(=\) ' B ' and side \(=\) ' R ' or ' B ', then vr must contain an n by n matrix \(Q\) (usually the matrix of Schur vectors returned by ?hseqr). . \\
\hline
\end{tabular}

If howmny ='A' or 'S', then vr need not be set.
The second dimension of \(v r\) must be at least \(\max (1, \mathrm{~mm})\) if side \(=\) ' R ' or ' B ' and at least 1 if side \(=\) ' L .
The array \(v r\) is not referenced if side \(=1 \mathrm{~L}\) '.
work (*) is a workspace array.
DIMENSION at least max \(\left(1,3 *_{n}\right)\) for real flavors and at least max \(\left(1,2 *_{n}\right)\) for complex flavors.
integer. The first dimension of \(t\); at least \(\max (1, n)\).
INTEGER. The first dimension of vl .
If side \(=\) 'L' or ' B ', \(l d v \mathrm{l} \geq \mathrm{max}(1, \mathrm{n})\).
If side ='R', ldvl \(\geq 1\).
ldvr INTEGER. The first dimension of vr.
If side \(=\) 'R' or ' \(B\) ', \(l d v r \geq \max (1, n)\).
If side \(=\) 'L', \(1 d v r \geq 1\).
INTEGER. The number of columns in the arrays \(v 1\) and/or vr. Must be at least \(m\) (the precise number of columns required). If howmny \(=\) ' \(A\) ' or ' \(B\) ', \(m=n\). If howmy \(=\) ' S : : for real flavors, \(m\) is obtained by counting 1 for each selected real eigenvector and 2 for each selected complex eigenvector;
for complex flavors, \(m\) is the number of selected eigenvectors (see select). Constraint: \(0 \leq m \leq n\).
rwork REAL for ctrevc
DOUBLE PRECISION for ztrevc.
Workspace array, DIMENSION at least max \((1, n)\).

\section*{Output Parameters}
select
vl, vr

If a complex eigenvector of a real matrix was selected as specified above, then select \((j)\) is set to . TRUE. and select \((j+1)\) to . FALSE.

If side \(=\) ' L ' or ' B ', vl contains the computed left eigenvectors (as specified by howmny and select).
If side ='R' or 'B', vr contains the computed right eigenvectors (as specified by howmy and select).
The eigenvectors are stored consecutively in the columns of the array, in the same order as their eigenvalues.
For real flavors: corresponding to each real eigenvalue is a real eigenvector,
occupying one column; corresponding to each complex conjugate pair of eigenvalues is a complex eigenvector, occupying two columns; the first column holds the real part and the second column holds the imaginary part.

INTEGER.
For complex flavors: the number of selected eigenvectors. If howmny \(=\) ' A ' or ' B ', \(m\) is set to \(n\).
For real flavors: the number of columns of \(v 1\) and/or vr actually used to store the selected eigenvectors.
If howmny = 'A' or 'B', mis set to \(n\).
info INTEGER. If info \(=0\), the execution is successful. If info \(=-i\), the \(i\) th parameter had an illegal value.

\section*{Application Notes}

If \(x_{i}\) is an exact right eigenvector and \(y_{i}\) is the corresponding computed eigenvector, then the angle \(\theta\left(y_{i}, x_{i}\right)\) between them is bounded as follows: \(\theta\left(y_{i}, x_{i}\right) \leq\left(\mathrm{c}(\mathrm{n}) \varepsilon\|T\|_{2}\right) / \mathrm{sep}_{i}\) where sep \({ }_{i}\) is the reciprocal condition number
of \(x_{i}\). The condition number sep \({ }_{i}\) may be computed by calling ?trsna.

\section*{?trsna}

Estimates condition numbers for specified eigenvalues and right eigenvectors of an upper (quasi-) triangular matrix.

\section*{Syntax}
```

call strsna ( job, howmny, select, n, t, ldt, vl, ldvl, vr, ldvr,
s, sep, mm, m, work, ldwork, iwork, info )
call dtrsna ( job, howmny, select, n, t, ldt, vl, ldvl, vr, ldvr,
s, sep, mm, m, work, ldwork, iwork, info )
call ctrsna ( job, howmny, select, n, t, ldt, vl, ldvl, vr, ldvr,
s, sep, mm, m, work, ldwork, rwork, info )
call ztrsna ( job, howmny, select, n, t, ldt, vl, ldvl, vr, ldvr,
s, sep, mm, m, work, ldwork, rwork, info )

```

\section*{Description}

This routine estimates condition numbers for specified eigenvalues and/or right eigenvectors of an upper triangular matrix \(T\) (or, for real flavors, upper quasi-triangular matrix \(T\) in canonical Schur form). These are the same as the condition numbers of the eigenvalues and right eigenvectors of an original matrix \(A=Z T Z^{H}\) (with unitary or, for real flavors, orthogonal \(Z\)), from which \(T\) may have been derived.

The routine computes the reciprocal of the condition number of an eigenvalue \(\lambda_{i}\) as \(s_{i}=\) \(\left|v^{H} u\right| /\left(\|u\|_{E}\|v\|_{E}\right)\), where \(u\) and \(v\) are the right and left eigenvectors of \(T\), respectively, corresponding to \(\lambda_{i}\). This reciprocal condition number always lies between zero (ill-conditioned) and one (well-conditioned).

An approximate error estimate for a computed eigenvalue \(\lambda_{i}\) is then given by \(\varepsilon\|T\| / s_{i}\), where \(\varepsilon\) is the machine precision.

To estimate the reciprocal of the condition number of the right eigenvector corresponding to \(\lambda_{i}\), the routine first calls ? trexc to reorder the eigenvalues so that \(\lambda_{i}\) is in the leading position:
\[
T=Q\left[\begin{array}{cc}
\lambda_{i} & C^{H} \\
0 & T_{22}
\end{array}\right] Q^{H}
\]

The reciprocal condition number of the eigenvector is then estimated as sep \({ }_{i}\), the smallest singular value of the matrix \(T_{22}-\lambda_{i} I\). This number ranges from zero (ill-conditioned) to very large (well-conditioned).

An approximate error estimate for a computed right eigenvector \(u\) corresponding to \(\lambda_{i}\) is then given by \(\varepsilon\|T\| /\) sep \(_{i}\).

\section*{Input Parameters}
```

job CHARACTER*1.Must be 'E' or 'V' or 'B'.
If job =' E', then condition numbers for eigenvalues only are computed.
If job ='V', then condition numbers for eigenvectors only are computed.
If job=' B', then condition numbers for both eigenvalues and eigenvectors are
computed.
howmny CHARACTER*1. Must be 'A' or 'S'.
If howmny ='A', then the condition numbers for all eigenpairs are computed.
If howmny='S', then condition numbers for selected eigenpairs (as specified
by select) are computed.
select LOGICAL.
Array, DIMENSION at least max (1,n) if howmny='S' and at least 1 otherwise.
Specifies the eigenpairs for which condition numbers are to be computed if
howmny= 'S'.
For real flavors:
To select condition numbers for the eigenpair corresponding to the real
eigenvalue }\mp@subsup{\lambda}{j}{}\mathrm{ , select (j) must be set .TRUE.; to select condition numbers for
the eigenpair corresponding to a complex conjugate pair of eigenvalues }\mp@subsup{\lambda}{j}{}\mathrm{ and
\lambdaj+1}\mathrm{ , select (j) and/or select(j+1) must be set .TRUE .
For complex flavors:
To select condition numbers for the eigenpair corresponding to the eigenvalue
\lambdaj}\mathrm{ , select(j) must be set .TRUE.
select is not referenced if howmny='A'.
n
INTEGER. The order of the matrix T( }n\geq0)\mathrm{ .
t,vl,vr,work REAL for strsna
DOUBLE PRECISION for dtrsna
COMPLEX for ctrsna
DOUBLE COMPLEX for ztrsna.
Arrays:
t(ldt,*) contains the n by n matrix T.
The second dimension of t must be at least max(1,n).

```
vl(ldvl,*)
If job ='E' or 'B', then vl must contain the left eigenvectors of \(T\) (or of any matrix \(Q T Q^{H}\) with \(Q\) unitary or orthogonal) corresponding to the eigenpairs specified by howmny and select. The eigenvectors must be stored in consecutive columns of \(v l\), as returned by ?trevc or ?hsein. The second dimension of \(v l\) must be at least \(\max (1, m m)\) if \(j o b=' E\) ' or ' \(B\) ' and at least 1 if job='v'. The array \(v l\) is not referenced if \(j o b=' V '\).
vr(ldvr,*)
If job \(=\) ' E' or ' B', then vr must contain the right eigenvectors of \(T\) (or of any matrix \(Q T Q^{H}\) with \(Q\) unitary or orthogonal) corresponding to the eigenpairs specified by howmny and select. The eigenvectors must be stored in consecutive columns of \(v r\), as returned by ?trevc or ?hsein. The second dimension of \(v r\) must be at least \(\max (1, m m)\) if \(j o b=' E\) ' or ' \(B\) ' and at least 1 if job='V'. The array \(v r\) is not referenced if \(j o b=' \mathrm{~V}\) '.
work (ldwork,*) is a workspace array.
The second dimension of work must be at least \(\max (1, n+1)\) for complex flavors and at least \(\max (1, n+6)\) for real flavors if \(j o b=V^{\prime} V^{\prime}\) or ' \(B^{\prime}\); at least 1 if \(j o b=' E\) '. The array work is not referenced if job \(={ }^{\prime} \mathrm{E}\) '.

INTEGER. The first dimension of \(t\); at least \(\max (1, n)\).

INTEGER. The first dimension of \(v 1\).
If job='E' or 'B', \(l d v l \geq \max (1, n)\).
If \(j o b='^{\prime}\) ', ldvl \(\geq 1\).
INTEGER. The first dimension of \(v r\).
If \(j o b=' E\) ' or'B', \(l d v r \geq \max (1, n)\).
If \(j o b='^{\prime}\) ', ldvr \(\geq 1\).
INTEGER. The number of elements in the arrays \(s\) and \(s e p\), and the number of columns in \(v l\) and \(v r\) (if used). Must be at least \(m\) (the precise number required).
If howmny =' A ',\(m=n\);
if howmny \(=\) ' S ', for real flavors \(m\) is obtained by counting 1 for each selected real eigenvalue and 2 for each selected complex conjugate pair of eigenvalues. for complex flavors \(m\) is the number of selected eigenpairs (see select).
Constraint: \(0 \leq m \leq n\).
\begin{tabular}{ll}
Idwork & INTEGER. The first dimension of work. \\
& If job='V' or 'B', Idwork \(\geq \max (1, n)\). \\
If job='E', Idwork \(\geq 1\).
\end{tabular}

\section*{Output Parameters}

m
sep REAL for single-precision flavors DOUBLE PRECISION for double-precision flavors.
Array, DIMENSION at least max \((1, \mathrm{~mm})\) if job \(=' V\) ' or 'B' and at least 1 if job='E'.
Contains the estimated reciprocal condition numbers of the selected right eigenvectors if job \(=\) 'V' or ' B ', stored in consecutive elements of the array. For real flavors: for a complex eigenvector, two consecutive elements of sep are set to the same value; if the eigenvalues cannot be reordered to compute \(\operatorname{sep}(j)\), then \(\operatorname{sep}(j)\) is set to zero; this can only occur when the true value would be very small anyway. The array sep is not referenced if job \(={ }^{\prime} \mathrm{E}\) '.
REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
Array, DIMENSION at least \(\max (1, \mathrm{~mm})\) if \(j \circ b=\mathrm{I}^{\mathrm{E}}\) ' or ' B ' and at least 1 if job ='V'.
Contains the reciprocal condition numbers of the selected eigenvalues if job \(=\) ' \(E\) ' or ' \(B^{\prime}\) ', stored in consecutive elements of the array. Thus \(s(j)\), \(\operatorname{sep}(j)\) and the \(j\) th columns of \(v l\) and \(v r\) all correspond to the same eigenpair (but not in general the \(j\) th eigenpair unless all eigenpairs have been selected). For real flavors: For a complex conjugate pair of eigenvalues, two consecutive elements of \(S\) are set to the same value.
The array \(s\) is not referenced if job \(={ }^{\prime} V^{\prime}\).

INTEGER.
For complex flavors: the number of selected eigenpairs. If howmny \(={ }^{\prime} A\) ', \(m\) is set to \(n\).
For real flavors: the number of elements of \(s\) and/or sep actually used to store the estimated condition numbers. If howmny \(=1\) ',\(m\) is set to \(n\).
info INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\) th parameter had an illegal value.

\section*{Application Notes}

The computed values sep \(_{i}\) may overestimate the true value, but seldom by a factor of more than 3 .

\section*{?trexc}

\section*{Reorders the Schur factorization of a general matrix.}

\section*{Syntax}
```

call strexc ( compq, n, t, ldt, q, ldq, ifst, ilst, work, info )
call dtrexc ( compq, n, t, ldt, q, ldq, ifst, ilst, work, info )
call ctrexc ( compq, n, t, ldt, q, ldq, ifst, ilst, info )
call ztrexc ( compq, n, t, ldt, q, ldq, ifst, ilst, info )

```

\section*{Description}

This routine reorders the Schur factorization of a general matrix \(A=Q T Q^{H}\), so that the diagonal element or block of \(T\) with row index ifst is moved to row ilst.

The reordered Schur form \(S\) is computed by an unitary (or, for real flavors, orthogonal) similarity transformation: \(S=Z^{H} T Z\). Optionally the updated matrix \(P\) of Schur vectors is computed as \(P=\) \(Q Z\), giving \(A=P S P^{H}\).

\section*{Input Parameters}
```

compq CHARACTER*1.Must be 'V' or 'N'.
If compq='V', then the Schur vectors (Q) are updated.
If compq='N', then no Schur vectors are updated.
n INTEGER. The order of the matrix T( }n\geq0)
t, q REAL for strexc
DOUBLE PRECISION for dtrexc
COMPLEX for ctrexc
DOUBLE COMPLEX for ztrexc.
Arrays:
t(ldt,*) contains the n by n matrix T.
The second dimension of t must be at least max}(1,n)\mathrm{ .
q(ldq,*)
If compq= 'V ', then q must contain Q (Schur vectors).
If compq='N', then q is not referenced.
The second dimension of q must be at least max}(1,n
if compq='v' and at least 1 if compq='N'.

```
\begin{tabular}{|c|c|}
\hline \(1 d t\) & INTEGER. The first dimension of \(t\); at least max \((1, n)\). \\
\hline \(1 d q\) & \begin{tabular}{l}
INTEGER. The first dimension of \(q\); \\
If compq \(={ }^{\prime} N\) ', then \(l d q \geq 1\). \\
If \(c o m p q=' V '\), then \(l d q \geq \max (1, n)\).
\end{tabular} \\
\hline ifst, ilst & \begin{tabular}{l}
INTEGER. \(1 \leq i f s t \leq n ; 1 \leq i l s t \leq n\). \\
Must specify the reordering of the diagonal elements (or blocks, which is possible for real flavors) of the matrix \(T\). The element (or block) with row index ifst is moved to row ilst by a sequence of exchanges between adjacent elements (or blocks).
\end{tabular} \\
\hline work & \begin{tabular}{l}
REAL for strexc \\
DOUBLE PRECISION for dtrexc. \\
Array, DIMENSION at least max \((1, n)\).
\end{tabular} \\
\hline \multicolumn{2}{|l|}{Output Parameters} \\
\hline \(t\) & Overwritten by the updated matrix \(S\). \\
\hline q & If compq \(=1 \mathrm{~V}\) ', q contains the updated matrix of Schur vectors. \\
\hline ifst, ilst & \begin{tabular}{l}
Overwritten for real flavors only. \\
If ifst pointed to the second row of a 2 by 2 block on entry, it is changed to point to the first row; ilst always points to the first row of the block in its final position (which may differ from its input value by \(\pm 1\)).
\end{tabular} \\
\hline info & \begin{tabular}{l}
INTEGER. \\
If info \(=0\), the execution is successful. \\
If info \(=-i\), the \(i\) th parameter had an illegal value.
\end{tabular} \\
\hline
\end{tabular}

\section*{Application Notes}

The computed matrix \(S\) is exactly similar to a matrix \(T+E\), where \(\|E\|_{2}=O(\varepsilon)\|T\|_{2}\), and \(\varepsilon\) is the machine precision.

Note that if a 2 by 2 diagonal block is involved in the re-ordering, its off-diagonal elements are in general changed; the diagonal elements and the eigenvalues of the block are unchanged unless the block is sufficiently ill-conditioned, in which case they may be noticeably altered. It is possible for a 2 by 2 block to break into two 1 by 1 blocks, that is, for a pair of complex eigenvalues to become purely real.

The values of eigenvalues however are never changed by the re-ordering.
The approximate number of floating-point operations is
```

for real flavors: 6n(ifst-ilst) if compq='N';
12n(ifst-ilst) if compq='V';
for complex flavors: 20n(ifst-ilst) if compq='N';
40n(ifst-ilst) if compq='V'.

```

\section*{?trsen}

Reorders the Schur factorization of a matrix and (optionally) computes the reciprocal condition numbers and invariant subspace for the selected cluster of eigenvalues.

\section*{Syntax}
```

call strsen (job, compq, select, n, t, ldt, q, ldq, wr, wi, m, s,
sep, work, lwork, iwork, liwork, info)
call dtrsen (job, compq, select, n, t, ldt, q, ldq, wr, wi, m, s,
sep, work, lwork, iwork, liwork, info)
call ctrsen (job, compq, select, n, t, ldt, q, ldq, w, m, s,
sep, work, lwork, info)
call ztrsen (job, compq, select, n, t, ldt, q, ldq, w, m, s,
sep, work, lwork, info)

```

\section*{Description}

This routine reorders the Schur factorization of a general matrix \(A=Q T Q^{H}\) so that a selected cluster of eigenvalues appears in the leading diagonal elements (or, for real flavors, diagonal blocks) of the Schur form.
The reordered Schur form \(R\) is computed by an unitary(orthogonal) similarity transformation: \(R=\) \(Z^{H} T Z\). Optionally the updated matrix \(P\) of Schur vectors is computed as \(P=Q Z\), giving \(A=P R P^{H}\).

Let
\[
R=\left[\begin{array}{cc}
T_{11} & T_{12} \\
0 & T_{13}
\end{array}\right]
\]
where the selected eigenvalues are precisely the eigenvalues of the leading \(m\) by \(m\) submatrix \(T_{11}\). Let \(P\) be correspondingly partitioned as \(\left(Q_{1} Q_{2}\right)\) where \(Q_{1}\) consists of the first \(m\) columns of \(Q\). Then \(A Q_{1}=Q_{1} T_{11}\), and so the \(m\) columns of \(Q_{1}\) form an orthonormal basis for the invariant subspace corresponding to the selected cluster of eigenvalues.

Optionally the routine also computes estimates of the reciprocal condition numbers of the average of the cluster of eigenvalues and of the invariant subspace.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{5}{*}{job} & CHARACTER*1. Must be 'N' or 'E' or 'V' or 'B' \\
\hline & If \(j 0 b=N^{\prime}\), then no condition numbers are required. \\
\hline & If job='E', then only the condition number for the cluster of eigenvalues is computed. \\
\hline & If job \(=\) ' V ', then only the condition number for the invariant subspace is computed. \\
\hline & If job=' B ', then condition numbers for both the cluster and the invariant subspace are computed. \\
\hline \multirow[t]{3}{*}{compq} & CHARACTER*1. Must be 'V' or 'N'. \\
\hline & If compq = ' \(\mathrm{V}^{\prime}\), then \(Q\) of the Schur vectors is updated. \\
\hline & If compq \(=1 \mathrm{~N}^{\prime}\), then no Schur vectors are updated. \\
\hline \multirow[t]{4}{*}{select} & LOGICAL. \\
\hline & Array, DIMENSION at least max (\(1, \mathrm{n}\)). \\
\hline & Specifies the eigenvalues in the selected cluster. \\
\hline & To select an eigenvalue \(\lambda_{j}\), select (\(j\)) must be . TRUE. For real flavors: to select a complex conjugate pair of eigenvalues \(\lambda_{j}\) and \(\lambda_{j+1}\) (corresponding 2 by 2 diagonal block), select (\(j\)) and/or select(\(j+1\)) must be .TRUE.; the complex conjugate \(\lambda_{j}\) and \(\lambda_{j+1}\) must be either both included in the cluster or both excluded. \\
\hline \(n\) & INTEGER. The order of the matrix \(T(n \geq 0)\). \\
\hline \multirow[t]{11}{*}{t, q, work} & REAL for strsen \\
\hline & DOUBLE PRECISION for dtrsen \\
\hline & COMPLEX for ctrsen \\
\hline & double Complex for ztrsen. \\
\hline & Arrays: \\
\hline & \(t\) (ldt,*) The \(n\) by \(n T\). \\
\hline & The second dimension of \(t\) must be at least max \((1, n)\). \\
\hline & \(q(1 d q, *)\) \\
\hline & If compq \(=1 \mathrm{~V}\) ', then \(q\) must contain \(Q\) of Schur vectors. \\
\hline & If compq \(=1 \mathrm{~N}^{\prime}\), then \(q\) is not referenced. \\
\hline & The second dimension of \(q\) must be at least \(\max (1, n)\) if compq \(=\) ' V ' and at least 1 if compg \(={ }^{\prime} \mathrm{N}\) '. \\
\hline
\end{tabular}

Idt INTEGER. The first dimension of \(t\); at least max \((1, n)\).
ldq INTEGER. The first dimension of \(q\);
If compq='N', then \(l d q \geq 1\).
If compq \(={ }^{\prime} \mathrm{V}\) ', then \(l d q \geq \max (1, n)\).
lwork INTEGER. The dimension of the array work.
If job \(=\) 'V' or 'B', lwork \(\geq \max (1,2 m(n-m))\).
If job='E', then 1 work \(\geq \max (1, m(n-m))\)
If job \(=\) ' \(N\) ', then 1 work \(\geq 1\) for complex flavors and 1 work \(\geq \max (1, n)\) for real flavors.
iwork INTEGER.
iwork(liwork) is a workspace array.
The array iwork is not referenced if job='N'or 'E'.
The actual amount of workspace required cannot exceed \(n^{2} / 2\) if job \(=^{\prime} V^{\prime}\) or ' \(\mathrm{B}^{\prime}\).
liwork INTEGER.
The dimension of the array iwork.
If job \(=\) 'V' or ' \(\mathrm{B}^{\prime}\), liwork \(\geq \max (1,2 m(n-m))\).
If job='E' or 'E', liwork \(\geq 1\).

\section*{Output Parameters}

Overwritten by the updated matrix \(R\).
If compq \(=I^{\prime} V^{\prime}, q\) contains the updated matrix of Schur vectors; the first \(m\) columns of the \(Q\) form an orthogonal basis for the specified invariant subspace.
COMPLEX for ctrsen
DOUBLE COMPLEX for ztrsen.
Array, DIMENSION at least \(\max (1, n)\).
The recorded eigenvalues of \(R\). The eigenvalues are stored in the same order as on the diagonal of \(R\).
wr, wi REAL for strsen
DOUBLE PRECISION for dtrsen
Arrays, DIMENSION at least max \((1, n)\).
Contain the real and imaginary parts, respectively, of the reordered eigenvalues
of \(R\). The eigenvalues are stored in the same order as on the diagonal of \(R\). Note that if a complex eigenvalue is sufficiently ill-conditioned, then its value may differ significantly from its value before reordering.
m
iwork (1) On exit, if info \(=0\), then \(i w o r k(1)\) returns the required minimal size of liwork.
info
INTEGER.
For complex flavors: the number of the specified invariant subspaces, which is the same as the number of selected eigenvalues (see select).
For real flavors: the dimension of the specified invariant subspace. The value of \(m\) is obtained by counting 1 for each selected real eigenvalue and 2 for each selected complex conjugate pair of eigenvalues (see select).

Constraint: \(0 \leq m \leq n\).
REAL for single-precision flavors DOUBLE PRECISION for double-precision flavors.
If \(j o b=\) ' \(E\) ' or ' \(B\) ', \(s\) is a lower bound on the reciprocal condition number of the average of the selected cluster of eigenvalues. If \(m=0\) or \(n\), then \(s=1\).
For real flavors: if info \(=1\), then \(s\) is set to zero.
\(s\) is not referenced if job='N' or ' V '.
REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
If job='V' or 'B', sep is the estimated reciprocal condition number of the specified invariant subspace.
If \(m=0\) or \(n\), then \(\operatorname{sep}=\|T\|\).
For real flavors: if info \(=1\), then sep is set to zero.
sep is not referenced if \(j 0 b=N^{\prime}\) ' or ' \(E\) '.
work (1) On exit, if info \(=0\), then work (1) returns the required minimal size of lwork.

INTEGER.

If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\) th parameter had an illegal value.

\section*{Application Notes}

The computed matrix \(R\) is exactly similar to a matrix \(T+E\), where \(\|E\|_{2}=O(\varepsilon)\|T\|_{2}\), and \(\varepsilon\) is the machine precision.
The computed \(s\) cannot underestimate the true reciprocal condition number by more than a factor of \((\min (m, n-m))^{1 / 2}\); sep may differ from the true value by \(\left(m^{*} n-m^{2}\right)^{1 / 2}\). The angle between the
computed invariant subspace and the true subspace is \(O(\varepsilon)\|A\|_{2} /\) sep.
Note that if a 2 by 2 diagonal block is involved in the re-ordering, its off-diagonal elements are in general changed; the diagonal elements and the eigenvalues of the block are unchanged unless the block is sufficiently ill-conditioned, in which case they may be noticeably altered. It is possible for a 2 by 2 block to break into two 1 by 1 blocks, that is, for a pair of complex eigenvalues to become purely real. The values of eigenvalues however are never changed by the re-ordering.

\section*{?trsyl}

Solves Sylvester's equation for real quasi-triangular or complex triangular matrices.

\section*{Syntax}
```

call strsyl ( trana,tranb,isgn,m,n,a,lda,b,ldb,c,ldc,scale,info )

```
call dtrsyl (trana,tranb,isgn,m,n,a,lda,b,ldb,c,ldc,scale,info)
call ctrsyl (trana, tranb,isgn, m, \(n, a, l d a, b, l d b, c, l d c, s c a l e, i n f o\))
call ztrsyl (trana,tranb,isgn,m,n,a,lda,b,ldb,c,ldc,scale,info)

\section*{Description}

This routine solves the Sylvester matrix equation \(\operatorname{op}(A) X \pm X o p(B)=\alpha C\), where \(\operatorname{op}(A)=A\) or \(A^{H}\), and the matrices \(A\) and \(B\) are upper triangular (or, for real flavors, upper quasi-triangular in canonical Schur form); \(\alpha \leq 1\) is a scale factor determined by the routine to avoid overflow in \(X ; A\) is \(m\) by \(m, B\) is \(n\) by \(n\), and \(C\) and \(X\) are both \(m\) by \(n\). The matrix \(X\) is obtained by a straightforward process of back substitution.

The equation has a unique solution if and only if \(\alpha_{i} \pm \beta_{i} \neq 0\), where \(\left\{\alpha_{i}\right\}\) and \(\left\{\beta_{i}\right\}\) are the eigenvalues of \(A\) and \(B\), respectively, and the sign \((+\) or -) is the same as that used in the equation to be solved.

\section*{Input Parameters}
```

trana CHARACTER*1.Must be 'N' or 'T' or 'C'.
If trana = 'N', then op (A)=A.
If trana = 'T', then op (A)= 隹T (real flavors only).
If trana = 'C' then op (A)=A '

```
```

tranb CHARACTER*1. Must be 'N' or 'T' or 'C'.
If tranb = 'N', then op(B)=B.
If tranb = 'T', then op(B)=\mp@subsup{B}{}{T}\mathrm{ (real flavors only).}
If tranb = 'C', then op (B)=\mp@subsup{B}{}{H}}\mathrm{ .
isgn INTEGER. Indicates the form of the Sylvester equation.
If isgn = +1, op(A)X+Xop(B)=\alphaC.
If isgn = -1, op(A)X - Xop(B)=\alphaC.

```
m
n
\(a, b, c\)

\section*{Output Parameters}
\begin{tabular}{ll}
c & Overwritten by the solution matrix \(X\). \\
scale & \begin{tabular}{l}
REAL for single-precision flavors \\
DOUBLE PRECISION for double-precision flavors. \\
The value of the scale factor \(\alpha\).
\end{tabular} \\
info & \begin{tabular}{l}
INTEGER. \\
If info \(=0\), the execution is successful.
\end{tabular} \\
& If info \(=-i\), the ith parameter had an illegal value. \\
If info \(=1, A\) and \(B\) have common or close eigenvalues perturbed values were \\
used to solve the equation.
\end{tabular}

\section*{Application Notes}

Let \(X\) be the exact, \(Y\) the corresponding computed solution, and \(R\) the residual matrix: \(R=C-(A Y\) \(\pm Y B\)). Then the residual is always small:
\[
\|R\|_{F}=\mathrm{O}(\varepsilon)\left(\|A\|_{F}+\|B\|_{F}\right)\|Y\|_{F} .
\]

However, \(Y\) is not necessarily the exact solution of a slightly perturbed equation; in other words, the solution is not backwards stable.

For the forward error, the following bound holds:
\[
\|Y-X\|_{F} \leq\|R\|_{F} / \operatorname{sep}(A, B)
\]
but this may be a considerable overestimate. See [Golub96] for a definition of \(\operatorname{sep}(A, B)\).
The approximate number of floating-point operations for real flavors is \(m^{\star} n^{\star}(m+n)\). For complex flavors it is 4 times greater.

\section*{Generalized Nonsymmetric Eigenvalue Problems}

This section describes LAPACK routines for solving generalized nonsymmetric eigenvalue problems, reordering the generalized Schur factorization of a pair of matrices, as well as performing a number of related computational tasks.

A generalized nonsymmetric eigenvalue problem is as follows: given a pair of nonsymmetric (or non-Hermitian) n-by-n matrices \(A\) and \(B\), find the generalized eigenvalues \(\lambda\) and the corresponding generalized eigenvectors \(x\) and \(y\) that satisfy the equations
\[
A x=\lambda B x \quad \text { (right generalized eigenvectors } x \text {) }
\]
and
\[
y^{H} A=\lambda y^{H} B \text { (left generalized eigenvectors } y \text {). }
\]

Table 4-6 lists LAPACK routines used to solve the generalized nonsymmetric eigenvalue problems and the generalized Sylvester equation.

\section*{Table 4-6 Computational Routines for Solving Generalized Nonsymmetric Eigenvalue Problems}

\section*{Routine Operation performed}
name
?gghrd Reduces a pair of matrices to generalized upper Hessenberg form using orthogonal/unitary transformations.
?ggbal Balances a pair of general real or complex matrices.
? ggbak Forms the right or left eigenvectors of a generalized eigenvalue problem.
?hgeqz Implements the QZ method for finding the generalized eigenvalues of the matrix pair (H,T).
?tgevc Computes some or all of the right and/or left generalized eigenvectors of a pair of upper triangular matrices
?tgexc Reorders the generalized Schur decomposition of a pair of matrices (A,B) so that one diagonal block of \((A, B)\) moves to another row index.
?tgsen Reorders the generalized Schur decomposition of a pair of matrices (\(A, B\)) so that a selected cluster of eigenvalues appears in the leading diagonal blocks of \((A, B)\).
?tgsyl Solves the generalized Sylvester equation.
?tgsna Estimates reciprocal condition numbers for specified eigenvalues and/or eigenvectors of a pair of matrices in generalized real Schur canonical form.

\section*{?gghrd}

Reduces a pair of matrices to generalized upper
Hessenberg form using orthogonal/unitary
transformations.

\section*{Syntax}
```

call sgghrd ( compq, compz, n, ilo, ihi, a, lda, b, ldb, q, ldq,
z, ldz, info )
call dgghrd ( compq, compz, n, ilo, ihi, a, lda, b, ldb, q, ldq,
z, ldz, info )
call cgghrd ( compq, compz, n, ilo, ihi, a, lda, b, ldb, q, ldq,
z, ldz, info )
call zgghrd ( compq, compz, n, ilo, ihi, a, lda, b, ldb, q, ldq,
z, ldz, info )

```

\section*{Description}

This routine reduces a pair of real/complex matrices (\(\mathrm{A}, \mathrm{B}\)) to generalized upper Hessenberg form using orthogonal/unitary transformations, where A is a general matrix and B is upper triangular. The form of the generalized eigenvalue problem is \(A x=\lambda B x\), and \(B\) is typically made upper triangular by computing its \(Q R\) factorization and moving the orthogonal matrix \(Q\) to the left side of the equation.
This routine simultaneously reduces \(A\) to a Hessenberg matrix \(H\) :
\[
Q^{H} A \quad Z=H
\]
and transforms \(B\) to another upper triangular matrix \(T\) :
\[
Q^{H} B \quad Z=T
\]
in order to reduce the problem to its standard form \(H y=\lambda T y\) where \(y=Z^{H} x\).

The orthogonal/unitary matrices \(Q\) and \(Z\) are determined as products of Givens rotations. They may either be formed explicitly, or they may be postmultiplied into input matrices \(Q_{1}\) and \(Z_{1}\), so that
\[
\begin{aligned}
& Q_{l} A Z_{l}^{H}=\left(Q_{1} Q\right) H\left(Z_{l} Z\right)^{H} \\
& Q_{1} B \quad Z_{l}^{H}=\left(Q_{1} Q\right) T\left(Z_{l} Z\right)^{H}
\end{aligned}
\]

If \(Q_{I}\) is the orthogonal matrix from the \(Q R\) factorization of \(B\) in the original equation \(A x=\lambda B x\), then ?gghrd reduces the original problem to generalized Hessenberg form.

Input Parameters
\begin{tabular}{|c|c|}
\hline compq & \begin{tabular}{l}
CHARACTER*1. Must be 'N', 'I', or 'V'. \\
If compq \(={ }^{\prime} \mathrm{N}^{\prime}\), matrix \(Q\) is not computed.
\end{tabular} \\
\hline & If compq = ' I', \(Q\) is initialized to the unit matrix, and the orthogonal/unitary matrix \(Q\) is returned; \\
\hline & If compq = ' V ',\(Q\) must contain an orthogonal/unitary matrix \(Q_{1}\) on entry, and the product \(Q_{1} Q\) is returned. \\
\hline compz & \begin{tabular}{l}
CHARACTER*1. Must be 'N', 'I', or 'V'. \\
If compz \(=\) ' N ', matrix \(Z\) is not computed.
\end{tabular} \\
\hline & If compz \(=\) ' I', \(Z\) is initialized to the unit matrix, and the orthogonal/unitary matrix \(Z\) is returned; \\
\hline & If compz \(=\) ' \(\mathrm{V}^{\prime}, Z\) must contain an orthogonal/unitary matrix \(Z_{1}\) on entry, and the product \(Z_{1} Z\) is returned. \\
\hline n & Integer. The order of the matrices \(A\) and \(B(n \geq 0)\). \\
\hline ilo, ihi & INTEGER. ilo and ihi mark the rows and columns of \(A\) which are to be reduced. It is assumed that \(A\) is already upper triangular in rows and columns \\
\hline & 1:ilo-1 and ihi+1:n. Values of ilo and ihi are normally set by a previous call to ?ggbal; otherwise they should be set to 1 and \(n\) respectively. Constraint: \\
\hline & If \(n>0\), then \(1 \leq i l o \leq i h i \leq n ;\) \\
\hline & if \(n=0\), then ilo \(=1\) and ihi \(=0\). \\
\hline \(a, b, q, z\) & REAL for sgghrd \\
\hline & DOUBLE PRECISION for dgghrd \\
\hline & COMPLEX for cgghrd \\
\hline & double Complex for zgghrd. \\
\hline & Arrays: \\
\hline & a (lda,*) contains the \(n\)-by-n general matrix \(A\). \\
\hline & The second dimension of a must be at least max (\(1, n\)). \\
\hline & \(b(l d b, *)\) contains the \(n\)-by-n upper triangular matrix \(B\). \\
\hline & The second dimension of \(b\) must be at least max (1, n). \\
\hline & \(q(1 d q, *)\) \\
\hline & If compq \(=\) ' \(\mathrm{N}^{\prime}\), then \(q\) is not referenced. \\
\hline & If compq = ' I ', then, on entry, \(q\) need not be set. \\
\hline & If compq \(=' \mathrm{~V}\) ', then \(q\) must contain the orthogonal/unitary matrix \(Q_{1}\), typically from the \(Q R\) factorization of \(B\). \\
\hline & The second dimension of \(q\) must be at least \(\max (1, n)\). \\
\hline
\end{tabular}
\(z(l d z, *)\)
If compq \(={ }^{\prime} N^{\prime}\), then \(z\) is not referenced.
If compq \(=\) ' I ', then, on entry, \(z\) need not be set.
If compq \(=' \mathrm{~V}\) ', then \(z\) must contain the orthogonal/unitary matrix \(Z_{1}\).
The second dimension of \(z\) must be at least \(\max (1, n)\).
INTEGER. The first dimension of \(a\); at least \(\max (1, n)\).
INTEGER. The first dimension of \(b\); at least \(\max (1, n)\).
INTEGER. The first dimension of \(q\);
If compq \(={ }^{\prime} N^{\prime}\), then \(I d q \geq 1\).
If compq \(=\) ' I ' or ' \(V\) ', then \(I d q \geq \max (1, n)\).
INTEGER. The first dimension of \(z\);
If compq \(={ }^{\prime} N^{\prime}\), then \(I d z \geq 1\).
If compq \(=\) ' I' or ' V ', then \(1 d z \geq \max (1, n)\).

\section*{Output Parameters}
b
q
z
info
info

On exit, the upper triangle and the first subdiagonal of \(A\) are overwritten with the upper Hessenberg matrix \(H\), and the rest is set to zero.
On exit, overwritten by the upper triangular matrix \(T=Q^{H} B \quad Z\). The elements below the diagonal are set to zero.
If compq = ' I ' , then \(q\) contains the orthogonal/unitary matrix \(Q\), where \(Q^{\mathrm{H}}\) is the product of the Givens transformations which are applied to \(A\) and \(B\) on the left;
If compq \(=\) ' V ', then \(q\) is overwritten by the product \(Q_{1} Q\).
If compq \(=\) 'I', then \(z\) contains the orthogonal/unitary matrix \(Z\), which is the product of the Givens transformations which are applied to \(A\) and \(B\) on the right;
If compq \(={ }^{\prime} \mathrm{V}\) ', then \(z\) is overwritten by the product \(Z_{1} Z\).
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\) th parameter had an illegal value .

\section*{?ggbal}

Balances a pair of general real or complex matrices.

\section*{Syntax}
```

call sggbal ( job, n, a, lda, b, ldb, ilo, ihi, lscale, rscale,
work, info )
call dggbal ( job, n, a, lda, b, ldb, ilo, ihi, lscale, rscale,
work, info )
call cggbal ( job, n, a, lda, b, ldb, ilo, ihi, lscale, rscale,
work, info )
call zggbal ( job, n, a, lda, b, ldb, ilo, ihi, lscale, rscale,
work, info )

```

\section*{Description}

This routine balances a pair of general real/complex matrices \((A, B)\). This involves, first, permuting \(A\) and \(B\) by similarity transformations to isolate eigenvalues in the first 1 to ilo-1 and last \(i h i+1\) to \(n\) elements on the diagonal; and second, applying a diagonal similarity transformation to rows and columns ilo to ihi to make the rows and columns as close in norm as possible. Both steps are optional.
Balancing may reduce the 1-norm of the matrices, and improve the accuracy of the computed eigenvalues and/or eigenvectors in the generalized eigenvalue problem \(A x=\lambda B x\).

\section*{Input Parameters}
n
\(a, b\)

CHARACTER*1. Specifies the operations to be performed on \(A\) and \(B\). Must be 'N' or 'P' or 'S' or 'B'. If \(j o b=' \mathrm{~N}\) ', then no operations are done; simply set \(i l o=1\), \(i h i=n\), lscale(i) \(=1.0\) and rscale(i)=1.0 for \(\mathrm{i}=1, \ldots, n\). If \(j 0 b=1 P^{\prime}\), then permute only. If \(j o b=' S\) ', then scale only. If \(j o b=' B '\), then both permute and scale. INTEGER. The order of the matrices \(A\) and \(B(n \geq 0)\).

REAL for sggbal
DOUBLE PRECISION for dggbal
COMPLEX for cggbal

DOUBLE COMPLEX for zggbal.
Arrays:
a (lda,*) contains the matrix \(A\).
The second dimension of a must be at least \(\max (1, n)\).
\(b(1 d b, *)\) contains the matrix \(B\).
The second dimension of \(b\) must be at least \(\max (1, n)\).
INTEGER. The first dimension of \(a\); at least \(\max (1, n)\).
INTEGER. The first dimension of \(b\); at least \(\max (1, n)\).
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Workspace array, DIMENSION at least max \((1,6 n)\).

\section*{Output Parameters}
\(a, b \quad\) Overwritten by the balanced matrices \(A\) and \(B\), respectively. If job \(='^{\prime} N^{\prime}, a\) and \(b\) are not referenced.
ilo, ihi INTEGER. ilo and ihi are set to integers such that on exit \(a(i, j)=0\) and \(b(i, j)=0\) if \(i>j\) and \(j=1, \ldots, i l o-1\)
or \(i=i h i+1, \ldots, n\).
If job \(=\) 'N' or 'S', then ilo \(=1\) and \(i h i=n\).
Iscale, rscale REAL for single precision flavors DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max \((1, n)\).
Iscale contains details of the permutations and scaling factors applied to the left side of \(A\) and \(B\).
If \(P_{\mathrm{j}}\) is the index of the row interchanged with row \(j\), and \(D_{\mathrm{j}}\) is the scaling factor applied to row \(j\), then
\[
\begin{aligned}
\operatorname{lscale}(j) & =P_{\mathrm{j}}, \text { for } j=1, \ldots, \text { ilo- } \\
& =D_{\mathrm{j}}, \text { for } j=i l o, \ldots, i h i \\
& =P_{\mathrm{j}}, \text { for } j=i h i+1, \ldots, n .
\end{aligned}
\]
rscale contains details of the permutations and scaling factors applied to the right side of \(A\) and \(B\).
If \(P_{\mathrm{j}}\) is the index of the column interchanged with column \(j\), and \(D_{\mathrm{j}}\) is the scaling factor applied to
column \(j\), then
\[
\begin{aligned}
\operatorname{rscale}(j) & =P_{\mathrm{j}}, \text { for } j=1, \ldots, i l o-1 \\
& =D_{\mathrm{j}}, \text { for } j=i l o, \ldots, i h i \\
& =P_{\mathrm{j}}, \text { for } j=i h i+1, \ldots, n
\end{aligned}
\]

The order in which the interchanges are made is \(n\) to \(i h i+1\), then 1 to ilo- 1 .
info INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\) th parameter had an illegal value.

\section*{?ggbak}

Forms the right or left eigenvectors of a generalized eigenvalue problem.

\section*{Syntax}
```

call sggbak(job, side, n, ilo, ihi, lscale, rscale, m, v, ldv, info)
call dggbak(job, side, n, ilo, ihi, lscale, rscale, m, v, ldv, info)
call cggbak(job, side, n, ilo, ihi, lscale, rscale, m, v, ldv, info)
call zggbak(job, side, n, ilo, ihi, lscale, rscale, m, v, ldv, info)

```

\section*{Description}

This routine forms the right or left eigenvectors of a real/complex generalized eigenvalue problem
\[
A x=\lambda B x
\]
by backward transformation on the computed eigenvectors of the balanced pair of matrices output by ?ggbal.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline job & CHARACTER*1. Specifies the type of backward transformation required. Must be 'N', 'P','S', or 'B'. \\
\hline & If job \(=\) ' \(\mathrm{N}^{\prime}\), then no operations are done; return. \\
\hline & If \(j 0 b={ }^{\text {P }}\) ', then do backward transformation for permutation only. \\
\hline & If job = S ', then do backward transformation for scaling only. \\
\hline & If job ='B', then do backward transformation for both permutation and scaling. \\
\hline & This argument must be the same as the argument job supplied to ? ggbal. \\
\hline side & CHARACTER*1. Must be 'L' or 'R'. \\
\hline & If side \(=\) 'L', then \(v\) contains left eigenvectors . \\
\hline & If side \(=\) ' R ', then \(v\) contains right eigenvectors \\
\hline \(n\) & INTEGER. The number of rows of the matrix \(V(n \geq 0)\). \\
\hline ilo, ihi & \begin{tabular}{l}
INTEGER. The integers ilo and ihi determined by ?gebal. Constraint: \\
If \(n>0\), then \(1 \leq i l o \leq i h i \leq n\); \\
if \(n=0\), then \(i l o=1\) and \(i h i=0\).
\end{tabular} \\
\hline
\end{tabular}
```

lscale,rscale REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max(1,n).
The array lscale contains details of the permutations and/or scaling factors
applied to the left side of }A\mathrm{ and }B\mathrm{ , as returned by ?ggbal.
The array rscale contains details of the permutations and/or scaling factors
applied to the right side of }A\mathrm{ and }B\mathrm{ , as returned by ?ggbal.
m INTEGER. The number of columns of the matrix V
(m\geq0).
REAL for sggbak
DOUBLE PRECISION for dggbak
COMPLEX for cggbak
DOUBLE COMPLEX for zggbak.
Array v(ldv,*). Contains the matrix of right or left eigenvectors to be
transformed, as returned by ?tgevc.
The second dimension of v must be at least max (1,m).
ldv INTEGER. The first dimension of v; at least max(1,n).
Output Parameters
v Overwritten by the transformed eigenvectors
info INTEGER.
If info = 0, the execution is successful.
If info =-i, the ith parameter had an illegal value.

```

\section*{?hgeqz}

\section*{Implements the QZ method for finding the generalized} eigenvalues of the matrix pair \((H, T)\).

\section*{Syntax}
```

call shgeqz(job, compq, compz, n, ilo, ihi, h, ldh, t, ldt, alphar,
alphai, beta, q, ldq, z, ldz, work, lwork, info )
call dhgeqz(job, compq, compz, n, ilo, ihi, h, ldh, t, ldt, alphar,
alphai, beta, q, ldq, z, ldz, work, lwork, info )
call chgeqz(job, compq, compz, n, ilo, ihi, h, ldh, t, ldt, alpha,
beta, q, ldq, z, ldz, work, lwork, rwork, info )
call zhgeqz(job, compq, compz, n, ilo, ihi, h, ldh, t, ldt, alpha,
beta, q, ldq, z, ldz, work, lwork, rwork, info )

```

\section*{Description}

This routine computes the eigenvalues of a real/complex matrix pair \((H, T)\), where \(H\) is an upper Hessenberg matrix and \(T\) is upper triangular, using the double-shift version (for real flavors) or single-shift version (for complex flavors) of the \(Q Z\) method.
Matrix pairs of this type are produced by the reduction to generalized upper Hessenberg form of a real/complex matrix pair \((A, B)\) :
\[
A=Q_{I} H Z_{l}{ }^{H}, \quad B=Q_{I} T Z_{l}{ }^{H},
\]
as computed by ? gghrd.

\section*{For real flavors:}

If job \(=\) ' S ', then the Hessenberg-triangular pair \((H, T)\) is also reduced to generalized Schur form,
\[
H=Q S Z^{T}, \quad T=Q P Z^{T},
\]
where \(Q\) and \(Z\) are orthogonal matrices, \(P\) is an upper triangular matrix, and \(S\) is a quasi-triangular matrix with 1-by-1 and 2-by-2 diagonal blocks.
The 1-by-1 blocks correspond to real eigenvalues of the matrix pair \((H, T)\) and the 2-by-2 blocks correspond to complex conjugate pairs of eigenvalues.
Additionally, the 2-by-2 upper triangular diagonal blocks of \(P\) corresponding to 2-by-2 blocks of \(S\) are reduced to positive diagonal form, that is, if \(S(\mathrm{j}+1, \mathrm{j})\) is non-zero, then \(P(\mathrm{j}+1, \mathrm{j})=P(\mathrm{j}, \mathrm{j}+1)=0\), \(P(\mathrm{j}, \mathrm{j})>0\), and \(P(\mathrm{j}+1, \mathrm{j}+1)>0\).

\section*{For complex flavors:}

If job=' S , then the Hessenberg-triangular pair \((H, T)\) is also reduced to generalized Schur form,
\[
H=Q S Z^{H}, \quad T=Q P Z^{H},
\]
where \(Q\) and \(Z\) are unitary matrices, and \(S\) and \(P\) are upper triangular.

\section*{For all function flavors:}

Optionally, the orthogonal/unitary matrix \(Q\) from the generalized Schur factorization may be postmultiplied into an input matrix \(Q_{l}\), and the orthogonal/unitary matrix \(Z\) may be postmultiplied into an input matrix \(Z_{l}\). If \(Q_{I}\) and \(Z_{l}\) are the orthogonal/unitary matrices from ?gghrd that reduced the matrix pair \((A, B)\) to generalized upper Hessenberg form, then the output matrices \(Q_{1} Q\) and \(Z_{1} Z\) are the orthogonal/unitary factors from the generalized Schur factorization of \((A, B)\) :
\[
A=\left(Q_{l} Q\right) S\left(Z_{l} Z\right)^{H}, \quad B=\left(Q_{l} Q\right) P\left(Z_{l} Z\right)^{H} .
\]

To avoid overflow, eigenvalues of the matrix pair \((H, T)\) (equivalently, of \((A, B)\)) are computed as a pair of values (alpha,beta). For chgeqz/zhgeqz, alpha and beta are complex, and for shgeqz/dhgeqz, alpha is complex and beta real. If beta is nonzero, \(\lambda=a l p h a /\) beta is an eigenvalue of the generalized nonsymmetric eigenvalue problem (GNEP)
\[
A x=\lambda B x
\]
and if alpha is nonzero, \(\mu=\) beta / alpha is an eigenvalue of the alternate form of the GNEP
\(\mu A y=B y\).
Real eigenvalues (for real flavors) or the values of alpha and beta for the i-th eigenvalue (for complex flavors) can be read directly from the generalized Schur form:
alpha \(=S(\mathrm{i}, \mathrm{i}), \quad\) beta \(=P(\mathrm{i}, \mathrm{i})\).

\section*{Input Parameters}
job CHARACTER*1. Specifies the operations to be performed. Must be 'E' or 'S'. If job \(=\) ' E', then compute eigenvalues only; If job \(=\) 'S', then compute eigenvalues and the Schur form.
compq
compz

ChARACTER*1. Must be 'N', 'I', or 'V'.
If compq \(={ }^{\prime} \mathrm{N}\) ', left Schur vectors (\(q\)) are not computed; If compq = 'I', \(q\) is initialized to the unit matrix and the matrix of left Schur vectors of \((H, T)\) is returned;
If compq = ' V ', q must contain an orthogonal/unitary matrix \(Q_{1}\) on entry and the product \(Q_{1} Q\) is returned.
CHARACTER*1. Must be 'N', 'I', or 'V'.
If compz = ' N ', left Schur vectors (\(q\)) are not computed; If compz \(=\) ' I', \(z\) is initialized to the unit matrix and the matrix of right Schur vectors of \((H, T)\) is returned;

If compz \(=\) ' \(V\) ', \(z\) must contain an orthogonal/unitary matrix \(Z_{l}\) on entry and the product \(Z_{1} Z\) is returned.
\(n\)
ilo, ihi
\(h, t, q, z\), work
REAL for shgeqz
DOUBLE PRECISION for dhgeqz
COMPLEX for chgeqz
DOUBLE COMPLEX for zhgeqz.
Arrays:
On entry, \(h(l d h, *)\) contains the \(n\)-by-n upper Hessenberg matrix \(H\).
The second dimension of \(h\) must be at least \(\max (1, n)\).
On entry, \(t(l d t, *)\) contains the \(n\)-by- \(n\) upper triangular matrix \(T\).
The second dimension of \(t\) must be at least \(\max (1, n)\).
\(q(1 d q, *):\)
On entry, if compq='V', this array contains the orthogonal/unitary matrix
\(Q_{1}\) used in the reduction of \((A, B)\) to generalized Hessenberg form.
If compq \(={ }^{\prime} N\) ', then \(q\) is not referenced.
The second dimension of \(q\) must be at least \(\max (1, n)\).
\(z(1 d z, *):\)
On entry, if compz \(={ }^{\prime} V^{\prime}\), this array contains the orthogonal/unitary matrix \(Z_{1}\) used in the reduction of \((A, B)\) to generalized Hessenberg form.
If compz=' \(N^{\prime}\), then \(z\) is not referenced.
The second dimension of \(z\) must be at least \(\max (1, n)\).
work (1 work) is a workspace array.
\(1 d h\)
ldt
\(1 d q\)
INTEGER. The first dimension of \(h\); at least \(\max (1, n)\).
INTEGER. The first dimension of \(t\); at least \(\max (1, n)\).
INTEGER. The first dimension of \(q\);

If compq \(={ }^{\prime} N\) ', then \(I d q \geq 1\).
If compq \(=\) ' I' or ' \(V\) ', then \(I d q \geq \max (1, n)\).
```

ldz INTEGER. The first dimension of $z$;
If compq='N', then $l d z \geq 1$.
If compq $=$ ' I ' or ' $V$ ', then $1 d z \geq \max (1, n)$.
lwork INTEGER. The dimension of the array work.
lwork $\geq \max (1, n)$.
rwork REAL for chgeqz
DOUBLE PRECISION for zhgeqz.
Workspace array, DIMENSION at least $\max (1, n)$. Used in complex flavors
only.

```

\section*{Output Parameters}

For real flavors: If job=' S ', then, on exit, \(h\) contains the upper quasi-triangular matrix \(S\) from the generalized Schur factorization; 2-by-2 diagonal blocks (corresponding to complex conjugate pairs of eigenvalues) are returned in standard form, with \(h(\mathrm{i}, \mathrm{i})=h(\mathrm{i}+1, \mathrm{i}+1)\) and \(h(\mathrm{i}+1, \mathrm{i}) * h(\mathrm{i}, \mathrm{i}+1)<0\).
If job=' E ', then on exit the diagonal blocks of \(h\) match those of \(S\), but the rest of \(h\) is unspecified.

For complex flavors:
If job='S', then, on exit, h contains the upper triangular matrix \(S\) from the generalized Schur factorization.
If \(j 0 b=1 E\) ', then on exit the diagonal of \(h\) matches that of \(S\), but the rest of \(h\) is unspecified.
t
If job \(=\) 'S', then, on exit, \(t\) contains the upper triangular matrix \(P\) from the generalized Schur factorization.
For real flavors:
2-by-2 diagonal blocks of \(P\) corresponding to 2-by-2 blocks of \(S\) are reduced to positive diagonal form, that is, if \(h(\mathbf{j}+1, \mathrm{j})\) is non-zero, then
\(t(\mathbf{j}+1, \mathbf{j})=t(\mathbf{j}, \mathbf{j}+1)=0\) and \(t(\mathrm{j}, \mathrm{j})\) and \(t(\mathbf{j}+1, \mathrm{j}+1)\) will be positive.
If job \(=\) ' E ', then on exit the diagonal blocks of \(t\) match those of \(P\), but the rest of \(t\) is unspecified.

For complex flavors:
If job='E', then on exit the diagonal of \(t\) matches that of \(P\), but the rest of \(t\) is unspecified.

```

work(1) If info \geq0, on exit, work (1) contains the minimum value of 1work required
for optimum performance. Use this lwork for subsequent runs.
info INTEGER
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = 1,···,n, the QZ iteration did not converge.
(H,T) is not in Schur form, but alphar(i), alphai(i) (for real flavors),
alpha(i) (for complex flavors), and beta(i), i=info+1,···,n should be correct.
If info = n+1,···,2n, the shift calculation failed.
(H,T) is not in Schur form, but alphar(i), alphai(i) (for real flavors),
alpha(i) (for complex flavors), and beta(i), i =info-n+1,···,n should be
correct.

```

\section*{?tgevc}

Computes some or all of the right and/or left generalized eigenvectors of a pair of upper triangular matrices.

\section*{Syntax}
```

call stgevc ( side, howmny, select, n, s, lds, p, ldp, vl, ldvl, vr,
ldvr, mm, m, work, info )
call dtgevc ( side, howmny, select, n, s, lds, p, ldp, vl, ldvl, vr,
ldvr, mm, m, work, info )
call ctgevc ( side, howmny, select, n, s, lds, p, ldp, vl, ldvl, vr,
ldvr, mm, m, work, rwork, info )
call ztgevc ( side, howmny, select, n, s, lds, p, ldp, vl, ldvl, vr,
ldvr, mm, m, work, rwork, info )

```

\section*{Description}

This routine computes some or all of the right and/or left eigenvectors of a pair of real/complex matrices (\(S, P\)), where \(S\) is quasi-triangular (for real flavors) or upper triangular (for complex flavors) and \(P\) is upper triangular.

Matrix pairs of this type are produced by the generalized Schur factorization of a real/complex matrix pair \((A, B)\) :
\[
A=Q S Z^{H}, \quad B=Q P Z^{H}
\]
as computed by ?gghrd plus ?hgeqz.
The right eigenvector \(x\) and the left eigenvector \(y\) of \((S, P)\) corresponding to an eigenvalue \(w\) are defined by:
\[
S x=w P x, \quad y^{H} S=w y^{H} P
\]

The eigenvalues are not input to this routine, but are computed directly from the diagonal blocks or diagonal elements of \(S\) and \(P\).

This routine returns the matrices \(X\) and/or \(Y\) of right and left eigenvectors of \((S, P)\), or the products \(Z X\) and/or \(Q Y\), where \(Z\) and \(Q\) are input matrices.
If \(Q\) and \(Z\) are the orthogonal/unitary factors from the generalized Schur factorization of a matrix pair \((A, B)\), then \(Z X\) and \(Q Y\) are the matrices of right and left eigenvectors of \((A, B)\).

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline side & \begin{tabular}{l}
CHARACTER*1. Must be 'R', 'L', or 'B'. \\
If side \(=\) ' R ', compute right eigenvectors only. \\
If side = 'L', compute left eigenvectors only. \\
If side \(=\) ' \(\mathrm{B}^{\prime}\), compute both right and left eigenvectors.
\end{tabular} \\
\hline howmny & \begin{tabular}{l}
CHARACTER*1. Must be 'A', 'B', or 'S'. \\
If howmny \(=\) ' A ', compute all right and/or left eigenvectors. \\
If howmny \(=\) ' \(\mathrm{B}^{\prime}\), compute all right and/or left eigenvectors, backtransformed by the matrices in vr and/or vl . \\
If howmny \(=\) ' S ', compute selected right and/or left eigenvectors, specified by the logical array select.
\end{tabular} \\
\hline select & \begin{tabular}{l}
LOGICAL. \\
Array, DIMENSION at least max \((1, n)\). \\
If howmny \(=\) 'S', select specifies the eigenvectors to be computed. \\
If howmny \(=\) ' ' or ' B ', select is not referenced. \\
For real flavors: \\
If \(\omega_{j}\) is a real eigenvalue, the corresponding real eigenvector is computed if select \((j)\) is .TRUE.. \\
If \(\omega_{j}\) and \(\omega_{j+l}\) are the real and imaginary parts of a complex eigenvalue, the corresponding complex eigenvector is computed if either select \((j)\) or select \((j+1)\) is .TRUE., and on exit select \((j)\) is set to .TRUE. and select \((j+1)\) is set to .FALSE.. \\
For complex flavors: \\
The eigenvector corresponding to the \(j\)-th eigenvalue is computed if select \((j)\) is .TRUE. .
\end{tabular} \\
\hline n & INTEGER. The order of the matrices \(A\) and \(B(n \geq 0)\). \\
\hline \(s, p, v 1, v r\), work & \begin{tabular}{l}
REAL for stgevc \\
DOUBLE PRECISION for dtgevc \\
COMPLEX for ctgevc \\
double complex for ztgevc. \\
Arrays:
\end{tabular} \\
\hline & \begin{tabular}{l}
\(s(l d s, *)\) contains the matrix \(S\) from a generalized Schur factorization as computed by ?hgeqz. This matrix is upper quasi-triangular for real flavors, and upper triangular for complex flavors. \\
The second dimension of \(s\) must be at least \(\max (1, n)\).
\end{tabular} \\
\hline
\end{tabular}
\(p(l d p, *)\) contains the upper triangular matrix \(P\) from a generalized Schur factorization as computed by ?hgeqz.
For real flavors, 2-by-2 diagonal blocks of \(P\) corresponding to 2-by-2 blocks of \(S\) must be in positive diagonal form.
For complex flavors, \(P\) must have real diagonal elements.
The second dimension of \(p\) must be at least \(\max (1, n)\).
If side \(=\) 'L' or 'B' and howmy \(=\) 'B', \(\mathrm{vl}(l d v l, *)\) must contain an \(n\)-by-n matrix \(Q\) (usually the orthogonal/unitary matrix \(Q\) of left Schur vectors returned by ?hgeqz). The second dimension of \(v l\) must be at least \(\max (1, m m)\). If side \(={ }^{\prime} R^{\prime}, v l\) is not referenced.

If side \(=\) 'R' or 'B' and howmny \(=\) 'B', \(v r(l d v r, *)\) must contain an \(n-b y-n\) matrix \(Z\) (usually the orthogonal/unitary matrix \(Z\) of right \(S c h u r\) vectors returned by ?hgeqz). The second dimension of \(v r\) must be at least \(\max (1, m m)\). If side \(=\) 'L', vr is not referenced.
work (*) is a workspace array.
DIMENSION at least max \(\left(1,6 *_{n}\right)\) for real flavors and at least max \(\left(1,2 *_{n}\right)\) for complex flavors.

INTEGER. The first dimension of \(s\); at least \(\max (1, n)\).
INTEGER. The first dimension of \(p\); at least \(\max (1, n)\).
INTEGER. The first dimension of \(v 1\);
If side \(=\) 'L' or ' B ', then \(I d v I \geq \max (1, n)\).
If side \(='^{\prime}\) ', then \(1 d v 1 \geq 1\).
INTEGER. The first dimension of \(v r\);
If side \(=\) 'R' or ' \(B\) ', then \(I d v r \geq \max (1, n)\).
If side \(=\) 'L', then \(\operatorname{ldvr} \geq 1\).
INTEGER. The number of columns in the arrays vl and/or \(\mathrm{vr}(\mathrm{mm} \geq m)\).
REAL for ctgevc
DOUBLE PRECISION for ztgevc.
Workspace array, DIMENSION at least max \(\left(1,2 \star_{n}\right)\). Used in complex flavors only.

\section*{Output Parameters}

On exit, if side ='L'or 'B', vl contains:
if howmny \(=\) 'A', the matrix \(Y\) of left eigenvectors of \((S, P)\);
if howmny = ' B ', the matrix \(Q Y\);
if howmny \(=\) 'S', the left eigenvectors of \((S, P)\) specified by select, stored
consecutively in the columns of \(v 1\), in the same order as their eigenvalues.
For real flavors:
A complex eigenvector corresponding to a complex eigenvalue is stored in two consecutive columns, the first holding the real part, and the second the imaginary part.

On exit, if side='R'or 'B', vr contains: if howmny \(=\) ' A ', the matrix \(X\) of right eigenvectors of \((S, P)\); if howmny = ' B ', the matrix \(Z X\); if howmny =' S ', the right eigenvectors of \((S, P)\) specified by select, stored consecutively in the columns of \(v x\), in the same order as their eigenvalues.
For real flavors:
A complex eigenvector corresponding to a complex eigenvalue is stored in two consecutive columns, the first holding the real part, and the second the imaginary part.

INTEGER. The number of columns in the arrays \(v l\) and/or vr actually used to store the eigenvectors.
If howmny =' A ' or ' B ', \(m\) is set to \(n\).
For real flavors:
Each selected real eigenvector occupies one column and each selected complex eigenvector occupies two columns.
For complex flavors:
Each selected eigenvector occupies one column.
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\) th parameter had an illegal value.
For real flavors:
If info \(=i>0\), the 2 -by-2 block \((i: i+1)\) does not have a complex eigenvalue.

\section*{?tgexc}

\section*{Reorders the generalized Schur decomposition of a pair of matrices \((A, B)\) so that one diagonal block of \((A, B)\) moves to another row index.}

\section*{Syntax}
```

call stgexc ( wantq, wantz, n, a, lda, b, ldb, q, ldq, z, ldz,
ifst, ilst, work, lwork, info )
call dtgexc ( wantq, wantz, n, a, lda, b, ldb, q, ldq, z, ldz,
ifst, ilst, work, lwork, info )
call ctgexc ( wantq, wantz, n, a, lda, b, ldb, q, ldq, z, ldz,
ifst, ilst, info )
call ztgexc ( wantq, wantz, n, a, lda, b, ldb, q, ldq, z, ldz,
ifst, ilst, info )

```

\section*{Description}

This routine reorders the generalized real-Schur/Schur decomposition of a real/complex matrix pair \((A, B)\) using an orthogonal/unitary equivalence transformation
\[
(A, B)=Q(A, B) Z^{H}
\]
so that the diagonal block of \((A, B)\) with row index ifst is moved to row ilst.
Matrix pair \((A, B)\) must be in generalized real-Schur/Schur canonical form (as returned by ?gges), i.e. \(A\) is block upper triangular with 1-by-1 and 2-by-2 diagonal blocks and \(B\) is upper triangular.

Optionally, the matrices \(Q\) and \(Z\) of generalized Schur vectors are updated.
\[
\begin{aligned}
& Q(\mathrm{in}) * A(\mathrm{in}) * Z(\mathrm{in})^{\prime}=Q(\mathrm{out}) * A(\mathrm{out}) * Z(\mathrm{out})^{\prime} \\
& Q(\mathrm{in}) * B(\mathrm{in}) * Z(\mathrm{in})^{\prime}=Q(\mathrm{out}) * B(\mathrm{out}) * Z(\mathrm{out})^{\prime}
\end{aligned}
\]

\section*{Input Parameters}
```

wantq, wantz LOGICAL.
If wantq=.TRUE., update the left transformation
matrix Q;
If wantq=. FALSE., do not update Q;

```
\begin{tabular}{ll}
& \begin{tabular}{l}
If wantz \(=\). TRUE., update the right transformation \\
\\
matrix \(Z ;\)
\end{tabular} \\
If wantz \(=\). FALSE., do not update \(Z\).
\end{tabular}
\begin{tabular}{ll}
Iwork & Integer. The dimension of work; must be at least \\
\(4 n+16\).
\end{tabular}

\section*{Output Parameters}
\(a, b\)
ifst, ilst
Overwritten by the updated matrices \(A\) and \(B\).
Overwritten for real flavors only.
If ifst pointed to the second row of a 2 by 2 block on entry, it is changed to point to the first row; ilst always points to the first row of the block in its final position (which may differ from its input value by \(\pm 1\)).

\section*{info INTEGER.}

If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\) th parameter had an illegal value.
If info \(=1\), the transformed matrix pair \((A, B)\) would be too far from generalized Schur form; the problem is ill-conditioned. \((A, B)\) may have been partially reordered, and ilst points to the first row of the current position of the block being moved.

\section*{?tgsen}

> Reorders the generalized Schur decomposition of a pair of matrices \((A, B)\) so that a selected cluster of eigenvalues appears in the leading diagonal blocks of \((A, B)\).

\section*{Syntax}
```

call stgsen ( ijob, wantq, wantz, select, n, a, lda, b, ldb, alphar,
alphai, beta, q, ldq, z, ldz, m, pl, pr, dif, work,
lwork, iwork, liwork, info )
call dtgsen ( ijob, wantq, wantz, select, n, a, lda, b, ldb, alphar,
alphai, beta, q, ldq, z, ldz, m, pl, pr, dif, work,
lwork, iwork, liwork, info )
call ctgsen ( ijob, wantq, wantz, select, n, a, lda, b, ldb, alpha,
beta, q, ldq, z, ldz, m, pl, pr, dif, work,
lwork, iwork, liwork, info )
call ztgsen ( ijob, wantq, wantz, select, n, a, lda, b, ldb, alpha,
beta, q, ldq, z, ldz, m, pl, pr, dif, work,
lwork, iwork, liwork, info )

```

\section*{Description}

This routine reorders the generalized real-Schur/Schur decomposition of a real/complex matrix pair \((A, B)\) (in terms of an orthogonal/unitary equivalence transformation \(Q^{\prime} *(A, B) * Z\)), so that a selected cluster of eigenvalues appears in the leading diagonal blocks of the pair \((A, B)\). The leading columns of \(Q\) and \(Z\) form orthonormal/unitary bases of the corresponding left and right eigenspaces (deflating subspaces).
(\(A, B\)) must be in generalized real-Schur/Schur canonical form (as returned by ?gges), that is, \(A\) and \(B\) are both upper triangular.
?tgsen also computes the generalized eigenvalues
\(\omega_{j}=(a l p h a r(\mathrm{j})+\operatorname{alphai}(\mathrm{j}) * \mathrm{i}) / b e t a(\mathrm{j}) \quad\) (for real flavors)
\(\omega_{j}=\) alpha \((\mathrm{j}) /\) beta \((\mathrm{j}) \quad\) (for complex flavors)
of the reordered matrix pair \((A, B)\).
Optionally, the routine computes the estimates of reciprocal condition numbers for eigenvalues and eigenspaces. These are
\(\operatorname{Difu}\left[\left(A_{11}, B_{11}\right),\left(A_{22}, B_{22}\right)\right]\) and \(\operatorname{Difl}\left[\left(A_{11}, B_{11}\right),\left(A_{22}, B_{22}\right)\right]\), that is, the separation(s) between the
matrix pairs \(\left(A_{11}, B_{11}\right)\) and \(\left(A_{22}, B_{22}\right)\) that correspond to the selected cluster and the eigenvalues outside the cluster, respectively, and norms of "projections" onto left and right eigenspaces with respect to the selected cluster in the \((1,1)\)-block.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline ijob & \begin{tabular}{l}
INTEGER. Specifies whether condition numbers are required for the cluster of eigenvalues (\(p 1\) and \(p r\)) or the deflating subspaces Difu and Difl. \\
If \(i j o b=0\), only reorder with respect to select; \\
If \(i\) job \(=1\), reciprocal of norms of "projections" onto left and right eigenspaces with respect to the selected cluster (\(p 1\) and \(p r\)); \\
If \(i\) job \(=2\), compute upper bounds on Difu and Difl, using F-norm-based estimate (dif (1:2)); \\
If ijob \(=3\), compute estimate of Difu and Difl, using 1-norm-based estimate (dif (1:2)). This option is about 5 times as expensive as ijob \(=2\); \\
If \(i j o b=4\), compute \(p l\), pr and dif (i.e., options 0,1 and 2 above). This is an economic version to get it all; \\
If \(i j o b=5\), compute \(p l\), pr and dif (i.e., options 0,1 and 3 above).
\end{tabular} \\
\hline wantq, wantz & \begin{tabular}{l}
LOGICAL. \\
If want \(q=\). TRUE., update the left transformation matrix \(Q\); \\
If want \(q=\). FALSE., do not update \(Q\); \\
If want \(z=\). TRUE., update the right transformation matrix \(Z\); \\
If want \(z=\). FALSE., do not update \(Z\).
\end{tabular} \\
\hline select & \begin{tabular}{l}
LOGICAL. \\
Array, DIMENSION at least max \((1, n)\). \\
Specifies the eigenvalues in the selected cluster. \\
To select an eigenvalue \(\omega_{j}\), select (\(j\)) must be .TRUE. For real flavors: to select a complex conjugate pair of eigenvalues \(\omega_{j}\) and \(\omega_{j+1}\) (corresponding 2 by 2 diagonal block), select (\(j\)) and/or select \((j+1)\) must be set to .TRUE.; the complex conjugate \(\omega_{j}\) and \(\omega_{j+1}\) must be either both included in the cluster or both excluded.
\end{tabular} \\
\hline \(n\) & INTEGER. The order of the matrices \(A\) and \(B(n \geq 0)\). \\
\hline \(a, b, q, z\), work & \begin{tabular}{l}
REAL for stgsen \\
DOUBLE PRECISION for dtgsen COMPLEX for ctgsen \\
DOUBLE COMPLEX for \(z t g s e n\). \\
Arrays:
\end{tabular} \\
\hline
\end{tabular}
a (lda,*) contains the matrix \(A\).
For real flavors: \(A\) is upper quasi-triangular, with \((A, B)\) in generalized real Schur canonical form.
For complex flavors: \(A\) is upper triangular, in generalized Schur canonical form.
The second dimension of a must be at least \(\max (1, n)\).
\(\mathrm{b}(1 \mathrm{db}, *)\) contains the matrix \(B\).
For real flavors: \(B\) is upper triangular, with \((A, B)\) in generalized real Schur canonical form.
For complex flavors: \(B\) is upper triangular, in generalized Schur canonical form.
The second dimension of \(b\) must be at least \(\max (1, n)\).
```

q(ldq,*)

```

If want \(q=\). TRUE., then \(q\) is an \(n\)-by-n matrix; If want \(q=\). FALSE., then \(q\) is not referenced. The second dimension of \(q\) must be at least \(\max (1, n)\).
\(z(l d z, *)\)
If want \(z=\).TRUE., then \(z\) is an \(n\)-by-n matrix; If want \(z=\).FALSE., then \(z\) is not referenced. The second dimension of \(z\) must be at least \(\max (1, n)\).
work (lwork) is a workspace array. If \(i j o b=0\), work is not referenced.
lda
\(1 d b\)
iwork

INTEGER. The first dimension of \(a\); at least \(\max (1, n)\).
INTEGER. The first dimension of \(b\); at least \(\max (1, n)\).
INTEGER. The first dimension of \(q ; 1 d q \geq 1\). If wantq \(=\).TRUE., then \(l d q \geq \max (1, n)\).

INTEGER. The first dimension of \(z ; 1 d z \geq 1\). If want \(z=\). TRUE., then \(l d z \geq \max (1, n)\).

INTEGER. The dimension of the array work. For real flavors:
If \(i\) job \(=1,2\), or 4 , 1 work \(\geq \max (4 n+16,2 m(n-m))\).
If \(i j o b=3\) or 5,1 work \(\geq \max (4 n+16,4 m(n-m))\).
For complex flavors:
If ijob \(=1,2\), or 4 , 1 work \(\geq \max (1,2 m(n-m))\).
If ijob \(=3\) or 5 , 1 work \(\geq \max (1,4 m(n-m)\)).

INTEGER. Workspace array, DIMENSION (liwork). If \(i j o b=0\), \(i w o r k\) is not referenced.
liwork INTEGER. The dimension of the array iwork.
For real flavors:
If \(i j o b=1,2\), or 4 , liwork \(\geq n+6\).
If \(i\) job \(=3\) or 5 , liwork \(\geq \max (n+6,2 m(n-m)\)).
For complex flavors:
If \(i j o b=1,2\), or 4 , liwork \(\geq n+2\).
If \(i j o b=3\) or 5 , liwork \(\geq \max (n+2,2 m(n-m))\).

\section*{Output Parameters}
\begin{tabular}{ll}
a, \(b\) & Overwritten by the reordered matrices \(A\) and \(B\), respectively. \\
alphar, alphai & REAL for stgsen; \\
DOUBLE PRECISION for dtgsen. \\
Arrays, DIMENSION at least max \((1, n)\). Contain values that form generalized \\
eigenvalues in real flavors. \\
See beta. \\
alpha & \\
& COMPLEX for ctgsen; \\
& AUUBLE COMPLEX for ztgsen. \\
eigenvalues in complex flavors. See beta.
\end{tabular}
\(q\)

If wantq =. TRUE., then, on exit, \(Q\) has been postmultiplied by the left orthogonal transformation matrix which reorder \((A, B)\). The leading \(m\) columns of \(Q\) form orthonormal bases for the specified pair of left eigenspaces (deflating subspaces).

If wantz =. TRUE., then, on exit, \(Z\) has been postmultiplied by the left orthogonal transformation matrix which reorder \((A, B)\). The leading \(m\) columns of \(Z\) form orthonormal bases for the specified pair of left eigenspaces (deflating subspaces).

INTEGER. The dimension of the specified pair of left and right eigen-spaces (deflating subspaces); \(0 \leq m \leq n\).

REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
If \(i j o b=1,4\), or \(5, p l\) and \(p r\) are lower bounds on the reciprocal of the norm of "projections" onto left and right eigenspaces with respect to the selected cluster.
\(0<p l, p r \leq 1\). If \(m=0\) or \(m=n, p l=p r=1\).
If \(i j o b=0,2\) or \(3, p l\) and \(p r\) are not referenced
REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
Array, DIMENSION (2).
If \(i j o b \geq 2, \operatorname{dif}(1: 2)\) store the estimates of Difu and Difl.
If \(i j o b=2\) or 4 , \(\operatorname{dif}(1: 2)\) are F-norm-based upper bounds on Difu and Difl. If \(i j o b=3\) or 5 , \(\operatorname{dif(1:2)}\) are 1-norm-based estimates of Difu and Difl. If \(m=\) 0 or \(n\),
\(\operatorname{dif}(1: 2)=\mathrm{F}-\operatorname{norm}([A, B])\).
If \(i\) job \(=0\) or 1 , dif is not referenced.
If ijob is not 0 and info \(=0\), on exit, work (1) contains the minimum value of 1 work required for optimum performance. Use this 1 work for subsequent runs.

If ijob is not 0 and info \(=0\), on exit, iwork(1) contains the minimum value of liwork required for optimum performance. Use this liwork for subsequent runs.

INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\) th parameter had an illegal value.
If info \(=1\), Reordering of \((A, B)\) failed because the transformed matrix pair
\((A, B)\) would be too far from generalized Schur form; the problem is very ill-conditioned. \((A, B)\) may have been partially reordered. If requested, 0 is returned in \(\operatorname{dif}(*), p l\) and \(p r\).

\section*{?tgsyl}

Solves the generalized Sylvester equation.

\section*{Syntax}
```

call stgsyl ( trans, ijob, m, n, a, lda, b, ldb, c, ldc, d, ldd, e,
lde, f, ldf, scale, dif, work, lwork, iwork, info )
call dtgsyl ( trans, ijob, m, n, a, lda, b, ldb, c, ldc, d, ldd, e,
lde, f, ldf, scale, dif, work, lwork, iwork, info )
call ctgsyl ( trans, ijob, m, n, a, lda, b, ldb, c, ldc, d, ldd, e,
lde, f, ldf, scale, dif, work, lwork, iwork, info )
call ztgsyl ( trans, ijob, m, n, a, lda, b, ldb, c, ldc, d, ldd, e,
lde, f, ldf, scale, dif, work, lwork, iwork, info )

```

\section*{Description}

This routine solves the generalized Sylvester equation:
\[
\begin{aligned}
& A R-L B=\text { scale * } C \\
& D R-L E=\text { scale } * F
\end{aligned}
\]
where \(R\) and \(L\) are unknown \(m\)-by-n matrices, \((A, D),(B, E)\) and \((C, F)\) are given matrix pairs of size \(m\)-by- \(m, n\)-by- \(n\) and \(m\)-by- \(n\), respectively, with real/complex entries. \((A, D)\) and \((B, E)\) must be in generalized real-Schur/Schur canonical form, that is, \(A, B\) are upper quasi-triangular/triangular and \(D, E\) are upper triangular.

The solution \((R, L)\) overwrites \((C, F)\). The factor scale, \(0 \leq\) scale \(\leq 1\), is an output scaling factor chosen to avoid overflow.

In matrix notation the above equation is equivalent to the following: solve \(Z x=\) scale \(* b\), where \(Z\) is defined as
\[
Z=\binom{\operatorname{kron}\left(I_{n}, A\right)-\operatorname{kron}\left(B^{\prime}, I_{m}\right)}{\operatorname{kron}\left(I_{n}, D\right)-\operatorname{kron}\left(E^{\prime}, I_{m}\right)}
\]

Here \(I_{\mathrm{k}}\) is the identity matrix of size \(k\) and \(X^{\prime}\) is the transpose/conjugate-transpose of \(X\). \(k r o n(X, Y)\) is the Kronecker product between the matrices \(X\) and \(Y\).
If trans = ' T'(for real flavors), or trans = ' C'(for complex flavors), the routine ?tgsyl
solves the transposed/conjugate-transposed system
\(Z^{\prime} y=\) scale * \(b\), which is equivalent to solve for \(R\) and \(L\) in
\[
\begin{aligned}
& A^{\prime} R+D^{\prime} L=\text { scale * } C \\
& R B^{\prime}+L E^{\prime}=\text { scale * }(-F)
\end{aligned}
\]

This case (trans = 'T' for stgsyl/dtgsyl or trans = ' C' for ctgsyl/ztgsyl) is used to compute an one-norm-based estimate of \(\operatorname{Dif}[(A, D),(B, E)]\), the separation between the matrix pairs \((A, D)\) and \((B, E)\), using slacon/clacon.

If \(i j o b \geq 1\), ?tgsyl computes a Frobenius norm-based estimate of \(\operatorname{Dif}[(A, D),(B, E)]\). That is, the reciprocal of a lower bound on the reciprocal of the smallest singular value of \(Z\). This is a level 3 BLAS algorithm.

\section*{Input Parameters}
```

trans CHARACTER*1.Must be 'N','T', or 'C'.
If trans = 'N', solve the generalized Sylvester equation.
If trans = 'T', solve the 'transposed' system (for real flavors only).
If trans = 'C', solve the ' conjugate transposed' system (for complex flavors
only).
ijob INTEGER. Specifies what kind of functionality to be performed:
If ijob=0, solve the generalized Sylvester equation only;
If ijob =1, perform the functionality of ijob =0
and ijob=3;
If ijob =2, perform the functionality of ijob=0
and ijob=4;
If ijob=3, only an estimate of \operatorname{Dif}[(A,D),(B,E)] is computed (look ahead
strategy is used);
If ijob =4, only an estimate of \operatorname{Dif}[(A,D),(B,E)] is computed (?gecon on
sub-systems is used).
If trans = 'T'or 'C', ijob is not referenced.
m
INTEGER.
The order of the matrices A and D, and the row dimension of the matrices C, F,
R and L.

```
\begin{tabular}{|c|c|}
\hline & \begin{tabular}{l}
INTEGER. \\
The order of the matrices \(B\) and \(E\), and the column dimension of the matrices \(C, F, R\) and \(L\).
\end{tabular} \\
\hline \multirow[t]{17}{*}{\(a, b, c, d\)
\(e, f, w o r k\)} & REAL for stgsyl \\
\hline & DOUBLE PRECISION for dtgsyl \\
\hline & COMPLEX for ctgsyl \\
\hline & DOUBLE COMPLex for ztgsyl. \\
\hline & \begin{tabular}{l}
Arrays: \\
\(a(l d a, *)\) contains the upper quasi-triangular (for real flavors) or upper triangular (for complex flavors) matrix \(A\).
\end{tabular} \\
\hline & The second dimension of a must be at least max \((1, m)\). \\
\hline & \(b(I d b, *)\) contains the upper quasi-triangular (for real flavors) or upper triangular (for complex flavors) matrix \(B\). \\
\hline & The second dimension of \(b\) must be at least max \((1, n)\). \\
\hline & \(c(l d c, *)\) contains the right-hand-side of the first matrix equation in the generalized Sylvester equation (as defined by trans) \\
\hline & The second dimension of \(c\) must be at least max \((1, n)\). \\
\hline & \(d(l d d, *)\) contains the upper triangular matrix \(D\). \\
\hline & The second dimension of \(d\) must be at least max \((1, m)\). \\
\hline & \(e(l d e, *)\) contains the upper triangular matrix \(E\). \\
\hline & The second dimension of e must be at least max \((1, n)\). \\
\hline & \(f(l d f, *)\) contains the right-hand-side of the second matrix equation in the generalized Sylvester equation (as defined by trans) \\
\hline & The second dimension of \(f\) must be at least max (\(1, n\)). \\
\hline & work (lwork) is a workspace array. If \(i j o b=0\), work is not referenced. \\
\hline \(1 d a\) & INTEGER. The first dimension of \(a\); at least max \((1, m)\). \\
\hline \(1 d b\) & Integer. The first dimension of \(b\); at least max \((1, n)\). \\
\hline \(1 d c\) & Integer. The first dimension of \(c\); at least max (\(1, m\)). \\
\hline \(1 d d\) & Integer. The first dimension of \(d\); at least max \((1, m)\). \\
\hline lde & integer. The first dimension of \(e\); at least max \((1, n)\). \\
\hline ldf & INTEGER. The first dimension of \(f\); at least \(\max (1, m)\). \\
\hline
\end{tabular}

Iwork INTEGER. The dimension of the array work. 1 work \(\geq 1\). If ijob \(=1\) or 2 and trans \(=\) 'N', lwork \(\geq 2 \mathrm{mn}\).
iwork INTEGER. Workspace array, DIMENSION at least \((m+n+6)\) for real flavors, and at least (\(m+n+2\)) for complex flavors.
If \(i j o b=0\), \(i w o r k\) is not referenced.

\section*{Output Parameters}

If \(i\) job \(=0,1\), or 2 , overwritten by the solution \(R\).
If \(i j o b=3\) or 4 and trans \(=\) ' \(N\) ', \(c\) holds \(R\), the solution achieved during the computation of the Dif-estimate.
f
If \(i\) job \(=0,1\), or 2 , overwritten by the solution \(L\).
If ijob=3 or 4 and trans \(=\) ' \(N\) ', \(f\) holds \(L\), the solution achieved during the computation of the Dif-estimate.
dif REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
On exit, dif is the reciprocal of a lower bound of the reciprocal of the
Dif-function, i.e. dif is an upper bound of \(\operatorname{Dif}[(A, D),(B, E)]=\operatorname{sigma} \min (Z)\), where \(Z\) as in (2).
If \(i\) job \(=0\), or trans \(=\) ' \(T\) '(for real flavors), or trans \(={ }^{\prime} C^{\prime}\) (for complex flavors), dif is not touched.
scale REAL for single-precision flavors DOUBLE PRECISION for double-precision flavors.
On exit, scale is the scaling factor in the generalized Sylvester equation. If 0 \(<\) scale \(<1, c\) and \(f\) hold the solutions \(R\) and \(L\), respectively, to a slightly perturbed system but the input matrices \(A, B, D\) and \(E\) have not been changed. If scale \(=0, c\) and \(f\) hold the solutions \(R\) and \(L\), respectively, to the homogeneous system with \(C=F=0\). Normally, scale \(=1\).
work(1) If ijob is not 0 and info \(=0\), on exit, work (1) contains the minimum value of 1 work required for optimum performance. Use this lwork for subsequent runs.
info INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\) th parameter had an illegal value.
If info \(>0,(A, D)\) and \((B, E)\) have common or close eigenvalues.

\section*{?tgsna}

Estimates reciprocal condition numbers for specified eigenvalues and/or eigenvectors of a pair of matrices in generalized real Schur canonical form.

\section*{Syntax}
```

call stgsna ( job, howmny, select, n, a, lda, b, ldb, vl, ldvl, vr,
ldvr, s, dif, mm, m, work, lwork, iwork, info )
call dtgsna ( job, howmny, select, n, a, lda, b, ldb, vl, ldvl, vr,
ldvr, s, dif, mm, m, work, lwork, iwork, info )
call ctgsna ( job, howmny, select, n, a, lda, b, ldb, vl, ldvl, vr,
ldvr, s, dif, mm, m, work, lwork, iwork, info )
call ztgsna ( job, howmny, select, n, a, lda, b, ldb, vl, ldvl, vr,
ldvr, s, dif, mm, m, work, lwork, iwork, info )

```

\section*{Description}

The real flavors stgsna/dtgsna of this routine estimate reciprocal condition numbers for specified eigenvalues and/or eigenvectors of a matrix pair \((A, B)\) in generalized real Schur canonical form (or of any matrix pair \(\left(Q A Z^{T}, Q B Z^{T}\right)\) with orthogonal matrices \(Q\) and \(Z\). \((A, B)\) must be in generalized real Schur form (as returned by sgges/dgges), that is, \(A\) is block upper triangular with 1-by-1 and 2-by-2 diagonal blocks. B is upper triangular.

The complex flavors ctgsna/ztgsna estimate reciprocal condition numbers for specified eigenvalues and/or eigenvectors of a matrix pair \((A, B)\). \((A, B)\) must be in generalized Schur canonical form , that is, \(A\) and \(B\) are both upper triangular.

\section*{Input Parameters}
job
CHARACTER*1. Specifies whether condition numbers are required for eigenvalues or eigenvectors .
Must be 'E' or 'V' or 'B'.
If \(j 0 b=1 E\) ', for eigenvalues only (compute \(s\)).
If job='V', for eigenvectors only (compute dif).
If \(j o b=' B '\), for both eigenvalues and eigenvectors (compute both \(s\) and \(d i f\)).
```

howmny CHARACTER*1.Must be 'A' or 'S'.
If howmny = 'A', compute condition numbers for all eigenpairs.
If howmny = 'S ', compute condition numbers for selected eigenpairs specified
by the logical array select.
select LOGICAL.
Array, DIMENSION at least max (1,n).
If howmny='S', select specifies the eigenpairs for which condition
numbers are required.
If howmny= 'A', select is not referenced.
For real flavors:
To select condition numbers for the eigenpair corresponding to a real
eigenvalue }\mp@subsup{\omega}{j}{\prime}\mathrm{ , select (j) must be set to .TRUE.; to select condition numbers
corresponding to a complex conjugate pair of eigenvalues }\mp@subsup{\omega}{j}{}\mathrm{ and }\mp@subsup{\omega}{j+1}{}\mathrm{ , either
select(j) or select(j+1) must be set to .TRUE.
For complex flavors:
To select condition numbers for the corresponding j-th eigenvalue and/or
eigenvector, select(j) must be set to .TRUE..
INTEGER. The order of the square matrix pair (A,B)
( }n\geq0)\mathrm{ .
a,b,vl,vr,work REAL for stgsna
DOUBLE PRECISION for dtgsna
COMPLEX for ctgsna
DOUBLE COMPLEX for ztgsna.
Arrays:
a(lda,*) contains the upper quasi-triangular (for real flavors) or upper
triangular (for complex flavors)
matrix }A\mathrm{ in the pair (A,B).
The second dimension of a must be at least max(1,n).
b}(ldb,*) contains the upper triangular matrix B in the pair (A,B)
The second dimension of b must be at least max(1,n).
If job='E' or 'B',
vl(ldvl,*) must contain left eigenvectors of (A,B), corresponding to the
eigenpairs specified by howmny and select. The eigenvectors must be stored
in consecutive columns of vl, as returned by ?tgevc.
If job='V',vl is not referenced.
The second dimension of vl must be at least max(1,m).

```

If job \(=\) 'E' or 'B', \(\mathrm{vr}(l d v r, *)\) must contain right eigenvectors of \((A, B)\), corresponding to the eigenpairs specified by howmny and select. The eigenvectors must be stored in consecutive columns of vr , as returned by ?tgevc.
If \(j o b=' v '\), \(v r\) is not referenced.
The second dimension of \(v r\) must be at least \(\max (1, m)\).
work (lwork) is a workspace array. If job \(=\) ' E ', work is not referenced.
Ida
INTEGER. The first dimension of \(a\); at least \(\max (1, n)\).
INTEGER. The first dimension of \(b\); at least \(\max (1, n)\).
INTEGER. The first dimension of \(v l ; l d v l \geq 1\). If job \(=\) ' E ' or ' B ', then \(l d v 1 \geq \max (1, n)\).

INTEGER. The first dimension of \(v r ; ~ l d v r \geq 1\). If job \(=\) ' E ' or ' B ', then \(l d v r \geq \max (1, \mathrm{n})\).

INTEGER. The number of elements in the arrays \(s\) and \(\operatorname{dif}(m m \geq m\)).
INTEGER. The dimension of the array work.
For real flavors:
lwork \(\geq\) n.
If job \(=\) 'V' or 'B', 1 work \(\geq 2 n(n+2)+16\).
For complex flavors:
lwork \(\geq 1\).
If job \(=\) 'V' or 'B', \(I\) work \(\geq 2 n^{2}\).
iwork INTEGER. Workspace array, DIMENSION at least (\(n+6\)) for real flavors, and at least (\(n+2\)) for complex flavors.
If \(i j o b=' E '\), iwork is not referenced.

\section*{Output Parameters}

REAL for single-precision flavors DOUBLE PRECISION for double-precision flavors. Array, DIMENSION (mm).
If job \(=\) 'E' or 'B', contains the reciprocal condition numbers of the selected eigenvalues, stored in consecutive elements of the array.
If job \(={ }^{\prime} \mathrm{V}\) ', \(s\) is not referenced.
For real flavors:
For a complex conjugate pair of eigenvalues two consecutive elements of \(s\) are
set to the same value. Thus, \(s(j), d i f(j)\), and the \(j\)-th columns of \(v l\) and \(v r\) all correspond to the same eigenpair (but not in general the j -th eigenpair, unless all eigenpairs are selected).

REAL for single-precision flavors DOUBLE PRECISION for double-precision flavors.
Array, DIMENSION (mm).
If job \(=\) 'V' or ' B ', contains the estimated reciprocal condition numbers of the selected eigenvectors, stored in consecutive elements of the array. If the eigenvalues cannot be reordered to compute \(\operatorname{dif}(\mathrm{j})\), \(\operatorname{dif}(\mathrm{j})\) is set to 0 ; this can only occur when the true value would be very small anyway. If job \(=\) 'E', dif is not referenced.
For real flavors:
For a complex eigenvector, two consecutive elements of dif are set to the same value.
For complex flavors:
For each eigenvalue/vector specified by select, dif stores a Frobenius norm-based estimate of Difl.

INTEGER. The number of elements in the arrays \(s\) and dif used to store the specified condition numbers; for each selected eigenvalue one element is used. If howmny = ' \(A\) ', \(m\) is set to \(n\).
work(1) If job is not 'E' and info = 0 , on exit, work(1) contains the minimum value of 1 work required for optimum performance. Use this 1 work for subsequent runs.

INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\) th parameter had an illegal value.

\section*{Generalized Singular Value Decomposition}

This section describes LAPACK computational routines used for finding the generalized singular value decomposition (GSVD) of two matrices \(A\) and \(B\) as
\[
\begin{aligned}
& U^{H} A Q=D_{1} *\left(\begin{array}{ll}
0 & R
\end{array}\right), \\
& V^{H} B Q=D_{2} *\left(\begin{array}{ll}
0 & R
\end{array}\right),
\end{aligned}
\]
where \(U, V\), and \(Q\) are orthogonal/unitary matrices, \(R\) is a nonsingular upper triangular matrix, and \(D_{1}, D_{2}\) are "diagonal" matrices of the structure detailed in the routines description section.

\section*{Table 4-7 Computational Routines for Generalized Singular Value Decomposition}
\begin{tabular}{ll}
Routine name & Operation performed \\
\hline ?ggsvp & \begin{tabular}{l}
Computes the preprocessing \\
decomposition for the generalized SVD
\end{tabular} \\
\hline ?tgsja & \begin{tabular}{l}
Computes the generalized SVD of two \\
upper triangular or trapezoidal matrices
\end{tabular} \\
\hline
\end{tabular}

You can use routines listed in the above table as well as the driver routine ? ggsvd to find the GSVD of a pair of general rectangular matrices.

\section*{?ggsvp}

Computes the preprocessing decomposition for the generalized SVD.

\section*{Syntax}
```

call sggsvp ( jobu, jobv, jobq, m, p, n, a, lda, b, ldb, tola, tolb,
k, l, u, ldu, v, ldv, q, ldq, iwork, tau, work, info )
call dggsvp ( jobu, jobv, jobq, m, p, n, a, lda, b, ldb, tola, tolb,
k, l, u, ldu, v, ldv, q, ldq, iwork, tau, work, info )
call cggsvp (jobu, jobv, jobq, m, p, n, a, lda, b, ldb, tola, tolb,
k, l, u, ldu, v, ldv, q, ldq, iwork, rwork, tau, work, info )
call zggsvp ( jobu, jobv, jobq, m, p, n, a, lda, b, ldb, tola, tolb,
k, l, u, ldu, v, ldv, q, ldq, iwork, rwork, tau, work, info )

```

\section*{Description}

This routine computes orthogonal matrices \(U, V\) and \(Q\) such that
\[
\begin{aligned}
& n-k-1 \quad k \quad l \\
& U^{H} A Q=\begin{array}{r}
k \\
I-k-I
\end{array}\left(\begin{array}{lll}
0 & A_{12} & A_{13} \\
0 & 0 & A_{23} \\
0 & 0 & 0
\end{array}\right), \quad \text { if } m-k-I \geq 0 \\
& n-k-1 \quad k \quad l \\
& =\quad m-k\left(\begin{array}{ccc}
0 & A_{12} & A_{13} \\
0 & 0 & A_{23}
\end{array}\right), \quad \text { if } m-k-1<0 \\
& n-k-1 \quad k \quad 1 \\
& V^{H} B Q=\quad p-1\left(\begin{array}{lll}
1 \\
0 & 0 & B_{13} \\
0 & 0
\end{array}\right)
\end{aligned}
\]
where the \(k\)-by-k matrix \(A_{12}\) and 1-by- 1 matrix \(B_{13}\) are nonsingular upper triangular; \(A_{23}\) is l-by-1 upper triangular if \(m-k-1 \geq 0\), otherwise \(A_{23}\) is (\(m-k\))-by-1 upper trapezoidal. The sum \(k+1\) is equal to the effective numerical rank of the (\(m+p\))-by-n matrix \(\left(A^{H}, B^{H}\right)^{H}\).

This decomposition is the preprocessing step for computing the Generalized Singular Value Decomposition (GSVD), see subroutine ?ggsva.

\section*{Input Parameters}
```

jobu CHARACTER*1.Must be 'U' or 'N'.
If jobu='U', orthogonal/unitary matrix U is computed.
If jobu='N',U is not computed.
jobv CHARACTER*1. Must be 'V' or 'N'.
If jobv='V', orthogonal/unitary matrix }V\mathrm{ is computed.
If jobv='N',V is not computed.
jobq CHARACTER*1. Must be 'Q' or 'N'.
If jobq='Q', orthogonal/unitary matrix Q is computed.
If jobq='N',Q is not computed.
m
p
n
a,b,tau,work
REAL for sggsvp
DOUBLE PRECISION for dggsvp
COMPLEX for cggsvp
DOUBLE COMPLEX for zggsvp.
Arrays:
a(lda,*) contains the m-by-n matrix }A\mathrm{ .
The second dimension of a must be at least max(1,n).
b}(1db,*) contains the p-by-n matrix B.
The second dimension of b must be at least max(1,n).
tau(*) is a workspace array. The dimension of tau must be at least max(1,
n).
work (*) is a workspace array. The dimension of work must be at least max(1,
3n, m, p).
lda
INTEGER. The first dimension of a; at least max (1,m).

```
\begin{tabular}{|c|c|}
\hline \(1 d \mathrm{~b}\) & INTEGER. The first dimension of \(b\); at least max \((1, p)\). \\
\hline \multirow[t]{4}{*}{tola, tolb} & REAL for single-precision flavors \\
\hline & DOUBLE PRECISION for double-precision flavors. \\
\hline & tola and tolb are the thresholds to determine the effective numerical rank of matrix \(B\) and a subblock of \(A\). Generally, they are set to
\[
\begin{aligned}
& \text { tol } a=\max (m, n) *\|A\| * \text { MACHEPS }, \\
& \text { tol } b=\max (p, n) *\|B\| * \text { MACHEPS }
\end{aligned}
\] \\
\hline & The size of tola and tolb may affect the size of backward errors of the decomposition. \\
\hline \(1 d u\) & INTEGER. The first dimension of the output array \(u\). \(1 d u \geq \max (1, m)\) if \(j o b u\) \(=\) 'U'; ldu \(\geq 1\) otherwise. \\
\hline \(1 d v\) & INTEGER. The first dimension of the output array \(v . l d v \geq \max (1, p)\) if jobv \(=' \mathrm{~V}\) '; \(1 \mathrm{dv} \geq 1\) otherwise. \\
\hline \(1 d q\) & INTEGER. The first dimension of the output array \(q\). \(1 d q \geq \max (1, n)\) if jobq \(=\) ' \({ }^{\prime}\) '; ldq \(\geq 1\) otherwise. \\
\hline iwork & INTEGER. Workspace array, DIMENSION at least max \((1, n)\) \\
\hline \multirow[t]{3}{*}{rwork} & REAL for cggsvp \\
\hline & DOUBLE PRECISION for zggsvp. \\
\hline & Workspace array, DIMENSION at least max \((1,2 n)\). Used in complex flavors only. \\
\hline \multicolumn{2}{|l|}{Output Parameters} \\
\hline a & Overwritten by the triangular (or trapezoidal) matrix described in the Description section. \\
\hline b & Overwritten by the triangular matrix described in the Description section. \\
\hline \multirow[t]{3}{*}{k, 1} & INTEGER. \\
\hline & On exit, \(k\) and \(l\) specify the dimension of subblocks. \\
\hline & The sum \(k+1\) is equal to effective numerical rank of \(\left(A^{H}, B^{H}\right)^{H}\). \\
\hline \multirow[t]{5}{*}{u, v, q} & REAL for sggsvp \\
\hline & DOUBLE PRECISION for dggsvp \\
\hline & COMPLEX for cggsvp \\
\hline & DOUBLE COMPLEX for zggsvp. \\
\hline & Arrays: \\
\hline
\end{tabular}

If jobu='U', u(ldu,*) contains the orthogonal/unitary matrix \(U\). The second dimension of \(u\) must be at least \(\max (1, m)\).
If job \(={ }^{\prime} N^{\prime}, u\) is not referenced.
If jobv='V', \(v(l d v, *)\) contains the orthogonal/unitary matrix \(V\).
The second dimension of \(v\) must be at least \(\max (1, m)\).
If jobs=' \(N^{\prime}, v\) is not referenced.
If \(j o b q={ }^{\prime} Q^{\prime}, q(l d q, *)\) contains the orthogonal/unitary matrix \(Q\).
The second dimension of \(q\) must be at least \(\max (1, n)\).
If \(j o b q=N^{\prime}, q\) is not referenced.
INTEGER.
If info \(=0\), the execution is successful.
'If info \(=-i\), the \(i\) th parameter had an illegal value.

\section*{?tgsja}

Computes the generalized SVD of two upper triangular or trapezoidal matrices.

\section*{Syntax}
```

call stgsja ( jobu, jobv, jobq, m, p, n, k, l, a, lda, b, ldb, tola,
tolb, alpha, beta, u, ldu, v, ldv, q, ldq, work, ncycle, info )
call dtgsja ( jobu, jobv, jobq, m, p, n, k, l, a, lda, b, ldb, tola,
tolb, alpha, beta, u, ldu, v, ldv, q, ldq, work, ncycle, info )
call ctgsja ( jobu, jobv, jobq, m, p, n, k, l, a, lda, b, ldb, tola,
tolb, alpha, beta, u, ldu, v, ldv, q, ldq, work, ncycle, info )
call ztgsja ( jobu, jobv, jobq, m, p, n, k, l, a, lda, b, ldb, tola,
tolb, alpha, beta, u, ldu, v, ldv, q, ldq, work, ncycle, info )

```

\section*{Description}

This routine computes the generalized singular value decomposition (GSVD) of two real/complex upper triangular (or trapezoidal) matrices \(A\) and \(B\). On entry, it is assumed that matrices \(A\) and \(B\) have the following forms, which may be obtained by the preprocessing subroutine? ggsvp from a general \(m\)-by- \(n\) matrix \(A\) and \(p\)-by- \(n\) matrix \(B\) :
\[
\begin{aligned}
& n-k-1 \quad k \quad l \\
& A=\underset{m-k-1}{ } \begin{array}{r}
k \\
1 \\
0
\end{array}\left(\begin{array}{lll}
0 & A_{12} & A_{13} \\
0 & 0 & A_{23} \\
0 & 0
\end{array}\right), \quad \text { if } m-k-1 \geq 0 \\
& \text { n-k-l } k \quad l \\
& =\quad \begin{array}{rll}
k-k
\end{array}\left(\begin{array}{ccc}
0 & A_{12} & A_{13} \\
0 & 0 & A_{23}
\end{array}\right), \text { if } m-k-1<0
\end{aligned}
\]
\[
B=\begin{array}{ccl}
n-k-l & k & l \\
l \\
l
\end{array}\left(\begin{array}{lll}
0 & 0 & B_{13} \\
0 & 0 & 0
\end{array}\right)
\]
where the \(k\)-by- \(k\) matrix \(A_{12}\) and 1-by- 1 matrix \(B_{13}\) are nonsingular upper triangular; \(A_{23}\) is l-by- 1 upper triangular if \(m-k-1 \geq 0\), otherwise \(A_{23}\) is (\(m-k\))-by- 1 upper trapezoidal.

On exit,
\(U^{H} A Q=D_{1}^{*}\left(\begin{array}{ll}0 & R\end{array}\right), \mathrm{V}^{H} B Q=D_{2}^{*}\left(\begin{array}{ll}0 & R\end{array}\right)\),
where \(U, V\) and \(Q\) are orthogonal/unitary matrices, \(R\) is a nonsingular upper triangular matrix, and \(D_{1}\) and \(D_{2}\) are "diagonal" matrices, which are of the following structures:

If \(m-k-1 \geq 0\),

\(D_{2}=\underset{p-I}{l}\left(\begin{array}{cc}k & l \\ 0 & S \\ 0 & 0\end{array}\right)\)
n-k-1 \(\quad k \quad 1\)
\(\left(\begin{array}{ll}0 & R\end{array}\right)=\begin{gathered}k \\ l\end{gathered}\left(\begin{array}{lll}0 & R_{11} & R_{12} \\ 0 & 0 & R_{22}\end{array}\right)\)
where
\(C=\operatorname{diag}(\operatorname{alpha}(k+1), \ldots, a l p h a(k+1))\)
\(S=\operatorname{diag}(\operatorname{beta}(k+1), \ldots\), beta \((k+1))\)
\(C^{2}+S^{2}=\mathrm{I}\)
\(R\) is stored in \(a(1: k+1, n-k-1+1: n)\) on exit.
\[
\begin{aligned}
& \text { If } m-k-1<0, \\
& k \quad m-k \quad k+1-m \\
& D_{1}=\quad \begin{array}{ccc}
k \\
m-k
\end{array}\left(\begin{array}{lll}
I & 0 & 0 \\
0 & C & 0
\end{array}\right) \\
& k \quad m-k \quad k+1-m \\
& D_{2}=\begin{array}{c}
m-k \\
p-I-m \\
p-I
\end{array}\left(\begin{array}{lll}
0 & S & 0 \\
0 & 0 & I \\
0 & 0 & 0
\end{array}\right)
\end{aligned}
\]
where
\(C=\operatorname{diag}(\operatorname{alpha}(k+1), \ldots, a l p h a(m))\),
\(S=\operatorname{diag}(\operatorname{beta}(k+1), \ldots\), beta(m)),
\(C^{2}+S^{2}=\mathrm{I}\)

On exit, \(\left(\begin{array}{c}R_{11} R_{12} R_{13} \\ 0\end{array} R_{22} R_{23}\right)\) is stored in a(1:m, n-k-1+1:n) and \(R_{33}\) is stored
in \(b(m-k+1: 1, n+m-k-1+1: n)\).
The computation of the orthogonal/unitary transformation matrices \(U, V\) or \(Q\) is optional. These matrices may either be formed explicitly, or they may be postmultiplied into input matrices \(U_{1}\), \(V_{1}\), or \(Q_{1}\).

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline jobu & \begin{tabular}{l}
CHARACTER*1. Must be 'U', 'I', or 'N'. \\
If jobu='U', u must contain an orthogonal/unitary matrix \(U_{l}\) on entry. \\
If jobu='I', \(u\) is initialized to the unit matrix. \\
If jobu='N', u is not computed.
\end{tabular} \\
\hline jobv & \begin{tabular}{l}
CHARACTER*1. Must be 'V', 'I', or 'N'. \\
If jobv='v', \(v\) must contain an orthogonal/unitary matrix \(V_{l}\) on entry. \\
If jobv='I', \(v\) is initialized to the unit matrix. \\
If jobv='N', \(v\) is not computed.
\end{tabular} \\
\hline jobq & \begin{tabular}{l}
CHARACTER*1. Must be ' Q ', 'I', or 'N'. \\
If jobq='Q', q must contain an orthogonal/unitary matrix \(Q_{l}\) on entry. \\
If jobq='I', \(q\) is initialized to the unit matrix. \\
If jobq='N', \(q\) is not computed.
\end{tabular} \\
\hline m & INTEGER. The number of rows of the matrix \(A(m \geq 0)\). \\
\hline \(p\) & INTEGER. The number of rows of the matrix \(B(p \geq 0)\). \\
\hline \(n\) & INTEGER. The number of columns of the matrices \(A\) and \(B(n \geq 0)\). \\
\hline \(k, 1\) & INTEGER. Specify the subblocks in the input matrices \(A\) and \(B\), whose GSVD is going to be computed by ?tgsja. \\
\hline \(a, b, u\) & \begin{tabular}{l}
REAL for stgsja \\
DOUBLE PRECISION for dtgsja \\
COMPLEX for ctgsja \\
double complex for ztgsja. \\
Arrays: \\
\(a(l d a, *)\) contains the \(m-b y-n\) matrix \(A\). \\
The second dimension of a must be at least max \((1, n)\).
\end{tabular} \\
\hline & \begin{tabular}{l}
\(b(l d b, *)\) contains the \(p\)-by- \(n\) matrix \(B\). \\
The second dimension of \(b\) must be at least \(\max (1, n)\).
\end{tabular} \\
\hline & If jobu='U', u(ldu,*) must contain a matrix \(U_{l}\) (usually the orthogonal/unitary matrix returned by ?ggsvp). The second dimension of \(u\) must be at least \(\max (1, m)\). \\
\hline & If jobv='v', \(v(l d v, *)\) must contain a matrix \(V_{l}\) (usually the orthogonal/unitary matrix returned by ?ggsvp). The second dimension of \(v\) must be at least \(\max (1, p)\). \\
\hline
\end{tabular}
lda
tola, tolb REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
tola and tolb are the convergence criteria for the Jacobi-Kogbetliantz iteration procedure. Generally, they are the same as used in ?ggsvp :
tola \(=\max (m, n) *\|A\| *\) MACHEPS, tolb \(=\max (p, n) *\|B\| *\) MACHEPS.

\section*{Output Parameters}
alpha, beta

On exit, \(a(n-k+1: n, 1: \min (k+1, m))\) contains the triangular matrix \(R\) or part of \(R\).

On exit, if necessary, \(b(m-k+1: 1, n+m-k-1+1: n))\) contains a part of \(R\).
REAL for single-precision flavors DOUBLE PRECISION for double-precision flavors. Arrays, DIMENSION at least max \((1, n)\).
Contain the generalized singular value pairs of \(A\) and \(B\) :
alpha(\(1: k)=1\),
\(\operatorname{beta}(1: k)=0\),
and if \(m-k-1 \geq 0\),
alpha \((k+1: k+1)=\operatorname{diag}(C)\),
\(\operatorname{beta}(k+1: k+1)=\operatorname{diag}(S)\),
```

or if $m-k-1<0$,
alpha $(k+1: m)=C$, alpha $(m+1: k+1)=0$
$\operatorname{beta}(k+1: m)=S$, beta $(m+1: k+1)=1$.
Furthermore, if $k+1<n$,
alpha $(k+1+1: n)=0$ and
beta $(k+1+1: n)=0$.

```

If jobu='I', u contains the orthogonal/unitary matrix \(U\).
If jobu='U', u contains the product \(U_{1} U\). If jobu =' \(N^{\prime}, u\) is not referenced.

If jobv='I', v contains the orthogonal/unitary matrix \(U\).
If jobv='v', \(v\) contains the product \(V_{l} V\). If jobv='N', \(v\) is not referenced.

If jobq='I', \(q\) contains the orthogonal/unitary matrix \(U\).
If jobq='Q', \(q\) contains the product \(Q_{1} Q\). If \(j o b q=N^{\prime}, q\) is not referenced.

INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\) th parameter had an illegal value.
If info \(=1\), the procedure does not converge after
MAXIT cycles.

\section*{Driver Routines}

Each of the LAPACK driver routines solves a complete problem.
To arrive at the solution, driver routines typically call a sequence of appropriate computational routines.
Driver routines are described in the following sections:
```

Linear Least Squares (LLS) Problems
Generalized LLS Problems
Symmetric Eigenproblems
Nonsymmetric Eigenproblems
Singular Value Decomposition
Generalized Symmetric Definite Eigenproblems
Generalized Nonsymmetric Eigenproblems

```

\section*{Linear Least Squares (LLS) Problems}

This section describes LAPACK driver routines used for solving linear least-squares problems. Table 4-8 lists routines described in more detail below.

Table 4-8 Driver Routines for Solving LLS Problems
\begin{tabular}{ll}
Routine Name & Operation performed \\
\hline ?gels & \begin{tabular}{l}
Uses QR or LQ factorization to solve a overdetermined or underdetermined \\
linear system with full rank matrix.
\end{tabular} \\
\(?\) ?gelsy & \begin{tabular}{l}
Computes the minimum-norm solution to a linear least squares problem \\
using a complete orthogonal factorization of A.
\end{tabular} \\
\(?\) ?gelss & \begin{tabular}{l}
Computes the minimum-norm solution to a linear least squares problem \\
using the singular value decomposition of A.
\end{tabular} \\
?gelsd & \begin{tabular}{l}
Computes the minimum-norm solution to a linear least squares problem \\
using the singular value decomposition of A and a divide and conquer \\
method.
\end{tabular}
\end{tabular}

\section*{?gels}

Uses QR or LQ factorization to solve a overdetermined or underdetermined linear system with full rank matrix.

\section*{Syntax}
```

call sgels ( trans, m, n, nrhs, a, lda, b, ldb, work, lwork, info )
call dgels ( trans, m, n, nrhs, a, lda, b, ldb, work, lwork, info )
call cgels ( trans, m, n, nrhs, a, lda, b, ldb, work, lwork, info )
call zgels ( trans, m, n, nrhs, a, lda, b, ldb, work, lwork, info )

```

\section*{Description}

This routine solves overdetermined or underdetermined real/ complex linear systems involving an \(m\)-by-n matrix \(A\), or its transpose/ conjugate-transpose, using a \(Q R\) or \(L Q\) factorization of \(A\). It is assumed that \(A\) has full rank.

The following options are provided:
1. If trans = ' n ' and \(m \geq n\) : find the least squares solution of an overdetermined system, that is, solve the least squares problem
minimize \(\|b-A x\|_{2}\)
2. If trans = ' N ' and \(\mathrm{m}<\mathrm{n}\) : find the minimum norm solution of an underdetermined system \(A X=B\).
3. If trans = ' T ' or ' 'c' and \(m \geq n\) : find the minimum norm solution of an undetermined system \(A^{H} X=B\).
4. If trans = ' T ' or ' \(c\) ' and \(m<n\) : find the least squares solution of an overdetermined system, that is, solve the least squares problem
\[
\underset{\operatorname{minimize}}{ }\left\|b-A^{H} x\right\|_{2}
\]

Several right hand side vectors \(b\) and solution vectors \(x\) can be handled in a single call; they are stored as the columns of the \(m\)-by-nrhs right hand side matrix \(B\) and the \(n\)-by-nrh solution matrix \(X\).

\section*{Input Parameters}
```

trans CHARACTER*1.Must be 'N','T', or 'C'.
If trans='N', the linear system involves matrix A;
If trans = 'T', the linear system involves the transposed matrix AT}\mathrm{ (for real
flavors only);
If trans = 'C' , the linear system involves the conjugate-transposed matrix A }\mp@subsup{A}{}{H
(for complex flavors only).
m INTEGER. The number of rows of the matrix A (m\geq0).
n
nrhs
a, b, work
REAL for sgels
DOUBLE PRECISION for dgels
COMPLEX for cgels
DOUBLE COMPLEX for zgels.
Arrays:
a(lda,*) contains the m-by-n matrix }A\mathrm{ .
The second dimension of a must be at least max(1,n).
b}(Idb,*) contains the matrix B of right hand side vectors, stored
columnwise; }B\mathrm{ is m-by-nrhs if trans='N', or n-by-nrhs if trans=
'T'or'C'.
The second dimension of b must be at least
max(1, nrhs).
work (lwork) is a workspace array.
Ida INTEGER. The first dimension of a; at least max(1,m).
ldb INTEGER. The first dimension of b; must be at least max(1,m,n).
lwork INTEGER. The size of the work array; must be at least min (m,n)+max(1,m,
n, nrhs).
See Application notes for the suggested value of 1work.

```

\section*{Output Parameters}

On exit, overwritten by the factorization data as follows:
if \(m \geq n\), array a contains the details of the \(Q R\) factorization of the matrix \(A\) as returned by ? geqref;
if \(m<n\), array a contains the details of the \(L Q\) factorization of the matrix \(A\) as returned by ? gelqf.

Overwritten by the solution vectors, stored columnwise: If trans = ' N ' and \(m \geq n\), rows 1 to \(n\) of \(b\) contain the least squares solution vectors; the residual sum of squares for the solution in each column is given by the sum of squares of elements \(n+1\) to \(m\) in that column; If trans \(=' N\) ' and \(m<n\), rows 1 to \(n\) of \(b\) contain the minimum norm solution vectors;
if trans = 'T' or 'C' and \(m \geq n\), rows 1 to \(m\) of \(b\) contain the minimum norm solution vectors;
if trans \(=\) ' \(T\) ' or ' \(C\) ' and \(m<n\), rows 1 to \(m\) of \(b\) contain the least squares solution vectors; the residual sum of squares for the solution in each column is given by the sum of squares of elements \(m+1\) to \(n\) in that column.
work (1) If info \(=0\), on exit work (1) contains the minimum value of 1 work required for optimum performance. Use this 1 work for subsequent runs.
info INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\) th parameter had an illegal value .

\section*{Application Notes}

For better performance, try using
1 work \(=\min (m, n)+\max (1, m, n, n r h s) *\) blocksize, where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm.

If you are in doubt how much workspace to supply, use a generous value of 1 work for the first run. On exit, examine work (1) and use this value for subsequent runs.

\section*{?gelsy}

Computes the minimum-norm solution to a linear least squares problem using a complete orthogonal factorization of \(A\).

Syntax
```

call sgelsy ( m, n, nrhs, a, lda, b, ldb, jpvt, rcond, rank, work,
lwork, info )
call dgelsy ( m, n, nrhs, a, lda, b, ldb, jpvt, rcond, rank, work,
lwork, info )
call cgelsy ( m, n, nrhs, a, lda, b, ldb, jpvt, rcond, rank, work,
lwork, rwork, info )
call zgelsy ( m, n, nrhs, a, lda, b, ldb, jpvt, rcond, rank, work,
lwork, rwork, info )

```

\section*{Description}

This routine computes the minimum-norm solution to a real/complex linear least squares problem:
\[
\operatorname{minimize}\|b-A x\|_{2}
\]
using a complete orthogonal factorization of \(A . A\) is an \(m\)-by-n matrix which may be rank-deficient.
Several right hand side vectors \(b\) and solution vectors \(x\) can be handled in a single call; they are stored as the columns of the \(m\)-by-nrhs right hand side matrix \(B\) and the \(n\)-by-nrhs solution matrix \(X\).

The routine first computes a \(Q R\) factorization with column pivoting:
\[
A P=Q\left(\begin{array}{ll}
R_{11} & R_{12} \\
0 & R_{22}
\end{array}\right)
\]
with \(R_{11}\) defined as the largest leading submatrix whose estimated condition number is less than \(1 / r c o n d\). The order of \(R_{11}\), rank, is the effective rank of \(A\).
Then, \(R_{22}\) is considered to be negligible, and \(R_{12}\) is annihilated by orthogonal/unitary transformations from the right, arriving at the complete orthogonal factorization:
\[
A P=Q\left(\begin{array}{cc}
T_{11} 0 \\
0 & 0
\end{array}\right) Z
\]

The minimum-norm solution is then
\[
x=P Z^{H}\left(\begin{array}{cc}
T_{11}^{-1} & Q_{1}^{H} b \\
0
\end{array}\right)
\]
where \(Q_{1}\) consists of the first rank columns of \(Q\). This routine is basically identical to the original ?gelsx except three differences:
- The call to the subroutine ? geqpf has been substituted by the call to the subroutine ? geqp 3 . This subroutine is a BLAS-3 version of the \(Q R\) factorization with column pivoting.
- Matrix \(B\) (the right hand side) is updated with BLAS-3.
- The permutation of matrix \(B\) (the right hand side) is faster and more simple.

\section*{Input Parameters}
m
n
nrhs
a, b, work

INTEGER. The number of rows of the matrix \(A(m \geq 0)\).
INTEGER. The number of columns of the matrix \(A\) (\(n \geq 0\)).
INTEGER. The number of right-hand sides; the number of columns in \(B\) (nrhs \(\geq 0\)).
REAL for sgelsy
DOUBLE PRECISION for dgelsy
COMPLEX for cgelsy
DOUBLE COMPLEX for zgelsy.
Arrays:
\(a(l d a, *)\) contains the \(m-b y-n\) matrix \(A\).
The second dimension of a must be at least \(\max (1, n)\).
\(b(I d b, *)\) contains the \(m\)-by-nrhs right hand side matrix \(B\).
The second dimension of \(b\) must be at least \(\max (1, n r h s)\).
work (1 work) is a workspace array.
\begin{tabular}{|c|c|}
\hline Ida & INTEGER. The first dimension of \(a\); at least max \((1, m)\). \\
\hline 1 db & INTEGER. The first dimension of \(b\); must be at least max \((1, m, n)\). \\
\hline \multirow[t]{2}{*}{jpvt} & INTEGER. Array, DIMENSION at least max (1, n) . \\
\hline & On entry, if \(j p v t(i) \neq 0\), the \(i\) th column of \(A\) is permuted to the front of \(A P\), otherwise the \(i\) th column of \(A\) is a free column. \\
\hline \multirow[t]{3}{*}{rcond} & REAL for single-precision flavors \\
\hline & DOUBLE PRECISION for double-precision flavors. \\
\hline & rcond is used to determine the effective rank of \(A\), which is defined as the order of the largest leading triangular submatrix \(R_{11}\) in the \(Q R\) factorization with pivoting of \(A\), whose estimated condition number \(<1 /\) rcond. \\
\hline Iwork & integer. The size of the work array. See Application notes for the suggested value of I work. \\
\hline \multirow[t]{3}{*}{rwork} & REAL for cgelsy \\
\hline & DOUBLE PRECISION for zgelsy. \\
\hline & Workspace array, DIMENSION at least max \((1,2 n)\). Used in complex flavors only. \\
\hline \multicolumn{2}{|l|}{Output Parameters} \\
\hline a & On exit, overwritten by the details of the complete orthogonal factorization of \(A\). \\
\hline b & Overwritten by the \(n\)-by-nrhs solution matrix \(X\). \\
\hline jpvt & On exit, if jpvt (i) \(=k\), then the \(i\) th column of \(A P\) was the \(k\) th column of \(A\). \\
\hline \multirow[t]{2}{*}{rank} & INTEGER. \\
\hline & The effective rank of \(A\), that is, the order of the submatrix \(R_{11}\). This is the same as the order of the submatrix \(T_{11}\) in the complete orthogonal factorization of \(A\). \\
\hline \multirow[t]{3}{*}{info} & INTEGER. \\
\hline & If info \(=0\), the execution is successful. \\
\hline & If info \(=-i\), the \(i\) th parameter had an illegal value \\
\hline
\end{tabular}

\section*{Application Notes}

For real flavors:

The unblocked strategy requires that:
lwork \(\geq \max (m n+3 n+1,2 * m n+n r h s)\),
where \(m n=\min (m, n)\).
The block algorithm requires that:
lwork \(\geq \max (m n+2 n+n b *(n+1), 2 * m n+n b * n r h s)\),
where \(n b\) is an upper bound on the blocksize returned by ilaenv for the routines
sgeqp3/dgeqp3, stzrzf/dtzrzf, stzrqf/dtzrqf, sormqr/dormqr, and sormrz/dormrz.
For complex flavors:
The unblocked strategy requires that:
lwork \(\geq m n+\max (2 * m n, n+1, m n+n r h s)\),
where \(m n=\min (m, n)\).
The block algorithm requires that:
lwork \(\geq m n+\max (2 * m n, n b *(n+1), m n+m n * n b, m n+n b * n r h s)\),
where \(n b\) is an upper bound on the blocksize returned by ilaenv for the routines
cgeqp3/zgeqp3, ctzrzf/ztzrzf, ctzrqf/ztzrqf, cunmqr/zunmqr, and cunmrz/zunmrz.

\section*{?gelss}

Computes the minimum-norm solution to a linear least squares problem using the singular value decomposition of \(A\).

\section*{Syntax}
```

call sgelss ( m, n, nrhs, a, lda, b, ldb, s, rcond, rank, work,
lwork, info )
call dgelss ( m, n, nrhs, a, lda, b, ldb, s, rcond, rank, work,
lwork, info )
call cgelss ( m, n, nrhs, a, lda, b, ldb, s, rcond, rank, work,
lwork, rwork, info )
call zgelss ( m, n, nrhs, a, lda, b, ldb, s, rcond, rank, work,
lwork, rwork, info )

```

\section*{Description}

This routine computes the minimum norm solution to a real linear least squares problem: minimize \(\|b-A x\|_{2}\)
using the singular value decomposition (SVD) of \(A . A\) is an m-by-n matrix which may be rank-deficient.
Several right hand side vectors \(b\) and solution vectors \(x\) can be handled in a single call; they are stored as the columns of the \(m\)-by-nrhs right hand side matrix \(B\) and the \(n\)-by-nrhs solution matrix \(X\).
The effective rank of \(A\) is determined by treating as zero those singular values which are less than rcond times the largest singular value.

\section*{Input Parameters}
\(\left.\begin{array}{ll}m & \text { INTEGER. The number of rows of the matrix } A(m \geq 0) . \\
n & \text { INTEGER. The number of columns of the matrix } A\end{array}\right]\)\begin{tabular}{l}
\((n \geq 0)\).
\end{tabular}
```

a, b, work REAL for sgelss
DOUBLE PRECISION for dgelss
COMPLEX for cgelss
DOUBLE COMPLEX for zgelss.
Arrays:
a(lda,*) contains the m-by-n matrix }A\mathrm{ .
The second dimension of a must be at least max(1,n).
b(ldb,*) contains the m-by-nrhs right hand side matrix B.
The second dimension of b must be at least
max(1, nrhs).
work(lwork) is a workspace array.
INTEGER. The first dimension of a; at least max (1,m).
INTEGER. The first dimension of b; must be at least max(1,m, n).
REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
rcond is used to determine the effective rank of }A\mathrm{ . Singular values s(i)}
rcond *s(1) are treated as zero. If rcond <0, machine precision is used
instead.
lwork INTEGER. The size of the work array; lwork \geq1. See Application notes for
the suggested value of lwork.
rwork REAL for cgelss
DOUBLE PRECISION for zgelss.
Workspace array used in complex flavors only. DIMENSION at least max(1,
5*min(m,n)).

```

\section*{Output Parameters}
b

On exit, the first \(\min (m, n)\) rows of \(A\) are overwritten with its right singular vectors, stored row-wise.

Overwritten by the \(n\)-by-nrhs solution matrix \(X\).
If \(m \geq n\) and rank \(=n\), the residual sum-of-squares for the solution in the \(i\)-th column is given by the sum of squares of elements \(n+1: m\) in that column.

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, DIMENSION at least \(\max (1, \min (m, n))\). The singular values of \(A\) in decreasing order. The condition number of \(A\) in the 2-norm is
\[
k_{2}(A)=s(1) / s(\min (m, n))
\]
rank
INTEGER.
The effective rank of \(A\), that is, the number of singular values which are greater than rcond *s(1).
work (1) If info \(=0\), on exit, work (1) contains the minimum value of 1 work required for optimum performance. Use this lwork for subsequent runs.
info INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\) th parameter had an illegal value.
If info \(=i\), then the algorithm for computing the SVD failed to converge; \(i\) indicates the number of off-diagonal elements of an intermediate bidiagonal form which did not converge to zero.

\section*{Application Notes}

For real flavors:
\[
\text { lwork } \geq 3 * \min (m, n)+\max (2 * \min (m, n), \max (m, n), n r h s)
\]

For complex flavors:
\[
\text { lwork } \geq 2 * \min (m, n)+\max (m, n, n r h s)
\]

For good performance, lwork should generally be larger. If you are in doubt how much workspace to supply, use a generous value of lwork for the first run. On exit, examine work (1) and use this value for subsequent runs.

\section*{?gelsd}

Computes the minimum-norm solution to a linear least squares problem using the singular value decomposition of \(A\) and a divide and conquer method.

\section*{Syntax}
```

call sgelsd ( m, n, nrhs, a, lda, b, ldb, s, rcond, rank, work,
lwork, iwork, info )
call dgelsd ( m, n, nrhs, a, lda, b, ldb, s, rcond, rank, work,
lwork, iwork, info )
call cgelsd ( m, n, nrhs, a, lda, b, ldb, s, rcond, rank, work,
lwork, rwork, iwork, info )
call zgelsd ( m, n, nrhs, a, lda, b, ldb, s, rcond, rank, work,
lwork, rwork, iwork, info )

```

\section*{Description}

This routine computes the minimum-norm solution to a real linear least squares problem:
\[
\operatorname{minimize}\|b-A x\|_{2}
\]
using the singular value decomposition (SVD) of \(A . A\) is an \(m\)-by-n matrix which may be rank-deficient.

Several right hand side vectors \(b\) and solution vectors \(x\) can be handled in a single call; they are stored as the columns of the \(m\)-by-nrhs right hand side matrix \(B\) and the \(n\)-by-nrhs solution matrix \(X\).

The problem is solved in three steps:
1. Reduce the coefficient matrix A to bidiagonal form with Householder transformations, reducing the original problem into a "bidiagonal least squares problem" (BLS).
2. Solve the BLS using a divide and conquer approach.
3. Apply back all the Householder transformations to solve the original least squares problem.

The effective rank of \(A\) is determined by treating as zero those singular values which are less than rcond times the largest singular value.

\section*{Input Parameters}
m
n
nrhs
a, b, work
lda
\(1 d b\)
rcond

Iwork INTEGER. The size of the work array; Iwork \(\geq 1\). See Application notes for the suggested value of 1 work.
iwork INTEGER. Workspace array. See Application notes for the suggested dimension of iwork.
rwork REAL for cgelsd DOUBLE PRECISION for zgelsd.

Workspace array, used in complex flavors only. See
Application notes for the suggested dimension of rwork.

\section*{Output Parameters}
a On exit, \(A\) has been overwritten.
b Overwritten by the \(n\)-by-nrhs solution matrix \(X\).
If \(m \geq n\) and rank \(=n\), the residual sum-of-squares for the solution in the \(i\)-th column is given by the sum of squares of elements \(n+1: m\) in that column.
s
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, DIMENSION at least \(\max (1, \min (m, n))\). The singular values of \(A\) in decreasing order. The condition number of \(A\) in the 2 -norm is
\[
k_{2}(A)=s(1) / s(\min (m, n)) .
\]

INTEGER.
The effective rank of \(A\), that is, the number of singular values which are greater than rcond *s(1).
work(1) If info \(=0\), on exit, work (1) contains the minimum value of 1 work required for optimum performance. Use this lwork for subsequent runs.
info
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\) th parameter had an illegal value.
If info \(=i\), then the algorithm for computing the SVD failed to converge; \(i\) indicates the number of off-diagonal elements of an intermediate bidiagonal form which did not converge to zero.

\section*{Application Notes}

The divide and conquer algorithm makes very mild assumptions about floating point arithmetic. It will work on machines with a guard digit in add/subtract. It could conceivably fail on hexadecimal or decimal machines without guard digits, but we know of none.

The exact minimum amount of workspace needed depends on \(m, n\) and nrhs. The size 1 work of the workspace array work must be as given below.

For real flavors:
If \(m \geq n\),
lwork \(\geq 12 n+2 n *\) smlsiz \(+8 n * n l v l+n * n r h s+(s m l s i z+1)^{2}\);
If \(m<n\),
lwork \(\geq 12 m+2 m * \operatorname{smlsiz}+8 m * n l v l+m \star n r h s+(s m l s i z+1)^{2} ;\)

\section*{For complex flavors:}
```

If $m \geq n$,
lwork $\geq 2 n+n \star n r h s$;
If $m<n$,
lwork $\geq 2 m+m^{\star}$ nrhs;

```
where smlsiz is returned by ilaenv and is equal to the maximum size of the subproblems at the bottom of the computation tree (usually about 25), and
\(n l v l=\operatorname{INT}\left(\log _{2}(\min (m, n) /(s m l s i z+1))\right)+1\).
For good performance, 1 work should generally be larger. If you are in doubt how much workspace to supply, use a generous value of 1 work for the first run. On exit, examine work (1) and use this value for subsequent runs.

The dimension of the workspace array \(i\) work must be at least
\(3 * \min (m, n) * n l v l+11 * \min (m, n)\).
The dimension lrwork of the workspace array rwork (for complex flavors) must be at least: If \(m \geq n\),
lrwork \(\geq 10 \mathrm{n}+2 \mathrm{n} * s m l s i z+8 \mathrm{n} * n l v l+3 * s m l s i z * n r h s+(s m l s i z+1)^{2}\);
If \(m<n\),
lrwork \(\geq 10 m+2 m * s m l s i z+8 m * n l v l+3 * s m l s i z * n r h s+(s m l s i z+1)^{2}\).

\section*{Generalized LLS Problems}

This section describes LAPACK driver routines used for solving generalized linear least-squares problems. Table 4-9 lists routines described in more detail below.

Table 4-9 Driver Routines for Solving Generalized LLS Problems
Routine Name Operation performed
?gglse \(\quad\) Solves the linear equality-constrained least squares problem using a generalized RQ factorization.
? \(\mathrm{gg} \mathrm{glm} \quad\) Solves a general Gauss-Markov linear model problem using a generalized QR factorization.

\section*{?gglse}

Solves the linear equality-constrained least squares problem using a generalized RQ factorization.

\section*{Syntax}
```

call sgglse ( m, n, p, a, lda, b, ldb, c, d, x, work, lwork, info )
call dgglse ( m, n, p, a, lda, b, ldb, c, d, x, work, lwork, info )
call cgglse ( m, n, p, a, lda, b, ldb, c, d, x, work, lwork, info )
call zgglse ( m, n, p, a, lda, b, ldb, c, d, x, work, lwork, info )

```

\section*{Description}

This routine solves the linear equality-constrained least squares (LSE) problem:
\[
\text { minimize }\|c-A x\|_{2} \quad \text { subject to } B x=d
\]
where \(A\) is an \(m\)-by- \(n\) matrix, \(B\) is a \(p\)-by- \(n\) matrix, \(c\) is a given \(m\)-vector, and \(d\) is a given \(p\)-vector.
It is assumed that \(p \leq n \leq m+p\), and
\[
\operatorname{rank}(B)=p \quad \text { and } \quad \operatorname{rank}\binom{A}{B}=n .
\]

These conditions ensure that the LSE problem has a unique solution, which is obtained using a generalized \(R Q\) factorization of the matrices \(B\) and \(A\).

\section*{Input Parameters}
m
\(n\)
p
\(a, b, c, d\), work

INTEGER. The number of rows of the matrix \(A(m \geq 0)\).
INTEGER. The number of columns of the matrices \(A\) and \(B(n \geq 0)\).
INTEGER. The number of rows of the matrix \(B\) \((0 \leq p \leq n \leq m+p)\).

REAL for sgglse
DOUBLE PRECISION for dgglse
COMPLEX for cgglse
DOUBLE COMPLEX for zgglse.
Arrays:
a (lda,*) contains the \(m\)-by- \(n\) matrix \(A\).
The second dimension of a must be at least \(\max (1, n)\).
\(b(l d b, *)\) contains the \(p\)-by-n matrix \(B\).
The second dimension of \(b\) must be at least \(\max (1, n)\).
\(c(*)\), dimension at least \(\max (1, m)\), contains the right hand side vector for the least squares part of the LSE problem.
\(d(*)\), dimension at least \(\max (1, p)\), contains the right hand side vector for the constrained equation.
work (lwork) is a workspace array.
Ida INTEGER. The first dimension of \(a\); at least max \((1, m)\).
\(I d b \quad\) INTEGER. The first dimension of \(b\); at least \(\max (1, p)\).
Iwork INTEGER. The size of the work array;
lwork \(\geq \max (1, m+n+p)\). See Application notes for the suggested value of lwork.

\section*{Output Parameters}

REAL for sgglse
DOUBLE PRECISION for dgglse
COMPLEX for cgglse
DOUBLE COMPLEX for zgglse.
Array, DIMENSION at least max \((1, n)\).
On exit, contains the solution of the LSE problem.
\(a, b, d \quad\) On exit, these arrays are overwritten.
\(c \quad\) On exit, the residual sum-of-squares for the solution is given by the sum of squares of elements \(n-p+1\) to \(m\) of vector \(c\).
work (1) If info \(=0\), on exit, work (1) contains the minimum value of 1 work required for optimum performance. Use this lwork for subsequent runs.
info
INTEGER.
If info \(=0\), the execution is successful. If info \(=-i\), the \(i\) th parameter had an illegal value.

\section*{Application Notes}

For optimum performance use
\[
\text { l work } \geq p+\min (m, n)+\max (m, n) \star n b,
\]
where \(n b\) is an upper bound for the optimal blocksizes for ?geqrf, ?gerqf, ?ormqr/?unmqr and ?ormrq/ ?unmrq.

\section*{? ggg Im}

Solves a general Gauss-Markov linear model problem using a generalized \(Q R\) factorization.

\section*{Syntax}
```

call sggglm ( n, m, p, a, lda, b, ldb, d, x, y, work, lwork, info )
call dggglm ( n, m, p, a, lda, b, ldb, d, x, y, work, lwork, info )
call cggglm ( n, m, p, a, lda, b, ldb, d, x, y, work, lwork, info )
call zggglm ( n, m, p, a, lda, b, ldb, d, x, y, work, lwork, info )

```

\section*{Description}

This routine solves a general Gauss-Markov linear model (GLM) problem:
minimize \(_{x}\|y\|_{2}\) subject to \(d=A x+B y\)
where \(A\) is an \(n\)-by- \(m\) matrix, \(B\) is an \(n\)-by- \(p\) matrix, and \(d\) is a given \(n\)-vector.
It is assumed that \(m \leq n \leq m+p\), and
\(\operatorname{rank}(A)=m\) and \(\operatorname{rank}(A B)=n\).
Under these assumptions, the constrained equation is always consistent, and there is a unique solution \(x\) and a minimal 2-norm solution \(y\), which is obtained using a generalized \(Q R\) factorization of \(A\) and \(B\).
In particular, if matrix \(B\) is square nonsingular, then the problem GLM is equivalent to the following weighted linear least squares problem
\(\operatorname{minimize}_{x}\left\|B^{-1}(d-A x)\right\|_{2}\).

\section*{Input Parameters}
\begin{tabular}{ll}
\(n\) & INTEGER. The number of rows of the matrices \(A\) and \(B(n \geq 0)\). \\
\(m\) & INTEGER. The number of columns in \(A(m \geq 0)\). \\
\(p\) & INTEGER. The number of columns in \(B(p \geq n-m)\). \\
& \begin{tabular}{l}
REAL for sggglm \\
\\
DOUBLE PRECISION for dggglm \\
\\
\\
\\
COMPLEX for cggglm \\
DOUBLE COMPLEX for zggglm.
\end{tabular} \\
& Arrays: \\
& \(a(1 d a, *)\) contains the \(n\)-by-m matrix \(A\). \\
& The second dimension of \(a\) must be at least \(\max (1, m)\).
\end{tabular}
\(\mathrm{b}(1 \mathrm{db}, *)\) contains the \(n\)-by-p matrix \(B\).
The second dimension of \(b\) must be at least \(\max (1, p)\).
\(d(*)\), dimension at least \(\max (1, n)\), contains the left hand side of the GLM equation.
work (lwork) is a workspace array.
lda
\(1 d b\)
lwork
INTEGER. The first dimension of \(a\); at least \(\max (1, n)\).
INTEGER. The first dimension of \(b\); at least \(\max (1, n)\).
INTEGER. The size of the work array;
lwork \(\geq \max (1, n+m+p)\). See Application notes for the suggested value of lwork.

\section*{Output Parameters}
```

x, y REAL for sggglm
DOUBLE PRECISION for dggglm
COMPLEX for cggglm
DOUBLE COMPLEX for zggglm.
Arrays }x(*),y(*). DIMENSION at least max(1,m) for x and at least max(1,p
for y.
On exit, }x\mathrm{ and }y\mathrm{ are the solutions of the GLM problem.
a,b,d On exit, these arrays are overwritten.
work(1) If info = 0, on exit, work (1) contains the minimum value of lwork required
for optimum performance.
info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.

```

\section*{Application Notes}

For optimum performance use
1 work \(\geq m+\min (n, p)+\max (n, p) * n b\),
where \(n b\) is an upper bound for the optimal blocksizes for ?geqrf, ?gerqf, ?ormqr/?unmqr and ?ormrq/?unmrq.

\section*{Symmetric Eigenproblems}

This section describes LAPACK driver routines used for solving symmetric eigenvalue problems. See also computational routines that can be called to solve these problems.
Table 4-10 lists routines described in more detail below.
Table 4-10 Driver Routines for Solving Symmetric Eigenproblems
Routine Name Operation performed
?syev/?heev Computes all eigenvalues and, optionally, eigenvectors of a real symmetric / Hermitian matrix.
?syevd/?heevd Computes all eigenvalues and (optionally) all eigenvectors of a real symmetric / Hermitian matrix using divide and conquer algorithm.
?syevx/?heevx Computes selected eigenvalues and, optionally, eigenvectors of a symmetric / Hermitian matrix.
?syevr/?heevr Computes selected eigenvalues and, optionally, eigenvectors of a real symmetric / Hermitian matrix using the Relatively Robust Representations.
?spev/?hpev Computes all eigenvalues and, optionally, eigenvectors of a real symmetric / Hermitian matrix in packed storage.
?spevd/?hpevd Uses divide and conquer algorithm to compute all eigenvalues and (optionally) all eigenvectors of a real symmetric / Hermitian matrix held in packed storage.
?spevx/?hpevx Computes selected eigenvalues and, optionally, eigenvectors of a real symmetric / Hermitian matrix in packed storage.
?sbev l?hbev Computes all eigenvalues and, optionally, eigenvectors of a real symmetric / Hermitian band matrix.
?sbevd/?hbevd Computes all eigenvalues and (optionally) all eigenvectors of a real symmetric / Hermitian band matrix using divide and conquer algorithm.
?sbevx/?hbevx Computes selected eigenvalues and, optionally, eigenvectors of a real symmetric / Hermitian band matrix.
?stev Computes all eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix.
?stevd Computes all eigenvalues and (optionally) all eigenvectors of a real symmetric tridiagonal matrix using divide and conquer algorithm.
?stevx Computes selected eigenvalues and eigenvectors of a real symmetric tridiagonal matrix.
?stevr \(\quad\) Computes selected eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix using the Relatively Robust Representations.

\section*{?syev}

Computes all eigenvalues and, optionally, eigenvectors of a real symmetric matrix.

\section*{Syntax}
```

call ssyev ( jobz, uplo, n, a, lda, w, work, lwork, info )
call dsyev ( jobz, uplo, n, a, lda, w, work, lwork, info )

```

\section*{Description}

This routine computes all eigenvalues and, optionally, eigenvectors of a real symmetric matrix \(A\).

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{jobz} & CHARACTER*1. Must be 'N' or 'V'. \\
\hline & If jobz \(=1 \mathrm{~N}\) ', then only eigenvalues are computed. \\
\hline & If jobz \(=1 \mathrm{~V}\) ', then eigenvalues and eigenvectors are computed. \\
\hline \multirow[t]{3}{*}{uplo} & CHARACTER*1. Must be 'U' or 'L'. \\
\hline & If uplo = 'U', a stores the upper triangular part of \(A\). \\
\hline & If uplo = 'L', a stores the lower triangular part of \(A\). \\
\hline n & Integer. The order of the matrix \(A(n \geq 0)\). \\
\hline \multirow[t]{6}{*}{a, work} & REAL for ssyev \\
\hline & DOUBLE PRECISION for dsyev \\
\hline & Arrays: \\
\hline & \(a(l d a, *)\) is an array containing either upper or lower triangular part of the symmetric matrix \(A\), as specified by uplo. \\
\hline & The second dimension of a must be at least max \((1, n)\). \\
\hline & work (lwork) is a workspace array. \\
\hline \multirow[t]{2}{*}{Ida} & Integer. The first dimension of the array a. \\
\hline & Must be at least \(\max (1, n)\). \\
\hline \multirow[t]{2}{*}{lwork} & INTEGER. The dimension of the array work. \\
\hline & Constraint: 1 work \(\geq \max (1,3 n-1)\). See Application notes for the suggested value of 1 work. \\
\hline
\end{tabular}

\section*{Output Parameters}
work (1) On exit, if 1 work \(>0\), then work (1) returns the required minimal size of
a
w
info

On exit, if jobz='V', then if info \(=0\), array a contains the orthonormal eigenvectors of the matrix \(A\).
If jobz='N', then on exit the lower triangle
(if uplo='L') or the upper triangle (if uplo='U') of \(A\), including the diagonal, is overwritten.

REAL for ssyev
DOUBLE PRECISION for dsyev
Array, DIMENSION at least max \((1, n)\).
If info \(=0\), contains the eigenvalues of the matrix \(A\) in ascending order. lwork.

INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\) th parameter had an illegal value.
If info \(=i\), then the algorithm failed to converge; \(i\) indicates the number of elements of an intermediate tridiagonal form which did not converge to zero.

\section*{Application Notes}

For optimum performance use
lwork \(\geq(n b+2)^{\star} n\),
where \(n b\) is the blocksize for ?sytrd returned by ilaenv.
If you are in doubt how much workspace to supply, use a generous value of 1 work for the first run. On exit, examine work (1) and use this value for subsequent runs.

\section*{?heev}

Computes all eigenvalues and, optionally, eigenvectors of a Hermitian matrix.

\section*{Syntax}
```

call cheev ( jobz, uplo, n, a, lda, w, work, lwork, rwork, info )
call zheev ( jobz, uplo, n, a, lda, w, work, lwork, rwork, info )

```

\section*{Description}

This routine computes all eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix A.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{jobz} & CHARACTER*1. Must be 'N' or 'V'. \\
\hline & If \(j 0 b z=N^{\prime}\) ', then only eigenvalues are computed. \\
\hline & If jobz \(=1 \mathrm{~V}\) ', then eigenvalues and eigenvectors are computed. \\
\hline \multirow[t]{3}{*}{uplo} & CHARACTER*1. Must be 'U' or 'L'. \\
\hline & If uplo = 'U', a stores the upper triangular part of \(A\). \\
\hline & If uplo = 'L', a stores the lower triangular part of \(A\). \\
\hline n & Integer. The order of the matrix \(A(n \geq 0)\). \\
\hline \multirow[t]{6}{*}{a, work} & COMPLEx for cheev \\
\hline & Double Complex for zheev \\
\hline & Arrays: \\
\hline & \(a(l d a, *)\) is an array containing either upper or lower triangular part of the Hermitian matrix \(A\), as specified by uplo. \\
\hline & The second dimension of a must be at least max \((1, n)\). \\
\hline & work (lwork) is a workspace array. \\
\hline \multirow[t]{2}{*}{Ida} & Integer. The first dimension of the array a. \\
\hline & Must be at least \(\max (1, n)\). \\
\hline \multirow[t]{2}{*}{lwork} & INTEGER. The dimension of the array work. \\
\hline & Constraint: 1 work \(\geq \max (1,2 n-1)\). See Application notes for the suggested value of 1 work. \\
\hline
\end{tabular}
```

rwork REAL for cheev
DOUBLE PRECISION for zheev.
Workspace array, DIMENSION at least max(1,3n-2).

```

\section*{Output Parameters}

On exit, if jobz='V', then if info \(=0\), array a contains the orthonormal eigenvectors of the matrix \(A\).
If \(j o b z=N^{\prime}\) ', then on exit the lower triangle
(if uplo='L') or the upper triangle (if uplo='U') of \(A\), including the diagonal, is overwritten.
w
REAL for cheev
DOUBLE PRECISION for zheev
Array, DIMENSION at least max \((1, n)\).
If info \(=0\), contains the eigenvalues of the matrix \(A\) in ascending order.
work (1) On exit, if 1 work \(>0\), then work (1) returns the required minimal size of lwork.
info
INTEGER
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\) th parameter had an illegal value.
If info \(=i\), then the algorithm failed to converge; \(i\) indicates the number of elements of an intermediate tridiagonal form which did not converge to zero.

\section*{Application Notes}

For optimum performance use
```

lwork \geq (nb+1)*n,

```
where \(n b\) is the blocksize for ?hetrd returned by ilaenv.
If you are in doubt how much workspace to supply, use a generous value of 1 work for the first run. On exit, examine work (1) and use this value for subsequent runs.

\section*{?syevd}

Computes all eigenvalues and (optionally) all eigenvectors of a real symmetric matrix using divide and conquer algorithm.

\section*{Syntax}
call ssyevd (job,uplo, n, a, lda, w, work, lwork, iwork, liwork, info)
call dsyevd (job,uplo,n,a,lda,w,work,lwork,iwork,liwork,info)

\section*{Description}

This routine computes all the eigenvalues, and optionally all the eigenvectors, of a real symmetric matrix \(A\). In other words, it can compute the spectral factorization of \(A\) as: \(A=Z \Lambda Z^{T}\). Here \(\Lambda\) is a diagonal matrix whose diagonal elements are the eigenvalues \(\lambda_{i}\), and \(Z\) is the orthogonal matrix whose columns are the eigenvectors \(z_{i}\). Thus,
\[
A z_{i}=\lambda_{i} z_{i} \text { for } i=1,2, \ldots, n .
\]

If the eigenvectors are requested, then this routine uses a divide and conquer algorithm to compute eigenvalues and eigenvectors. However, if only eigenvalues are required, then it uses the Pal-Walker-Kahan variant of the \(Q L\) or \(Q R\) algorithm.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{job} & CHARACTER*1. Must be 'N' or 'V'. \\
\hline & If job \(={ }^{\prime} \mathrm{N}^{\prime}\), then only eigenvalues are computed. \\
\hline & If job \(=V^{\prime}\) ', then eigenvalues and eigenvectors are computed. \\
\hline \multirow[t]{3}{*}{uplo} & CHARACTER*1. Must be 'U' or 'L'. \\
\hline & If uplo = 'U', a stores the upper triangular part of \(A\). \\
\hline & If uplo \(=\) 'L', a stores the lower triangular part of \(A\). \\
\hline \(n\) & INTEGER. The order of the matrix \(A(n \geq 0)\). \\
\hline \multirow[t]{5}{*}{a} & REAL for ssyevd \\
\hline & DOUBLE PRECISION for dsyevd \\
\hline & Array, DIMENSION (lda, *) . \\
\hline & \(a(I d a, *)\) is an array containing either upper or lower triangular part of the symmetric matrix \(A\), as specified by uplo. \\
\hline & The second dimension of a must be at least \(\max (1, n)\). \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Ida & INTEGER. The first dimension of the array \(a\). Must be at least \(\max (1, n)\). \\
\hline \multirow[t]{3}{*}{work} & REAL for ssyevd \\
\hline & DOUBLE PRECISION for dsyevd. \\
\hline & Workspace array, DIMENSION at least lwork. \\
\hline \multirow[t]{7}{*}{lwork} & INTEGER. The dimension of the array work. \\
\hline & Constraints: \\
\hline & if \(n \leq 1\), then 1 work \(\geq 1\); \\
\hline & if job \(=\) ' \(N^{\prime}\) ' and \(n>1\), then lwork \(\geq 2 n+1\); \\
\hline & if job \(=1 \mathrm{~V}\) ' and \(n>1\), then \\
\hline & lwork \(\geq 3 n^{2}+(5+2 k) * n+1\), where \(k\) is the smallest integer which satisfies \(2^{k}\) \\
\hline & \(\geq n\). \\
\hline \multirow[t]{2}{*}{iwork} & INTEGER. \\
\hline & Workspace array, DIMENSION at least liwork. \\
\hline \multirow[t]{4}{*}{liwork} & INTEGER. The dimension of the array iwork. \\
\hline & Constraints: \\
\hline & if \(n \leq 1\), then liwork \(\geq 1\); \\
\hline & \begin{tabular}{l}
if job='N' and \(n>1\), then liwork \(\geq 1\); \\
if job \(=' \mathrm{~V}\) ' and \(n>1\), then liwork \(\geq 5 n+2\).
\end{tabular} \\
\hline
\end{tabular}

\section*{Output Parameters}
a
work (1) On exit, if 1 work \(>0\), then work (1) returns the required minimal size of lwork.
iwork (1) On exit, if liwork \(>0\), then iwork (1) returns the required minimal size of liwork.

\section*{info INTEGER.}

If info \(=0\), the execution is successful.
If info \(=i\), then the algorithm failed to converge; \(i\) indicates the number of elements of an intermediate tridiagonal form which did not converge to zero. If info \(=-i\), the \(i\) th parameter had an illegal value.

\section*{Application Notes}

The computed eigenvalues and eigenvectors are exact for a matrix \(T+E\) such that \(\|E\|_{2}=O(\varepsilon)\) \(\|T\|_{2}\), where \(\varepsilon\) is the machine precision.

The complex analogue of this routine is ?heevd.

\section*{?heevd}

Computes all eigenvalues and (optionally) all eigenvectors of a complex Hermitian matrix using divide and conquer algorithm.

\section*{Syntax}
```

call cheevd (job, uplo, n, a, lda, w, work, lwork, rwork, lrwork,
iwork, liwork, info)
call zheevd (job, uplo, n, a, lda, w, work, lwork, rwork, lrwork,
iwork, liwork, info)

```

\section*{Description}

This routine computes all the eigenvalues, and optionally all the eigenvectors, of a complex Hermitian matrix \(A\). In other words, it can compute the spectral factorization of \(A\) as: \(A=Z \Lambda Z^{H}\). Here \(\Lambda\) is a real diagonal matrix whose diagonal elements are the eigenvalues \(\lambda_{i}\), and \(Z\) is the (complex) unitary matrix whose columns are the eigenvectors \(z_{i}\). Thus,
\[
A z_{i}=\lambda_{i} z_{i} \text { for } i=1,2, \ldots, n .
\]

If the eigenvectors are requested, then this routine uses a divide and conquer algorithm to compute eigenvalues and eigenvectors. However, if only eigenvalues are required, then it uses the Pal-Walker-Kahan variant of the \(Q L\) or \(Q R\) algorithm.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline job & \begin{tabular}{l}
CHARACTER*1. Must be 'N' or 'V'. \\
If job \(={ }^{\prime} N^{\prime}\), then only eigenvalues are computed. \\
If job \(=' \mathrm{~V}\) ', then eigenvalues and eigenvectors are computed.
\end{tabular} \\
\hline uplo & \begin{tabular}{l}
CHARACTER*1. Must be 'U' or 'L'. \\
If uplo='U', a stores the upper triangular part of \(A\). \\
If uplo = 'L', a stores the lower triangular part of \(A\).
\end{tabular} \\
\hline n & Integer. The order of the matrix \(A(n \geq 0)\). \\
\hline a & \begin{tabular}{l}
COMPLEX for cheevd \\
DOUBLE COMPLEX for zheevd \\
Array, DIMENSION (lda, *). \\
\(a(l d a, *)\) is an array containing either upper or lower triangular part of the \\
Hermitian matrix \(A\), as specified by uplo. \\
The second dimension of \(a\) must be at least \(\max (1, n)\).
\end{tabular} \\
\hline Ida & INTEGER. The first dimension of the array \(a\). Must be at least \(\max (1, n)\). \\
\hline work & COMPLEX for cheevd double complex for zheevd. Workspace array, DIMENSION at least I work. \\
\hline Iwork & \begin{tabular}{l}
integer. The dimension of the array work. \\
Constraints: \\
if \(n \leq 1\), then 1 work \(\geq 1\); \\
if job \(=\) ' \(N\) ' and \(n>1\), then 1 work \(\geq n+1\); \\
if job \(=\prime^{\prime} \mathrm{V}\) ' and \(n>1\), then 1 work \(\geq n^{2}+2 n\)
\end{tabular} \\
\hline rwork & \begin{tabular}{l}
REAL for cheevd \\
DOUBLE PRECISION for zheevd \\
Workspace array, DIMENSION at least lrwork.
\end{tabular} \\
\hline lrwork & \begin{tabular}{l}
INTEGER. The dimension of the array rwork. \\
Constraints: \\
if \(n \leq 1\), then 1 rwork \(\geq 1\); \\
if job \(={ }^{\prime} N^{\prime}\) and \(n>1\), then lrwork \(\geq n\); \\
if job \(=\prime V\) ' and \(n>1\), then \\
lrwork \(\geq 3 n^{2}+(4+2 k) * n+1\), where \(k\) is the smallest integer which satisfies \(2^{k} \geq n\).
\end{tabular} \\
\hline iwork & \begin{tabular}{l}
INTEGER. \\
Workspace array, DIMENSION at least liwork.
\end{tabular} \\
\hline
\end{tabular}
```

liwork
INTEGER. The dimension of the array iwork.
Constraints:
if n\leq1, then liwork }\geq1\mathrm{ ;
if job='N' and n>1, then liwork \geq1;
if job='V' and n> , then liwork \geq5n+2.

```

\section*{Output Parameters}

REAL for cheevd DOUBLE PRECISION for zheevd Array, DIMENSION at least max \((1, n)\). If info \(=0\), contains the eigenvalues of the matrix \(A\) in ascending order. See also info.
a
If job='V', then on exit this array is overwritten by the unitary matrix \(Z\) which contains the eigenvectors of \(A\).
work (1) On exit, if 1 work \(>0\), then the real part of work (1) returns the required minimal size of 1 work.
rwork (1) On exit, if lrwork \(>0\), then rwork (1) returns the required minimal size of lrwork.
iwork(1) On exit, if liwork \(>\) 0, then iwork (1) returns the required minimal size of liwork.
info INTEGER.
If \(\operatorname{info}=0\), the execution is successful.
If info \(=i\), then the algorithm failed to converge; \(i\) indicates the number of elements of an intermediate tridiagonal form which did not converge to zero. If info \(=-i\), the \(i\) th parameter had an illegal value.

\section*{Application Notes}

The computed eigenvalues and eigenvectors are exact for a matrix \(A+E\) such that \(\|E\|_{2}=O(\varepsilon)\) \(\|A\|_{2}\), where \(\varepsilon\) is the machine precision.

The real analogue of this routine is ?syevd.
See also ?hpevd for matrices held in packed storage, and ?hbevd for banded matrices.

\section*{?syevx}

Computes selected eigenvalues and, optionally, eigenvectors of a symmetric matrix.

\section*{Syntax}
```

call ssyevx (jobz, range, uplo, n, a, lda, vl, vu, il, iu, abstol,
m, w, z, ldz, work, lwork, iwork, ifail, info)
call dsyevx (jobz, range, uplo, n, a, lda, vl, vu, il, iu, abstol,
m, w, z, ldz, work, lwork, iwork, ifail, info)

```

\section*{Description}

This routine computes selected eigenvalues and, optionally, eigenvectors of a real symmetric matrix \(A\). Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{jobz} & CHARACTER*1. Must be 'N' or 'V'. \\
\hline & If \(j 0 b z=' N\) ', then only eigenvalues are computed. \\
\hline & If jobz \(=1 \mathrm{~V}\) ', then eigenvalues and eigenvectors are computed. \\
\hline \multirow[t]{4}{*}{range} & CHARACTER*1. Must be 'A', 'V', or 'I'. \\
\hline & If range \(=^{\prime} \mathrm{A}\) ', all eigenvalues will be found. \\
\hline & If range \(=\mathrm{V} \mathrm{V}\), all eigenvalues in the half-open interval (\(\mathrm{vl}, \mathrm{vu}\)] will be found. \\
\hline & If range \(=1 \mathrm{I}\), the eigenvalues with indices il through iu will be found. \\
\hline \multirow[t]{3}{*}{uplo} & CHARACTER*1. Must be 'U' or 'L'. \\
\hline & If uplo = ' \({ }^{\prime}\), a stores the upper triangular part of \(A\). \\
\hline & If uplo = 'L', a stores the lower triangular part of \(A\). \\
\hline \(n\) & Integer. The order of the matrix \(A(n \geq 0)\). \\
\hline \multirow[t]{5}{*}{a, work} & REAL for ssyevx \\
\hline & DOUBLE PRECISION for dsyevx. \\
\hline & Arrays: \\
\hline & \(a(l d a, *)\) is an array containing either upper or lower triangular part of the symmetric matrix \(A\), as specified by uplo. \\
\hline & The second dimension of a must be at least max \((1, n)\). \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline & work (lwork) is a workspace array. \\
\hline Ida & INTEGER. The first dimension of the array \(a\). Must be at least \(\max (1, n)\). \\
\hline \multirow[t]{4}{*}{vl, vu} & REAL for ssyevx \\
\hline & DOUBLE PRECISION for dsyevx. \\
\hline & If range \(=' \mathrm{~V}\) ', the lower and upper bounds of the interval to be searched for eigenvalues; vl \(\leq v u\). \\
\hline & Not referenced if range = 'A'or 'I'. \\
\hline \multirow[t]{4}{*}{il, iu} & INTEGER. If range \(=1 I\) ' the indices of the smallest and largest eigenvalues to be returned. \\
\hline & \\
\hline & il \(=1\) and iu \(=0\), if \(n=0\). \\
\hline & Not referenced if range \(=\) 'A' or 'V'. \\
\hline \multirow[t]{4}{*}{abstol} & REAL for ssyevx \\
\hline & DOUBLE PRECISION for dsyevx. \\
\hline & The absolute error tolerance for the eigenvalues . \\
\hline & See Application notes for more information. \\
\hline \(1 d z\) & INTEGER. The first dimension of the output array \(z ; I d z \geq 1\). If jobz \(=\mathrm{I}^{\prime} \mathrm{V}\), then \(1 d z \geq \max (1, n)\). \\
\hline \multirow[t]{2}{*}{Iwork} & INTEGER. The dimension of the array work. \\
\hline & Constraint: 1 work \(\geq \max (1,8 n)\). See Application notes for the suggested value of I work. \\
\hline iwork & INTEGER. Workspace array, DIMENSION at least max \((1,5 n)\). \\
\hline \multicolumn{2}{|l|}{Output Parameters} \\
\hline a & On exit, the lower triangle (if uplo='L') or the upper triangle (if uplo= \(' U '\)) of \(A\), including the diagonal, is overwritten. \\
\hline m & INTEGER. The total number of eigenvalues found; \(0 \leq m \leq n\). If range \(={ }^{\prime} A\) ', \(m=n\), and if range \(=1 \mathrm{I}, \mathrm{m}=i u-i l+1\). \\
\hline \multirow[t]{4}{*}{w} & REAL for ssyevx \\
\hline & DOUBLE PRECISION for dsyevx \\
\hline & Array, DIMENSION at least max \((1, n)\). \\
\hline & The first \(m\) elements contain the selected eigenvalues of the matrix \(A\) in ascending order. \\
\hline
\end{tabular}
z
work (1) On exit, if 1 work \(>0\), then work (1) returns the required minimal size of lwork.
ifail INTEGER. Array, DIMENSION at least max \((1, n)\).
REAL for ssyevx
DOUBLE PRECISION for dsyevx.
Array \(z(l d z, *)\) contains eigenvectors.
The second dimension of \(z\) must be at least \(\max (1, m)\).
If \(j o b z=V^{\prime} V^{\prime}\), then if info \(=0\), the first \(m\) columns of \(z\) contain the orthonormal eigenvectors of the matrix \(A\) corresponding to the selected eigenvalues, with the i-th column of \(z\) holding the eigenvector associated with \(w(i)\). If an eigenvector fails to converge, then that column of \(z\) contains the latest approximation to the eigenvector, and the index of the eigenvector is returned in ifail.
If jobz='N', then \(z\) is not referenced.
Note: you must ensure that at least max \((1, m)\) columns are supplied in the array \(z\); if range \(=\) ' V ', the exact value of \(m\) is not known in advance and an upper bound must be used.
```

If jobz $=$ ' $V$ ', then if info $=0$, the first $m$ elements of ifail are zero; if info $>0$, then ifail contains the indices of the eigenvectors that failed to converge.
If $j o b z=' \mathrm{~V}$ ', then ifail is not referenced.
info
If jobz='V', then if info = 0, the first melements of ifail are zero; if info
INTEGER.
If info = 0, the execution is successful.
If info =-i, the ith parameter had an illegal value.
If info = i, then i eigenvectors failed to converge; their indices are stored in
the array ifail.

```

\section*{Application Notes}

For optimum performance use 1 work \(\geq(n b+3) * n\), where \(n b\) is the maximum of the blocksize for ?sytrd and ?ormtr returned by ilaenv.
If you are in doubt how much workspace to supply, use a generous value of 1 work for the first run. On exit, examine work (1) and use this value for subsequent runs.

An approximate eigenvalue is accepted as converged when it is determined to lie in an interval [\(a, b]\) of width less than or equal to abstol \(+\varepsilon * \max (|a|,|b|)\), where \(\varepsilon\) is the machine precision. If abstol is less than or equal to zero, then \(\varepsilon^{\star}|T|\) will be used in its place, where \(|T|\) is the 1 -norm of the tridiagonal matrix obtained by reducing \(A\) to tridiagonal form.

Eigenvalues will be computed most accurately when abstol is set to twice the underflow threshold \(2 *\) slamch('S'), not zero. If this routine returns with info>0, indicating that some eigenvectors did not converge, try setting abstol to \(2 *\) slamch('S').

\section*{?heevx}

Computes selected eigenvalues and, optionally, eigenvectors of a Hermitian matrix.

\section*{Syntax}
```

call cheevx (jobz, range, uplo, n, a, lda, vl, vu, il, iu, abstol,
m, w, z, ldz, work, lwork, rwork, iwork, ifail, info)
call zheevx (jobz, range, uplo, n, a, lda, vl, vu, il, iu, abstol,
m, w, z, ldz, work, lwork, rwork, iwork, ifail, info)

```

\section*{Description}

This routine computes selected eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix \(A\). Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{jobz} & CHARACTER*1. Must be ' N ' or ' V '. \\
\hline & If \(j 0 b z={ }^{\prime} \mathrm{N}^{\prime}\), then only eigenvalues are computed. \\
\hline & If \(j 0 b z=' \mathrm{~V} '\), then eigenvalues and eigenvectors are computed. \\
\hline \multirow[t]{4}{*}{range} & CHARACTER*1. Must be 'A', 'V', or 'I'. \\
\hline & If range \(=\) ' A ', all eigenvalues will be found. \\
\hline & If range \(=\mathrm{V} \mathrm{V}\), all eigenvalues in the half-open interval (\(\mathrm{vl}, \mathrm{vu}\)] will be found. \\
\hline & If range = I ' , the eigenvalues with indices il through iu will be found. \\
\hline \multirow[t]{3}{*}{uplo} & CHARACTER*1. Must be 'U' or 'L'. \\
\hline & If uplo = ' \({ }^{\prime}\), a stores the upper triangular part of \(A\). \\
\hline & If uplo = 'L', a stores the lower triangular part of \(A\). \\
\hline & INTEGER. The order of the matrix \(A(n \geq 0)\). \\
\hline
\end{tabular}
\begin{tabular}{ll}
a, work & COMPLEX for cheevx \\
DOUBLE COMPLEX for zheevx. \\
Arrays: \\
a(lda, *) is an array containing either upper or lower triangular part of the \\
& Hermitian matrix \(A\), as specified by uplo. \\
& The second dimension of a must be at least max \((1, n)\). \\
& work (lwork) is a workspace array.
\end{tabular}
work(1)

INTEGER. The total number of eigenvalues found; \(0 \leq m \leq n\). If range \(='^{\prime}\) ', \(m=n\), and if range \(=1\) I', m =iu-il+1.

REAL for cheevx
DOUBLE PRECISION for zheevx
Array, DIMENSION at least max \((1, n)\).
The first \(m\) elements contain the selected eigenvalues of the matrix \(A\) in ascending order.

COMPLEX for cheevx
DOUBLE COMPLEX for zheevx.
Array \(z(l d z, *)\) contains eigenvectors.
The second dimension of \(z\) must be at least \(\max (1, m)\).
If jobz \(=V^{\prime} V^{\prime}\), then if info \(=0\), the first \(m\) columns of \(z\) contain the orthonormal eigenvectors of the matrix \(A\) corresponding to the selected eigenvalues, with the i-th column of \(z\) holding the eigenvector associated with \(w(i)\). If an eigenvector fails to converge, then that column of \(z\) contains the latest approximation to the eigenvector, and the index of the eigenvector is returned in ifail.
If jobz \(=\) ' \(N^{\prime}\), then \(z\) is not referenced.
Note: you must ensure that at least \(\max (1, m)\) columns are supplied in the array \(z\); if range \(=\) ' \(V\) ', the exact value of \(m\) is not known in advance and an upper bound must be used.
ifail INTEGER. Array, DIMENSION at least max \((1, n)\).
If jobz \(=^{\prime} V\) ', then if info \(=0\), the first melements of ifail are zero; if info \(>0\), then ifail contains the indices of the eigenvectors that failed to converge.
If jobz='V', then ifail is not referenced.
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\) th parameter had an illegal value.
If info \(=i\), then \(i\) eigenvectors failed to converge; their indices are stored in the array ifail.

\section*{Application Notes}

For optimum performance use 1 work \(\geq(n b+1){ }^{*} n\), where \(n b\) is the maximum of the blocksize for ?hetrd and ?unmtr returned by ilaenv.
If you are in doubt how much workspace to supply, use a generous value of 1 work for the first run. On exit, examine work (1) and use this value for subsequent runs.

An approximate eigenvalue is accepted as converged when it is determined to lie in an interval [\(a, b\)] of width less than or equal to
abstol \(+\varepsilon * \max (|a|,|b|)\), where \(\varepsilon\) is the machine precision. If abstol is less than or equal to zero, then \(\varepsilon^{\star}|T|\) will be used in its place, where \(|T|\) is the 1 -norm of the tridiagonal matrix obtained by reducing \(A\) to tridiagonal form.
Eigenvalues will be computed most accurately when abstol is set to twice the underflow threshold \(2 *\) slamch('S'), not zero. If this routine returns with info \(>0\), indicating that some eigenvectors did not converge, try setting abstol to \(2 *\) slamch('S').

\section*{?syevr}

Computes selected eigenvalues and, optionally, eigenvectors of a real symmetric matrix using the Relatively Robust Representations.

\section*{Syntax}
```

call ssyevr (jobz, range, uplo, n, a, lda, vl, vu, il, iu, abstol,
m, w, z, ldz, isuppz, work, lwork, iwork, liwork, info)
call dsyevr (jobz, range, uplo, n, a, lda, vl, vu, il, iu, abstol,
m, w, z, ldz, isuppz, work, lwork, iwork, liwork, info)

```

\section*{Description}

This routine computes selected eigenvalues and, optionally, eigenvectors of a real symmetric matrix \(T\). Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues.

Whenever possible, ?syevr calls sstegr/dstegr to compute the eigenspectrum using Relatively Robust Representations. ?stegr computes eigenvalues by the \(d q d s\) algorithm, while orthogonal eigenvectors are computed from various "good" \(L D L^{T}\) representations (also known as Relatively Robust Representations). Gram-Schmidt orthogonalization is avoided as far as possible. More specifically, the various steps of the algorithm are as follows. For the i-th unreduced block of T,
(a) Compute \(T-\sigma_{\mathrm{i}}=L_{\mathrm{i}} D_{\mathrm{i}} L_{\mathrm{i}}^{T}\), such that \(L_{\mathrm{i}} D_{\mathrm{i}} L_{\mathrm{i}}^{T}\) is a relatively robust representation;
(b) Compute the eigenvalues, \(\lambda_{\mathrm{j}}\), of \(L_{\mathrm{i}} D_{\mathrm{i}} L_{\mathrm{i}}^{T}\) to high relative accuracy by the \(d q d s\) algorithm;
(c) If there is a cluster of close eigenvalues, "choose" \(\sigma_{i}\) close to the cluster, and go to step (a);
(d) Given the approximate eigenvalue \(\lambda_{\mathrm{j}}\) of \(L_{\mathrm{i}} D_{\mathrm{i}} L_{\mathrm{i}}^{T}\), compute the corresponding eigenvector by forming a rank-revealing twisted factorization.

The desired accuracy of the output can be specified by the input parameter abstol.
The routine ?syevr calls sstegr/dstegr when the full spectrum is requested on machines which conform to the IEEE-754 floating point standard. ?syevr calls sstebz/dstebz and sstein/dstein on non-IEEE machines and when partial spectrum requests are made.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline jobz & \begin{tabular}{l}
CHARACTER*1. Must be ' N ' or ' V '. \\
If \(j o b z={ }^{\prime} \mathrm{N}^{\prime}\), then only eigenvalues are computed. \\
If \(j 0 b z=1 \mathrm{~V}\) ', then eigenvalues and eigenvectors are computed.
\end{tabular} \\
\hline range & \begin{tabular}{l}
CHARACTER*1. Must be 'A' or 'V' or 'I'. \\
If range \(=\) ' A ', the routine computes all eigenvalues. \\
If range \(=\) ' V ', the routine computes eigenvalues \(\lambda_{i}\) in the half-open interval: \(\mathrm{v} 1<\lambda_{i} \leq \mathrm{vu}\). \\
If range =' I' , the routine computes eigenvalues with indices il to iu.
\end{tabular} \\
\hline & For range \(=\) 'V'or 'I' and iu-il<n-1, sstebz/dstebz and sstein/dstein are called. \\
\hline uplo & \begin{tabular}{l}
CHARACTER*1. Must be 'U' or 'L'. \\
If uplo='U', a stores the upper triangular part of \(A\). \\
If uplo='L', a stores the lower triangular part of \(A\).
\end{tabular} \\
\hline n & Integer. The order of the matrix \(A(n \geq 0)\). \\
\hline a, work & \begin{tabular}{l}
REAL for ssyevr \\
DOUBLE PRECISION for dsyevr. \\
Arrays: \\
\(a(l d a, *)\) is an array containing either upper or lower triangular part of the symmetric matrix \(A\), as specified by uplo. \\
The second dimension of a must be at least \(\max (1, n)\). \\
work (lwork) is a workspace array.
\end{tabular} \\
\hline lda & integer. The first dimension of the array \(a\). Must be at least \(\max (1, n)\). \\
\hline v1, vu & \begin{tabular}{l}
REAL for ssyevr \\
DOUBLE PRECISION for dsyevr. \\
If range \(=\) ' V ', the lower and upper bounds of the interval to be searched for eigenvalues. \\
Constraint: \(\mathrm{vl}<\mathrm{vu}\).
\end{tabular} \\
\hline & If range \(=\) 'A' or 'I', vl and vu are not referenced. \\
\hline il, iu & \begin{tabular}{l}
INTEGER. \\
If range \(=\) ' I ' , the indices in ascending order of the smallest and largest eigenvalues to be returned. \\
Constraint: \(1 \leq i l \leq i u \leq n\), if \(n>0\); il=1 and \(i u=0\) if \(n=0\).
\end{tabular} \\
\hline
\end{tabular}

If range ='A' or 'V', il and iu are not referenced.
\begin{tabular}{|c|c|}
\hline abstol & REAL for ssyevr \\
\hline & \begin{tabular}{l}
DOUBLE PRECISION for dsyevr. \\
The absolute error tolerance to which each eigenvalue/eigenvector is required. If \(j o b z=' \mathrm{~V}\) ', the eigenvalues and eigenvectors output have residual norms bounded by abstol, and the dot products between different eigenvectors are bounded by abstol. If abstol \(<n \varepsilon\|T\|_{1}\), then \(n \varepsilon\|T\|_{1}\) will be used in its place, where \(\varepsilon\) is the machine precision. The eigenvalues are computed to an accuracy of \(\varepsilon\|T\|_{1}\) irrespective of abstol. If high relative accuracy is important, set abstol to ?lamch('S').
\end{tabular} \\
\hline \(1 d z\) & \begin{tabular}{l}
INTEGER. The leading dimension of the output array \(z\). Constraints: \\
\(l d z \geq 1\) if jobz ='N'; \\
\(l d z \geq \max (1, n)\) if \(j o b z=' V '\).
\end{tabular} \\
\hline lwork & \begin{tabular}{l}
INTEGER. The dimension of the array work. \\
Constraint: 1 work \(\geq \max (1,26 n)\). See Application notes for the suggested value of 1 work.
\end{tabular} \\
\hline iwork & \begin{tabular}{l}
INTEGER. \\
Workspace array, DIMENSION (liwork).
\end{tabular} \\
\hline liwork & INTEGER. The dimension of the array iwork, lwork \(\geq \max (1,10 n)\). \\
\hline
\end{tabular}

\section*{Output Parameters}

On exit, the lower triangle (if uplo= 'L') or the upper triangle (if uplo= ' U ') of \(A\), including the diagonal, is overwritten.

INTEGER. The total number of eigenvalues found, \(0 \leq m \leq n\). If range \(=\) 'A', \(m=n\), and if range \(=\) ' I', \(m=i u-i l+1\).

W, \(Z\)
REAL for ssyevr
DOUBLE PRECISION for dsyevr.
Arrays:
\(W(*)\), DIMENSION at least max \((1, n)\), contains the selected eigenvalues in ascending order, stored in \(w(1)\) to \(w(m)\);
\(z(l d z, *)\), the second dimension of \(z\) must be at least \(\max (1, m)\). If \(j o b z=' \mathrm{~V}\) ', then if info \(=0\), the first \(m\) columns of \(z\) contain the orthonormal eigenvectors of the matrix \(T\) corresponding to the selected eigenvalues, with the \(i\)-th column of \(z\) holding the eigenvector associated with
\(w(i)\).
If jobz='N', then \(z\) is not referenced.
Note: you must ensure that at least max \((1, m)\) columns are supplied in the array \(z\); if range \(=^{\prime} V\) ', the exact value of \(m\) is not known in advance and an upper bound must be used.
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{isuppz} & INTEGER. \\
\hline & Array, DIMENSION at least \(2 * \max (1, m)\). \\
\hline & \begin{tabular}{l}
The support of the eigenvectors in \(z\), i.e., the indices indicating the nonzero elements in \(z\). The \(i\)-th eigenvector is nonzero only in elements isuppz(\(2 i-\)) through \(i \operatorname{suppz}(2 i)\). \\
Implemented only for range ='A' or 'I' and \(i u-i l=n-1\).
\end{tabular} \\
\hline work(1) & On exit, if info \(=0\), then work (1) returns the required minimal size of lwork. \\
\hline iwork(1) & On exit, if info \(=0\), then iwork (1) returns the required minimal size of liwork. \\
\hline \multirow[t]{4}{*}{info} & INTEGER. \\
\hline & If info \(=0\), the execution is successful. \\
\hline & If info \(=-i\), the \(i\) th parameter had an illegal value. \\
\hline & If info \(=i\), an internal error has occurred. \\
\hline
\end{tabular}

\section*{Application Notes}

For optimum performance use 1 work \(\geq(n b+6){ }^{*} n\), where \(n b\) is the maximum of the blocksize for ?sytrd and ?ormtr returned by ilaenv.
If you are in doubt how much workspace to supply, use a generous value of 1 work for the first run. On exit, examine work (1) and use this value for subsequent runs.

Normal execution of ?stegr may create NaNs and infinities and hence may abort due to a floating point exception in environments which do not handle NaNs and infinities in the IEEE standard default manner.

\section*{?heevr}

Computes selected eigenvalues and, optionally, eigenvectors of a Hermitian matrix using the Relatively Robust Representations.

\section*{Syntax}
```

call cheevr ( jobz, range, uplo, n, a, lda, vl, vu, il, iu, abstol,
m, w, z, ldz, isuppz, work, lwork, rwork, lrwork,
iwork, liwork, info)
call zheevr ( jobz, range, uplo, n, a, lda, vl, vu, il, iu, abstol,
m, w, z, ldz, isuppz, work, lwork, rwork, lrwork,
iwork, liwork, info)

```

\section*{Description}

This routine computes selected eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix \(T\). Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues.

Whenever possible, ?heevr calls cstegr/zstegr to compute the eigenspectrum using Relatively Robust Representations. ?stegr computes eigenvalues by the \(d q d s\) algorithm, while orthogonal eigenvectors are computed from various "good" \(L D L^{T}\) representations (also known as Relatively Robust Representations). Gram-Schmidt orthogonalization is avoided as far as possible. More specifically, the various steps of the algorithm are as follows. For the i-th unreduced block of \(T\),
(a) Compute \(T-\sigma_{\mathrm{i}}=L_{\mathrm{i}} D_{\mathrm{i}} L_{\mathrm{i}}{ }^{T}\), such that \(L_{\mathrm{i}} D_{\mathrm{i}} L_{\mathrm{i}}{ }^{T}\) is a relatively robust representation;
(b) Compute the eigenvalues, \(\lambda_{\mathrm{j}}\), of \(L_{\mathrm{i}} D_{\mathrm{i}} L_{\mathrm{i}}^{T}\) to high relative accuracy by the \(d q d s\) algorithm;
(c) If there is a cluster of close eigenvalues, "choose" \(\sigma_{\mathrm{i}}\) close to the cluster, and go to step (a);
(d) Given the approximate eigenvalue \(\lambda_{\mathrm{j}}\) of \(L_{\mathrm{i}} D_{\mathrm{i}} L_{\mathrm{i}}^{T}\), compute the corresponding eigenvector by forming a rank-revealing twisted factorization.

The desired accuracy of the output can be specified by the input parameter abstol.

The routine ?heevr calls cstegr/zstegr when the full spectrum is requested on machines which conform to the IEEE-754 floating point standard. ?heevr calls sstebz/dstebz and cstein/zstein on non-IEEE machines and when partial spectrum requests are made.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{jobz} & CHARACTER*1. Must be 'N' or 'V'. \\
\hline & If job \(={ }^{\prime} \mathrm{N}^{\prime}\), then only eigenvalues are computed. \\
\hline & If job \(=^{\prime} \mathrm{V}^{\prime}\), then eigenvalues and eigenvectors are computed. \\
\hline \multirow[t]{5}{*}{range} & CHARACTER*1. Must be 'A' or 'V' or 'I'. \\
\hline & If range \(=\) ' A ', the routine computes all eigenvalues. \\
\hline & If range \(=' \mathrm{~V}\) ', the routine computes eigenvalues \(\lambda_{i}\) in the half-open interval: \(\mathrm{vl}<\lambda_{i} \leq \mathrm{vu}\). \\
\hline & If range = I', the routine computes eigenvalues with indices il to iu. \\
\hline & For range \(=\) 'V'or 'I', sstebz/dstebz and cstein/zstein are called. \\
\hline \multirow[t]{3}{*}{uplo} & CHARACTER*1. Must be 'U' or 'L'. \\
\hline & If uplo = 'U', a stores the upper triangular part of \(A\). \\
\hline & If uplo = 'L', a stores the lower triangular part of \(A\). \\
\hline n & INTEGER. The order of the matrix \(A(n \geq 0)\). \\
\hline \multirow[t]{7}{*}{a, work} & COMPLEX for cheevr \\
\hline & DOUBLE COMPLEX for zheevr. \\
\hline & Arrays: \\
\hline & a (lda,*) is an array containing either upper or lower triangular part of the \\
\hline & Hermitian matrix \(A\), as specified by uplo. \\
\hline & The second dimension of a must be at least max \((1, n)\). \\
\hline & work (lwork) is a workspace array. \\
\hline \multirow[t]{2}{*}{Ida} & INTEGER. The first dimension of the array a. \\
\hline & Must be at least \(\max (1, n)\). \\
\hline \multirow[t]{5}{*}{vl, vu} & REAL for cheevr \\
\hline & DOUBLE PRECISION for zheevr. \\
\hline & If range \(=\) ' V ', the lower and upper bounds of the interval to be searched for eigenvalues. \\
\hline & Constraint: vl< vu. \\
\hline & If range \(=\) 'A' or 'I', vl and vu are not referenced. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multirow[t]{5}{*}{il, iu} & INTEGER. \\
\hline & If range \(=\) 'I', the indices in ascending order of the smallest and largest eigenvalues to be returned. \\
\hline & Constraint: \(1 \leq i l \leq i u \leq n\), if \(n>0\); \(i l=1\) and \(i u=0\) \\
\hline & if \(n=0\). \\
\hline & If range \(=\) ' A ' or 'V', il and iu are not referenced. \\
\hline \multirow[t]{4}{*}{abstol} & REAL for cheevr \\
\hline & DOUBLE PRECISION for zheevr. \\
\hline & The absolute error tolerance to which each eigenvalue/eigenvector is required. \\
\hline & If jobz = 'V', the eigenvalues and eigenvectors output have residual norms bounded by abstol, and the dot products between different eigenvectors are bounded by abstol. If abstol \(<n \varepsilon\|T\|_{1}\), then \(n \varepsilon\|T\|_{1}\) will be used in its place, where \(\varepsilon\) is the machine precision. The eigenvalues are computed to an accuracy of \(\varepsilon\|T\|_{1}\) irrespective of abstol. If high relative accuracy is important, set abstol to ?lamch('S'). \\
\hline \multirow[t]{2}{*}{\(1 d z\)} & INTEGER. The leading dimension of the output array \(z\). Constraints: \(l d z \geq 1\) if jobz='N'; \\
\hline & \(l d z \geq \max (1, n)\) if \(j o b z=' V '\). \\
\hline \multirow[t]{2}{*}{lwork} & INTEGER. The dimension of the array work. \\
\hline & Constraint: 1 work \(\geq \max (1,2 n)\). See Application notes for the suggested value of I work. \\
\hline \multirow[t]{3}{*}{rwork} & REAL for cheevr \\
\hline & DOUBLE PRECISION for zheevr. \\
\hline & Workspace array, DIMENSION (lrwork). \\
\hline \multirow[t]{2}{*}{lrwork} & INTEGER. The dimension of the array rwork; \\
\hline & 1 work \(\geq \max (1,24 n)\). \\
\hline \multirow[t]{2}{*}{iwork} & INTEGER. \\
\hline & Workspace array, DIMENSION (liwork). \\
\hline liwork & INTEGER. The dimension of the array iwork, \\
\hline
\end{tabular}

\section*{Output Parameters}

On exit, the lower triangle (if uplo \(=1 \mathrm{~L}\)) or the upper triangle (if uplo= ' U ') of \(A\), including the diagonal, is overwritten.
m
iwork (1) On exit, if info \(=0\), then \(i w o r k\) (1) returns the required minimal size of liwork.
info INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\) th parameter had an illegal value.
If info \(=i\), an internal error has occurred.

\section*{Application Notes}

For optimum performance use 1 work \(\geq(n b+1) *_{n}\), where \(n b\) is the maximum of the blocksize for ?hetrd and ?unmtr returned by ilaenv.
If you are in doubt how much workspace to supply, use a generous value of 1 work for the first run. On exit, examine work (1) and use this value for subsequent runs.

Normal execution of ?stegr may create NaNs and infinities and hence may abort due to a floating point exception in environments which do not handle NaNs and infinities in the IEEE standard default manner.

\section*{?spev}

Computes all eigenvalues and, optionally, eigenvectors
of a real symmetric matrix in packed storage.

\section*{Syntax}
```

call sspev (jobz, uplo, n, ap, w, z, ldz, work, info)
call dspev (jobz, uplo, n, ap, w, z, ldz, work, info)

```

\section*{Description}

This routine computes all the eigenvalues and, optionally, eigenvectors of a real symmetric matrix \(A\) in packed storage.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline jobz & \begin{tabular}{l}
CHARACTER*1. Must be 'N' or 'V'. \\
If \(j 0 b=' N\) ', then only eigenvalues are computed. \\
If job \(=1 \mathrm{~V}\) ', then eigenvalues and eigenvectors are computed.
\end{tabular} \\
\hline uplo & \begin{tabular}{l}
CHARACTER*1. Must be 'U' or 'L'. \\
If uplo = 'U', ap stores the packed upper triangular part of \(A\). \\
If uplo = 'L', ap stores the packed lower triangular part of \(A\).
\end{tabular} \\
\hline \(n\) & INTEGER. The order of the matrix \(A(n \geq 0)\). \\
\hline ap, work & \begin{tabular}{l}
REAL for sspev \\
DOUBLE PRECISION for dspev \\
Arrays: \\
\(a p(*)\) contains the packed upper or lower triangle of symmetric matrix A, as specified by uplo. The dimension of ap must be at least \(\max (1, n *(n+1) / 2)\). \\
work (*) is a workspace array, DIMENSION at least max \((1,3 n)\).
\end{tabular} \\
\hline \(1 d z\) & \begin{tabular}{l}
INTEGER. The leading dimension of the output array \(z\). Constraints: \\
if jobz \(={ }^{\prime} \mathrm{N}\) ', then \(l d z \geq 1\); \\
if \(j o b z=' V '\), then \(l d z \geq \max (1, n)\).
\end{tabular} \\
\hline
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{7}{*}{W, z} & REAL for sspev \\
\hline & DOUBLE PRECISION for dspev \\
\hline & Arrays: \\
\hline & w(*), DIMENSION at least max \((1, n)\). \\
\hline & \begin{tabular}{l}
If info \(=0, w\) contains the eigenvalues of the matrix \(A\) in ascending order. \\
\(z(1 d z *)\) The second dimension of \(z\) must be at least \(\max (1, n)\)
\end{tabular} \\
\hline & If jobz \(=^{\prime} \mathrm{V}^{\prime}\), then if info \(=0, z\) contains the orthonormal eigenvectors of the matrix \(A\), with the \(i\)-th column of \(z\) holding the eigenvector associated with \(w(i)\). \\
\hline & If \(j 0 b z=' N\) ', then \(z\) is not referenced. \\
\hline \(a p\) & On exit, this array is overwritten by the values generated during the reduction to tridiagonal form. The elements of the diagonal and the off-diagonal of the tridiagonal matrix overwrite the corresponding elements of A. \\
\hline \multirow[t]{4}{*}{info} & INTEGER. \\
\hline & If info \(=0\), the execution is successful. \\
\hline & If info \(=-i\), the \(i\) th parameter had an illegal value. \\
\hline & If info \(=i\), then the algorithm failed to converge; \(i\) indicates the number of elements of an intermediate tridiagonal form which did not converge to zero. \\
\hline
\end{tabular}

\section*{?hpev}

Computes all eigenvalues and, optionally, eigenvectors
of a Hermitian matrix in packed storage.

\section*{Syntax}
```

call chpev (jobz, uplo, n, ap, w, z, ldz, work, rwork, info)
call zhpev (jobz, uplo, n, ap, w, z, ldz, work, rwork, info)

```

\section*{Description}

This routine computes all the eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix \(A\) in packed storage.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{jobz} & CHARACTER*1. Must be ' N ' or ' V '. \\
\hline & If \(j 0 b={ }^{\prime} \mathrm{N}\), then only eigenvalues are computed. \\
\hline & If job \(=1 \mathrm{~V}\) ', then eigenvalues and eigenvectors are computed. \\
\hline \multirow[t]{3}{*}{uplo} & CHARACTER*1. Must be 'U' or 'L'. \\
\hline & If uplo = 'U', ap stores the packed upper triangular part of \(A\). \\
\hline & If uplo = 'L', ap stores the packed lower triangular part of \(A\). \\
\hline \(n\) & INTEGER. The order of the matrix \(A(n \geq 0)\). \\
\hline \multirow[t]{5}{*}{ap, work} & COMPLEx for chpev \\
\hline & double Complex for zhpev. \\
\hline & Arrays: \\
\hline & \(a p(*)\) contains the packed upper or lower triangle of Hermitian matrix A, as specified by uplo. The dimension of ap must be at least \(\max (1, n *(n+1) / 2)\). \\
\hline & work (*) is a workspace array, DIMENSION at least max (1, \(2 \mathrm{n}-1\)). \\
\hline \multirow[t]{4}{*}{\(1 d z\)} & INTEGER. The leading dimension of the output array \(z\). \\
\hline & Constraints: \\
\hline & if \(j 0 b z={ }^{\prime} \mathrm{N}^{\prime}\), then \(1 d z \geq 1\); \\
\hline & if \(j o b z=' \mathrm{~V}\) ', then \(l d z \geq \max (1, n)\). \\
\hline \multirow[t]{3}{*}{rwork} & REAL for chpev \\
\hline & DOUBLE PRECISION for zhpev. \\
\hline & Workspace array, DIMENSION at least max (1,3n-2). \\
\hline
\end{tabular}

Intel \({ }^{\circledR}\) Math Kernel Library Reference Manual

\section*{Output Parameters}
w
REAL for chpev
DOUBLE PRECISION for zhpev.
Array, DIMENSION at least max \((1, n)\).
If info \(=0, w\) contains the eigenvalues of the matrix \(A\) in ascending order.
z
COMPLEX for chpev
DOUBLE COMPLEX for zhpev.
Array \(z(l d z, *)\). The second dimension of \(z\) must be at least \(\max (1, n)\). If jobz='V', then if info \(=0, z\) contains the orthonormal eigenvectors of the matrix \(A\), with the \(i\)-th column of \(z\) holding the eigenvector associated with w(i).
If \(j o b z={ }^{\prime} N^{\prime}\), then \(z\) is not referenced.
On exit, this array is overwritten by the values generated during the reduction to tridiagonal form. The elements of the diagonal and the off-diagonal of the tridiagonal matrix overwrite the corresponding elements of A .
info
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\) th parameter had an illegal value.
If \(\operatorname{info}=i\), then the algorithm failed to converge; \(i\) indicates the number of elements of an intermediate tridiagonal form which did not converge to zero.

\section*{?spevd}

Uses divide and conquer algorithm to compute all eigenvalues and (optionally) all eigenvectors of a real symmetric matrix held in packed storage.

\section*{Syntax}
call sspevd (job, uplo, n, ap, w, z,ldz, work, lwork, iwork, liwork, info)
call dspevd (job, uplo, n, ap,w,z,ldz,work,lwork,iwork,liwork,info)

\section*{Description}

This routine computes all the eigenvalues, and optionally all the eigenvectors, of a real symmetric matrix \(A\) (held in packed storage). In other words, it can compute the spectral factorization of \(A\) as: \(A=Z \Lambda Z^{T}\).
Here \(\Lambda\) is a diagonal matrix whose diagonal elements are the eigenvalues \(\lambda_{i}\), and \(Z\) is the orthogonal matrix whose columns are the eigenvectors \(z_{i}\). Thus,
\[
A z_{i}=\lambda_{i} z_{i} \text { for } i=1,2, \ldots, n .
\]

If the eigenvectors are requested, then this routine uses a divide and conquer algorithm to compute eigenvalues and eigenvectors. However, if only eigenvalues are required, then it uses the Pal-Walker-Kahan variant of the \(Q L\) or \(Q R\) algorithm.

Input Parameters
\begin{tabular}{|c|c|}
\hline job & \begin{tabular}{l}
CHARACTER*1. Must be 'N' or 'V'. \\
If job \(={ }^{\prime} N\) ', then only eigenvalues are computed. \\
If job \(={ }^{\prime} \mathrm{V}\) ', then eigenvalues and eigenvectors are computed.
\end{tabular} \\
\hline uplo & \begin{tabular}{l}
CHARACTER*1. Must be 'U' or 'L'. \\
If uplo='U', ap stores the packed upper triangular part of \(A\). \\
If uplo = 'L', ap stores the packed lower triangular part of \(A\).
\end{tabular} \\
\hline \(n\) & INTEGER. The order of the matrix \(A(n \geq 0)\). \\
\hline ap, work & \begin{tabular}{l}
REAL for sspevd \\
DOUBLE PRECISION for dspevd \\
Arrays: \\
\(a p(*)\) contains the packed upper or lower triangle of symmetric matrix A, as specified by uplo. The dimension of ap must be at least \(\max (1, n *(n+1) / 2)\) work (*) is a workspace array, DIMENSION at least lwork.
\end{tabular} \\
\hline \(1 d z\) & \begin{tabular}{l}
INTEGER. The leading dimension of the output array \(z\). Constraints: \\
if \(j o b='^{\prime}\), then \(l d z \geq 1\); \\
if job \(={ }^{\prime} \mathrm{V}\) ', then \(l d z \geq \max (1, n)\).
\end{tabular} \\
\hline Iwork & \begin{tabular}{l}
INTEGER. The dimension of the array work. \\
Constraints: \\
if \(n \leq 1\), then 1 work \(\geq 1\); \\
if job \(={ }^{\prime} N^{\prime}\) ' and \(n>1\), then 1 work \(\geq 2 n\); \\
if job \(=' V\) ' and \(n>1\), then \\
lwork \(\geq 2 n^{2}+(5+2 k) * n+1\), where \(k\) is the smallest integer which satisfies \(2^{k}\) \(\geq n\).
\end{tabular} \\
\hline
\end{tabular}
```

iwork INTEGER
Workspace array, DIMENSION at least liwork.
liwork INTEGER. The dimension of the array iwork.
Constraints:
if n\leq1, then liwork }\geq1\mathrm{ ;
if job='N' and n>1, then liwork \geq1;
if job='V' and n> , then liwork \geq 5n+3.
If liwork= -1, then a workspace query is assumed; the routine only calculates
the optimal size of the iwork array, returns this value as the first entry of the
iwork array, and no error message related to liwork is issued by xerbla.

```

\section*{Output Parameters}

REAL for sspevd
DOUBLE PRECISION for dspevd
Arrays:
\(w(*)\), DIMENSION at least \(\max (1, n)\).
If info \(=0\), contains the eigenvalues of the matrix \(A\) in ascending order. See also info.
\(z(l d z, *)\). The second dimension of \(z\) must be:
at least 1 if job='N';
at least \(\max (1, n)\) if \(j o b=' V '\).
If job \(=1 \mathrm{~V}\) ', then this array is overwritten by the orthogonal matrix \(Z\) which contains the eigenvectors of \(A\). If job='N', then \(z\) is not referenced.

On exit, this array is overwritten by the values generated during the reduction to tridiagonal form. The elements of the diagonal and the off-diagonal of the tridiagonal matrix overwrite the corresponding elements of A.
work(1) On exit, if info=0, then work (1) returns the optimal lwork.
iwork(1) On exit, if info \(=0\), then iwork (1) returns the optimal liwork.
info INTEGER.
If \(\operatorname{info}=0\), the execution is successful.
If info \(=i\), then the algorithm failed to converge; \(i\) indicates the number of elements of an intermediate tridiagonal form which did not converge to zero. If info \(=-i\), the \(i\) th parameter had an illegal value.

\section*{Application Notes}

The computed eigenvalues and eigenvectors are exact for a matrix \(T+E\) such that \(\|E\|_{2}=O(\varepsilon)\) \(\|T\|_{2}\), where \(\varepsilon\) is the machine precision.

The complex analogue of this routine is ?hpevd.
See also ?syevd for matrices held in full storage, and ?sbevd for banded matrices.

\section*{?hpevd}

Uses divide and conquer algorithm to compute all eigenvalues and (optionally) all eigenvectors of a complex Hermitian matrix held in packed storage.

\section*{Syntax}
```

call chpevd (job, uplo, n, ap, w, z, ldz, work, lwork, rwork,
lrwork, iwork, liwork, info)
call zhpevd (job, uplo, n, ap, w, z, ldz, work, lwork, rwork,
lrwork, iwork, liwork, info)

```

\section*{Description}

This routine computes all the eigenvalues, and optionally all the eigenvectors, of a complex Hermitian matrix \(A\) (held in packed storage). In other words, it can compute the spectral factorization of \(A\) as: \(A=Z \Lambda Z^{H}\).
Here \(\Lambda\) is a real diagonal matrix whose diagonal elements are the eigenvalues \(\lambda_{i}\), and \(Z\) is the (complex) unitary matrix whose columns are the eigenvectors \(z_{i}\). Thus,
\[
A z_{i}=\lambda_{i} z_{i} \text { for } i=1,2, \ldots, n
\]

If the eigenvectors are requested, then this routine uses a divide and conquer algorithm to compute eigenvalues and eigenvectors. However, if only eigenvalues are required, then it uses the Pal-Walker-Kahan variant of the \(Q L\) or \(Q R\) algorithm.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline uplo & \begin{tabular}{l}
CHARACTER*1. Must be 'U' or 'L'. \\
If uplo='U', ap stores the packed upper triangular part of \(A\). \\
If uplo = 'L', ap stores the packed lower triangular part of \(A\).
\end{tabular} \\
\hline \(n\) & INTEGER. The order of the matrix \(A(n \geq 0)\). \\
\hline ap, work & \begin{tabular}{l}
Complex for chpevd \\
double complex for zhpevd \\
Arrays: \\
\(a p(*)\) contains the packed upper or lower triangle of Hermitian matrix A, as specified by uplo. The dimension of ap must be at least max \((1, n *(n+1) / 2)\) work (*) is a workspace array, DIMENSION at least lwork.
\end{tabular} \\
\hline \(l d z\) & \begin{tabular}{l}
INTEGER. The leading dimension of the output array \(z\). \\
Constraints: \\
if \(j o b={ }^{\prime} \mathrm{N}^{\prime}\), then \(1 d z \geq 1\); \\
if job \(=V^{\prime}\) ', then \(l d z \geq \max (1, n)\).
\end{tabular} \\
\hline 1work & \begin{tabular}{l}
INTEGER. The dimension of the array work. \\
Constraints: \\
if \(n \leq 1\), then 1 work \(\geq 1\); \\
if job='N' and \(n>1\), then 1 work \(\geq n\); \\
if job \(={ }^{\prime} \mathrm{V}\) ' and \(n>1\), then 1 work \(\geq 2 n\)
\end{tabular} \\
\hline rwork & \begin{tabular}{l}
REAL for chpevd \\
DOUBLE PRECISION for zhpevd \\
Workspace array, DIMENSION at least lrwork.
\end{tabular} \\
\hline lrwork & \begin{tabular}{l}
INTEGER. The dimension of the array rwork. \\
Constraints: \\
if \(n \leq 1\), then 1 rwork \(\geq 1\); \\
if job \(={ }^{\prime} N\) ' and \(n>1\), then lrwork \(\geq n\); \\
if job \(=1 \mathrm{~V}\) ' and \(n>1\), then \\
lrwork \(\geq 3 n^{2}+(4+2 k) * n+1\), where \(k\) is the smallest integer which satisfies \(2^{k} \geq \mathrm{n}\).
\end{tabular} \\
\hline iwork & \begin{tabular}{l}
INTEGER. \\
Workspace array, DIMENSION at least liwork.
\end{tabular} \\
\hline liwork & \begin{tabular}{l}
INTEGER. The dimension of the array iwork. \\
Constraints: \\
if \(n \leq 1\), then liwork \(\geq 1\); \\
if job \(={ }^{\prime} N\) ' and \(n>1\), then liwork \(\geq 1\); \\
if job \(=' V\) ' and \(n>1\), then liwork \(\geq 5 n+2\).
\end{tabular} \\
\hline
\end{tabular}

\section*{Output Parameters}
```

w
REAL for chpevd
DOUBLE PRECISION for zhpevd
Array, DIMENSION at least max(1,n).
If info = 0, contains the eigenvalues of the matrix A in ascending order. See
also info.
z
COMPLEX for chpevd
DOUBLE COMPLEX for zhpevd
Array, DIMENSION (ldz,*). The second dimension of z must be:
at least 1 if job='N';
at least max(1, n) if job='V'.
If job='V', then this array is overwritten by the unitary matrix Z which
contains the eigenvectors of }A\mathrm{ . If job ='N', then z is not referenced.
ap
On exit, this array is overwritten by the values generated during the reduction
to tridiagonal form. The elements of the diagonal and the off-diagonal of the
tridiagonal matrix overwrite the corresponding elements of A.
work (1) On exit, if lwork>0, then the real part of work (1) returns the required
minimal size of 1 work.
rwork (1) On exit, if lrwork > 0, then rwork (1) returns the required minimal size of
lrwork.
iwork(1) On exit, if liwork>0, then iwork(1) returns the required minimal size of
liwork.
info INTEGER.
If info = 0, the execution is successful.
If info= i, then the algorithm failed to converge; i indicates the number of
elements of an intermediate tridiagonal form which did not converge to zero.
If info = -i, the ith parameter had an illegal value.

```

\section*{Application Notes}

The computed eigenvalues and eigenvectors are exact for a matrix \(T+E\) such that \(\|E\|_{2}=O(\varepsilon)\) \(\|T\|_{2}\), where \(\varepsilon\) is the machine precision.

The real analogue of this routine is ?spevd.
See also ?heevd for matrices held in full storage, and ?hbevd for banded matrices.

\section*{?spevx}

Computes selected eigenvalues and, optionally, eigenvectors of a real symmetric matrix in packed storage.

\section*{Syntax}
```

call sspevx (jobz, range, uplo, n, ap, vl, vu, il, iu, abstol,
m, w, z, ldz, work, iwork, ifail, info)
call dspevx (jobz, range, uplo, n, ap, vl, vu, il, iu, abstol,
m, w, z, ldz, work, iwork, ifail, info)

```

\section*{Description}

This routine computes selected eigenvalues and, optionally, eigenvectors of a real symmetric matrix \(A\) in packed storage. Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{jobz} & CHARACTER*1. Must be 'N' or 'V'. \\
\hline & If job \(=1 \mathrm{~N}\) ', then only eigenvalues are computed. \\
\hline & If \(j 0 b=1 \mathrm{~V}\) ', then eigenvalues and eigenvectors are computed. \\
\hline \multirow[t]{4}{*}{range} & CHARACTER*1. Must be 'A' or 'V' or 'I'. \\
\hline & If range \(=\) ' A ', the routine computes all eigenvalues. \\
\hline & If range \(={ }^{\prime} \mathrm{V}\) ', the routine computes eigenvalues \(\lambda_{i}\) in the half-open interval: \(\mathrm{v} l<\lambda_{i} \leq \mathrm{vu}\). \\
\hline & If range \(=\) 'I', the routine computes eigenvalues with indices il to iu.
CHARACTER*1. Must be 'U' or 'L'. \\
\hline \multirow[t]{3}{*}{uplo} & CHARACTER*1. Must be 'U' or 'L' \\
\hline & If uplo= 'U', ap stores the packed upper triangular part of \(A\). \\
\hline & If uplo = 'L', ap stores the packed lower triangular part of \(A\). \\
\hline \(n\) & INTEGER. The order of the matrix \(A(n \geq 0)\). \\
\hline \multirow[t]{5}{*}{ap, work} & REAL for sspevx \\
\hline & DOUBLE PRECISION for dspevx \\
\hline & Arrays: \\
\hline & \(a p\) (*) contains the packed upper or lower triangle of the symmetric matrix \(A\), as specified by uplo. The dimension of \(a p\) must be at least max \((1\), \\
\hline & \[
\left.n^{*}(n+1) / 2\right)
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multirow[t]{5}{*}{vl, vu} & REAL for sspevx \\
\hline & DOUBLE PRECISION for dspevx \\
\hline & If range \(=' \mathrm{~V}\) ', the lower and upper bounds of the interval to be searched for eigenvalues. \\
\hline & Constraint: \(v 1<v u\). \\
\hline & If range \(=\) ' \(A\) ' or 'I', vl and vu are not referenced. \\
\hline \multirow[t]{5}{*}{il, iu} & INTEGER. \\
\hline & If range \(=\) ' I' , the indices in ascending order of the smallest and largest eigenvalues to be returned. \\
\hline & Constraint: \(1 \leq i l \leq i u \leq n\), if \(n>0\); il=1 and \(i u=0\) \\
\hline & if \(n=0\). \\
\hline & If range \(=\) ' A ' or 'V', il and iu are not referenced. \\
\hline \multirow[t]{4}{*}{abstol} & REAL for sspevx \\
\hline & DOUBLE PRECISION for dspevx \\
\hline & The absolute error tolerance to which each eigenvalue is required. See \\
\hline & Application notes for details on error tolerance. \\
\hline \multirow[t]{4}{*}{\(1 d z\)} & INTEGER. The leading dimension of the output array \(z\). \\
\hline & Constraints: \\
\hline & if jobz \(=\) 'N', then \(l d z \geq 1\); \\
\hline & if \(j o b z={ }^{\prime} \mathrm{V}^{\prime}\), then \(1 d z \geq \max (1, n)\). \\
\hline \multirow[t]{2}{*}{iwork} & INTEGER. \\
\hline & Workspace array, DIMENSION at least max (1,5n). \\
\hline \multicolumn{2}{|l|}{Output Parameters} \\
\hline \(a p\) & On exit, this array is overwritten by the values generated during the reduction to tridiagonal form. The elements of the diagonal and the off-diagonal of the tridiagonal matrix overwrite the corresponding elements of \(A\). \\
\hline \multirow[t]{3}{*}{m} & INTEGER. The total number of eigenvalues found, \\
\hline & \(0 \leq m \leq n\). If range \(=\) ' \(\mathrm{A}^{\prime}, m=n\), and if range \(=1 I^{\prime}\), \\
\hline & \(m=i u-i l+1\). \\
\hline \multirow[t]{5}{*}{w, z} & REAL for sspevx \\
\hline & DOUBLE PRECISION for dspevx \\
\hline & Arrays: \\
\hline & \(w(*)\), DIMENSION at least max \((1, n)\). \\
\hline & If info \(=0\), contains the selected eigenvalues of the matrix \(A\) in ascending order. \\
\hline
\end{tabular}
\(z(l d z, *)\). The second dimension of \(z\) must be at least \(\max (1, m)\). If jobz \(=\) ' \(V\) ', then if info \(=0\), the first \(m\) columns of \(z\) contain the orthonormal eigenvectors of the matrix \(A\) corresponding to the selected eigenvalues, with the \(i\)-th column of \(z\) holding the eigenvector associated with \(w(i)\). If an eigenvector fails to converge, then that column of \(z\) contains the latest approximation to the eigenvector, and the index of the eigenvector is returned in ifail. If \(j o b z={ }^{\prime} N^{\prime}\), then \(z\) is not referenced.
Note: you must ensure that at least max \((1, m)\) columns are supplied in the array \(z\); if range \(=' \mathrm{~V}\) ', the exact value of \(m\) is not known in advance and an upper bound must be used.
```

ifail INTEGER. Array, DIMENSION at least max(1, n).
If jobz='V', then if info = 0, the first m elements of ifail are zero; if
info>0, the ifail contains the indices the eigenvectors that failed to
converge.
If jobz='N', then ifail is not referenced.
info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, then i eigenvectors failed to converge; their indices are stored in
the array ifail.

```

\section*{Application Notes}

An approximate eigenvalue is accepted as converged when it is determined to lie in an interval [a,b] of width less than or equal to abstol \(+\varepsilon * \max (|a|,|\mathbf{b}|)\), where \(\varepsilon\) is the machine precision. If abstol is less than or equal to zero, then \(\varepsilon^{\star}\|T\|_{1}\) will be used in its place, where \(T\) is the tridiagonal matrix obtained by reducing \(A\) to tridiagonal form.
Eigenvalues will be computed most accurately when abstol is set to twice the underflow threshold \(2 *\) ? lamch('S'), not zero. If this routine returns with info \(>0\), indicating that some eigenvectors did not converge, try setting abstol to 2*?lamch('S').

\section*{?hpevx}

Computes selected eigenvalues and, optionally, eigenvectors of a Hermitian matrix in packed storage.

\section*{Syntax}
```

call chpevx (jobz, range, uplo, n, ap, vl, vu, il, iu, abstol,
m, w, z, ldz, work, rwork, iwork, ifail, info)
call zhpevx (jobz, range, uplo, n, ap, vl, vu, il, iu, abstol,
m, w, z, ldz, work, rwork, iwork, ifail, info)

```

\section*{Description}

This routine computes selected eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix \(A\) in packed storage. Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{jobz} & CHARACTER*1. Must be ' N ' or ' V '. \\
\hline & If job \(=1 \mathrm{~N}\) ', then only eigenvalues are computed. \\
\hline & If \(j 0 b=1 \mathrm{~V}\) ', then eigenvalues and eigenvectors are computed. \\
\hline \multirow[t]{4}{*}{range} & CHARACTER*1. Must be 'A' or 'V' or 'I'. \\
\hline & If range \(=\) ' A ', the routine computes all eigenvalues. \\
\hline & If range \(=\prime \mathrm{V}\) ', the routine computes eigenvalues \(\lambda_{i}\) in the half-open interval: \(\mathrm{v} l<\lambda_{i} \leq \mathrm{vu}\). \\
\hline & If range = ' I', the routine computes eigenvalues with indices il to iu. \\
\hline \multirow[t]{3}{*}{uplo} & CHARACTER*1. Must be 'U' or 'L'. \\
\hline & If uplo = 'U', ap stores the packed upper triangular part of \(A\). \\
\hline & If uplo = 'L', ap stores the packed lower triangular part of \(A\). \\
\hline n & INTEGER. The order of the matrix \(A(n \geq 0)\). \\
\hline \multirow[t]{6}{*}{ap, work} & COMPLEX for chpevx \\
\hline & DOUBLE COMPLEX for zhpevx \\
\hline & Arrays: \\
\hline & \(a p(*)\) contains the packed upper or lower triangle of the Hermitian matrix \(A\), as specified by uplo. The dimension of \(a p\) must be at least max (1 , \(n *(n+1) / 2)\). \\
\hline & \(\left.n^{\star}(n+1) / 2\right)\). \\
\hline & work (*) is a workspace array, DIMENSION at least max (1, 2 n) . \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multirow[t]{5}{*}{vl, vu} & REAL for chpevx \\
\hline & DOUBLE PRECISION for zhpevx \\
\hline & If range \(=^{\prime} V\) ', the lower and upper bounds of the interval to be searched for eigenvalues. \\
\hline & Constraint: vl< vu. \\
\hline & If range \(=\) ' \(A\) ' or 'I', vl and vu are not referenced. \\
\hline \multirow[t]{5}{*}{il, iu} & INTEGER. \\
\hline & If range \(=\) I I', the indices in ascending order of the smallest and largest eigenvalues to be returned. \\
\hline & Constraint: \(1 \leq i l \leq i u \leq n\), if \(n>0\); il=1 and \(i u=0\) \\
\hline & if \(n=0\). \\
\hline & If range \(=\) ' A ' or 'V', il and iu are not referenced. \\
\hline \multirow[t]{4}{*}{abstol} & REAL for chpevx \\
\hline & DOUBLE PRECISION for zhpevx \\
\hline & The absolute error tolerance to which each eigenvalue is required. See \\
\hline & Application notes for details on error tolerance. \\
\hline \multirow[t]{4}{*}{\(1 d z\)} & INTEGER. The leading dimension of the output array \(z\). \\
\hline & Constraints: \\
\hline & if jobz \(=\) ' N ', then \(1 d z \geq 1\); \\
\hline & if \(j 0 b z=' \mathrm{~V}\) ', then \(l d z \geq m a x(1, n)\). \\
\hline \multirow[t]{3}{*}{rwork} & REAL for chpevx \\
\hline & DOUBLE PRECISION for zhpevx \\
\hline & Workspace array, DIMENSION at least max (1, \(7 n\)) . \\
\hline \multirow[t]{2}{*}{iwork} & INTEGER. \\
\hline & Workspace array, DIMENSION at least max (1,5n). \\
\hline \multicolumn{2}{|l|}{Output Parameters} \\
\hline ap & On exit, this array is overwritten by the values generated during the reduction to tridiagonal form. The elements of the diagonal and the off-diagonal of the tridiagonal matrix overwrite the corresponding elements of \(A\). \\
\hline \multirow[t]{3}{*}{m} & INTEGER. The total number of eigenvalues found, \\
\hline & \(0 \leq m \leq n\). If range \(=1 A ', m=n\), and if range \(=1 I^{\prime}\), \\
\hline & \(m=i u-i l+1\). \\
\hline \multirow[t]{3}{*}{w} & REAL for chpevx \\
\hline & DOUBLE PRECISION for zhpevx \\
\hline & Array, DIMENSION at least \(\max (1, n)\). If info \(=0\), contains the selected eigenvalues of the matrix \(A\) in ascending order. \\
\hline
\end{tabular}
```

z
COMPLEX for chpevx DOUBLE COMPLEX for zhpevx
Array $z(1 d z, *)$. The second dimension of $z$ must be at least $\max (1, m)$. If jobz $=^{\prime} \mathrm{V}$ ', then if info $=0$, the first $m$ columns of $z$ contain the orthonormal eigenvectors of the matrix $A$ corresponding to the selected eigenvalues, with the $i$-th column of $z$ holding the eigenvector associated with $w(i)$. If an eigenvector fails to converge, then that column of $z$ contains the latest approximation to the eigenvector, and the index of the eigenvector is returned in ifail. If jobz='N', then $z$ is not referenced.
Note: you must ensure that at least max $(1, m)$ columns are supplied in the array $z$; if range $=' \mathrm{~V}$ ', the exact value of $m$ is not known in advance and an upper bound must be used.
ifail INTEGER. Array, DIMENSION at least max( $1, n$ ).
If jobz $=' \mathrm{~V}$ ', then if info $=0$, the first $m$ elements of ifail are zero; if info $>0$, the ifail contains the indices the eigenvectors that failed to converge.
If jobz='N', then ifail is not referenced.
info
INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$ th parameter had an illegal value.
If info $=i$, then $i$ eigenvectors failed to converge; their indices are stored in the array ifail.

```

\section*{Application Notes}

An approximate eigenvalue is accepted as converged when it is determined to lie in an interval [a,b] of width less than or equal to \(a b s t o l+\varepsilon * \max (|a|,|b|)\), where \(\varepsilon\) is the machine precision. If abstol is less than or equal to zero, then \(\varepsilon^{*} \| T /\left.\right|_{1}\) will be used in its place, where \(T\) is the tridiagonal matrix obtained by reducing \(A\) to tridiagonal form.
Eigenvalues will be computed most accurately when abstol is set to twice the underflow threshold \(2 *\) ? lamch('S'), not zero. If this routine returns with info \(>0\), indicating that some eigenvectors did not converge, try setting abstol to \(2 *\) ? lamch('S').

\section*{?sbev}

Computes all eigenvalues and, optionally, eigenvectors of a real symmetric band matrix.

\section*{Syntax}
```

call ssbev (jobz, uplo, n, kd, ab, ldab, w, z, ldz, work, info)

```
call dsbev (jobz, uplo, \(n, k d, a b, l d a b, w, z, l d z\), work, info)

\section*{Description}

This routine computes all eigenvalues and, optionally, eigenvectors of a real symmetric band matrix \(A\).

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{jobz} & CHARACTER*1. Must be 'N' or 'V'. \\
\hline & If \(j 0 b z=1 N^{\prime}\), then only eigenvalues are computed. \\
\hline & If \(j 0 b z=' \mathrm{~V}\) ', then eigenvalues and eigenvectors are computed. \\
\hline \multirow[t]{3}{*}{uplo} & CHARACTER*1. Must be 'U' or 'L'. \\
\hline & If uplo = ' \({ }^{\prime}\) ', ab stores the upper triangular part of \(A\). \\
\hline & If uplo = 'L', ab stores the lower triangular part of \(A\). \\
\hline n & INTEGER. The order of the matrix \(A(n \geq 0)\). \\
\hline kd & INTEGER. The number of super- or sub-diagonals in \(A\) (\(k d \geq 0\)). \\
\hline \multirow[t]{7}{*}{ab, work} & REAL for ssbev \\
\hline & DOUBLE PRECISION for dsbev. \\
\hline & Arrays: \\
\hline & \(a b\) (ldab,*) is an array containing either upper or lower triangular part of the symmetric matrix \(A\) (as specified by uplo) in band storage format. \\
\hline & The second dimension of ab must be at least max \((1, n)\). \\
\hline & work (*) is a workspace array. \\
\hline & The dimension of work must be at least max (1, 3n-2). \\
\hline ldab & INTEGER. The leading dimension of ab; must be at least \(k d+1\). \\
\hline
\end{tabular}
ldz
INTEGER. The leading dimension of the output array \(z\).

\section*{Constraints:}
if jobz \(=\) 'N', then \(l d z \geq 1\);
if \(j o b z=' V '\), then \(l d z \geq \max (1, n)\).

\section*{Output Parameters}
\begin{tabular}{|c|c|}
\hline W, z & \begin{tabular}{l}
REAL for ssbev \\
DOUBLE PRECISION for dsbev \\
Arrays: \\
\(w(*)\), DIMENSION at least max \((1, n)\). \\
If info \(=0\), contains the eigenvalues of the matrix \(A\) in ascending order. \\
\(z(I d z, *)\). The second dimension of \(z\) must be at least \(\max (1, n)\). \\
If jobz \(=^{\prime} \mathrm{V}^{\prime}\), then if info \(=0, z\) contains the orthonormal eigenvectors of the matrix \(A\), with the \(i\)-th column of \(z\) holding the eigenvector associated with \(w(i)\). \\
If jobz \(={ }^{\prime} N^{\prime}\), then \(z\) is not referenced.
\end{tabular} \\
\hline \(a b\) & On exit, this array is overwritten by the values generated during the reduction to tridiagonal form. If uplo=' U ', the first superdiagonal and the diagonal of the tridiagonal matrix \(T\) are returned in rows \(k d\) and \(k d+1\) of \(a b\), and if uplo= ' L', the diagonal and first subdiagonal of \(T\) are returned in the first two rows of \(a b\). \\
\hline info & \begin{tabular}{l}
INTEGER. \\
If info \(=0\), the execution is successful. \\
If info \(=-i\), the \(i\) th parameter had an illegal value. \\
If info \(=i\), then the algorithm failed to converge; \(i\) indicates the number of elements of an intermediate tridiagonal form which did not converge to zero.
\end{tabular} \\
\hline
\end{tabular}

\section*{?hbev}

Computes all eigenvalues and, optionally, eigenvectors of a Hermitian band matrix.

\section*{Syntax}
```

call chbev(jobz, uplo, n, kd, ab, ldab, w, z, ldz, work, rwork,info)

```
call zhbev(jobz, uplo, \(n, k d, a b, l d a b, w, z, l d z, w o r k, r w o r k, i n f o)\)

\section*{Description}

This routine computes all eigenvalues and, optionally, eigenvectors of a complex Hermitian band matrix \(A\).

\section*{Input Parameters}
```

jobz CHARACTER*1. Must be 'N' or 'V'.
If jobz='N', then only eigenvalues are computed.
If jobz='V', then eigenvalues and eigenvectors are computed.
uplo CHARACTER*1. Must be 'U' or 'L'.
If uplo='U',ab stores the upper triangular part of }A\mathrm{ .
If uplo='L',ab stores the lower triangular part of }A\mathrm{ .
INTEGER. The order of the matrix }A(n\geq0)
INTEGER. The number of super- or sub-diagonals in }
(kd \0).
ab, work COMPLEX for chbev
DOUBLE COMPLEX for zhbev.
Arrays:
ab (ldab,*) is an array containing either upper or lower triangular part of the
Hermitian matrix }A\mathrm{ (as specified by uplo) in band storage format.
The second dimension of ab must be at least max(1,n).
work (*) is a workspace array.
The dimension of work must be at least max(1,n).
ldab INTEGER. The leading dimension of ab; must be at least kd +1.

```
```

Idz INTEGER. The leading dimension of the output array z.
Constraints:
if jobz='N', then ldz\geq1;
if jobz='V', then ldz\geq max(1,n).
rwork REAL for chbev
DOUBLE PRECISION for zhbev
Workspace array, DIMENSION at least max(1,3n-2).

```

\section*{Output Parameters}

\section*{w REAL for chbev}

DOUBLE PRECISION for zhbev
Array, DIMENSION at least max \((1, n)\). If info \(=0\), contains the eigenvalues in ascending order.

COMPLEX for chbev
DOUBLE COMPLEX for zhbev.
Array \(z(l d z, *)\). The second dimension of \(z\) must be at least \(\max (1, n)\). If \(j o b z=' \mathrm{~V}\) ', then if info \(=0, z\) contains the orthonormal eigenvectors of the matrix \(A\), with the \(i\)-th column of \(z\) holding the eigenvector associated with \(w(i)\). If \(j o b z=' N '\), then \(z\) is not referenced.
\(a b\)
On exit, this array is overwritten by the values generated during the reduction to tridiagonal form. If uplo= ' U ', the first superdiagonal and the diagonal of the tridiagonal matrix \(T\) are returned in rows \(k d\) and \(k d+1\) of \(a b\), and if uplo \(=\) ' L ', the diagonal and first subdiagonal of \(T\) are returned in the first two rows of \(a b\).

INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\) th parameter had an illegal value.
If info \(=i\), then the algorithm failed to converge;
\(i\) indicates the number of elements of an intermediate tridiagonal form which did not converge to zero.

\section*{?sbevd}

Computes all eigenvalues and (optionally) all eigenvectors of a real symmetric band matrix using divide and conquer algorithm.

\section*{Syntax}
```

call ssbevd (job, uplo, n, kd, ab, ldab, w, z, ldz, work, lwork,
iwork, liwork, info)
call dsbevd (job, uplo, n, kd, ab, ldab, w, z, ldz, work, lwork,
iwork, liwork, info)

```

\section*{Description}

This routine computes all the eigenvalues, and optionally all the eigenvectors, of a real symmetric band matrix \(A\). In other words, it can compute the spectral factorization of \(A\) as:
\[
A=Z \Lambda Z^{T}
\]

Here \(\Lambda\) is a diagonal matrix whose diagonal elements are the eigenvalues \(\lambda_{i}\), and \(Z\) is the orthogonal matrix whose columns are the eigenvectors \(z_{i}\). Thus,
\[
A z_{i}=\lambda_{i} z_{i} \text { for } i=1,2, \ldots, n .
\]

If the eigenvectors are requested, then this routine uses a divide and conquer algorithm to compute eigenvalues and eigenvectors. However, if only eigenvalues are required, then it uses the Pal-Walker-Kahan variant of the \(Q L\) or \(Q R\) algorithm.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{job} & CHARACTER*1. Must be 'N' or 'V'. \\
\hline & If \(j 0 b=1 N\) ', then only eigenvalues are computed. \\
\hline & If job \(=1 \mathrm{~V}\) ', then eigenvalues and eigenvectors are computed. \\
\hline \multirow[t]{3}{*}{uplo} & CHARACTER*1. Must be 'U' or 'L'. \\
\hline & If uplo = ' \({ }^{\prime}\), ab stores the upper triangular part of \(A\). \\
\hline & If uplo = 'L', ab stores the lower triangular part of \(A\). \\
\hline n & INTEGER. The order of the matrix \(A(n \geq 0)\). \\
\hline kd & INTEGER. The number of super- or sub-diagonals in \(A\) \((k d \geq 0)\). \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multirow[t]{7}{*}{ab, work} & REAL for ssbevd \\
\hline & DOUBLE PRECISION for dsbevd. \\
\hline & Arrays: \\
\hline & \(a b(I d a b, *)\) is an array containing either upper or lower triangular part of the symmetric matrix \(A\) (as specified by uplo) in band storage format. \\
\hline & The second dimension of \(a b\) must be at least \(\max (1, n)\). \\
\hline & work (*) is a workspace array. \\
\hline & The dimension of work must be at least l work. \\
\hline Idab & INTEGER. The leading dimension of \(a b ;\) must be at least \(k d+1\). \\
\hline \multirow[t]{4}{*}{\(1 d z\)} & INTEGER. The leading dimension of the output array \(z\). \\
\hline & Constraints: \\
\hline & if job \(=\) 'N', then \(1 \mathrm{dz} \geq 1\); \\
\hline & if job \(=1 \mathrm{~V}\) ', then \(1 d z \geq \max (1, n)\). \\
\hline \multirow[t]{7}{*}{Iwork} & INTEGER. The dimension of the array work. \\
\hline & Constraints: \\
\hline & if \(n \leq 1\), then 1 work \(\geq 1\); \\
\hline & if job \(='^{\prime} N^{\prime}\) and \(n>1\), then 1 work \(\geq 2 n\); \\
\hline & if job \(=^{\prime} V^{\prime}\) and \(n>1\), then \\
\hline & 1 work \(\geq 3 n^{2}+(4+2 k) * n+1\), where \(k\) is the smallest integer which satisfies \(2^{k}\) \\
\hline & \[
\geq \text { n. }
\] \\
\hline \multirow[t]{2}{*}{iwork} & INTEGER. \\
\hline & Workspace array, DIMENSION at least liwork. \\
\hline \multirow[t]{5}{*}{Iiwork} & INTEGER. The dimension of the array iwork. \\
\hline & Constraints: \\
\hline & if \(n \leq 1\), then liwork \(\geq 1\); \\
\hline & if job \(='^{\prime}\) ' and \(n>1\), then liwork \(\geq 1\); \\
\hline & if job \(=' \mathrm{~V}\) ' and \(n>1\), then liwork \(\geq 5 n+2\). \\
\hline \multicolumn{2}{|l|}{Output Parameters} \\
\hline \multirow[t]{7}{*}{w, z} & REAL for ssbevd \\
\hline & DOUBLE PRECISION for dsbevd \\
\hline & Arrays: \\
\hline & \(w(*)\), DIMENSION at least max \((1, n)\). \\
\hline & If info \(=0\), contains the eigenvalues of the matrix \(A\) in ascending order. See also info. \\
\hline & \(z(l d z, *)\). The second dimension of \(z\) must be: \\
\hline & at least 1 if job \(=\) 'N'; \\
\hline
\end{tabular}
at least \(\max (1, n)\) if \(j 0 b=V^{\prime}\).
If job \(=\) ' V ', then this array is overwritten by the orthogonal matrix \(Z\) which contains the eigenvectors of \(A\). The \(i\) th column of \(Z\) contains the eigenvector which corresponds to the eigenvalue \(w(i)\). If \(j o b={ }^{\prime} N\) ', then \(z\) is not referenced.
\(a b \quad\) On exit, this array is overwritten by the values generated during the reduction to tridiagonal form.
work (1) On exit, if 1 work \(>0\), then work (1) returns the required minimal size of lwork.
iwork (1) On exit, if liwork \(>\) 0, then iwork (1) returns the required minimal size of liwork.
info INTEGER.
If info \(=0\), the execution is successful.
If info \(=i\), then the algorithm failed to converge; \(i\) indicates the number of elements of an intermediate tridiagonal form which did not converge to zero. If info \(=-i\), the \(i\) th parameter had an illegal value.

\section*{Application Notes}

The computed eigenvalues and eigenvectors are exact for a matrix \(T+E\) such that \(\|E\|_{2}=O(\varepsilon)\) \(\|T\|_{2}\), where \(\varepsilon\) is the machine precision.

The complex analogue of this routine is ? hbevd.
See also ?syevd for matrices held in full storage, and ?spevd for matrices held in packed storage.

\section*{?hbevd}

Computes all eigenvalues and (optionally) all eigenvectors of a complex Hermitian band matrix using divide and conquer algorithm.

\section*{Syntax}
```

call chbevd (job, uplo, n, kd, ab, ldab, w, z, ldz, work, lwork,
rwork, lrwork, iwork, liwork, info)
call zhbevd (job, uplo, n, kd, ab, ldab, w, z, ldz, work, lwork,
rwork, lrwork, iwork, liwork, info)

```

\section*{Description}

This routine computes all the eigenvalues, and optionally all the eigenvectors, of a complex Hermitian band matrix \(A\). In other words, it can compute the spectral factorization of \(A\) as: \(A=\) \(Z \Lambda Z^{H}\).
Here \(\Lambda\) is a real diagonal matrix whose diagonal elements are the eigenvalues \(\lambda_{i}\), and \(Z\) is the (complex) unitary matrix whose columns are the eigenvectors \(z_{i}\). Thus,
\[
A z_{i}=\lambda_{i} z_{i} \text { for } i=1,2, \ldots, n .
\]

If the eigenvectors are requested, then this routine uses a divide and conquer algorithm to compute eigenvalues and eigenvectors. However, if only eigenvalues are required, then it uses the Pal-Walker-Kahan variant of the \(Q L\) or \(Q R\) algorithm.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{job} & CHARACTER*1. Must be 'N' or 'V'. \\
\hline & If \(j 0 b={ }^{\prime} \mathrm{N}^{\prime}\), then only eigenvalues are computed. \\
\hline & If job \(=1 \mathrm{~V}\) ', then eigenvalues and eigenvectors are computed. \\
\hline \multirow[t]{3}{*}{uplo} & CHARACTER*1. Must be 'U' or 'L'. \\
\hline & If uplo = ' \({ }^{\prime}\) ', ab stores the upper triangular part of \(A\). \\
\hline & If uplo = 'L', ab stores the lower triangular part of \(A\). \\
\hline \(n\) & INTEGER. The order of the matrix \(A(\mathrm{n} \geq 0)\). \\
\hline \(k d\) & INTEGER. The number of super- or sub-diagonals in \(A\) (\(k d \geq 0\)). \\
\hline \multirow[t]{7}{*}{ab, work} & COMPLEx for chbevd \\
\hline & double Complex for zhbevd. \\
\hline & Arrays: \\
\hline & \(\mathrm{ab}(l \mathrm{dab}, *)\) is an array containing either upper or lower triangular part of the Hermitian matrix \(A\) (as specified by uplo) in band storage format. \\
\hline & The second dimension of \(a b\) must be at least max \((1, n)\). \\
\hline & work (*) is a workspace array. \\
\hline & The dimension of work must be at least lwork. \\
\hline 1 dab & INTEGER. The leading dimension of \(a b ;\) must be at least \(k d+1\). \\
\hline \multirow[t]{4}{*}{\(l d z\)} & INTEGER. The leading dimension of the output array \(z\). \\
\hline & Constraints: \\
\hline & if job= 'N', then \(1 d z \geq 1\); \\
\hline & if job \(=1 \mathrm{~V}\) ', then \(1 d z \geq \max (1, n)\). \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline lwork & \begin{tabular}{l}
INTEGER. The dimension of the array work. Constraints: \\
if \(n \leq 1\), then 1 work \(\geq 1\); \\
if job \(={ }^{\prime} N^{\prime}\) and \(n>1\), then lwork \(\geq n\); \\
if job \(=I^{\prime} \mathrm{V}\) ' and \(n>1\), then lwork \(\geq 2 n^{2}\)
\end{tabular} \\
\hline rwork & \begin{tabular}{l}
REAL for chbevd \\
DOUBLE PRECISION for zhbevd \\
Workspace array, DIMENSION at least lrwork.
\end{tabular} \\
\hline Irwork & \begin{tabular}{l}
INTEGER. The dimension of the array rwork. \\
Constraints: \\
if \(n \leq 1\), then 1 rwork \(\geq 1\); \\
if job \(={ }^{\prime} N\) ' and \(n>1\), then lrwork \(\geq n\); \\
if job \(=' \mathrm{~V}\) ' and \(n>1\), then \\
lrwork \(\geq 3 n^{2}+(4+2 k) * n+1\), where \(k\) is the smallest integer which satisfies
\[
2^{k} \geq n
\]
\end{tabular} \\
\hline iwork & \begin{tabular}{l}
INTEGER. \\
Workspace array, DIMENSION at least liwork.
\end{tabular} \\
\hline liwork & \begin{tabular}{l}
integer. The dimension of the array iwork. \\
Constraints: \\
if job='N' or \(n \leq 1\), then liwork \(\geq 1\); \\
if job='V' and \(n>1\), then liwork \(\geq 5 n+2\).
\end{tabular} \\
\hline
\end{tabular}

\section*{Output Parameters}

REAL for chbevd DOUBLE PRECISION for zhbevd Array, DIMENSION at least max \((1, n)\). If info \(=0\), contains the eigenvalues of the matrix \(A\) in ascending order. See also info.

COMPLEX for chbevd DOUBLE COMPLEX for zhbevd
Array, DIMENSION (ldz,*). The second dimension of \(z\) must be: at least 1 if job='N'; at least \(\max (1, n)\) if \(j o b=V^{\prime}\).
If job \(={ }^{\prime} \mathrm{V}\) ', then this array is overwritten by the unitary matrix \(Z\) which contains the eigenvectors of \(A\). The \(i\) th column of \(Z\) contains the eigenvector which corresponds to the eigenvalue \(w(i)\). If job \(={ }^{\prime} N\) ', then \(z\) is not referenced.
\begin{tabular}{|c|c|}
\hline \(a b\) & On exit, this array is overwritten by the values generated during the reduction to tridiagonal form. \\
\hline work(1) & On exit, if 1 work \(>0\), then the real part of work (1) returns the required minimal size of 1 work. \\
\hline rwork(1) & On exit, if 1 rwork \(>0\), then rwork (1) returns the required minimal size of lrwork. \\
\hline iwork(1) & On exit, if liwork \(>0\), then iwork (1) returns the required minimal size of liwork. \\
\hline info & \begin{tabular}{l}
INTEGER. \\
If info \(=0\), the execution is successful. \\
If info \(=i\), then the algorithm failed to converge; \(i\) indicates the number of elements of an intermediate tridiagonal form which did not converge to zero. If info \(=-i\), the \(i\) th parameter had an illegal value.
\end{tabular} \\
\hline
\end{tabular}

\section*{Application Notes}

The computed eigenvalues and eigenvectors are exact for a matrix \(T+E\) such that \(\|E\|_{2}=O(\varepsilon)\) \(\|T\|_{2}\), where \(\varepsilon\) is the machine precision.

The real analogue of this routine is ?sbevd.
See also ?heevd for matrices held in full storage, and ?hpevd for matrices held in packed storage.

\section*{?sbevx}

Computes selected eigenvalues and, optionally, eigenvectors of a real symmetric band matrix.

\section*{Syntax}
```

call ssbevx ( jobz, range, uplo, n, kd, ab, ldab, q, ldq, vl, vu, il,
iu, abstol, m, w, z, ldz, work, iwork, ifail, info)
call dsbevx ( jobz, range, uplo, n, kd, ab, ldab, q, ldq, vl, vu, il,
iu, abstol, m, w, z, ldz, work, iwork, ifail, info)

```

\section*{Description}

This routine computes selected eigenvalues and, optionally, eigenvectors of a real symmetric band matrix \(A\). Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{jobz} & CHARACTER*1. Must be 'N' or 'V'. \\
\hline & If \(j 0 b z=' \mathrm{~N}\) ', then only eigenvalues are computed. \\
\hline & If jobz \(=1 \mathrm{~V}\) ', then eigenvalues and eigenvectors are computed. \\
\hline \multirow[t]{4}{*}{range} & CHARACTER*1. Must be 'A' or 'V' or 'I'. \\
\hline & If range \(=\) ' A ', the routine computes all eigenvalues. \\
\hline & If range \(=\) ' V ', the routine computes eigenvalues \(\lambda_{i}\) in the half-open interval: \(\mathrm{v} 1<\lambda_{i} \leq \mathrm{vu}\). \\
\hline & If range ='I', the routine computes eigenvalues with indices il to \(i u\). CHARACTER*1. Must be 'U' or 'L'. \\
\hline \multirow{2}{*}{uplo} & If uplo = 'U', ab stores the upper triangular part of \(A\). \\
\hline & If uplo = 'L', ab stores the lower triangular part of \(A\). \\
\hline n & INTEGER. The order of the matrix \(A(n \geq 0)\). \\
\hline kd & INTEGER. The number of super- or sub-diagonals in \(A\) (\(k d \geq 0\)). \\
\hline \multirow[t]{3}{*}{ab, work} & REAL for ssbevx \\
\hline & double precision for dsbevx. \\
\hline & Arrays: \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Idab & INTEGER. The leading dimension of \(a b\); must be at least \(k d+1\). \\
\hline \multirow[t]{5}{*}{vl, vu} & REAL for ssbevx \\
\hline & DOUBLE PRECISION for dsbevx. \\
\hline & If range \(=1 \mathrm{~V}\) ', the lower and upper bounds of the interval to be searched for eigenvalues. \\
\hline & Constraint: vl< vu. \\
\hline & If range = 'A' or 'I', vl and vu are not referenced. \\
\hline \multirow[t]{5}{*}{il, iu} & INTEGER. \\
\hline & If range \(=\) ' I' , the indices in ascending order of the smallest and largest eigenvalues to be returned. \\
\hline & Constraint: \(1 \leq i l \leq i u \leq n\), if \(n>0\); \(i l=1\) and \(i u=0\) \\
\hline & if \(n=0\). \\
\hline & If range \(=\) 'A' or 'V', il and iu are not referenced. \\
\hline \multirow[t]{4}{*}{abstol} & REAL for chpevx \\
\hline & DOUBLE PRECISION for zhpevx \\
\hline & The absolute error tolerance to which each eigenvalue is required. See \\
\hline & Application notes for details on error tolerance. \\
\hline \multirow[t]{3}{*}{ldq, \(\quad 1 d z\)} & INTEGER. The leading dimensions of the output arrays \(q\) and \(z\), respectively. Constraints: \\
\hline & \(l d q \geq 1, I d z \geq 1 ;\) \\
\hline & If \(j o b z=' V '\), then \(l d q \geq \max (1, n)\) and \(1 d z \geq \max (1, n)\). \\
\hline \multirow[t]{2}{*}{iwork} & INTEGER. \\
\hline & Workspace array, DIMENSION at least max \((1,5 n)\). \\
\hline \multicolumn{2}{|l|}{Output Parameters} \\
\hline \multirow[t]{5}{*}{q} & REAL for ssbevx \\
\hline & DOUBLE PRECISION for dsbevx. \\
\hline & Array, DIMENSION (ldz,n). \\
\hline & If \(j o b z=V^{\prime} V^{\prime}\), the \(n\)-by- \(n\) orthogonal matrix is used in the reduction to tridiagonal form. \\
\hline & If jobz = ' \({ }^{\prime}\) ', the array \(q\) is not referenced. \\
\hline
\end{tabular}

\section*{Application Notes}

An approximate eigenvalue is accepted as converged when it is determined to lie in an interval [a,b] of width less than or equal to
abstol \(+\varepsilon * \max (|a|,|\mathbf{b}|)\), where \(\varepsilon\) is the machine precision. If abstol is less than or equal to zero, then \(\varepsilon^{*} \| T /\left.\right|_{1}\) will be used in its place, where \(T\) is the tridiagonal matrix obtained by reducing \(A\) to tridiagonal form.
Eigenvalues will be computed most accurately when abstol is set to twice the underflow threshold \(2 *\) ? 1 amch('S'), not zero. If this routine returns with info \(>0\), indicating that some eigenvectors did not converge, try setting abstol to 2*? 1 amch('S').

\section*{?hbevx}

Computes selected eigenvalues and, optionally, eigenvectors of a Hermitian band matrix.

\section*{Syntax}
```

call chbevx ( jobz, range, uplo, n, kd, ab, ldab, q, ldq, vl, vu, il,
iu, abstol, m, w, z, ldz, work, rwork, iwork, ifail, info)
call zhbevx ( jobz, range, uplo, n, kd, ab, ldab, q, ldq, vl, vu, il,
iu, abstol, m, w, z, ldz, work, rwork, iwork, ifail, info)

```

\section*{Description}

This routine computes selected eigenvalues and, optionally, eigenvectors of a complex Hermitian band matrix \(A\). Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{jobz} & CHARACTER*1. Must be 'N' or 'V'. \\
\hline & If job \(=1 \mathrm{~N}\) ', then only eigenvalues are computed. \\
\hline & If \(j 0 b=1 \mathrm{~V}\) ', then eigenvalues and eigenvectors are computed. \\
\hline \multirow[t]{4}{*}{range} & CHARACTER*1. Must be 'A' or 'V' or 'I'. \\
\hline & If range \(=\) ' A ', the routine computes all eigenvalues. \\
\hline & If range \(=\) ' V ', the routine computes eigenvalues \(\lambda_{i}\) in the half-open interval: \(\mathrm{vl}<\lambda_{i} \leq \mathrm{vu}\). \\
\hline & If range =' I', the routine computes eigenvalues with indices il to \(i u\). CHARACTER*1. Must be 'U' or 'L'. \\
\hline \multirow{2}{*}{uplo} & If uplo = ' l ', ab stores the upper triangular part of \(A\). \\
\hline & If uplo = 'L', ab stores the lower triangular part of \(A\). \\
\hline \(n\) & INTEGER. The order of the matrix \(A(n \geq 0)\). \\
\hline kd & INTEGER. The number of super- or sub-diagonals in \(A\) (\(k d \geq 0\)). \\
\hline \multirow[t]{3}{*}{ab, work} & COMPLEX for chbevx \\
\hline & DOUBLE COMPLEX for zhbevx. \\
\hline & Arrays: \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Idab & INTEGER. The leading dimension of \(a b\); must be at least \(k d+1\). \\
\hline \multirow[t]{5}{*}{vl, vu} & REAL for chbevx \\
\hline & DOUBLE PRECISION for zhbevx. \\
\hline & If range \(=1 \mathrm{~V}\) ', the lower and upper bounds of the interval to be searched for eigenvalues. \\
\hline & Constraint: vl<vu. \\
\hline & If range \(=\) 'A' or 'I', vl and vu are not referenced. \\
\hline \multirow[t]{5}{*}{il, iu} & INTEGER. \\
\hline & If range \(=\) ' I' , the indices in ascending order of the smallest and largest eigenvalues to be returned. \\
\hline & Constraint: \(1 \leq i l \leq i u \leq n\), if \(n>0\); il=1 and \(i u=0\) \\
\hline & if \(n=0\). \\
\hline & If range \(=\) ' A ' or 'V', il and iu are not referenced. \\
\hline \multirow[t]{4}{*}{abstol} & REAL for chbevx \\
\hline & DOUBLE PRECISION for zhbevx. \\
\hline & The absolute error tolerance to which each eigenvalue is required. See \\
\hline & Application notes for details on error tolerance. \\
\hline \multirow[t]{3}{*}{ldq, \(\quad 1 d z\)} & INTEGER. The leading dimensions of the output arrays \(q\) and \(z\), respectively. Constraints: \\
\hline & \(l d q \geq 1, I d z \geq 1 ;\) \\
\hline & If jobz \(='^{\prime} \mathrm{V}\) ', then \(l d q \geq \max (1, n)\) and \(l d z \geq \max (1, n)\). \\
\hline \multirow[t]{3}{*}{rwork} & REAL for chbevx \\
\hline & DOUBLE PRECISION for zhbevx \\
\hline & Workspace array, DIMENSION at least max (1, \(7 n\)) \\
\hline \multirow[t]{2}{*}{iwork} & INTEGER. \\
\hline & Workspace array, DIMENSION at least max (1,5n). \\
\hline \multicolumn{2}{|l|}{Output Parameters} \\
\hline \multirow[t]{3}{*}{q} & COMPLEX for chbevx \\
\hline & DOUBLE COMPLEX for zhbevx. \\
\hline & Array, DIMENSION (ldz,n). \\
\hline
\end{tabular}

If \(j o b z=' V '\), the \(n\)-by- \(n\) unitary matrix is used in the reduction to tridiagonal form.
If \(j o b z=N^{\prime}\), the array \(q\) is not referenced.
m
integer. The total number of eigenvalues found,
\(0 \leq m \leq n\). If range \(=\) ' \(A\) ', \(m=n\), and if range \(=' I\) ',
\(m=i u-i l+1\).
REAL for chbevx
DOUBLE PRECISION for zhbevx
Array, DIMENSION at least max \((1, n)\).
The first \(m\) elements contain the selected eigenvalues of the matrix \(A\) in ascending order.

COMPLEX for chbevx
DOUBLE COMPLEX for zhbevx.
Array \(z(l d z, *)\). The second dimension of \(z\) must be at least \(\max (1, m)\). If \(j o b z=' \mathrm{~V}\) ', then if info \(=0\), the first \(m\) columns of \(z\) contain the orthonormal eigenvectors of the matrix \(A\) corresponding to the selected eigenvalues, with the \(i\)-th column of \(z\) holding the eigenvector associated with \(w(i)\). If an eigenvector fails to converge, then that column of \(z\) contains the latest approximation to the eigenvector, and the index of the eigenvector is returned in ifail.
If jobz \(={ }^{\prime} N^{\prime}\), then \(z\) is not referenced.
Note: you must ensure that at least \(\max (1, m)\) columns are supplied in the array \(z\); if range \(=' \mathrm{~V}\) ', the exact value of \(m\) is not known in advance and an upper bound must be used.

On exit, this array is overwritten by the values generated during the reduction to tridiagonal form. If \(u p l o=' U\) ', the first superdiagonal and the diagonal of the tridiagonal matrix \(T\) are returned in rows \(k d\) and \(k d+1\) of \(a b\), and if uplo \(=\) ' L ', the diagonal and first subdiagonal of \(T\) are returned in the first two rows of \(a b\).

INTEGER.
Array, DIMENSION at least max \((1, n)\).
If jobz='V', then if info \(=0\), the first \(m\) elements of \(i f a i l\) are zero; if info \(>0\), the ifail contains the indices of the eigenvectors that failed to converge.
If \(j o b z=' N '\), then ifail is not referenced.
```

info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, then i eigenvectors failed to converge; their indices are stored in
the array ifail.

```

\section*{Application Notes}

An approximate eigenvalue is accepted as converged when it is determined to lie in an interval [a,b] of width less than or equal to
abstol \(+\varepsilon * \max (|a|,|\mathbf{b}|)\), where \(\varepsilon\) is the machine precision. If abstol is less than or equal to zero, then \(\varepsilon^{*}\|T\|_{1}\) will be used in its place, where \(T\) is the tridiagonal matrix obtained by reducing \(A\) to tridiagonal form.
Eigenvalues will be computed most accurately when abstol is set to twice the underflow threshold \(2 *\) ? lamch('S'), not zero. If this routine returns with info \(>0\), indicating that some eigenvectors did not converge, try setting abstol to 2*?lamch('S').

\section*{?stev}

Computes all eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix.

\section*{Syntax}
```

call sstev (jobz, n, d, e, z, ldz, work, info)

```


\section*{Description}

This routine computes all eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix \(A\).

\section*{Input Parameters}
jobz CHARACTER*1. Must be 'N' or 'V'.
If \(j o b z=' \mathrm{~N} '\), then only eigenvalues are computed.
If jobz \(=1 \mathrm{~V}\) ', then eigenvalues and eigenvectors are computed.
n
INTEGER. The order of the matrix \(A(n \geq 0)\).
d, e, work
REAL for sstev
DOUBLE PRECISION for dstev.
Arrays:
\(d(*)\) contains the \(n\) diagonal elements of the tridiagonal matrix \(A\).
The dimension of \(d\) must be at least \(\max (1, n)\).
\(e(*)\) contains the \(n-1\) subdiagonal elements of the tridiagonal matrix \(A\).
The dimension of \(e\) must be at least \(\max (1, n)\). The \(n\)th element of this array is used as workspace.
work (*) is a workspace array.
The dimension of work must be at least \(\max (1,2 n-2)\).
If jobz \(={ }^{\prime} \mathrm{N}^{\prime}\), work is not referenced.
\(l d z \quad\) INTEGER. The leading dimension of the output array \(z ; l d z \geq 1\). If \(j o b z=' \mathrm{~V}\) ' then \(l d z \geq \max (1, n)\).

\section*{Output Parameters}
d
z
\(e\)
info

On exit, if info \(=0\), contains the eigenvalues of the matrix \(A\) in ascending order.

REAL for sstev
DOUBLE PRECISION for dstev
Array, DIMENSION (ldz, *).
The second dimension of \(z\) must be at least \(\max (1, n)\).
If jobz='V', then if info \(=0, z\) contains the orthonormal eigenvectors of the matrix \(A\), with the \(i\)-th column of \(z\) holding the eigenvector associated with the eigenvalue returned in \(d(i)\).
If job \(=\) ' N', then \(z\) is not referenced.
On exit, this array is overwritten with intermediate results.
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\) th parameter had an illegal value.
If info \(=i\), then the algorithm failed to converge;
\(i\) elements of e did not converge to zero.

\section*{?stevd}

Computes all eigenvalues and (optionally) all eigenvectors of a real symmetric tridiagonal matrix using divide and conquer algorithm.

\section*{Syntax}
```

call sstevd (job, n, d, e, z, ldz, work, lwork, iwork, liwork, info)

```


\section*{Description}

This routine computes all the eigenvalues, and optionally all the eigenvectors, of a real symmetric tridiagonal matrix \(T\). In other words, the routine can compute the spectral factorization of \(T\) as: \(T=\) \(Z \Lambda Z^{T}\).
Here \(\Lambda\) is a diagonal matrix whose diagonal elements are the eigenvalues \(\lambda_{i}\), and \(Z\) is the orthogonal matrix whose columns are the eigenvectors \(z_{i}\). Thus,
\[
T z_{i}=\lambda_{i} z_{i} \text { for } i=1,2, \ldots, n .
\]

If the eigenvectors are requested, then this routine uses a divide and conquer algorithm to compute eigenvalues and eigenvectors. However, if only eigenvalues are required, then it uses the Pal-Walker-Kahan variant of the \(Q L\) or \(Q R\) algorithm.

There is no complex analogue of this routine.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline job & CHARACTER*1. Must be 'N' or 'v'. \\
\hline & If \(j 0 b=1 \mathrm{~N}\), then only eigenvalues are computed. \\
\hline & If \(j 0 b=1 \mathrm{~V}\) ', then eigenvalues and eigenvectors are computed. \\
\hline \(n\) & INTEGER. The order of the matrix \(T(n \geq 0)\). \\
\hline d, e, work & REAL for sstevd \\
\hline & DOUBLE PRECISION for dstevd. \\
\hline & Arrays: \\
\hline & \(d(*)\) contains the \(n\) diagonal elements of the tridiagonal matrix \(T\). \\
\hline & \\
\hline
\end{tabular}

Idz INTEGER. The leading dimension of the output array z. Constraints:
\(l d z \geq 1\) if job='N';
\(l d z \geq \max (1, n)\) if \(j \circ b=V^{\prime} V^{\prime}\).
lwork INTEGER. The dimension of the array work. Constraints:
if job \(='^{\prime}\) ' or \(n \leq 1\), then lwork \(\geq 1\); if job \(={ }^{\prime} \mathrm{V}\) ' and \(n>1\), then
l work \(\geq 2 n^{2}+(3+2 k) * n+1\), where \(k\) is the smallest integer which satisfies \(2^{k}\)
\(\geq n\).
iwork INTEGER.
Workspace array, DIMENSION at least liwork.
liwork INTEGER. The dimension of the array iwork. Constraints:
if job \(={ }^{\prime} \mathrm{N}^{\prime}\) or \(n \leq 1\), then liwork \(\geq 1\);
if job \(=' \mathrm{~V}\) ' and \(n>1\), then liwork \(\geq 5 n+2\).

\section*{Output Parameters}
e

On exit, if info \(=0\), contains the eigenvalues of the matrix \(T\) in ascending order.
See also info.
REAL for sstevd
DOUBLE PRECISION for dstevd
Array, DIMEnSIon (ldz, *).
The second dimension of \(z\) must be:
at least 1 if job='N';
at least \(\max (1, n)\) if \(j 0 b=' \mathrm{~V}\) '.
If job \(=1 \mathrm{~V}\) ', then this array is overwritten by the orthogonal matrix \(Z\) which contains the eigenvectors of \(T\). If \(j o b={ }^{\prime} N^{\prime}\), then \(z\) is not referenced.
work (1) On exit, if 1 work \(>0\), then work (1) returns the required minimal size of lwork.
iwork (1) On exit, if liwork \(>0\), then iwork (1) returns the required minimal size of liwork.
info
INTEGER.
If \(\operatorname{info}=0\), the execution is successful.
If info \(=i\), then the algorithm failed to converge; \(i\) indicates the number of elements of an intermediate tridiagonal form which did not converge to zero. If info \(=-i\), the \(i\) th parameter had an illegal value.

\section*{Application Notes}

The computed eigenvalues and eigenvectors are exact for a matrix \(T+E\) such that \(\|E\|_{2}=O(\varepsilon)\) \(\|T\|_{2}\), where \(\varepsilon\) is the machine precision.

If \(\lambda_{i}\) is an exact eigenvalue, and \(\mu_{i}\) is the corresponding computed value, then
\[
\left|\mu_{i}-\lambda_{i}\right| \leq c(n) \varepsilon\|T\|_{2}
\]
where \(c(n)\) is a modestly increasing function of \(n\).
If \(z_{i}\) is the corresponding exact eigenvector, and \(w_{i}\) is the corresponding computed vector, then the angle \(\theta\left(z_{i}, w_{i}\right)\) between them is bounded as follows:
\[
\theta\left(z_{i}, w_{i}\right) \leq c(n) \varepsilon\|T\|_{2} / \min _{i \neq j}\left|\lambda_{i}-\lambda_{j}\right| .
\]

Thus the accuracy of a computed eigenvector depends on the gap between its eigenvalue and all the other eigenvalues.

\section*{?stevx}

Computes selected eigenvalues and eigenvectors of a real symmetric tridiagonal matrix.

\section*{Syntax}
```

call sstevx ( jobz, range, n, d, e, vl, vu, il, iu, abstol, m, w, z,
ldz, work, iwork, ifail, info)
call dstevx ( jobz, range, n, d, e, vl, vu, il, iu, abstol, m, w, z,
ldz, work, iwork, ifail, info)

```

\section*{Description}

This routine computes selected eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix \(A\). Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline jobz & CHARACTER*1. Must be ' N ' or ' V '. \\
\hline & If \(j 0 b=1 \mathrm{~N}\) ', then only eigenvalues are computed. \\
\hline & If \(j 0 b=1 \mathrm{~V}\) ', then eigenvalues and eigenvectors are computed. \\
\hline range & CHARACTER* 1 . Must be 'A' or 'V' or 'I'. \\
\hline & If range \(=\) ' A ', the routine computes all eigenvalues. \\
\hline & If range \(=' \mathrm{~V}\) ', the routine computes eigenvalues \(\lambda_{i}\) in the half-open interval: \(\mathrm{v} 1<\lambda_{i} \leq \mathrm{vu}\). \\
\hline & If range \(=\) 'I', the routine computes eigenvalues with indices il to iu. \\
\hline n & INTEGER. The order of the matrix \(A(n \geq 0)\). \\
\hline d, e, work & REAL for sstevx \\
\hline & DOUBLE PRECISION for dstevx. \\
\hline & Arrays: \\
\hline & \(d\) (*) contains the \(n\) diagonal elements of the tridiagonal matrix \(A\). \\
\hline & The dimension of \(d\) must be at least max \((1, n)\). \\
\hline & \(e(*)\) contains the \(n-1\) subdiagonal elements of \(A\). \\
\hline & The dimension of \(e\) must be at least \(\max (1, n)\). The \(n\)th element of this array is used as workspace. \\
\hline
\end{tabular}
```

work(*) is a workspace array.
The dimension of work must be at least max (1,5n).

```
abstol
iwork
```

REAL for sstevx
DOUBLE PRECISION for dstevx.
If range $=$ ' $V$ ', the lower and upper bounds of the interval to be searched for eigenvalues.
Constraint: vl<vu.
If range $=$ ' $A$ ' or 'I', vl and vu are not referenced.
INTEGER.
If range $=$ ' I ' , the indices in ascending order of the smallest and largest eigenvalues to be returned.
Constraint: $1 \leq i l \leq i u \leq n$, if $n>0$; il=1 and $i u=0$
if $n=0$.
If range $=$ ' A ' or ' V ', il and $i u$ are not referenced.
REAL for sstevx
DOUBLE PRECISION for dstevx.
The absolute error tolerance to which each eigenvalue is required. See
Application notes for details on error tolerance.
INTEGER. The leading dimensions of the output array $z ; I d z \geq 1$. If jobz $=' V '$, then $l d z \geq \max (1, n)$.
INTEGER.
Workspace array, DIMENSION at least max $(1,5 n)$.

```

\section*{Output Parameters}

INTEGER. The total number of eigenvalues found, \(0 \leq m \leq n\). If range \(=' A ', m=n\), and if range \(=1\) I', \(m=i u-i l+1\).
w, z
REAL for sstevx
DOUBLE PRECISION for dstevx.
Arrays:
\(w(*)\), DIMENSION at least \(\max (1, n)\).
The first \(m\) elements of \(w\) contain the selected eigenvalues of the matrix \(A\) in ascending order.
\(z(l d z, *)\). The second dimension of \(z\) must be at least \(\max (1, m)\).
If \(j o b z=' V '\), then if info \(=0\), the first \(m\) columns of \(z\) contain the orthonormal eigenvectors of the matrix \(A\) corresponding to the selected eigenvalues, with the \(i\)-th column of \(z\) holding the eigenvector associated with \(w(i)\). If an eigenvector fails to converge, then that column of \(z\) contains the latest approximation to the eigenvector, and the index of the eigenvector is returned in ifail. If \(j o b z=N^{\prime}\), then \(z\) is not referenced.
Note: you must ensure that at least max \((1, m)\) columns are supplied in the array \(z\); if range \(=' \mathrm{~V}\) ', the exact value of \(m\) is not known in advance and an upper bound must be used.
\begin{tabular}{|c|c|}
\hline \(d, e\) & On exit, these arrays may be multiplied by a constant factor chosen to avoid overflow or underflow in computing the eigenvalues. \\
\hline \multirow[t]{4}{*}{ifail} & INTEGER. \\
\hline & Array, DIMENSION at least max (1, \(n\)) . \\
\hline & If jobz \(=^{\prime} V^{\prime}\), then if info \(=0\), the first \(m\) elements of ifail are zero; if info \(>0\), the ifail contains the indices of the eigenvectors that failed to converge. \\
\hline & If jobz ='N', then ifail is not referenced. \\
\hline \multirow[t]{4}{*}{info} & INTEGER. \\
\hline & If info \(=0\), the execution is successful. \\
\hline & If info \(=-i\), the \(i\) th parameter had an illegal value. \\
\hline & If info \(=i\), then \(i\) eigenvectors failed to converge; their indices are stored in the array ifail. \\
\hline
\end{tabular}

\section*{Application Notes}

An approximate eigenvalue is accepted as converged when it is determined to lie in an interval [a,b] of width less than or equal to abstol \(+\varepsilon * \max (|a|,|\mathbf{b}|)\), where \(\varepsilon\) is the machine precision. If abstol is less than or equal to zero, then \(\varepsilon^{*}\|A\|_{1}\) will be used in its place.
Eigenvalues will be computed most accurately when abstol is set to twice the underflow threshold \(2 *\) ? 1 amch('S'), not zero. If this routine returns with info \(>0\), indicating that some eigenvectors did not converge, try setting abstol to \(2 *\) ? lamch('S').

\section*{?stevr}

Computes selected eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix using the Relatively Robust Representations.

\section*{Syntax}
```

call sstevr ( jobz, range, n, d, e, vl, vu, il, iu, abstol, m, w, z,
ldz, isuppz, work, lwork, iwork, liwork, info)
call dstevr ( jobz, range, n, d, e, vl, vu, il, iu, abstol, m, w, z,
ldz, isuppz, work, lwork, iwork, liwork, info)

```

\section*{Description}

This routine computes selected eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix \(T\). Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues.

Whenever possible, ?stevr calls sstegr/dstegr to compute the eigenspectrum using Relatively Robust Representations. ?stegr computes eigenvalues by the \(d q d s\) algorithm, while orthogonal eigenvectors are computed from various "good" \(L D L^{T}\) representations (also known as Relatively Robust Representations). Gram-Schmidt orthogonalization is avoided as far as possible. More specifically, the various steps of the algorithm are as follows. For the i-th unreduced block of T,
(a) Compute \(T-\sigma_{\mathrm{i}}=L_{\mathrm{i}} D_{\mathrm{i}} L_{\mathrm{i}}^{T}\), such that \(L_{\mathrm{i}} D_{\mathrm{i}} L_{\mathrm{i}}^{T}\) is a relatively robust representation;
(b) Compute the eigenvalues, \(\lambda_{\mathrm{j}}\), of \(L_{\mathrm{i}} D_{\mathrm{i}} L_{\mathrm{i}}^{T}\) to high relative accuracy by the \(d q d s\) algorithm;
(c) If there is a cluster of close eigenvalues, "choose" \(\sigma_{\mathrm{i}}\) close to the cluster, and go to step (a);
(d) Given the approximate eigenvalue \(\lambda_{\mathrm{j}}\) of \(L_{\mathrm{i}} D_{\mathrm{i}} L_{\mathrm{i}}^{T}\), compute the corresponding eigenvector by forming a rank-revealing twisted factorization.

The desired accuracy of the output can be specified by the input parameter abstol.
The routine ?stevr calls sstegr/dstegr when the full spectrum is requested on machines which conform to the IEEE-754 floating point standard. ?stevr calls sstebz/dstebz and sstein/dstein on non-IEEE machines and when partial spectrum requests are made.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline jobz & \begin{tabular}{l}
CHARACTER*1. Must be ' N ' or 'V'. \\
If \(j o b z={ }^{\prime} \mathrm{N}^{\prime}\), then only eigenvalues are computed. \\
If \(j o b z=\prime \mathrm{V}\) ', then eigenvalues and eigenvectors are computed.
\end{tabular} \\
\hline range & \begin{tabular}{l}
CHARACTER*1. Must be 'A' or 'V' or 'I'. \\
If range \(=\) ' A ', the routine computes all eigenvalues. \\
If range \(=' \mathrm{~V}\) ', the routine computes eigenvalues \(\lambda_{i}\) in the half-open interval: \(\mathrm{v} 1<\lambda_{i} \leq \mathrm{vu}\). \\
If range ='I', the routine computes eigenvalues with indices il to \(i u\).
\end{tabular} \\
\hline & For range \(=\) 'V'or 'I' and iu-il \(<\mathrm{n}-1\), sstebz/dstebz and sstein/dstein are called. \\
\hline \(n\) & INTEGER. The order of the matrix \(T(n \geq 0)\). \\
\hline \multirow[t]{6}{*}{d, e, work} & REAL for sstevr \\
\hline & DOUBLE PRECISION for dstevr. \\
\hline & Arrays: \\
\hline & \(d(*)\) contains the \(n\) diagonal elements of the tridiagonal matrix \(T\). The dimension of \(d\) must be at least \(\max (1, n)\). \\
\hline & \begin{tabular}{l}
\(e(*)\) contains the \(n-1\) subdiagonal elements of \(A\). \\
The dimension of \(e\) must be at least \(\max (1, n)\). The \(n\)th element of this array is used as workspace.
\end{tabular} \\
\hline & work (1 work) is a workspace array. \\
\hline \multirow[t]{5}{*}{v1, vu} & ReAL for sstevr \\
\hline & DOUBLE PRECISION for dstevr. \\
\hline & If range \(=1 \mathrm{~V}\) ', the lower and upper bounds of the interval to be searched for eigenvalues. \\
\hline & Constraint: vl< vu. \\
\hline & If range \(=\) ' A ' or ' I ', vl and vu are not referenced. \\
\hline \multirow[t]{5}{*}{il, iu} & Integer. \\
\hline & If range \(=\) ' I', the indices in ascending order of the smallest and largest eigenvalues to be returned. \\
\hline & Constraint: \(1 \leq i l \leq i u \leq n\), if \(n>0\); \(i l=1\) and \(i u=0\) if \(n=0\) \\
\hline & \\
\hline & If range \(=\) ' A ' or ' V ', il and iu are not referenced. \\
\hline
\end{tabular}

Intel® Math Kernel Library Reference Manual
\begin{tabular}{|c|c|}
\hline abstol & REAL for ssyevr \\
\hline & \begin{tabular}{l}
DOUBLE PRECISION for dsyevr. \\
The absolute error tolerance to which each eigenvalue/eigenvector is required. If \(j o b z=' V\) ', the eigenvalues and eigenvectors output have residual norms bounded by abstol, and the dot products between different eigenvectors are bounded by abstol. If abstol \(<n \varepsilon\|T\|_{1}\), then \(n \varepsilon\|T\|_{1}\) will be used in its place, where \(\varepsilon\) is the machine precision. The eigenvalues are computed to an accuracy of \(\varepsilon\|T\|_{1}\) irrespective of abstol. If high relative accuracy is important, set abstol to ?lamch('S').
\end{tabular} \\
\hline \(1 d z\) & INTEGER. The leading dimension of the output array \(z\). Constraints:
\[
\begin{aligned}
& l d z \geq 1 \text { if } j o b z=' N^{\prime} ; \\
& l d z \geq \max (1, n) \text { if } j o b z='^{\prime} .
\end{aligned}
\] \\
\hline lwork & INTEGER. The dimension of the array work. Constraint: 1 work \(\geq \max (1,20 n)\). \\
\hline iwork & \begin{tabular}{l}
INTEGER. \\
Workspace array, DIMENSION (liwork).
\end{tabular} \\
\hline liwork & INTEGER. The dimension of the array iwork, lwork \(\geq \max (1,10 n)\). \\
\hline
\end{tabular}

\section*{Output Parameters}

INTEGER. The total number of eigenvalues found, \(0 \leq m \leq n\). If range \(=\) ' \(A\) ', \(m=n\), and if range \(=\) 'I', \(m=i u-i l+1\).

W, \(Z\)
REAL for sstevr
DOUBLE PRECISION for dstevr. Arrays:
w(*), DIMENSION at least max \((1, n)\).
The first \(m\) elements of \(w\) contain the selected eigenvalues of the matrix \(T\) in ascending order.
\(z(1 d z, *)\). The second dimension of \(z\) must be at least \(\max (1, m)\). If jobz \(=' \mathrm{~V}\) ', then if info \(=0\), the first \(m\) columns of \(z\) contain the orthonormal eigenvectors of the matrix \(T\) corresponding to the selected eigenvalues, with the \(i\)-th column of \(z\) holding the eigenvector associated with \(w(i)\).
If \(j o b z=N^{\prime}{ }^{\prime}\), then \(z\) is not referenced.

Note: you must ensure that at least \(\max (1, m)\) columns are supplied in the array \(z\); if range \(=^{\prime} V\) ', the exact value of \(m\) is not known in advance and an upper bound must be used.
\begin{tabular}{|c|c|}
\hline \(d, e\) & On exit, these arrays may be multiplied by a constant factor chosen to avoid overflow or underflow in computing the eigenvalues. \\
\hline \multirow[t]{4}{*}{isuppz} & INTEGER. \\
\hline & Array, DIMENSION at least \(2 * \max (1, m)\). \\
\hline & The support of the eigenvectors in \(z\), i.e., the indices indicating the nonzero elements in \(z\). The \(i\)-th eigenvector is nonzero only in elements isuppz(\(2 i-1\)) through isuppz(2i). \\
\hline & Implemented only for range \(=\) 'A' or 'I' and \\
\hline work(1) & On exit, if info \(=0\), then work (1) returns the required minimal size of lwork. \\
\hline iwork(1) & On exit, if info \(=0\), then iwork (1) returns the required minimal size of liwork. \\
\hline \multirow[t]{4}{*}{info} & INTEGER. \\
\hline & If info \(=0\), the execution is successful. \\
\hline & If info \(=-i\), the \(i\) th parameter had an illegal value. \\
\hline & If info \(=i\), an internal error has occurred. \\
\hline
\end{tabular}

\section*{Application Notes}

Normal execution of the routine ?stegr may create NaNs and infinities and hence may abort due to a floating point exception in environments which do not handle NaNs and infinities in the IEEE standard default manner.

\section*{Nonsymmetric Eigenproblems}

This section describes LAPACK driver routines used for solving nonsymmetric eigenproblems. See also computational routines that can be called to solve these problems.
Table 4-12 lists routines described in more detail below.

\section*{Table 4-11 Driver Routines for Solving Nonsymmetric Eigenproblems}

Routine Name Operation performed
? gees \(\quad\) Computes the eigenvalues and Schur factorization of a general matrix, and orders the factorization so that selected eigenvalues are at the top left of the Schur form.
?geesx Computes the eigenvalues and Schur factorization of a general matrix, orders the factorization and computes reciprocal condition numbers.
?geev Computes the eigenvalues and left and right eigenvectors of a general matrix.
?geevx Computes the eigenvalues and left and right eigenvectors of a general matrix, with preliminary matrix balancing, and computes reciprocal condition numbers for the eigenvalues and right eigenvectors.

\section*{?gees}

Computes the eigenvalues and Schur factorization of a general matrix, and orders the factorization so that selected eigenvalues are at the top left of the Schur form.
```

    Syntax
    call sgees ( jobvs, sort, select, n, a, lda, sdim, wr, wi, vs, ldvs,
work, lwork, bwork, info)
call dgees ( jobvs, sort, select, n, a, lda, sdim, wr, wi, vs, ldvs,
work, lwork, bwork, info)
call cgees ( jobvs, sort, select, n, a, lda, sdim, w, vs, ldvs,
work, lwork, rwork, bwork, info)
call zgees ( jobvs, sort, select, n, a, lda, sdim, w, vs, ldvs,
work, lwork, rwork, bwork, info)

```

\section*{Description}

This routine computes for an \(n\)-by-n real/complex nonsymmetric matrix \(A\), the eigenvalues, the real Schur form \(T\), and, optionally, the matrix of Schur vectors \(Z\). This gives the Schur factorization \(A=Z T Z^{H}\).

Optionally, it also orders the eigenvalues on the diagonal of the real-Schur/Schur form so that selected eigenvalues are at the top left. The leading columns of \(Z\) then form an orthonormal basis for the invariant subspace corresponding to the selected eigenvalues.

A real matrix is in real-Schur form if it is upper quasi-triangular with 1-by-1 and 2-by-2 blocks. 2-by-2 blocks will be standardized in the form
\[
\left(\begin{array}{ll}
a & b \\
c & a
\end{array}\right)
\]
where \(b * c<0\). The eigenvalues of such a block are \(a \pm \sqrt{b c}\).
A complex matrix is in Schur form if it is upper triangular.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline jobvs & \begin{tabular}{l}
CHARACTER*1. Must be 'N' or 'V'. \\
If jobvs \(=1 \mathrm{~N}\) ', then Schur vectors are not computed. \\
If jobvs \(=' \mathrm{~V}\) ', then Schur vectors are computed.
\end{tabular} \\
\hline sort & \begin{tabular}{l}
CHARACTER*1. Must be ' N ' or ' S '. \\
Specifies whether or not to order the eigenvalues on the diagonal of the Schur form.
\end{tabular} \\
\hline & \begin{tabular}{l}
If sort \(=1 \mathrm{~N}\) ', then eigenvalues are not ordered. \\
If sort \(=\) ' S ', eigenvalues are ordered (see select).
\end{tabular} \\
\hline select & \begin{tabular}{l}
LOGICAL FUNCTION of two REAL arguments for real flavors. \\
LOGICAL FUNCTION of one COMPLEX argument for complex flavors.
\end{tabular} \\
\hline & \begin{tabular}{l}
select must be declared EXTERNAL in the calling subroutine. \\
If sort \(=\) ' S , select is used to select eigenvalues to sort to the top left of the Schur form. \\
If sort \(={ }^{\prime} \mathrm{N}\) ', select is not referenced. \\
For real flavors: \\
An eigenvalue \(w r(j)+\sqrt{-1} *_{w i}(j)\) is selected if select \((w r(j)\), \(w i(j))\) is true; that is, if either one of a complex conjugate pair of eigenvalues is selected, then
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline & \begin{tabular}{l}
both complex eigenvalues are selected. Note that a selected complex eigenvalue may no longer satisfy select \((w r(j)\), \(w i(j))=\). TRUE . after ordering, since ordering may change the value of complex eigenvalues (especially if the eigenvalue is ill-conditioned); in this case info may be set to \(n+2\) (see info below). \\
For complex flavors: \\
An eigenvalue \(w(\mathrm{j})\) is selected if select \((w(\mathrm{j}))\) is true.
\end{tabular} \\
\hline \(n\) & INTEGER. The order of the matrix \(A(n \geq 0)\). \\
\hline \multirow[t]{8}{*}{a, work} & REAL for sgees \\
\hline & DOUBLE PRECISION for dgees \\
\hline & COMPLEX for cgees \\
\hline & DOUBLE COMPLEX for zgees. \\
\hline & Arrays: \\
\hline & \(a(l d a, *)\) is an array containing the \(n\)-by-n matrix \(A\). \\
\hline & The second dimension of a must be at least max \((1, n)\). \\
\hline & work (lwork) is a workspace array. \\
\hline \multirow[t]{2}{*}{Ida} & INTEGER. The first dimension of the array a. \\
\hline & Must be at least \(\max (1, n)\). \\
\hline \multirow[t]{3}{*}{1 lvs} & INTEGER. The leading dimension of the output array vs. Constraints: \\
\hline & \(l d v s \geq 1 ;\) \\
\hline & \(l d v s \geq \max (1, n)\) if jobvs \(=1 \mathrm{~V}\) '. \\
\hline \multirow[t]{4}{*}{Iwork} & INTEGER. The dimension of the array work. \\
\hline & Constraint: \\
\hline & 1 work \(\geq \max (1,3 n)\) for real flavors; \\
\hline & lwork \(\geq \max (1,2 n)\) for complex flavors. \\
\hline \multirow[t]{3}{*}{rwork} & REAL for cgees \\
\hline & DOUBLE PRECISION for zgees \\
\hline & Workspace array, DIMENSION at least max \((1, n)\). Used in complex flavors only. \\
\hline \multirow[t]{3}{*}{bwork} & LOGICAL. \\
\hline & Workspace array, DIMENSION at least \(\max (1, n)\). Not referenced if sort \\
\hline & \\
\hline
\end{tabular}

On exit, this array is overwritten by the real-Schur/Schur form \(T\).
```

sdim INTEGER.
If sort ='N', sdim= 0.
If sort='S', sdim is equal to the number of eigenvalues (after sorting) for
which select is true.
Note that for real flavors complex conjugate pairs for which select is true for
either eigenvalue count as 2.
wr, wi REAL for sgees
DOUBLE PRECISION for dgees
Arrays, DIMENSION at least max (1,n) each.
Contain the real and imaginary parts, respectively, of the computed
eigenvalues, in the same order that they appear on the diagonal of the output
real-Schur form T. Complex conjugate pairs of eigenvalues appear
consecutively with the eigenvalue having positive imaginary part first.
COMPLEX for cgees
DOUBLE COMPLEX for zgees.
Array, DIMENSION at least max(1,n).
Contains the computed eigenvalues. The eigenvalues are stored in the same
order as they appear on the diagonal of the output Schur form T.
REAL for sgees
DOUBLE PRECISION for dgees
COMPLEX for cgees
DOUBLE COMPLEX for zgees.
Array vs(ldvs,*); the second dimension of vs must be at least max(1,n).
If jobvs='V',vs contains the orthogonal/unitary matrix Z of Schur vectors.
If jobvs='N',vs is not referenced.
work (1) On exit, if info = 0, then work (1) returns the required minimal size of
lwork.
info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info =i, and
i\leqn :

```
the \(Q R\) algorithm failed to compute all the eigenvalues; elements 1:ilo-1 and \(i+1: n\) of \(w r\) and \(w i\) (for real flavors) or \(w\) (for complex flavors) contain those eigenvalues which have converged; if jobvs='V', vs contains the matrix which reduces \(A\) to its partially converged Schur form;
\(i=n+1\) :
the eigenvalues could not be reordered because some eigenvalues were too close to separate (the problem is very ill-conditioned);
\(i=n+2\) :
after reordering, roundoff changed values of some complex eigenvalues so that leading eigenvalues in the Schur form no longer satisfy select \(=\) .TRUE.. This could also be caused by underflow due to scaling.

\section*{Application Notes}

If you are in doubt how much workspace to supply for the array work, use a generous value of lwork for the first run. On exit, examine work (1) and use this value for subsequent runs.

\section*{?geesx}

Computes the eigenvalues and Schur factorization of a general matrix, orders the factorization and computes reciprocal condition numbers.
```

    Syntax
    call sgeesx(jobvs, sort, select, sense, n, a, lda, sdim, wr, wi, vs,
ldvs, rconde, rcondv, work, lwork, iwork, liwork, bwork, info)
call dgeesx(jobvs, sort, select, sense, n, a, lda, sdim, wr, wi, vs,
ldvs, rconde, rcondv, work, lwork, iwork, liwork, bwork, info)
call cgeesx(jobvs, sort, select, sense, n, a, lda, sdim, w, vs,
ldvs, rconde, rcondv, work, lwork, rwork, bwork, info)
call zgeesx(jobvs, sort, select, sense, n, a, lda, sdim, w, vs,
ldvs, rconde, rcondv, work, lwork, rwork, bwork, info)

```

\section*{Description}

This routine computes for an \(n\)-by- n real/complex nonsymmetric matrix \(A\), the eigenvalues, the real-Schur/Schur form \(T\), and, optionally, the matrix of Schur vectors \(Z\). This gives the Schur factorization \(A=Z T Z^{H}\).

Optionally, it also orders the eigenvalues on the diagonal of the real-Schur/Schur form so that selected eigenvalues are at the top left; computes a reciprocal condition number for the average of the selected eigenvalues (rconde); and computes a reciprocal condition number for the right invariant subspace corresponding to the selected eigenvalues (rcondv). The leading columns of \(Z\) form an orthonormal basis for this invariant subspace.

For further explanation of the reciprocal condition numbers rconde and rcondv, see [LUG], Section 4.10 (where these quantities are called \(s\) and sep respectively).

A real matrix is in real-Schur form if it is upper quasi-triangular with 1-by-1 and 2-by-2 blocks. 2-by-2 blocks will be standardized in the form
\[
\left(\begin{array}{ll}
a & b \\
c & a
\end{array}\right)
\]
where \(b^{*} c<0\). The eigenvalues of such a block are \(a \pm \sqrt{b c}\).
A complex matrix is in Schur form if it is upper triangular.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline jobvs & \begin{tabular}{l}
CHARACTER*1. Must be 'N' or 'V'. \\
If jobvs \(=\) ' N ', then Schur vectors are not computed. \\
If jobvs \(=' \mathrm{~V}\) ', then Schur vectors are computed.
\end{tabular} \\
\hline sort & \begin{tabular}{l}
CHARACTER*1. Must be ' N ' or ' S '. \\
Specifies whether or not to order the eigenvalues on the diagonal of the Schur form.
\end{tabular} \\
\hline & If sort \(=1 \mathrm{~N}\) ', then eigenvalues are not ordered. If sort \(=1 \mathrm{~S}\) ', eigenvalues are ordered (see select). \\
\hline select & LOGICAL FUNCTION of two REAL arguments for real flavors. LOGICAL FUNCTION of one COMPLEX argument for complex flavors. \\
\hline & \begin{tabular}{l}
select must be declared EXTERNAL in the calling subroutine. \\
If sort \(=\) ' S ', select is used to select eigenvalues to sort to the top left of the Schur form. \\
If sort \(=\) 'N', select is not referenced. \\
For real flavors: \\
An eigenvalue \(w r(\mathrm{j})+\sqrt{-1} *_{w i}(\mathrm{j})\) is selected if select \((\operatorname{wr}(\mathrm{j})\), \(w i(\mathrm{j}))\) is true; that is, if either one of a complex conjugate pair of eigenvalues is selected, then both complex eigenvalues are selected. Note that a selected complex eigenvalue may no longer satisfy select \((w r(j)\), \(w i(j))=\). TRUE. after ordering, since ordering may change the value of complex eigenvalues (especially if the eigenvalue is ill-conditioned); in this case info may be set to n+2 (see info below). \\
For complex flavors: \\
An eigenvalue \(w(\mathrm{j})\) is selected if select \((w(\mathrm{j})\)) is true.
\end{tabular} \\
\hline sense & \begin{tabular}{l}
CHARACTER*1. Must be 'N', 'E', 'V', or 'B'. \\
Determines which reciprocal condition number are computed.
\end{tabular} \\
\hline & \begin{tabular}{l}
If sense \(=\) ' N ', none are computed; \\
If sense \(=1 E\) ', computed for average of selected eigenvalues only; \\
If sense \(=\mathrm{V}\) ', computed for selected right invariant subspace only; \\
If sense \(=1{ }^{\prime}\) ', computed for both.
\end{tabular} \\
\hline & If sense is 'E', 'V', or 'B', then sort must equal 'S'. \\
\hline \(n\) & INTEGER. The order of the matrix \(A(n \geq 0)\). \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multirow[t]{8}{*}{a, work} & REAL for sgeesx \\
\hline & DOUBLE PRECISION for dgeesx \\
\hline & COMPLEX for cgeesx \\
\hline & DOUBLE COMPLEX for zgeesx. \\
\hline & Arrays: \\
\hline & a (lda,*) is an array containing the \(n\)-by-n matrix \(A\). \\
\hline & The second dimension of a must be at least max \((1, n)\). \\
\hline & work (lwork) is a workspace array. \\
\hline Ida & INTEGER. The first dimension of the array \(a\). \\
\hline & Must be at least max \((1, n)\). \\
\hline \multirow[t]{3}{*}{Idvs} & INTEGER. The leading dimension of the output array vs. Constraints: \\
\hline & \(l d v s \geq 1 ;\) \\
\hline & \(l d v s \geq \max (1, n)\) if jobvs = 'V'. \\
\hline \multirow[t]{10}{*}{I work} & INTEGER. The dimension of the array work. \\
\hline & Constraint: \\
\hline & 1 work \(\geq \max (1,3 n)\) for real flavors; \\
\hline & 1 work \(\geq \max (1,2 n)\) for complex flavors. \\
\hline & Also, if sense \(=\) 'E', 'V', or 'B', then \\
\hline & lwork \(\geq n+2\) *sdim*(\(n\)-sdim) for real flavors; \\
\hline & 1 work \(\geq 2 *\) sdim*(n-sdim) for complex flavors; where sdim is the number of selected eigenvalues computed by this routine. \\
\hline & Note that \\
\hline & \(2 * \operatorname{sdim} *(n-s d i m) \leq n * n / 2\). \\
\hline & For good performance, I work must generally be larger. \\
\hline \multirow[t]{2}{*}{iwork} & INTEGER. \\
\hline & Workspace array, DIMENSION (liwork). Used in real flavors only. Not referenced if sense \(=\) ' N ' or 'E'. \\
\hline \multirow[t]{3}{*}{liwork} & INTEGER. The dimension of the array iwork. Used in real flavors only. Constraint: \\
\hline & liwork \(\geq 1\); \\
\hline & if sense \(=\) 'V' or 'B', liwork \(\geq\) sdim*(n-sdim). \\
\hline \multirow[t]{3}{*}{rwork} & REAL for cgees x \\
\hline & DOUBLE PRECISION for zgeesx \\
\hline & Workspace array, DIMENSION at least max \((1, n)\). Used in complex flavors only. \\
\hline
\end{tabular}
```

bwork LOGICAL
Workspace array, DIMENSION at least max(1,n). Not referenced if sort
='N'.

```

\section*{Output Parameters}

REAL for sgeesx
DOUBLE PRECISION for dgeesx
COMPLEX for cgeesx
DOUBLE COMPLEX for zgeesx.
Array vs (Idvs,*) ; the second dimension of vs must be at least max \((1, n)\).
If jobvs \(=\) 'V', vs contains the orthogonal/unitary matrix \(Z\) of Schur vectors. If jobvs='N', vs is not referenced.
rconde, rcondv REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
If sense \(=\) ' \(E\) ' or ' \(\mathrm{B}^{\prime}\), rconde contains the reciprocal condition number for the average of the selected eigenvalues. If sense \(={ }^{\prime} \mathrm{N}^{\prime}\) or \({ }^{\prime} \mathrm{V}^{\prime}\), rconde is not referenced.
work (1) On exit, if info \(=0\), then work (1) returns the required minimal size of lwork.
info INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\) th parameter had an illegal value.
If info \(=i\), and
\(i \leq n\) :
the \(Q R\) algorithm failed to compute all the eigenvalues; elements 1:ilo-1 and \(i+1: n\) of \(w r\) and \(w i\) (for real flavors) or \(w\) (for complex flavors) contain those eigenvalues which have converged; if jobvs \(={ }^{\prime} \mathrm{V}\) ', vs contains the transformation which reduces \(A\) to its partially converged Schur form;
\(i=n+1\) :
the eigenvalues could not be reordered because some eigenvalues were too close to separate (the problem is very ill-conditioned);
\(i=n+2\) :
after reordering, roundoff changed values of some complex eigenvalues so that leading eigenvalues in the Schur form no longer satisfy select \(=\) . TRUE .. This could also be caused by underflow due to scaling.

\section*{Application Notes}

If you are in doubt how much workspace to supply for the array work, use a generous value of lwork for the first run. On exit, examine work (1) and use this value for subsequent runs.

\section*{?geev}

Computes the eigenvalues and left and right eigenvectors of a general matrix.

\section*{Syntax}
```

call sgeev ( jobvl, jobvr, n, a, lda, wr, wi, vl, ldvl, vr, ldvr,
work, lwork, info)
call dgeev ( jobvl, jobvr, n, a, lda, wr, wi, vl, ldvl, vr, ldvr,
work, lwork, info)
call cgeev ( jobvl, jobvr, n, a, lda, w, vl, ldvl, vr, ldvr, work,
lwork, rwork, info)
call zgeev ( jobvl, jobvr, n, a, lda, w, vl, ldvl, vr, ldvr, work,
lwork, rwork, info)

```

\section*{Description}

This routine computes for an \(n\)-by- \(n\) real/complex nonsymmetric matrix \(A\), the eigenvalues and, optionally, the left and/or right eigenvectors. The right eigenvector \(v(\mathrm{j})\) of \(A\) satisfies
\[
A^{*} v(\mathrm{j})=\lambda(\mathrm{j}) * v(\mathrm{j})
\]
where \(\lambda(\mathrm{j})\) is its eigenvalue.
The left eigenvector \(u(\mathrm{j})\) of \(A\) satisfies
\[
u(\mathrm{j})^{H_{*}} A=\lambda(\mathrm{j}) \star u(\mathrm{j})^{H}
\]
where \(u(\mathrm{j})^{H}\) denotes the conjugate transpose of \(u(\mathrm{j})\).
The computed eigenvectors are normalized to have Euclidean norm equal to 1 and largest component real.

\section*{Input Parameters}
jobvl CHARACTER*1. Must be 'N' or 'V'.
If jobvl \(=' \mathrm{~N}\) ', then left eigenvectors of \(A\) are not computed. If jobvl \(=' \mathrm{~V}\) ', then left eigenvectors of \(A\) are computed.
jobvr CHARACTER*1. Must be 'N' or 'V'.
If jobvr \(=1 \mathrm{~N}\) ', then right eigenvectors of \(A\) are not computed. If jobvr \(=1 \mathrm{~V}\) ', then right eigenvectors of \(A\) are computed.
\(n\)
a, work
lda
ldvl, ldvr
rwork

INTEGER. The order of the matrix \(A(n \geq 0)\).
REAL for sgeev
DOUBLE PRECISION for dgeev
COMPLEX for cgeev
DOUBLE COMPLEX for \(z g e e v\).
Arrays:
\(a(l d a, *)\) is an array containing the \(n\)-by- \(n\) matrix \(A\).
The second dimension of a must be at least \(\max (1, n)\).
work (lwork) is a workspace array.
INTEGER. The first dimension of the array \(a\). Must be at least \(\max (1, n)\).

INTEGER. The leading dimensions of the output arrays \(v l\) and \(v r\), respectively. Constraints:
\(l d v l \geq 1 ; ~ l d v r \geq 1\).
If jobvl='V', \(\quad \operatorname{ldv} I \geq \max (1, n)\);
If jobvr='v', ldvr \(\geq \max (1, n)\).
lwork INTEGER. The dimension of the array work. Constraint:
lwork \(\geq \max (1,3 n)\), and if jobvl ='V' or jobvr ='V', lwork \(\geq \max (1,4 n)\) (for real flavors); 1 work \(\geq \max (1,2 n) \quad\) (for complex flavors).
For good performance, l work must generally be larger.
REAL for cgeev
DOUBLE PRECISION for zgeev
Workspace array, DIMENSION at least max \((1,2 n)\). Used in complex flavors only.

\section*{Output Parameters}

\section*{a}
wr, wi

On exit, this array is overwritten by intermediate results.
REAL for sgeev
DOUBLE PRECISION for dgeev
Arrays, DIMENSION at least max \((1, n)\) each.
Contain the real and imaginary parts, respectively, of the computed eigenvalues. Complex conjugate pairs of eigenvalues appear consecutively with the eigenvalue having positive imaginary part first.
```

w
vl, vr
work(1)
info
COMPLEX for cgeev
DOUBLE COMPLEX for zgeev.
Array, DIMENSION at least max(1,n).
Contains the computed eigenvalues.
REAL for sgeev
DOUBLE PRECISION for dgeev
COMPLEX for cgeev
DOUBLE COMPLEX for zgeev.
Arrays:
vl (ldvl,*); the second dimension of vl must be at least max(l,n).
If jobvl='V', the left eigenvectors }u(\textrm{j})\mathrm{ are stored one after another in the
columns of vl, in the same order as their eigenvalues. If jobvl = 'N',vl is
not referenced.
For real flavors:
If the j-th eigenvalue is real, then }u(\textrm{j})=vl(:,\textrm{j}), the j-th column of vl. If the j-th
and (j+1)-st eigenvalues form a complex conjugate pair, then }u(\textrm{j})=vl(:,\textrm{j})
i*vl(:,j+1) and }u(\textrm{j}+1)=vl(:,\textrm{j})-i*vl(:,\textrm{j}+1),\mathrm{ where }i=\sqrt{}{-1}
For complex flavors:
$u(\mathrm{j})=\mathrm{vl}(:, \mathrm{j})$, the j -th column of v l .
$v r(l d v r, *)$; the second dimension of $v r$ must be at least $\max (1, n)$.
If jobvr $=$ ' V ', the right eigenvectors $v(\mathrm{j})$ are stored one after another in the columns of $v r$, in the same order as their eigenvalues. If jobvr $={ }^{\prime} N$ ', $v r$ is not referenced.
For real flavors:
If the j -th eigenvalue is real, then $v(\mathrm{j})=v r(:, \mathrm{j})$, the j -th column of vr . If the j -th and $(\mathrm{j}+1)$-st eigenvalues form a complex conjugate pair, then $v(\mathrm{j})=\operatorname{vr}(:, \mathrm{j})+$ $i^{*} \operatorname{vr}(:, \mathrm{j}+1)$ and $v(\mathrm{j}+1)=\operatorname{vr}(:, \mathrm{j})-i^{*} \operatorname{vr}(:, \mathrm{j}+1)$, where $i=\sqrt{-1}$.
For complex flavors:
$v(\mathrm{j})=v r(:, \mathrm{j})$, the j -th column of $v r$.

```
work (1)
info

On exit, if \(\operatorname{info}=0\), then work (1) returns the required minimal size of lwork.

INTEGER.
If \(\operatorname{info}=0\), the execution is successful.
If info \(=-i\), the \(i\) th parameter had an illegal value.
If info \(=i\), the \(Q R\) algorithm failed to compute all the eigenvalues, and no
eigenvectors have been computed; elements \(i+1: n\) of \(w r\) and \(w i\) (for real flavors) or \(w\) (for complex flavors) contain those eigenvalues which have converged.

\section*{Application Notes}

If you are in doubt how much workspace to supply for the array work, use a generous value of lwork for the first run. On exit, examine work (1) and use this value for subsequent runs.

\section*{?geevx}

Computes the eigenvalues and left and right eigenvectors of a general matrix, with preliminary matrix balancing, and computes reciprocal condition numbers for the eigenvalues and right eigenvectors.

\section*{Syntax}
```

call sgeevx ( balanc, jobvl, jobvr, sense, n, a, lda, wr, wi, vl,
ldvl, vr, ldvr, ilo, ihi, scale, abnrm, rconde,
rcondv, work, lwork, iwork, info)
call dgeevx ( balanc, jobvl, jobvr, sense, n, a, lda, wr, wi, vl,
ldvl, vr, ldvr, ilo, ihi, scale, abnrm, rconde,
rcondv, work, lwork, iwork, info)
call cgeevx ( balanc, jobvl, jobvr, sense, n, a, lda, w, vl, ldvl,
vr, ldvr, ilo, ihi, scale, abnrm, rconde, rcondv,
work, lwork, rwork, info)
call zgeevx ( balanc, jobvl, jobvr, sense, n, a, lda, w, vl, ldvl,
vr, ldvr, ilo, ihi, scale, abnrm, rconde, rcondv,
work, lwork, rwork, info)

```

\section*{Description}

This routine computes for an \(n-b y-n\) real/complex nonsymmetric matrix \(A\), the eigenvalues and, optionally, the left and/or right eigenvectors.

Optionally also, it computes a balancing transformation to improve the conditioning of the eigenvalues and eigenvectors (ilo, ihi, scale, and abnrm), reciprocal condition numbers for the eigenvalues (rconde), and reciprocal condition numbers for the right eigenvectors (rcondv).

The right eigenvector \(v(\mathrm{j})\) of \(A\) satisfies
\[
A^{*} v(\mathrm{j})=\lambda(\mathrm{j}) * v(\mathrm{j})
\]
where \(\lambda(\mathrm{j})\) is its eigenvalue.
The left eigenvector \(u(\mathrm{j})\) of \(A\) satisfies
\[
u(\mathrm{j})^{H}{ }_{A}=\lambda(\mathrm{j}) \star u(\mathrm{j})^{H}
\]
where \(u(\mathrm{j})^{H}\) denotes the conjugate transpose of \(u(\mathrm{j})\).
The computed eigenvectors are normalized to have Euclidean norm equal to 1 and largest component real.

Balancing a matrix means permuting the rows and columns to make it more nearly upper triangular, and applying a diagonal similarity transformation \(D A D^{-1}\), where \(D\) is a diagonal matrix, to make its rows and columns closer in norm and the condition numbers of its eigenvalues and eigenvectors smaller. The computed reciprocal condition numbers correspond to the balanced matrix.
Permuting rows and columns will not change the condition numbers in exact arithmetic) but diagonal scaling will. For further explanation of balancing, see \([\underline{L U G}]\), Section 4.10.

\section*{Input Parameters}
```

balanc CHARACTER*1.Must be 'N','P','S',or 'B'.
Indicates how the input matrix should be diagonally scaled and/or permuted to
improve the conditioning of its eigenvalues.
If balanc='N', do not diagonally scale or permute;
If balanc='P', perform permutations to make the matrix more nearly upper
triangular. Do not diagonally scale;
If balanc='S', Diagonally scale the matrix, i.e. replace A by DA D',
D is a diagonal matrix chosen to make the rows and columns of A more equal
in norm. Do not permute;
If balanc='B', both diagonally scale and permute }A\mathrm{ .
Computed reciprocal condition numbers will be for the matrix after balancing
and/or permuting. Permuting does not change condition numbers (in exact
arithmetic), but balancing does.
jobvl CHARACTER*1. Must be 'N' or 'V'.
If jobvl='N', left eigenvectors of }A\mathrm{ are not computed;
If jobvl='V', left eigenvectors of A are computed.
If sense='E'or 'B', then jobvl must be 'V'.
jobvr CHARACTER*1. Must be 'N' or 'V'.
If jobvr='N', right eigenvectors of }A\mathrm{ are not computed;
If jobvr='V', right eigenvectors of }A\mathrm{ are computed.
If sense='E'or 'B', then jobvr must be 'V'.
sense CHARACTER*1.Must be 'N','E', 'V', or 'B'.
Determines which reciprocal condition number are computed.

```
\begin{tabular}{|c|c|}
\hline \multirow[t]{5}{*}{} & If sense \(=\) ' N ', none are computed; \\
\hline & If sense \(=\) ' \(\mathrm{E}^{\prime}\), computed for eigenvalues only; \\
\hline & If sense \(=1 \mathrm{~V}\) ', computed for right eigenvectors only; \\
\hline & If sense \(=1 \mathrm{~B}^{\prime}\), computed for eigenvalues and right eigenvectors. \\
\hline & If sense is ' E ' or ' B ', both left and right eigenvectors must also be computed (jobvl = 'V'and jobvr='v'). \\
\hline \(n\) & INTEGER. The order of the matrix \(A(n \geq 0)\). \\
\hline \multirow[t]{8}{*}{a, work} & REAL for sgeevx \\
\hline & DOUBLE PRECISION for dgeevx \\
\hline & COMPLEX for cgeevx \\
\hline & DOUBLE COMPLEX for zgeevx. \\
\hline & Arrays: \\
\hline & \(a(l d a, *)\) is an array containing the \(n\)-by-n matrix \(A\). \\
\hline & The second dimension of a must be at least max (\(1, n\)). \\
\hline & work (lwork) is a workspace array. \\
\hline \multirow[t]{2}{*}{\(1 d \mathrm{a}\)} & Integer. The first dimension of the array a. \\
\hline & Must be at least \(\max (1, n)\). \\
\hline \multirow[t]{5}{*}{ldvl, ldve} & INTEGER. The leading dimensions of the output arrays \(v \mathrm{l}\) and \(v r\), respectively. \\
\hline & Constraints: \\
\hline & \(\operatorname{ldv} \mathrm{l} \geq 1 ; ~ \operatorname{ldvr} \geq 1\). \\
\hline & If jobvl = 'V', \(\quad 1 \mathrm{dvl} \geq \mathrm{max}(1, \mathrm{n})\); \\
\hline & If jobvr \(=\prime^{\prime} \mathrm{V}^{\prime}, \quad 1 d v r \geq \max (1, n)\). \\
\hline \multirow[t]{10}{*}{lwork} & integer. The dimension of the array work. \\
\hline & For real flavors: \\
\hline & If sense \(=\) 'N' or 'E', 1 work \(\geq \max (1,2 \mathrm{n})\), and \\
\hline & if jobvl \(=1 \mathrm{~V}\) ' or jobvr \(=1 \mathrm{~V}\) ', 1 work \(\geq 3 \mathrm{n}\); \\
\hline & If sense \(=\) 'V' or ' \(\mathrm{B}^{\prime}\) ', 1 work \(\geq n(n+6)\). \\
\hline & For good performance, 1 work must generally be larger. \\
\hline & For complex flavors: \\
\hline & If sense \(=\) ' \({ }^{\text {' }}\) 'or ' E ', 1 work \(\geq \max (1,2 \mathrm{n})\); \\
\hline & If sense \(=\) 'V'or 'B', 1 work \(\geq n^{2}+2 n\). \\
\hline & For good performance, I work must generally be larger. \\
\hline \multirow[t]{3}{*}{rwork} & REAL for cgeevx \\
\hline & DOUBLE PRECISION for zgeevx \\
\hline & Workspace array, DIMENSION at least \(\max (1,2 n)\). Used in complex flavors only. \\
\hline
\end{tabular}
```

iwork INTEGER.
Workspace array, DIMENSION at least max(1,2n-2). Used in real flavors
only. Not referenced if sense = 'N' or 'E'.

```

\section*{Output Parameters}
a
```

wr, wi

```
w
vl, vr

On exit, this array is overwritten. If jobvl='V' or jobvr='V', it contains the real-Schur/Schur form of the balanced version of the input matrix \(A\).

REAL for sgeevx
DOUBLE PRECISION for dgeevx
Arrays, DIMENSION at least max \((1, n)\) each.
Contain the real and imaginary parts, respectively, of the computed eigenvalues. Complex conjugate pairs of eigenvalues appear consecutively with the eigenvalue having positive imaginary part first.

COMPLEX for cgeevx
DOUBLE COMPLEX for zgeevx.
Array, DIMENSION at least max \((1, n)\).
Contains the computed eigenvalues.
REAL for sgeevx
DOUBLE PRECISION for dgeevx
COMPLEX for cgeevx
DOUBLE COMPLEX for zgeevx.
Arrays:
\(v l(l d v l, *)\); the second dimension of \(v l\) must be at least \(\max (1, n)\).
If jobvl \(=' \mathrm{~V}\) ', the left eigenvectors \(u(\mathrm{j})\) are stored one after another in the columns of \(v l\), in the same order as their eigenvalues. If jobvl \(=N^{\prime}, v l\) is not referenced.
For real flavors:
If the j -th eigenvalue is real, then \(u(\mathrm{j})=v l(:, \mathrm{j})\), the j -th column of \(v l\). If the j -th and \((\mathfrak{j}+1)\)-st eigenvalues form a complex conjugate pair, then \(u(\mathrm{j})=v l(:, \mathfrak{j})+\) \(i^{\star} \vee l(:, \mathrm{j}+1)\) and \(u(\mathrm{j}+1)=\mathrm{vl}(:, \mathrm{j})-i^{\star} \vee l(:, \mathrm{j}+1)\), where \(i=\sqrt{-1}\).

For complex flavors:
\(u(\mathrm{j})=v l(:, \mathrm{j})\), the j -th column of vl .
\(v r(I d v r, *)\); the second dimension of \(v r\) must be at least \(\max (1, n)\).
If jobvr \(={ }^{\prime} \mathrm{V}\) ', the right eigenvectors \(v(\mathrm{j})\) are stored one after another in the columns of \(v r\), in the same order as their eigenvalues. If jobvr \(={ }^{\prime} N^{\prime}\), \(v r\) is not referenced.
For real flavors:
```

    The balanced }A(\textrm{i},\textrm{j})=0\mathrm{ if }\textrm{i}>\textrm{j}\mathrm{ and j = 1,..., ilo-1 or
    i= ihi+1,..., n
    If balanc='N'or'S',ilo=1 and ihi=n.
    scale REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
Array, DIMENSION at least max (1,n).

$$
\begin{aligned}
\text { scale }(\mathrm{j}) & =P(\mathrm{j}), \quad \text { for } \mathrm{j}=1, \ldots, \mathrm{ilo}-1 \\
= & D(\mathrm{j}), \quad \text { for } \mathrm{j}=i l o, \ldots, \text { ihi } \\
= & P(\mathrm{j}) \quad \text { for } \mathrm{j}=i h i+1, \ldots, n .
\end{aligned}
$$

```
ilo, ihi
 ilo and ihi are integer values determined when \(A\) was balanced.
 Details of the permutations and scaling factors applied when balancing \(A\). If
 \(P(\mathrm{j})\) is the index of the row and column interchanged with row and column j ,
 and \(D(\mathrm{j})\) is the scaling factor applied to row and column j , then

The order in which the interchanges are made is \(n\) to \(i h i+1\), then 1 to \(i l o-1\).
REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
The one-norm of the balanced matrix (the maximum of the sum of absolute values of elements of any column).
rconde, rcondv REAL for single precision flavors DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max \((1, n)\) each.
rconde(j) is the reciprocal condition number of the j -th eigenvalue.
rcondv \((\mathrm{j})\) is the reciprocal condition number of the j -th right eigenvector.
work(1)
info
On exit, if info \(=0\), then work (1) returns the required minimal size of lwork.

INTEGER
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\) th parameter had an illegal value.

If \(\operatorname{info}=i\), the \(Q R\) algorithm failed to compute all the eigenvalues, and no eigenvectors or condition numbers have been computed; elements 1:ilo-1 and \(i+1: n\) of \(w r\) and \(w i\) (for real flavors) or \(w\) (for complex flavors) contain eigenvalues which have converged.

\section*{Application Notes}

If you are in doubt how much workspace to supply for the array work, use a generous value of lwork for the first run. On exit, examine work (1) and use this value for subsequent runs.

\section*{Singular Value Decomposition}

This section describes LAPACK driver routines used for solving singular value problems. See also computational routines that can be called to solve these problems.
Table 4-12 lists routines described in more detail below.
Table 4-12 Driver Routines for Singular Value Decomposition
Routine Name Operation performed
?gesvd Computes the singular value decomposition of a general rectangular matrix.
?gesdd Computes the singular value decomposition of a general rectangular matrix using a divide and conquer method.
?ggsvd Computes the generalized singular value decomposition of a pair of general rectangular matrices.

\section*{?gesvd}

Computes the singular value decomposition of a general rectangular matrix.

\section*{Syntax}
```

call sgesvd ( jobu, jobvt, m, n, a, lda, s, u, ldu, vt, ldvt,
work, lwork, info)
call dgesvd ( jobu, jobvt, m, n, a, lda, s, u, ldu, vt, ldvt,
work, lwork, info)
call cgesvd ( jobu, jobvt, m, n, a, lda, s, u, ldu, vt, ldvt,
work, lwork, rwork, info)
call zgesvd ( jobu, jobvt, m, n, a, lda, s, u, ldu, vt, ldvt,
work, lwork, rwork, info)

```

\section*{Description}

This routine computes the singular value decomposition (SVD) of a real/complex \(m\)-by- \(n\) matrix \(A\), optionally computing the left and/or right singular vectors. The SVD is written
\[
A=U \Sigma V^{H}
\]
where \(\Sigma\) is an \(m\)-by-n matrix which is zero except for its \(\min (m, n)\) diagonal elements, \(U\) is an \(m\)-by-m orthogonal/unitary matrix, and \(V\) is an \(n\)-by- \(n\) orthogonal/unitary matrix. The diagonal elements of \(\Sigma\) are the singular values of \(A\); they are real and non-negative, and are returned in
descending order. The first \(\min (m, n)\) columns of \(U\) and \(V\) are the left and right singular vectors of \(A\).
Note that the routine returns \(V^{H}\), not \(V\).

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline jobu & CHARACTER*1. Must be 'A', 'S', 'O', or 'N'. Specifies options for computing all or part of the matrix \(U\). \\
\hline & \begin{tabular}{l}
If jobu='A', all m columns of \(U\) are returned in the array \(u\); if jobu =' S ', the first \(\min (m, n)\) columns of \(U\) (the left singular vectors) are returned in the array \(u\); \\
if jobu \(=\) ' \(O^{\prime}\), the first \(\min (m, n)\) columns of \(U\) (the left singular vectors) are overwritten on the array \(a\); \\
if jobu \(={ }^{\prime} \mathrm{N}^{\prime}\), no columns of \(U\) (no left singular vectors) are computed.
\end{tabular} \\
\hline \multirow[t]{2}{*}{jobvt} & CHARACTER*1. Must be 'A', 'S', 'O', or 'N'. Specifies options for computing all or part of the matrix \(V^{H}\). \\
\hline & \begin{tabular}{l}
If jobvt = ' A ', all n rows of \(V^{H}\) are returned in the array vt; \\
if jobvt \(=\) ' S ', the first \(\min (m, n)\) rows of \(V^{H}\) (the right singular vectors) are returned in the array \(v t\); \\
if jobvt \(=1 O^{\prime}\), the first \(\min (m, n)\) rows of \(V^{H}\) (the right singular vectors) are overwritten on the array \(a\); \\
if jobvt =' \(\mathrm{N}^{\prime}\), no rows of \(V^{H}\) (no right singular vectors) are computed. \\
jobvt and jobu cannot both be ' \(\mathrm{O}^{\prime}\).
\end{tabular} \\
\hline m & INTEGER. The number of rows of the matrix \(A(m \geq 0)\). \\
\hline \(n\) & Integer. The number of columns in \(A(n \geq 0)\). \\
\hline \multirow{6}{*}{a, work} & DOUBLE PRECISION for dgesvd \\
\hline & COMPLEX for cgesvd \\
\hline & DOUBLE COMPLEX for zgesvd. \\
\hline & Arrays: \\
\hline & \begin{tabular}{l}
\(a(l d a, *)\) is an array containing the \(m\)-by-n matrix \(A\). \\
The second dimension of a must be at least \(\max (1, n)\).
\end{tabular} \\
\hline & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Ida & INTEGER. The first dimension of the array a. Must be at least max \((1, m)\). \\
\hline ldu, ldvt & \begin{tabular}{l}
INTEGER. The leading dimensions of the output arrays \(u\) and \(v t\), respectively. Constraints: \\
\(l d u \geq 1 ; \quad l d v t \geq 1\). \\
If jobu='S' or 'A', \(\quad 1 d u \geq m\); \\
If jobvt ='A', ldvt \(\geq \mathrm{n}\); \\
If jobvt \(=\) 'S', ldvt \(\geq \min (m, n)\).
\end{tabular} \\
\hline I work & \begin{tabular}{l}
INTEGER. The dimension of the array work; lwork \(\geq 1\). \\
Constraints: \\
lwork \(\geq \max (3 * \min (m, n)+\max (m, n), 5 * \min (m, n))\) (for real flavors); \\
1 work \(\geq 2 * \min (m, n)+\max (m, n) \quad\) (for complex flavors). \\
For good performance, lwork must generally be larger.
\end{tabular} \\
\hline rwork & \begin{tabular}{l}
REAL for cgesvd \\
DOUBLE PRECISION for zgesvd \\
Workspace array, DIMENSION at least \(\max (1,5 * \min (m, n))\). Used in complex flavors only.
\end{tabular} \\
\hline
\end{tabular}

\section*{Output Parameters}

On exit, If jobu \(={ }^{\prime} O^{\prime}\), a is overwritten with the first \(\min (m, n)\) columns of \(U\) (the left singular vectors, stored columnwise); If jobvt \(=\mathrm{I}^{\prime}\) ', a is overwritten with the first \(\min (m, n)\) rows of \(V^{H}\) (the right singular vectors, stored rowwise); If jobu \(\neq{ }^{\prime} O^{\prime}\) and jobvt \(\neq\) 'O', the contents of \(a\) are destroyed.
s
REAL for single precision flavors DOUBLE PRECISION for double precision flavors.
Array, DIMENSION at least \(\max (1, \min (m, n))\). Contains the singular values of \(A\) sorted so that \(s(i) \geq s(i+1)\).
\(u, v t\)
REAL for sgesvd
DOUBLE PRECISION for dgesvd
COMPLEX for cgesvd
DOUBLE COMPLEX for zgesvd.
Arrays:
\(u(1 d u, *)\); the second dimension of \(u\) must be at least \(\max (1, m)\) if \(j o b u\) \(=' A '\), and at least \(\max (1, \min (m, n))\) if jobu \(=\) ' \(\mathrm{S}^{\prime}\).

If jobu='A', \(u\) contains the \(m\)-by-m orthogonal/unitary matrix \(U\).
If jobu=' S ', \(u\) contains the first \(\min (m, n)\) columns of \(U\) (the left singular vectors, stored columnwise).
If jobu ='N' or 'O', \(u\) is not referenced.
\(v t\) (ldvt,*) ; the second dimension of \(v t\) must be at least max \((1, n)\).
If jobvt = 'A', vt contains the \(n\)-by-n orthogonal/unitary matrix \(V^{H}\). If jobvt ='S', vt contains the first \(\min (m, n)\) rows of \(V^{H}\) (the right singular vectors, stored rowwise).
If jobvt ='N'or 'O', vt is not referenced.
\begin{tabular}{|c|c|}
\hline work & \begin{tabular}{l}
On exit, if info \(=0\), then work (1) returns the required minimal size of lwork. \\
For real flavors: \\
If info \(>0\), \(\operatorname{work}(2: \min (m, n))\) contains the unconverged superdiagonal elements of an upper bidiagonal matrix \(B\) whose diagonal is in \(s\) (not necessarily sorted). \(B\) satisfies \(A=u * B * v t\), so it has the same singular values as \(A\), and singular vectors related by \(u\) and \(v t\).
\end{tabular} \\
\hline rwork & On exit (for complex flavors), if info \(>0\), \(\operatorname{rwork}(1: \min (m, n)-1)\) contains the unconverged superdiagonal elements of an upper bidiagonal matrix \(B\) whose diagonal is in \(s\) (not necessarily sorted). \(B\) satisfies \(A=u * B * v t\), so it has the same singular values as \(A\), and singular vectors related by \(u\) and \(v t\). \\
\hline info & \begin{tabular}{l}
INTEGER. \\
If info \(=0\), the execution is successful. \\
If info \(=-i\), the \(i\) th parameter had an illegal value. \\
If info \(=i\), then if ?bdsqr did not converge, \(i\) specifies how many superdiagonals of the intermediate bidiagonal form \(B\) did not converge to zero.
\end{tabular} \\
\hline
\end{tabular}

\section*{Application Notes}

If you are in doubt how much workspace to supply for the array work, use a generous value of lwork for the first run. On exit, examine work (1) and use this value for subsequent runs.

Intel® Math Kernel Library Reference Manual

\section*{?gesdd}

Computes the singular value decomposition of a general rectangular matrix using a divide and conquer method.

Syntax
```

call sgesdd ( jobz, m, n, a, lda, s, u, ldu, vt, ldvt,
work, lwork, iwork, info)
call dgesdd ( jobz, m, n, a, lda, s, u, ldu, vt, ldvt,
work, lwork, iwork, info)
call cgesdd ( jobz, m, n, a, lda, s, u, ldu, vt, ldvt,
work, lwork, rwork, iwork, info)
call zgesdd ( jobz, m, n, a, lda, s, u, ldu, vt, ldvt,
work, lwork, rwork, iwork, info)

```

\section*{Description}

This routine computes the singular value decomposition (SVD) of a real/complex \(m\)-by-n matrix \(A\), optionally computing the left and/or right singular vectors. If singular vectors are desired, it uses a divide and conquer algorithm.
The SVD is written
\[
A=U \Sigma V^{H}
\]
where \(\Sigma\) is an \(m\)-by- \(n\) matrix which is zero except for its \(\min (m, n)\) diagonal elements, \(U\) is an \(m\)-by- \(m\) orthogonal/unitary matrix, and \(V\) is an \(n\)-by- \(n\) orthogonal/unitary matrix. The diagonal elements of \(\Sigma\) are the singular values of \(A\); they are real and non-negative, and are returned in descending order. The first \(\min (m, n)\) columns of \(U\) and \(V\) are the left and right singular vectors of \(A\).
Note that the routine returns \(V^{H}\), not \(V\).

\section*{Input Parameters}
jobz CHARACTER*1. Must be 'A', 'S', 'O', or 'N'. Specifies options for computing all or part of the matrix \(U\).

If jobz ='A', all \(m\) columns of \(U\) and all \(n\) rows of \(V^{T}\) are returned in the arrays \(u\) and \(v t\);
if jobz =' S ', the first \(\min (m, n)\) columns of \(U\) and the first \(\min (m, n)\) rows of \(V^{T}\) are returned in the arrays \(u\) and \(v t\);
if jobz='O', then
if \(m \geq n\), the first \(n\) columns of \(U\) are overwritten
on the array a and all rows of \(V^{T}\) are returned in the array \(v t\);
if \(m<n\), all columns of \(U\) are returned in the array \(u\) and the first \(m\) rows of \(V^{T}\) are overwritten in the array \(v t\);
if jobz =' \({ }^{\prime}\) ', no columns of \(U\) or rows of \(V^{T}\) are computed.
INTEGER. The number of rows of the matrix \(A(m \geq 0)\).
INTEGER. The number of columns in \(A(n \geq 0)\).
REAL for sgesdd
DOUBLE PRECISION for dgesdd
COMPLEX for cgesdd
DOUBLE COMPLEX for \(z g e s d d\).
Arrays:
\(a(l d a, *)\) is an array containing the \(m-b y-n\) matrix \(A\). The second dimension of a must be at least \(\max (1, n)\).
work (lwork) is a workspace array.
INTEGER. The first dimension of the array \(a\). Must be at least \(\max (1, m)\).

INTEGER. The leading dimensions of the output arrays \(u\) and \(v t\), respectively. Constraints:
\(I d u \geq 1 ; ~ I d v t \geq 1\).
If jobz='S' or 'A', or jobz='O' and \(m<n\), then \(l d u \geq m\);
If jobz='A' or jobz='O' and \(m \geq n\), then \(l d v t \geq n\);
If jobz='S', ldvt \(\geq \min (m, n)\).
INTEGER. The dimension of the array work; lwork \(\geq 1\).
See Application Notes for the suggested value of 1 work.
REAL for cgesdd
DOUBLE PRECISION for zgesdd
Workspace array, DIMENSION at least
\(\max (1,5 * \min (m, n))\) if \(j o b z=' N\) '. Otherwise, the dimension of rwork must be at least \(5 *(\min (m, n))^{2}+7 * \min (m, n)\). This array is used in complex flavors only.
iwork INTEGER. Workspace array, DIMENSION at least \(\max (1,8 * \min (m, n))\).

\section*{Output Parameters}

On exit:
If jobz \(=\) ' 0 ', then if \(m \geq n\), \(a\) is overwritten with the first \(n\) columns of \(U\) (the left singular vectors, stored columnwise). If \(m<n, a\) is overwritten with the first \(m\) rows of \(V^{T}\) (the right singular vectors, stored rowwise); If \(j o b z \neq ' 0\) ', the contents of a are destroyed.
s
REAL for single precision flavors DOUBLE PRECISION for double precision flavors.
Array, DIMENSION at least \(\max (1, \min (m, n))\). Contains the singular values of \(A\) sorted so that \(s(\mathrm{i}) \geq s(i+1)\).
\(u, \quad v t\)
REAL for sgesdd
DOUBLE PRECISION for dgesdd
COMPLEX for cgesdd
DOUBLE COMPLEX for zgesdd.
Arrays:
\(u(l d u, *)\); the second dimension of \(u\) must be at least \(\max (1, m)\) if \(j o b z\)
='A'or jobz='O' and \(m<n\).
If \(j o b z=' S\) ', the second dimension of \(u\) must be at least \(\max (1, \min (m, n))\).
If jobz='A' or jobz='O' and \(m<n, u\) contains the \(m\)-by-m orthogonal/unitary matrix \(U\).
If \(j o b z=' S ', u\) contains the first \(\min (m, n)\) columns of \(U\) (the left singular vectors, stored columnwise).
If jobz='O' and \(m \geq n\), or jobz='N', u is not referenced.
\(v t(l d v t, *)\); the second dimension of \(v t\) must be at least \(\max (1, n)\).
If jobz='A' or jobz='O' and \(m \geq n\), vt contains the \(n\)-by- \(n\) orthogonal/unitary matrix \(V^{T}\).
If jobz='S', vt contains the first \(\min (m, n)\) rows of \(V^{T}\) (the right singular vectors, stored rowwise).
If jobz='O' and \(m<n\), or jobz='N', vt is not referenced.
```

work(1) On exit, if info = 0, then work (1) returns the required minimal size of
lwork.
info INTEGER
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = i, then ?bdsdc did not converge, updating process failed.

```

\section*{Application Notes}
```

For real flavors:
If jobz ='N', lwork \geq 3*min(m,n) + max (max (m,n), 6*min(m,n));
If jobz='O', lwork\geq3*(min(m,n))}\mp@subsup{)}{}{2}
max (max (m,n), 5* (min(m,n))}\mp@subsup{)}{}{2}+4*\operatorname{min}(m,n))
If jobz='S' or 'A', lwork \geq 3* (min(m,n))}\mp@subsup{)}{}{2}
max (max (m,n), 4* (min(m,n))}\mp@subsup{)}{}{2}+4*\operatorname{min}(m,n))

```

For complex flavors:
If jobz \(={ }^{\prime} \mathrm{N}^{\prime}, \quad\) lwork \(\geq 2 * \min (m, n)+\max (m, n)\);
If jobz \(=\prime^{\prime} O^{\prime}, \operatorname{lwork} \geq 2 *(\min (m, n))^{2}+\max (m, n)+2 * \min (m, n)\);
If jobz \(=\) 'S' or 'A', lwork \(\geq(\min (m, n))^{2}+\max (m, n)+2 * \min (m, n)\);
For good performance, I work should generally be larger.
If you are in doubt how much workspace to supply for the array work, use a generous value of lwork for the first run. On exit, examine work (1) and use this value for subsequent runs.

\section*{?ggsvd}

Computes the generalized singular value decomposition of a pair of general rectangular matrices.

\section*{Syntax}
```

call sggsvd ( jobu, jobv, jobq, m, n, p, k, l, a, lda, b, ldb, alpha,
beta, u, ldu, v, ldv, q, ldq, work, iwork, info)
call dggsvd ( jobu, jobv, jobq, m, n, p, k, l, a, lda, b, ldb, alpha,
beta, u, ldu, v, ldv, q, ldq, work, iwork, info)
call cggsvd ( jobu, jobv, jobq, m, n, p, k, l, a, lda, b, ldb, alpha,
beta, u, ldu, v, ldv, q, ldq, work, rwork, iwork, info)
call zggsvd ( jobu, jobv, jobq, m, n, p, k, l, a, lda, b, ldb, alpha,
beta, u, ldu, v, ldv, q, ldq, work, rwork, iwork, info)

```

\section*{Description}

This routine computes the generalized singular value decomposition (GSVD) of an \(m\)-by- \(n\) real/complex matrix \(A\) and \(p\)-by-n real/complex matrix \(B\) :
\[
U^{H} A Q=D_{1}^{*}\left(\begin{array}{ll}
0 & R
\end{array}\right), \quad \mathrm{V}^{H} B Q=D_{2} *\left(\begin{array}{ll}
0 & R
\end{array}\right),
\]
where \(U, V\) and \(Q\) are orthogonal/unitary matrices.
Let \(k+1=\) the effective numerical rank of the matrix \(\left(A^{H}, B^{H}\right)^{H}\), then \(R\) is a \((k+1)\)-by- \((k+1)\) nonsingular upper triangular matrix, \(D_{1}\) and \(D_{2}\) are \(m\)-by- \((k+1)\) and \(p\)-by- \((k+1)\) "diagonal" matrices and of the following structures, respectively:

If \(m-k-1 \geq 0\),
\[
\begin{aligned}
& D_{1}=\underset{m-k-1}{ } \begin{array}{c}
k \\
I \\
1
\end{array}\left(\begin{array}{cc}
I^{k} & l \\
0 & C \\
0 & 0
\end{array}\right) \\
& D_{2}=\underset{p-1}{l}\left(\begin{array}{cc}
k & I \\
0 & S \\
0 & 0
\end{array}\right)
\end{aligned}
\]
\[
\left(\begin{array}{ll}
0 & R-k-l
\end{array}\right)=\begin{gathered}
k \\
k \\
l
\end{gathered}\left(\begin{array}{lll}
0 & R_{11} & R_{12} \\
0 & 0 & R_{22}
\end{array}\right)
\]
where
\[
\begin{aligned}
& C=\operatorname{diag}(\operatorname{alpha}(k+1), \ldots, \operatorname{alpha}(k+1)) \\
& S=\operatorname{diag}(\operatorname{beta}(k+1), \ldots, \operatorname{beta}(k+1)) \\
& C^{2}+S^{2}=\mathrm{I}
\end{aligned}
\]
\(R\) is stored in a(1:k+1,n-k-1+1:n) on exit.
If \(m-k-1<0\),
\[
k \quad m-k \quad k+l-m
\]
\[
D_{1}=\begin{array}{ccc}
k \\
m-k
\end{array}\left(\begin{array}{rll}
I & 0 & 0 \\
0 & C & 0
\end{array}\right)
\]
\[
k \quad m-k \quad k+l-m
\]
\[
D_{2}=\begin{gathered}
m-k \\
k+I-m \\
p-I
\end{gathered}\left(\begin{array}{ccc}
0 & S & 0 \\
0 & 0 & I \\
0 & 0 & 0
\end{array}\right)
\]
where
\[
\begin{aligned}
& C=\operatorname{diag}(\operatorname{alpha}(k+1), \ldots, \text { alpha(}(m)), \\
& S=\operatorname{diag}(\operatorname{beta}(k+1), \ldots, \operatorname{beta}(m)), \\
& C^{2}+S^{2}=\mathrm{I}
\end{aligned}
\]

On exit, \(\left(\begin{array}{c}R_{11} R_{12} R_{13} \\ 0\end{array} R_{22} R_{23}\right)\) is stored in a(1:m, \(\left.n-k-1+1: n\right)\) and \(R_{33}\) is stored
in \(b(m-k+1: 1, n+m-k-1+1: n)\).
The routine computes \(C, S, R\), and optionally the orthogonal/unitary transformation matrices \(U, V\) and \(Q\).
In particular, if \(B\) is an \(n\)-by- \(n\) nonsingular matrix, then the GSVD of \(A\) and \(B\) implicitly gives the SVD of \(A B^{-1}\) :
\[
A B^{-1}=U\left(D_{1} D_{2}^{-1}\right) V^{H} .
\]

If \(\left(A^{H}, B^{H}\right)^{H}\) has orthonormal columns, then the GSVD of \(A\) and \(B\) is also equal to the CS decomposition of \(A\) and \(B\). Furthermore, the GSVD can be used to derive the solution of the eigenvalue problem:
\[
A^{H} A x=\lambda B^{H} B x .
\]

\section*{Input Parameters}
```

jobu CHARACTER*1. Must be 'U' or 'N'.
If jobu='U', orthogonal/unitary matrix U is computed.
If jobu='N',U is not computed.
jobv CHARACTER*1.Must be 'V' or 'N'.
If jobv='V', orthogonal/unitary matrix V is computed.
If jobv='N',V is not computed.
jobq CHARACTER*1. Must be 'Q' or 'N'.
If jobq='Q', orthogonal/unitary matrix Q is computed.
If jobq='N',Q is not computed.
INTEGER. The number of rows of the matrix A(m\geq0).
INTEGER. The number of columns of the matrices A and B(n\geq0).
INTEGER. The number of rows of the matrix B (p\geq0).

```
\begin{tabular}{|c|c|}
\hline a, b, work & \begin{tabular}{l}
REAL for sggsvd \\
DOUBLE PRECISION for dggsvd \\
COMPLEX for cggsvd \\
DOUBLE COMPLEX for zggsvd. \\
Arrays: \\
a(lda,*) contains the \(m\)-by- \(n\) matrix \(A\). \\
The second dimension of a must be at least max \((1, n)\). \\
\(b(1 d b, *)\) contains the \(p\)-by-n matrix \(B\). \\
The second dimension of \(b\) must be at least \(\max (1, n)\). \\
work (*) is a workspace array. The dimension of work must be at least \(\max (3 n, m, p)+n\).
\end{tabular} \\
\hline Ida & INTEGER. The first dimension of \(a\); at least max \((1, m)\). \\
\hline 1 db & INTEGER. The first dimension of \(b\); at least max \((1, p)\). \\
\hline \(1 d u\) & INTEGER. The first dimension of the array \(u\). \(l d u \geq \max (1, m)\) if \(j o b u=' U ' ; ~ l d u \geq 1\) otherwise. \\
\hline \(1 d v\) & INTEGER. The first dimension of the array \(v\). \(l d v \geq \max (1, p)\) if \(j o b v=V^{\prime} ; \quad l d v \geq 1\) otherwise. \\
\hline \(1 d q\) & INTEGER. The first dimension of the array \(q\). \(l d q \geq \max (1, n)\) if \(j o b q=Q^{\prime} ; \quad l d q \geq 1\) otherwise. \\
\hline iwork & \begin{tabular}{l}
INTEGER. \\
Workspace array, DIMENSION at least max \((1, n)\).
\end{tabular} \\
\hline rwork & \begin{tabular}{l}
REAL for cggsvd \\
DOUBLE PRECISION for zggsvd. \\
Workspace array, DIMENSION at least max \((1,2 n)\). Used in complex flavors only.
\end{tabular} \\
\hline Output Para & ters \\
\hline \(k, 1\) & INTEGER. On exit, \(k\) and 1 specify the dimension of the subblocks. The sum \(k+1\) is equal to the effective numerical rank of \(\left(A^{H}, B^{H}\right)^{H}\). \\
\hline a & On exit, a contains the triangular matrix \(R\) or part of \(R\). \\
\hline b & On exit, b contains part of the triangular matrix \(R\) if \(m-k-1<0\). \\
\hline
\end{tabular}

\section*{Generalized Symmetric Definite Eigenproblems}

This section describes LAPACK driver routines used for solving generalized symmetric definite eigenproblems. See also computational routines that can be called to solve these problems. Table 4-13 lists routines described in more detail below.

Table 4-13 Driver Routines for Solving Generalized Symmetric Definite Eigenproblems
\begin{tabular}{|c|c|}
\hline Routine Name & Operation performed \\
\hline ?sygv /?hegv & Computes all eigenvalues and, optionally, eigenvectors of a real / complex generalized symmetric /Hermitian definite eigenproblem. \\
\hline ?sygvd/?hegvd & Computes all eigenvalues and, optionally, eigenvectors of a real / complex generalized symmetric/Hermitian definite eigenproblem. If eigenvectors are desired, it uses a divide and conquer method. \\
\hline ?sygvx/?hegvx & Computes selected eigenvalues and, optionally, eigenvectors of a real / complex generalized symmetric /Hermitian definite eigenproblem. \\
\hline ? spgv/?hpgv & Computes all eigenvalues and, optionally, eigenvectors of a real / complex generalized symmetric/Hermitian definite eigenproblem with matrices in packed storage. \\
\hline ?spgvd /?hpgvd & Computes all eigenvalues and, optionally, eigenvectors of a real / complex generalized symmetric/Hermitian definite eigenproblem with matrices in packed storage. If eigenvectors are desired, it uses a divide and conquer method. \\
\hline ? spgvx/?hpgvx & Computes selected eigenvalues and, optionally, eigenvectors of a real / complex generalized symmetric /Hermitian definite eigenproblem with matrices in packed storage. \\
\hline ?sbgv /?hbgv & Computes all eigenvalues and, optionally, eigenvectors of a real / complex generalized symmetric /Hermitian definite eigenproblem with banded matrices. \\
\hline ? sbgvd/?h.bgvd & Computes all eigenvalues and, optionally, eigenvectors of a real / complex generalized symmetric /Hermitian definite eigenproblem with banded matrices. If eigenvectors are desired, it uses a divide and conquer method. \\
\hline ?s.ggvx/?h.bgvx & Computes selected eigenvalues and, optionally, eigenvectors of a real / complex generalized symmetric /Hermitian definite eigenproblem with banded matrices. \\
\hline
\end{tabular}

\section*{?sygv}

Computes all eigenvalues and, optionally, eigenvectors
of a real generalized symmetric definite eigenproblem.

\section*{Syntax}
```

call ssygv ( itype, jobz, uplo, n, a, lda, b, ldb, w, work,
lwork, info )
call dsygv ( itype, jobz, uplo, n, a, lda, b, ldb, w, work,
lwork, info )

```

\section*{Description}

This routine computes all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite eigenproblem, of the form
\[
A x=\lambda B x, A B x=\lambda x, \text { or } B A x=\lambda x .
\]

Here \(A\) and \(B\) are assumed to be symmetric and \(B\) is also positive definite.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline itype & \begin{tabular}{l}
INTEGER. Must be 1 or 2 or 3 . \\
Specifies the problem type to be solved: if itype \(=1\), the problem type is \(A x=\lambda B x\); if itype \(=2\), the problem type is \(A B x=\lambda x\); if itype \(=3\), the problem type is \(B A x=\lambda x\).
\end{tabular} \\
\hline jobz & \begin{tabular}{l}
CHARACTER*1. Must be ' N ' or ' V '. \\
If jobz \(=\) ' \(\mathrm{N}^{\prime}\) ', then compute eigenvalues only. \\
If jobz \(=\) ' \(V\) ', then compute eigenvalues and eigenvectors.
\end{tabular} \\
\hline uplo & \begin{tabular}{l}
CHARACTER*1. Must be 'U' or 'L'. \\
If uplo \(=\) ' U ', arrays \(a\) and \(b\) store the upper triangles of \(A\) and \(B\); \\
If uplo \(=\) 'L', arrays \(a\) and \(b\) store the lower triangles of \(A\) and \(B\).
\end{tabular} \\
\hline n & Integer. The order of the matrices \(A\) and \(B(n \geq 0)\). \\
\hline \(a, b\) work & REAL for ssygv DOUBLE PRECISION for dsygv. Arrays: \\
\hline
\end{tabular}
\(a(l d a, *)\) contains the upper or lower triangle of the symmetric matrix \(A\), as specified by uplo.
The second dimension of a must be at least \(\max (1, n)\).
\(b(I d b, *)\) contains the upper or lower triangle of the symmetric positive definite matrix \(B\), as specified by uplo.
The second dimension of \(b\) must be at least \(\max (1, n)\).
work (lwork) is a workspace array.
INTEGER. The first dimension of \(a\); at least \(\max (1, n)\).
INTEGER. The first dimension of \(b\); at least \(\max (1, n)\).
INTEGER. The dimension of the array work;
1 work \(\geq \max (1,3 n-1)\).
See Application Notes for the suggested value of 1 work.

\section*{Output Parameters}

On exit, if \(j o b z=' V '\), then if info \(=0\), a contains the matrix \(Z\) of eigenvectors. The eigenvectors are normalized as follows:
if itype \(=1\) or \(2, \quad Z^{\mathrm{T}} B Z=\mathrm{I}\);
if itype \(=3, \quad Z^{\mathrm{T}} B^{-1} Z=\mathrm{I}\);
If jobz \(=\) 'N', then on exit the upper triangle (if uplo='U') or the lower triangle (if uplo= 'L') of \(A\), including the diagonal, is destroyed.
On exit, if info \(\leq n\), the part of \(b\) containing the matrix is overwritten by the triangular factor \(U\) or \(L\) from the Cholesky factorization \(B=U^{\mathrm{T}} U\) or \(B=L L^{\mathrm{T}}\).

REAL for ssygv
DOUBLE PRECISION for dsygv.
Array, DIMENSION at least max \((1, n)\). If info \(=0\), contains the eigenvalues in ascending order.

On exit, if info \(=0\), then work (1) returns the required minimal size of lwork.

INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\) th argument had an illegal value.
If info \(>0\), spotrf/dpotrf and ssyev/dsyev returned an error code:

If info \(=i \leq n\), ssyev/dsyev failed to converge, and \(i\) off-diagonal elements of an intermediate tridiagonal did not converge to zero; If info \(=n+i\), for \(1 \leq i \leq n\), then the leading minor of order \(i\) of \(B\) is not positive-definite. The factorization of \(B\) could not be completed and no eigenvalues or eigenvectors were computed.

\section*{Application Notes}

For optimum performance use 1 work \(\geq(n b+2){ }^{\star} n\), where \(n b\) is the blocksize for ssytrd/dsytrd returned by ilaenv.
If you are in doubt how much workspace to supply for the array work, use a generous value of lwork for the first run. On exit, examine work (1) and use this value for subsequent runs.

\section*{?hegv}

Computes all eigenvalues and, optionally, eigenvectors
of a complex generalized Hermitian definite eigenproblem.

Syntax
```

call chegv ( itype, jobz, uplo, n, a, lda, b, ldb, w, work,
lwork, rwork, info )
call zhegv ( itype, jobz, uplo, n, a, lda, b, ldb, w, work,
lwork, rwork, info )

```

\section*{Description}

This routine computes all the eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian-definite eigenproblem, of the form
\[
A x=\lambda B x, A B x=\lambda x \text {, or } B A x=\lambda x \text {. }
\]

Here \(A\) and \(B\) are assumed to be Hermitian and \(B\) is also positive definite.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline itype & \begin{tabular}{l}
integer. Must be 1 or 2 or 3 . \\
Specifies the problem type to be solved: if itype \(=1\), the problem type is \(A x=\lambda B x\); if itype \(=2\), the problem type is \(A B x=\lambda x\); if itype \(=3\), the problem type is \(B A x=\lambda x\).
\end{tabular} \\
\hline jobz & \begin{tabular}{l}
CHARACTER*1. Must be ' N ' or ' V '. \\
If \(j o b z={ }^{\prime} N^{\prime}\), then compute eigenvalues only. \\
If jobz \(=1 \mathrm{~V}\) ', then compute eigenvalues and eigenvectors.
\end{tabular} \\
\hline uplo & \begin{tabular}{l}
CHARACTER*1. Must be 'U' or 'L'. \\
If uplo \(=\) ' U ', arrays \(a\) and \(b\) store the upper triangles of \(A\) and \(B\); \\
If uplo \(=\) 'L', arrays \(a\) and \(b\) store the lower triangles of \(A\) and \(B\).
\end{tabular} \\
\hline n & integer. The order of the matrices \(A\) and \(B(n \geq 0)\). \\
\hline a, b, work & COMPLEX for chegv DOUBLE COMPLEX for zhegv. Arrays: \\
\hline
\end{tabular}
\(a(l d a, *)\) contains the upper or lower triangle of the Hermitian matrix \(A\), as specified by uplo.
The second dimension of a must be at least max \((1, n)\).
\(b(l d b, *)\) contains the upper or lower triangle of the Hermitian positive definite matrix \(B\), as specified by uplo.
The second dimension of \(b\) must be at least \(\max (1, n)\).
work (lwork) is a workspace array.
lda
\(1 d b\)
rwork

INTEGER. The first dimension of \(a\); at least \(\max (1, n)\).
INTEGER. The first dimension of \(b\); at least \(\max (1, n)\).
integer. The dimension of the array work; lwork \(\geq \max (1,2 \mathrm{n}-1)\).
See Application Notes for the suggested value of 1 work.
REAL for chegv
DOUBLE PRECISION for zhegv.
Workspace array, DIMENSION at least max \((1,3 n-2)\).

\section*{Output Parameters}
work (1) On exit, if info \(=0\), then work (1) returns the required minimal size of
a
b
w
info

On exit, if jobz \(=1 \mathrm{~V}\) ', then if info \(=0\), a contains the matrix \(Z\) of eigenvectors. The eigenvectors are normalized as follows:
if itype \(=1\) or \(2, \quad Z^{H} B Z=\mathrm{I}\);
if itype \(=3, \quad Z^{H} B^{-1} Z=\mathrm{I}\);
If jobz \(=\) ' \(N\) ', then on exit the upper triangle (if uplo \(=1 \mathrm{U}\)) or the lower triangle (if uplo \(=\) ' L ') of \(A\), including the diagonal, is destroyed.

On exit, if info \(\leq n\), the part of \(b\) containing the matrix is overwritten by the triangular factor \(U\) or \(L\) from the Cholesky factorization \(B=U^{H} U\) or \(B=L L^{H}\).

REAL for chegv
DOUBLE PRECISION for zhegv.
Array, DIMENSION at least max \((1, n)\).
If info \(=0\), contains the eigenvalues in ascending order. lwork.

INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\) th argument had an illegal value.
If info \(>0\), cpotrf \(/\) zpotrf and cheev/zheev returned an error code:

If info= \(i \leq n\), cheev/zheev failed to converge, and \(i\) off-diagonal elements of an intermediate tridiagonal did not converge to zero; If \(i n f o=n+i\), for \(1 \leq i \leq n\), then the leading minor of order \(i\) of \(B\) is not positive-definite. The factorization of \(B\) could not be completed and no eigenvalues or eigenvectors were computed.

\section*{Application Notes}

For optimum performance use 1 work \(\geq(n b+1)^{\star} n\), where \(n b\) is the blocksize for chetrd/zhetrd returned by ilaenv.
If you are in doubt how much workspace to supply for the array work, use a generous value of lwork for the first run. On exit, examine work (1) and use this value for subsequent runs.

\section*{?sygvd}

Computes all eigenvalues and, optionally, eigenvectors of a real generalized symmetric definite eigenproblem. If eigenvectors are desired, it uses a divide and conquer method.

\section*{Syntax}
```

call ssygvd ( itype, jobz, uplo, n, a, lda, b, ldb, w, work,
lwork, iwork, liwork, info )
call dsygvd ( itype, jobz, uplo, n, a, lda, b, ldb, w, work,
lwork, iwork, liwork, info )

```

\section*{Description}

This routine computes all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite eigenproblem, of the form
\[
A x=\lambda B x, A B x=\lambda x, \text { or } B A x=\lambda x \text {. }
\]

Here \(A\) and \(B\) are assumed to be symmetric and \(B\) is also positive definite.
If eigenvectors are desired, it uses a divide and conquer algorithm.

\section*{Input Parameters}
itype Integer. Must be 1 or 2 or 3.
Specifies the problem type to be solved: if itype \(=1\), the problem type is \(A x=\lambda B x\); if itype \(=2\), the problem type is \(A B x=\lambda x\); if itype \(=3\), the problem type is \(B A x=\lambda x\).
jobz CHARACTER*1. Must be ' N ' or ' V '. If \(j o b z={ }^{N}{ }^{\prime}\), then compute eigenvalues only. If \(j o b z=' \mathrm{~V} '\), then compute eigenvalues and eigenvectors.
uplo CHARACTER*1. Must be 'U' or 'L'. If uplo = ' U ', arrays \(a\) and \(b\) store the upper triangles of \(A\) and \(B\); If uplo = ' L ', arrays \(a\) and \(b\) store the lower triangles of \(A\) and \(B\).
n INTEGER. The order of the matrices \(A\) and \(B(n \geq 0)\).
```

a, b, work REAL for ssygvd
DOUBLE PRECISION for dsygvd.
Arrays:
a(lda,*) contains the upper or lower triangle of the symmetric matrix }A\mathrm{ , as
specified by uplo.
The second dimension of a must be at least max(1,n).
b(ldb,*) contains the upper or lower triangle of the symmetric positive
definite matrix }B\mathrm{ , as specified by uplo.
The second dimension of b must be at least max (1,n).
work(lwork) is a workspace array.
Ida INTEGER. The first dimension of a; at least max (1,n).
Idb INTEGER. The first dimension of b; at least max (1,n).
lwork INTEGER. The dimension of the array work.
Constraints:
If n \leq 1, lwork \geq 1;
If jobz ='N' and n>1, lwork \geq2n+1;
If jobz ='V' and n>1, lwork }\geq2\mp@subsup{n}{}{2}+6n+1
iwork INTEGER.
Workspace array, DIMENSION (liwork).
liwork INTEGER. The dimension of the array iwork.
Constraints:
If n}\leq1, liwork \geq1;
If jobz='N' and n>1, liwork }\geq1\mathrm{ ;
If jobz ='V'and n>1, liwork }\geq5n+3

```

\section*{Output Parameters}
b

On exit, if jobz='V', then if info \(=0\), a contains the matrix \(Z\) of eigenvectors. The eigenvectors are normalized as follows:
if itype \(=1\) or \(2, \quad Z^{\mathrm{T}} B Z=\mathrm{I}\);
if itype \(=3, \quad Z^{\mathrm{T}} B^{-1} Z=\mathrm{I}\);
If jobz \(={ }^{\prime} \mathrm{N}\) ', then on exit the upper triangle (if uplo='U') or the lower triangle (if uplo = 'L') of \(A\), including the diagonal, is destroyed.
On exit, if info \(\leq n\), the part of \(b\) containing the matrix is overwritten by the triangular factor \(U\) or \(L\) from the Cholesky factorization \(B=U^{\mathrm{T}} U\) or \(B=L L^{\mathrm{T}}\).
\begin{tabular}{|c|c|}
\hline w & REAL for ssygvd \\
\hline & DOUBLE PRECISION for dsygvd. \\
\hline & Array, DIMENSION at least max \((1, n)\). \\
\hline & If info \(=0\), contains the eigenvalues in ascending order. \\
\hline work(1) & On exit, if info \(=0\), then work (1) returns the required minimal size of I work. \\
\hline iwork(1) & On exit, if info \(=0\), then iwork (1) returns the required minimal size of liwork. \\
\hline info & INTEGER. \\
\hline & If info \(=0\), the execution is successful. \\
\hline & If info \(=-i\), the \(i\) th argument had an illegal value. \\
\hline & If info \(>0\), spotrf/dpotrf and ssyev/dsyev returned an error code: \\
\hline & If info \(=i \leq n\), ssyev/dsyev failed to converge, and \(i\) off-diagonal elements of an intermediate tridiagonal did not converge to zero; If info \(=n+i\), for \(1 \leq i \leq n\), then the leading minor of order \(i\) of \(B\) is not positive-definite. The factorization of \(B\) could not be completed and no eigenvalues or eigenvectors were computed. \\
\hline
\end{tabular}

\section*{?hegvd}

Computes all eigenvalues and, optionally, eigenvectors of a complex generalized Hermitian definite eigenproblem. If eigenvectors are desired, it uses a divide and conquer method.

\section*{Syntax}
```

call chegvd ( itype, jobz, uplo, n, a, lda, b, ldb, w, work,
lwork, rwork, lrwork, iwork, liwork, info )
call zhegvd ( itype, jobz, uplo, n, a, lda, b, ldb, w, work,
lwork, rwork, lrwork, iwork, liwork, info )

```

\section*{Description}

This routine computes all the eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian-definite eigenproblem, of the form
\[
A x=\lambda B x, A B x=\lambda x, \text { or } B A x=\lambda x .
\]

Here \(A\) and \(B\) are assumed to be Hermitian and \(B\) is also positive definite. If eigenvectors are desired, it uses a divide and conquer algorithm.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{5}{*}{itype} & integer. Must be 1 or 2 or 3 . \\
\hline & Specifies the problem type to be solved: \\
\hline & if itype \(=1\), the problem type is \(A x=\lambda B x\); \\
\hline & if itype \(=2\), the problem type is \(A B x=\lambda x\); \\
\hline & if itype \(=3\), the problem type is \(B A x=\lambda x\). \\
\hline \multirow[t]{3}{*}{jobz} & CHARACTER*1. Must be ' N ' or ' V '. \\
\hline & If \(j 0 b z={ }^{\prime} \mathrm{N}^{\prime}\), then compute eigenvalues only. \\
\hline & If \(j 0 b z=1 \mathrm{~V}\) ', then compute eigenvalues and eigenvectors. \\
\hline \multirow[t]{3}{*}{uplo} & CHARACTER*1. Must be 'U' or 'L'. \\
\hline & If uplo \(=\) ' \(\mathrm{U}^{\prime}\), arrays \(a\) and \(b\) store the upper triangles of \(A\) and \(B\); \\
\hline & If uplo = 'L', arrays \(a\) and \(b\) store the lower triangles of \(A\) and \(B\). \\
\hline \(n\) & INTEGER. The order of the matrices \(A\) and \(B(\mathrm{n} \geq 0)\). \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline a, b, work & \begin{tabular}{l}
COMPLEX for chegvd \\
DOUBLE COMPLEX for zhegvd. \\
Arrays: \\
a (lda,*) contains the upper or lower triangle of the Hermitian matrix \(A\), as specified by uplo. \\
The second dimension of a must be at least \(\max (1, n)\). \\
\(b(l \mathrm{db}, *)\) contains the upper or lower triangle of the Hermitian positive definite matrix \(B\), as specified by uplo. \\
The second dimension of \(b\) must be at least \(\max (1, n)\). \\
work (lwork) is a workspace array.
\end{tabular} \\
\hline lda & INTEGER. The first dimension of \(a\); at least max \((1, n)\). \\
\hline 1 db & INTEGER. The first dimension of \(b\); at least max (\(1, n\)) . \\
\hline Iwork & \begin{tabular}{l}
integer. The dimension of the array work. \\
Constraints: \\
If \(n \leq 1\), 1 work \(\geq 1\); \\
If jobz \(=1 \mathrm{~N}\) ' and \(n>1\), 1 work \(\geq n+1\); \\
If jobz \(=\) 'V' and \(n>1\), 1 work \(\geq n^{2}+2 n\).
\end{tabular} \\
\hline rwork & \begin{tabular}{l}
REAL for chegvd \\
DOUBLE PRECISION for zhegvd. \\
Workspace array, DIMENSION (lrwork).
\end{tabular} \\
\hline lrwork & \begin{tabular}{l}
INTEGER. The dimension of the array rwork. \\
Constraints: \\
If \(n \leq 1\), Irwork \(\geq 1\); \\
If jobz ='N' and n>1, lrwork \(\geq n\); \\
If jobz \(=\) 'V' and \(n>1\), lrwork \(\geq 2 n^{2}+5 n+1\).
\end{tabular} \\
\hline iwork & \begin{tabular}{l}
INTEGER. \\
Workspace array, DIMENSION (liwork). .
\end{tabular} \\
\hline liwork & \begin{tabular}{l}
INTEGER. The dimension of the array iwork. \\
Constraints: \\
If \(n \leq 1\), liwork \(\geq 1\); \\
If jobz \(=\) 'N' and \(n>1\), liwork \(\geq 1\); \\
If jobz \(=\) 'V' and \(n>1\), liwork \(\geq 5 n+3\).
\end{tabular} \\
\hline
\end{tabular}

\section*{Output Parameters}
a
b
w
work (1) On exit, if info \(=0\), then work (1) returns the required minimal size of
rwork(1)
iwork(1) On exit, if info \(=0\), then iwork (1) returns the required minimal size of liwork.
info
On exit, if jobz \(=V^{\prime} V^{\prime}\), then if info \(=0\), a contains the matrix \(Z\) of eigenvectors. The eigenvectors are normalized as follows:
if itype \(=1\) or \(2, \quad Z^{H} B Z=\mathrm{I}\);
if itype \(=3, \quad Z^{H} B^{-1} Z=\mathrm{I}\);
If jobz ='N', then on exit the upper triangle (if uplo='U') or the lower triangle (if uplo \(=\) 'L') of \(A\), including the diagonal, is destroyed.

On exit, if info \(\leq n\), the part of \(b\) containing the matrix is overwritten by the triangular factor \(U\) or \(L\) from the Cholesky factorization \(B=U^{H} U\) or \(B=L L^{H}\).

REAL for chegvd
DOUBLE PRECISION for zhegvd.
Array, DIMENSION at least max \((1, n)\).
If info \(=0\), contains the eigenvalues in ascending order. lwork.

On exit, if info \(=0\), then rwork (1) returns the required minimal size of lrwork.

INTEGER.

If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\) th argument had an illegal value.
If info \(>0\), cpotrf/zpotrf and cheev/zheev returned an error code:
If info \(=i \leq n\), cheev/zheev failed to converge, and \(i\) off-diagonal elements of an intermediate tridiagonal did not converge to zero; If info \(=n+i\), for \(1 \leq i \leq n\), then the leading minor of order \(i\) of \(B\) is not positive-definite. The factorization of \(B\) could not be completed and no eigenvalues or eigenvectors were computed.

\section*{?sygvx}

Computes selected eigenvalues and, optionally, eigenvectors of a real generalized symmetric definite eigenproblem.

\section*{Syntax}
```

call ssygvx(itype, jobz, range, uplo, n, a, lda, b, ldb, vl, vu, il,
iu, abstol, m, w, z, ldz, work, lwork, iwork, ifail, info)
call dsygvx(itype, jobz, range, uplo, n, a, lda, b, ldb, vl, vu, il,
iu, abstol, m, w, z, ldz, work, lwork, iwork, ifail, info)

```

\section*{Description}

This routine computes selected eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite eigenproblem, of the form
\[
A x=\lambda B x, A B x=\lambda x \text {, or } B A x=\lambda x \text {. }
\]

Here \(A\) and \(B\) are assumed to be symmetric and \(B\) is also positive definite.
Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{5}{*}{itype} & INTEGER. Must be 1 or 2 or 3. \\
\hline & Specifies the problem type to be solved: \\
\hline & if itype \(=1\), the problem type is \(A x=\lambda B x\); \\
\hline & if itype \(=2\), the problem type is \(A B x=\lambda x\); \\
\hline & if \(i\) type \(=3\), the problem type is \(B A x=\lambda x\). \\
\hline \multirow[t]{3}{*}{jobz} & CHARACTER*1. Must be ' N ' or ' V '. \\
\hline & If \(j 0 b z=1 N\) ', then compute eigenvalues only. \\
\hline & If \(j 0 b z=' \mathrm{~V}\) ', then compute eigenvalues and eigenvectors. \\
\hline \multirow[t]{4}{*}{range} & CHARACTER*1. Must be 'A' or 'V' or 'I'. \\
\hline & If range \(=\) ' A ', the routine computes all eigenvalues. \\
\hline & If range \(=\mathrm{V}\) ' , the routine computes eigenvalues \(\lambda_{i}\) in the half-open interval: \(v \mathrm{l}<\lambda_{i} \leq \mathrm{vu}\). \\
\hline & If range = I ' , the routine computes eigenvalues with indices il to iu. \\
\hline
\end{tabular}

\begin{tabular}{ll}
l work & INTEGER. The dimension of the array work; \\
& lwork \(\geq \max (1,8 n)\). \\
See Application Notes for the suggested value of 1 work. \\
iwork & \\
& INTEGER. \\
& Workspace array, DIMENSION at least max \((1,5 n)\).
\end{tabular}

\section*{Output Parameters}

On exit, the upper triangle (if uplo= 'U') or the lower triangle (if uplo= ' L ') of \(A\), including the diagonal, is overwritten.
b
On exit, if info \(\leq n\), the part of \(b\) containing the matrix is overwritten by the triangular factor \(U\) or \(L\) from the Cholesky factorization \(B=U^{\mathrm{T}} U\) or \(B=L L^{\mathrm{T}}\).

INTEGER. The total number of eigenvalues found, \(0 \leq m \leq n\). If range \(=' A ', m=n\), and if range \(=1\) ' , m = iu-il+1.

REAL for ssygvx
DOUBLE PRECISION for dsygvx.
Arrays:
\(w(*)\), DIMENSION at least \(\max (1, n)\).
The first \(m\) elements of \(w\) contain the selected eigenvalues in ascending order.
\(z(1 d z, *)\). The second dimension of \(z\) must be at least \(\max (1, m)\). If jobz \(={ }^{\prime} \mathrm{V}\) ', then if info \(=0\), the first \(m\) columns of \(z\) contain the orthonormal eigenvectors of the matrix \(A\) corresponding to the selected eigenvalues, with the \(i\)-th column of \(z\) holding the eigenvector associated with \(w(i)\). The eigenvectors are normalized as follows:
if itype \(=1\) or \(2, \quad Z^{T} B Z=\mathrm{I}\);
if itype \(=3, \quad Z^{T} B^{-1} Z=\mathrm{I}\);
If \(j o b z=N^{\prime}\), then \(z\) is not referenced.
If an eigenvector fails to converge, then that column of \(z\) contains the latest approximation to the eigenvector, and the index of the eigenvector is returned in ifail.
Note: you must ensure that at least \(\max (1, m)\) columns are supplied in the array \(z\); if range \(=' \mathrm{~V}\) ', the exact value of \(m\) is not known in advance and an upper bound must be used.
work (1) On exit, if info \(=0\), then work (1) returns the required minimal size of lwork.
```

ifail INTEGER.
Array, DIMENSION at least max(1,n).
If jobz='V', then if info = 0, the first m elements of ifail are zero; if
info>0, the ifail contains the indices of the eigenvectors that failed to
converge.
If jobz='N', then ifail is not referenced.
info INTEGER.
If info = 0, the execution is successful.
If info =-i, the ith argument had an illegal value.
If info> 0, spotrf/dpotrf and ssyevx/dsyevx returned an error code:
If info=i \leqn, ssyevx/dsyevx failed to converge, and i eigenvectors
failed to converge. Their indices are stored in the array ifail;
If info =n+i, for 1\leqi \leqn, then the leading minor of order i of B
is not positive-definite. The factorization of B could not be completed
and no eigenvalues or eigenvectors were computed.

```

\section*{Application Notes}

An approximate eigenvalue is accepted as converged when it is determined to lie in an interval [a,b] of width less than or equal to abstol \(+\varepsilon * \max (|a|,|\mathbf{b}|)\), where \(\varepsilon\) is the machine precision. If abstol is less than or equal to zero, then \(\varepsilon^{*} \|\left. T\right|_{1}\) will be used in its place, where \(T\) is the tridiagonal matrix obtained by reducing \(A\) to tridiagonal form.
Eigenvalues will be computed most accurately when abstol is set to twice the underflow threshold \(2 *\) ? 1 amch('S'), not zero. If this routine returns with info \(>0\), indicating that some eigenvectors did not converge, try setting abstol to 2*?lamch('S').

For optimum performance use 1 work \(\geq(n b+3) * n\), where \(n b\) is the blocksize for ssytrd/dsytrd returned by ilaenv.
If you are in doubt how much workspace to supply for the array work, use a generous value of lwork for the first run. On exit, examine work (1) and use this value for subsequent runs.

Intel® Math Kernel Library Reference Manual

\section*{?hegvx}

Computes selected eigenvalues and, optionally, eigenvectors of a complex generalized Hermitian definite eigenproblem.

\section*{Syntax}
```

call chegvx ( itype, jobz, range, uplo, n, a, lda, b, ldb, vl, vu,
il, iu, abstol, m, w, z, ldz, work, lwork, rwork,
iwork, ifail, info)
call zhegvx ( itype, jobz, range, uplo, n, a, lda, b, ldb, vl, vu,
il, iu, abstol, m, w, z, ldz, work, lwork, rwork,
iwork, ifail, info)

```

\section*{Description}

This routine computes selected eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian-definite eigenproblem, of the form
\[
A x=\lambda B x, A B x=\lambda x \text {, or } B A x=\lambda x .
\]

Here \(A\) and \(B\) are assumed to be Hermitian and \(B\) is also positive definite.
Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{5}{*}{itype} & Integer. Must be 1 or 2 or 3 . \\
\hline & Specifies the problem type to be solved: \\
\hline & if itype \(=1\), the problem type is \(A x=\lambda B x\); \\
\hline & if itype \(=2\), the problem type is \(A B x=\lambda x\); \\
\hline & if itype \(=3\), the problem type is \(B A x=\lambda x\). \\
\hline \multirow[t]{3}{*}{jobz} & CHARACTER*1. Must be ' N ' or ' V '. \\
\hline & If \(j 0 b z=1 N\) ', then compute eigenvalues only. \\
\hline & If \(j 0 b z=' \mathrm{~V}\) ', then compute eigenvalues and eigenvectors. \\
\hline \multirow[t]{4}{*}{range} & CHARACTER*1. Must be 'A' or 'V' or 'I'. \\
\hline & If range \(=\) ' A ', the routine computes all eigenvalues. \\
\hline & If range \(=\) ' V ', the routine computes eigenvalues \(\lambda_{i}\) in the half-open interval: \(\mathrm{vl}<\lambda_{i} \leq \mathrm{vu}\). \\
\hline & If range \(=\) ' I', the routine computes eigenvalues with indices il to iu. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline uplo & \begin{tabular}{l}
CHARACTER*1. Must be 'U' or 'L'. \\
If uplo \(=' U\) ', arrays \(a\) and \(b\) store the upper triangles of \(A\) and \(B\); \\
If uplo \(=\) 'L', arrays \(a\) and \(b\) store the lower triangles of \(A\) and \(B\).
\end{tabular} \\
\hline \(n\) & INTEGER. The order of the matrices \(A\) and \(B(n \geq 0)\). \\
\hline \multirow[t]{8}{*}{a, b, work} & COMPLEX for chegvx \\
\hline & DOUBLE COMPLEX for zhegvx. \\
\hline & Arrays: \\
\hline & \(a(l d a, *)\) contains the upper or lower triangle of the Hermitian matrix \(A\), as specified by uplo. \\
\hline & The second dimension of a must be at least max \((1, n)\). \\
\hline & \(b(I d b, *)\) contains the upper or lower triangle of the Hermitian positive definite matrix \(B\), as specified by uplo. \\
\hline & The second dimension of \(b\) must be at least max \((1, n)\). \\
\hline & work (1 work) is a workspace array. \\
\hline Ida & INTEGER. The first dimension of \(a\); at least max \((1, n)\). \\
\hline 1 db & INTEGER. The first dimension of \(b\); at least max \((1, n)\). \\
\hline \multirow[t]{5}{*}{vl, vu} & REAL for chegvx \\
\hline & DOUBLE PRECISION for zhegvx. \\
\hline & If range \(=' \mathrm{~V}\) ', the lower and upper bounds of the interval to be searched for eigenvalues. \\
\hline & Constraint: vl< vu. \\
\hline & If range \(=\) 'A' or 'I', vl and vu are not referenced. \\
\hline \multirow[t]{5}{*}{il, iu} & INTEGER. \\
\hline & If range \(=\) 'I', the indices in ascending order of the smallest and largest eigenvalues to be returned. \\
\hline & Constraint: \(1 \leq i l \leq i u \leq n\), if \(n>0\); il=1 and \(i u=0\) \\
\hline & if \(n=0\). \\
\hline & If range \(=\) ' A ' or 'V', il and iu are not referenced. \\
\hline \multirow[t]{4}{*}{abstol} & REAL for chegvx \\
\hline & DOUBLE PRECISION for zhegvx. \\
\hline & The absolute error tolerance for the eigenvalues. \\
\hline & See Application Notes for more information. \\
\hline \(1 d z\) & INTEGER. The leading dimension of the output array \(z\). Constraints: \(l d z \geq 1\); if \(j o b z=' V^{\prime}, l d z \geq \max (1, n)\). \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline I work & \begin{tabular}{l}
INTEGER. The dimension of the array work; lwork \(\geq \max (1,2 n-1)\). \\
See Application Notes for the suggested value of 1 work
\end{tabular} \\
\hline \multirow[t]{3}{*}{rwork} & REAL for chegvx \\
\hline & DOUBLE PRECISION for zhegvx. \\
\hline & Workspace array, DIMENSION at least max \((1,7 n)\). \\
\hline \multirow[t]{2}{*}{iwork} & INTEGER. \\
\hline & Workspace array, DIMENSION at least max (1,5n). \\
\hline
\end{tabular}

\section*{Output Parameters}

On exit, the upper triangle (if uplo= 'U') or the lower triangle (if uplo= ' L ') of \(A\), including the diagonal, is overwritten.

On exit, if info \(\leq n\), the part of \(b\) containing the matrix is overwritten by the triangular factor \(U\) or \(L\) from the Cholesky factorization \(B=U^{H} U\) or \(B=L L^{H}\).

INTEGER. The total number of eigenvalues found, \(0 \leq m \leq n\). If range \(=\) ' \(A\) ', \(m=n\), and if range \(=\) 'I', \(m=i u-i l+1\).

COMPLEX for chegvx
DOUBLE COMPLEX for zhegvx.
Array \(z(l d z, *)\). The second dimension of \(z\) must be at least max \((1, m)\). If jobz \(=' \mathrm{~V}\) ', then if info \(=0\), the first \(m\) columns of \(z\) contain the orthonormal eigenvectors of the matrix \(A\) corresponding to the selected eigenvalues, with the \(i\)-th column of \(z\) holding the eigenvector associated with \(w(i)\). The eigenvectors are normalized as follows:
if itype \(=1\) or \(2, \quad Z^{H} B Z=\mathrm{I}\);
if itype \(=3, \quad Z^{H} B^{-1} Z=\mathrm{I}\);
If \(j o b z=N^{\prime}\), then \(z\) is not referenced.
If an eigenvector fails to converge, then that column of \(z\) contains the latest approximation to the eigenvector, and the index of the eigenvector is returned in ifail.
\begin{tabular}{|c|c|}
\hline work(1) & On exit, if info \(=0\), then work (1) returns the required minimal size of lwork. \\
\hline ifail & \begin{tabular}{l}
INTEGER. \\
Array, DIMENSION at least max \((1, n)\). \\
If jobz ='V', then if info \(=0\), the first \(m\) elements of ifail are zero; if info \(>0\), the ifail contains the indices of the eigenvectors that failed to converge. \\
If jobz='N', then ifail is not referenced.
\end{tabular} \\
\hline info & \begin{tabular}{l}
INTEGER. \\
If \(\operatorname{info}=0\), the execution is successful. \\
If info \(=-i\), the \(i\) th argument had an illegal value. \\
If info \(>0\), cpotrf/zpotrf and cheevx/zheevx returned an error code: \\
If info \(=i \leq n\), cheevx/zheevx failed to converge, and \(i\) eigenvectors failed to converge. Their indices are stored in the array ifail; If info \(=n+i\), for \(1 \leq i \leq n\), then the leading minor of order \(i\) of \(B\) is not positive-definite. The factorization of \(B\) could not be completed and no eigenvalues or eigenvectors were computed.
\end{tabular} \\
\hline
\end{tabular}

\section*{Application Notes}

An approximate eigenvalue is accepted as converged when it is determined to lie in an interval [a,b] of width less than or equal to
abstol \(+\varepsilon * \max (|a|,|b|)\), where \(\varepsilon\) is the machine precision. If abstol is less than or equal to zero, then \(\varepsilon^{*}\|T\|_{1}\) will be used in its place, where \(T\) is the tridiagonal matrix obtained by reducing \(A\) to tridiagonal form.
Eigenvalues will be computed most accurately when abstol is set to twice the underflow threshold \(2 *\) ? lamch('S'), not zero. If this routine returns with info \(>0\), indicating that some eigenvectors did not converge, try setting abstol to 2* ? lamch('S').

For optimum performance use 1 work \(\geq(n b+1)^{\star} n\), where \(n b\) is the blocksize for chetrd/zhetrd returned by ilaenv.
If you are in doubt how much workspace to supply for the array work, use a generous value of lwork for the first run. On exit, examine work (1) and use this value for subsequent runs.

\section*{?spgv}

Computes all eigenvalues and, optionally, eigenvectors of a real generalized symmetric definite eigenproblem with matrices in packed storage.

\section*{Syntax}
```

call sspgv ( itype, jobz, uplo, n, ap, bp, w, z, ldz, work, info )
call dspgv ( itype, jobz, uplo, n, ap, bp, w, z, ldz, work, info )

```

\section*{Description}

This routine computes all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite eigenproblem, of the form
\[
A x=\lambda B x, A B x=\lambda x \text {, or } B A x=\lambda x .
\]

Here \(A\) and \(B\) are assumed to be symmetric, stored in packed format, and \(B\) is also positive definite.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline itype & \begin{tabular}{l}
INTEGER. Must be 1 or 2 or 3 . \\
Specifies the problem type to be solved: \\
if itype \(=1\), the problem type is \(A x=\lambda B x\); \\
if itype \(=2\), the problem type is \(A B x=\lambda x\); \\
if itype \(=3\), the problem type is \(B A x=\lambda x\).
\end{tabular} \\
\hline jobz & \begin{tabular}{l}
CHARACTER*1. Must be ' N ' or ' V '. \\
If \(j o b z=' N\) ', then compute eigenvalues only. \\
If \(j o b z=' \mathrm{~V}\) ', then compute eigenvalues and eigenvectors.
\end{tabular} \\
\hline uplo & \begin{tabular}{l}
CHARACTER*1. Must be 'U' or 'L'. \\
If uplo \(=\) ' U ', arrays \(a p\) and \(b p\) store the upper triangles of \(A\) and \(B\); \\
If uplo \(=\) ' L ', arrays \(a p\) and \(b p\) store the lower triangles of \(A\) and \(B\).
\end{tabular} \\
\hline n & INTEGER. The order of the matrices \(A\) and \(B(n \geq 0)\). \\
\hline ap, bp, work & \begin{tabular}{l}
REAL for sspgv \\
DOUBLE PRECISION for dspgv. \\
Arrays: \\
\(a p(*)\) contains the packed upper or lower triangle of the symmetric matrix \(A\), as specified by uplo. The dimension of \(a p\) must be at least max(1 , \(n *(n+1) / 2)\).
\end{tabular} \\
\hline
\end{tabular}
bp (*) contains the packed upper or lower triangle of the symmetric matrix \(B\), as specified by uplo. The dimension of bp must be at least max (1 , \(n *(n+1) / 2)\).
work (*) is a workspace array, DIMENSION at least max \((1,3 n)\).
INTEGER. The leading dimension of the output array \(z ; I d z \geq 1\). If \(j o b z\) \(='^{\prime}\) ',\(I d z \geq \max (1, n)\).

\section*{Output Parameters}
```

w, $z$

```
info

On exit, the contents of \(a p\) are overwritten.
On exit, contains the triangular factor \(U\) or \(L\) from the Cholesky factorization \(B\) \(=U^{\mathrm{T}} U\) or \(B=L L^{\mathrm{T}}\), in the same storage format as \(B\).
REAL for sspgv
DOUBLE PRECISION for dspgv.
Arrays:
\(w(*)\), DIMENSION at least max \((1, n)\).
If info \(=0\), contains the eigenvalues in ascending order.
\(z(l d z, *)\). The second dimension of \(z\) must be at least \(\max (1, n)\).
If jobz \(=' \mathrm{~V}\) ', then if info \(=0, z\) contains the matrix \(Z\) of eigenvectors. The eigenvectors are normalized as follows:

if itype \(=3, \quad Z^{T} B^{-1} Z=\mathrm{I}\);
If jobz \(={ }^{\prime} \mathrm{N}^{\prime}\), then \(z\) is not referenced.
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\) th argument had an illegal value.
If info \(>0\), spptrf \(/\) dpptrf and sspev/dspev returned an error code:
If info \(=i \leq n\), sspev/dspev failed to converge, and \(i\) off-diagonal elements of an intermediate tridiagonal did not converge to zero; If info \(=n+i\), for \(1 \leq i \leq n\), then the leading minor of order \(i\) of \(B\) is not positive-definite. The factorization of \(B\) could not be completed and no eigenvalues or eigenvectors were computed.

\section*{?hpgv}

Computes all eigenvalues and, optionally, eigenvectors of a complex generalized Hermitian definite eigenproblem with matrices in packed storage.

\section*{Syntax}
```

call chpgv ( itype, jobz, uplo, n, ap, bp, w, z, ldz, work, rwork,
info )
call zhpgv ( itype, jobz, uplo, n, ap, bp, w, z, ldz, work, rwork,

```
Description

This routine computes all the eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian-definite eigenproblem, of the form
\[
A x=\lambda B x, A B x=\lambda x, \text { or } B A x=\lambda x .
\]

Here \(A\) and \(B\) are assumed to be Hermitian, stored in packed format, and \(B\) is also positive definite.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline itype & \begin{tabular}{l}
Integer. Must be 1 or 2 or 3 . \\
Specifies the problem type to be solved: \\
if itype \(=1\), the problem type is \(A x=\lambda B x\); \\
if itype \(=2\), the problem type is \(A B x=\lambda x\); \\
if itype \(=3\), the problem type is \(B A x=\lambda x\).
\end{tabular} \\
\hline jobz & \begin{tabular}{l}
CHARACTER*1. Must be 'N' or 'V'. \\
If \(j o b z=' N\) ', then compute eigenvalues only. \\
If \(j o b z=' V '\), then compute eigenvalues and eigenvectors.
\end{tabular} \\
\hline uplo & \begin{tabular}{l}
CHARACTER*1. Must be 'U' or 'L'. \\
If uplo=' U ', arrays \(a p\) and \(b p\) store the upper triangles of \(A\) and \(B\); \\
If uplo = 'L', arrays \(a p\) and bp store the lower triangles of \(A\) and \(B\).
\end{tabular} \\
\hline \(n\) & Integer. The order of the matrices \(A\) and \(B(\mathrm{n} \geq 0)\). \\
\hline ap, bp, work & \begin{tabular}{l}
COMPLEX for chpgv \\
double complex for zhpgv. \\
Arrays:
\end{tabular} \\
\hline
\end{tabular}
\(a p(*)\) contains the packed upper or lower triangle of the Hermitian matrix \(A\), as specified by uplo. The dimension of ap must be at least max (1, \(n *(n+1) / 2)\).
\(b p(*)\) contains the packed upper or lower triangle of the Hermitian matrix \(B\), as specified by uplo. The dimension of \(b p\) must be at least max (1, \(n *(n+1) / 2)\).
work (*) is a workspace array, DIMENSION at least max (\(1,2 n-1\)).
INTEGER. The leading dimension of the output array \(z ; 1 d z \geq 1\). If \(j o b z\) \(=' \mathrm{~V}\) ', \(l d z \geq \max (1, n)\).

REAL for chpgv
DOUBLE PRECISION for zhpgv.
Workspace array, DIMENSION at least max(1, 3n-2).

\section*{Output Parameters}

On exit, the contents of \(a p\) are overwritten.
On exit, contains the triangular factor \(U\) or \(L\) from the Cholesky factorization \(B\) \(=U^{H} U\) or \(B=L L^{H}\), in the same storage format as \(B\).

REAL for chpgv DOUBLE PRECISION for zhpgv.
Array, DIMENSION at least max \((1, n)\). If info \(=0\), contains the eigenvalues in ascending order.

COMPLEX for chpgv
DOUBLE COMPLEX for zhpgv.
Array \(z(1 d z, *)\). The second dimension of \(z\) must be at least \(\max (1, n)\). If \(j o b z=1 \mathrm{~V}\) ', then if info \(=0, z\) contains the matrix \(Z\) of eigenvectors. The eigenvectors are normalized as follows:
\[
\begin{aligned}
& \text { if itype }=1 \text { or } 2, \quad Z^{H} B Z=\mathrm{I} \text {; } \\
& \text { if itype }=3,
\end{aligned} Z^{H} B^{-1} Z=\mathrm{I} \text {; }
\]

If \(j o b z={ }^{\prime} N^{\prime}\), then \(z\) is not referenced.INTEGER.If info \(=0\), the execution is successful.If info \(=-i\), the \(i\) th argument had an illegal value.If info \(>0\), cpptrf \(/\) zpptrf and chpev/zhpev returned an error code:

If info \(=i \leq n\), chpev/zhpev failed to converge, and \(i\) off-diagonal elements of an intermediate tridiagonal did not converge to zero; If \(\operatorname{info}=n+i\), for \(1 \leq i \leq n\), then the leading minor of order \(i\) of \(B\) is not positive-definite. The factorization of \(B\) could not be completed and no eigenvalues or eigenvectors were computed.

\section*{?spgvd}

Computes all eigenvalues and, optionally, eigenvectors of a real generalized symmetric definite eigenproblem with matrices in packed storage. If eigenvectors are desired, it uses a divide and conquer method.

\section*{Syntax}
```

call sspgvd ( itype, jobz, uplo, n, ap, bp, w, z, ldz, work, lwork,
iwork, liwork, info )
call dspgvd ( itype, jobz, uplo, n, ap, bp, w, z, ldz, work, lwork,
iwork, liwork, info )

```

\section*{Description}

This routine computes all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite eigenproblem, of the form
\[
A x=\lambda B x, A B x=\lambda x, \text { or } B A x=\lambda x \text {. }
\]

Here \(A\) and \(B\) are assumed to be symmetric, stored in packed format, and \(B\) is also positive definite. If eigenvectors are desired, it uses a divide and conquer algorithm.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline itype & \begin{tabular}{l}
INTEGER. Must be 1 or 2 or 3 . \\
Specifies the problem type to be solved: \\
if itype \(=1\), the problem type is \(A x=\lambda B x\); \\
if itype \(=2\), the problem type is \(A B x=\lambda x\); \\
if itype \(=3\), the problem type is \(B A x=\lambda x\).
\end{tabular} \\
\hline jobz & \begin{tabular}{l}
CHARACTER*1. Must be ' N ' or ' V '. \\
If \(j o b z=1 N^{\prime}\), then compute eigenvalues only. \\
If \(j o b z=\prime V '\), then compute eigenvalues and eigenvectors.
\end{tabular} \\
\hline uplo & \begin{tabular}{l}
CHARACTER*1. Must be 'U' or 'L'. \\
If uplo = ' U ', arrays \(a p\) and \(b p\) store the upper triangles of \(A\) and \(B\); \\
If uplo='L', arrays \(a p\) and \(b p\) store the lower triangles of \(A\) and \(B\).
\end{tabular} \\
\hline n & INTEGER. The order of the matrices \(A\) and \(B(n \geq 0)\). \\
\hline
\end{tabular}
```

ap, bp, work REAL for sspgvd
DOUBLE PRECISION for dspgvd.
Arrays:
ap (*) contains the packed upper or lower triangle of the symmetric matrix }A\mathrm{ ,
as specified by uplo. The dimension of ap must be at least max(1,
n*(n+1)/2).
bp (*) contains the packed upper or lower triangle of the symmetric matrix B,
as specified by uplo. The dimension of bp must be at least max(1,
n*(n+1)/2).
work (lwork) is a workspace array.
ldz INTEGER. The leading dimension of the output array z; ldz\geq1. If jobz
='V',ldz\geqmax(1,n).
lwork INTEGER. The dimension of the array work.
Constraints:
If n \leq 1, lwork \geq 1;
If jobz='N' and n>1, lwork \geq2n;
If jobz ='V' and n>1, lwork \geq2n'+6n+1.
iwork INTEGER.
Workspace array, DIMENSION (liwork)..
liwork INTEGER. The dimension of the array iwork.
Constraints:
If n S 1, liwork }\geq1
If jobz='N'and n>1, liwork \geq 1;
If jobz ='V' and n>1, liwork }\geq5n+3

```

\section*{Output Parameters}
```

On exit, the contents of ap are overwritten.
On exit, contains the triangular factor $U$ or $L$ from the Cholesky factorization $B$ $=U^{T} U$ or $B=L L^{T}$, in the same storage format as $B$.
REAL for sspgv
DOUBLE PRECISION for dspgv.
Arrays:
$w(*)$, DIMENSION at least max $(1, n)$.
If $\operatorname{info}=0$, contains the eigenvalues in ascending order.

```
\(z(l d z, *)\). The second dimension of \(z\) must be at least \(\max (1, n)\).
If jobz \(={ }^{\prime} \mathrm{V}\) ', then if info \(=0, z\) contains the matrix \(Z\) of eigenvectors. The eigenvectors are normalized as follows:
\[
\begin{aligned}
& \text { if itype }=1 \text { or } 2, \quad Z^{T} B Z=\mathrm{I} \\
& \text { if itype }=3, \quad Z^{T} B^{-1} Z=\mathrm{I}
\end{aligned}
\]

If jobz='N', then \(z\) is not referenced.
work (1) On exit, if info \(=0\), then work (1) returns the required minimal size of lwork.
iwork (1) On exit, if info \(=0\), then \(i w o r k\) (1) returns the required minimal size of liwork.
info INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\) th argument had an illegal value.
If info \(>0\), spptrf/dpptrf and sspevd/dspevd returned an error code:
If info \(=i \leq n\), sspevd/dspevd failed to converge, and \(i\) off-diagonal elements of an intermediate tridiagonal did not converge to zero; If \(\operatorname{info}=n+i\), for \(1 \leq i \leq n\), then the leading minor of order \(i\) of \(B\) is not positive-definite. The factorization of \(B\) could not be completed and no eigenvalues or eigenvectors were computed.

\section*{?hpgvd}

Computes all eigenvalues and, optionally, eigenvectors of a complex generalized Hermitian definite eigenproblem with matrices in packed storage. If eigenvectors are desired, it uses a divide and conquer method.

\section*{Syntax}
```

call chpgvd ( itype, jobz, uplo, n, ap, bp, w, z, ldz, work, lwork,
rwork, lrwork, iwork, liwork, info )
call zhpgvd ( itype, jobz, uplo, n, ap, bp, w, z, ldz, work, lwork,
rwork, lrwork, iwork, liwork, info )

```

\section*{Description}

This routine computes all the eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian-definite eigenproblem, of the form
\[
A x=\lambda B x, A B x=\lambda x, \text { or } B A x=\lambda x .
\]

Here \(A\) and \(B\) are assumed to be Hermitian, stored in packed format, and \(B\) is also positive definite. If eigenvectors are desired, it uses a divide and conquer algorithm.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline itype & \begin{tabular}{l}
INTEGER. Must be 1 or 2 or 3 . \\
Specifies the problem type to be solved: \\
if itype \(=1\), the problem type is \(A x=\lambda B x\); \\
if itype \(=2\), the problem type is \(A B x=\lambda x\); \\
if \(i t y p e=3\), the problem type is \(B A x=\lambda x\).
\end{tabular} \\
\hline jobz & \begin{tabular}{l}
CHARACTER*1. Must be ' N ' or ' V '. \\
If \(j o b z=N^{\prime}\), then compute eigenvalues only. \\
If \(j o b z=\prime \mathrm{V}\) ', then compute eigenvalues and eigenvectors.
\end{tabular} \\
\hline uplo & \begin{tabular}{l}
CHARACTER*1. Must be 'U' or 'L'. \\
If uplo=' U ', arrays \(a p\) and \(b p\) store the upper triangles of \(A\) and \(B\); \\
If uplo \(=\) ' L ', arrays \(a p\) and \(b p\) store the lower triangles of \(A\) and \(B\).
\end{tabular} \\
\hline \(n\) & INTEGER. The order of the matrices \(A\) and \(B(n \geq 0)\). \\
\hline
\end{tabular}
```

ap, bp, work COMPLEX for chpgvd
DOUBLE COMPLEX for zhpgvd.
Arrays:
ap (*) contains the packed upper or lower triangle of the Hermitian matrix }A\mathrm{ ,
as specified by uplo. The dimension of ap must be at least max(1,
n* (n+1)/2).
bp (*) contains the packed upper or lower triangle of the Hermitian matrix B,
as specified by uplo. The dimension of bp must be at least max(1,
n* (n+1)/2).
work(lwork) is a workspace array.
Idz INTEGER. The leading dimension of the output array z; ldz\geq1. If jobz
='V',ldz\geq max(1,n).
lwork INTEGER. The dimension of the array work.
Constraints:
If n \leq 1, lwork \geq 1;
If jobz ='N' and n>1, lwork \geq n;
If jobz ='V'and n>1, lwork }\geq2n
rwork REAL for chpgvd
DOUBLE PRECISION for zhpgvd.
Workspace array, DIMENSION (lrwork).
lrwork INTEGER. The dimension of the array rwork.
Constraints:
If n \leq 1, lrwork }\geq1\mathrm{ ;
If jobz='N' and n>1, lrwork }\geqn\mathrm{ ;
If jobz ='V' and n>1, lrwork }\geq2\mp@subsup{n}{}{2}+5n+1
iwork INTEGER.
Workspace array, DIMENSION (liwork)..
liwork INTEGER. The dimension of the array iwork.
Constraints:
If n \leq 1, liwork }\geq1\mathrm{ ;
If jobz ='N' and n>1, liwork }\geq1\mathrm{ ;
If jobz ='V'and n>1, liwork }\geq5n+3

```

\section*{Output Parameters}
On exit, the contents of \(a p\) are overwritten.
```

bp On exit, contains the triangular factor $U$ or $L$ from the Cholesky factorization $B$ $=U^{H} U$ or $B=L L^{H}$, in the same storage format as $B$.

REAL for chpgvd
DOUBLE PRECISION for zhpgvd.
Array, DIMENSION at least $\max (1, n)$.
If info $=0$, contains the eigenvalues in ascending order.
$z$
work (1) On exit, if info $=0$, then work (1) returns the required minimal size of lwork.
COMPLEX for chpgvd
DOUBLE COMPLEX for zhpgvd.
Array $z(l d z, *)$. The second dimension of $z$ must be at least max $(1, n)$.
If jobz='V', then if info $=0, z$ contains the matrix $Z$ of eigenvectors. The eigenvectors are normalized as follows:

$$
\begin{aligned}
& \text { if itype }=1 \text { or } 2, \quad Z^{H} B Z=\mathrm{I} \\
& \text { if itype }=3, \quad Z^{H} B^{-1} Z=\mathrm{I}
\end{aligned}
$$

If $j o b z=' N$ ', then $z$ is not referenced.
rwork (1) On exit, if info $=0$, then rwork (1) returns the required minimal size of lrwork.
iwork (1) On exit, if info $=0$, then $i w o r k(1)$ returns the required minimal size of liwork.
info
INTEGER.

If info $=0$, the execution is successful.
If info $=-i$, the $i$ th argument had an illegal value.
If info $>0$, cpptrf/zpptrf and chpevd/zhpevd returned an error code:
If info $=i \leq n$, chpevd/zhpevd failed to converge, and $i$ off-diagonal elements of an intermediate tridiagonal did not converge to zero; If info $=n+i$, for $1 \leq i \leq n$, then the leading minor of order $i$ of $B$ is not positive-definite. The factorization of $B$ could not be completed and no eigenvalues or eigenvectors were computed.

## ?spgvx

Computes selected eigenvalues and, optionally, eigenvectors
of a real generalized symmetric definite eigenproblem with matrices in packed storage.

## Syntax

```
call sspgvx (itype, jobz, range, uplo, n, ap, bp, vl, vu, il, iu,
 abstol, m, w, z, ldz, work, iwork, ifail, info)
call dspgvx (itype, jobz, range, uplo, n, ap, bp, vl, vu, il, iu,
 abstol, m, w, z, ldz, work, iwork, ifail, info)
```


## Description

This routine computes selected eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite eigenproblem, of the form

$$
A x=\lambda B x, A B x=\lambda x, \text { or } B A x=\lambda x \text {. }
$$

Here $A$ and $B$ are assumed to be symmetric, stored in packed format, and $B$ is also positive definite. Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues.

## Input Parameters

itype	INTEGER. Must be 1 or 2 or 3 .
	Specifies the problem type to be solved:
	if itype $=1$, the problem type is $A x=\lambda B x$;
	if itype $=2$, the problem type is $A B x=\lambda x$;
	if itype $=3$, the problem type is $B A x=\lambda x$.
jobz	CHARACTER*1. Must be ' N ' or ' V '.
	If $j 0 b z=1 \mathrm{~N}$ ', then compute eigenvalues only.
	If $j 0 b z=1 \mathrm{~V}$ ', then compute eigenvalues and eigenvectors.
range	CHARACTER*1. Must be 'A' or 'V' or 'I'.
	If range $=$ ' A ', the routine computes all eigenvalues.
	If range $=$ ' V ', the routine computes eigenvalues $\lambda_{i}$ in the half-open interval: $\mathrm{v} 1<\lambda_{i} \leq \mathrm{vu}$.
	If range $=$ 'I', the routine computes eigenvalues with indices il to iu.


uplo	CHARACTER*1. Must be 'U' or 'L'.   If uplo $=$ ' U ', arrays $a p$ and $b p$ store the upper triangles of $A$ and $B$;   If uplo $=$ 'L', arrays $a p$ and $b p$ store the lower triangles of $A$ and $B$.
$n$	INTEGER. The order of the matrices $A$ and $B(\mathrm{n} \geq 0)$.
ap, bp, work	REAL for sspgvx   DOUBLE PRECISION for dspgvx.   Arrays:   $a p(*)$ contains the packed upper or lower triangle of the symmetric matrix $A$, as specified by uplo. The dimension of ap must be at least max(1, $n *(n+1) / 2)$.
	$b p$ (*) contains the packed upper or lower triangle of the symmetric matrix $B$, as specified by uplo. The dimension of $b p$ must be at least max ( 1 , $\left.n^{*}(n+1) / 2\right)$.
	work (*) is a workspace array, DIMENSION at least max $(1,8 n)$.
vl, vu	REAL for sspgex
	DOUBLE PRECISION for dspgvx.
	If range $=1 \mathrm{~V}$ ', the lower and upper bounds of the interval to be searched for eigenvalues.
	Constraint: vl< vu.
	If range $=$ 'A' or 'I', vl and vu are not referenced.
il, iu	INTEGER.
	If range $=$ ' I', the indices in ascending order of the smallest and largest eigenvalues to be returned.
	Constraint: $1 \leq i l \leq i u \leq n$, if $n>0 ; i l=1$ and $i u=0$ if $n=0$.
	If range = 'A' or 'V', il and iu are not referenced.
abstol	REAL for sspgex
	DOUBLE PRECISION for dspgvx.
	The absolute error tolerance for the eigenvalues.
	See Application Notes for more information.
$1 d z$	INTEGER. The leading dimension of the output array $z$. Constraints:
iwork	INTEGER.
	Workspace array, DIMENSION at least max $(1,5 n)$.

## Output Parameters



If info $=i \leq n$, sspevx/dspevx failed to converge, and $i$ eigenvectors failed to converge. Their indices are stored in the array ifail; If info $=n+i$, for $1 \leq i \leq n$, then the leading minor of order $i$ of $B$ is not positive-definite. The factorization of $B$ could not be completed and no eigenvalues or eigenvectors were computed.

## Application Notes

An approximate eigenvalue is accepted as converged when it is determined to lie in an interval [a,b] of width less than or equal to abstol $+\varepsilon * \max (|a|,|\mathbf{b}|)$, where $\varepsilon$ is the machine precision. If abstol is less than or equal to zero, then $\varepsilon *\|T\|_{1}$ will be used in its place, where $T$ is the tridiagonal matrix obtained by reducing $A$ to tridiagonal form.
Eigenvalues will be computed most accurately when abstol is set to twice the underflow threshold $2 *$ ? 1 amch('S'), not zero. If this routine returns with info $>0$, indicating that some eigenvectors did not converge, try setting abstol to $2 *$ ? 1 amch('S').

## ?hpgvx

Computes selected eigenvalues and, optionally, eigenvectors of a generalized Hermitian definite eigenproblem with matrices in packed storage.

## Syntax

```
call chpgvx (itype, jobz, range, uplo, n, ap, bp, vl, vu, il, iu,
 abstol, m, w, z, ldz, work, rwork, iwork, ifail, info)
call zhpgvx (itype, jobz, range, uplo, n, ap, bp, vl, vu, il, iu,
 abstol, m, w, z, ldz, work, rwork, iwork, ifail, info)
```


## Description

This routine computes selected eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian-definite eigenproblem, of the form
$A x=\lambda B x, A B x=\lambda x$, or $B A x=\lambda x$.
Here $A$ and $B$ are assumed to be Hermitian, stored in packed format, and $B$ is also positive definite. Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues.

Input Parameters

itype	Integer. Must be 1 or 2 or 3 .
	Specifies the problem type to be solved:
	if itype $=1$, the problem type is $A x=\lambda B x$;
	if itype $=2$, the problem type is $A B x=\lambda x$;
	if itype $=3$, the problem type is $B A x=\lambda x$.
jobz	CHARACTER*1. Must be ' N ' or ' V '.
	If $j 0 b z=' N$ ', then compute eigenvalues only.
	If jobz $=1 \mathrm{~V}$ ', then compute eigenvalues and eigenvectors.
range	CHARACTER*1. Must be 'A' or 'V' or 'I'.
	If range $=$ ' A ', the routine computes all eigenvalues.
	If range $=$ ' V ', the routine computes eigenvalues $\lambda_{i}$ in the half-open interval: $v \mathrm{l}<\lambda_{i} \leq \mathrm{vu}$.
	If range $=$ 'I', the routine computes eigenvalues with indices il to iu.


uplo	ChARACTER*1. Must be 'U' or 'L'.   If uplo $=$ ' U ', arrays $a p$ and $b p$ store the upper triangles of $A$ and $B$;   If uplo = ' L ', arrays $a p$ and $b p$ store the lower triangles of $A$ and $B$.
n	INTEGER. The order of the matrices $A$ and $B(n \geq 0)$.
ap, bp, work	COMPLEX for chpgvx   DOUBLE COMPLEX for zhpgvx.   Arrays:   $a p(*)$ contains the packed upper or lower triangle of the Hermitian matrix $A$, as specified by uplo. The dimension of ap must be at least max ( 1 , $n *(n+1) / 2)$.
	$b p$ (*) contains the packed upper or lower triangle of the Hermitian matrix $B$, as specified by uplo. The dimension of bp must be at least max $(1$, $n \star(n+1) / 2)$.   work (*) is a workspace array, DIMENSION at least max $(1,2 n)$.
v1, vu	REAL for chpgvx   DOUBLE PRECISION for zhpgvx.   If range $=^{\prime} \mathrm{V}^{\prime}$, the lower and upper bounds of the interval to be searched for eigenvalues.   Constraint: vl<vu.
	If range = 'A' or 'I', vl and vu are not referenced.
il, iu	INTEGER.   If range $=$ 'I', the indices in ascending order of the smallest and largest eigenvalues to be returned.   Constraint: $1 \leq i l \leq i u \leq n$, if $n>0$; il=1 and $i u=0$ if $n=0$.
	If range = 'A' or 'V', il and iu are not referenced.
abstol	REAL for chpgvx
	DOUBLE PRECISION for zhpgvx.
	The absolute error tolerance for the eigenvalues.
	See Application Notes for more information.
$1 d z$	INTEGER. The leading dimension of the output array $z ; 1 d z \geq 1$. If jobz $=' \mathrm{~V}$ ', $1 d z \geq \max (1, n)$.
rwork	REAL for chpgvx
	DOUBLE PRECISION for zhpgvx.
	Workspace array, DIMENSION at least max (1, 7 n ).


iwork	INTEGER.
	Workspace array, DIMENSION at least $\max (1,5 n)$.

## Output Parameters

$a p \quad$ On exit, the contents of $a p$ are overwritten.
bp On exit, contains the triangular factor $U$ or $L$ from the Cholesky factorization $B$
$=U^{H} U$ or $B=L L^{H}$, in the same storage format as $B$.
INTEGER. The total number of eigenvalues found,
$0 \leq m \leq n$. If range $=$ ' $A$ ',$m=n$, and if range $=I^{\prime}$ ',
$m=i u-i l+1$.
REAL for chpgvx
DOUBLE PRECISION for zhpgvx.
Array, DIMENSION at least max $(1, n)$.
If info $=0$, contains the eigenvalues in ascending order.
Z
COMPLEX for chpgvx
DOUBLE COMPLEX for zhpgvx.
Array $z(l d z, *)$. The second dimension of $z$ must be at least $\max (1, n)$. If jobz $={ }^{\prime} \mathrm{V}$ ', then if info $=0$, the first $m$ columns of $z$ contain the orthonormal eigenvectors of the matrix $A$ corresponding to the selected eigenvalues, with the $i$-th column of $z$ holding the eigenvector associated with $w(i)$. The eigenvectors are normalized as follows:

$$
\begin{aligned}
& \text { if itype }=1 \text { or } 2, \quad Z^{H} B Z=\mathrm{I} ; \\
& \text { if itype }=3, \quad Z^{H} B^{-1} Z=\mathrm{I}
\end{aligned}
$$

If jobz $=$ ' $N$ ', then $z$ is not referenced.
If an eigenvector fails to converge, then that column of $z$ contains the latest approximation to the eigenvector, and the index of the eigenvector is returned in ifail.
Note: you must ensure that at least $\max (1, m)$ columns are supplied in the array $z$; if range $=' V$ ', the exact value of $m$ is not known in advance and an upper bound must be used.

INTEGER.
Array, DIMENSION at least max $(1, n)$.
If jobz $={ }^{\prime} V^{\prime}$, then if info $=0$, the first $m$ elements of ifail are zero; if info $>0$, the ifail contains the indices of the eigenvectors that failed to converge.
If jobz='N', then ifail is not referenced.
info INTEGER
If info $=0$, the execution is successful.
If info $=-i$, the $i$ th argument had an illegal value.
If info $>0$, cpptrf/zpptrf and chpevx/zhpevx returned an error code:
If info $=i \leq n$, chpevx/zhpevx failed to converge, and $i$ eigenvectors failed to converge. Their indices are stored in the array ifail; If info $=n+i$, for $1 \leq i \leq n$, then the leading minor of order $i$ of $B$ is not positive-definite. The factorization of $B$ could not be completed and no eigenvalues or eigenvectors were computed.

## Application Notes

An approximate eigenvalue is accepted as converged when it is determined to lie in an interval [a,b] of width less than or equal to abstol $+\varepsilon * \max (|a|,|\mathrm{b}|)$, where $\varepsilon$ is the machine precision. If abstol is less than or equal to zero, then $\varepsilon^{*} \| T /\left.\right|_{1}$ will be used in its place, where $T$ is the tridiagonal matrix obtained by reducing $A$ to tridiagonal form.
Eigenvalues will be computed most accurately when abstol is set to twice the underflow threshold 2*? lamch('S'), not zero. If this routine returns with info $>0$, indicating that some eigenvectors did not converge, try setting abstol to 2* ? lamch('S').

## ?sbgv

Computes all eigenvalues and, optionally, eigenvectors of a real generalized symmetric definite eigenproblem with banded matrices.

## Syntax

```
call ssbgv (jobz, uplo, n, ka, kb, ab, ldab, bb, ldbb, w, z, ldz,
 work, info)
call dsbgv (jobz, uplo, n, ka, kb, ab, ldab, bb, ldbb, w, z, ldz,
 work, info)
```


## Description

This routine computes all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite banded eigenproblem, of the form $A x=\lambda B x$. Here $A$ and $B$ are assumed to be symmetric and banded, and $B$ is also positive definite.

## Input Parameters

jobz CHARACTER*1. Must be 'N' or 'V'. If $j o b z=N^{\prime}$ ', then compute eigenvalues only. If $j o b z=' \mathrm{~V} '$, then compute eigenvalues and eigenvectors.
uplo CHARACTER*1. Must be 'U' or 'L'.
If uplo $=$ ' U ', arrays $a b$ and $b b$ store the upper triangles of $A$ and $B$; If uplo $=$ 'L', arrays $a b$ and $b b$ store the lower triangles of $A$ and $B$.
n
INTEGER. The order of the matrices $A$ and $B(n \geq 0)$.
ka Integer. The number of super- or sub-diagonals in $A$ ( $k a \geq 0$ ).
$\mathrm{kb} \quad$ Integer. The number of super- or sub-diagonals in $B$ ( $k b \geq 0$ ).
$a b, b b$, work REAL for ssbgv
double precision for dsbgv
Arrays:
$a b$ (ldab,*) is an array containing either upper or lower triangular part of the symmetric matrix $A$ (as specified by uplo) in band storage format.
The second dimension of the array $a b$ must be at least $\max (1, n)$.
$\mathrm{bb}(1 \mathrm{dbb}, *)$ is an array containing either upper or lower triangular part of the symmetric matrix $B$ (as specified by uplo) in band storage format. The second dimension of the array $b b$ must be at least $\max (1, n)$. work (*) is a workspace array, DIMENSION at least $\max (1,3 n)$
ldab INTEGER. The first dimension of the array $a b ;$ must be at least $k a+1$.
ldbb INTEGER. The first dimension of the array $b b$; must be at least $k b+1$.
ldz
INTEGER. The leading dimension of the output array $z ; 1 d z \geq 1$. If $j o b z$ $=' \mathrm{~V}$ ', $1 d z \geq \max (1, n)$.

## Output Parameters

$a b$	On exit, the contents of ab are overwritten.
bb	On exit, contains the factor $S$ from the split Cholesky factorization $B=S^{T} S$, as returned by spbstf/dpbstf.
w, z	REAL for ssbgv   double precision for dsbgv   Arrays:   $w(*)$, DIMENSION at least $\max (1, n)$.   If info $=0$, contains the eigenvalues in ascending order.
	$z(l d z, *)$. The second dimension of $z$ must be at least $\max (1, n)$.   If jobz $=1 \mathrm{~V}$ ', then if info $=0, z$ contains the matrix $Z$ of eigenvectors, with the $i$-th column of $z$ holding the eigenvector associated with $w(i)$. The eigenvectors are normalized so that $Z^{T} B Z=\mathrm{I}$.   If $j o b z=N^{\prime}$, then $z$ is not referenced.
info	INTEGER.   If info $=0$, the execution is successful.   If info $=-i$, the $i$ th argument had an illegal value.   If info $>0$, and
	if $i \leq n$, the algorithm failed to converge, and $i$ off-diagonal elements of an intermediate tridiagonal did not converge to zero; if info $=n+i$, for $1 \leq i \leq n$, then spbstf/dpbstf returned info $=i$ and $B$ is not positive-definite. The factorization of $B$ could not be completed and no eigenvalues or eigenvectors were computed.

## ?hbgv

Computes all eigenvalues and, optionally, eigenvectors of a complex generalized Hermitian definite eigenproblem with banded matrices.

## Syntax

```
call chbgv (jobz, uplo, n, ka, kb, ab, ldab, bb, ldbb, w, z, ldz,
 work, rwork, info)
call zhbgv (jobz, uplo, n, ka, kb, ab, ldab, bb, ldbb, w, z, ldz,
 work, rwork, info)
```


## Description

This routine computes all the eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian-definite banded eigenproblem, of the form $A x=\lambda B x$. Here $A$ and $B$ are assumed to be Hermitian and banded, and $B$ is also positive definite.

## Input Parameters

jobz CHARACTER*1. Must be 'N' or 'V'.
If $j o b z=N^{\prime}$ ', then compute eigenvalues only. If $j o b z=' \mathrm{~V} '$, then compute eigenvalues and eigenvectors.
uplo CHARACTER*1. Must be 'U' or 'L'.
If uplo $=$ ' U ', arrays $a b$ and $b b$ store the upper triangles of $A$ and $B$; If uplo $=$ 'L', arrays $a b$ and $b b$ store the lower triangles of $A$ and $B$.
n
ka Integer. The number of super- or sub-diagonals in $A$ ( $k a \geq 0$ ).
$\mathrm{kb} \quad$ Integer. The number of super- or sub-diagonals in $B$ ( $k b \geq 0$ ).
$a b, b b$, work COMPLEX for chbgv DOUBLE COMPLEX for zhbgv
Arrays:
$a b(l d a b, *)$ is an array containing either upper or lower triangular part of the Hermitian matrix $A$ (as specified by uplo) in band storage format.
The second dimension of the array $a b$ must be at least $\max (1, n)$.

Idab INTEGER. The first dimension of the array ab; must be at least ka+1.
Idbb INTEGER. The first dimension of the array $b b$; must be at least $k b+1$.
ldz
rwork
$b b(1 d b b, *)$ is an array containing either upper or lower triangular part of the Hermitian matrix $B$ (as specified by uplo) in band storage format.
The second dimension of the array $b b$ must be at least $\max (1, n)$.
work (*) is a workspace array, DIMENSION at least max $(1, n)$.

INTEGER. The leading dimension of the output array $z ; 1 d z \geq 1$. If jobz $=' V ', l d z \geq \max (1, n)$.

REAL for chbgv
DOUBLE PRECISION for zhbgv.
Workspace array, DIMENSION at least $\max (1,3 n)$.

## Output Parameters

$a b \quad$ On exit, the contents of $a b$ are overwritten.
bb
w

Z
info
On exit, contains the factor $S$ from the split Cholesky factorization $B=S^{H} S$, as returned by cpbstf/zpbstf.

REAL for chbgv DOUBLE PRECISION for zhbgv. Array, DIMENSION at least max $(1, n)$. If info $=0$, contains the eigenvalues in ascending order.

COMPLEX for chbgv DOUBLE COMPLEX for zhbgv
Array $z(l d z, *)$. The second dimension of $z$ must be at least $\max (1, n)$. If jobz $=^{\prime} V^{\prime}$, then if info $=0, z$ contains the matrix $Z$ of eigenvectors, with the $i$-th column of $z$ holding the eigenvector associated with $w(i)$. The eigenvectors are normalized so that $Z^{H} B Z=\mathrm{I}$. If $j o b z=' N '$, then $z$ is not referenced.

INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$ th argument had an illegal value.
If info $>0$, and
if $i \leq n$, the algorithm failed to converge, and $i$ off-diagonal elements of an intermediate tridiagonal did not converge to zero; if info $=n+i$, for $1 \leq i \leq n$, then cpbstf/zpbstf returned info $=i$ and $B$ is not positive-definite. The factorization of $B$ could not be completed and no eigenvalues or eigenvectors were computed.

## ?sbgvd

Computes all eigenvalues and, optionally, eigenvectors of a real generalized symmetric definite eigenproblem with banded matrices. If eigenvectors are desired, it uses a divide and conquer method.

## Syntax

```
call ssbgvd (jobz, uplo, n, ka, kb, ab, ldab, bb, ldbb, w, z, ldz,
 work, lwork, iwork, liwork, info)
call dsbgvd (jobz, uplo, n, ka, kb, ab, ldab, bb, ldbb, w, z, ldz,
 work, lwork, iwork, liwork, info)
```


## Description

This routine computes all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite banded eigenproblem, of the form
$A x=\lambda B x$. Here $A$ and $B$ are assumed to be symmetric and banded, and $B$ is also positive definite. If eigenvectors are desired, it uses a divide and conquer algorithm.

## Input Parameters

jobz	CHARACTER*1. Must be 'N' or 'V'.
	If $j 0 b z=1 N$, then compute eigenvalues only.
	If $j 0 b z=1 \mathrm{~V}$ ', then compute eigenvalues and eigenvectors.
uplo	CHARACTER*1. Must be 'U' or 'L'.
	If uplo = 'U', arrays ab and bb store the upper triangles of $A$ and $B$;
	If uplo = 'L', arrays ab and bb store the lower triangles of $A$ and $B$.
$n$	INTEGER. The order of the matrices $A$ and $B(n \geq 0)$.
ka	INTEGER. The number of super- or sub-diagonals in $A$ $(k a \geq 0)$.
${ }_{k b}$	INTEGER. The number of super- or sub-diagonals in $B$ ( $k b \geq 0$ ).
ab, bb, work	REAL for ssbgvd
	double precision for dsbgvd
	Arrays:

$a b$ (ldab,*) is an array containing either upper or lower triangular part of the symmetric matrix $A$ (as specified by uplo) in band storage format. The second dimension of the array $a b$ must be at least $\max (1, n)$.
$\mathrm{bbb}(1 \mathrm{dbb}, *)$ is an array containing either upper or lower triangular part of the symmetric matrix $B$ (as specified by uplo) in band storage format. The second dimension of the array $b b$ must be at least $\max (1, n)$.
work (lwork) is a workspace array.
ldab INTEGER. The first dimension of the array $a b ;$ must be at least $k a+1$.
ldbb INTEGER. The first dimension of the array $b b$; must be at least $k b+1$.
$1 d z \quad$ INTEGER. The leading dimension of the output array $z ; 1 d z \geq 1$. If $j o b z$ $=$ ' V', $1 d z \geq \max (1, n)$.
lwork INTEGER. The dimension of the array work.
Constraints:
If $n \leq 1$, Iwork $\geq 1$;
If jobz $=$ 'N'and $n>1$, 1 work $\geq 3 n$; If jobz $=$ 'V' and $n>1$, 1 work $\geq 2 n^{2}+5 n+1$.
iwork INTEGER. Workspace array, DIMENSION (liwork).
liwork INTEGER. The dimension of the array iwork. Constraints:
If $n \leq 1$, liwork $\geq 1$;
If jobz $=$ 'N' and $n>1$, liwork $\geq 1$;
If jobz $=' \mathrm{~V}$ ' and $n>1$, liwork $\geq 5 n+3$.

## Output Parameters

```
ab
On exit, the contents of \(a b\) are overwritten.
On exit, contains the factor \(S\) from the split Cholesky factorization \(B=S^{T} S\), as returned by spbstf/dpbstf.
REAL for ssbgvd
double precision for dsbgvd
Arrays:
\(w(*)\), DIMENSION at least max \((1, n)\).
If \(\operatorname{info}=0\), contains the eigenvalues in ascending order.
```

work (1) On exit, if info $=0$, then work (1) returns the required minimal size of lwork.
iwork (1) On exit, if info $=0$, then $\operatorname{iwork}$ (1) returns the required minimal size of liwork.
info INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$ th argument had an illegal value.
If info $>0$, and
if $i \leq n$, the algorithm failed to converge, and $i$ off-diagonal elements of an intermediate tridiagonal did not converge to zero; if $\operatorname{info}=n+i$, for $1 \leq i \leq n$, then spbstf/dpbstf returned info $=i$ and $B$ is not positive-definite. The factorization of $B$ could not be completed and no eigenvalues or eigenvectors were computed.

## ?hbgvd

Computes all eigenvalues and, optionally, eigenvectors of a complex generalized Hermitian definite eigenproblem with banded matrices. If eigenvectors are desired, it uses a divide and conquer method.

## Syntax

```
call chbgvd (jobz, uplo, n, ka, kb, ab, ldab, bb, ldbb, w, z, ldz,
 work, lwork, rwork, lrwork, iwork, liwork, info)
call zhbgvd (jobz, uplo, n, ka, kb, ab, ldab, bb, ldbb, w, z, ldz,
 work, lwork, rwork, lrwork, iwork, liwork, info)
```


## Description

This routine computes all the eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian-definite banded eigenproblem, of the form $A x=\lambda B x$. Here $A$ and $B$ are assumed to be Hermitian and banded, and $B$ is also positive definite. If eigenvectors are desired, it uses a divide and conquer algorithm.

## Input Parameters

jobz	CHARACTER*1. Must be 'N' or 'V'.
	If $j 0 b z=' N$ ', then compute eigenvalues only.
	If $j 0 b z=1 \mathrm{~V}$ ', then compute eigenvalues and eigenvectors.
uplo	CHARACTER*1. Must be 'U' or 'L'.
	If uplo = ' U ', arrays $a b$ and bb store the upper triangles of $A$ and $B$; If uplo $=$ ' L ', arrays $a b$ and $b b$ store the lower triangles of $A$ and $B$.
$n$	INTEGER. The order of the matrices $A$ and $B(n \geq 0)$.
ka	INTEGER. The number of super- or sub-diagonals in $A$ ( $k a \geq 0$ ).
kb	INTEGER. The number of super- or sub-diagonals in $B$ ( $k b \geq 0$ ).
$a b, b b$, work	COMPLEX for chbgvd
	double Complex for zhbgvd
	Arrays:

Idab
liwork
iwork
$a b(I d a b, *)$ is an array containing either upper or lower triangular part of the Hermitian matrix $A$ (as specified by uplo) in band storage format. The second dimension of the array $a b$ must be at least $\max (1, n)$.
bb ( $1 \mathrm{dbb}, *$ ) is an array containing either upper or lower triangular part of the Hermitian matrix $B$ (as specified by uplo) in band storage format. The second dimension of the array $b b$ must be at least $\max (1, n)$.
work (lwork) is a workspace array.
INTEGER. The first dimension of the array $a b ;$ must be at least $k a+1$.
INTEGER. The first dimension of the array bb; must be at least $k b+1$.
INTEGER. The leading dimension of the output array $z ; I d z \geq 1$. If jobz $=' \mathrm{~V}$ ', $l d z \geq \max (1, n)$.

INTEGER. The dimension of the array work.
Constraints:
If $n \leq 1,1$ work $\geq 1$;
If jobz ='N' and $n>1$, lwork $\geq n$;
If jobz ='V' and $n>1,1$ work $\geq 2 n^{2}$.
rwork REAL for chbgvd
DOUBLE PRECISION for zhbgvd. Workspace array, DIMENSION (lrwork).
lrwork INTEGER. The dimension of the array rwork.

## Constraints:

If $n \leq 1$, Irwork $\geq 1$;
If jobz $=$ 'N' and $n>1$, lrwork $\geq n$; If jobz $=$ 'V' and $n>1$, lrwork $\geq 2 n^{2}+5 n+1$.

INTEGER. Workspace array, DIMENSION (liwork).

INTEGER. The dimension of the array iwork. Constraints:
If $n \leq 1$, liwork $\geq 1$;
If jobz $={ }^{\prime} N$ ' and $n>1$, liwork $\geq 1$;
If jobz $=$ 'V' and $n>1$, liwork $\geq 5 n+3$.

## Output Parameters

$a b \quad$ On exit, the contents of $a b$ are overwritten.
bb On exit, contains the factor $S$ from the split Cholesky factorization $B=S^{H} S$, as returned by cpbstf/zpbstf.
iwork (1) On exit, if info $=0$, then $i w o r k(1)$ returns the required minimal size of liwork.
info
REAL for chbgvd DOUBLE PRECISION for zhbgvd.
Array, DIMENSION at least $\max (1, n)$.
If info $=0$, contains the eigenvalues in ascending order.
COMPLEX for chbgvd
DOUBLE COMPLEX for zhbgvd
Array $z(l d z, *)$. The second dimension of $z$ must be at least $\max (1, n)$. If jobz $=$ 'V', then if info $=0, z$ contains the matrix $Z$ of eigenvectors, with the $i$-th column of $z$ holding the eigenvector associated with $w(i)$. The eigenvectors are normalized so that $Z^{H} B Z=\mathrm{I}$.
If $j o b z=N^{\prime}$ ', then $z$ is not referenced.
work (1) On exit, if info $=0$, then work (1) returns the required minimal size of lwork.

On exit, if info $=0$, then rwork (1) returns the required minimal size of lrwork.

INTEGER

If info $=0$, the execution is successful.
If info $=-i$, the $i$ th argument had an illegal value.
If info $>0$, and
if $i \leq n$, the algorithm failed to converge, and $i$ off-diagonal elements of an intermediate tridiagonal did not converge to zero; if $\operatorname{info}=n+i$, for $1 \leq i \leq n$, then cpbstf/zpbstf returned info $=i$ and $B$ is not positive-definite. The factorization of $B$ could not be completed and no eigenvalues or eigenvectors were computed.

## ?sbgvx

Computes selected eigenvalues and, optionally, eigenvectors of a real generalized symmetric definite eigenproblem with banded matrices.

## Syntax

```
call ssbgvx (jobz, range, uplo, n, ka, kb, ab, ldab, bb, ldbb, q,
 ldq, vl, vu, il, iu, abstol, m, w, z, ldz, work, iwork,
 ifail, info)
call dsbgvx (jobz, range, uplo, n, ka, kb, ab, ldab, bb, ldbb, q,
 ldq, vl, vu, il, iu, abstol, m, w, z, ldz, work, iwork,
 ifail, info)
```


## Description

This routine computes selected eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite banded eigenproblem, of the form $A x=\lambda B x$. Here $A$ and $B$ are assumed to be symmetric and banded, and $B$ is also positive definite. Eigenvalues and eigenvectors can be selected by specifying either all eigenvalues, a range of values or a range of indices for the desired eigenvalues.

## Input Parameters

uplo CHARACTER*1. Must be 'U' or 'L'.
jobz
range
$n$

CHARACTER*1. Must be 'N' or 'V'. If jobz =' $N$ ', then compute eigenvalues only. If $j o b z=' V '$, then compute eigenvalues and eigenvectors. CHARACTER*1. Must be 'A' or 'V' or 'I'. If range $=$ ' A ', the routine computes all eigenvalues. If range $={ }^{\prime} \mathrm{V}$ ', the routine computes eigenvalues $\lambda_{i}$ in the half-open interval: $\mathrm{vl}<\lambda_{i} \leq \mathrm{vu}$. If range $=$ 'I', the routine computes eigenvalues with indices il to iu.

If uplo $=$ 'U', arrays $a b$ and $b b$ store the upper triangles of $A$ and $B$; If uplo $=$ ' L', arrays $a b$ and $b b$ store the lower triangles of $A$ and $B$. INTEGER. The order of the matrices $A$ and $B(n \geq 0)$.

$k a$	INTEGER. The number of super- or sub-diagonals in $A$   $(k a \geq 0)$.
$k b$	INTEGER. The number of super- or sub-diagonals in $B$
$(k b \geq 0)$.	

```
\(l d q\)
iwork
INTEGER. The leading dimension of the output array \(q ; 1 d q \geq 1\). If \(j o b z\) \(={ }^{\prime} V^{\prime}, I d q \geq \max (1, n)\).
iwork
INTEGER.
Workspace array, DIMENSION at least max \((1,5 n)\).
```


## Output Parameters

$a b \quad$ On exit, the contents of $a b$ are overwritten.
On exit, contains the factor $S$ from the split Cholesky factorization $B=S^{T} S$, as returned by spbstf/dpbstf.

INTEGER. The total number of eigenvalues found, $0 \leq m \leq n$. If range $=' A ', m=n$, and if range $=1$ I', $m=i u-i l+1$.
$w, z, q$
ifail
info

REAL for ssbgvx
DOUBLE PRECISION for dsbgvx
Arrays:
$w(*)$, DIMENSION at least max $(1, n)$.
If info $=0$, contains the eigenvalues in ascending order.
$z(I d z, *)$. The second dimension of $z$ must be at least $\max (1, n)$.
If jobz $=^{\prime} V^{\prime}$, then if info $=0, z$ contains the matrix $Z$ of eigenvectors, with the $i$-th column of $z$ holding the eigenvector associated with $w(i)$. The eigenvectors are normalized so that $Z^{T} B Z=\mathrm{I}$.
If jobz='N', then $z$ is not referenced.
$q(I d q, *)$. The second dimension of $q$ must be at least $\max (1, n)$.
If jobz $=^{\prime} \mathrm{V}^{\prime}$, then $q$ contains the $n$-by-n matrix used in the reduction of $A x=$ $\lambda B x$ to standard form, that is,
$C x=\lambda x$ and consequently $C$ to tridiagonal form.
If jobz $={ }^{\prime} N^{\prime}$, then $q$ is not referenced.
INTEGER.
Array, DIMENSION at least max $(1, n)$.
If jobz $=V^{\prime} V^{\prime}$, then if info $=0$, the first $m$ elements of ifail are zero; if info $>0$, the ifail contains the indices of the eigenvectors that failed to converge.
If jobz='N', then ifail is not referenced.
INTEGER.

If info $=0$, the execution is successful.
If info $=-i$, the $i$ th argument had an illegal value.
If info $>0$, and
if $i \leq n$, the algorithm failed to converge, and $i$ off-diagonal elements of an intermediate tridiagonal did not converge to zero; if info $=n+i$, for $1 \leq i \leq n$, then spbstf/dpbstf returned info $=i$ and $B$ is not positive-definite. The factorization of $B$ could not be completed and no eigenvalues or eigenvectors were computed.

## Application Notes

An approximate eigenvalue is accepted as converged when it is determined to lie in an interval [a,b] of width less than or equal to abstol $+\varepsilon * \max (|a|,|\mathbf{b}|)$, where $\varepsilon$ is the machine precision. If abstol is less than or equal to zero, then $\varepsilon *\|T\|_{1}$ will be used in its place, where $T$ is the tridiagonal matrix obtained by reducing $A$ to tridiagonal form.
Eigenvalues will be computed most accurately when abstol is set to twice the underflow threshold $2 *$ ? lamch('S'), not zero. If this routine returns with info $>0$, indicating that some eigenvectors did not converge, try setting abstol to $2 *$ ? 1 amch('S').

## ?hbgvx

Computes selected eigenvalues and, optionally, eigenvectors of a complex generalized Hermitian definite eigenproblem with banded matrices.

Syntax

```
call chbgvx (jobz, range, uplo, n, ka, kb, ab, ldab, bb, ldbb, q,
 ldq, vl, vu, il, iu, abstol, m, w, z, ldz, work, rwork,
 iwork, ifail, info)
call zhbgvx (jobz, range, uplo, n, ka, kb, ab, ldab, bb, ldbb, q,
 ldq, vl, vu, il, iu, abstol, m, w, z, ldz, work, rwork,
 iwork, ifail, info)
```


## Description

This routine computes selected eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian-definite banded eigenproblem, of the form $A x=\lambda B x$. Here $A$ and $B$ are assumed to be Hermitian and banded, and $B$ is also positive definite.
Eigenvalues and eigenvectors can be selected by specifying either all eigenvalues, a range of values or a range of indices for the desired eigenvalues.

## Input Parameters

jobz
range
uplo
$n$

CHARACTER*1. Must be 'N' or 'V'. If $j o b z=' N$ ', then compute eigenvalues only. If jobz $=$ ' $V$ ', then compute eigenvalues and eigenvectors.

CHARACTER*1. Must be 'A' or 'V' or 'I'. If range $=$ ' $A$ ', the routine computes all eigenvalues. If range $=' \mathrm{~V}$ ', the routine computes eigenvalues $\lambda_{i}$ in the half-open interval: $\mathrm{vl}<\lambda_{i} \leq \mathrm{vu}$. If range $=$ 'I', the routine computes eigenvalues with indices il to iu. CHARACTER*1. Must be 'U' or 'L'.

If uplo $=$ ' $U$ ', arrays $a b$ and $b b$ store the upper triangles of $A$ and $B$; If uplo $=$ ' L', arrays $a b$ and $b b$ store the lower triangles of $A$ and $B$. INTEGER. The order of the matrices $A$ and $B(n \geq 0)$.

$k a$	INTEGER. The number of super- or sub-diagonals in $A$   $(k a \geq 0)$.
$k b$	INTEGER. The number of super- or sub-diagonals in $B$
$(k b \geq 0)$.	


$1 d q$	INTEGER. The leading dimension of the output array $q ; 1 d q \geq 1$. If jobz $=V^{\prime}$ ',$l d q \geq \max (1, n)$.
rwork	REAL for chbgvx
	DOUBLE PRECISION for zhbgvx.
	Workspace array, DIMENSION at least max (1, $7 n)$.
iwork	INTEGER.
	Workspace array, DIMENSION at least max $(1,5 n)$.

## Output Parameters

$a b \quad$ On exit, the contents of $a b$ are overwritten.
On exit, contains the factor $S$ from the split Cholesky factorization $B=S^{H} S$, as returned by cpbstf/zpbstf.
INTEGER. The total number of eigenvalues found, $0 \leq m \leq n$. If range $=' A ', m=n$, and if range $=$ 'I', $m=i u-i l+1$.

REAL for chbgvx
DOUBLE PRECISION for zhbgvx.
Array $w(*)$, DIMENSION at least max $(1, n)$. If info $=0$, contains the eigenvalues in ascending order.

COMPLEX for chbgvx
DOUBLE COMPLEX for zhbgvx
Arrays:
$z(l d z, *)$. The second dimension of $z$ must be at least max $(1, n)$.
If jobz $=^{\prime} V^{\prime}$, then if info $=0, z$ contains the matrix $Z$ of eigenvectors, with the $i$-th column of $z$ holding the eigenvector associated with $w(i)$. The eigenvectors are normalized so that $Z^{H} B Z=\mathrm{I}$.
If jobz $={ }^{\prime} N^{\prime}$, then $z$ is not referenced.
$q(l d q, *)$. The second dimension of $q$ must be at least $\max (1, n)$.
If jobz $=' \mathrm{~V}$ ', then $q$ contains the $n$-by-n matrix used in the reduction of $A x=$ $\lambda B x$ to standard form, that is,
$C x=\lambda x$ and consequently $C$ to tridiagonal form.
If jobz =' $N^{\prime}$, then $q$ is not referenced.
INTEGER.
Array, DIMENSION at least max $(1, n)$.
If jobz $=$ 'V', then if info $=0$, the first melements of ifail are zero; if

```
 info>0, the ifail contains the indices of the eigenvectors that failed to
 converge.
 If jobz='N', then ifail is not referenced.
info
INTEGER.
 If info = 0, the execution is successful.
 If info =-i, the ith argument had an illegal value.
 If info>0, and
 if i \leqn, the algorithm failed to converge, and i off-diagonal elements of an
 intermediate tridiagonal did not converge to zero;
 if info=n+i, for 1\leqi\leqn, then cpbstf/zpbstf returned info
 = i and B is not positive-definite. The factorization of }B\mathrm{ could not
 be completed and no eigenvalues or eigenvectors were computed.
```


## Application Notes

An approximate eigenvalue is accepted as converged when it is determined to lie in an interval $[a, b]$ of width less than or equal to abstol $+\varepsilon * \max (|a|,|\mathbf{b}|)$, where $\varepsilon$ is the machine precision. If abstol is less than or equal to zero, then $\varepsilon^{\star}\|T\|_{1}$ will be used in its place, where $T$ is the tridiagonal matrix obtained by reducing $A$ to tridiagonal form.
Eigenvalues will be computed most accurately when abstol is set to twice the underflow threshold $2 *$ ? 1 amch('S'), not zero. If this routine returns with info $>0$, indicating that some eigenvectors did not converge, try setting abstol to 2*?lamch('S').

## Generalized Nonsymmetric Eigenproblems

This section describes LAPACK driver routines used for solving generalized nonsymmetric eigenproblems. See also computational routines that can be called to solve these problems. Table 4-14 lists routines described in more detail below.

Table 4-14 Driver Routines for Solving Generalized Nonsymmetric Eigenproblems
Routine Name Operation performed
?gges Computes the generalized eigenvalues, Schur form, and the left and/or right Schur vectors for a pair of nonsymmetric matrices.
?ggesx Computes the generalized eigenvalues, Schur form, and, optionally, the left and/or right matrices of Schur vectors .
?ggev Computes the generalized eigenvalues, and the left and/or right generalized eigenvectors for a pair of nonsymmetric matrices.
? ggevx Computes the generalized eigenvalues, and, optionally, the left and/or right generalized eigenvectors.

## ?gges

Computes the generalized eigenvalues, Schur form, and the left and/or right Schur vectors for a pair of nonsymmetric matrices.

```
 Syntax
call sgges (jobvsl, jobvsr, sort, selctg, n, a, lda, b, ldb, sdim,
 alphar, alphai, beta, vsl, ldvsl, vsr, ldvsr, work,
 lwork, bwork, info)
call dgges (jobvsl, jobvsr, sort, selctg, n, a, lda, b, ldb, sdim,
 alphar, alphai, beta, vsl, ldvsl, vsr, ldvsr, work,
 lwork, bwork, info)
call cgges (jobvsl, jobvsr, sort, selctg, n, a, lda, b, ldb, sdim,
 alpha, beta, vsl, ldvsl, vsr, ldvsr, work, lwork, rwork,
 bwork, info)
call zgges (jobvsl, jobvsr, sort, selctg, n, a, lda, b, ldb, sdim,
 alpha, beta, vsl, ldvsl, vsr, ldvsr, work, lwork, rwork,
 bwork, info)
```


## Description

This routine computes for a pair of $n$-by- $n$ real/complex nonsymmetric matrices $(A, B)$, the generalized eigenvalues, the generalized real/complex Schur form ( $S, T$ ), optionally, the left and/or right matrices of Schur vectors (vsl and vsr). This gives the generalized Schur factorization

Optionally, it also orders the eigenvalues so that a selected cluster of eigenvalues appears in the leading diagonal blocks of the upper quasi-triangular matrix $S$ and the upper triangular matrix $T$. The leading columns of vsl and vsr then form an orthonormal/unitary basis for the corresponding left and right eigenspaces (deflating subspaces).
(If only the generalized eigenvalues are needed, use the driver ?ggev instead, which is faster.) A generalized eigenvalue for a pair of matrices $(A, B)$ is a scalar $w$ or a ratio alpha / beta $=w$, such that $A-w^{*} B$ is singular. It is usually represented as the pair (alpha, beta), as there is a reasonable interpretation for beta $=0$ or for both being zero.
A pair of matrices ( $S, T$ ) is in generalized real Schur form if $T$ is upper triangular with non-negative diagonal and $S$ is block upper triangular with 1-by-1 and 2-by-2 blocks. 1-by-1 blocks correspond to real generalized eigenvalues, while 2-by-2 blocks of $S$ will be "standardized" by making the corresponding elements of $T$ have the form:

$$
\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right)
$$

and the pair of corresponding 2-by-2 blocks in $S$ and $T$ will have a complex conjugate pair of generalized eigenvalues.
A pair of matrices $(S, T)$ is in generalized complex Schur form if $S$ and $T$ are upper triangular and, in addition, the diagonal of $T$ are non-negative real numbers.

## Input Parameters

```
jobvsl CHARACTER*1.Must be 'N' or 'V'.
 If jobvsl='N', then the left Schur vectors are not computed.
 If jobvsl='V', then the left Schur vectors are computed.
jobvsr CHARACTER*1. Must be 'N' or 'V'.
 If jobvsr='N', then the right Schur vectors are not computed.
 If jobvsr='V', then the right Schur vectors are computed.
sort CHARACTER*1.Must be 'N' or 'S'
 Specifies whether or not to order the eigenvalues on the diagonal of the
 generalized Schur form.
```

```
 If sort ='N', then eigenvalues are not ordered.
If sort='S', eigenvalues are ordered (see selctg).
selctg LOGICAL FUNCTION of three REAL arguments
for real flavors.
LOGICAL FUNCTION of two COMPLEX arguments
for complex flavors.
selctg must be declared EXTERNAL in the calling subroutine.
If sort='S', selctg is used to select eigenvalues to sort to the top left of
the Schur form.
If sort ='N', selctg is not referenced.
For real flavors:
An eigenvalue (alphar(j) + alphai(j))/beta(j) is selected if selctg(alphar(j\()\), alphai(j\()\), beta(j\())\) is true; that is, if either one of a complex conjugate pair of eigenvalues is selected, then both complex eigenvalues are selected.
Note that in the ill-conditioned case, a selected complex eigenvalue may no longer satisfy
selctg(alphar(j\()\), alphai(j\()\), beta \((\mathrm{j}))=\). TRUE. after ordering. In this case info is set to \(n+2\).
For complex flavors:
An eigenvalue alpha(j\() /\) beta(j\()\) is selected if selctg(alpha(j\()\), beta(j\()\)) is true.
Note that a selected complex eigenvalue may no longer satisfy \(\operatorname{selctg}(a l p h a(j)\), beta(j\())=\).TRUE. after ordering, since ordering may change the value of complex eigenvalues (especially if the eigenvalue is ill-conditioned); in this case info is set to \(n+2\) (see info below).
integer. The order of the matrices \(A, B\), vsl, and vsr (\(n \geq 0\)).
REAL for sgges
DOUBLE PRECISION for dgges
COMPLEX for cgges
DOUBLE COMPLEX for zgges.
Arrays:
\(a(l d a, *)\) is an array containing the \(n-b y-n\) matrix \(A\) (first of the pair of matrices).
The second dimension of a must be at least \(\max (1, n)\).
```

$b(l d b, *)$ is an array containing the $n$-by-n matrix $B$ (second of the pair of matrices).
The second dimension of $b$ must be at least $\max (1, n)$.
work (lwork) is a workspace array.
INTEGER. The first dimension of the array a. Must be at least $\max (1, n)$.

INTEGER. The first dimension of the array $b$. Must be at least $\max (1, n)$.
ldvsl,ldvsr INTEGER. The first dimensions of the output matrices vsl and vsr, respectively. Constraints:
$l d v s l \geq 1$. If jobvsl $=$ 'V', $l d v s l \geq \max (1, n)$.
$l d v s r \geq 1$. If jobvsr $={ }^{\prime} V^{\prime}, l d v s r \geq \max (1, n)$.
lwork INTEGER. The dimension of the array work.
1 work $\geq \max (1,8 n+16)$ for real flavors;
1 work $\geq \max (1,2 n)$ for complex flavors.
For good performance, lwork must generally be larger.
rwork REAL for cgges
DOUBLE PRECISION for zgges
Workspace array, DIMENSION at least max $(1,8 n)$. This array is used in complex flavors only.
bwork LOGICAL.
Workspace array, DIMENSION at least max $(1, n)$.
Not referenced if sort $={ }^{\prime} \mathrm{N}$ '.

## Output Parameters

## a

b
sdim

On exit, this array has been overwritten by its generalized Schur form $S$.
On exit, this array has been overwritten by its generalized Schur form $T$.
INTEGER.
If sort $=1 \mathrm{~N}$ ', sdim= 0 .
If sort='S', sdim is equal to the number of eigenvalues (after sorting) for which selctg is true.
Note that for real flavors complex conjugate pairs for which selctg is true for either eigenvalue count as 2 .

vsr(ldvsr, *), the second dimension of vsr must be at least max $(1, n)$. If jobvsr $=$ ' V ', this array will contain the right Schur vectors. If jobvsr $={ }^{\prime} \mathrm{N}^{\prime}$, vsr is not referenced.
work (1) On exit, if info $=0$, then work (1) returns the required minimal size of lwork.
info INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$ th parameter had an illegal value.
If $\operatorname{info}=i$, and
$i \leq n$ :
the $Q Z$ iteration failed. $(A, B)$ is not in Schur form, but alphar( j$)$, alphai( j$)$ (for real flavors), or alpha(j) (for complex flavors), and beta(j), $\mathrm{j}=$ info $+1, \ldots, \mathrm{n}$ should be correct.
$i>n$ : errors that usually indicate LAPACK problems:
$i=n+1$ : other than $Q Z$ iteration failed in ?hgeqz;
$i=n+2$ : after reordering, roundoff changed values of some complex eigenvalues so that leading eigenvalues in the generalized Schur form no longer satisfy selctg = .TRUE . . This could also be caused due to scaling;
$i=n+3$ : reordering failed in ? tgsen.

## Application Notes

If you are in doubt how much workspace to supply for the array work, use a generous value of l work for the first run. On exit, examine work (1) and use this value for subsequent runs.

The quotients alphar(j)/beta(j) and alphai(j)/beta(j) may easily over- or underflow, and beta(j) may even be zero. Thus, you should avoid simply computing the ratio. However, alphar and alphai will be always less than and usually comparable with norm $(A)$ in magnitude, and beta always less than and usually comparable with norm( $B$ ).

## ?ggesx

Computes the generalized eigenvalues, Schur form, and, optionally, the left and/or right matrices of Schur vectors.

## Syntax

```
call sggesx (jobvsl, jobvsr, sort, selctg, sense, n, a, lda, b, ldb,
 sdim, alphar, alphai, beta, vsl, ldvsl, vsr, ldvsr,
 rconde, rcondv, work, lwork, iwork, liwork, bwork, info)
call dggesx (jobvsl, jobvsr, sort, selctg, sense, n, a, lda, b, ldb,
 sdim, alphar, alphai, beta, vsl, ldvsl, vsr, ldvsr,
 rconde, rcondv, work, lwork, iwork, liwork, bwork, info)
call cggesx (jobvsl, jobvsr, sort, selctg, sense, n, a, lda, b, ldb,
 sdim, alpha, beta, vsl, ldvsl, vsr, ldvsr, rconde, rcondv,
 work, lwork, rwork, iwork, liwork, bwork, info)
call zggesx (jobvsl, jobvsr, sort, selctg, sense, n, a, lda, b, ldb,
 sdim, alpha, beta, vsl, ldvsl, vsr, ldvsr, rconde, rcondv,
 work, lwork, rwork, iwork, liwork, bwork, info)
```


## Description

This routine computes for a pair of $n$-by- $n$ real/complex nonsymmetric matrices $(A, B)$, the generalized eigenvalues, the generalized real/complex Schur form $(S, T)$, optionally, the left and/or right matrices of Schur vectors (vSl and vsr). This gives the generalized Schur factorization

$$
(A, B)=\left(v s l * S * v s r^{H}, v s l * T * v s r^{H}\right)
$$

Optionally, it also orders the eigenvalues so that a selected cluster of eigenvalues appears in the leading diagonal blocks of the upper quasi-triangular matrix $S$ and the upper triangular matrix $T$; computes a reciprocal condition number for the average of the selected eigenvalues (rconde); and computes a reciprocal condition number for the right and left deflating subspaces corresponding to the selected eigenvalues (rcondv). The leading columns of vsl and vsr then form an orthonormal/unitary basis for the corresponding left and right eigenspaces (deflating subspaces).

A generalized eigenvalue for a pair of matrices $(A, B)$ is a scalar $w$ or a ratio alpha / beta $=w$, such that $A-w * B$ is singular. It is usually represented as the pair (alpha, beta), as there is a reasonable interpretation for beta $=0$ or for both being zero.
A pair of matrices $(S, T)$ is in generalized real Schur form if $T$ is upper triangular with non-negative diagonal and $S$ is block upper triangular with 1-by-1 and 2-by-2 blocks. 1-by-1 blocks correspond
to real generalized eigenvalues, while 2-by-2 blocks of $S$ will be "standardized" by making the corresponding elements of $T$ have the form:

```
(\begin{array}{ll}{a}&{0}\\{0}&{b}\end{array})
```

and the pair of corresponding 2-by-2 blocks in $S$ and $T$ will have a complex conjugate pair of generalized eigenvalues.
A pair of matrices $(S, T)$ is in generalized complex Schur form if $S$ and $T$ are upper triangular and, in addition, the diagonal of $T$ are non-negative real numbers.

## Input Parameters

jobvsl	CHARACTER*1. Must be 'N' or 'V'.
	If jobvsl $=1 \mathrm{~N}$ ', then the left Schur vectors are not computed.
	If jobvsl $=1 \mathrm{~V}$ ', then the left Schur vectors are computed.
jobvsr	CHARACTER*1. Must be 'N' or 'V'.
	If jobvsr $=$ ' N , then the right Schur vectors are not computed.
	If jobvsr $=1 \mathrm{~V}$ ', then the right Schur vectors are computed.
sort	CHARACTER*1. Must be 'N' or 'S'.
	Specifies whether or not to order the eigenvalues on the diagonal of the generalized Schur form.
	If sort $=1 \mathrm{~N}$ ', then eigenvalues are not ordered.
	If sort $=$ 'S', eigenvalues are ordered (see selctg).
selctg	LOGICAL FUNCTION of three REAL arguments for real flavors
	LOGICAL FUNCTION of two COMPLEX arguments
	for complex flavors.
	selctg must be declared EXTERNAL in the calling subroutine.
	If sort ='S', selctg is used to select eigenvalues to sort to the top left of the Schur form.
	If sort $=$ 'N', selctg is not referenced.
	For real flavors:
	An eigenvalue $(a l p h a r(\mathrm{j})+a l p h a i(\mathrm{j})) /$ beta $(\mathrm{j})$ is selected if $\operatorname{selctg}(a l p h a r(\mathrm{j})$, alphai( j$)$, beta( j$)$ ) is true; that is, if either one of a complex conjugate pair of eigenvalues is selected, then both complex eigenvalues are selected.
	Note that in the ill-conditioned case, a selected complex eigenvalue may no


	longer satisfy   $\operatorname{selctg}(\operatorname{alphar}(\mathrm{j})$, alphai( j$)$, beta $(\mathrm{j}))=$.TRUE. after ordering. In this case info is set to $n+2$.
	For complex flavors:   An eigenvalue alpha( j$) /$ beta( j$)$ is selected if $\operatorname{selctg}(a l p h a(\mathrm{j})$, beta( j$)$ ) is true.
	Note that a selected complex eigenvalue may no longer satisfy $\operatorname{selctg}(\operatorname{alpha}(\mathrm{j})$, beta(j)) = .TRUE. after ordering, since ordering may change the value of complex eigenvalues (especially if the eigenvalue is ill-conditioned); in this case info is set to $n+2$ (see info below).
sense	CHARACTER*1. Must be 'N', 'E', 'V', or 'B'.   Determines which reciprocal condition number are computed.
	If sense $={ }^{\prime} N$ ', none are computed;   If sense $=$ 'E', computed for average of selected eigenvalues only;   If sense $={ }^{\prime} \mathrm{V}$ ', computed for selected deflating subspaces only;   If sense ='B', computed for both.   If sense is 'E', 'V', or 'B', then sort must equal 'S'.
n	INTEGER. The order of the matrices $A, B$, vsl, and vsr ( $n \geq 0)$.
a, b, work	REAL for sggesx
	DOUBLE PRECISION for dggesx
	COMPLEX for cggesx
	DOUBLE COMPLEX for zggesx.
	Arrays:
	$a(l d a, *)$ is an array containing the $n$-by- $n$ matrix $A$ (first of the pair of matrices).
	The second dimension of a must be at least max $(1, n)$.
	$b(I d b, *)$ is an array containing the $n$-by-n matrix $B$ (second of the pair of matrices).
	The second dimension of $b$ must be at least max $(1, n)$.
	work (lwork) is a workspace array.
Ida	INTEGER. The first dimension of the array $a$. Must be at least $\max (1, n)$.
1 db	INTEGER. The first dimension of the array $b$. Must be at least $\max (1, n)$.

```
ldvsl,ldvsr
INTEGER. The first dimensions of the output matrices vsl and vsr,
respectively. Constraints:
ldvsl\geq 1. If jobvsl='V',ldvsl\geq max(1,n).
ldvsr \geq 1. If jobvsr='v', ldvsr \geq max(1,n).
lwork INTEGER. The dimension of the array work.
For real flavors:
lwork \geq max(1, 8(n+1)+16);
if sense = 'E','V', or 'B',then
lwork}\geq\operatorname{max}(8(n+1)+16), 2*sdim*(n-sdim))
For complex flavors:
lwork \geq max(1,2n);
if sense = 'E','V', or 'B', then
lwork}\geq max(2n, 2*sdim*(n-sdim))
```

For good performance, 1 work must generally be larger.
rwork REAL for cggesx
DOUBLE PRECISION for zggesx
Workspace array, DIMENSION at least max $(1,8 n)$. This array is used in complex flavors only.
iwork INTEGER.
Workspace array, DIMENSION (liwork). Not referenced if sense $=$ ' N '.
liwork INTEGER. The dimension of the array iwork.
liwork $\geq n+6$ for real flavors;
liwork $\geq n+2$ for complex flavors.
bwork LOGICAL.
Workspace array, DIMENSION at least $\max (1, n)$.
Not referenced if sort $=1 \mathrm{~N}$ ' .

## Output Parameters

On exit, this array has been overwritten by its generalized Schur form $S$.
On exit, this array has been overwritten by its generalized Schur form $T$.
INTEGER.
If sort $=1 \mathrm{~N}$ ', sdim $=0$.
If sort='S', sdim is equal to the number of eigenvalues (after sorting) for which selctg is true.
Note that for real flavors complex conjugate pairs for which selctg is true for either eigenvalue count as 2 .

vsr(ldvsr,*), the second dimension of vsr must be at least max $(1, n)$. If jobvsr $=$ ' V ', this array will contain the right Schur vectors. If jobvsr $=\mathrm{N}^{\mathrm{N}}$, vsr is not referenced.
rconde, rcondv REAL for single precision flavors DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION (2) each
If sense $=$ 'E' or 'B', rconde(1) and rconde(2) contain the reciprocal condition numbers for the average of the selected eigenvalues.
Not referenced if sense $=$ ' N ' or ' V '.
If sense $=$ 'V' or 'B', $r \operatorname{condv}(1)$ and $r \operatorname{condv}(2)$ contain the reciprocal condition numbers for the selected deflating subspaces.
Not referenced if sense = 'N' or 'E'.
work (1) On exit, if info $=0$, then work (1) returns the required minimal size of lwork.
info INTEGER
If info $=0$, the execution is successful.
If info $=-i$, the $i$ th parameter had an illegal value .
If info $=i$, and
$i \leq n$ :
the $Q Z$ iteration failed. $(A, B)$ is not in Schur form, but alphar( j$)$, alphai( j$)$ (for real flavors), or alpha(j) (for complex flavors), and beta(j), $\mathrm{j}=$ info $+1, \ldots, \mathrm{n}$ should be correct.
$i>n$ : errors that usually indicate LAPACK problems:
$i=n+1$ : other than $Q Z$ iteration failed in ?hgeqz;
$i=n+2$ : after reordering, roundoff changed values of some complex eigenvalues so that leading eigenvalues in the generalized Schur form no longer satisfy selctg $=$. TRUE . . This could also be caused due to scaling;
$i=n+3$ : reordering failed in ?tgsen.

## Application Notes

If you are in doubt how much workspace to supply for the array work, use a generous value of lwork for the first run. On exit, examine work (1) and use this value for subsequent runs.

The quotients alphar(j)/beta(j) and alphai(j)/beta(j) may easily over- or underflow, and beta(j) may even be zero. Thus, you should avoid simply computing the ratio. However, alphar and alphai will be always less than and usually comparable with norm $(A)$ in magnitude, and beta always less than and usually comparable with norm $(B)$.

## ?ggev

Computes the generalized eigenvalues, and the left and/or right generalized eigenvectors for a pair of nonsymmetric matrices.

## Syntax

```
call sggev (jobvl, jobvr, n, a, lda, b, ldb, alphar, alphai, beta,
 vl, ldvl, vr, ldvr, work, lwork, info)
call dggev (jobvl, jobvr, n, a, lda, b, ldb, alphar, alphai, beta,
 vl, ldvl, vr, ldvr, work, lwork, info)
call cggev (jobvl, jobvr, n, a, lda, b, ldb, alpha, beta,
 vl, ldvl, vr, ldvr, work, lwork, rwork, info)
call zggev (jobvl, jobvr, n, a, lda, b, ldb, alpha, beta,
 vl, ldvl, vr, ldvr, work, lwork, rwork, info)
```


## Description

This routine computes for a pair of $n$-by- $n$ real/complex nonsymmetric matrices $(A, B)$, the generalized eigenvalues, and optionally, the left and/or right generalized eigenvectors.

A generalized eigenvalue for a pair of matrices $(A, B)$ is a scalar $\lambda$ or a ratio alpha / beta $=\lambda$, such that $A-\lambda * B$ is singular. It is usually represented as the pair (alpha, beta), as there is a reasonable interpretation for beta $=0$ and even for both being zero.
The right generalized eigenvector $v(\mathrm{j})$ corresponding to the generalized eigenvalue $\lambda(\mathrm{j})$ of $(A, B)$ satisfies

$$
A^{*} v(\mathrm{j})=\lambda(\mathrm{j}) * B^{*} v(\mathrm{j}) .
$$

The left generalized eigenvector $u(\mathrm{j})$ corresponding to the generalized eigenvalue $\lambda(\mathrm{j})$ of $(A, B)$ satisfies

$$
u(\mathrm{j})^{H_{\star}} A=\lambda(\mathrm{j}) \star u(\mathrm{j})^{H_{\star}} B
$$

where $u(\mathrm{j})^{H}$ denotes the conjugate transpose of $u(\mathrm{j})$.

## Input Parameters

jobvl CHARACTER*1. Must be 'N' or 'V'.
If jobvl $={ }^{\prime} \mathrm{N}$ ', the left generalized eigenvectors are not computed; If jobvl='V', the left generalized eigenvectors are computed.

```
jobvr CHARACTER*1.Must be 'N' or 'V'.
 If jobvr='N', the right generalized eigenvectors are not computed;
 If jobvr='V', the right generalized eigenvectors are computed.
n
a, b, work
lda
Idb INTEGER. The first dimension of the array b.
 Must be at least max (1,n) .
ldvl,ldvr INTEGER. The first dimensions of the output matrices vl and vr, respectively.
Constraints:
 ldvl\geq 1. If jobvl='V',ldvl\geq max(1,n).
 ldvr \geq1. If jobvr='V',ldvr \geqmax(1,n).
lwork INTEGER. The dimension of the array work.
 lwork}\geq\operatorname{max}(1,8n+16) for real flavors
 lwork}\geq\operatorname{max}(1,2n) for complex flavors
 For good performance, lwork must generally be larger.
rwork REAL for cggev
 DOUBLE PRECISION for zggev
 Workspace array, DIMENSION at least max(1,8n).
 This array is used in complex flavors only.
```


## Output Parameters

[^2]```
alphar,alphai REAL for sggev;
    DOUBLE PRECISION for dggev.
    Arrays, DIMENSION at least max (1,n) each. Contain values that form
    generalized eigenvalues in real flavors.
    See beta.
alpha COMPLEX for cggev;
    DOUBLE COMPLEX for zggev.
    Array, DIMENSION at least max(1,n). Contain values that form generalized
    eigenvalues in complex flavors. See beta.
beta REAL for sggev
    DOUBLE PRECISION for dggev
    COMPLEX for cggev
    DOUBLE COMPLEX for zggev.
    Array, DIMENSION at least max(1,n).
    For real flavors:
    On exit, (alphar(j) + alphai(j)*i)/beta(j), j=1,...,n, will be the generalized
    eigenvalues.
    If alphai(j) is zero, then the j-th eigenvalue is real; if positive, then the j-th
    and (j+1)-st eigenvalues are a complex conjugate pair, with alphai(j+1)
    negative.
    For complex flavors:
    On exit, alpha(j)/beta(j), }\textrm{j}=1,\ldots,n,\mathrm{ will be the generalized eigenvalues.
    See also Application Notes below.
vl, vr REAL for sggev
    DOUBLE PRECISION for dggev
    COMPLEX for cggev
    DOUBLE COMPLEX for zggev.
    Arrays:
    vl (ldvl,*); the second dimension of vl must be at least max(1,n).
    If jobvl = 'v', the left generalized eigenvectors }u(\textrm{j})\mathrm{ are stored one after
    another in the columns of vl, in the same order as their eigenvalues. Each
    eigenvector will be scaled so the largest component have abs(Re)+abs(Im)=
    1. If jobvl = 'N', vl is not referenced.
    For real flavors:
    If the j-th eigenvalue is real, then }u(\textrm{j})=vl(:,\textrm{j}), the j-th column of vl. If the j-th
    and (j+1)-st eigenvalues form a complex conjugate pair, then }u(\textrm{j})=vl(:,\textrm{j})
    i*vl(:,j+1) and }u(\textrm{j}+1)=vl(:,\textrm{j})-i*vl(:,\textrm{j}+1),\mathrm{ where }i=\sqrt{}{-1}
```

For complex flavors:
$u(\mathrm{j})=v \mathrm{l}(: \mathrm{j})$, the j -th column of vl .
$v r(l d v r, *)$; the second dimension of $v r$ must be at least $\max (1, n)$.
If jobvr = ' V ', the right generalized eigenvectors $v(\mathrm{j})$ are stored one after another in the columns of $v r$, in the same order as their eigenvalues. Each eigenvector will be scaled so the largest component have $\mathrm{abs}(\mathrm{Re})+\mathrm{abs}(\mathrm{Im})=$ 1. If jobvr = N ', $v r$ is not referenced.

For real flavors:
If the j -th eigenvalue is real, then $v(\mathrm{j})=v r(:, \mathrm{j})$, the j -th column of $v r$. If the j -th and $(\mathrm{j}+1)$-st eigenvalues form a complex conjugate pair, then $v(\mathrm{j})=\operatorname{vr}(:, \mathrm{j})+$ $i \star \operatorname{vr}(:, \mathrm{j}+1)$ and $v(\mathrm{j}+1)=\operatorname{vr}(:, \mathrm{j})-i^{\star} \operatorname{vr}(:, \mathrm{j}+1)$.

For complex flavors:
$v(\mathrm{j})=v r(:, \mathrm{j})$, the j -th column of vr .
work (1) On exit, if info $=0$, then work (1) returns the required minimal size of lwork.
info INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the i th parameter had an illegal value.
If info $=i$, and
$i \leq n$:
the $Q Z$ iteration failed. No eigenvectors have been calculated, but alphar(j), alphai(j) (for real flavors), or alpha(j) (for complex flavors), and beta(j), $\mathrm{j}=$ info $+1, \ldots, \mathrm{n}$ should be correct.
$i>n$: errors that usually indicate LAPACK problems:
$i=n+1$: other than $Q Z$ iteration failed in ?hgeqz;
$i=n+2$: error return from ?tgevc.

Application Notes

If you are in doubt how much workspace to supply for the array work, use a generous value of 1 work for the first run. On exit, examine work (1) and use this value for subsequent runs.

The quotients alphar(j)/beta(j) and alphai(j)/beta(j) may easily over- or underflow, and beta(j) may even be zero. Thus, you should avoid simply computing the ratio. However, alphar and alphai (for real flavors) or alpha (for complex flavors) will be always less than and usually comparable with $\operatorname{norm}(A)$ in magnitude, and beta always less than and usually comparable with norm(B).

?ggevx

Computes the generalized eigenvalues, and, optionally,
the left and/or right generalized eigenvectors.

Syntax

```
call sggevx ( balanc, jobvl, jobvr, sense, n, a, lda, b, ldb,
    alphar, alphai, beta, vl, ldvl, vr, ldvr, ilo, ihi
    lscale, rscale, abnrm, bbnrm, rconde, rcondv, work,
    lwOrk, iwOrk, bwork, info)
call dggevx ( balanc, jobvl, jobvr, sense, n, a, lda, b, ldb,
    alphar, alphai, beta, vl, ldvl, vr, ldvr, ilo, ihi,
    lscale, rscale, abnrm, bbnrm, rconde, rcondv, work,
    lwork, iwork, bwork, info)
call cggevx ( balanc, jobvl, jobvr, sense, n, a, lda, b, ldb,
    alpha, beta, vl, ldvl, vr, ldvr, ilo, ihi,
    lscale, rscale, abnrm, bbnrm, rconde, rcondv, work,
    lwork, rwork, iwork, bwork, info)
call zggevx ( balanc, jobvl, jobvr, sense, n, a, lda, b, ldb,
    alpha, beta, vl, ldvl, vr, ldvr, ilo, ihi,
    lscale, rscale, abnrm, bbnrm, rconde, rcondv, work,
    lwork, rwork, iwork, bwork, info)
```


Description

This routine computes for a pair of n-by- n real/complex nonsymmetric matrices (A, B), the generalized eigenvalues, and optionally, the left and/or right generalized eigenvectors.

Optionally also, it computes a balancing transformation to improve the conditioning of the eigenvalues and eigenvectors (ilo, ihi, lscale, rscale, abnrm, and bbnrm), reciprocal condition numbers for the eigenvalues (rconde), and reciprocal condition numbers for the right eigenvectors (r condv).

A generalized eigenvalue for a pair of matrices (A, B) is a scalar λ or a ratio alpha / beta $=\lambda$, such that $A-\lambda * B$ is singular. It is usually represented as the pair (alpha, beta), as there is a reasonable interpretation for beta $=0$ and even for both being zero.
The right generalized eigenvector $v(\mathrm{j})$ corresponding to the generalized eigenvalue $\lambda(\mathrm{j})$ of (A, B) satisfies

$$
A * v(\mathrm{j})=\lambda(\mathrm{j}) * B * v(\mathrm{j}) .
$$

The left generalized eigenvector $u(\mathrm{j})$ corresponding to the generalized eigenvalue $\lambda(\mathrm{j})$ of (A, B) satisfies

$$
u(\mathrm{j})^{H_{\star}} A=\lambda(\mathrm{j}) \star u(\mathrm{j})^{H_{\star}} B
$$

where $u(\mathrm{j})^{H}$ denotes the conjugate transpose of $u(\mathrm{j})$.
Input Parameters
balanc CHARACTER*1. Must be 'N', 'P', 'S', or 'B'. Specifies the balance option to be performed.
If balanc $=1 \mathrm{~N}$ ', do not diagonally scale or permute;
If balanc $=1 \mathrm{P}^{\prime}$, permute only;
If balanc='S', scale only; If balanc $=$ ' B ', both permute and scale.

Computed reciprocal condition numbers will be for the matrices after balancing and/or permuting. Permuting does not change condition numbers (in exact arithmetic), but balancing does.
jobvl CHARACTER*1. Must be 'N' or 'V'. If jobvl=' N , the left generalized eigenvectors are not computed; If jobvl='V', the left generalized eigenvectors are computed.
jobvr CHARACTER*1. Must be 'N' or 'V'. If jobvr $=$ ' N ', the right generalized eigenvectors are not computed; If jobvr $=1 \mathrm{~V}$ ', the right generalized eigenvectors are computed.
sense CHARACTER*1. Must be 'N', 'E', 'V', or 'B'. Determines which reciprocal condition number are computed.

If sense $=$ ' N ', none are computed;
If sense $=$ ' E ', computed for eigenvalues only;
If sense $=1 \mathrm{~V}$ ', computed for eigenvectors only;
If sense $=$ ' ${ }^{\prime}$ ', computed for eigenvalues and eigenvectors.
n
integer. The order of the matrices $A, B, v 1$, and $v r(n \geq 0)$.
a, b, work
REAL for sggevx
DOUBLE PRECISION for dggevx
COMPLEX for cggevx
DOUBLE COMPLEX for zggevx.
Arrays:

LOGICAL.
Workspace array, DIMENSION at least max $(1, n)$.
Not referenced if sense $=1 \mathrm{~N}$ '.

Output Parameters

| a, b | On exit, these arrays have been overwritten. |
| :---: | :---: |
| | If jobvl $=^{\prime} V^{\prime}$ or jobvr $=' V '$ or both, then a contains the first part of the real Schur form of the "balanced" versions of the input A and B, and b contains its second part. |
| alphar, alphai | REAL for sggevx;
 DOUBLE PRECISION for dggevx. |
| | Arrays, DIMENSION at least max $(1, n)$ each. Contain values that form generalized eigenvalues in real flavors. |
| | See beta. |
| alpha | COMPLEX for cggevx; |
| | DOUBLE COMPLEX for zggevx. |
| | Array, DIMENSION at least max $(1, n)$. Contain values that form generalized eigenvalues in complex flavors. See beta. |
| beta | REAL for sggevx |
| | DOUBLE PRECISION for dggevx |
| | COMPLEX for cggevx |
| | DOUBLE COMPLEX for zggevx. |
| | Array, DIMENSION at least max $(1, n)$. |
| | For real flavors: |
| | On exit, (alphar(j$)+\operatorname{alphai}(\mathrm{j}) \star \mathrm{i}) / \operatorname{beta}(\mathrm{j}), \mathrm{j}=1, \ldots, n$, will be the generalized eigenvalues. |
| | If alphai(j$)$ is zero, then the j -th eigenvalue is real; if positive, then the j -th and $(\mathrm{j}+1)$-st eigenvalues are a complex conjugate pair, with alphai $(\mathrm{j}+1)$ negative. |
| | For complex flavors: |
| | On exit, alpha(j)/beta(j), $\mathrm{j}=1, \ldots, n$, will be the generalized eigenvalues. |
| | See also Application Notes below. |
| vl, vr | REAL for sggevx |
| | DOUBLE PRECISION for dggevx |
| | COMPLEX for cggevx |
| | DOUBLE COMPLEX for zggevx. |
| | Arrays: |
| | $v l(l d v l, *)$; the second dimension of $v 1$ must be at least max $(1, n)$. |
| | If jobvl ='V', the left generalized eigenvectors $u(\mathrm{j})$ are stored one after another in the columns of $v l$, in the same order as their eigenvalues. Each eigenvector will be scaled so the largest component have $\operatorname{abs}(\operatorname{Re})+\operatorname{abs}(\mathrm{Im})=$ |

1. If jobvl = ' N ', vl is not referenced.

For real flavors:

If the j -th eigenvalue is real, then $u(\mathrm{j})=v \geq(:, \mathrm{j})$, the j -th column of v 1 . If the j -th and $(\mathrm{j}+1)$-st eigenvalues form a complex conjugate pair, then $u(\mathrm{j})=v l(:, \mathrm{j})+$ $i^{*} v l(:, \mathrm{j}+1)$ and $u(\mathrm{j}+1)=v l(:, \mathrm{j})-i \star v l(:, \mathrm{j}+1)$, where $i=\sqrt{-1}$.

For complex flavors:
$u(\mathrm{j})=v \mathrm{l}(: \mathrm{j})$, the j -th column of vl .
$v r(l d v r, *)$; the second dimension of $v r$ must be at least $\max (1, n)$.
If jobvr $=1 \mathrm{~V}$ ', the right generalized eigenvectors $v(\mathrm{j})$ are stored one after another in the columns of $v r$, in the same order as their eigenvalues. Each eigenvector will be scaled so the largest component have abs(Re) $+\mathrm{abs}(\mathrm{Im})=$ 1. If jobvr = ' N ', vr is not referenced.

For real flavors:
If the j -th eigenvalue is real, then $v(\mathrm{j})=v r(:, \mathrm{j})$, the j -th column of $v r$. If the j -th and $(\mathrm{j}+1)$-st eigenvalues form a complex conjugate pair, then $v(\mathrm{j})=\operatorname{vr}(:, \mathrm{j})+$ $i * v r(:, j+1)$ and $v(j+1)=v r(:, j)-i * v r(:, j+1)$.

For complex flavors:
$v(\mathrm{j})=v r(:, \mathrm{j})$, the j -th column of vr .
ilo, ihi
INTEGER.
ilo and ihi are integer values such that on exit
$A(\mathrm{i}, \mathrm{j})=0$ and $B(\mathrm{i}, \mathrm{j})=0$ if $\mathrm{i}>\mathrm{j}$ and $\mathrm{j}=1, \ldots$, ilo-1 or
$\mathrm{i}=\mathrm{ihi}+1, \ldots, n$.
If balanc $=$ 'N'or 'S', ilo $=1$ and $i h i=n$.
lscale, rscale REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
Arrays, DIMENSION at least max $(1, n)$ each.
lscale contains details of the permutations and scaling factors applied to the left side of A and B.
If $P L(\mathrm{j})$ is the index of the row interchanged with row j , and $D L(\mathrm{j})$ is the scaling factor applied to row j , then

$$
\begin{array}{r}
\text { lscale }(\mathrm{j})=P L(\mathrm{j}), \quad \text { for } \mathrm{j}=1, \ldots, i l o-1 \\
=D L(\mathrm{j}), \quad \text { for } \mathrm{j}=i l o, \ldots, i h i \\
=P L(\mathrm{j}) \quad \text { for } \mathrm{j}=i h i+1, \ldots, n .
\end{array}
$$

The order in which the interchanges are made is n to ihi $i+1$, then 1 to ilo- 1 .
rscale contains details of the permutations and scaling factors applied to the right side of A and B.
If $P R(\mathrm{j})$ is the index of the column interchanged with column j , and $D R(\mathrm{j})$ is the scaling factor applied to column j , then

$$
\begin{aligned}
\text { rscale }(\mathrm{j}) & =P R(\mathrm{j}), \quad \text { for } \mathrm{j}=1, \ldots, i l o-1 \\
= & D R(\mathrm{j}), \quad \text { for } \mathrm{j}=i l o, \ldots, i h i \\
= & P R(\mathrm{j}) \quad \text { for } \mathrm{j}=i h i+1, \ldots, n .
\end{aligned}
$$

The order in which the interchanges are made is n to $i h i+1$, then 1 to $i l o-1$.
abnrm,bbnrm
REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
The one-norms of the balanced matrices A and B, respectively.
rconde, rcondv REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least $\max (1, n)$ each.
If sense $=\mathrm{E}$ ', or 'B', rconde contains the reciprocal condition numbers of the selected eigenvalues, stored in consecutive elements of the array. For a complex conjugate pair of eigenvalues two consecutive elements of rconde are set to the same value. Thus rconde(j), r condv(j), and the j-th columns of $v l$ and $v r$ all correspond to the same eigenpair (but not in general the j-th eigenpair, unless all eigenpairs are selected).
If sense $=1 \mathrm{~V}$ ', rconde is not referenced.
If sense $=$ ' V ', or ' B ', rcondv contains the estimated reciprocal condition numbers of the selected eigenvectors, stored in consecutive elements of the array. For a complex eigenvector two consecutive elements of r condv are set to the same value. If the eigenvalues cannot be reordered to compute $r \operatorname{condv}(\mathrm{j}), r \operatorname{condv}(\mathrm{j})$ is set to 0 ; this can only occur when the true value would be very small anyway.
If sense $=$ ' E , rcondv is not referenced.
work (1) On exit, if info $=0$, then work (1) returns the required minimal size of lwork.
info INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the i th parameter had an illegal value.
If info $=i$, and
$i \leq n$:
the $Q Z$ iteration failed. No eigenvectors have been calculated, but alphar(j), alphai(j) (for real flavors), or alpha(j) (for complex flavors), and beta(j), $\mathrm{j}=$ info $+1, \ldots, \mathrm{n}$ should be correct.
$i>n$: errors that usually indicate LAPACK problems:
$i=n+1$: other than $Q Z$ iteration failed in ?hgeqz;
$i=n+2$: error return from ? tgevc.

Application Notes

If you are in doubt how much workspace to supply for the array work, use a generous value of 1 work for the first run. On exit, examine work (1) and use this value for subsequent runs.

The quotients alphar(j)/beta(j) and alphai(j)/beta(j) may easily over- or underflow, and beta(j) may even be zero. Thus, you should avoid simply computing the ratio. However, alphar and alphai (for real flavors) or alpha (for complex flavors) will be always less than and usually comparable with $\operatorname{norm}(A)$ in magnitude, and beta always less than and usually comparable with norm(B).

LAPACK Auxiliary and Utility Routines

This chapter describes the Intel ${ }^{\circledR}$ Math Kernel Library implementation of LAPACK auxiliary and utility routines. The library includes auxiliary routines for both real and complex data.

Auxiliary Routines

Routine naming conventions, mathematical notation, and matrix storage schemes used for LAPACK auxiliary routines are the same as for the driver and computational routines described in previous chapters.

The table below summarizes information about the available LAPACK auxiliary routines.
Table 5-1 LAPACK Auxiliary Routines

| Routine Name | Data Types | Description |
| :---: | :---: | :---: |
| ?lacgv | C, z | Conjugates a complex vector. |
| ? lacrm | C, z | Multiplies a complex matrix by a square real matrix. |
| ?lacrt | C, z | Performs a linear transformation of a pair of complex vectors. |
| ?laesy | C, z | Computes the eigenvalues and eigenvectors of a 2-by-2 complex symmetric matrix. |
| ?rot | C, z | Applies a plane rotation with real cosine and complex sine to a pair of complex vectors. |
| ? spmv | C, z | Computes a matrix-vector product for complex vectors using a complex symmetric packed matrix |
| ? spr | C, z | Performs the symmetrical rank-1 update of a complex symmetric packed matrix. |
| ? symv | c, z | Computes a matrix-vector product for a complex symmetric matrix. |

Table 5-1 LAPACK Auxiliary Routines (continued)

| Routine Name | Data Types | Description |
| :---: | :---: | :---: |
| ? Syr | c, | Performs the symmetric rank-1 update of a complex symmetric matrix. |
| i? max1 | c, | Finds the index of the vector element whose real part has maximum absolute value. |
| ?sum1 | sc, dz | Forms the 1-norm of the complex vector using the true absolute value. |
| ? gbtf 2 | s,d,c,z | Computes the LU factorization of a general band matrix using the unblocked version of the algorithm. |
| ? $\mathrm{gebd2}$ | s, d, c, z | Reduces a general matrix to bidiagonal form using an unblocked algorithm. |
| ? $\mathrm{gehd2}$ | s,d,c,z | Reduces a general square matrix to upper Hessenberg form using an unblocked algorithm. |
| ? gelq 2 | s,d,c,z | Computes the LQ factorization of a general rectangular matrix using an unblocked algorithm. |
| ? geq 12 | s, d, c, z | Computes the QL factorization of a general rectangular matrix using an unblocked algorithm. |
| ? geq g 2 | s, d, c, z | Computes the QR factorization of a general rectangular matrix using an unblocked algorithm. |
| ? ${ }^{\text {gerq2 }}$ | s, d, c, z | Computes the $R Q$ factorization of a general rectangular matrix using an unblocked algorithm. |
| ? gesc 2 | s, d, c, z | Solves a system of linear equations using the LU factorization with complete pivoting computed by ?getc2. |
| ? $\mathrm{getc2}$ | s,d,c,z | Computes the LU factorization with complete pivoting of the general n-by-n matrix. |
| ? getf 2 | s,d,c,z | Computes the LU factorization of a general m by n matrix using partial pivoting with row interchanges (unblocked algorithm). |
| ? $\mathrm{gtts2}$ | s, d, c, z | Solves a system of linear equations with a tridiagonal matrix using the LU factorization computed by ?gttrf. |
| ? 1 abrd | s, d, c, z | Reduces the first $n b$ rows and columns of a general matrix to a bidiagonal form. |
| ? lacon | s,d,c,z | Estimates the 1-norm of a square matrix, using reverse communication for evaluating matrix-vector products. |
| ? 1 acpy | s,d,c,z | Copies all or part of one two-dimensional array to another. |
| ?ladiv | s,d,c,z | Performs complex division in real arithmetic, avoiding unnecessary overflow. |

Table 5-1 LAPACK Auxiliary Routines (continued)

| Routine Name | Data Types | Description |
| :---: | :---: | :---: |
| ?lae2 | s,d | Computes the eigenvalues of a 2-by-2 symmetric matrix. |
| ?laebz | s,d | Computes the number of eigenvalues of a real symmetric tridiagonal matrix which are less than or equal to a given value, and performs other tasks required by the routine ?stebz. |
| ?laed0 | s, d, c, z | Used by ?stedc. Computes all eigenvalues and corresponding eigenvectors of an unreduced symmetric tridiagonal matrix using the divide and conquer method. |
| ?laed1 | s,d | Used by sstedc/dstedc. Computes the updated eigensystem of a diagonal matrix after modification by a rank-one symmetric matrix. Used when the original matrix is tridiagonal. |
| ?laed2 | s,d | Used by sstedc/dstedc. Merges eigenvalues and deflates secular equation. Used when the original matrix is tridiagonal. |
| $\underline{\text { ? }}$ aed3 | s,d | Used by sstedc/dstedc. Finds the roots of the secular equation and updates the eigenvectors. Used when the original matrix is tridiagonal. |
| ?laed4 | s,d | Used by sstedc/dstedc. Finds a single root of the secular equation. |
| ?laed5 | s,d | Used by sstedc/dstedc. Solves the 2-by-2 secular equation. |
| ?laed6 | s,d | Used by sstedc/dstedc. Computes one Newton step in solution of the secular equation. |
| ?laed7 | s,d, c, z | Used by ?stedc. Computes the updated eigensystem of a diagonal matrix after modification by a rank-one symmetric matrix. Used when the original matrix is dense. |
| ?laed8 | s, d, c, z | Used by ?stedc. Merges eigenvalues and deflates secular equation. Used when the original matrix is dense. |
| ?laed9 | s,d | Used by sstedc/dstedc. Finds the roots of the secular equation and updates the eigenvectors. Used when the original matrix is dense. |
| ?laeda | s,d | Used by ?stedc. Computes the Z vector determining the rank-one modification of the diagonal matrix. Used when the original matrix is dense. |
| ?laein | s, d, c, z | Computes a specified right or left eigenvector of an upper Hessenberg matrix by inverse iteration. |
| ?laev2 | s, d, c, z | Computes the eigenvalues and eigenvectors of a 2-by-2 symmetric/Hermitian matrix. |

Table 5-1 LAPACK Auxiliary Routines (continued)

| Routine Name | Data
 Types | Description |
| :---: | :---: | :---: |
| ?laexc | s,d | Swaps adjacent diagonal blocks of a real upper quasi-triangular matrix in Schur canonical form, by an orthogonal similarity transformation. |
| ?lag2 | s,d | Computes the eigenvalues of a 2-by-2 generalized eigenvalue problem, with scaling as necessary to avoid over-/underflow. |
| ?lags2 | s,d | Computes 2-by-2 orthogonal matrices U, V, and Q, and applies them to matrices A and B such that the rows of the transformed A and B are parallel. |
| ?lagtf | s,d | Computes an LU factorization of a matrix $T-\lambda I$, where T is a general tridiagonal matrix, and λ a scalar, using partial pivoting with row interchanges. |
| ? lagtm | s,d,c,z | Performs a matrix-matrix product of the form $C=\alpha A B+\beta C$, where A is a tridiagonal matrix, B and C are rectangular matrices, and α and β are scalars, which may be 0,1 , or -1 . |
| ?lagts | s,d | Solves the system of equations $(T-\lambda I) x=y$ or $(T-\lambda I)^{T} x=y$,where T is a general tridiagonal matrix and λ a scalar, using the LU factorization computed by ? lagtf. |
| ? ${ }^{\text {lagv2 }}$ | s,d | Computes the Generalized Schur factorization of a real 2-by-2 matrix pencil (A, B) where B is upper triangular. |
| ? lahqr | s,d, c, z | Computes the eigenvalues and Schur factorization of an upper Hessenberg matrix, using the double-shift/single-shift QR algorithm. |
| ?lahrd | s,d, c, z | Reduces the first nb columns of a general rectangular matrix A so that elements below the k-th subdiagonal are zero, and returns auxiliary matrices which are needed to apply the transformation to the unreduced part of A. |
| ?laicl | s,d,c,z | Applies one step of incremental condition estimation. |
| ?laln2 | s,d | Solves a 1-by-1 or 2-by-2 linear system of equations of the specified form. |
| ?lals0 | s,d, c, z | Applies back multiplying factors in solving the least squares problem using divide and conquer SVD approach. Used by ?gelsd. |
| ?lalsa | s,d,c,z | Computes the SVD of the coefficient matrix in compact form. Used by ?gelsd. |
| ?lalsd | s,d, c, z | Uses the singular value decomposition of A to solve the least squares problem. |

Table 5-1 LAPACK Auxiliary Routines (continued)

| Routine Name | Data Types | Description |
| :---: | :---: | :---: |
| ? 1 amrg | s,d | Creates a permutation list to merge the entries of two independently sorted sets into a single set sorted in acsending order. |
| ? langb | s, d, c, z | Returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of general band matrix. |
| ? lange | s, d, c, z | Returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of a general rectangular matrix. |
| ?langt | s, d, c, z | Returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of a general tridiagonal matrix. |
| ?lanhs | s, d, c, z | Returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of an upper Hessenberg matrix. |
| ? lansb | s, d, c, z | Returns the value of the 1 -norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a symmetric band matrix. |
| ? lanhb | C, z | Returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a Hermitian band matrix. |
| ? 1 ansp | s, d, c, z | Returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a symmetric matrix supplied in packed form. |
| ?lanhp | C, z | Returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex Hermitian matrix supplied in packed form. |
| ?lanst/?lanht | s,d/c,z | Returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real symmetric or complex Hermitian tridiagonal matrix. |
| ?lansy | s,d, c, z | Returns the value of the 1 -norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real/complex symmetric matrix. |
| ?lanhe | C, z | Returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex Hermitian matrix. |

Table 5-1 LAPACK Auxiliary Routines (continued)

| Routine Name | Data Types | Description |
| :---: | :---: | :---: |
| ?lantb | s, d, c, z | Returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a triangular band matrix. |
| ?lantp | s,d, c, z | Returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a triangular matrix supplied in packed form. |
| ?lantr | s,d, c, z | Returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a trapezoidal or triangular matrix. |
| ? lanv2 | s,d | Computes the Schur factorization of a real 2-by-2 nonsymmetric matrix in standard form. |
| ?lapll | s,d,c,z | Measures the linear dependence of two vectors. |
| ? lapmt | s,d,c,z | Performs a forward or backward permutation of the columns of a matrix. |
| ? ${ }^{\text {lapy2 }}$ | s,d | Returns $\operatorname{sqrt}\left(x^{2}+y^{2}\right)$. |
| ?lapy3 | s,d | Returns sqrt $\left(x^{2}+y^{2}+z^{2}\right)$. |
| ? laqgb | s,d,c,z | Scales a general band matrix, using row and column scaling factors computed by ?gbequ. |
| ?laqge | s,d, c, z | Scales a general rectangular matrix, using row and column scaling factors computed by ?geequ. |
| $\xrightarrow{\text { ? }}$ aqp2 | s, d, c, z | Computes a QR factorization with column pivoting of the matrix block. |
| ?laqps | s,d, c, z | Computes a step of QR factorization with column pivoting of a real m-by-n matrix A by using BLAS level 3. |
| ? laqsb | s,d, c, z | Scales a symmetric/Hermitian band matrix, using scaling factors computed by ?pbequ. |
| $\xrightarrow{\text { ? }}$ aqsp | s,d, c, z | Scales a symmetric/Hermitian matrix in packed storage, using scaling factors computed by ?ppequ. |
| ?laqsy | s,d, c, z | Scales a symmetric/Hermitian matrix, using scaling factors computed by ?poequ. |
| ? laqtr | s,d | Solves a real quasi-triangular system of equations, or a complex quasi-triangular system of special form, in real arithmetic. |
| ?lar1v | s,d, c, z | Computes the (scaled) r-th column of the inverse of the submatrix in rows b1 through bn of the tridiagonal matrix $L D L^{T}-\sigma I$. |

Table 5-1 LAPACK Auxiliary Routines (continued)

| Routine Name | Data
 Types | Description |
| :---: | :---: | :---: |
| ? 1 ar 2 v | s,d, c, z | Applies a vector of plane rotations with real cosines and real/complex sines from both sides to a sequence of 2-by-2 symmetric/Hermitian matrices. |
| ? larf | s,d, c, z | Applies an elementary reflector to a general rectangular matrix. |
| ? larfb | s,d,c,z | Applies a block reflector or its transpose/conjugate-transpose to a general rectangular matrix. |
| ?larfg | s,d,c,z | Generates an elementary reflector (Householder matrix). |
| ?larft | s,d, c, z | Forms the triangular factor T of a block reflector $H=I-V T V^{H}$ |
| ?larfx | s,d, c, z | Applies an elementary reflector to a general rectangular matrix, with loop unrolling when the reflector has order ≤ 10. |
| ?largv | s,d, c, z | Generates a vector of plane rotations with real cosines and real/complex sines. |
| ?larnv | s,d, c, z | Returns a vector of random numbers from a uniform or normal distribution. |
| ? larrb | s,d | Provides limited bisection to locate eigenvalues for more accuracy. |
| ?larre | s,d | Given the tridiagonal matrix T, sets small off-diagonal elements to zero and for each unreduced block T_{i}, finds base representations and eigenvalues. |
| ?larrf | s,d | Finds a new relatively robust representation such that at least one of the eigenvalues is relatively isolated. |
| ?larrv | s,d,c,z | Computes the eigenvectors of the tridiagonal matrix $T=L D L^{T}$ given L, D and the eigenvalues of $L D L^{T}$. |
| ? lartg | s,d, c, z | Generates a plane rotation with real cosine and real/complex sine. |
| ?lartv | s,d, c, z | Applies a vector of plane rotations with real cosines and real/complex sines to the elements of a pair of vectors. |
| ?laruv | s,d | Returns a vector of n random real numbers from a uniform distribution. |
| ?larz | s,d,c,z | Applies an elementary reflector (as returned by ?tzrzf) to a general matrix. |
| ?larzb | s,d, c, z | Applies a block reflector or its transpose/conjugate-transpose to a general matrix. |
| ?larzt | s, d, c, z | Forms the triangular factor T of a block reflector $H=I-V T V^{H}$. |
| ?las2 | s,d | Computes singular values of a 2-by-2 triangular matrix. |
| ?lascl | s,d, c, z | Multiplies a general rectangular matrix by a real scalar defined as $c_{t o} / c_{\text {from }}$. |

Table 5-1 LAPACK Auxiliary Routines (continued)

| Routine Name | Data
 Types | Description |
| :---: | :---: | :---: |
| ?lasdo | s,d | Computes the singular values of a real upper bidiagonal n-by-m matrix B with diagonal d and off-diagonal e. Used by ? bdsdc. |
| ? $\mathrm{lasd1}$ | s,d | Computes the SVD of an upper bidiagonal matrix B of the specified size. Used by ?bdsdc. |
| ? 1 asd2 | s,d | Merges the two sets of singular values together into a single sorted set. Used by ?bdsdc. |
| ? 1 asd3 | s,d | Finds all square roots of the roots of the secular equation, as defined by the values in D and Z , and then updates the singular vectors by matrix multiplication. Used by ?bdsdc. |
| ? 1 asd4 | s,d | Computes the square root of the i-th updated eigenvalue of a positive symmetric rank-one modification to a positive diagonal matrix. Used by ?bdsdc. |
| ? ${ }^{\text {asd }}$ | s,d | Computes the square root of the i-th eigenvalue of a positive symmetric rank-one modification of a 2-by-2 diagonal matrix. Used by ?bdsdc. |
| ?lasd6 | s,d | Computes the SVD of an updated upper bidiagonal matrix obtained by merging two smaller ones by appending a row. Used by ?bdsdc. |
| ? $1 \mathrm{asd7}$ | s,d | Merges the two sets of singular values together into a single sorted set. Then it tries to deflate the size of the problem. Used by ?bdsdc. |
| ? 1 asd8 | s,d | Finds the square roots of the roots of the secular equation, and stores, for each element in D , the distance to its two nearest poles. Used by ?bdsdc. |
| ? ${ }^{\text {lasd9 }}$ | s,d | Finds the square roots of the roots of the secular equation, and stores, for each element in D, the distance to its two nearest poles. Used by ?bdsdc. |
| ?lasda | s,d | Computes the singular value decomposition (SVD) of a real upper bidiagonal matrix with diagonal d and off-diagonal e. Used by ?bdsdc. |
| ? ${ }^{\text {asdg }}$ | s,d | Computes the SVD of a real bidiagonal matrix with diagonal d and off-diagonal e. Used by ?bdsdc. |
| ? lasdt | s,d | Creates a tree of subproblems for bidiagonal divide and conquer. Used by ?bdsdc. |
| ? 1 aset | s, d, c, z | Initializes the off-diagonal elements and the diagonal elements of a matrix to given values. |

Table 5-1 LAPACK Auxiliary Routines (continued)

| Routine Name | Data Types | Description |
| :---: | :---: | :---: |
| ?lasq1 | s,d | Computes the singular values of a real square bidiagonal matrix. Used by ?bdsqr. |
| ?lasq2 | s,d | Computes all the eigenvalues of the symmetric positive definite tridiagonal matrix associated with the $q d$ Array z to high relative accuracy. Used by ?bdsqr and ?stegr. |
| ? 1 asq3 | s,d | Checks for deflation, computes a shift and calls $d q d s$. Used by ?bdsqr. |
| ? 1 asq4 | s,d | Computes an approximation to the smallest eigenvalue using values of d from the previous transform. Used by ?bdsqr. |
| ?lasq5 | s,d | Computes one $d q d s$ transform in ping-pong form. Used by ?bdsqr and ?stegr. |
| ? 1 asq6 | s,d | Computes one $d q d s$ transform in ping-pong form. Used by ?bdsqr and ?stegr. |
| ?lasr | s, d, c, z | Applies a sequence of plane rotations to a general rectangular matrix. |
| ?lasrt | s,d | Sorts numbers in increasing or decreasing order. |
| ?lassq | s,d,c,z | Updates a sum of squares represented in scaled form. |
| ?lasv2 | s,d | Computes the singular value decomposition of a 2-by-2 triangular matrix. |
| ?laswp | s, d, c, z | Performs a series of row interchanges on a general rectangular matrix. |
| ?lasy2 | s,d | Solves the Sylvester matrix equation where the matrices are of order 1 or 2. |
| ?lasyf | s,d, c, z | Computes a partial factorization of a real/complex symmetric matrix, using the diagonal pivoting method. |
| ?lahef | C, z | Computes a partial factorization of a complex Hermitian indefinite matrix, using the diagonal pivoting method. |
| $\xrightarrow{\text { ? latbs }}$ | s, d, c, z | Solves a triangular banded system of equations. |
| ?latdf | s, d, c, z | Uses the LU factorization of the n-by-n matrix computed by ? getc2 and computes a contribution to the reciprocal Dif-estimate. |
| ?latps | s, d, c, z | Solves a triangular system of equations with the matrix held in packed storage. |

Table 5-1 LAPACK Auxiliary Routines (continued)

| Routine Name | Data Types | Description |
| :---: | :---: | :---: |
| ?latrd | s,d,c,z | Reduces the first nb rows and columns of a symmetric/Hermitian matrix A to real tridiagonal form by an orthogonal/unitary similarity transformation. |
| ?latrs | s,d,c,z | Solves a triangular system of equations with the scale factor set to prevent overflow. |
| ?latrz | s,d, c, z | Factors an upper trapezoidal matrix by means of orthogonal/unitary transformations. |
| ?lauu2 | s,d,c,z | Computes the product $U U^{H}$ or $L^{H} L$, where U and L are upper or lower triangular matrices (unblocked algorithm). |
| ?lauum | s,d,c,z | Computes the product $U U^{H}$ or $L^{H} L$, where U and L are upper or lower triangular matrices. |
| ? org2l/?ung2l | s,d/c,z | Generates all or part of the orthogonal/unitary matrix Q from a QL factorization determined by ?geqlf (unblocked algorithm). |
| ? org2r/?ung2r | s,d/c,z | Generates all or part of the orthogonal/unitary matrix Q from a QR factorization determined by ?geqrf (unblocked algorithm). |
| ?orgl2/?ungl2 | s,d/c,z | Generates all or part of the orthogonal/unitary matrix Q from an LQ factorization determined by ?gelqf (unblocked algorithm). |
| ?orgr2/?ungr2 | s,d/c,z | Generates all or part of the orthogonal/unitary matrix Q from an $R Q$ factorization determined by ?gerqf (unblocked algorithm). |
| ? orm2l/?unm21 | s,d/c,z | Multiplies a general matrix by the orthogonal/unitary matrix from a QL factorization determined by ?geqlf (unblocked algorithm). |
| ?orm2r/?unm2r | s,d/c,z | Multiplies a general matrix by the orthogonal/unitary matrix from a QR factorization determined by ?geqrf (unblocked algorithm). |
| ? orml2/?unml2 | s,d/c,z | Multiplies a general matrix by the orthogonal/unitary matrix from a LQ factorization determined by ?gelqf (unblocked algorithm). |
| ? ormr2/?unmr2 | s,d/c,z | Multiplies a general matrix by the orthogonal/unitary matrix from a RQ factorization determined by ?gerqf (unblocked algorithm). |
| ? ormr3/?unmr3 | s,d/c,z | Multiplies a general matrix by the orthogonal/unitary matrix from a RZ factorization determined by ?tzrzf (unblocked algorithm). |
| ?pbtf2 | s,d,c,z | Computes the Cholesky factorization of a symmetric/ Hermitian positive definite band matrix (unblocked algorithm). |
| ?potf2 | s, d, c, z | Computes the Cholesky factorization of a symmetric/Hermitian positive definite matrix (unblocked algorithm). |
| ? ${ }^{\text {ptts2 }}$ | s,d,c,z | Solves a tridiagonal system of the form $A X=B$ using the $L D L^{H}$ factorization computed by ?pttrf. |

Table 5-1 LAPACK Auxiliary Routines (continued)

| Routine Name | Data Types | Description |
| :---: | :---: | :---: |
| ?rscl | $\begin{aligned} & \mathrm{s}, \mathrm{~d}, \mathrm{cs}, \\ & \mathrm{zd} \end{aligned}$ | Multiplies a vector by the reciprocal of a real scalar. |
| ?sygs2/?hegs2 | s,d/c,z | Reduces a symmetric/Hermitian definite generalized eigenproblem to standard form, using the factorization results obtained from ?potrf (unblocked algorithm). |
| ?sytd2/?hetd2 | s,d/c, z | Reduces a symmetric/Hermitian matrix to real symmetric tridiagonal form by an orthogonal/unitary similarity transformation (unblocked algorithm). |
| ? sytf2 | s, d, c, z | Computes the factorization of a real/complex symmetric indefinite matrix, using the diagonal pivoting method (unblocked algorithm). |
| ?hetf2 | C, z | Computes the factorization of a complex Hermitian matrix, using the diagonal pivoting method (unblocked algorithm). |
| $\underline{\text { ?tgex } 2}$ | s,d, c, z | Swaps adjacent diagonal blocks in an upper (quasi) triangular matrix pair by an orthogonal/unitary equivalence transformation. |
| ? tgsy2 | s, d, c, z | Solves the generalized Sylvester equation (unblocked algorithm). |
| ?trti2 | s, d, c, z | Computes the inverse of a triangular matrix (unblocked algorithm). |

?lacgv

Conjugates a complex vector.

Syntax

```
call clacgv( n, x, incx )
call zlacgv( n, x, incx )
```


Description

This routine conjugates a complex vector x of length n and increment incx (see "Vector Arguments in BLAS" in Appendix B).

Input Parameters

n
INTEGER. The length of the vector $x(n \geq 0)$.

```
x COMPLEX for clacgv
    COMPLEX*16 for zlacgv.
    Array, dimension (1+(n-1)* |incx|).
    Contains the vector of length }n\mathrm{ to be conjugated.
incx INTEGER. The spacing between successive elements
    of x.
```


Output Parameters

$x \quad$ On exit, overwritten with conjg(x).

?lacrm

Multiplies a complex matrix by a square real matrix.

Syntax

```
call clacrm( m, n, a, lda, b, ldb, c, ldc, rwork )
call zlacrm( m, n, a, lda, b, ldb, c, ldc, rwork )
```


Description

This routine performs a simple matrix-matrix multiplication of the form

$$
C=A * B
$$

where A is m-by- n and complex, B is n-by- n and real, C is $m-b y-n$ and complex.

Input Parameters

$m \quad$ INTEGER. The number of rows of the matrix A and of the matrix $C(m \geq 0)$.
n
a
lda

INTEGER. The number of columns and rows of the matrix B and the number of columns of the matrix C ($n \geq 0$).

COMPLEX for clacrm COMPLEX*16 for zlacrm

Array, DIMENSION (lda, n). Contains the m-by-n matrix A. INTEGER. The leading dimension of the array a, $I d a \geq \max (1, m)$.
b
REAL for clacrm
DOUBLE PRECISION for zlacrm
Array, DIMENSION ($1 \mathrm{db}, n$). Contains the $n-b y-n$ matrix B.
Idb INTEGER. The leading dimension of the array b, $1 d b \geq \max (1, n)$.

INTEGER. The leading dimension of the output array c, $1 d c \geq \max (1, n)$.
rwork
REAL for clacrm
DOUBLE PRECISION for zlacrm
Workspace array, DIMENSION $(2 * m * n)$.

Output Parameters

c
COMPLEX for clacrm
COMPLEX*16 for zlacrm
Array, DIMENSION (Idc, n). Contains the m-by-n matrix C.

?lacrt

Performs a linear transformation of a pair of complex
vectors.

Syntax

```
call clacrt( n, cx, incx, cy, incy, c, s )
call zlacrt( n, cx, incx, cy, incy, c, s )
```


Description

This routine performs the following transformation

$$
\left(\begin{array}{rr}
c & s \\
-s & c
\end{array}\right)\binom{x}{y} \Rightarrow\binom{x}{y}
$$

where c, s are complex scalars and x, y are complex vectors.

Input Parameters

| n | INTEGER. The number of elements in the vectors $c x$ and $c y(n \geq 0)$. |
| :--- | :--- |
| $c x, C y$ | COMPLEX for clacrt
 COMPLEX*16 for zlacrt |
| incx | Arrays, dimension (n).
 Contain input vectors x and y, respectively. |
| incy | INTEGER. The increment between successive elements
 of $c x$. |
| c, s | INTEGER. The increment between successive elements
 of $c y$. |
| COMPLEX for clacrt
 COMPLEX*16 for zlacrt | |
| Complex scalars that define the transform matrix | |

$\left[\begin{array}{cc}c & s \\ -s & c\end{array}\right]$

Output Parameters

| $c x$ | On exit, overwritten with $c^{\star} x+s^{\star} y$. |
| :--- | :--- |
| $c y$ | On exit, overwritten with $-s^{\star} x+c^{\star} y$. |

?laesy

Computes the eigenvalues and eigenvectors of a 2-by-2 complex symmetric matrix, and checks that the norm of the matrix of eigenvectors is larger than a threshold value.

Syntax

```
call claesy( a, b, c, rt1, rt2, evscal, cs1, sn1 )
call zlaesy( a, b, c, rt1, rt2, evscal, cs1, sn1 )
```


Description

This routine performs the eigendecomposition of a 2-by-2 symmetric matrix

$$
\left[\begin{array}{ll}
a & b \\
b & c
\end{array}\right]
$$

provided the norm of the matrix of eigenvectors is larger than some threshold value.
$r t 1$ is the eigenvalue of larger absolute value, and $r t 2$ of smaller absolute value. If the eigenvectors are computed, then on return ($c s 1, s n 1$) is the unit eigenvector for $r t 1$, hence

$$
\left[\begin{array}{cc}
c s 1 & s n 1 \\
-s n 1 & c s 1
\end{array}\right] \cdot\left[\begin{array}{ll}
a & b \\
b & c
\end{array}\right] \cdot\left[\begin{array}{cc}
c s 1 & -s n 1 \\
s n 1 & c s 1
\end{array}\right]=\left[\begin{array}{cc}
r t 1 & 0 \\
0 & r t 2
\end{array}\right]
$$

Input Parameters

```
a, b, c COMPLEX for claesy
    COMPLEX*16 for zlaesy
```

Elements of the input matrix.

Output Parameters

```
rt1, rt2 COMPLEX for claesy
    COMPLEX*16 for zlaesy
```

Eigenvalues of larger and smaller modulus, respectively.
evscal COMPLEX for claesy COMPLEX*16 for zlaesy

The complex value by which the eigenvector matrix was scaled to make it orthonormal. If evscal is zero, the eigenvectors were not computed. This means one of two things: the 2-by-2 matrix could not be diagonalized, or the norm of the matrix of eigenvectors before scaling was larger than the threshold value thresh (set to 0.1 E 0).
cs1, sn1 COMPLEX for claesy
COMPLEX*16 for zlaesy
If evscal is not zero, then (cs1, sn1) is the unit right eigenvector for $r t 1$.

?rot

Applies a plane rotation with real cosine and complex sine to a pair of complex vectors.

Syntax

```
call crot( n, cx, incx, cy, incy, c, s )
call zrot( n, cx, incx, cy, incy, c, s )
```


Description

This routine applies a plane rotation, where the cosine (c) is real and the sine (s) is complex, and the vectors $c x$ and $c y$ are complex. This routine has its real equivalents in BLAS (see ?rot in Chapter 2).

Input Parameters

n

CX, CY
incx
incy

C
s

INTEGER. The number of elements in the vectors cx and cy.
COMPLEX for crot COMPLEX*16 for zrot Arrays of dimension (n), contain input vectors x and y, respectively.

INTEGER. The increment between successive elements of $C x$.

INTEGER. The increment between successive elements of $c y$.

REAL for crot DOUBLE PRECISION for zrot

COMPLEX for crot COMPLEX* 16 for zrot Values that define a rotation
$\left[\begin{array}{cc}c & s \\ -\operatorname{conjg}(s) & c\end{array}\right]$
where $c^{*} c+s^{*} \operatorname{conjg}(s)=1.0$.

Output Parameters

```
cx On exit, overwritten with c*x + s*y.
cy On exit, overwritten with -conjg(s)*x + c*y.
```


?spmv

Computes a matrix-vector product for complex vectors using a complex symmetric packed matrix.

Syntax

```
call cspmv( uplo, n, alpha, ap, x, incx, beta, y, incy )
```

```
call zspmv( uplo, n, alpha, ap, x, incx, beta, y, incy )
```


Description

These routines perform a matrix-vector operation defined as

```
y := alpha*a*x + beta*y,
```

where:
alpha and beta are complex scalars,
x and y are n-element complex vectors
a is an n-by- n complex symmetric matrix, supplied in packed form.
These routines have their real equivalents in BLAS (see ?spmv in Chapter 2).
Input Parameters

| alpha, beta | COMPLEX for cspmv |
| :---: | :---: |
| | COMPLEX*16 for zspmv |
| | Specify complex scalars alpha and beta. When beta is supplied as zero, then y need not be set on input. |
| ap | COMPLEX for cspmv |
| | COMPLEX*16 for zspmv |
| | Array, DIMENSION at least $((n *(n+1)) / 2)$. Before entry, with uplo = 'U' or 'u', the array ap must contain the upper triangular part of the symmetric matrix packed sequentially, column-by-column, so that $a p(1)$ contains $a(1$, |
| | 1), $a p(2)$ and $a p(3)$ contain $a(1,2)$ and $a(2,2)$ respectively, and so on. Before entry, with uplo = 'L' or 'l', the array ap must contain the lower triangular part of the symmetric matrix packed sequentially, column-by-column, so that $a p(1)$ contains $a(1,1), a p(2)$ and $a p(3)$ contain $a(2,1)$ and $a(3,1)$ respectively, and so on. |
| x | COMPLEX for cspmv |
| | COMPLEX*16 for zspmv |
| | Array, DIMENSION at least $(1+(n-1) * a b s(i n c x))$. Before entry, the incremented array x must contain the n-element vector x. |
| incx | integer. Specifies the increment for the elements of x. The value of incx must not be zero. |
| Y | COMPLEX for cspmv |
| | COMPLEX*16 for zspmv |
| | Array, DIMENSION at least $(1+(n-1) * a b s(i n c y))$. Before entry, the incremented array y must contain the n-element vector y. |
| incy | INTEGER. Specifies the increment for the elements of y. The value of incy must not be zero. |
| Output Param | ters |

[^3]
?spr

Performs the symmetrical rank-1 update of a complex

 symmetric packed matrix.
Syntax

```
call cspr( uplo, n, alpha, x, incx, ap )
call zspr( uplo, n, alpha, x, incx, ap )
```


Description

The ?spr routines perform a matrix-vector operation defined as

```
a:= alpha*x*conjg(x') + a,
```

where:
alpha is a complex scalar
x is an n-element complex vector
a is an n-by- n complex symmetric matrix, supplied in packed form.
These routines have their real equivalents in BLAS (see ?spr in Chapter 2).

Input Parameters

| uplo | CHARACTER*1. Specifies whether the upper or lower triangular part of the matrix a is supplied in the packed array ap, as follows: |
| :---: | :---: |
| | If uplo ='U' or 'u', the upper triangular part of the matrix a is supplied in the array ap.
 If uplo = 'L' or 'l', the lower triangular part of the matrix a is supplied in the array ap. |
| n | INTEGER. Specifies the order of the matrix a. The value of n must be at least zero. |
| alpha | COMPLEX for cspr |
| | COMPLEX*16 for zspr |
| | Specifies the scalar alpha. |

| x | COMPLEX for cspr |
| :--- | :--- |
| | COMPLEX* 16 for zspr |

Array, DIMENSION at least ($1+(n-1) * a b s($ incx $)$). Before entry, the incremented array x must contain the n-element vector x.
incx INTEGER. Specifies the increment for the elements of x. The value of incx must not be zero.
ap COMPLEX for cspr
COMPLEX*16 for zspr
Array, DIMENSION at least $\left(\left(n^{*}(n+1)\right) / 2\right)$. Before entry, with uplo = 'U' or 'u', the array ap must contain the upper triangular part of the symmetric matrix packed sequentially, column-by-column, so that $a p(1)$ contains $a(1,1), a p(2)$ and $a p(3)$ contain $a(1,2)$ and $a(2,2)$ respectively, and so on.

Before entry, with uplo = 'L' or 'l', the array ap must contain the lower triangular part of the symmetric matrix packed sequentially, column-by-column, so that $a p(1)$ contains $a(1,1), a p(2)$ and $a p(3)$ contain $a(2,1)$ and $a(3,1)$ respectively, and so on.

Note that the imaginary parts of the diagonal elements need not be set, they are assumed to be zero, and on exit they are set to zero.

Output Parameters

With uplo = 'U' or 'u', overwritten by the upper triangular part of the updated matrix.
With uplo = 'L' or 'l', overwritten by the lower triangular part of the updated matrix.

?symv

Computes a matrix-vector product for a complex
symmetric matrix.

Syntax

call csymv(uplo, $n, ~ a l p h a, ~ a, ~ l d a, ~ x, ~ i n c x, ~ b e t a, ~ y, ~ i n c y ~) ~$
call zsymv(uplo, $n, ~ a l p h a, ~ a, ~ l d a, ~ x, ~ i n c x, ~ b e t a, ~ y, ~ i n c y ~) ~$

Description

These routines perform the matrix-vector operation defined as
y := alpha*a*x + beta* y,
where:
alpha and beta are complex scalars
x and y are n-element complex vectors
a is an n-by- n symmetric complex matrix.
These routines have their real equivalents in BLAS (see ?symv in Chapter 2).

Input Parameters

| uplo | CHARACTER*1. Specifies whether the upper or lower triangular part of the array a is to be referenced, as follows: |
| :---: | :---: |
| | If uplo= 'U' or 'u', the upper triangular part of the array a is to be referenced.
 If uplo='L' or 'l', the lower triangular part of the array a is to be referenced. |
| n | INTEGER. Specifies the order of the matrix a. The value of n must be at least zero. |
| alpha, beta | COMPLEx for csymv
 COMPLEX*16 for zsymv |
| | Specify the scalars alpha and beta. When beta is supplied as zero, then y need not be set on input. |
| a | COMPLEX for csymv
 COMPLEX*16 for zsymv |
| | Array, DIMENSION (Ida, n). Before entry with $u p l o=$ ' U ' or ' u ', the leading n-by- n upper triangular part of the array a must contain the upper triangular part of the symmetric matrix and the strictly lower triangular part of a is not referenced. Before entry with uplo='L' or ' 1 ', the leading n-by-n lower triangular part of the array a must contain the lower triangular part of the symmetric matrix and the strictly upper triangular part of a is not referenced. |
| lda | INTEGER. Specifies the first dimension of a as declared in the calling (sub)program. The value of 1 da must be at least $\max (1, n)$. |

| x | COMPLEX for csymv |
| :---: | :---: |
| | COMPLEX*16 for zsymv |
| | Array, DIMENSION at least $(1+(n-1) * a b s(i n c x))$. Before entry, the incremented array x must contain the n-element vector x. |
| incx | INTEGER. Specifies the increment for the elements of x. The value of incx must not be zero. |
| y | COMPLEX for csymv |
| | COMPLEX*16 for zsymv |
| | Array, DIMENSION at least $(1+(n-1) * a b s(i n c y))$. Before entry, the incremented array y must contain the n-element vector y. |
| incy | INTEGER. Specifies the increment for the elements of y. The value of incy must not be zero. |
| Output Parameters | |
| Y | Overwritten by the updated vector y. |

?syr

Performs the symmetric rank-1 update of a complex symmetric matrix.

Syntax

```
call csyr( uplo, n, alpha, x, incx, a, lda )
```

call zsyr (uplo, $n, ~ a l p h a, x, i n c x, ~ a, ~ l d a)$

Description

These routines perform the symmetric rank 1 operation defined as

```
a := alpha*\mp@subsup{x}{}{*}\mp@subsup{X}{}{\prime}+a,
```

where:
alpha is a complex scalar
x is an n-element complex vector
a is an n-by- n complex symmetric matrix.
These routines have their real equivalents in BLAS (see ?syr in Chapter 2).

Input Parameters

uplo
n
alpha
x
incx
a
lda

CHARACTER*1. Specifies whether the upper or lower triangular part of the array a is to be referenced, as follows:

If uplo='U' or 'u', the upper triangular part of the array a is to be referenced.
If uplo= 'L' or ' 1 ', the lower triangular part of the array a is to be referenced.

INTEGER. Specifies the order of the matrix a. The value of n must be at least zero.

COMPLEX for csyr
COMPLEX*16 for zsyr
Specifies the scalar alpha.
COMPLEX for csyr
COMPLEX*16 for zsyr
Array, DIMENSION at least $(1+(n-1) * a b s(i n c x))$. Before entry, the incremented array x must contain the n-element vector x .

INTEGER. Specifies the increment for the elements of x. The value of incx must not be zero.

COMPLEX for csyr
COMPLEX*16 for zsyr
Array, DIMENSION (lda, n). Before entry with uplo = 'U' or 'u', the leading n-by- n upper triangular part of the array a must contain the upper triangular part of the symmetric matrix and the strictly lower triangular part of a is not referenced.
Before entry with uplo = 'L' or ' 1 ', the leading n-by-n lower triangular part of the array a must contain the lower triangular part of the symmetric matrix and the strictly upper triangular part of a is not referenced.
INTEGER. Specifies the first dimension of a as declared in the calling (sub)program. The value of 1 da must be at least $\max (1, n)$.

Output Parameters

a
With uplo = 'U' or 'u', the upper triangular part of the array a is overwritten by the upper triangular part of the updated matrix.

With uplo = 'L' or 'l', the lower triangular part of the array a is overwritten by the lower triangular part of the updated matrix.

i?max1

Finds the index of the vector element whose real part
has maximum absolute value.

Syntax

```
index = icmax1( n, cx, incx )
```

```
index = izmax1( n, cx, incx )
```


Description

Given a complex vector $c x$, the i?max1 functions return the index of the vector element whose real part has maximum absolute value. These functions are based on the BLAS functions icamax/izamax, but using the absolute value of the real part. They are designed for use with clacon/zlacon.

Input Parameters

n INTEGER. Specifies the number of elements in the vector $c x$.
CX COMPLEX for icmax1
COMPLEX*16 for izmax1
Array, DIMENSION at least ($1+(n-1) * a b s(i n c x))$.
Contains the input vector.
incx INTEGER. Specifies the spacing between successive elements of $c x$.

Output Parameters

index
INTEGER. Contains the index of the vector element whose real part has maximum absolute value.

?sum1

Forms the 1 -norm of the complex vector using the true absolute value.

Syntax

```
res = scsum1( n, cx, incx )
res = dzsum1( n, cx, incx )
```


Description

Given a complex vector $c x$, scsum1/dzsum1 functions take the sum of the absolute values of vector elements and return a single/double precision result, respectively. These functions are based on scasum/dzasum from Level 1 BLAS, but use the true absolute value and were designed for use with clacon/zlacon.

Input Parameters

n
cx COMPLEX for scsum1
COMPLEX*16 for dzsum1
Array, DIMENSION at least ($1+(n-1) * a b s(i n c x)$).
Contains the input vector whose elements will be summed.
incx INTEGER. Specifies the spacing between successive elements of cx (incx > $0)$.

Output Parameters

res REAL for scsum1
DOUBLE PRECISION for dzsum1
Contains the sum of absolute values.

?gbtf2

Computes the LU factorization of a general band matrix using the unblocked version of the algorithm.

Syntax

```
call sgbtf2( m, n, kl, ku, ab, ldab, ipiv, info )
call dgbtf2( m, n, kl, ku, ab, ldab, ipiv, info )
call cgbtf2( m, n, kl, ku, ab, ldab, ipiv, info )
call zgbtf2( m, n, kl, ku, ab, ldab, ipiv, info )
```


Description

The routine forms the $L U$ factorization of a general real/complex m by n band matrix A with $k I$ sub-diagonals and $k u$ super-diagonals. The routine uses partial pivoting with row interchanges and implements the unblocked version of the algorithm, calling Level 2 BLAS. See also ?gbtrf.

Input Parameters

```
m INTEGER. The number of rows of the matrix A (m\geq0).
n INTEGER. The number of columns in A ( }n\geq0)\mathrm{ .
kl INTEGER. The number of sub-diagonals within the band of A(kl\geq0).
ku INTEGER. The number of super-diagonals within the band of A (ku\geq0).
ab REAL for sgbtf2
    DOUBLE PRECISION for dgbtf2
    COMPLEX for cgbtf2
    COMPLEX*16 for zgbtf2.
    Array, DIMENSION (Idab,*).
    The array ab contains the matrix }A\mathrm{ in band storage
    (see Matrix Arguments).
    The second dimension of ab must be at least max(1,n).
Idab INTEGER. The first dimension of the array ab.
    (Idab \geq2kI + ku +1)
```


Output Parameters

$a b \quad$ Overwritten by details of the factorization. The diagonal and $k l+k u$ super-diagonals of U are stored in the first $1+k l+k u$ rows of $a b$. The multipliers used during the factorization are stored in the next $k l$ rows.

```
ipiv INTEGER.
    Array, DIMENSION at least max(1,min (m,n)).
    The pivot indices: row i was interchanged with row ipiv(i).
info INTEGER. If info = 0, the execution is successful.
    If info = -i, the ith parameter had an illegal value.
    If info=i,}\mp@subsup{u}{ii}{}\mathrm{ is 0. The factorization has been completed, but U is exactly
    singular. Division by 0 will occur if you use the factor }U\mathrm{ for solving a system
    of linear equations.
```


?gebd2

Reduces a general matrix to bidiagonal form using an unblocked algorithm.

Syntax

```
call sgebd2( m, n, a, lda, d, e, tauq, taup, work, info )
call dgebd2( m, n, a, lda, d, e, tauq, taup, work, info )
call cgebd2( m, n, a, lda, d, e, tauq, taup, work, info )
call zgebd2( m, n, a, lda, d, e, tauq, taup, work, info )
```


Description

The routine reduces a general m-by-n matrix A to upper or lower bidiagonal form B by an orthogonal (unitary) transformation: $Q^{\prime} A P=B$

If $m \geq n, B$ is upper bidiagonal; if $m<n, B$ is lower bidiagonal.
The routine does not form the matrices Q and P explicitly, but represents them as products of elementary reflectors. If $m \geq n$,
$Q=H(1) H(2) \ldots H(n)$ and $\mathrm{P}=G(1) G(2) \ldots G(n-1)$
If $m<n$,
$Q=H(1) H(2) \ldots H(m-1)$ and $\mathrm{P}=G(1) G(2) \ldots G(m)$
Each $H(\mathrm{i})$ and $G(\mathrm{i})$ has the form
$H(\mathrm{i})=I-\operatorname{tauq} q^{*}{ }^{*} v^{\prime} \quad$ and $G(\mathrm{i})=I-\operatorname{taup} * u * u^{\prime}$
where tauq and taup are scalars (real for sgebd2/dgebd2, complex for cgebd2/zgebd2), and v and u are vectors (real for sgebd2/dgebd2, complex for cgebd2/zgebd2).

Input Parameters

m
n
a, work
lda

Output Parameters

If $m \geq n$, the diagonal and first super-diagonal of a are overwritten with the upper bidiagonal matrix B. Elements below the diagonal, with the array tauq, represent the orthogonal/unitary matrix Q as a product of elementary reflectors, and elements above the first superdiagonal, with the array taup, represent the orthogonal/unitary matrix P as a product of elementary reflectors.
If $m<n$, the diagonal and first sub-diagonal of a are overwritten by the lower bidiagonal matrix B. Elements below the first subdiagonal, with the array tauq, represent the orthogonal/unitary matrix Q as a product of elementary reflectors, and elements above the diagonal, with the array taup, represent the orthogonal/unitary matrix P as a product of elementary reflectors.
d
e REAL for single-precision flavors DOUBLE PRECISION for double-precision flavors. Array, DIMENSION at least $\max (1, \min (m, n)$).
Contains the diagonal elements of the bidiagonal matrix $B: d(\mathrm{i})=a(\mathrm{i}, \mathrm{i})$.
REAL for single-precision flavors
DOUbLE PRECISION for double-precision flavors. Array, DIMENSION at least $\max (1, \min (m, n)-1)$.
Contains the off-diagonal elements of the bidiagonal matrix B :

| | If $m \geq n, e(i)=a(i, i+1)$ for $i=1,2, \ldots, n-1$;
 If $m<n, e(i)=a(i+1, i)$ for $i=1,2, \ldots, m-1$. |
| :---: | :---: |
| tauq, taup | REAL for sgebd2 |
| | DOUBLE PRECISION for dgebd2 |
| | COMPLEX for cgebd2 |
| | COMPLEX*16 for zgebd2. |
| | Arrays, DIMENSION at least max $(1, \min (m, n)$). |
| | Contain scalar factors of the elementary reflectors which represent orthogonal/unitary matrices Q and P, respectively. |
| info | INTEGER. |
| | If info $=0$, the execution is successful. |
| | If info $=-i$, the i th parameter had an illegal value. |

?gehd2

Reduces a general square matrix to upper Hessenberg form using an unblocked algorithm.

Syntax

```
call sgehd2( n, ilo, ihi, a, lda, tau, work, info )
call dgehd2( n, ilo, ihi, a, lda, tau, work, info )
call cgehd2( n, ilo, ihi, a, lda, tau, work, info )
call zgehd2( n, ilo, ihi, a, lda, tau, work, info )
```


Description

The routine reduces a real/complex general matrix A to upper Hessenberg form H by an orthogonal or unitary similarity transformation $Q^{\prime} A Q=H$.

The routine does not form the matrix Q explicitly. Instead, Q is represented as a product of elementary reflectors.

Input Parameters

n
INTEGER. The order of the matrix $A(n \geq 0)$.

| ilo, ihi | INTEGER. It is assumed that A is already upper triangular in rows and columns 1:ilo-1 and ihi+1:n.
 If A has been output by ?gebal, then ilo and ihi must contain the values returned by that routine. Otherwise they should be set to $i l o=1$ and ihi $=n$. Constraint: $1 \leq i l o \leq i h i \leq \max (1, n)$ |
| :---: | :---: |
| a, work | REAL for sgehd2
 DOUBLE PRECISION for dgehd2
 COMPLEX for cgehd2
 COMPLEX*16 for zgehd2.
 Arrays:
 a (lda,*) contains the n-by- n matrix A to be reduced. The second dimension of a must be at least $\max (1, n)$. work (n) is a workspace array. |
| Ida | INTEGER. The first dimension of a; at least max $(1, n)$. |
| Output Parameters | |
| a | On exit, the upper triangle and the first subdiagonal of A are overwritten with the upper Hessenberg matrix H and the elements below the first subdiagonal, with the array $t a u$, represent the orthogonal/unitary matrix Q as a product of elementary reflectors. See Application Notes below. |
| tau | REAL for sgehd2 |
| | DOUBLE PRECISION for dgehd2 |
| | COMPLEX for cgehd2 |
| | COMPLEX*16 for zgehd2. |
| | Array, DIMENSION at least max $(1, n-1)$. Contains the scalar factors of elementary reflectors. See Application Notes below. |
| info | INTEGER. |
| | If info $=0$, the execution is successful. |
| | If info $=-i$, the i th parameter had an illegal value. |

Application Notes

The matrix Q is represented as a product of (ihi -ilo) elementary reflectors
$Q=H($ ilo $) H(i l o+1) \ldots H(i h i-1)$
Each $H(\mathrm{i})$ has the form
$H(\mathrm{i})=I-\operatorname{tau} * v * v^{\prime}$
where $t a u$ is a real/complex scalar, and v is a real/complex vector with $v(1: \mathrm{i})=0, v(\mathrm{i}+1)=1$ and $v(\mathrm{i} \mathrm{h} i+1: \mathrm{n})=0$.

On exit, $v(\mathrm{i}+2: \mathrm{ihi})$ is stored in $a(\mathrm{i}+2: \mathrm{ihi}, \mathrm{i})$ and tau in $\operatorname{tau}(\mathrm{i})$.
The contents of a are illustrated by the following example, with $n=7$, ilo $=2$ and $i h i=6$:
on entry
on exit

where a denotes an element of the original matrix A, h denotes a modified element of the upper Hessenberg matrix H, and v_{i} denotes an element of the vector defining $H(\mathrm{i})$.

?gelq2

Computes the LQ factorization of a general rectangular matrix using an unblocked algorithm.

Syntax

```
call sgelq2( m, n, a, lda, tau, work, info )
call dgelq2( m, n, a, lda, tau, work, info )
call cgelq2( m, n, a, lda, tau, work, info )
call zgelq2( m, n, a, lda, tau, work, info )
```


Description

The routine computes an $L Q$ factorization of a real/complex m by n matrix A as $A=L Q$.
The routine does not form the matrix Q explicitly. Instead, Q is represented as a product of $\min (m$, n) elementary reflectors :
$Q=H(\mathrm{k}) \ldots H(2) H(1)\left(\right.$ or $Q=H(\mathrm{k})^{\prime} \ldots H(2)^{\prime} H(1)^{\prime}$ for complex flavors), where $\mathrm{k}=\min (m, \mathrm{n})$
Each $H(\mathrm{i})$ has the form
$H(\mathrm{i})=I-t a u * v * v^{\prime}$
where tau is a real/complex scalar stored in $\operatorname{tau}(\mathrm{i})$, and v is a real/complex vector with $v(1: \mathrm{i}-1)=0$ and $v(i)=1$.

On exit, $v(\mathrm{i}+1: \mathrm{n})$ is stored in $a(\mathrm{i}, \mathrm{i}+1: n)$.

Input Parameters

```
m INTEGER. The number of rows in the matrix A (m\geq0).
n INTEGER. The number of columns in A ( }n\geq0)\mathrm{ .
a, work REAL for sgelq2
        DOUBLE PRECISION for dgelq2
        COMPLEX for cgelq2
        COMPLEX*16 for zgelq2.
        Arrays:
        a(lda,*) contains the m-by-n matrix }A\mathrm{ .
        The second dimension of a must be at least max(1,n).
```

Ida INTEGER. The first dimension of a; at least $\max (1, m)$.

Output Parameters

| a | Overwritten by the factorization data as follows: |
| :---: | :---: |
| | on exit, the elements on and below the diagonal of the array a contain the m-by-min (n, m) lower trapezoidal matrix L (L is lower triangular if $n \geq m$); the elements above the diagonal, with the array tau, represent the orthogonal/unitary matrix Q as a product of $\min (n, m)$ elementary reflectors. |
| tau | REAL for sgelq2 |
| | DOUBLE PRECISION for dgelq2 |
| | COMPLEX for cgelq2 |
| | COMPLEX*16 for zgelq2. |
| | Array, DIMENSION at least max ($1, \min (m, n)$). |
| | Contains scalar factors of the elementary reflectors. |
| info | INTEGER. |
| | If $i n f \circ=0$, the execution is successful. |
| | If info $=-i$, the i th parameter had an illegal value. |

?geql2

Computes the QL factorization of a general rectangular matrix using an unblocked algorithm.

Syntax

```
call sgeql2( m, n, a, lda, tau, work, info )
call dgeql2( m, n, a, lda, tau, work, info )
call cgeql2( m, n, a, lda, tau, work, info )
call zgeql2( m, n, a, lda, tau, work, info )
```


Description

The routine computes a $Q L$ factorization of a real/complex m by n matrix A as $A=Q L$.

The routine does not form the matrix Q explicitly. Instead, Q is represented as a product of $\min (m$, n) elementary reflectors :
$Q=H(\mathrm{k}) \ldots H(2) H(1)$, where $\mathrm{k}=\min (m, n)$
Each $H(\mathrm{i})$ has the form
$H(\mathrm{i})=I-t a u * \mathcal{V} * v^{\prime}$
where \tan is a real/complex scalar stored in $\operatorname{tau}(\mathrm{i})$, and v is a real/complex vector with $v(m-\mathrm{k}+\mathrm{i}+1: m)=0$ and $v(m-\mathrm{k}+\mathrm{i})=1$.

On exit, $v(1: m-\mathrm{k}+\mathrm{i}-1)$ is stored in $a(1: m-\mathrm{k}+\mathrm{i}-1, n-\mathrm{k}+\mathrm{i})$.

Input Parameters

$m \quad$ INTEGER. The number of rows in the matrix $A(m \geq 0)$.
$n \quad$ INTEGER. The number of columns in $A(n \geq 0)$.
a, work

Ida

Output Parameters

COMPLEX*16 for zgeql2.
Array, DIMENSION at least $\max (1, \min (m, n))$.
Contains scalar factors of the elementary reflectors.
info INTEGER.
If $\operatorname{info}=0$, the execution is successful.
If info $=-i$, the i th parameter had an illegal value.

?geqr2

Computes the QR factorization of a general rectangular matrix using an unblocked algorithm.

Syntax

```
call sgeqr2( m, n, a, lda, tau, work, info )
call dgeqr2( m, n, a, lda, tau, work, info )
call cgeqr2( m, n, a, lda, tau, work, info )
call zgeqr2( m, n, a, lda, tau, work, info )
```


Description

The routine computes a $Q R$ factorization of a real/complex m by n matrix A as $A=Q R$.
The routine does not form the matrix Q explicitly. Instead, Q is represented as a product of $\min (m$, n) elementary reflectors :
$Q=H(1) H(2) \ldots H(\mathrm{k})$, where $\mathrm{k}=\min (m, \mathrm{n})$
Each H (i) has the form
$H(\mathrm{i})=I-t a u * \nu * v^{\prime}$
where tau is a real/complex scalar stored in $\operatorname{tau}(\mathrm{i})$, and v is a real/complex vector with $v(1: \mathrm{i}-1)=0$ and $v(\mathrm{i})=1$.

On exit, $v(\mathrm{i}+1: \mathrm{m})$ is stored in $a(\mathrm{i}+1: \mathrm{m}, \mathrm{i})$.

Input Parameters

m
INTEGER. The number of rows in the matrix $A(m \geq 0)$.

| n | INTEGER. The number of columns in $A(n \geq 0)$. |
| :---: | :---: |
| a, work | REAL for sgeqr2 |
| | DOUBLE PRECISION for dgeqr2 |
| | COMPLEX for cgeqr2 |
| | COMPLEX*16 for zgeqr2. |
| | Arrays: |
| | a (lda,*) contains the m-by-n matrix A. |
| | The second dimension of a must be at least max $(1, n)$. |
| | work (n) is a workspace array. |
| Ida | INTEGER. The first dimension of a; at least $\max (1, m)$. |
| Output Parameters | |
| a | Overwritten by the factorization data as follows: |
| | on exit, the elements on and above the diagonal of the array a contain the $\min (n, m)$-by- n upper trapezoidal matrix $R(R$ is upper triangular if $m \geq n)$; the elements below the diagonal, with the array tau, represent the orthogonal/unitary matrix Q as a product of elementary reflectors. |
| tau | REAL for sgeqr2 |
| | DOUBLE PRECISION for dgeqr2 |
| | COMPLEX for cgeqr2 |
| | COMPLEX*16 for zgeqr 2 . |
| | Array, DIMENSION at least max (1, min (m, n)). |
| | Contains scalar factors of the elementary reflectors. |
| info | INTEGER. |
| | If info $=0$, the execution is successful. |
| | If info $=-i$, the i th parameter had an illegal value. |

?gerq2

Computes the RQ factorization of a general rectangular matrix using an unblocked algorithm.

Syntax

```
call sgerq2( m, n, a, lda, tau, work, info )
call dgerq2( m, n, a, lda, tau, work, info )
call cgerq2( m, n, a, lda, tau, work, info )
call zgerq2( m, n, a, lda, tau, work, info )
```


Description

The routine computes a $R Q$ factorization of a real/complex m by n matrix A as $A=R Q$.
The routine does not form the matrix Q explicitly. Instead, Q is represented as a product of $\min (m$, n) elementary reflectors :
$Q=H(1) H(2) \ldots H(\mathrm{k})$, where $\mathrm{k}=\min (m, \mathrm{n})$
Each H (i) has the form
$H(\mathrm{i})=I-t a u * v * v^{\prime}$
where $t a u$ is a real/complex scalar stored in $\operatorname{tau}(\mathrm{i})$, and v is a real/complex vector with $v(n-k+i+1: n)=0$ and $v(n-k+i)=1$.

On exit, $v(1: n-\mathrm{k}+\mathrm{i}-1)$ is stored in $a(m-\mathrm{k}+\mathrm{i}, 1: n-\mathrm{k}+\mathrm{i}-1)$.

Input Parameters

| m | INTEGER. The number of rows in the matrix $A(m \geq 0)$. |
| :--- | :--- |
| n | INTEGER. The number of columns in $A(n \geq 0)$. |
| a, work | REAL for sgerq2 |
| | DOUBLE PRECISION for dgerq2 |
| | COMPLEX for cgerq2 |
| | COMPLEX*16 for zgerq2. |
| Arrays: | |
| | $a(l d a, *)$ contains the m-by- n matrix A. |
| | The second dimension of a must be at least $\max (1, n)$. |

work (m) is a workspace array.
lda Integer. The first dimension of a; at least $\max (1, m)$.

Output Parameters

| a | Overwritten by the factorization data as follows: |
| :---: | :---: |
| | on exit, if $m \leq n$, the upper triangle of the subarray $a(1: m, n-m+1: n)$ contains the m-by- m upper triangular matrix R; if $m>n$, the elements on and above the ($m-n$)th subdiagonal contain the m-by-n upper trapezoidal matrix R; the remaining elements, with the array $t a u$, represent the orthogonal/unitary matrix Q as a product of elementary reflectors. |
| tau | REAL for sgerq2 |
| | DOUBLE PRECISION for dgerq2 |
| | COMPLEX for cgerq2 |
| | COMPLEX*16 for zgerq2. |
| | Array, DIMENSION at least max ($1, \min (m, n)$). |
| | Contains scalar factors of the elementary reflectors. |
| info | Integer. |
| | If info $=0$, the execution is successful. |
| | If info $=-i$, the i th parameter had an illegal value. |

?gesc2

Solves a system of linear equations using the $L U$ factorization with complete pivoting computed by ?getc2.

Syntax

```
call sgesc2( n, a, lda, rhs, ipiv, jpiv, scale )
call dgesc2( n, a, lda, rhs, ipiv, jpiv, scale )
call cgesc2( n, a, lda, rhs, ipiv, jpiv, scale )
call zgesc2( n, a, lda, rhs, ipiv, jpiv, scale )
```


Description

This routine solves a system of linear equations

$$
A X=\text { scale } * R H S
$$

with a general n-by-n matrix A using the $L U$ factorization with complete pivoting computed by ?getc2.

Input Parameters

Ida INTEGER. The first dimension of a; at least $\max (1, n)$.
ipiv INTEGER.
n
a, rhs
jpiv

INTEGER. The order of the matrix A.
REAL for sgesc2
DOUBLE PRECISION for dgesc2
COMPLEX for cgesc2
COMPLEX*16 for zgesc2.
Arrays:
a (lda, *) contains the $L U$ part of the factorization of the n-by-n matrix A computed by ?getc2:
$A=P L U Q$
The second dimension of a must be at least $\max (1, n)$;
rhs (n) contains on entry the right hand side vector for the system of equations.

Array, DIMENSION at least max $(1, n)$.
The pivot indices: for $1 \leq i \leq n$, row i of the matrix has been interchanged with row ipiv(i).

INTEGER.
Array, DIMENSION at least max $(1, n)$.
The pivot indices: for $1 \leq j \leq n$, column j of the matrix has been interchanged with column jpiv(j).

Output Parameters

```
rhs On exit, overwritten with the solution vector }X\mathrm{ .
scale REAL for sgesc2/cgesc2
    DOUBLE PRECISION for dgesc2/zgesc2
    Contains the scale factor. scale is chosen in the range
    0\leq scale }\leq1\mathrm{ to prevent overflow in the solution.
```


?getc2

Computes the LU factorization with complete pivoting of the general n-by-n matrix.

Syntax

```
call sgetc2( n, a, lda, ipiv, jpiv, info )
call dgetc2( n, a, lda, ipiv, jpiv, info )
call cgetc2( n, a, lda, ipiv, jpiv, info )
```

```
call zgetc2( n, a, lda, ipiv, jpiv, info )
```

```
call zgetc2( n, a, lda, ipiv, jpiv, info )
```


Description

This routine computes an $L U$ factorization with complete pivoting of the n-by-n matrix A. The factorization has the form $A=P * L^{*} U^{*} Q$, where P and Q are permutation matrices, L is lower triangular with unit diagonal elements and U is upper triangular.

Input Parameters

INTEGER. The order of the matrix $A(n \geq 0)$.
a REAL for sgetc2
DOUBLE PRECISION for dgetc2
COMPLEX for cgetc2 COMPLEX*16 for zgetc2.
Array a(lda,*) contains the n-by-n matrix A to be factored.
The second dimension of a must be at least $\max (1, n)$;
Ida Integer. The first dimension of a; at least $\max (1, n)$.

Output Parameters

an exit, the factors L and U from the factorization
$A=P^{*} L^{*} U^{*} Q$
appears to be less unit diagonal elements of L are not stored. If $U(\mathrm{k}, \mathrm{k})$
nonsingular perturbed system.
not k$)$ is given the value of smin, i.e., giving a

```
jpiv INTEGER.
    Array, DIMENSION at least max(1,n).
    The pivot indices: for 1\leqj \leqn, column j of the matrix has been
    interchanged with column jpiv(j).
info INTEGER
    If info = 0, the execution is successful.
    If info =k>0,U(k,k) is likely to produce overflow if we try to solve for }x\mathrm{ in
    Ax = b. So U is perturbed to avoid the overflow.
```


?getf2

Computes the LU factorization of a general m by n matrix using partial pivoting with row interchanges (unblocked algorithm).

Syntax

```
call sgetf2( m, n, a, lda, ipiv, info )
call dgetf2( m, n, a, lda, ipiv, info )
call cgetf2( m, n, a, lda, ipiv, info )
call zgetf2( m, n, a, lda, ipiv, info )
```


Description

The routine computes the $L U$ factorization of a general m-by-n matrix A using partial pivoting with row interchanges. The factorization has the form

$$
A=P L U,
$$

where P is a permutation matrix, L is lower triangular with unit diagonal elements (lower trapezoidal if $m>n$) and U is upper triangular (upper trapezoidal if $m<n$).

Input Parameters

m
$n \quad$ INTEGER. The number of columns in $A(n \geq 0)$.
a REAL for sgetf2
DOUBLE PRECISION for dgetf2
COMPLEX for cgetf2

COMPLEX*16 for zgetf2.
Array, DIMENSION (lda, *). Contains the matrix A to be factored. The second dimension of a must be at least $\max (1, n)$.

Ida INTEGER. The first dimension of a; at least $\max (1, m)$.

Output Parameters

info

Overwritten by L and U. The unit diagonal elements of L are not stored. INTEGER. Array, DIMENSION at least $\max (1, \min (m, n))$. The pivot indices: for $1 \leq i \leq n$, row i was interchanged with row $\operatorname{ipiv}(i)$. INTEGER. If info $=0$, the execution is successful. If info $=-i$, the i th parameter had an illegal value. If info $=i>0, u_{i i}$ is 0 . The factorization has been completed, but U is exactly singular. Division by 0 will occur if you use the factor U for solving a system of linear equations.

?gtts2

Solves a system of linear equations with a tridiagonal matrix using the LU factorization computed by ?gttrf.

Syntax

```
call sgtts2( itrans, n, nrhs, dl, d, du, du2, ipiv, b, ldb )
call dgtts2( itrans, n, nrhs, dl, d, du, du2, ipiv, b, ldb )
call cgtts2( itrans, n, nrhs, dl, d, du, du2, ipiv, b, ldb )
call zgtts2( itrans, n, nrhs, dl, d, du, du2, ipiv, b, ldb )
```


Description

This routine solves for X one of the following systems of linear equations with multiple right hand sides:
$A X=B \quad A^{T} X=B \quad$ or $A^{H} X=B \quad$ (for complex matrices only), with a tridiagonal matrix A using the $L U$ factorization computed by ?gttrf.

Input Parameters

```
itrans INTEGER. Must be 0, 1, or 2.
    Indicates the form of the equations being solved:
    If itrans=0, then AX=B (no transpose).
    If itrans=1, then }\mp@subsup{A}{}{T}X=B\mathrm{ (transpose).
    If itrans=2, then A}\mp@subsup{A}{}{H}X=B\mathrm{ (conjugate transpose).
n INTEGER. The order of the matrix A (n\geq0).
nrhs INTEGER. The number of right-hand sides, i.e., the number of columns in B
    (nrhs \geq0).
dl,d,du,du2,b REAL for sgtts2
    DOUBLE PRECISION for dgtts2
    COMPLEX for cgtts2
    COMPLEX*16 for zgtts2.
    Arrays: dl(n-1), d(n), du(n-1), du2(n-2), b(ldb,nrhs).
    The array dl contains the (n-1) multipliers that define the matrix L from the
    LU factorization of }A\mathrm{ .
    The array d contains the n diagonal elements of the upper triangular matrix }
    from the LU factorization of A.
    The array du contains the (n-1) elements of the first super-diagonal of U.
    The array du2 contains the (n-2) elements of the second super-diagonal of
    U.
    The array b contains the matrix }B\mathrm{ whose columns are the right-hand sides for
    the systems of equations.
ldb INTEGER. The leading dimension of b; must be
    ldb \geq max(1, n).
ipiv INTEGER.
    Array, DIMENSION (n).
    The pivot indices array, as returned by ?gttrf.
```


Output Parameters

```
b Overwritten by the solution matrix \(X\).
```


?labrd

Reduces the first nb rows and columns of a general matrix to a bidiagonal form.

Syntax

```
call slabrd( m, n, nb, a, lda, d, e, tauq, taup, x, ldx, y, ldy )
call dlabrd( m, n, nb, a, lda, d, e, tauq, taup, x, ldx, y, ldy )
call clabrd( m, n, nb, a, lda, d, e, tauq, taup, x, ldx, y, ldy )
call zlabrd( m, n, nb, a, lda, d, e, tauq, taup, x, ldx, y, ldy )
```


Description

The routine reduces the first nb rows and columns of a general m-by-n matrix A to upper or lower bidiagonal form by an orthogonal/unitary transformation $Q^{\prime} A P$, and returns the matrices X and Y which are needed to apply the transformation to the unreduced part of A.

If $m \geq n, A$ is reduced to upper bidiagonal form; if $m<n$, to lower bidiagonal form.
The matrices Q and P are represented as products of elementary reflectors: $Q=H(1) H(2) \ldots$ $H(n b)$ and $\mathrm{P}=G(1) G(2) \ldots G(n b)$

Each $H(\mathrm{i})$ and $G(\mathrm{i})$ has the form
$H(\mathrm{i})=I-\operatorname{tauq} * v * v^{\prime} \quad$ and $G(\mathrm{i})=I-\operatorname{taup} * u * u^{\prime}$
where tauq and taup are scalars, and v and u are vectors.
The elements of the vectors v and u together form the m-by-nb matrix V and the $n b$-by-n matrix U^{\prime} which are needed, with X and Y, to apply the transformation to the unreduced part of the matrix, using a block update of the form: $A:=A-V^{*} Y^{\prime}-X^{*} U^{\prime}$.

This is an auxiliary routine called by ?gebrd.

Input Parameters

m
n
nb

INTEGER. The number of rows in the matrix $A(m \geq 0)$.
INTEGER. The number of columns in $A(n \geq 0)$.
INTEGER. The number of leading rows and columns of A to be reduced.

Output Parameters

REAL for slabrd
DOUBLE PRECISION for dlabrd
COMPLEX for clabrd
COMPLEX*16 for zlabrd.
Array a(lda,*) contains the matrix A to be reduced.
The second dimension of a must be at least $\max (1, n)$.
INTEGER. The first dimension of a; at least $\max (1, m)$.
INTEGER. The first dimension of the output array x; must beat least max $(1, m)$.
INTEGER. The first dimension of the output array y; must beat least max $(1, n)$.

On exit, the first $n b$ rows and columns of the matrix are overwritten; the rest of the array is unchanged.

If $m \geq n$, elements on and below the diagonal in the first $n b$ columns, with the array tauq, represent the orthogonal/unitary matrix Q as a product of elementary reflectors; and elements above the diagonal in the first $n b$ rows, with the array taup, represent the orthogonal/unitary matrix P as a product of elementary reflectors.

If $m<n$, elements below the diagonal in the first $n b$ columns, with the array tauq, represent the orthogonal/unitary matrix Q as a product of elementary reflectors, and elements on and above the diagonal in the first nb rows, with the array taup, represent the orthogonal/unitary matrix P as a product of elementary reflectors.
d, e
tauq, taup REAL for slabrd
DOUBLE PRECISION for dlabrd
COMPLEX for clabrd
COMPLEX*16 for zlabrd.

Arrays, DIMENSION (nb) each.
Contain scalar factors of the elementary reflectors which represent the orthogonal/unitary matrices Q and P, respectively.

REAL for slabrd
DOUBLE PRECISION for dlabrd
COMPLEX for clabrd
COMPLEX*16 for zlabrd.
Arrays, dimension $x(l d x, n b), y(l d y, n b)$.
The array x contains the m-by-nb matrix X required to update the unreduced part of A.

The array y contains the n-by-nb matrix Y required to update the unreduced part of A.

Application Notes

If $m \geq n$, then for the elementary reflectors $H(i)$ and $G(i)$,
$v(1: \mathrm{i}-1)=0, v(\mathrm{i})=1$, and $v(\mathrm{i}: m)$ is stored on exit in a(i:m, i$)$;
$u(1: \mathrm{i})=0, u(\mathrm{i}+1)=1$, and $u(\mathrm{i}+1: n)$ is stored on exit in $a(\mathrm{i}, \mathrm{i}+1: n)$;
tauq is stored in tauq(i) and taup in taup(i).
If $m<n$,
$v(1: \mathrm{i})=0, v(\mathrm{i}+1)=1$, and $v(\mathrm{i}+1: m)$ is stored on exit in $a(\mathrm{i}+2: \mathrm{m}, \mathrm{i})$; $u(1: \mathrm{i}-1)=0, u(\mathrm{i})=1$, and $u(\mathrm{i}: n)$ is stored on exit in $a(\mathrm{i}, \mathrm{i}+1: n)$;
tauq is stored in tauq(i) and taup in taup(i).
The contents of a on exit are illustrated by the following examples with $n b=2$:

$$
m=6, n=5(m>n) \quad m=5, n=6(m<n)
$$

$$
\left[\begin{array}{ccccc}
1 & 1 & u_{1} & u_{1} & u_{1} \\
v_{1} & 1 & 1 & u_{2} & u_{2} \\
v_{1} & v_{2} & a & a & a \\
v_{1} & v_{2} & a & a & a \\
v_{1} & v_{2} & a & a & a \\
v_{1} & v_{2} & a & a & a
\end{array}\right]
$$

$$
\left[\begin{array}{cccccc}
1 & u_{1} & u_{1} & u_{1} & u_{1} & u_{1} \\
1 & 1 & u_{2} & u_{2} & u_{2} & u_{2} \\
v_{1} & 1 & a & a & a & a \\
v_{1} & v_{2} & a & a & a & a \\
v_{1} & v_{2} & a & a & a & a
\end{array}\right]
$$

where a denotes an element of the original matrix which is unchanged, v_{i} denotes an element of the vector defining $H(\mathrm{i})$, and u_{i} an element of the vector defining $G(\mathrm{i})$.

?lacon

Estimates the 1-norm of a square matrix, using reverse communication for evaluating matrix-vector products.

Syntax

```
call slacon( n, v, x, isgn, est, kase, jmax, jump, iter )
call dlacon( n, v, x, isgn, est, kase, jmax, jump, iter )
call clacon( n, v, x, est, kase, jmax, jump, iter )
call zlacon( n, v, x, est, kase, jmax, jump, iter )
```


Description

This routine estimates the 1 -norm of a square, real/complex matrix A. Reverse communication is used for evaluating matrix-vector products.

Input Parameters

n
$V, \quad x$
jmax, jump, iter
isgn INTEGER. Workspace array, DIMENSION (n) , used with real flavors only.
kase INTEGER. On the initial call to ?lacon, kase should be 0 .
INTEGER. The order of the matrix $A(n \geq 1)$.
REAL for slacon
DOUBLE PRECISION for dlacon
COMPLEX for clacon
COMPLEX*16 for zlacon.
Arrays, DIMENSION (n) each.
v is a workspace array.
x is used as input after an intermediate return. INTEGER. Workspace, keep internal data since the initial call to ?lacon with kase $=0$. Should never be modified.

Output Parameters

| est | REAL for slacon/clacon |
| :---: | :---: |
| | DOUBLE PRECISION for dlacon/zlacon |
| | An estimate (a lower bound) for norm (A). |
| kase | On an intermediate return, kase will be 1 or 2 , indicating whether x should be overwritten by $A *_{x}$ or $A^{\prime} *_{x}$. On the final return from ?lacon, kase will again be 0 . |
| v | On the final return, $v=A *$, where est $=\operatorname{norm}(v) / \operatorname{norm}(w)(w$ is not returned). |
| x | On an intermediate return, x should be overwritten by |
| | $A * x, \quad$ if kase $=1$, |
| | (where for complex flavors A^{\prime} is the conjugate transpose of A), and ? lacon must be re-called with all the other parameters unchanged. |

?lacpy

Copies all or part of one two-dimensional array to another.

Syntax

```
call slacpy( uplo, m, n, a, lda, b, ldb )
call dlacpy( uplo, m, n, a, lda, b, ldb )
call clacpy( uplo, m, n, a, lda, b, ldb )
call zlacpy( uplo, m, n, a, lda, b, ldb )
```


Description

This routine copies all or part of a two-dimensional matrix A to another matrix B.

Input Parameters

uplo CHARACTER*1.
Specifies the part of the matrix A to be copied to B.

Output Parameters

b
REAL for slacpy
DOUBLE PRECISION for dlacpy
COMPLEX for clacpy
COMPLEX*16 for zlacpy.
Array $b(l d b, *)$, contains the m-by-n matrix B.
The second dimension of b must be at least $\max (1, n)$.
On exit, $B=A$ in the locations specified by uplo.

?ladiv

Performs complex division in real arithmetic, avoiding unnecessary overflow.

Syntax

```
call sladiv( a, b, c, d, p, q )
call dladiv( a, b, c, d, p, q )
res = cladiv( x, y )
```

```
res = zladiv( x, y )
```


Description

The routines sladiv/dladiv perform complex division in real arithmetic as

$$
p+i q=\frac{a+i b}{c+i d}
$$

Complex functions cladiv/zladiv compute the result as

$$
\text { res }=x / y
$$

where x and y are complex. The computation of x / y will not overflow on an intermediary step unless the results overflows.

Input Parameters

```
a, b, c, d REAL for sladiv
    DOUBLE PRECISION for dladiv
    The scalars a,b,c, and d in the above expression (for real flavors only).
x, y COMPLEX for cladiv
    COMPLEX*16 for zladiv
    The complex scalars }x\mathrm{ and }y\mathrm{ (for complex flavors only).
```


Output Parameters

| p, q | REAL for sladiv |
| :--- | :--- |
| DOUBLE PRECISION for dladiv | |
| res | The scalars p and q in the above expression (for real flavors only). |
| | COMPLEX for cladiv

 DOUBLE COMPLEX for zladiv
 Contains the result of division x / y. |

?lae2

Computes the eigenvalues of a
2-by-2 symmetric matrix.

Syntax

```
call slae2( a, b, c, rt1, rt2 )
```

call dlae2 (a, b, c, rt1, rt2)

Description

The routines sla2/dlae2 compute the eigenvalues of a 2-by-2 symmetric matrix

$$
\left[\begin{array}{ll}
a & b \\
b & c
\end{array}\right]
$$

On return, $r t 1$ is the eigenvalue of larger absolute value, and $r t 1$ is the eigenvalue of smaller absolute value.

Input Parameters

```
a, b, c REAL for slae2
    DOUBLE PRECISION for dlae2
    The elements }a,b\mathrm{ , and c of the 2-by-2 matrix above.
```


Output Parameters

```
rt1, rt2 REAL for slae2
```

 DOUBLE PRECISION for dlae2
 The computed eigenvalues of larger and smaller absolute value, respectively.

Application Notes

$r t 1$ is accurate to a few ulps barring over/underflow. rt2 may be inaccurate if there is massive cancellation in the determinant $a^{*} c-b * b$; higher precision or correctly rounded or correctly truncated arithmetic would be needed to compute rt2 accurately in all cases.

Overflow is possible only if $r t 1$ is within a factor of 5 of overflow. Underflow is harmless if the input data is 0 or exceeds
underflow_threshold / macheps.

?laebz

Computes the number of eigenvalues of a real symmetric tridiagonal matrix which are less than or equal to a given value, and performs other tasks required by the routine ?stebz.

Syntax

```
call slaebz( ijob, nitmax, n, mmax, minp, nbmin, abstol,
    reltol, pivmin, d, e, e2, nval, ab, c, mout, nab,
    work, iwork, info )
call dlaebz( ijob, nitmax, n, mmax, minp, nbmin, abstol,
    reltol, pivmin, d, e, e2, nval, ab, c, mout, nab,
    work, iwork, info )
```


Description

The routine ? laebz contains the iteration loops which compute and use the function $N(w)$, which is the count of eigenvalues of a symmetric tridiagonal matrix T less than or equal to its argument w. It performs a choice of two types of loops:

ijob $=1$, followed by

ijob =2: It takes as input a list of intervals and returns a list of sufficiently small intervals whose union contains the same eigenvalues as the union of the original intervals. The input intervals are $(a b(j, 1), a b(j, 2)], j=1, \ldots, \min p$. The output interval ($a b(\mathrm{j}, 1), \mathrm{ab}(\mathrm{j}, 2)$] will contain eigenvalues nab($\mathrm{j}, 1)+1, \ldots, \operatorname{nab}(\mathrm{j}, 2)$, where $1 \leq \mathrm{j} \leq$ mout.
ijob $=3$: It performs a binary search in each input interval $(a b(j, 1), a b(j, 2)$] for a point $w(\mathrm{j})$ such that $N(w(\mathrm{j}))=n v a l(\mathrm{j})$, and uses $c(\mathrm{j})$ as the starting point of the search. If such a $w(\mathrm{j})$ is found, then on output $a b(\mathrm{j}, 1)=a b(\mathrm{j}, 2)=w$. If no such $w(\mathrm{j})$ is found, then on output $(a b(j, 1), a b(j, 2)]$ will be a small interval containing the point where $N(w)$ jumps through nval(j), unless that point lies outside the initial interval.

Note that the intervals are in all cases half-open intervals, that is, of the form ($a, b]$, which includes b but not a.

To avoid underflow, the matrix should be scaled so that its largest element is no greater than overflow $* *(1 / 2) *$ underflow $* *(1 / 4)$ in absolute value. To assure the most accurate computation of small eigenvalues, the matrix should be scaled to be not much smaller than that, either.

Note: the arguments are, in general, not checked for unreasonable values.

| In | |
| :---: | :---: |
| ijob | INTEGER. Specifies what is to be done:
 $=1$: Compute nab for the initial intervals.
 =2: Perform bisection iteration to find eigenvalues of T.
 $=3$: Perform bisection iteration to invert $N(w)$, i.e., to find a point which has a specified number of eigenvalues of T to its left.
 Other values will cause ? laebz to return with info=-1. |
| nitmax | INTEGER.
 The maximum number of "levels" of bisection to be performed, i.e., an interval of width W will not be made smaller than $2^{\wedge}(-$ nitmax $) * W$. If not all intervals have converged after nitmax iterations, then info is set to the number of non-converged intervals. |
| n | INTEGER.
 The dimension n of the tridiagonal matrix T. It must be at least 1 . |
| mmax | INTEGER.
 The maximum number of intervals. If more than max intervals are generated, then ?laebz will quit with info=mmax +1 . |
| minp | INTEGER.
 The initial number of intervals. It may not be greater than mmax. |
| nbmin | INTEGER.
 The smallest number of intervals that should be processed using a vector loop. If zero, then only the scalar loop will be used. |
| abstol | REAL for slaebz
 DOUBLE PRECISION for dlaebz.
 The minimum (absolute) width of an interval. When an interval is narrower than abstol, or than reltol times the larger (in magnitude) endpoint, then it is considered to be sufficiently small, i.e., converged. This must be at least zero. |
| reltol | REAL for slaebz
 DOUBLE PRECISION for dlaebz.
 The minimum relative width of an interval. When an interval is narrower than abstol, or than reltol times the larger (in magnitude) endpoint, then it is considered to be sufficiently small, i.e., converged. Note: this should always be at least radix*machine epsilon. |

| pivmin | REAL for slaebz |
| :---: | :---: |
| | DOUBLE PRECISION for dlaebz. |
| | The minimum absolute value of a "pivot" in the Sturm sequence loop. This must be at least |
| | $\max \|\mathrm{e}(\mathrm{j}) * * 2\| *$ safe_min and at least safe_min, where safe_min is at least the smallest number that can divide one without overflow. |
| d, e, e2 | REAL for slaebz |
| | DOUBLE PRECISION for dlaebz. |
| | Arrays, dimension (n) each. |
| | The array d contains the diagonal elements of the tridiagonal matrix T. |
| | The array e contains the off-diagonal elements of the tridiagonal matrix T in positions 1 through $n-1$. e(n) is arbitrary. |
| | The array e 2 contains the squares of the off-diagonal elements of the tridiagonal matrix T. e2(n) is ignored. |
| nval | INTEGER. |
| | Array, dimension (minp). |
| | If $i j 0 b=1$ or 2 , not referenced. |
| | If i j $0.6=3$, the desired values of $N(w)$. |
| $a b$ | REAL for slaebz |
| | DOUBLE PRECISION for dlaebz. |
| | Array, dimension (mmax, 2) |
| | The endpoints of the intervals. $a b(\mathrm{j}, 1)$ is $a(\mathrm{j})$, the left endpoint of the j -th interval, and $a b(\mathrm{j}, 2)$ is $b(\mathrm{j})$, the right endpoint of the j -th interval. |
| c | REAL for slaebz |
| | DOUBLE PRECISION for dlaebz. |
| | Array, dimension (mmax) |
| | If $i j 0 b=1$, ignored. |
| | If $i j 0 b=2$, workspace. |
| | If ijob=3, then on input $c(j)$ should be initialized to the first search point in the binary search. |
| nab | INTEGER. |
| | Array, dimension (mmax, 2) |
| | If ij $o b=2$, then on input, nab(i,j) should be set. It must satisfy the condition: |
| | $N(a b(\mathrm{i}, 1)) \leq \operatorname{nab}(\mathrm{i}, 1) \leq \operatorname{nab}(\mathrm{i}, 2) \leq N(a b(\mathrm{i}, 2))$, which means that in interval i only eigenvalues |
| | nab(i,1)+1,..,nab(i,2) will be considered. Usually, nab(i,j) $=N(a b(i, j))$, from a previous call to ? laebz with ijob=1. |

If $i j o b=3$, normally, nab should be set to some distinctive value(s) before ?laebz is called.

| work | REAL for slaebz |
| :--- | :--- |
| | DOUBLE PRECISION for dlaebz. |
| | Workspace array, dimension (mmax). |
| iwork | INTEGER. |
| | Workspace array, dimension (mmax). |

Output Parameters

| nval | The elements of nval will be reordered to correspond with the intervals in ab. Thus, nval(j) on output will not, in general be the same as nval(j) on input, but it will correspond with the interval $(a b(j, 1), a b(j, 2)]$ on output. |
| :---: | :---: |
| $a b$ | The input intervals will, in general, be modified, split, and reordered by the calculation. |
| mout | INTEGER. |
| | If $i j 0 b=1$, the number of eigenvalues in the intervals. |
| | If i job $=2$ or 3 , the number of intervals output. |
| | If $i j o b=3$, mout will equal minp. |
| nab | If $i j o b=1$, then on output nab(i,j) will be set to $N(a b(i, j))$. |
| | If $i j o b=2$, then on output, nab(i, j) will contain $\max (n a(k), \min (n b(k), N(a b(i, j))))$, where k is the index of the input interval that the output interval $(a b(j, 1), a b(\mathrm{j}, 2)]$ came from, and $n a(k)$ and $n b(k)$ are the the input values of nab $(k, 1)$ and $\operatorname{nab}(k, 2)$. |
| | If i job $=3$, then on output, nab($\mathrm{i}, \mathrm{j})$ contains $N(a b(i, j))$, unless $N(w)>n v a l(i)$ for all search points w, in which case nab($i, 1$) will not be modified, i.e., the output value will be the same as the input value (modulo reorderings, see nval and $a b$), or unless $N(w)<n v a l(i)$ for all search points w, in which case nab(i,2) will not be modified. |
| info | INTEGER. |
| | 0: All intervals converged. |
| | 1--mmax: The last info intervals did not converge. |
| | mmax +1 : More than mmax intervals were generated. |

Application Notes

This routine is intended to be called only by other LAPACK routines, thus the interface is less user-friendly. It is intended for two purposes:
(a) finding eigenvalues. In this case, ? laebz should have one or more initial intervals set up in $a b$, and ?laebz should be called with $i j o b=1$. This sets up nab, and also counts the eigenvalues. Intervals with no eigenvalues would usually be thrown out at this point. Also, if not all the eigenvalues in an interval i are desired, nab(i,1) can be increased or nab(i,2) decreased. For example, set $\operatorname{nab}(i, 1)=n a b(i, 2)-1$ to get the largest eigenvalue. ?laebz is then called with $i j o b=2$ and max no smaller than the value of mout returned by the call with $i j o b=1$. After this ($\mathrm{ijob}=2$) call, eigenvalues nab($\mathrm{i}, 1)+1$ through $n a b(i, 2)$ are approximately $a b(i, 1)(o r a b(i, 2))$ to the tolerance specified by abstol and reltol.
(b) finding an interval $\left(a^{\prime}, b^{\prime}\right]$ containing eigenvalues $w(\mathrm{f}), \ldots, w(\mathrm{l})$. In this case, start with a Gershgorin interval (a, b). Set up ab to contain 2 search intervals, both initially (a, b). One nval element should contain $\mathrm{f}-1$ and the other should contain 1 , while c should contain a and b, respectively. nab($i, 1$) should be -1 and nab($i, 2$) should be $n+1$, to flag an error if the desired interval does not lie in (a, b). ? laebz is then called with $i j o b=3$. On exit, if $w(\mathrm{f}-1)<w(\mathrm{f})$, then one of the intervals $--\mathrm{j}--$ will have $a b(\mathrm{j}, 1)=a b(\mathrm{j}, 2)$ and $\operatorname{nab}(\mathrm{j}, 1)=n a b(\mathrm{j}, 2)=\mathrm{f}-1$, while if, to the specified tolerance, $w(\mathrm{f}-\mathrm{k})=\ldots=w(\mathrm{f}+\mathrm{r}), \mathrm{k}>0$ and $\mathrm{r} \geq 0$, then the interval will have $N(a b(\mathrm{j}, 1))=\operatorname{nab}(\mathrm{j}, 1)=\mathrm{f}-\mathrm{k}$ and $N(\mathrm{ab}(\mathrm{j}, 2))=n a b(\mathrm{j}, 2)=\mathrm{f}+\mathrm{r}$. The cases $w(\mathrm{l})<w(\mathrm{l}+1)$ and $w(1-\mathrm{r})=\ldots=w(\mathrm{l}+\mathrm{k})$ are handled similarly.

?laed0

Used by ?stedc. Computes all eigenvalues and corresponding eigenvectors of an unreduced symmetric
tridiagonal matrix using the divide and conquer
method.

```
Syntax
call slaed0( icompq, qsiz, n, d, e, q, ldq, qstore, ldqs,
    work, iwork, info )
call dlaedo( icompq, qsiz, n, d, e, q, ldq, qstore, ldqs,
    work, iwork, info )
call claedo( qsiz, n, d, e, q, ldq, qstore, ldqs, rwork,
    iwork, info )
call zlaedo( qsiz, n, d, e, q, ldq, qstore, ldqs, rwork,
    iwork, info )
```


Description

Real flavors of this routine compute all eigenvalues and (optionally) corresponding eigenvectors of a symmetric tridiagonal matrix using the divide and conquer method.

Complex flavors claedo/zlaedo compute all eigenvalues of a symmetric tridiagonal matrix which is one diagonal block of those from reducing a dense or band Hermitian matrix and corresponding eigenvectors of the dense or band matrix.

Input Parameters

| icompq | INTEGER. Used with real flavors only.
 If i compq $=0$, compute eigenvalues only.
 If i compq $=1$, compute eigenvectors of original dense symmetric matrix also. On entry, the array q must contain the orthogonal matrix used to reduce the original matrix to tridiagonal form.
 If i compq $=2$, compute eigenvalues and eigenvectors of the tridiagonal matrix. |
| :---: | :---: |
| qsiz | INTEGER. |
| | The dimension of the orthogonal/unitary matrix used to reduce the full matrix to tridiagonal form; $q s i z \geq_{n}$ (for real flavors, q s $i z \geq_{n}$ if $i c o m p q=1$). |
| n | INTEGER. The dimension of the symmetric tridiagonal matrix ($n \geq 0$). |
| d, e, rwork | REAL for single-precision flavors
 DOUBLE PRECISION for double-precision flavors.
 Arrays:
 $d(*)$ contains the main diagonal of the tridiagonal matrix. The dimension of d must be at least $\max (1, n)$. |
| | e (*) contains the off-diagonal elements of the tridiagonal matrix. The dimension of e must be at least $\max (1, n-1)$. |
| | rwork (*) is a workspace array used in complex flavors only. The dimension of rwork must be at least
 $\left(1+3 n+2 n \lg (n)+3 n^{2}\right)$, where $\lg (n)=$ smallest integer k such that $2^{k} \geq n$. |
| q, qstore | REAL for slaedo |
| | DOUBLE PRECISION for dlaedo |
| | COMPLEX for claedo |
| | COMPLEX*16 for zlaedo. |
| | Arrays: $q(1 d q, *)$, qstore (ldqs, *). The second dimension of these arrays must be at least $\max (1, n)$. |
| | For real flavors: |

If $i c o m p q=0$, array q is not referenced.
If icompq $=1$, on entry, q is a subset of the columns of the orthogonal matrix used to reduce the full matrix to tridiagonal form corresponding to the subset of the full matrix which is being decomposed at this time.
If i compq $=2$, on entry, q will be the identity matrix.
The array qstore is a workspace array referenced only when icompq $=1$.
Used to store parts of the eigenvector matrix when the updating matrix multiplies take place.
For complex flavors:
On entry, q must contain an q siz-by- n matrix whose columns are unitarily orthonormal. It is a part of the unitary matrix that reduces the full dense Hermitian matrix to a (reducible) symmetric tridiagonal matrix. The array qstore is a workspace array used to store parts of the eigenvector matrix when the updating matrix multiplies take place.

| $1 d q$ | INTEGER. The first dimension of the array q; $l d q \geq \max (1, n)$. |
| :---: | :---: |
| $1 d q s$ | INTEGER. The first dimension of the array qstore; Idqs $\geq \max (1, n)$. |
| work | REAL for slaedo |
| | DOUBLE PRECISION for dlaedo. |
| | Workspace array, used in real flavors only. |
| | If icompq $=0$ or 1 , the dimension of work must be at least (1 |
| | $+3 n+2 n \lg (n)+2 n^{2}$), where $\lg (n)=$ smallest integer k such that $2^{k} \geq n$. If i compq $=2$, the dimension of work must be at least $\left(4 n+n^{2}\right)$. |
| iwork | INTEGER. |
| | Workspace array. |
| | For real flavors, if icompq $=0$ or 1 , and for complex flavors, the dimension of iwork must be at least $(6+6 n+5 n \lg (n))$ |
| | For real flavors, If i compq $=2$, the dimension of i work must be at least $(3+5 n)$. |

Output Parameters

d
e
q

On exit, contains eigenvalues in ascending order.
On exit, the array has been destroyed.
If i compq $=2$, on exit, q contains the eigenvectors of the tridiagonal matrix.

```
info INTEGER.
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info =i>0, the algorithm failed to compute an eigenvalue while working
on the submatrix lying in rows and columns i/(n+1) through mod}(i,n+1)
```


?laed1

Used by sstedc/dstedc. Computes the updated eigensystem of a diagonal matrix after modification by a rank-one symmetric matrix. Used when the original matrix is tridiagonal.

Syntax

```
call slaed1( n, d, q, ldq, indxq, rho, cutpnt, work, iwork, info )
```

call dlaed1($n, d, q, l d q, ~ i n d x q, ~ r h o, ~ c u t p n t, ~ w o r k, ~ i w o r k, ~ i n f o ~) ~$

Description

The routine ?laed1 computes the updated eigensystem of a diagonal matrix after modification by a rank-one symmetric matrix. This routine is used only for the eigenproblem which requires all eigenvalues and eigenvectors of a tridiagonal matrix. ?laed7 handles the case in which eigenvalues only or eigenvalues and eigenvectors of a full symmetric matrix (which was reduced to tridiagonal form) are desired.

$$
T=Q(\text { in })\left(D(\text { in })+r h o * \mathrm{Z}^{*} \mathrm{Z}^{\prime}\right) Q^{\prime}(\text { in })=Q(\text { out }) * D(\text { out }) * Q^{\prime}(\text { out })
$$

where $\mathrm{z}=Q^{\prime} u, u$ is a vector of length n with ones in the cutpnt and (cutpnt +1) -th elements and zeros elsewhere. The eigenvectors of the original matrix are stored in Q, and the eigenvalues are in D. The algorithm consists of three stages:

The first stage consists of deflating the size of the problem when there are multiple eigenvalues or if there is a zero in the z vector. For each such occurrence the dimension of the secular equation problem is reduced by one. This stage is performed by the routine ?laed2.

The second stage consists of calculating the updated eigenvalues. This is done by finding the roots of the secular equation via the routine ?laed4 (as called by ?laed3). This routine also calculates the eigenvectors of the current problem.

The final stage consists of computing the updated eigenvectors directly using the updated eigenvalues. The eigenvectors for the current problem are multiplied with the eigenvectors from the overall problem.

Input Parameters

n
d, q, work
REAL for slaedl
DOUBLE PRECISION for dlaed1.
Arrays:
$d(*)$ contains the eigenvalues of the rank-1-perturbed matrix. The dimension of d must be at least $\max (1, n)$.
$q(I d q, *)$ contains the eigenvectors of the rank-1-perturbed matrix. The second dimension of q must be at least $\max (1, n)$.
work (*) is a workspace array, dimension at least $\left(4 n+n^{2}\right)$.
$I d q \quad$ INTEGER. The first dimension of the array q; $I d q \geq \max (1, n)$.
indxq INTEGER. Array, dimension (n).
On entry, the permutation which separately sorts the two subproblems in d into ascending order.
rho REAL for slaed1
DOUBLE PRECISION for dlaedl.
The subdiagonal entry used to create the rank-1 modification.
cutpnt INTEGER.
The location of the last eigenvalue in the leading sub-matrix. $\min (1, n) \leq$ cutpnt $\leq n / 2$.
iwork INTEGER. Workspace array, dimension (4n).

Output Parameters

d On exit, contains the eigenvalues of the repaired matrix.
$q \quad$ On exit, q contains the eigenvectors of the repaired tridiagonal matrix.
indxq On exit, contains the permutation which will reintegrate the subproblems back into sorted order, that is,
$d(\operatorname{indxq}(\mathrm{i}=1, n))$ will be in ascending order.

```
info INTEGER
If info = 0, the execution is successful.
If info = -i, the ith parameter had an illegal value.
If info = 1, an eigenvalue did not converge.
```


?laed2

Used by sstedc/dstedc. Merges eigenvalues and deflates secular equation. Used when the original matrix is tridiagonal.

Syntax

```
call slaed2( k, n, n1, d, q, ldq, indxq, rho, z, dlamda,
        w, q2, indx, indxc, indxp, coltyp, info )
call dlaed2( k, n, nl, d, q, ldq, indxq, rho, z, dlamda,
    w, q2, indx, indxc, indxp, coltyp, info )
```


Description

The routine ?laed2 merges the two sets of eigenvalues together into a single sorted set. Then it tries to deflate the size of the problem. There are two ways in which deflation can occur: when two or more eigenvalues are close together or if there is a tiny entry in the z vector. For each such occurrence the order of the related secular equation problem is reduced by one.

Input Parameters

INTEGER. The number of non-deflated eigenvalues, and the order of the related secular equation $(0 \leq k \leq n)$.
$n \quad$ INTEGER. The dimension of the symmetric tridiagonal matrix $(n \geq 0)$.
$n 1$ INTEGER. The location of the last eigenvalue in the leading sub-matrix; $\min (1, n) \leq n 1 \leq n / 2$.
d, q, z
REAL for slaed2
DOUBLE PRECISION for dlaed2.
Arrays:
$d(*)$ contains the eigenvalues of the two submatrices to be combined. The dimension of d must be at least $\max (1, n)$.

| | $q(l d q, *)$ contains the eigenvectors of the two submatrices in the two square blocks with corners at $(1,1),(n 1, n 1)$ and $(n 1+1, n 1+1),(n, n)$. The second dimension of q must be at least $\max (1, n)$. $z(*)$ contains the updating vector (the last row of the first sub-eigenvector matrix and the first row of the second sub-eigenvector matrix). |
| :---: | :---: |
| $1 d q$ | INTEGER. The first dimension of the array q; $I d q \geq \max (1, n)$. |
| indxq | integer. Array, dimension (n).
 On entry, the permutation which separately sorts the two subproblems in d into ascending order. Note that elements in the second half of this permutation must first have $n 1$ added to their values. |
| rho | REAL for slaed2
 DOUBLE PRECISION for dlaed2.
 On entry, the off-diagonal element associated with the rank-1 cut which originally split the two submatrices which are now being recombined. |
| indx, indxp | INTEGER.
 Workspace arrays, dimension (n) each.
 Array indx contains the permutation used to sort the contents of dlamda into ascending order.
 Array indxp contains the permutation used to place deflated values of d at the end of the array. indxp $(1: k)$ points to the nondeflated d-values and $\operatorname{indxp}(k+1: n)$ points to the deflated eigenvalues. |
| coltyp | INTEGER. Workspace array, dimension (n).
 During execution, a label which will indicate which of the following types a column in the q2 matrix is:
 1 : non-zero in the upper half only;
 2 : dense;
 3 : non-zero in the lower half only;
 4 : deflated. |
| Output Parameters | |
| d | On exit, d contains the trailing ($n-k$) updated eigenvalues (those which were deflated) sorted into increasing order. |
| q | On exit, q contains the trailing $(n-k)$ updated eigenvectors (those which were deflated) in its last $n-k$ columns. |

| indxq | Destroyed on exit. |
| :---: | :---: |
| rho | On exit, rho has been modified to the value required by ?laed3. |
| dlamda, w, q2 | REAL for slaed2
 DOUBLE PRECISION for dlaed2.
 Arrays: dlamda $(n), w(n), q 2\left(n 1^{2}+(n-n 1)^{2}\right)$ |
| | The array dlamda contains a copy of the first k eigenvalues which will be used by ?laed3 to form the secular equation. |
| | The array w contains the first k values of the final deflation-altered z-vector which will be passed to ?laed3. |
| | The array $q 2$ contains a copy of the first k eigenvectors which will be used by ?laeds in a matrix multiply (sgemm/dgemm) to solve for the new eigenvectors. |
| indxc | INTEGER. Array, dimension (n).
 The permutation used to arrange the columns of the deflated q matrix into three groups: the first group contains non-zero elements only at and above n1, the second contains non-zero elements only below $n 1$, and the third is dense. |
| coltyp | On exit, coltyp(i) is the number of columns of type i, for $i=1$ to 4 only (see the definition of types in the description of coltyp in Input Parameters). |
| info | INTEGER. |
| | If $\operatorname{info}=0$, the execution is successful. |
| | If info $=-i$, the i th parameter had an illegal value. |

?laed3

Used by sstedc/dstedc. Finds the roots of the secular equation and updates the eigenvectors. Used when the original matrix is tridiagonal.

Syntax

```
call slaed3( k, n, n1, d, q, ldq, rho, dlamda, q2, indx,
```

 ctot, \(w, ~ s, i n f o\))
 call dlaed3($k, n, n 1, d, q, l d q, ~ r h o, ~ d l a m d a, ~ q 2, ~ i n d x, ~$
ctot, $w, s, i n f o$)

Description

The routine ?laed3 finds the roots of the secular equation, as defined by the values in d, w, and rho, between 1 and k. It makes the appropriate calls to ? laed 4 and then updates the eigenvectors by multiplying the matrix of eigenvectors of the pair of eigensystems being combined by the matrix of eigenvectors of the k-by- k system which is solved here.

This code makes very mild assumptions about floating point arithmetic. It will work on machines with a guard digit in add/subtract, or on those binary machines without guard digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably fail on hexadecimal or decimal machines without guard digits, but none are known.

Input Parameters

| k | INTEGER. The number of terms in the rational function to be solved by ?laed4 ($k \geq 0$). |
| :---: | :---: |
| n | INTEGER. The number of rows and columns in the q matrix. $n \geq k$ (deflation may result in $n>k$). |
| n1 | INTEGER. The location of the last eigenvalue in the leading sub-matrix; $\min (1, n) \leq n 1 \leq n / 2$. |
| q | REAL for slaed3 |
| | DOUBLE PRECISION for dlaed3.
 Array $q(I d q, *)$. The second dimension of q must be at least $\max (1, n)$. Initially, the first k columns of this array are used as workspace. |
| $1 d q$ | INTEGER. The first dimension of the array q; $I d q \geq \max (1, n)$. |
| rho | REAL for slaed3 |
| | DOUBLE PRECISION for dlaed3.
 The value of the parameter in the rank one update equation. rho ≥ 0 required. |
| dlamda, q2, w | REAL for slaed3
 DOUBLE PRECISION for dlaed3.
 Arrays: dlamda (k), q2(ldq2, *), w(k). |

The first k elements of the array dlamda contain the old roots of the deflated updating problem. These are the poles of the secular equation.

The first k columns of the array $q 2$ contain the non-deflated eigenvectors for the split problem. The second dimension of $q 2$ must be at least $\max (1, n)$.
ctot INTEGER. Array, dimension (4).
A count of the total number of the various types of columns in q, as described in indx. The fourth column type is any column which has been deflated.

S
REAL for slaed3
DOUBLE PRECISION for dlaed3.
Workspace array, dimension $(n 1+1) \star k$.
Will contain the eigenvectors of the repaired matrix which will be multiplied by the previously accumulated eigenvectors to update the system.

Output Parameters

REAL for slaed3
DOUBLE PRECISION for dlaed3.
Array, dimension at least $\max (1, n)$.
d (i) contains the updated eigenvalues for $1 \leq \mathrm{i} \leq k$.
On exit, the columns 1 to k of q contain the updated eigenvectors.
May be changed on output by having lowest order bit set to zero on Cray X-MP, Cray Y-MP, Cray-2, or Cray C-90, as described above.
Destroyed on exit.
INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the i th parameter had an illegal value.
If $\inf \circ=1$, an eigenvalue did not converge .

?laed4

Used by sstedc/dstedc. Finds a single root of the secular equation.

Syntax

```
call slaed4 ( n, i, d, z, delta, rho, dlam, info )
call dlaed4 ( n, i, d, z, delta, rho, dlam, info )
```


Description

This subroutine computes the i-th updated eigenvalue of a symmetric rank-one modification to a diagonal matrix whose elements are given in the array d, and that
$D(\mathrm{i})<D(\mathrm{j})$ for $\mathrm{i}<\mathrm{j}$
and that r ho >0. This is arranged by the calling routine, and is no loss in generality. The rank-one modified system is thus

```
diag(D) + rho * Z * transpose(Z).
```

where we assume the Euclidean norm of Z is 1 .
The method consists of approximating the rational functions in the secular equation by simpler interpolating rational functions.

Input Parameters

$n \quad$ integer. The length of all arrays.
i Integer. The index of the eigenvalue to be computed; $1 \leq \mathrm{i} \leq \mathrm{n}$.
d, z
REAL for slaed4
DOUBLE PRECISION for dlaed4
Arrays, dimension (n) each.
The array d contains the original eigenvalues. It is assumed that they are in order, $d(\mathrm{i})<d(\mathrm{j})$ for $\mathrm{i}<\mathrm{j}$.

The array z contains the components of the updating vector Z.

```
rho REAL for slaed4
    DOUBLE PRECISION for dlaed4
    The scalar in the symmetric updating formula.
```


Output Parameters

| delta | REAL for slaed4 |
| :---: | :---: |
| | DOUBLE PRECISION for dlaed4 |
| | Array, dimension (n). |
| | If $n \neq 1$, delta contains $\left(d(j)-l a m b d a \_i\right)$ in its j-th component. If $n=1$, then delta $(1)=1$. The vector delta contains the information necessary to construct the eigenvectors. |
| dlam | REAL for slaed4 |
| | DOUBLE PRECISION for dlaed4 |
| | The computed lambda_i, the i-th updated eigenvalue. |
| info | INTEGER. |
| | If info $=0$, the execution is successful. |
| | If info $=1$, the updating process failed. |

?laed5

Used by sstedc/dstedc.
Solves the 2-by-2 secular equation.

Syntax

```
call slaed5 ( i, d, z, delta, rho, dlam )
call dlaed5 ( i, d, z, delta, rho, dlam )
```


Description

This subroutine computes the i-th eigenvalue of a symmetric rank-one modification of a 2-by-2 diagonal matrix
$\operatorname{diag}(D)+r h o * Z * \operatorname{transpose}(Z)$.
The diagonal elements in the array D are assumed to satisfy
$D(\mathrm{i})<D(\mathrm{j})$ for $\mathrm{i}<\mathrm{j}$.

We also assume rho >0 and that the Euclidean norm of the vector Z is one.

Input Parameters

i
integer. The index of the eigenvalue to be computed; $1 \leq \mathrm{i} \leq 2$.
d, z
REAL for slaed5
DOUBLE PRECISION for dlaed5
Arrays, dimension (2) each.
The array d contains the original eigenvalues. It is assumed that $d(1)<d(2)$.
The array z contains the components of the updating vector.
rho REAL for slaed5
DOUBLE PRECISION for dlaed5
The scalar in the symmetric updating formula.

Output Parameters

```
delta REAL for slaed5
    DOUBLE PRECISION for dlaed5
    Array, dimension (2).
    The vector delta contains the information necessary to construct the
    eigenvectors.
dlam REAL for slaed5
    DOUBLE PRECISION for dlaed5
    The computed lambda_i, the i-th updated eigenvalue.
```


?laed6

Used by sstedc/dstedc.
Computes one Newton step in solution of the secular equation.

Syntax

```
call slaed6( kniter, orgati, rho, d, z, finit, tau, info )
call dlaed6( kniter, orgati, rho, d, z, finit, tau, info )
```


Description

This routine computes the positive or negative root (closest to the origin) of
$f(x)=r h o+\frac{z(1)}{d(1)-x}+\frac{z(2)}{d(2)-x}+\frac{z(3)}{d(3)-x}$

It is assumed that if orgati =. TRUE. the root is between $d(2)$ and $d(3)$; otherwise it is between $d(1)$ and $d(2)$
This routine will be called by ? laed4 when necessary. In most cases, the root sought is the smallest in magnitude, though it might not be in some extremely rare situations.

Input Parameters

| kniter | INTEGER.
 Refer to ?laed4 for its significance. |
| :---: | :---: |
| orgati | LOGICAL.
 If orgati $=$. TRUE. , the needed root is between $d(2)$ and $d(3)$; otherwise it is between $d(1)$ and $d(2)$. See ?laed4 for further details. |
| rho | REAL for slaed6
 DOUBLE PRECISION for dlaed6
 Refer to the equation for $f(x)$ above. |
| d, z | REAL for slaed6
 DOUBLE PRECISION for dlaed6
 Arrays, dimension (3) each.
 The array d satisfies $d(1)<d(2)<d(3)$.
 Each of the elements in the array z must be positive. |
| finit | REAL for slaed6
 DOUBLE PRECISION for dlaed6
 The value of $f(x)$ at 0 . It is more accurate than the one evaluated inside this routine (if someone wants to do so). |

Output Parameters

```
tau
    REAL for slaed6
    DOUBLE PRECISION for dlaed6
    The root of the equation for }f(x)\mathrm{ .
```

```
info INTEGER.
    If info = 0, the execution is successful.
    If info = 1, failure to converge.
```


?laed7

Used by ?stedc. Computes the updated eigensystem of a diagonal matrix after modification by a rank-one symmetric matrix. Used when the original matrix is dense.

Syntax

```
call slaed7( icompq, n, qsiz, tlvls, curlvl, curpbm, d, q, ldq,
    indxq, rho, cutpnt, qstore, qptr, prmptr, perm, givptr, givcol,
    givnum, work, iwork, info )
call dlaed7( icompq, n, qsiz, tlvls, curlvl, curpbm, d, q, ldq,
    indxq, rho, cutpnt, qstore, qptr, prmptr, perm, givptr, givcol,
    givnum, work, iwork, info )
call claed7( n, cutpnt, qsiz, tlvls, curlvl, curpbm, d, q, ldq, rho,
    indxq, qstore, qptr, prmptr, perm, givptr, givcol, givnum,
    work, rwork, iwork, info )
call zlaed7( n, cutpnt, qsiz, tlvls, curlvl, curpbm, d, q, ldq, rho,
    indxq, qstore, qptr, prmptr, perm, givptr, givcol, givnum,
    work, rwork, iwork, info )
```


Description

The routine ?laed 7 computes the updated eigensystem of a diagonal matrix after modification by a rank-one symmetric matrix. This routine is used only for the eigenproblem which requires all eigenvalues and optionally eigenvectors of a dense symmetric/Hermitian matrix that has been reduced to tridiagonal form. For real flavors, slaed1/dlaed1 handles the case in which all eigenvalues and eigenvectors of a symmetric tridiagonal matrix are desired.

$$
T=Q(\mathrm{in})\left(D(\mathrm{in})+r h o * \mathrm{Z}^{*} \mathrm{z}^{\prime}\right) Q^{\prime}(\mathrm{in})=Q(\text { out }) * D(\text { out }) * Q^{\prime}(\text { out })
$$

where $\mathrm{z}=Q^{\prime} u, u$ is a vector of length n with ones in the cutpnt and (cutpnt +1) -th elements and zeros elsewhere. The eigenvectors of the original matrix are stored in Q, and the eigenvalues are in D. The algorithm consists of three stages:

The first stage consists of deflating the size of the problem when there are multiple eigenvalues or if there is a zero in the Z vector. For each such occurrence the dimension of the secular equation problem is reduced by one. This stage is performed by the routine slaed8/dlaed8 (for real flavors) or by the routine slaed2/dlaed2 (for complex flavors).

The second stage consists of calculating the updated eigenvalues. This is done by finding the roots of the secular equation via the routine ? laed4 (as called by ?laed9 or ?laed3). This routine also calculates the eigenvectors of the current problem.

The final stage consists of computing the updated eigenvectors directly using the updated eigenvalues. The eigenvectors for the current problem are multiplied with the eigenvectors from the overall problem.

Input Parameters

| icompq | INTEGER. Used with real flavors only.
 If $i c o m p q=0$, compute eigenvalues only.
 If $i c o m p q=1$, compute eigenvectors of original dense symmetric matrix also. On entry, the array q must contain the orthogonal matrix used to reduce the original matrix to tridiagonal form. |
| :---: | :---: |
| n | INTEGER. The dimension of the symmetric tridiagonal matrix ($n \geq 0$). |
| cutpnt | INTEGER. The location of the last eigenvalue in the leading sub-matrix. $\min (1, n) \leq$ cutpnt $\leq n$. |
| qsiz | INTEGER. The dimension of the orthogonal/unitary matrix used to reduce the full matrix to tridiagonal form; q siz $\geq n$ (for real flavors, $q s i z \geq n$ if icompq =1). |
| tlvls | INTEGER. The total number of merging levels in the overall divide and conquer tree. |
| curlvl | INTEGER. The current level in the overall merge routine, $0 \leq$ curlvl \leq tlvls. |
| curpbm | INTEGER. The current problem in the current level in the overall merge routine (counting from upper left to lower right). |
| d | REAL for slaed7/claed7 |
| | DOUBLE PRECISION for dlaed7/zlaed7. |
| | Array, dimension at least max $(1, n)$. |
| | Array $d(*)$ contains the eigenvalues of the rank-1-perturbed matrix. |

| q, work | REAL for slaed7 |
| :---: | :---: |
| | DOUBLE PRECISION for dlaed7 |
| | COMPLEX for claed7 |
| | COMPLEX*16 for zlaed7. |
| | Arrays: |
| | $q(I d q, *)$ contains the the eigenvectors of the rank-1-perturbed matrix. The second dimension of q must be at least $\max (1, n)$. |
| | work (*) is a workspace array, dimension at least $(3 n+q s i z * n)$ for real flavors and at least (qsiz*n) for complex flavors. |
| $1 d q$ | INTEGER. The first dimension of the array q; $l d q \geq \max (1, n)$. |
| rho | REAL for slaed7/claed7 |
| | DOUBLE PRECISION for dlaed7/zlaed7. |
| | The subdiagonal element used to create the rank-1 modification. |
| qstore | REAL for slaed7/claed7 |
| | DOUBLE PRECISION for dlaed7/zlaed7. |
| | Array, dimension ($\left.n^{2}+1\right)$. Serves also as output parameter. |
| | Stores eigenvectors of submatrices encountered during divide and conquer, packed together. qptr points to beginning of the submatrices. |
| qptr | INTEGER. Array, dimension ($n+2$). Serves also as output parameter.
 List of indices pointing to beginning of submatrices stored in qstore. The submatrices are numbered starting at the bottom left of the divide and conquer tree, from left to right and bottom to top. |
| prmptr, perm, givptr | INTEGER. Arrays, dimension ($n \lg n$) each. |
| | The array $\operatorname{prmptr}(*)$ contains a list of pointers which indicate where in perm a level's permutation is stored. prmptr(i+1)-prmptr(i) indicates the size of the permutation and also the size of the full, non-deflated problem. |
| | The array perm(*) contains the permutations (from deflation and sorting) to be applied to each eigenblock. |
| | The array givptr(*) contains a list of pointers which indicate where in givcol a level's Givens rotations are stored. givptr(i+1)-givptr(i) indicates the number of Givens rotations. |
| givcol | INTEGER. Array, dimension ($2, n \lg n$). |
| | Each pair of numbers indicates a pair of columns to take place in a Givens rotation. |

| givnum | REAL for slaed7/claed7 |
| :---: | :---: |
| | DOUBLE PRECISION for dlaed7/zlaed7. |
| | Array, dimension (2, $n \lg n$). |
| | Each number indicates the S value to be used in the corresponding Givens rotation. |
| iwork | INTEGER. Workspace array, dimension (4n). |
| rwork | REAL for claed7 |
| | DOUBLE PRECISION for zlaed7. |
| | Workspace array, dimension ($3 n+2 q s i z * n)$. Used in complex flavors only. |
| Output Parameters | |
| d | On exit, contains the eigenvalues of the repaired matrix. |
| q | On exit, q contains the eigenvectors of the repaired tridiagonal matrix. |
| indxq | integer. Array, dimension (n). |
| | Contains the permutation which will reintegrate the subproblems back into sorted order, that is, $a(\operatorname{indxq}(\mathrm{i}=1, n))$ will be in ascending order. |
| info | INTEGER. |
| | If info $=0$, the execution is successful. |
| | If info $=-i$, the i th parameter had an illegal value. |
| | If info $=1$, an eigenvalue did not converge. |

?laed8

Used by ?stedc. Merges eigenvalues and deflates secular equation. Used when the original matrix is dense.

Syntax

call slaed8(icompq, $k, n, q s i z, d, q, l d q, i n d x q, ~ r h o, ~ c u t p n t, ~ z$, dlamda, q2, ldq2, w, perm, givptr, givcol, givnum, indxp, indx, info)

```
call dlaed8( icompq, k, n, qsiz, d, q, ldq, indxq, rho, cutpnt, z,
    dlamda, q2, ldq2, w, perm, givptr, givcol, givnum, indxp, indx,
    info )
call claed8( k, n, qsiz, q, ldq, d, rho, cutpnt, z, dlamda, q2,
    ldq2, w, indxp, indx, indxq, perm, givptr, givcol, givnum,
    info )
call zlaed8( k, n, qsiz, q, ldq, d, rho, cutpnt, z, dlamda, q2,
    ldq2, w, indxp, indx, indxq, perm, givptr, givcol, givnum,
    info )
```


Description

This routine merges the two sets of eigenvalues together into a single sorted set. Then it tries to deflate the size of the problem. There are two ways in which deflation can occur: when two or more eigenvalues are close together or if there is a tiny element in the Z vector. For each such occurrence the order of the related secular equation problem is reduced by one.

Input Parameters

icompq INTEGER. Used with real flavors only. If icompq $=0$, compute eigenvalues only. If icompq $=1$, compute eigenvectors of original dense symmetric matrix also. On entry, the array q must contain the orthogonal matrix used to reduce the original matrix to tridiagonal form.
n
cutpnt
qsiz INTEGER. The dimension of the orthogonal/unitary matrix used to reduce the full matrix to tridiagonal form; q siz \geq_{n} (for real flavors, $q \operatorname{siz} \geq_{n}$ if icompq =1).
d, z
REAL for slaed8/claed8
DOUBLE PRECISION for dlaed8/zlaed8.
Arrays, dimension at least $\max (1, n)$ each.
The array $d(*)$ contains the eigenvalues of the two submatrices to be combined.
On entry, $z(*)$ contains the updating vector (the last row of the first sub-eigenvector matrix and the first row of the second sub-eigenvector matrix). The contents of z are destroyed by the updating process.

| q | REAL for slaed8 |
| :---: | :---: |
| | DOUBLE PRECISION for dlaed8 |
| | COMPLEX for claed8 |
| | COMPLEX*16 for zlaed8. |
| | Array $q(1 d q, *)$. The second dimension of q must be at least $\max (1, n)$. On entry, q contains the eigenvectors of the partially solved system which has been previously updated in matrix multiplies with other partially solved eigensystems. |
| | For real flavors, if icompq $=0, q$ is not referenced. |
| $1 d q$ | integer. The first dimension of the array q; $I d q \geq \max (1, n)$. |
| $1 \mathrm{lq}^{2}$ | INTEGER. The first dimension of the output array $q 2$; $1 d q 2 \geq \max (1, n)$. |
| indxq | INTEGER. Array, dimension (n). |
| | The permutation which separately sorts the two sub-problems in d into ascending order. Note that elements in the second half of this permutation must first have cutpnt added to their values in order to be accurate. |
| rho | REAL for slaed8/claed8 |
| | DOUBLE PRECISION for dlaed8/zlaed8. |
| | On entry, the off-diagonal element associated with the rank-1 cut which originally split the two submatrices which are now being recombined. |
| Output Parameters | |
| k | INTEGER. The number of non-deflated eigenvalues, and the order of the related secular equation. |
| d | On exit, contains the trailing ($n-k$) updated eigenvalues (those which were deflated) sorted into increasing order. |
| q | On exit, q contains the trailing ($n-k$) updated eigenvectors (those which were deflated) in its last ($n-k$) columns. |
| rho | On exit, rho has been modified to the value required by ?laed3. |
| dlamda, w | REAL for slaed8/claed8 |
| | DOUBLE PRECISION for dlaed8/zlaed8. |
| | Arrays, dimension (n) each. |
| | The array dlamda(*) contains a copy of the first k eigenvalues which will be used by ?laed 3 to form the secular equation. |

| | The array $w(*)$ will hold the first k values of the final deflation-altered z-vector and will be passed to ?laed3. |
| :---: | :---: |
| q2 | REAL for slaed8 |
| | DOUBLE PRECISION for dlaed8 |
| | Complex for claed8 |
| | COMPLEX*16 for zlaed8. |
| | Array $q 2$ (ldq2, *). The second dimension of $q 2$ must be at least $\max (1, n)$. |
| | Contains a copy of the first k eigenvectors which will be used by slaed7/dlaed7 in a matrix multiply (sgemm/dgemm) to update the new eigenvectors. |
| | For real flavors, if i compq $=0, q 2$ is not referenced. |
| indxp, indx | INTEGER. Workspace arrays, dimension (n) each. |
| | The array $\operatorname{indxp}(*)$ will contain the permutation used to place deflated values of d at the end of the array. On output, $\operatorname{indxp}(1: k)$ points to the nondeflated d-values and $\operatorname{indxp}(k+1: n)$ points to the deflated eigenvalues. |
| | The array indx(*) will contain the permutation used to sort the contents of d into ascending order. |
| perm | INTEGER. Array, dimension (n). |
| | Contains the permutations (from deflation and sorting) to be applied to each eigenblock. |
| givptr | INTEGER. Contains the number of Givens rotations which took place in this subproblem. |
| givcol | Integer. Array, dimension (2, n). |
| | Each pair of numbers indicates a pair of columns to take place in a Givens rotation. |
| givnum | REAL for slaed8/claed8 |
| | DOUBLE PRECISION for dlaed8/zlaed8. |
| | Array, dimension (2, n). |
| | Each number indicates the S value to be used in the corresponding Givens rotation. |
| info | INTEGER. |
| | If info $=0$, the execution is successful. |
| | If info $=-i$, the i th parameter had an illegal value. |

?laed9

Used by sstedc/dstedc.
Finds the roots of the secular equation and updates the eigenvectors. Used when the original matrix is dense.

Syntax

```
call slaed9( k, kstart, kstop, n, d, q, ldq, rho,
        dlamda, w, s, lds, info )
call dlaed9( k, kstart, kstop, n, d, q, ldq, rho,
    dlamda, w, s, lds, info )
```


Description

This routine finds the roots of the secular equation, as defined by the values in d, \mathbf{z}, and rho, between kstart and kstop. It makes the appropriate calls to slaed4/dlaed4 and then stores the new matrix of eigenvectors for use in calculating the next level of Z vectors.

Input Parameters

| k | INTEGER. The number of terms in the rational function to be solved by slaed4/dlaed4 ($k \geq 0$). |
| :---: | :---: |
| kstart, kstop | INTEGER. The updated eigenvalues $\operatorname{lambda(i),~}$ kstart $\leq \mathrm{i} \leq k s t o p$ are to be computed. $1 \leq k s t a r t \leq k s t o p \leq k$. |
| n | INTEGER. The number of rows and columns in the Q matrix. $n \geq k$ (deflation may result in $n>k$). |
| q | REAL for slaed9
 DOUBLE PRECISION for dlaed9.
 Workspace array, dimension (Idq, *). The second dimension of q must be at least $\max (1, n)$. |
| $1 d q$ | INTEGER. The first dimension of the array q; $I d q \geq \max (1, n)$. |
| rho | REAL for slaed9 |
| | DOUBLE PRECISION for dlaed9 |
| | The value of the parameter in the rank one update equation. r cho ≥ 0 required. |

```
dlamda, w REAL for slaed9
    DOUBLE PRECISION for dlaed9
    Arrays, dimension (k) each.
    The first }k\mathrm{ elements of the array dlamda(*) contain the old roots of the
    deflated updating problem. These are the poles of the secular equation.
    The first k elements of the array w(*) contain the components of the
    deflation-adjusted updating vector.
lds INTEGER. The first dimension of the output array s;
    lds \geq max(1,k).
```


Output Parameters

REAL for slaed9

```
DOUBLE PRECISION for dlaed9
Array, dimension (n). d (i) contains the updated eigenvalues for kstart \(\leq \mathrm{i}\) \(\leq\) kstop.
REAL for slaed9
DOUBLE PRECISION for dlaed9.
Array, dimension ( \(1 d s, *\) ). The second dimension of \(s\) must be at least \(\max (1, k)\).
Will contain the eigenvectors of the repaired matrix which will be stored for subsequent \(Z\) vector calculation and multiplied by the previously accumulated eigenvectors to update the system.
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\) th parameter had an illegal value.
If info \(=1\), the eigenvalue did not converge.
```


?laeda

Used by ?stedc. Computes the Z vector determining the rank-one modification of the diagonal matrix. Used when the original matrix is dense.

Syntax

```
call slaeda( n, tlvls, curlvl, curpbm, prmptr, perm, givptr, givcol,
    givnum, q, qptr, z, ztemp, info )
call dlaeda( n, tlvls, curlvl, curpbm, prmptr, perm, givptr, givcol,
    givnum, q, qptr, z, ztemp, info )
```


Description

The routine ? laeda computes the Z vector corresponding to the merge step in the curlvi-th step of the merge process with tlvls steps for the curpbm-th problem.

Input Parameters

$n \quad$ INTEGER. The dimension of the symmetric tridiagonal matrix $(n \geq 0)$.
tlvls INTEGER. The total number of merging levels in the overall divide and conquer tree.
curlvl INTEGER. The current level in the overall merge routine, $0 \leq$ curlvl \leq tlvls.
curpbm INTEGER. The current problem in the current level in the overall merge routine (counting from upper left to lower right).
prmptr, perm,
givptr INTEGER. Arrays, dimension $(n \lg n)$ each.
The array prmptr(*) contains a list of pointers which indicate where in perm a level's permutation is stored. prmptr($\mathrm{i}+1$) - prmptr(i) indicates the size of the permutation and also the size of the full, non-deflated problem.

The array perm(*) contains the permutations (from deflation and sorting) to be applied to each eigenblock.

The array $\operatorname{givptr}(*)$ contains a list of pointers which indicate where in givcol a level's Givens rotations are stored. givptr(i+1) - givptr(i) indicates the number of Givens rotations.

| givcol | INTEGER. Array, dimension ($2, n \lg n$) . |
| :---: | :---: |
| | Each pair of numbers indicates a pair of columns to take place in a Givens rotation. |
| givnum | REAL for slaeda |
| | DOUBLE PRECISION for dlaeda. |
| | Array, dimension ($2, n \lg n$). |
| | Each number indicates the S value to be used in the corresponding Givens rotation. |
| q | REAL for slaeda |
| | DOUBLE PRECISION for dlaeda. |
| | Array, dimension (n^{2}). |
| | Contains the square eigenblocks from previous levels, the starting positions for blocks are given by qptr. |
| qptr | INTEGER. Array, dimension $(n+2)$. Contains a list of pointers which indicate where in q an eigenblock is stored. $\operatorname{sqrt}(q p t r(i+1)-q p t r(i))$ indicates the size of the block. |
| ztemp | REAL for slaeda |
| | DOUBLE PRECISION for dlaeda. |
| | Workspace array, dimension (n). |
| Output Parameters | |
| z | REAL for slaeda |
| | DOUBLE PRECISION for dlaeda. |
| | Array, dimension (n). Contains the updating vector (the last row of the first sub-eigenvector matrix and the first row of the second sub-eigenvector matrix). |
| info | INTEGER. |
| | If $\operatorname{info}=0$, the execution is successful. |
| | If info $=-i$, the i th parameter had an illegal value. |

?laein

Computes a specified right or left eigenvector of an upper Hessenberg matrix by inverse iteration.

Syntax

```
call slaein( rightv, noinit, n, h, ldh, wr, wi, vr, vi, b, ldb,
    work, eps3, smlnum, bignum, info )
call dlaein( rightv, noinit, n, h, ldh, wr, wi, vr, vi, b, ldb,
    work, eps3, smlnum, bignum, info )
call claein( rightv, noinit, n, h, ldh, w, v, b, ldb,
    rwork, eps3, smlnum, info )
call zlaein( rightv, noinit, n, h, ldh, w, v, b, ldb,
    rwork, eps3, smlnum, info )
```


Description

The routine ?laein uses inverse iteration to find a right or left eigenvector corresponding to the eigenvalue (wr,wi) of a real upper Hessenberg matrix H (for real flavors slaein/dlaein) or to the eigenvalue w of a complex upper Hessenberg matrix H (for complex flavors
claein/zlaein).

Input Parameters

```
    rightv LOGICAL.
        If rightv = .TRUE., compute right eigenvector;
        if rightv = .FALSE., compute left eigenvector.
    noinit LOGICAL.
        If noinit = .TRUE., no initial vector is supplied in (vr,vi) or in v (for
        complex flavors);
        if noinit = .FALSE., initial vector is supplied in (vr,vi) or in v (for
        complex flavors).
        INTEGER. The order of the matrix H ( }n\geq0)\mathrm{ .
        REAL for slaein
        DOUBLE PRECISION for dlaein
        COMPLEX for claein
```

ldh

COMPLEX*16 for zlaein.
Array $h(1 d h, *)$. The second dimension of h must be at least $\max (1, n)$. Contains the upper Hessenberg matrix H.

INTEGER. The first dimension of the array h;
$l d h \geq \max (1, n)$.
REAL for slaein
DOUBLE PRECISION for dlaein.
The real and imaginary parts of the eigenvalue of H whose corresponding right or left eigenvector is to be computed (for real flavors of the routine).

COMPLEX for claein
COMPLEX*16 for zlaein.
The eigenvalue of H whose corresponding right or left eigenvector is to be computed (for complex flavors of the routine).

REAL for slaein
DOUBLE PRECISION for dlaein.
Arrays, dimension (n) each. Used for real flavors only.
On entry, if noinit $=$. FALSE. and wi $=0.0$, vr must contain a real starting vector for inverse iteration using the real eigenvalue wr; if noinit $=$. FALSE . and wi $\neq 0.0$, vr and vi must contain the real and imaginary parts of a complex starting vector for inverse iteration using the complex eigenvalue ($w r, w i$); otherwise $v r$ and vi need not be set.

COMPLEX for claein
COMPLEX*16 for zlaein.
Array, dimension (n) . Used for complex flavors only.
On entry, if noinit = . FALSE., v must contain a starting vector for inverse iteration; otherwise v need not be set.

REAL for slaein
DOUBLE PRECISION for dlaein
COMPLEX for claein
COMPLEX*16 for zlaein.
Workspace array $b(1 d b, *)$. The second dimension of b must be at least $\max (1, n)$.

INTEGER. The first dimension of the array $b ;$
$l d b \geq n+1$ for real flavors;
$l d b \geq \max (1, n)$ for complex flavors.

| work | REAL for slaein
 DOUBLE PRECISION for dlaein.
 Wwork
 Workspace array, dimension (n). Used for real flavors only. |
| :--- | :--- |
| eps3, smlnum | REAL for claein
 DOUBLE PRECISION for zlaein.
 Workspace array, dimension (n). Used for complex flavors only.

 REAL for slaein/claein
 DOUBLE PRECISION for dlaein/ zlaein.
 eps3 is a small machine-dependent value which is used to perturb close
 eigenvalues, and to replace zero pivots.
 smlnum is a machine-dependent value close to underflow threshold. |
| | REAL for slaein
 DOUBLE PRECISION for dlaein.
 bignum is a machine-dependent value close to overflow threshold. Used for
 real flavors only. |

Output Parameters

| vr, vi | On exit, if $w i=0.0$ (real eigenvalue), vr contains the computed real eigenvector; if wi $\neq 0.0$ (complex eigenvalue), vr and vi contain the real and imaginary parts of the computed complex eigenvector. The eigenvector is normalized so that the component of largest magnitude has magnitude 1 ; here the magnitude of a complex number (x, y) is taken to be $\|x\|+\|y\|$. $v i$ is not referenced if $w i=0.0$. |
| :---: | :---: |
| v | On exit, v contains the computed eigenvector, normalized so that the component of largest magnitude has magnitude 1 ; here the magnitude of a complex number (x, y) is taken to be $\|x\|+\|y\|$. |
| info | INTEGER.
 If $\operatorname{info}=0$, the execution is successful.
 If info $=1$, inverse iteration did not converge. For real flavors, vr is set to the last iterate, and so is vi if wi $\neq 0.0$. For complex flavors, v is set to the last iterate. |

?laev2

Computes the eigenvalues and eigenvectors of a 2-by-2 symmetric/Hermitian matrix.

Syntax

```
call slaev2 ( a, b, c, rt1, rt2, cs1, sn1 )
call dlaev2 ( a, b, c, rt1, rt2, cs1, sn1 )
call claev2 ( a, b, c, rt1, rt2, csl, snl )
call zlaev2 ( a, b, c, rt1, rt2, cs1, sn1 )
```


Discussion

This routine performs the eigendecomposition of a 2-by-2 symmetric matrix
$\left[\begin{array}{ll}a & b \\ b & c\end{array}\right]$ (for slaev2/dlaev2) or Hermitian matrix $\left[\begin{array}{cc}a & b \\ \operatorname{conjg}(b) & c\end{array}\right]$
(for claev2/zlaev2).
On return, $r t 1$ is the eigenvalue of larger absolute value, $r t 2$ of smaller absolute value, and (csi, $s n 1$) is the unit right eigenvector for $r t 1$, giving the decomposition

$$
\left[\begin{array}{cc}
c s 1 & s n 1 \\
-s n 1 & c s 1
\end{array}\right] \cdot\left[\begin{array}{ll}
a & b \\
b & c
\end{array}\right] \cdot\left[\begin{array}{cc}
c s 1 & -s n 1 \\
\operatorname{sn1} & c s 1
\end{array}\right]=\left[\begin{array}{cc}
r t 1 & 0 \\
0 & r t 2
\end{array}\right]
$$

(for slaev2/dlaev2),
or

$$
\left[\begin{array}{cc}
c s 1 & \operatorname{conjg}(\operatorname{sn1}) \\
-s n 1 & c s 1
\end{array}\right] \cdot\left[\begin{array}{cc}
a & b \\
\operatorname{conjg}(b) & c
\end{array}\right]\left[\begin{array}{cc}
c s 1 & -\operatorname{conjg}(\operatorname{sn1}) \\
\operatorname{sn1} & c s 1
\end{array}\right]=\left[\begin{array}{cc}
r t 1 & 0 \\
0 & \text { rt2 } 2
\end{array}\right]
$$

(for claev2/zlaev2).

Input Parameters

```
a, b, c REAL for slaev2
    DOUBLE PRECISION for dlaev2
    COMPLEX for claev2
    COMPLEX*16 for zlaev2.
    Elements of the input matrix.
```


Output Parameters

```
rt1, rt2 REAL for slaev2/claev2
    DOUBLE PRECISION for dlaev2/zlaev2.
    Eigenvalues of larger and smaller absolute value, respectively.
cs1 REAL for slaev2/claev2
    DOUBLE PRECISION for dlaev2/zlaev2.
sn1 REAL for slaev2
    DOUBLE PRECISION for dlaev2
    COMPLEX for claev2
    COMPLEX*16 for zlaev2.
    The vector (cs1,sn1) is the unit right eigenvector for rt1.
```


Application Notes

$r t 1$ is accurate to a few ulps barring over/underflow. rt2 may be inaccurate if there is massive cancellation in the determinant $a * c-b * b$; higher precision or correctly rounded or correctly truncated arithmetic would be needed to compute $r t 2$ accurately in all cases. csi and snl are accurate to a few ulps barring over/underflow. Overflow is possible only if $r t 1$ is within a factor of 5 of overflow. Underflow is harmless if the input data is 0 or exceeds underflow_threshold / macheps.

?laexc

Swaps adjacent diagonal blocks of a real upper quasi-triangular matrix in Schur canonical form, by an orthogonal similarity transformation.

Syntax

```
call slaexc ( wantq, n, t, ldt, q, ldq, j1, n1, n2, work, info )
```

```
call dlaexc ( wantq, n, t, ldt, q, ldq, j1, n1, n2, work, info )
```


Description

This routine swaps adjacent diagonal blocks T_{11} and T_{22} of order 1 or 2 in an upper quasi-triangular matrix T by an orthogonal similarity transformation. T must be in Schur canonical form, that is, block upper triangular with 1-by-1 and 2-by-2 diagonal blocks; each 2-by-2 diagonal block has its diagonal elements equal and its off-diagonal elements of opposite sign.

Input Parameters

```
wantq LOGICAL.
    If wantq=.TRUE., accumulate the transformation in the matrix Q;
    If wantq=. FALSE., do not accumulate the transformation.
n
t, q
ldt
ldq INTEGER. The first dimension of q;
    If wantq=. FALSE., then ldq\geq1.
    If wantq=.TRUE., then ldq \geq max(1,n).
j1
n1 INTEGER. The order of the first block T11
(n1 = 0, 1, or 2).
n2 INTEGER. The order of the second block T22
(n2 = 0, 1, or 2).
```

```
work REAL for slaexc;
    DOUBLE PRECISION for dlaexc.
    Workspace array, DIMENSION (n).
```


Output Parameters

| t | On exit, the updated matrix T, again in Schur canonical form. |
| :--- | :--- |
| q | On exit, if wantq=. TRUE., the updated matrix Q. |
| info | INTEGER. |
| | If info $=0$, the execution is successful. |
| | If info $=1$, the transformed matrix T would be too far from Schur form; the |
| | blocks are not swapped and T and Q are unchanged. |

?lag2

Computes the eigenvalues of a 2-by-2 generalized eigenvalue problem, with scaling as necessary to avoid over-/underflow.

Syntax

```
call slag2 ( a, lda, b, ldb, safmin, scale1, scale2, wr1, wr2, wi )
call dlag2 ( a, lda, b, ldb, safmin, scale1, scale2, wr1, wr2, wi )
```


Description

This routine computes the eigenvalues of a 2×2 generalized eigenvalue problem $A-w B$, with scaling as necessary to avoid over-/underflow. The scaling factor, s, results in a modified eigenvalue equation
$s A-w B$,
where s is a non-negative scaling factor chosen so that $w, w B$, and $s A$ do not overflow and, if possible, do not underflow, either.

Input Parameters

a, b
REAL for slag2
DOUBLE PRECISION for dlag2
Arrays:

Ida
$1 d b$
safmin
a(lda, 2) contains, on entry, the 2×2 matrix A. It is assumed that its 1-norm is less than $1 /$ safmin. Entries less than sqrt $(\operatorname{safmin}) * \operatorname{norm}(A)$ are subject to being treated as zero.
$b(1 d b, 2)$ contains, on entry, the 2×2 upper triangular matrix B. It is assumed that the one-norm of B is less than $1 /$ safmin. The diagonals should be at least sqrt(safmin) times the largest element of B (in absolute value); if a diagonal is smaller than that, then $+/-\operatorname{sqrt}(\operatorname{safmin})$ will be used instead of that diagonal.

INTEGER. The first dimension of $a ;$ Ida ≥ 2.
INTEGER. The first dimension of $b ; 1 d b \geq 2$.
REAL for slag2;
DOUBLE PRECISION for dlag2.
The smallest positive number such that $1 /$ safmin does not overflow. (This should always be ?lamch('S') - it is an argument in order to avoid having to call ? lamch frequently.)

Output Parameters

scale1 REAL for slag2;
DOUBLE PRECISION for dlag2.
A scaling factor used to avoid over-/underflow in the eigenvalue equation which defines the first eigenvalue. If the eigenvalues are complex, then the eigenvalues are (wri +/- wi i)/scalel (which may lie outside the exponent range of the machine), scalel=scale2, and scalel will always be positive. If the eigenvalues are real, then the first (real) eigenvalue is wrl/scalel, but this may overflow or underflow, and in fact, scalel may be zero or less than the underflow threshhold if the exact eigenvalue is sufficiently large.
scale2
REAL for slag2;
DOUBLE PRECISION for dlag2.
A scaling factor used to avoid over-/underflow in the eigenvalue equation which defines the second eigenvalue. If the eigenvalues are complex, then scale2=scale1. If the eigenvalues are real, then the second (real) eigenvalue is wr2 / scale2, but this may overflow or underflow, and in fact, scale2 may be zero or less than the underflow threshold if the exact eigenvalue is sufficiently large.

```
wr1 REAL for slag2;
    DOUBLE PRECISION for dlag2.
    If the eigenvalue is real, then wrl is scalel times the eigenvalue closest to the
    (2,2) element of AB '1. If the eigenvalue is complex, then wrl=wr2 is scale1
    times the real part of the eigenvalues.
wr2 REAL for slag2;
    DOUBLE PRECISION for dlag2.
    If the eigenvalue is real, then wr2 is scale2 times the other eigenvalue. If the
    eigenvalue is complex, then wrl=wr2 is scalel times the real part of the
    eigenvalues.
wi REAL for slag2;
    DOUBLE PRECISION for dlag2.
    If the eigenvalue is real, then wi is zero. If the eigenvalue is complex, then wi
    is scalel times the imaginary part of the eigenvalues. wi will always be
    non-negative.
```


?lags2

Computes 2-by-2 orthogonal matrices U, V, and Q, and applies them to matrices A and B such that the rows of the transformed A and B are parallel.

Syntax

```
call slags2 ( upper, a1, a2, a3, b1, b2, b3, csu, snu,
    Csv, snv, csq, snq )
call dlags2 ( upper, a1, a2, a3, b1, b2, b3, csu, snu,
    Csv, snv, csq, snq )
```


Description

This routine computes 2-by-2 orthogonal matrices U, V and Q, such that if upper =. TRUE. , then

$$
U^{\prime *} A^{*} Q=U^{\prime} *\left[\begin{array}{cc}
A_{1} & A_{2} \\
0 & A_{3}
\end{array}\right] * Q=\left[\begin{array}{cc}
x & 0 \\
\mathrm{x} & \mathrm{x}
\end{array}\right]
$$

and

$$
V^{\prime} * B^{*} Q=V^{\prime *}\left[\begin{array}{cc}
B_{1} & B_{2} \\
0 & B_{3}
\end{array}\right] * Q=\left[\begin{array}{ll}
\mathrm{x} & 0 \\
\mathrm{x} & \mathrm{x}
\end{array}\right]
$$

or if upper $=$. FALSE. , then

$$
U^{\prime *} * Q=U^{\prime *}\left[\begin{array}{cc}
A_{1} & 0 \\
A_{2} & A_{3}
\end{array}\right] * Q=\left[\begin{array}{cc}
\mathrm{x} & \mathrm{x} \\
0 & \mathrm{x}
\end{array}\right]
$$

and

$$
V^{\prime *} B^{*} Q=V^{\prime *}\left[\begin{array}{cc}
B_{1} & 0 \\
B_{2} & B_{3}
\end{array}\right] * Q=\left[\begin{array}{cc}
\mathrm{x} & \mathrm{x} \\
0 & \mathrm{x}
\end{array}\right]
$$

The rows of the transformed A and B are parallel, where
$U=\left[\begin{array}{cc}c s u & s n u \\ -s n u & c s u\end{array}\right], V=\left[\begin{array}{cc}c s v & s n v \\ -s n v & c s v\end{array}\right], Q=\left[\begin{array}{cc}c s q & s n q \\ -s n q & c s q\end{array}\right]$

Here Z ' denotes the transpose of Z.

Input Parameters

```
upper
a1, a2, a3
LOGICAL.
    If upper =.TRUE ., the input matrices A and B are upper triangular;
    If upper =. FALSE., the input matrices A and B are lower triangular.
    REAL for slags2
    DOUBLE PRECISION for dlags2
    On entry, a1, a2 and a3 are elements of the input 2-by-2 upper (lower)
    triangular matrix }A\mathrm{ .
```

```
b1, b2, b3 REAL for slags2
    DOUBLE PRECISION for dlags2
    On entry, b1, b2 and b3 are elements of the input 2-by-2 upper (lower)
    triangular matrix B.
```


Output Parameters

| csu, snu | REAL for slags2
 DOUBLE PRECISION for dlags2 |
| :--- | :--- |
| The desired orthogonal matrix U. | |

?lagtf

Computes an LU factorization of a matrix $T-\lambda I$, where T is a general tridiagonal matrix, and λ a scalar, using partial pivoting with row interchanges.

Syntax

```
call slagtf ( n, a, lambda, b, c, tol, d, in, info )
call dlagtf ( n, a, lambda, b, c, tol, d, in, info )
```


Description

 lambda is a scalar, as

$$
T-\operatorname{lambda} * I=P L U,
$$

where P is a permutation matrix, L is a unit lower tridiagonal matrix with at most one non-zero sub-diagonal elements per column and U is an upper triangular matrix with at most two non-zero super-diagonal elements per column. The factorization is obtained by Gaussian elimination with
partial pivoting and implicit row scaling. The parameter lambda is included in the routine so that ?lagtf may be used, in conjunction with ? lagts, to obtain eigenvectors of T by inverse iteration..

Input Parameters

n
a, b, c

INTEGER. The order of the matrix $T(n \geq 0)$.
REAL for slagtf
DOUBLE PRECISION for dlagtf
Arrays, dimension $a(n), b(n-1), c(n-1)$:
On entry, $a(*)$ must contain the diagonal elements of the matrix T.
On entry, $b(*)$ must contain the ($n-1$) super-diagonal elements of T.
On entry, $c(*)$ must contain the ($n-1$) sub-diagonal elements of T.
1 REAL for slagtf
DOUBLE PRECISION for dlagtf
On entry, a relative tolerance used to indicate whether or not the matrix (T lambda* I) is nearly singular. tol should normally be chose as approximately the largest relative error in the elements of T. For example, if the elements of T are correct to about 4 significant figures, then tol should be set to about $5^{*} 10^{-4}$. If tol is supplied as less than eps, where eps is the relative machine precision, then the value eps is used in place of tol.

Output Parameters

On exit, a is overwritten by the n diagonal elements of the upper triangular matrix U of the factorization of T.

On exit, b is overwritten by the $n-1$ super-diagonal elements of the matrix U of the factorization of T.

On exit, c is overwritten by the $n-1$ sub-diagonal elements of the matrix L of the factorization of T.

REAL for slagtf DOUBLE PRECISION for dlagtf Array, dimension (n-2). On exit, d is overwritten by the $n-2$ second super-diagonal elements of the matrix U of the factorization of T.

INTEGER.
Array, dimension (n).
On exit, in contains details of the permutation matrix P. If an interchange occurred at the k-th step of the elimination, then $\operatorname{in}(k)=1$, otherwise $\operatorname{in}(k)=$

0 . The element $i n(n)$ returns the smallest positive integer j such that $\operatorname{abs}(u(\mathrm{j}, \mathrm{j})) \leq \operatorname{norm}\left(\left(T-\operatorname{lambda}{ }^{\star}\right)(\mathrm{j})\right) \star$ tol, where $\operatorname{norm}(A(\mathrm{j}))$ denotes the sum of the absolute values of the j -th row of the matrix A. If no such j exists then $i n(n)$ is returned as zero. If $i n(n)$ is returned as positive, then a diagonal element of U is small, indicating that (T lambda $\star I$) is singular or nearly singular.
info INTEGER.
If info $=0$, the execution is successful. If info $=-k$, the k th parameter had an illegal value.

?lagtm

Performs a matrix-matrix product of the form $C=$ $\alpha A B+\beta C$, where A is a tridiagonal matrix, B and C are rectangular matrices, and α and β are scalars, which may be 0,1 , or -1 .

Syntax

```
call slagtm( trans, n, nrhs, alpha, dl, d, du, x, ldx, beta, b, ldb )
call dlagtm( trans, n, nrhs, alpha, dl, d, du, x, ldx, beta, b, ldb )
call clagtm( trans, n, nrhs, alpha, dl, d, du, x, ldx, beta, b, ldb )
call zlagtm( trans, n, nrhs, alpha, dl, d, du, x, ldx, beta, b, ldb )
```


Description

This routine performs a matrix-vector product of the form :
$B:=$ alpha* $A * X+$ beta* B
where A is a tridiagonal matrix of order n, B and X are n-by-nrhs matrices, and alpha and beta are real scalars, each of which may be $0 ., 1$., or -1 .

Input Parameters

```
trans CHARACTER*1. Must be 'N' or 'T' or 'C'.
    Indicates the form of the equations:
    If trans='N', then B:= alpha* }A*X+\mathrm{ beta* }
        (no transpose);
```

| | If trans $=$ ' T ', then $B:=$ alpha $A^{T} * X+$ beta $* B$ (transpose);
 If trans $=' \mathrm{C}$ ', then $B:=$ alpha* $A^{H} * X+$ beta* B (conjugate transpose) |
| :---: | :---: |
| n | INTEGER. The order of the matrix $A(n \geq 0)$. |
| nrhs | INTEGER. The number of right-hand sides, i.e., the number of columns in X and B (nrhs ≥ 0). |
| alpha, beta | REAL for slagtm/clagtm
 DOUBLE PRECISION for dlagtm/zlagtm
 The scalars α and β. alpha must be $0 ., 1$., or -1 .; otherwise, it is assumed to be 0 . beta must be $0 ., 1$., or -1 .; otherwise, it is assumed to be 1 . |
| $d l, d, d u$ | REAL for slagtm |
| | DOUBLE PRECISION for dlagtm |
| | COMPLEX for clagtm |
| | COMPLEX*16 for zlagtm. |
| | Arrays: $d l(n-1), d(n), d u(n-1)$. |
| | The array dl contains the ($n-1$) sub-diagonal elements of T. |
| | The array d contains the n diagonal elements of T. |
| | The array du contains the (n-1) super-diagonal elements of T. |
| $x, \quad b$ | REAL for slagtm |
| | DOUBLE PRECISION for dlagtm |
| | COMPLEX for clagtm |
| | COMPLEX*16 for zlagtm. |
| | Arrays: |
| | $x(l d x, *)$ contains the n-by-nrhs matrix X. The second dimension of x must be at least max (1 , nrhs). |
| | $b(l d b, *)$ contains the n-by-nrhs matrix B. The second dimension of b must be at least $\max (1, n r h s)$. |
| $1 d x$ | Integer. The leading dimension of the array x; $1 d x \geq \max (1, n)$. |
| 1 db | INTEGER. The leading dimension of the array b; $I d b \geq \max (1, n)$. |
| Output Parameters | |
| b | Overwritten by the matrix expression $B:=$ alpha* $A \star X+$ beta* B |

?lagts

Solves the system of equations $(T-\lambda I) x=y$ or $(T-\lambda I)^{T} x=$ y, where T is a general tridiagonal matrix and λa scalar, using the LU factorization computed by ?lagtf.

Syntax

```
call slagts ( job, n, a, b, c, d, in, y, tol, info )
call dlagts ( job, n, a, b, c, d, in, y, tol, info )
```


Description

This routine may be used to solve for x one of the systems of equations:

$$
\begin{aligned}
& (T-\text { lambda } \star I) \star x=y \text { or } \quad(T-\operatorname{lambda} \star I)^{\prime} \star x=y, \\
& \text { where } T \text { is an } n \text {-by- }-\mathrm{n} \text { tridiagonal matrix, following the factorization of } \\
& (T-\text { lambda } \star I) \text { as } \\
& T-\text { lambda } \star I=P L U,
\end{aligned}
$$

computed by the routine ?lagtf.
The choice of equation to be solved is controlled by the argument job, and in each case there is an option to perturb zero or very small diagonal elements of U, this option being intended for use in applications such as inverse iteration.

Input Parameters

job

INTEGER. Specifies the job to be performed by ?lagts as follows: $=1$: The equations $(T-\operatorname{lambda} * I) x=y$ are to be solved, but diagonal elements of U are not to be perturbed.
$=-1$: The equations $(T-1$ ambda $\star I) x=y$ are to be solved and, if overflow would otherwise occur, the diagonal elements of U are to be perturbed. See argument tol below.
$=2$: The equations $(T-\operatorname{lambda} * I)^{\prime} x=y$ are to be solved, but diagonal elements of U are not to be perturbed.

```
    =-2: The equations (T-lambda\starI)}\mp@subsup{)}{}{\prime}x=y\mathrm{ are to be solved and, if overflow
    would otherwise occur, the diagonal elements of }U\mathrm{ are to be perturbed. See
    argument tol below.
    a, b, c, d
    Y
tol
```

n

```
integer. The order of the matrix \(T(n \geq 0)\).
REAL for slagts
DOUBLE PRECISION for dlagts
Arrays, dimension \(a(n), b(n-1), c(n-1), d(n-2)\) :
On entry, a(*) must contain the diagonal elements of \(U\) as returned from ?lagtf.
On entry, b(*) must contain the first super-diagonal elements of \(U\) as returned from ?lagtf.
On entry, c(*) must contain the sub-diagonal elements of \(L\) as returned from ?lagtf.
On entry, \(d(*)\) must contain the second super-diagonal elements of \(U\) as returned from ?lagtf.
in INTEGER.
Array, dimension (n).
On entry, in (*) must contain details of the matrix \(P\) as returned from ?lagtf.
\(y \quad\) REAL for slagts
DOUBLE PRECISION for dlagts
Array, dimension ( \(n\) ). On entry, the right hand side vector \(y\).
REAL for slagtf
DOUBLE PRECISION for dlagtf.
On entry, with job < 0 , tol should be the minimum perturbation to be made to very small diagonal elements of \(U\). tol should normally be chosen as about \(e p s * \operatorname{norm}(U)\), where eps is the relative machine precision, but if tol is supplied as non-positive, then it is reset to eps* \(\max (\operatorname{abs}(u(i, j)))\). If \(j \circ b>0\) then tol is not referenced.
```


Output Parameters

```
\(y \quad\) On exit, \(y\) is overwritten by the solution vector \(x\).
tol On exit, tol is changed as described in Input Parameters section above, only if tol is non-positive on entry. Otherwise tol is unchanged.
info INTEGER.
If info \(=0\), the execution is successful. If info \(=-i\), the \(i\) th parameter had an illegal value.
```

If info $=i>0$, overflow would occur when computing the i th element of the solution vector x. This can only occur when $j \circ b$ is supplied as positive and either means that a diagonal element of U is very small, or that the elements of the right-hand side vector y are very large.

?lagv2

Computes the Generalized Schur factorization of a real
2-by-2 matrix pencil (A, B) where B is upper triangular.

Syntax

```
call slagv2 ( a, lda, b, ldb, alphar, alphai, beta, csl,
    snl, csr, snr )
call dlagv2 ( a, lda, b, ldb, alphar, alphai, beta, csl,
    snl, csr, snr )
```


Description

This routine computes the Generalized Schur factorization of a real 2-by-2 matrix pencil (A, B) where B is upper triangular. The routine computes orthogonal (rotation) matrices given by $c s l$, snl and csr, snr such that:

1) if the pencil (A, B) has two real eigenvalues (include $0 / 0$ or $1 / 0$ types), then

$$
\begin{aligned}
& {\left[\begin{array}{ll}
a_{11} & a_{12} \\
0 & a_{22}
\end{array}\right]=\left[\begin{array}{cc}
c s l & s n 1 \\
-s n l & c s 1
\end{array}\right]\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]\left[\begin{array}{cc}
c s r & -s n r \\
s n r & c s r
\end{array}\right]} \\
& {\left[\begin{array}{cc}
b_{11} & b_{12} \\
0 & b_{22}
\end{array}\right]=\left[\begin{array}{cc}
c s 1 & s n 1 \\
-s n l & c s 1
\end{array}\right]\left[\begin{array}{cc}
b_{11} & b_{12} \\
0 & b_{22}
\end{array}\right]\left[\begin{array}{cc}
c s r & -s n r \\
s n r & c s r
\end{array}\right]}
\end{aligned}
$$

$2)$ if the pencil (A, B) has a pair of complex conjugate eigenvalues, then

$$
\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]=\left[\begin{array}{cc}
c s 1 & s n 1 \\
-s n 1 & c s 1
\end{array}\right]\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]\left[\begin{array}{cc}
\operatorname{csr} & -s n r \\
s n r & c s r
\end{array}\right]
$$

$$
\left[\begin{array}{cc}
b_{11} & 0 \\
0 & b_{22}
\end{array}\right]=\left[\begin{array}{cc}
c s l & s n 1 \\
-s n l & c s 1
\end{array}\right]\left[\begin{array}{cc}
b_{11} & b_{12} \\
0 & b_{22}
\end{array}\right]\left[\begin{array}{cc}
\operatorname{csr} & -s n r \\
\operatorname{snr} & c s r
\end{array}\right]
$$

where $b_{11} \geq b_{22}>0$.

Input Parameters

```
a, b REAL for slagv2
    DOUBLE PRECISION for dlagv2
    Arrays:
    a(Ida,2) contains the 2-by-2 matrix A;
    b}(1db,2) contains the upper triangular 2-by-2 matrix B
Ida INTEGER. The leading dimension of the array a;
    lda }\geq2\mathrm{ .
ldb INTEGER. The leading dimension of the array b;
    ldb}\geq2\mathrm{ .
```


Output Parameters

| a | On exit, a is overwritten by the " A-part" of the generalized Schur form. |
| :---: | :---: |
| b | On exit, b is overwritten by the " B-part" of the generalized Schur form. |
| alphar,alphai, | |
| beta | REAL for slagv2 |
| | DOUBLE PRECISION for dlagv2. |
| | Arrays, dimension (2) each. |
| | (alphar $(\mathrm{k})+\boldsymbol{i} * \operatorname{alphai}(\mathrm{k})) / \operatorname{beta}(\mathrm{k})$ are the eigenvalues of the pencil (A, B), $\mathrm{k}=1,2$ and $\boldsymbol{i}=\operatorname{sqrt}(-1)$. Note that beta(k$)$ may be zero. |
| csl, snl | REAL for slagv2 |
| | DOUBLE PRECISION for dlagv2 |
| | The cosine and sine of the left rotation matrix, respectively. |
| csr, snr | REAL for slagv2 |
| | DOUBLE PRECISION for dlagv2 |
| | The cosine and sine of the right rotation matrix, respectively. |

?lahqr

Computes the eigenvalues and Schur factorization of an
upper Hessenberg matrix, using the
double-shift/single-shift QR algorithm.

Syntax

```
call slahqr ( wantt, wantz, n, ilo, ihi, h, ldh, wr, wi,
    iloz, ihiz, z, ldz, info )
call dlahqr ( wantt, wantz, n, ilo, ihi, h, ldh, wr, wi,
    iloz, ihiz, z, ldz, info )
call clahqr ( wantt, wantz, n, ilo, ihi, h, ldh, w,
    iloz, ihiz, z, ldz, info )
call zlahqr ( wantt, wantz, n, ilo, ihi, h, ldh, w,
    iloz, ihiz, z, ldz, info )
```


Description

This routine is an auxiliary routine called by ?hseqr to update the eigenvalues and Schur decomposition already computed by ?hseqr, by dealing with the Hessenberg submatrix in rows and columns ilo to ihi.

Input Parameters

```
wantt LOGICAL.
    If wantt =.TRUE., the full Schur form T is required;
    If wantt =. FALSE., eigenvalues only are required.
wantz LOGICAL.
    If wantz =.TRUE., the matrix of Schur vectors Z is required;
    If wantz =.FALSE., Schur vectors are not required.
n
    INTEGER. The order of the matrix H(n\geq0).
ilo, ihi INTEGER.
    It is assumed that H is already upper quasi-triangular in rows and columns
    ihi+1:n, and that H(ilo,ilo-1)=0 (unless ilo= 1). The routine ?lahqr
    works primarily with the Hessenberg submatrix in rows and columns ilo to
    ihi, but applies transformations to all of H if wantt = .TRUE..
    Constraints:
    1\leqilo\leqmax(1,ihi); ihi\leqn.
```

| h, z | REAL for slahqr
 DOUBLE PRECISION for dlahqr
 COMPLEX for clahqr
 COMPLEX*16 for zlahqr.
 Arrays:
 $h(l d h, *)$ contains the upper Hessenberg matrix H.
 The second dimension of h must be at least $\max (1, n)$.
 $z(l d z, *)$
 If want $z=$. TRUE., then, on entry, z must contain the current matrix Z of transformations accumulated by ?hseqr.
 If want $z=$. FALSE., then z is not referenced.
 The second dimension of z must be at least $\max (1, n)$. |
| :---: | :---: |
| 1 dh | Integer. The first dimension of h; at least max ($1, n$). |
| $l d z$ | INTEGER. The first dimension of z; at least max $(1, n)$. |
| iloz, ihiz | INTEGER. Specify the rows of Z to which transformations must be applied if wantz $=$.TRUE..
 $1 \leq i l o z \leq i l o ;$ ihisihizsn. |
| Output Parameters | |
| h | On exit, if wantt =. TRUE., H is upper quasi-triangular (upper triangular for complex flavors) in rows and columns ilo:ihi, with any 2-by-2 diagonal blocks in standard form. If wantt $=$. FALSE. , the contents of H are unspecified on exit. |
| wr, wi | REAL for slahqr
 DOUBLE PRECISION for dlahqr
 Arrays, DIMENSION at least max $(1, n)$ each. Used with real flavors only. The real and imaginary parts, respectively, of the computed eigenvalues ilo to ihi are stored in the corresponding elements of wr and wi. If two eigenvalues are computed as a complex conjugate pair, they are stored in consecutive elements of wr and wi, say the i-th and (i+1)th, with wi(i) >0 and wi $(\mathrm{i}+1)<0$. If wantt $=$. TRUE., the eigenvalues are stored in the same order as on the diagonal of the Schur form returned in H, with $w r(\mathrm{i})=H(\mathrm{i}, \mathrm{i})$, and, if $H(\mathrm{i}: \mathrm{i}+1$, i:i $1+1$) is a 2 -by- 2 diagonal block, $w i(\mathrm{i})=\operatorname{sqrt}(H(\mathrm{i}+1, \mathrm{i}) * H(\mathrm{i}, \mathrm{i}+1)) \text { and } w i(\mathrm{i}+1)=-\mathrm{wi}(\mathrm{i}) .$ |
| w | COMPLEX for clahqr
 COMPLEX*16 for zlahqr.
 Array, DIMENSION at least max $(1, n)$. Used with complex flavors only. |

The computed eigenvalues ilo to ihi are stored in the corresponding elements of w. If wantt $=$. TRUE., the eigenvalues are stored in the same order as on the diagonal of the Schur form returned in H, with $w(i)=H(i, i)$.
z
If want $z=$.TRUE., then, on exit z has been updated; transformations are applied only to the submatrix $Z(i l o z: i h i z$, ilo:ihi).
info INTEGER.
If $\operatorname{info}=0$, the execution is successful.
If info $=i>0$, ? lahqr failed to compute all the eigenvalues ilo to ihi in a total of $30 *(i h i-i l o+1)$ iterations; elements $i+1$:ihi of wr and wi (for slahqr/dlahqr) or w (for clahqr/zlahqr) contain those eigenvalues which have been successfully computed.

?lahrd

Reduces the first nb columns of a general rectangular matrix A so that elements below the k-th subdiagonal are zero, and returns auxiliary matrices which are needed to apply the transformation to the unreduced part of A.

Syntax

```
call slahrd ( n, k, nb, a, lda, tau, t, ldt, y, ldy )
call dlahrd ( n, k, nb, a, lda, tau, t, ldt, y, ldy )
call clahrd ( n, k, nb, a, lda, tau, t, ldt, y, ldy )
call zlahrd ( n, k, nb, a, lda, tau, t, ldt, y, ldy )
```


Description

The routine reduces the first $n b$ columns of a real/complex general $n-b y-(n-k+1)$ matrix A so that elements below the k-th subdiagonal are zero. The reduction is performed by an orthogonal/unitary similarity transformation $Q^{\prime} A Q$. The routine returns the matrices V and T which determine Q as a block reflector $I-V T V^{\prime}$, and also the matrix $Y=A V T$.

The matrix Q is represented as products of $n b$ elementary reflectors:
$Q=H(1) H(2) \ldots H(n b)$

Each $H(\mathrm{i})$ has the form
$H(\mathrm{i})=I-t a u * v * v^{\prime}$
where $t a u$ is a real/complex scalar, and v is a real/complex vector.
This is an auxiliary routine called by ?gehrd.

Input Parameters

n
$k \quad$ INTEGER. The offset for the reduction. Elements below the k-th subdiagonal in the first $n b$ columns are reduced to zero.
nb INTEGER. The number of columns to be reduced.
a
lda
ldt INTEGER. The first dimension of the output array t; must be at least $\max (1$, $n b)$.
ldy INTEGER. The first dimension of the output array y; must be at least $\max (1, n)$.

Output Parameters

On exit, the elements on and above the k-th subdiagonal in the first $n b$ columns
are overwritten with the corresponding elements of the reduced matrix; the
elements below the k-th subdiagonal, with the array tau, represent the matrix
Q as a product of elementary reflectors. The other columns of a are unchanged.
See Application Notes below.
REAL for slahrd
DOUBLE PRECISION for dlahrd
COMPLEX for clahrd
COMPLEX*16 for zlahrd.
Array, DIMENSION $(n b)$.
Contains scalar factors of the elementary reflectors.

```
t, y REAL for slahrd
DOUBLE PRECISION for dlahrd
COMPLEX for clahrd
COMPLEX*16 for zlahrd.
Arrays, dimension t(ldt, nb), y(ldy, nb).
The array t contains upper triangular matrix T.
The array \(y\) contains the \(n\)-by-nb matrix \(Y\).
```


Application Notes

For the elementary reflector $H(\mathrm{i})$,
$v(1: \mathrm{i}+k-1)=0, v(\mathrm{i}+k)=1 ; \quad v(\mathrm{i}+k+1: n)$ is stored on exit in $a(\mathrm{i}+k+1: n, \mathrm{i})$ and tau is stored in tau(i).

The elements of the vectors v together form the $(n-k+1)-$ by- $n b$ matrix V which is needed, with T and Y, to apply the transformation to the unreduced part of the matrix, using an update of the form: $A:=\left(I-V T V^{\prime}\right)$ * $\left(A-Y V^{\prime}\right)$.
The contents of A on exit are illustrated by the following example with $n=7, k=3$ and $n b=2$:

$$
\left[\begin{array}{ccccc}
a & h & a & a & a \\
a & h & a & a & a \\
a & h & a & a & a \\
h & h & a & a & a \\
v_{1} & h & a & a & a \\
v_{1} & v_{2} & a & a & a \\
v_{1} & v_{2} & a & a & a
\end{array}\right]
$$

where a denotes an element of the original matrix A, h denotes a modified element of the upper Hessenberg matrix H, and v_{i} denotes an element of the vector defining $H(\mathrm{i})$.

?laic1

Applies one step of incremental condition estimation.

Syntax

```
call slaic1 ( job, j, x, sest, w, gamma, sestpr, s, c )
call dlaic1 ( job, j, x, sest, w, gamma, sestpr, s, c )
call claic1 ( job, j, x, sest, w, gamma, sestpr, s, C )
call zlaic1 ( job, j, x, sest, w, gamma, sestpr, s, c )
```


Description

The routine ?laicl applies one step of incremental condition estimation in its simplest version.
Let $x,\|x\|_{2}=1$ (where $\|a\|_{2}$ denotes the 2-norm of a), be an approximate singular vector of an j-by- j lower triangular matrix L, such that
$\left\|L^{*} x\right\|_{2}=$ sest
Then ?laic1 computes sestpr, s, c such that the vector

$$
x h a t=\left[\begin{array}{c}
s^{*} x \\
c
\end{array}\right]
$$

is an approximate singular vector of

$$
\text { Lhat }=\left[\begin{array}{cc}
L & 0 \\
w^{\prime} & \text { gamma }
\end{array}\right]
$$

in the sense that
$\|$ Lhat $*$ xhat $\|_{2}=$ sestpr.
Depending on job, an estimate for the largest or smallest singular value is computed.
Note that $[s c]^{\prime}$ and sestpr ${ }^{2}$ is an eigenpair of the system (for slaicl/claic)
$\operatorname{diag}($ sest*sest, 0$)+\left[\begin{array}{ll}\text { alpha } & \text { gamma }\end{array}\right] *\left[\begin{array}{l}\text { alpha } \\ \text { gamma }\end{array}\right]$
where alpha $=x^{\prime} * w$;
or of the system (for claicl/zlaic)
$\operatorname{diag}($ sest*sest, 0$)+\left[\begin{array}{ll}\text { alpha } & \text { gamma }\end{array}\right] *\left[\begin{array}{l}\operatorname{conjg}(\text { alpha }) \\ \operatorname{conjg}(\text { gamma })\end{array}\right]$
where $a l p h a=\operatorname{conjg}(x)^{\prime} * w$.

Input Parameters

```
job INTEGER.
    If job=1, an estimate for the largest singular value is computed;
    If job =2, an estimate for the smallest singular value is computed;
j INTEGER. Length of }x\mathrm{ and w.
x, w REAL for slaic1
    DOUBLE PRECISION for dlaic1
    COMPLEX for claic1
    COMPLEX*16 for zlaic1.
    Arrays, dimension (j) each.
    Contain vectors x and w, respectively.
sest REAL for slaic1/claic1;
    DOUBLE PRECISION for dlaicl/zlaic1.
    Estimated singular value of j-by-j matrix L.
gamma REAL for slaic1
    DOUBLE PRECISION for dlaic1
    COMPLEX for claic1
    COMPLEX*16 for zlaic1.
    The diagonal element gamma.
```


Output Parameters

```
sestpr REAL for slaicl/claic1;
    DOUBLE PRECISION for dlaicl/zlaic1.
    Estimated singular value of (j+1)-by-(j+1) matrix Lhat.
```

```
s, C REAL for slaic1
DOUBLE PRECISION for dlaic1
COMPLEX for claicl
COMPLEX*16 for zlaic1.
Sine and cosine needed in forming xhat.
```


?laln2

Solves a 1-by-1 or 2-by-2 linear system of equations of the specified form.

Syntax

```
call slaln2( ltrans, na, nw, smin, ca, a, lda, dl, d2,
        b, ldb, wr, wi, x, ldx, scale, xnorm, info )
call dlaln2( ltrans, na, nw, smin, ca, a, lda, d1, d2,
    b, ldb, wr, wi, x, ldx, scale, xnorm, info )
```


Description

The routine solves a system of the form
(ca $A-w D) X=s B$ or $\left(c a A^{\prime}-w D\right) X=s B$
with possible scaling (s) and perturbation of A (A^{\prime} means A-transpose.)
A is an na-by-na real matrix, $c a$ is a real scalar, D is an na-by-na real diagonal matrix, w is a real or complex value, and X and B are na-by- 1 matrices: real if w is real, complex if w is complex. The parameter na may be 1 or 2 .

If w is complex, X and B are represented as na-by- 2 matrices, the first column of each being the real part and the second being the imaginary part.

The routine computes the scaling factor $s(\leq 1)$ so chosen that X can be computed without overflow. X is further scaled if necessary to assure that norm(ca $A-w D) \star \operatorname{norm}(X)$ is less than overflow.

If both singular values of (ca $A-w D$) are less than smin, smin * I (where I stands for identity) will be used instead of (ca $A-w D$). If only one singular value is less than smin, one element of (ca $A-w D$) will be perturbed enough to make the smallest singular value roughly smin. If both singular values are at least smin, (ca $A-w D$) will not be perturbed. In any case, the perturbation will be at most some small multiple of
$\max (\operatorname{smin}, u l p$ * $\operatorname{norm}(\operatorname{ca} A-w D))$.
The singular values are computed by infinity-norm approximations, and thus will only be correct to a factor of 2 or so.

NOTE. All input quantities are assumed to be smaller than overflow by a reasonable factor (see bignum).

Input Parameters

| trans | LOGICAL.
 If $t r a n s ~=. T R U E ., ~$ - transpose will be used. |
| :--- | :--- |
| na | |
| nf $t r a n s ~=. ~ F A L S E ., ~$ | | will be used (not transposed.)

| b | REAL for slaln2
 DOUBLE PRECISION for dlaln2.
 Array, DIMENSION ($1 d b, n w$). The na-by-nw matrix B (right-hand side). If nw $=2$ (w is complex), column 1 contains the real part of B and column 2 contains the imaginary part. |
| :---: | :---: |
| 1 db | Integer. The leading dimension of b. Must be at least na. |
| wr, wi | REAL for slaln2
 DOUBLE PRECISION for dlaln2.
 The real and imaginary part of the scalar w, respectively. wi is not used if $n w=$ 1. |
| $1 d x$ | Integer. The leading dimension of the output array x. Must be at least na. |
| Output Parameters | |
| x | REAL for slaln2
 DOUBLE PRECISION for dlaln2.
 Array, DIMENSION ($1 d x, n w$). The na-by-nw matrix X (unknowns), as computed by the routine. If $n w=2$ (w is complex), on exit, column 1 will contain the real part of X and column 2 will contain the imaginary part. |
| scale | REAL for slaln2
 DOUBLE PRECISION for dlaln2.
 The scale factor that B must be multiplied by to insure that overflow does not occur when computing X. Thus (ca $A-w D$) X will be scale* B, not B (ignoring perturbations of A.) It will be at most 1 . |
| xnorm | REAL for slaln2
 DOUBLE PRECISION for dlaln2.
 The infinity-norm of X, when X is regarded as an na-by-nw real matrix. |
| info | INTEGER.
 An error flag. It will be zero if no error occurs, a negative number if an argument is in error, or a positive number if (ca $A-w D$) had to be perturbed. The possible values are: |

If info $=0$: no error occurred, and (ca $A-w D$) did not have to be perturbed. If info $=1:(\operatorname{ca} A-w D)$ had to be perturbed to make its smallest (or only) singular value greater than smin.

NOTE. In the interests of speed, this routine does not check the inputs for errors.

?lals0

Applies back multiplying factors in solving the least
squares problem using divide and conquer SVD
approach. Used by ?gelsd.

Syntax

```
call slals0( icompq, nl, nr, sqre, nrhs, b, ldb, bx, ldbx, perm,
    givptr, givcol, ldgcol, givnum, ldgnum, poles, difl, difr, z,
    k, c, s, work, info )
call dlals0( icompq, nl, nr, sqre, nrhs, b, ldb, bx, ldbx, perm,
    givptr, givcol, ldgcol, givnum, ldgnum, poles, difl, difr, z,
    k, c, s, work, info )
call clals0 ( icompq, nl, nr, sqre, nrhs, b, ldb, bx, ldbx, perm,
    givptr, givcol, ldgcol, givnum, ldgnum, poles, difl, difr, z,
    k, c, s, rwork, info )
call zlals0 ( icompq, nl, nr, sqre, nrhs, b, ldb, bx, ldbx, perm,
    givptr, givcol, ldgcol, givnum, ldgnum, poles, difl, difr, z,
    k, c, s, rwork, info )
```


Description

The routine applies back the multiplying factors of either the left or right singular vector matrix of a diagonal matrix appended by a row to the right hand side matrix B in solving the least squares problem using the divide-and-conquer SVD approach.

For the left singular vector matrix, three types of orthogonal matrices are involved:
(1L) Givens rotations: the number of such rotations is givptr; the pairs of columns/rows they were applied to are stored in givcol; and the c - and s-values of these rotations are stored in givnum.
(2L) Permutation. The ($n 1+1$)-st row of B is to be moved to the first row, and for $\mathrm{j}=2: n$, perm(j)-th row of B is to be moved to the j -th row.
(3L) The left singular vector matrix of the remaining matrix.
For the right singular vector matrix, four types of orthogonal matrices are involved:
(1R) The right singular vector matrix of the remaining matrix.
$(2 R)$ If sqre $=1$, one extra Givens rotation to generate the right null space.
(3R) The inverse transformation of (2L).
(4R) The inverse transformation of (1L).

Input Parameters

| icompq | INTEGER. Specifies whether singular vectors are to be computed in factored form:
 If icompq $=0$: Left singular vector matrix.
 If i compq $=1$: Right singular vector matrix. |
| :---: | :---: |
| n1 | INTEGER. The row dimension of the upper block. |
| $n r$ | INTEGER. The row dimension of the lower block. $n r \geq 1$. |
| sqre | INTEGER.
 If sqre $=0$: the lower block is an $n r$-by- $n r$ square matrix.
 If sqre $=1$: the lower block is an $n r-$ by- $(n r+1)$ rectangular matrix. The bidiagonal matrix has row dimension $n=n l+n r+1$, and column dimension $m=n+$ sqre. |
| nrhs | INTEGER. The number of columns of b and $b x$. Must be at least 1 . |
| b | REAL for slalso
 DOUBLE PRECISION for dlalso COMPLEX for clalso |

| 1 db | INTEGER. The leading dimension of b. Must be at least $\max (1, \max (m, n)$) |
| :---: | :---: |
| bx | REAL for slalso |
| | DOUBLE PRECISION for dlals0 |
| | COMPLEX for clals0 |
| | COMPLEX*16 for zlals0. |
| | Workspace array, DIMENSION (Idbx, nrhs). |
| 1 dbx | INTEGER. The leading dimension of bx. |
| perm | INTEGER. |
| | Array, DIMENSION (n). The permutations (from deflation and sorting) applied to the two blocks. |
| givptr | INTEGER. The number of Givens rotations which took place in this subproblem. |
| givcol | INTEGER. |
| | Array, DIMENSION (Idgcol, 2). Each pair of numbers indicates a pair of rows/columns involved in a Givens rotation. |
| 1 dgcol | INTEGER. The leading dimension of givcol, must be at least n. |
| givnum | REAL for slals0/clalso |
| | DOUBLE PRECISION fordlalso/zlalso |
| | Array, DIMENSION (Idgnum, 2). Each number indicates the c or s value used in the corresponding Givens rotation. |
| Idgnum | INTEGER. The leading dimension of arrays difr, poles and givnum, must be at least k. |
| poles | REAL for slalso /clalso |
| | DOUBLE PRECISION for dlals0/zlalso |
| | Array, DIMENSION (Idgnum, 2). On entry, poles $(1: k, 1)$ contains the new singular values obtained from solving the secular equation, and poles $(1: k, 2)$ is an array containing the poles in the secular equation. |

```
difl REAL for slals0 /clals0
    DOUBLE PRECISION for dlals0/zlals0
    Array, DIMENSION ( k ). On entry, difl(i) is the distance between i-th
    updated (undeflated) singular value and the i-th (undeflated) old singular
    value.
difr REAL for slals0 /clalso
    DOUBLE PRECISION for dlals0/zlals0
    Array, DIMENSION ( Idgnum, 2 ). On entry, difr(i, 1) contains the distances
    between i-th updated (undeflated) singular value and the i+1-th (undeflated)
    old singular value. And difr(i,2) is the normalizing factor for the i-th right
    singular vector.
    z REAL for slals0/clalso
    DOUBLE PRECISION for dlals0/zlals0
    Array, DIMENSION ( k). Contains the components of the deflation-adjusted
    updating row vector.
k INTEGER. Contains the dimension of the non-deflated matrix. This is the order
    of the related secular equation. 1 \leqk\leqn.
    REAL for clalso
    DOUBLE PRECISION for zlals0
    Workspace array, DIMENSION (k*(1+nrhs) + 2*nrhs). Used with complex
    flavors only.
```


Output Parameters

On exit, contains the solution X in rows 1 through n.

```
info INTEGER.
    If info = 0: successful exit.
    If info = -i<0, the i-th argument had an illegal value.
```


?lalsa

Computes the SVD of the coefficient matrix in compact
form. Used by ?gelsd.

Syntax

```
call slalsa ( icompq, smlsiz, n, nrhs, b, ldb, bx, ldbx,
        u, ldu, vt, k, difl, difr, z, poles, givptr,
        givcol, ldgcol, perm, givnum, c, s, work,
        iwork, info )
call dlalsa ( icompq, smlsiz, n, nrhs, b, ldb, bx, ldbx,
        u, ldu, vt, k, difl, difr, z, poles, givptr,
    givcol, ldgcol, perm, givnum, c, s, work,
        iwork, info )
call clalsa ( icompq, smlsiz, n, nrhs, b, ldb, bx, ldbx,
        u, ldu, vt, k, difl, difr, z, poles, givptr,
    givcol, ldgcol, perm, givnum, c, s, rwork,
        iwork, info )
call zlalsa ( icompq, smlsiz, n, nrhs, b, ldb, bx, ldbx,
        u, ldu, vt, k, difl, difr, z, poles, givptr,
    givcol, ldgcol, perm, givnum, c, s, rwork,
        iwork, info )
```


Description

The routine is an itermediate step in solving the least squares problem by computing the SVD of the coefficient matrix in compact form. The singular vectors are computed as products of simple orthorgonal matrices.

If $i c o m p q=0$, ? lalsa applies the inverse of the left singular vector matrix of an upper bidiagonal matrix to the right hand side; and if
icompq $=1$, the routine applies the right singular vector matrix to the right hand side. The singular vector matrices were generated in the compact form by ?lalsa.

Input Parameters

| icompq | Integer. Specifies whether the left or the right singular vector matrix is involved.
 If icompq $=0$: left singular vector matrix is used
 If icompq $=1$: right singular vector matrix is used. |
| :---: | :---: |
| smlsiz | InTEGER. The maximum size of the subproblems at the bottom of the computation tree. |
| n | INTEGER. The row and column dimensions of the upper bidiagonal matrix. |
| nrhs | INTEGER. The number of columns of b and $b x$. Must be at least 1 . |
| b | REAL for slalsa |
| | Double precision for dlalsa |
| | COMPLEX for clalsa |
| | COMPLEX*16 for zlalsa |
| | Array, dimension ($1 \mathrm{db}, \mathrm{nrhs}$). Contains the right hand sides of the least squares problem in rows 1 through m . |
| 1 db | integer. The leading dimension of b in the calling subprogram. Must be at least $\max (1, \max (m, n))$. |
| $1 d \mathrm{bx}$ | integer. The leading dimension of the output array bx. |
| u | REAL for slalsa/clalsa |
| | DOUBLE PRECISION for dlalsa/zlalsa |
| | Array, DIMENSION ($1 d u$, smlsiz). On entry, u contains the left singular vector matrices of all subproblems at the bottom level. |
| $1 d u$ | INTEGER, $1 d u \geq n$. The leading dimension of arrays u, $v t$, difl, difr, poles, givnum, and z. |
| vt | REAL for slalsa/clalsa |
| | DOUBLE PRECISION for dlalsa/zlalsa |
| | Array, DIMENSION ($I d u$, smlsiz +1). On entry, contains the right singular vector matrices of all subproblems at the bottom level. |
| k | INTEGER array, DIMENSION (n) . |
| difl | REAL for slalsa/clalsa |
| | DOUBLE PRECISION for dlalsa/zlalsa |
| | Array, DIMENSION ($1 d u, n l v l)$, where $n l v l=\operatorname{int}\left(\log _{2}(n /(\operatorname{sml} \operatorname{siz}+1))\right)$ +1 . |

| difr | REAL for slalsa/clalsa |
| :---: | :---: |
| | DOUBLE PRECISION for dlalsa/zlalsa |
| | Array, DIMENSION ($1 d u, 2 * n l v l$). On entry, |
| | $\operatorname{difl}(*, i)$ and $\operatorname{diff}(*, 2 i-1)$ record distances between singular values on the |
| | i-th level and singular values on the ($i-1$)-th level, and $\operatorname{difr}(*, 2 i)$ record the normalizing factors of the right singular vectors matrices of subproblems on |
| | i-th level. |
| z | REAL for slalsa/clalsa |
| | DOUBLE PRECISION fordlalsa/zlalsa |
| | Array, DIMENSION ($l d u, n l v l$). On entry, $z(1, i)$ contains the components of the deflation- adjusted updating the row vector for subproblems on the i-th level. |
| poles | REAL for slalsa/clalsa |
| | DOUBLE PRECISION for dlalsa/zlalsa |
| | Array, DIMENSION ($1 d u, 2 * n l v l$). |
| | On entry, poles(*, $2 i-1: 2 i$) contains the new and old singular values involved in the secular equations on the i-th level. |
| givptr | INTEGER. |
| | Array, DIMENSION (n). |
| | On entry, givptr (i) records the number of Givens rotations performed on the i-th problem on the computation tree. |
| givcol | INTEGER. |
| | Array, DIMENSION (1 dgcol, $2 * n l v l$). On entry, for each i, givcol(*, |
| | $2 i-1: 2 i$) records the locations of Givens rotations performed on the i-th level on the computation tree. |
| Idgcol | INTEGER, 1 dgcol $\geq \mathrm{n}$. The leading dimension of arrays givcol and perm. |
| perm | INTEGER. |
| | Array, DIMENSION ($1 d g c o l, n l v l)$. On entry, perm(*, i) records permutations done on the i-th level of the computation tree. |
| givnum | REAL for slalsa/clalsa |
| | DOUBLE PRECISION for dlalsa/zlalsa |
| | Array, DIMENSION ($1 d u, 2 * n l v l$). On entry, givnum(*, $2 i-1: 2 i$) records the c and s values of Givens rotations performed on the i-th level on the computation tree. |

```
C REAL for slalsa/clalsa
    DOUBLE PRECISION for dlalsa/zlalsa
    Array, DIMENSION ( n ). On entry, if the i-th subproblem is not square, c(i)
    contains the c value of a Givens rotation related to the right null space of the
    i-th subproblem.
S
    REAL for slalsa/clalsa
    DOUBLE PRECISION for dlalsa/zlalsa
    Array, DIMENSION ( n ). On entry, if the i-th subproblem is not square, s(i)
    contains the s-value of a Givens rotation related to the right null space of the
    i-th subproblem.
work REAL for slalsa
    DOUBLE PRECISION for dlalsa
    Workspace array, DIMENSION at least (n). Used with real flavors only.
rwork REAL for clalsa
    DOUBLE PRECISION for zlalsa
    Workspace array, DIMENSION at least
    max( n,(smlsz+1)*nrhs*3). Used with complex flavors only.
iwork INTEGER.
    Workspace array, DIMENSION at least (3n).
```


Output Parameters

```b
On exit, contains the solution \(X\) in rows 1 through \(n\).
REAL for slalsa DOUBLE PRECISION for dlalsa
COMPLEX for clalsa
COMPLEX*16 for zlalsa
Array, DIMENSION ( Idbx, nrhs ). On exit, the result of applying the left or right singular vector matrix to \(b\).
info INTEGER.
If info \(=0\) : successful exit
If info \(=-i<0\), the \(i\)-th argument had an illegal value.
```


?lalsd

Uses the singular value decomposition of A to solve the least squares problem.

```
Syntax
call slalsd ( uplo, smlsiz, n, nrhs, d, e, b, ldb,
    rcond, rank, work, iwork, info )
call dlalsd ( uplo, smlsiz, n, nrhs, d, e, b, ldb,
    rcond, rank, work, iwork, info )
call clalsd ( uplo, smlsiz, n, nrhs, d, e, b, ldb,
    rcond, rank, work, rwork, iwork, info )
call zlalsd ( uplo, smlsiz, n, nrhs, d, e, b, ldb,
    rcond, rank, work, rwork, iwork, info )
```


Description

The routine uses the singular value decomposition of A to solve the least squares problem of finding X to minimize the Euclidean norm of each column of $A X-B$, where A is n-by-n upper bidiagonal, and X and B are n-by-nrhs. The solution X overwrites B.

The singular values of A smaller than rcond times the largest singular value are treated as zero in solving the least squares problem; in this case a minimum norm solution is returned. The actual singular values are returned in d in ascending order.

This code makes very mild assumptions about floating point arithmetic. It will work on machines with a guard digit in add/subtract, or on those binary machines without guard digits which subtract like the Cray XMP, Cray YMP, Cray C 90, or Cray 2.

It could conceivably fail on hexadecimal or decimal machines without guard digits, but we know of none.

Input Parameters

```
uplo CHARACTER*1.
    If uplo = 'U', d and e define an upper bidiagonal matrix.
    If uplo = 'L', d and e define a lower bidiagonal matrix.
smlsiz INTEGER. The maximum size of the subproblems at the bottom of the
    computation tree.
```

n	InTEGER. The dimension of the bidiagonal matrix. $n \geq 0$.
nrhs	INTEGER. The number of columns of B. Must be at least 1.
d	REAL for slalsd/clalsd DOUBLE PRECISION for dlalsd/zlalsd Array, DIMENSION (n). On entry, d contains the main diagonal of the bidiagonal matrix.
e	REAL for slalsd/clalsd DOUBLE PRECISION for dlalsd/zlalsd Array, DIMENSION ($n-1$). Contains the super-diagonal entries of the bidiagonal matrix. On exit, e is destroyed.
b	REAL for slalsd DOUBLE PRECISION for dlalsd COMPLEX for clalsd COMPLEX*16 for zlalsd Array, DIMENSION ($1 \mathrm{db}, n r h s$). On input, b contains the right hand sides of the least squares problem. On output, b contains the solution X.
1 db	INTEGER. The leading dimension of b in the calling subprogram. Must be at least $\max (1, n)$.
rcond	REAL for slalsd/clalsd DOUBLE PRECISION for dlalsd/zlalsd The singular values of A less than or equal to rcond times the largest singular value are treated as zero in solving the least squares problem. If rcond is negative, machine precision is used instead. For example, if $\operatorname{diag}(S) \star X=B$ were the least squares problem, where $\operatorname{diag}(S)$ is a diagonal matrix of singular values, the solution would be $X(i)=B(i) / S(i)$ if $S(i)$ is greater than rcond $* \max (S)$, and $X(i)=0$ if $S(i)$ is less than or equal to rcond $* \max (S)$.
rank	INTEGER. The number of singular values of A greater than rcond times the largest singular value.
work	REAL for slalsd DOUBLE PRECISION for dlalsd COMPLEX for clalsd COMPLEX*16 for zlalsd Workspace array. DIMENSION for real flavors at least

```
rwork REAL for clalsd
    DOUBLE PRECISION for zlalsd
    Workspace array, used with complex flavors only. DIMENSION at least (9n+
    2n*smlsiz+8n*nlvl + 3*mlsiz*nrhs + (smlsiz+1)}\mp@subsup{)}{}{2}\mathrm{ ),
    where
    nlvl = max( 0, int( log}2(\operatorname{min}(m,n)/(smlsiz+1) ) ) + 1).
iwork INTEGER.
    Workspace array, DIMENSION at least (3n*nlvl + 11n).
rwork REAL for clalsd
DOUBLE PRECISION for zlalsd
Workspace array, used with complex flavors only. DIMENSION at least ( \(9 n+\) \(2 n^{*} s m l\) siz \(+8 n^{*} n l v l+3 * m l\) siz*nrhs \(\left.+(s m l s i z+1)^{2}\right)\), where
\(n l v l=\max \left(0, \operatorname{int}\left(\log _{2}(\min (m, n) /(s m l s i z+1))\right)+1\right)\).
iwork
INTEGER.
Workspace array, DIMENSION at least ( \(3 n * n l v 1+11 n\) ).
```


Output Parameters

$\left(9 n+2 n *\right.$ smlsiz $\left.+8 n * n l v l+n * n r h s+(s m l s i z+1)^{2}\right)$,
where
$n l v l=\max \left(0, \operatorname{int}\left(\log _{2}(n /(\operatorname{smlsiz}+1))\right)+1\right)$.
DIMENSION for complex flavors at least ($n * n r h s$).

Out Paramer
On exit, if info $=0, a$ contains singular values of the bidiagonal matrix.
On exit, b contains the solution X.
INTEGER.
If info $=0$: successful exit.
If info $=-i<0$, the i-th argument had an illegal value.
If info >0 : The algorithm failed to compute a singular value while working on the submatrix lying in rows and columns info/($n+1$) through $\bmod ($ info, $n+1)$.

?lamrg

Creates a permutation list to merge the entries of two independently sorted sets into a single set sorted in acsending order.

Syntax

```
call slamrg ( n1, n2, a, strd1, strd2, index )
call dlamrg ( n1, n2, a, strd1, strd2, index )
```


Description

The routine creates a permutation list which will merge the elements of a (which is composed of two independently sorted sets) into a single set which is sorted in ascending order.

Input Parameters

n1, n2	INTEGER. These arguments contain the respective lengths of the two sorted lists to be merged.
aREAL for slamrg DOUBLE PRECISION for dlamrg. Array, DIMENSION $(n 1+n 2)$. The first $n 1$ elements of a contain a list of numbers which are sorted in either ascending or descending order. Likewise for the final n2 elements.	
strd1, strd2 \quadINTEGER. These are the strides to be taken through the array a. Allowable strides are 1 and -1. They indicate whether a subset of a is sorted in ascending $($ strdx $=1)$ or descending $(s t r d x=-1)$ order.	

Output Parameters

```
index INTEGER.
    Array, DIMENSION (n1+n2).
    On exit, this array will contain a permutation such that if
    b}(i)=a(index(i)) for i=1,n1+n2, then b will be sorted in ascending order
```


?langb

Returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of general band matrix.

Syntax

```
val = slangb ( norm, n, kl, ku, ab, ldab, work )
val = dlangb ( norm, n, kl, ku, ab, ldab, work )
val = clangb ( norm, n, kl, ku, ab, ldab, work )
```

```
val = zlangb ( norm, n, kl, ku, ab, ldab, work )
```


Description

The function returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of an n-by- n band matrix A, with $k l$ sub-diagonals and $k u$ super-diagonals.

The value val returned by the function is:

```
val = max(abs}(\mp@subsup{A}{\textrm{ij}}{})),\quad\mathrm{ if norm = 'M' or 'm'
    = norm1(A), if norm = '1' or 'O' or 'o'
    = normI(A), if norm= 'I' or 'i'
    = normF(A), if norm= 'F', ' }\textrm{E}\mathrm{ ', ' E' or 'e'
```

where norm1 denotes the 1-norm of a matrix (maximum column sum), normI denotes the infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a matrix (square root of sum of squares). Note that $\max \left(\mathrm{abs}\left(A_{\mathrm{ij}}\right)\right.$) is not a matrix norm.

Input Parameters

```
norm CHARACTER*1. Specifies the value to be returned by the routine as described above.
INTEGER. The order of the matrix \(A\). \(n \geq 0\). When \(n=0\), ? langb is set to zero.
\(k I\) INTEGER. The number of sub-diagonals of the matrix \(A . k l \geq 0\).
ku INTEGER. The number of super-diagonals of the matrix \(A . k u \geq 0\).
ab REAL for slangb
DOUBLE PRECISION for dlangb
COMPLEX for clangb
COMPLEX*16 for zlangb
Array, DIMENSION (ldab,n). The band matrix \(A\), stored in rows 1 to \(k l+k u+1\). The \(j\)-th column of \(A\) is stored in the \(j\)-th column of the array \(a b\) as follows:
\(a b(k u+1+i-j, j)=a(i, j)\)
for \(\max (1, j-k u) \leq i \leq \min (n, j+k l)\).
Idab INTEGER. The leading dimension of the array \(a b\).
\(l d a b \geq k l+k u+1\).
```

```
work REAL for slangb/clangb
    DOUBLE PRECISION for dlangb/zlangb
    Workspace array, DIMENSION (lwork), where
    lwork}\geqn\mathrm{ when norm = 'I'; otherwise, work is not referenced.
```


Output Parameters

```
val REAL for slangb/clangb
    DOUBLE PRECISION for dlangb/zlangb
    Value returned by the function.
```


?lange

Returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of a general rectangular matrix.

Syntax

```
val = slange ( norm, m, n, a, lda, work )
val = dlange ( norm, m, n, a, lda, work )
val = clange ( norm, m, n, a, lda, work )
val = zlange ( norm, m, n, a, lda, work )
```


Description

The function ?lange returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real/complex matrix A.

The value val returned by the function is:

```
val = max(abs( (Aij )), if norm = 'm' or 'm'
    = norm1(A), if norm = ' }1\mathrm{ ' or 'O' or 'o'
    = normI(A), if norm= 'I' or ' }i\mathrm{ '
    = normF(A), if norm= ' F', ' }\textrm{f}\mathrm{ ', ' }E\mathrm{ ' or 'e'
```

where norm1 denotes the 1-norm of a matrix (maximum column sum), normI denotes the infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a matrix (square root of sum of squares). Note that $\max \left(\operatorname{abs}\left(A_{\mathrm{ij}}\right)\right)$ is not a matrix norm.

Input Parameters

norm
CHARACTER*1. Specifies the value to be returned in ?lange as described above.
m
INTEGER. The number of rows of the matrix A. $m \geq 0$. When $m=0$, ? lange is set to zero.

INTEGER. The number of columns of the matrix A. $n \geq 0$. When $n=0$, ? lange is set to zero.

REAL for slange DOUBLE PRECISION for dlange COMPLEX for clange COMPLEX*16 for zlange Array, DIMENSION (lda,n). The m-by-n matrix A.

Ida INTEGER. The leading dimension of the array a. $I d a \geq \max (m, 1)$.
work REAL for slange and clange. DOUBLE PRECISION for dlange and zlange. Workspace array, DIMENSION (lwork), where lwork $\geq m$ when norm = 'I'; otherwise, work is not referenced.

Output Parameters

```
val REAL for slange/clange
    DOUBLE PRECISION for dlange/zlange
    Value returned by the function.
```


?langt

Returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of a general tridiagonal matrix.

Syntax

```
val = slangt ( norm, n, dl, d, du )
val = dlangt ( norm, n, dl, d, du )
val = clangt ( norm, n, dl, d, du )
val = zlangt ( norm, n, dl, d, du )
```


Description

The routine returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real/complex tridiagonal matrix A.

The value val returned by the function is:

```
val = max(abs( (A ij ), if norm = 'm' or 'm'
    = norm1(A), if norm = ' }1\mathrm{ ' or ' O' or 'o'
    = normI(A), if norm= 'I' or ' i'
    = normF(A), if norm= 'F', ' }\textrm{f}\mathrm{ ', ' E' or 'e'
```

where norm1 denotes the 1 -norm of a matrix (maximum column sum), normI denotes the infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a matrix (square root of sum of squares). Note that $\max \left(\mathrm{abs}\left(A_{\mathrm{ij}}\right)\right.$) is not a matrix norm.

Input Parameters

norm	CHARACTER* 1. Specifies the value to be retur above.
n	INTEGER. The order of the matrix A. $n \geq 0$. When $n=0$, ?langt is set to zero.
$d l, d u \quad$REAL for slangt DOUBLE PRECISION for dlangt COMPLEX for clangt	

COMPLEX*16 for zlangt
Arrays: $d l(n-1), d(n), d u(n-1)$.
The array $d l$ contains the ($n-1$) sub-diagonal elements of A.
The array d contains the diagonal elements of A.
The array $d u$ contains the (n-1) super-diagonal elements of A.

Output Parameters

```
val REAL for slangt/clangt
    DOUBLE PRECISION for dlangt/zlangt
    Value returned by the function.
```


?lanhs

Returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of an upper Hessenberg matrix.

Syntax

```
val = slanhs ( norm, n, a, lda, work )
val = dlanhs ( norm, n, a, lda, work )
val = clanhs ( norm, n, a, lda, work )
val = zlanhs ( norm, n, a, lda, work )
```


Description

The function ? lanhs returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a Hessenberg matrix A.

The value val returned by the function is:

```
val = max(abs}(\mp@subsup{A}{\textrm{ij}}{})), if norm = 'm' or 'm'
    = norm1(A), if norm= '1' or 'O' or 'o'
    = normI(A), if norm= 'I' or ' i'
    = normF(A), if norm=' 'F', ' }\textrm{E}\mathrm{ ', ' E' or 'e'
```

where norm1 denotes the 1-norm of a matrix (maximum column sum), normI denotes the infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a matrix (square root of sum of squares). Note that $\max \left(\mathrm{abs}\left(A_{\mathrm{ij}}\right)\right.$) is not a matrix norm.

Input Parameters

norm	CHARACTER*1. Specifies the value to be returned in ?lanhs as described above.
n	INTEGER. The order of the matrix A. $n \geq 0$. When $n=0$, ? lanhs is set to zero.
a	REAL for slanhs DOUBLE PRECISION for dlanhs COMPLEX for clanhs COMPLEX*16 for zlanhs Array, DIMEnSion (lda,n). The n-by-n upper Hessenberg matrix A; the part of A below the first sub-diagonal is not referenced.
Ida	INTEGER. The leading dimension of the array a. $l d a \geq \max (n, 1)$.
work	REAL for slanhs and clanhs. DOUBLE PRECISION for dlange and zlange. Workspace array, DIMENSION (1 work), where 1 work \geq_{n} when norm = 'I'; otherwise, work is not referenced.
Output Parameters	
val	REAL for slanhs/clanhs DOUBLE PRECISION for dlanhs/zlanhs Value returned by the function.

?lansb

Returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a symmetric band matrix.

Syntax

```
val = slansb ( norm, uplo, n, k, ab, ldab, work )
```

```
val = dlansb ( norm, uplo, n, k, ab, ldab, work )
val = clansb ( norm, uplo, n, k, ab, ldab, work )
val = zlansb ( norm, uplo, n, k, ab, ldab, work )
```


Description

The function ?lansb returns the value of the 1 -norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of an n-by- n real/complex symmetric band matrix A, with k super-diagonals.

The value val returned by the function is:

```
val \(=\max \left(\operatorname{abs}\left(A_{\mathrm{ij}}\right)\right), \quad\) if norm \(=' \mathrm{M}\) ' or ' m '
    \(=\operatorname{norm1}(A), \quad\) if norm \(=\) ' 1 ' or ' \(O\) ' or ' 0 '
    \(=\operatorname{normI}(A), \quad\) if norm \(=\) ' \(I\) ' or ' \(i\) '
    \(=\operatorname{normF}(A), \quad\) if norm \(=' F\) ', ' E ', ' \(E\) ' or ' \(e\) '
```

where norm1 denotes the 1-norm of a matrix (maximum column sum), normI denotes the infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a matrix (square root of sum of squares). Note that $\max \left(\mathrm{abs}\left(A_{\mathrm{ij}}\right)\right.$) is not a matrix norm.

Input Parameters

band matrix A, stored in the first $k+1$ rows of $a b$. The j-th column of A is stored in the j-th column of the array $a b$ as follows:
if uplo = ' u ', ab $(k+1+i-j, j)=a(i, j)$
for $\max (1, j-k) \leq i \leq j ;$
if uplo=' L ', ab($1+i-j, j)=a(i, j)$ for $j \leq i \leq \min (n, j+k)$.
ldab INTEGER. The leading dimension of the array $a b$.
$1 d a b \geq k+1$.
work REAL for slansb and clansb.
DOUBLE PRECISION for dlansb and zlansb.
Workspace array, DIMENSION (1 work), where
1 work $\geq n$ when norm = ' I ' or ' 1 ' or 'O'; otherwise, work is not referenced.

Output Parameters

```
val REAL for slansb/clansb
    DOUBLE PRECISION for dlansb/zlansb
    Value returned by the function.
```


?lanhb

Returns the value of the 1-norm, or the Frobenius
norm, or the infinity norm, or the element of largest
absolute value of a Hermitian band matrix.

Syntax

```
val = clanhb ( norm, uplo, n, k, ab, ldab, work )
val = zlanhb ( norm, uplo, n, k, ab, ldab, work )
```


Description

The routine returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of an n-by- n Hermitian band matrix A, with k super-diagonals.

The value val returned by the function is:

```
val = max(abs( (Aij )), if norm = ' }\textrm{m}\mathrm{ ' or ' 'm'
    = norm1(A), if norm = '1' or 'O' or 'o'
```

```
\(=\operatorname{normI}(A), \quad\) if norm \(=\) ' \(I\) ' or ' \(i\) '
\(=\operatorname{normF}(A), \quad\) if norm \(=\) ' \(F\) ', ' f ', ' \(E\) ' or ' \(e\) '
```

where norm1 denotes the 1 -norm of a matrix (maximum column sum), normI denotes the infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a matrix (square root of sum of squares). Note that $\max \left(\operatorname{abs}\left(A_{\mathrm{ij}}\right)\right)$ is not a matrix norm.

Input Parameters

norm	CHARACTER*1. Specifies the value to be returned in ?lanhb as described above.
uplo	CHARACTER*1. Specifies whether the upper or lower triangular part of the band matrix A is supplied. If uplo = 'U': upper triangular part is supplied; If uplo = ' L ': lower triangular part is supplied.
n	INTEGER. The order of the matrix $A . n \geq 0$. When $n=0$, ? lanhb is set to zero.
k	INTEGER. The number of super-diagonals or sub-diagonals of the band matrix A. $k \geq 0$.
$a b$	COMPLEX for clanhb. COMPLEX*16 for zlanhb. Array, DIMENSION (Idab, n). The upper or lower triangle of the Hermitian band matrix A, stored in the first $k+1$ rows of $a b$. The j-th column of A is stored in the j-th column of the array $a b$ as follows: if uplo = 'U', ab $(k+1+i-j, j)=a(i, j)$ for $\max (1, j-k) \leq i \leq j$; if uplo ='L', ab $(1+i-j, j)=a(i, j)$ for $j \leq i \leq \min (n, j+k)$.

Note that the imaginary parts of the diagonal elements need not be set and are assumed to be zero.

Idab INTEGER. The leading dimension of the array $a b$. $l d a b \geq k+1$.
work REAL for clanhb. DOUBLE PRECISION for zlanhb. Workspace array, DIMENSION (1 work), where 1 work $\geq n$ when norm = ' I ' or ' 1 ' or ' O '; otherwise, work is not referenced.

Output Parameters

```
val REAL for slanhb/clanhb
    DOUBLE PRECISION for dlanhb/zlanhb
    Value returned by the function.
```


?lansp

Returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a symmetric matrix supplied in packed form.

Syntax

```
val = slansp ( norm, uplo, n, ap, work )
val = dlansp ( norm, uplo, n, ap, work )
val = clansp ( norm, uplo, n, ap, work )
val = zlansp ( norm, uplo, n, ap, work )
```


Description

The function ?lansp returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real/complex symmetric matrix A, supplied in packed form.

The value val returned by the function is:

```
val = max(abs}(\mp@subsup{A}{\textrm{ij}}{})),\mathrm{ if norm = 'm' or 'm'
    = norm1(A), if norm = '1' or 'O' or 'o'
    = normI(A), if norm= 'I' or 'i'
    = normF(A), if norm=' 'F', ' }\textrm{E}\mathrm{ ', ' E' or 'e'
```

where norm1 denotes the 1 -norm of a matrix (maximum column sum), normI denotes the infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a matrix (square root of sum of squares). Note that $\max \left(\mathrm{abs}\left(A_{\mathrm{ij}}\right)\right.$) is not a matrix norm.

Input Parameters

norm	CHARACTER*1. Specifies the value to be returned in ?lansp as described above.
uplo	CHARACTER*1. Specifies whether the upper or lower triangular part of the symmetric matrix A is supplied. If uplo = ' U ': Upper triangular part of A is supplied If uplo = 'L': Lower triangular part of A is supplied.
n	INTEGER. The order of the matrix $A . n \geq 0$. When $n=0$, ? lansp is set to zero.
$a p$	REAL for slansp
	DOUBLE PRECISION for dlansp
	COMPLEX for clansp
	COMPLEX*16 for zlansp
	Array, DIMENSION $(n(n+1) / 2)$. The upper or lower triangle of the symmetric matrix A, packed columnwise in a linear array. The j-th column of A is stored in the array ap as follows: if uplo = 'u', ap $(i+(j-1) j / 2)=A(i, j)$ for $1 \leq i \leq j$; if uplo = 'L', ap $(i+(j-1)(2 n-j) / 2)=A(i, j)$ for $j \leq i \leq n$.
work	REAL for slansp and clansp.
	DOUBLE PRECISION for dlansp and zlansp.
	Workspace array, DIMENSION (lwork), where
	1 work $\geq n$ when norm = 'I' or ' 1 ' or 'O'; otherwise, work is not referenced.
Output Parameters	
val	REAL for slansp/clansp
	DOUBLE PRECISION for dlansp/zlansp
	Value returned by the function.

?lanhp

Returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex Hermitian matrix supplied in packed form.

Syntax

```
val = clanhp ( norm, uplo, n, ap, work )
val = zlanhp ( norm, uplo, n, ap, work )
```


Description

The function ? lanhp returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex Hermitian matrix A, supplied in packed form.

The value val returned by the function is:

$$
\begin{array}{rlrl}
\text { val } & =\max \left(\operatorname{abs}\left(A_{\mathrm{ij}}\right)\right), & \text { if norm }=\text { 'm' or ' } m \text { ' } \\
& =\operatorname{norm}(A), & \text { if norm }=\text { ' } 1 \text { ' or ' } O \text { ' or ' } O \text { ' } \\
& =\operatorname{normI}(A), & & \text { if norm }=~ ' I ' ~ o r ~ ' ~ \\
i
\end{array},
$$

where norm1 denotes the 1 -norm of a matrix (maximum column sum), normI denotes the infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a matrix (square root of sum of squares). Note that $\max \left(\operatorname{abs}\left(A_{\mathrm{ij}}\right)\right.$) is not a matrix norm.

Input Parameters

norm	CHARACTER*1. Specifies the value to be returned in ?lanhp as described
above.	
uplo	CHARACTER*1. Specifies whether the upper or lower triangular part of the
Hermitian matrix A is supplied.	
If uplo $=$ 'U': Upper triangular part of A is supplied	
If uplo $=$ 'L': Lower triangular part of A is supplied.	

```
n
ap COMPLEX for clanhp
    COMPLEX*16 for zlanhp.
    Array, DIMENSION (n(n+1)/2). The upper or lower triangle of the Hermitian
    matrix }A\mathrm{ , packed columnwise in a linear array. The j-th column of }A\mathrm{ is stored
    in the array ap as follows:
    if uplo = 'U', ap(i+(j-1)j/2)=A(i,j) for 1\leq i\leq j;
    if uplo= 'L', ap(i+(j-1)(2n-j)/2)=A(i,j) for j\leqi\leqn.
work REAL for clanhp.
    DOUBLE PRECISION for zlanhp.
    Workspace array, DIMENSION (l work), where
    lwork \geqn when norm = 'I' or '1' or 'O'; otherwise, work is not referenced.
```


Output Parameters

```
val REAL for clanhp.
    DOUBLE PRECISION for zlanhp.
    Value returned by the function.
```


?lanst/?lanht

Returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real symmetric or complex Hermitian tridiagonal matrix.

Syntax

```
val = slanst ( norm, n, d, e )
val = dlanst ( norm, n, d, e )
val = clanht ( norm, n, d, e )
val = zlanht ( norm, n, d, e )
```


Description

The functions ?lanst/?lanht return the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real symmetric or a complex Hermitian tridiagonal matrix A.

The value val returned by the function is:

```
val = max(abs( (Aij )), if norm = 'M' or 'm'
    = norm1(A), if norm = ' }1\mathrm{ ' or 'O' or 'o'
    = normI(A), if norm= 'I' or ' i'
    = normF(A), if norm ' 'F', ' }\textrm{E}\mathrm{ ', ' E' or 'e'
```

where norm1 denotes the 1 -norm of a matrix (maximum column sum), normI denotes the infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a matrix (square root of sum of squares). Note that $\max \left(\mathrm{abs}\left(A_{\mathrm{ij}}\right)\right.$) is not a matrix norm.

Input Parameters

norm
n
d
e

CHARACTER*1. Specifies the value to be returned in ?lanst/?lanht as described above.

INTEGER. The order of the matrix A. $n \geq 0$. When $n=0$, ? lanst/? lanht is set to zero.

REAL for slanst/clanht DOUBLE PRECISION for dlanst/zlanht Array, DIMENSION (n). The diagonal elements of A.
REAL for slanst DOUBLE PRECISION for dlanst
COMPLEX for clanht COMPLEX*16 for zlanht
Array, DIMENSION (n-1). The (n-1) sub-diagonal or super-diagonal elements of A.

Output Parameters

val

REAL for slanst/clanht DOUBLE PRECISION for dlanst/zlanht Value returned by the function.

?lansy

Returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real/complex symmetric matrix.

Syntax

```
val = slansy ( norm, uplo, n, a, lda, work )
val = dlansy ( norm, uplo, n, a, lda, work )
val = clansy ( norm, uplo, n, a, lda, work )
val = zlansy ( norm, uplo, n, a, lda, work )
```


Description

The function ?lansy returns the value of the 1 -norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real/complex symmetric matrix A.

The value val returned by the function is:

```
val = max(abs( (Aij )), if norm = 'm' or 'm'
    = norm1(A), if norm = ' }1\mathrm{ ' or ' O' or 'o'
    = normI(A), if norm= 'I' or 'i'
    = normF(A), if norm=' 'F', ' }\textrm{f}\mathrm{ ', ' E' or 'e'
```

where norm1 denotes the 1-norm of a matrix (maximum column sum), normI denotes the infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a matrix (square root of sum of squares). Note that $\max \left(\mathrm{abs}\left(A_{\mathrm{ij}}\right)\right.$) is not a matrix norm.

Input Parameters

```
norm CHARACTER*1. Specifies the value to be returned in ?lansy as described above.
uplo CHARACTER*1. Specifies whether the upper or lower triangular part of the symmetric matrix \(A\) is to be referenced.
= ' U ': Upper triangular part of \(A\) is referenced.
= 'L': Lower triangular part of \(A\) is referenced
```

n	Integer. The order of the matrix $A . n \geq 0$. When $n=0$, ? lansy is set to zero.
a	REAL for slansy
	DOUBLE PRECISION for dlansy
	COMPLEX for clansy
	COMPLEX*16 for zlansy
	Array, DIMENSION (lda,n). The symmetric matrix A. If uplo = ' u ', the leading n-by- n upper triangular part of a contains the upper triangular part of the matrix A, and the strictly lower triangular part of a is not referenced. If uplo = ' L ', the leading n-by- n lower triangular part of a contains the lower triangular part of the matrix A, and the strictly upper triangular part of a is not referenced.
Ida	INTEGER. The leading dimension of the array a. $I d a \geq \max (n, 1)$.
work	REAL for slansy and clansy.
	DOUBLE PRECISION for dlansy and zlansy.
	Workspace array, DIMENSION (l work), where
	1 work $\geq \mathrm{n}$ when norm = 'I' or ' 1 ' or 'O'; otherwise, work is not referenced.

Output Parameters

```
val REAL for slansy/clansy
    DOUBLE PRECISION for dlansy/zlansy
    Value returned by the function.
```


?lanhe

Returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex Hermitian matrix.

Syntax

```
val = clanhe ( norm, uplo, n, a, lda, work )
val = zlanhe ( norm, uplo, n, a, lda, work )
```


Description

The function ?lanhe returns the value of the 1 -norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex Hermitian matrix A.

The value val returned by the function is:

```
val = max(abs( }\mp@subsup{A}{\textrm{ij}}{})\mathrm{ ), if norm = 'm' or 'm'
    = norm1(A), if norm = '1' or 'O' or 'o'
    = normI(A), if norm= 'I' or 'i'
    = normF(A), if norm= 'F', ' }\textrm{f}\mathrm{ ', ' E' or 'e'
```

where norm1 denotes the 1-norm of a matrix (maximum column sum), normI denotes the infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a matrix (square root of sum of squares). Note that $\max \left(\mathrm{abs}\left(A_{\mathrm{ij}}\right)\right.$) is not a matrix norm.

Input Parameters

norm CHARACTER*1. Specifies the value to be returned in ?lanhe as described above.
uplo CHARACTER*1. Specifies whether the upper or lower triangular part of the Hermitian matrix A is to be referenced.
= ' U ': Upper triangular part of A is referenced.
= 'L': Lower triangular part of A is referenced
n
InTEGER. The order of the matrix A. $n \geq 0$. When $n=0$, ? lanhe is set to zero.

COMPLEX for clanhe. COMPLEX*16 for zlanhe. Array, dimension (lda,n). The Hermitian matrix A. If uplo = ' U ', the leading n-by- n upper triangular part of a contains the upper triangular part of the matrix A, and the strictly lower triangular part of a is not referenced. If uplo=' L ', the leading n-by- n lower triangular part of a contains the lower triangular part of the matrix A, and the strictly upper triangular part of a is not referenced.

Ida INTEGER. The leading dimension of the array a. $l d a \geq \max (n, 1)$.

```
work REAL for clanhe.
    DOUBLE PRECISION for zlanhe.
    Workspace array, DIMENSION (lwork), where
    lwork \geqn when norm = 'I' or ' }1\mathrm{ ' or 'O'; otherwise, work is not referenced.
```


Output Parameters

```
val REAL for clanhe.
    DOUBLE PRECISION for zlanhe.
    Value returned by the function.
```


?lantb

Returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a triangular band matrix.

Syntax

```
val = slantb ( norm, uplo, diag, n, k, ab, ldab, work )
val = dlantb ( norm, uplo, diag, n, k, ab, ldab, work )
val = clantb ( norm, uplo, diag, n, k, ab, ldab, work )
val = zlantb ( norm, uplo, diag, n, k, ab, ldab, work )
```


Description

The function ? lantb returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of an n-by-n triangular band matrix A, with ($k+$ 1) diagonals.

The value val returned by the function is:

```
val = max(abs( }\mp@subsup{A}{\textrm{ij}}{})\mathrm{ ), if norm = 'm' or 'm'
    = norm1(A), if norm = '1' or 'O' or 'o'
    = normI(A), if norm= 'I' or ' i'
    = normF(A), if norm= 'F', ' }\textrm{f}\mathrm{ ', ' }E\mathrm{ ' or ' e'
```

where norm1 denotes the 1-norm of a matrix (maximum column sum), normI denotes the infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a matrix (square root of sum of squares). Note that $\max \left(\operatorname{abs}\left(A_{\mathrm{ij}}\right)\right)$ is not a matrix norm.

Input Parameters

norm	CHARACTER*1. Specifies the value to be returned in ?lantb as described above.
uplo	CHARACTER*1. Specifies whether the matrix A is upper or lower triangular. = 'U': Upper triangular = 'L': Lower triangular.
diag	CHARACTER*1. Specifies whether or not the matrix A is unit triangular. $\begin{aligned} & =\text { ' } \mathrm{N} \text { ': Non-unit triangular } \\ & =\text { ' } \mathrm{u} \text { ': Unit triangular. } \end{aligned}$
n	InTEGER. The order of the matrix A. $n \geq 0$. When $n=0$, ? lantb is set to zero.
k	INTEGER. The number of super-diagonals of the matrix A if uplo = 'U', or the number of sub-diagonals of the matrix A if uplo $=$ ' L '. $k \geq 0$.
$a b$	REAL for slantb
	DOUBLE PRECISION for dlantb COMPLEX for clantb
	COMPLEX*16 for zlantb
	Array, DIMENSION (ldab, n). The upper or lower triangular band matrix A, stored in the first $k+1$ rows of $a b$. The j-th column of A is stored in the j-th column of the array $a b$ as follows: if uplo = 'U', ab $(k+1+i-j, j)=a(i, j)$ for $\max (1, \mathrm{j}-\mathrm{k}) \leq \mathrm{i} \leq \mathrm{j}$; if uplo = 'L', ab $(1+i-j, j)=a(i, j)$ for $j \leq i \leq \min (n, j+k)$. Note that when diag = ' U ', the elements of the array $a b$ corresponding to the diagonal elements of the matrix A are not referenced, but are assumed to be one.
1 dab	INTEGER. The leading dimension of the array ab. $1 d a b \geq k+1$.
work	REAL for slantb and clantb.
	DOUBLE PRECISION for dlantb and zlantb.
	Workspace array, DIMENSION (lwork), where $l_{\text {work }} \geq_{n}$ when norm $=$ ' I '; otherwise, work is not referenced.

Output Parameters

```
val REAL for slantb/clantb.
    DOUBLE PRECISION for dlantb/zlantb.
    Value returned by the function.
```


?lantp

Returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a triangular matrix supplied in packed form.

Syntax

```
val = slantp ( norm, uplo, diag, n, ap, work )
val = dlantp ( norm, uplo, diag, n, ap, work )
val = clantp ( norm, uplo, diag, n, ap, work )
val = zlantp ( norm, uplo, diag, n, ap, work )
```


Discussion

The function ?lantp returns the value of the 1 -norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a triangular matrix A, supplied in packed form.

The value val returned by the function is:

```
val = max(abs}(\mp@subsup{A}{\textrm{ij}}{})),\mathrm{ if norm = 'm' or 'm'
    = norm1(A), if norm = '1' or 'O' or 'o'
    = normI(A), if norm= 'I' or ' i'
    = normF(A), if norm= ' F', ' }\textrm{E}\mathrm{ ', ' E' or 'e'
```

where norm1 denotes the 1 -norm of a matrix (maximum column sum), normI denotes the infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a matrix (square root of sum of squares). Note that $\max \left(\mathrm{abs}\left(A_{\mathrm{ij}}\right)\right.$) is not a matrix norm.

Input Parameters

norm	CHARACTER*1. Specifies the value to be returned in ?lantp as described above.
uplo	CHARACTER* 1 . Specifies whether the matrix A is upper or lower triangular. = ' U ': Upper triangular = 'L': Lower triangular.
diag	CHARACTER*1. Specifies whether or not the matrix A is unit triangular. = ' N ': Non-unit triangular = 'U': Unit triangular.
n	INTEGER. The order of the matrix A. $n \geq 0$. When $n=0$, ? lantp is set to zero.
ap	REAL for slantp DOUBLE PRECISION for dlantp COMPLEX for clantp COMPLEX*16 for zlantp Array, DIMENSION $(n(n+1) / 2)$. The upper or lower triangular matrix A, packed columnwise in a linear array. The j-th column of A is stored in the array ap as follows: if uplo='U', AP(i $+(j-1) j / 2)=a(i, j)$ for $1 \leq i \leq j$; if uplo = 'L', ap $(i+(j-1)(2 n-j) / 2)=a(i, j)$ for $j \leq i \leq n$. Note that when diag = ' U ', the elements of the array $a p$ corresponding to the diagonal elements of the matrix A are not referenced, but are assumed to be one.
work	REAL for slantp and clantp. DOUBLE PRECISION for dlantp and zlantp. Workspace array, DIMENSION (lwork), where lwork \geq_{n} when norm = ' I '; otherwise, work is not referenced.

Output Parameters

```
val REAL for slantp/clantp.
    DOUBLE PRECISION for dlantp/zlantp.
    Value returned by the function.
```


?lantr

Returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a trapezoidal or triangular matrix.

Syntax

```
val = slantr ( norm, uplo, diag, m, n, a, lda, work )
val = dlantr ( norm, uplo, diag, m, n, a, lda, work )
val = clantr ( norm, uplo, diag, m, n, a, lda, work )
val = zlantr ( norm, uplo, diag, m, n, a, lda, work )
```


Description

The function ? lantr returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a trapezoidal or triangular matrix A.

The value val returned by the function is:

```
val = max(abs( (Aij )), if norm = 'm' or 'm'
    = norm1(A), if norm = ' }1\mathrm{ ' or ' O' or 'o'
    = normI(A), if norm= 'I' or 'i'
    = normF(A), if norm= 'F', ' }\textrm{f}\mathrm{ ', ' E' or 'e'
```

where norm1 denotes the 1-norm of a matrix (maximum column sum), normI denotes the infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a matrix (square root of sum of squares). Note that $\max \left(\operatorname{abs}\left(A_{\mathrm{ij}}\right)\right)$ is not a matrix norm.

Input Parameters

norm	CHARACTER*1. Specifies the value to be returned in ?lantr as described
above.	
uplo	CHARACTER*1. Specifies whether the matrix A is upper or lower trapezoidal.
	$=$ 'U': Upper trapezoidal
	$=$ 'L': Lower trapezoidal.
	Note that A is triangular instead of trapezoidal if $m=n$.

```
diag CHARACTER*1. Specifies whether or not the matrix }A\mathrm{ has unit diagonal.
    = 'N': Non-unit diagonal
    = 'U': Unit diagonal.
    INTEGER. The number of rows of the matrix }A\mathrm{ .
    m\geq0, and if uplo = 'U', m\leqn. When m = 0, ? lantr is set to zero.
    INTEGER. The number of columns of the matrix }A\mathrm{ .
    n \geq0, and if uplo =' 'L', n\leqm. When n = 0, ?lantr is set to zero.
    REAL for slantr
    DOUBLE PRECISION for dlantr
    COMPLEX for clantr
    COMPLEX*16 for zlantr
    Array, DIMENSION (lda,n).
    The trapezoidal matrix }A\mathrm{ ( }A\mathrm{ is triangular if m=n).
    If uplo = 'U', the leading m-by-n upper trapezoidal part of the array a contains
    the upper trapezoidal matrix, and the strictly lower triangular part of a is not
    referenced.
    If uplo = 'L', the leading m-by-n lower trapezoidal part of the array a contains
    the lower trapezoidal matrix, and the strictly upper triangular part of a is not
    referenced. Note that when diag = 'U', the diagonal elements of a are not
    referenced and are assumed to be one.
Ida INTEGER. The leading dimension of the array a.
    lda }\geq\mathrm{ max(m,1).
work REAL for slantr/clantrp.
    DOUBLE PRECISION for dlantr/zlantr.
    Workspace array, DIMENSION (l work), where
    lwork \geqm when norm = 'I' ; otherwise, work is not referenced.
```


Output Parameters

```
val REAL for slantr/clantrp.
    DOUBLE PRECISION for dlantr/zlantr.
    Value returned by the function.
```


?lanv2

Computes the Schur factorization of a real 2-by-2
nonsymmetric matrix in standard form.

Syntax

```
call slanv2 ( a, b, c, d, rt1r, rt1i, rt2r, rt2i, cs, sn )
call dlanv2 ( a, b, c, d, rt1r, rt1i, rt2r, rt2i, cs, sn )
```


Description

The routine computes the Schur factorization of a real 2-by-2 nonsymmetric matrix in standard form:

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{cc}
c s & -s n \\
s n & c s
\end{array}\right]\left[\begin{array}{ll}
a a & b b \\
c c & d d
\end{array}\right]\left[\begin{array}{cc}
c s & s n \\
-s n & c s
\end{array}\right]
$$

where either

1. $\quad c c=0$ so that $a a$ and $d d$ are real eigenvalues of the matrix, or
2. $a a=d d$ and $b b * c c<0$, so that $a a \pm \operatorname{sqrt}(b b * c c)$ are complex conjugate eigenvalues.

The routine was adjusted to reduce the risk of cancellation errors, when computing real eigenvalues, and to ensure, if possible, that $\operatorname{abs}(r t 1 r) \geq a b s(r t 2 r)$.

Input Parameters

```
a, b, c, d REAL for slanv2
    DOUBLE PRECISION for dlanv2.
    On entry, elements of the input matrix.
```


Output Parameters

```
a,b,c,d On exit, overwritten by the elements of the standardized Schur form.
rt1r, rt1i,
        rt2r, rt2i,REAL for slanv2
            DOUBLE PRECISION for dlanv2.
            The real and imaginary parts of the eigenvalues. If the
            eigenvalues are a complex conjugate pair, rt1i>0.
```

```
cs, sn REAL for slanv2
    DOUBLE PRECISION for dlanv2.
    Parameters of the rotation matrix.
```


?lapll

Measures the linear dependence of two vectors.

Syntax

```
call slapll ( n, x, incx, y, incy, ssmin )
call dlapll ( n, x, incx, y, incy, ssmin )
call clapll ( n, x, incx, y, incy, ssmin )
call zlapll ( n, x, incx, y, incy, ssmin )
```


Description

Given two column vectors x and y of length n, let
$\mathrm{A}=(x y)$ be the n-by- 2 matrix.
The routine ?lapll first computes the $Q R$ factorization of A as $A=Q R$ and then computes the SVD of the 2-by-2 upper triangular matrix R. The smaller singular value of R is returned in ssmin, which is used as the measurement of the linear dependency of the vectors x and y.

Input Parameters

n
x

Y

INTEGER. The length of the vectors x and y.
REAL for slapll
DOUBLE PRECISION for dlapll
COMPLEX for clapll
COMPLEX*16 for zlapll
Array, DIMENSION ($1+(n-1)$ incx).
On entry, x contains the n-vector x.
REAL for slapll
DOUBLE PRECISION for dlapll
COMPLEX for clapll
COMPLEX*16 for zlapll
Array, DIMENSION ($1+(n-1)$ incy). On entry, y contains the n-vector y.

incx	INTEGER. The increment between successive elements of x; incx >0.
incy	INTEGER. The increment between successive elements of y; incy >0.

Output Parameters

x	On exit, x is overwritten.
y	On exit, y is overwritten.
ssmin	REAL for slapll/clapll
	DOUBLE PRECISION for dlapll/zlapll
	The smallest singular value of the n-by- 2 matrix
	$A=(x y)$.

?lapmt

Performs a forward or backward permutation of the columns of a matrix.

Syntax

```
call slapmt ( forwrd, m, n, x, ldx, k )
call dlapmt ( forwrd, m, n, x, ldx, k )
call clapmt ( forwrd, m, n, x, ldx, k )
call zlapmt ( forwrd, m, n, x, ldx, k )
```


Description

The routine ? lapmt rearranges the columns of the $m-b y-n$ matrix X as specified by the permutation $k(1), k(2), \ldots, k(n)$ of the integers $1, \ldots, n$.

If forwrd $=$.TRUE., forward permutation:
$X(*, k(j))$ is moved to $X(*, j)$ for $j=1,2, \ldots, n$.
If forwrd = .FALSE., backward permutation:
$X(*, j)$ is moved to $X(*, k(j))$ for $j=1,2, \ldots, n$.

Input Parameters

```
forwrd LOGICAL.
    If forwrd= .TRUE ., forward permutation
    If forwrd = . FALSE., backward permutation
m
    INTEGER. The number of rows of the matrix }X\mathrm{ .
    m}\geq0\mathrm{ .
    INTEGER. The number of columns of the matrix }X\mathrm{ .
        n}\geq0\mathrm{ .
    REAL for slapmt
        DOUBLE PRECISION for dlapmt
        COMPLEX for clapmt
        COMPLEX*16 for zlapmt
        Array, DIMENSION (ldx,n). On entry, the m-by-n matrix }X\mathrm{ .
ldx INTEGER. The leading dimension of the array x,
        ldx \geq max(1,m).
k INTEGER.
    Array, DIMENSION (n). On entry, k contains the permutation vector.
```


Output Parameters

 On exit, \(x\) contains the permuted matrix \(X\).

?lapy2

Returns $\operatorname{sqrt}\left(x^{2}+y^{2}\right)$.

Syntax

```
val = slapy2 ( x, y )
val = dlapy2 ( x, y )
```


Description

The function ?lapy2 returns $\operatorname{sqrt}\left(x^{2}+y^{2}\right)$, avoiding unnecessary overflow or harmful underflow.

Input Parameters

```
x, y REAL for slapy2
    DOUBLE PRECISION for dlapy2
    Specify the input values }x\mathrm{ and }y\mathrm{ .
```


Output Parameters

```
val REAL for slapy2
    DOUBLE PRECISION for dlapy2.
    Value returned by the function.
```


?lapy3

Returns $\operatorname{sqrt}\left(x^{2}+y^{2}+z^{2}\right)$.

Syntax

```
val = slapy3 ( x, y, z )
val = dlapy3 ( x, y, z )
```


Description

The function ? lapy 3 returns $\operatorname{sqrt}\left(x^{2}+y^{2}+z^{2}\right)$, avoiding unnecessary overflow or harmful underflow.

Input Parameters

```
x, y, z REAL for slapy3
    DOUBLE PRECISION for dlapy3
    Specify the input values }x,y\mathrm{ and }z\mathrm{ .
```


Output Parameters

```
val
```

val
REAL for slapy3
REAL for slapy3
DOUBLE PRECISION for dlapy3.
DOUBLE PRECISION for dlapy3.
Value returned by the function.

```
    Value returned by the function.
```


?laqgb

Scales a general band matrix, using row and column

 scaling factors computed by ? gbequ.
Syntax

```
call slaqgb ( m, n, kl, ku, ab, ldab, r, c, rowcnd,
        colcnd, amax, equed )
call dlaqgb ( m, n, kl, ku, ab, ldab, r, c, rowcnd,
        colcnd, amax, equed )
call claqgb ( m, n, kl, ku, ab, ldab, r, c, rowcnd,
        colcnd, amax, equed )
call zlaqgb ( m, n, kl, ku, ab, ldab, r, c, rowcnd,
    colcnd, amax, equed )
```


Description

The routine equilibrates a general m-by- n band matrix A with $k l$ subdiagonals and $k u$ superdiagonals using the row and column scaling factors in the vectors r and c.

Input Parameters

m
n
ab

InTEGER. The number of rows of the matrix A. $m \geq 0$. INTEGER. The number of columns of the matrix A. $n \geq 0$. INTEGER. The number of subdiagonals within the band of $A . k l \geq 0$. INTEGER. The number of superdiagonals within the band of A. $k u \geq 0$.

REAL for slaqgb DOUBLE PRECISION for dlaqgb
COMPLEX for claqgb COMPLEX*16 for zlaqgb Array, DIMENSION ($1 \mathrm{dab}, \mathrm{n}$). On entry, the matrix A in band storage, in rows 1 to $k l+k u+1$. The j-th column of A is stored in the j-th column of the array ab as follows: $a b(k u+1+i-j, j)=A(i, j)$ for $\max (1, j-k u) \leq i \leq \min (m, j+k l)$.

Idab	INTEGER. The leading dimension of the array $a b$. $l d a \geq k l+k u+1$.
amax	REAL for slaqgb/claqgb
	DOUBLE PRECISION for dlaggb/zlaqgb
	Absolute value of largest matrix entry.
Output Parameters	
$a b$	On exit, the equilibrated matrix, in the same storage format as A.
	See equed for the form of the equilibrated matrix.
r, c	REAL for slaqgb/claqgb
	DOUBLE PRECISION for dlaqgb/zlaqgb
	Arrays $r(m), c(n)$. Contain the row and column scale factors for A, respectively.
rowend	REAL for slaqgb/claqgb
	DOUBLE PRECISION for dlaqgb/zlaqgb
	Ratio of the smallest $r(i)$ to the largest $r(i)$.
colcnd	REAL for slaqgb/claqgb
	DOUBLE PRECISION for dlaqgb/zlaqgb
	Ratio of the smallest $c(i)$ to the largest $c(i)$.
equed	CHARACTER* 1 .
	Specifies the form of equilibration that was done.
	If equed = ' N ': No equilibration
	If equed = 'R': Row equilibration, that is, A has been premultiplied by $\operatorname{diag}(r)$.
	If equed = ' C ': Column equilibration, that is, A has been postmultiplied by $\operatorname{diag}(c)$.
	If equed $=$ ' B ': Both row and column equilibration, that is, A has been replaced by $\operatorname{diag}(r) * A * \operatorname{diag}(c)$.

Application Notes

The routine uses internal parameters thresh, large, and small, which have the following meaning. thresh is a threshold value used to decide if row or column scaling should be done based on the ratio of the row or column scaling factors. If rowend < thresh, row scaling is done, and if colcnd<thresh, column scaling is done. large and small are threshold values used to decide if row scaling should be done based on the absolute size of the largest matrix element. If amax $>$ large or amax $<$ small, row scaling is done.

?laqge

Scales a general rectangular matrix, using row and column scaling factors computed by ?geequ.

Syntax

```
call slaqge ( m, n, a, lda, r, c, rowcnd, colcnd, amax, equed )
call dlaqge ( m, n, a, lda, r, c, rowcnd, colcnd, amax, equed )
call claqge ( m, n, a, lda, r, c, rowcnd, colcnd, amax, equed )
call zlaqge ( m, n, a, lda, r, c, rowcnd, colcnd, amax, equed )
```


Description

The routine equilibrates a general $m-$ by- n matrix A using the row and scaling factors in the vectors r and c.

Input Parameters

m
n
a
r

C

INTEGER. The number of rows of the matrix A. $m \geq 0$.

INTEGER. The number of columns of the matrix A. $n \geq 0$.

REAL for slaqge DOUBLE PRECISION for dlaqge COMPLEX for claqge COMPLEX*16 for zlaqge Array, DIMENSION (lda,n). On entry, the m-by- n matrix A. INTEGER. The leading dimension of the array A. $1 d a \geq \max (m, 1)$.

REAL for slanqge/claqge DOUBLE PRECISION for dlaqge/zlaqge Array, Dimension (m). The row scale factors for A.

REAL for slanqge/claqge DOUBLE PRECISION for dlaqge/zlaqge Array, DIMENSION (n). The column scale factors for A.

```
rowend REAL for slanqge/claqge
    DOUBLE PRECISION for dlaqge/zlaqge
    Ratio of the smallest r(i) to the largest r(i).
colcnd REAL for slangge/claqge
    DOUBLE PRECISION for dlaqge/zlaqge
    Ratio of the smallest c(i) to the largest c(i).
amax REAL for slangge/claqge
    DOUBLE PRECISION for dlaqge/zlaqge
    Absolute value of largest matrix entry.
```


Output Parameters

On exit, the equilibrated matrix. See equed for the form of the equilibrated matrix.

CHARACTER*1.

```
Specifies the form of equilibration that was done.
If equed = ' N ': No equilibration
If equed = 'R': Row equilibration, that is, \(A\) has been premultiplied by \(\operatorname{diag}(r)\).
If equed = 'c': Column equilibration, that is, \(A\) has been postmultiplied by diag(c).
If equed \(=\) ' B ': Both row and column equilibration, that is, \(A\) has been replaced by \(\operatorname{diag}(r) * A * \operatorname{diag}(c)\).
```


Application Notes

The routine uses internal parameters thresh, large, and small, which have the following meaning. thresh is a threshold value used to decide if row or column scaling should be done based on the ratio of the row or column scaling factors. If rowend < thresh, row scaling is done, and if colcnd < thresh, column scaling is done. large and small are threshold values used to decide if row scaling should be done based on the absolute size of the largest matrix element. If amax $>$ large or amax $<$ small, row scaling is done.

?laqp2

Computes a QR factorization with column pivoting of the matrix block.

Syntax

```
call slaqp2 ( m, n, offset, a, lda, jpvt, tau, vn1, vn2, work )
call dlaqp2 ( m, n, offset, a, lda, jpvt, tau, vn1, vn2, work )
call claqp2 ( m, n, offset, a, lda, jpvt, tau, vn1, vn2, work )
call zlaqp2 ( m, n, offset, a, lda, jpvt, tau, vn1, vn2, work )
```


Description

The routine computes a $Q R$ factorization with column pivoting of the block $A($ offset $+1: m, 1: n)$. The block $A(1:$ offset, $1: n)$ is accordingly pivoted, but not factorized.

Input Parameters

$m \quad$ INTEGER. The number of rows of the matrix A. $m \geq 0$.
n
INTEGER. The number of columns of the matrix A. $n \geq 0$.
offset INTEGER. The number of rows of the matrix A that must be pivoted but no factorized. offset ≥ 0.
a
REAL for slaqp2
DOUBLE PRECISION for dlaqp2
COMPLEX for claqp2
COMPLEX*16 for zlaqp2
Array, DIMENSION (lda,n). On entry, the m-by-n matrix A.
Ida INTEGER. The leading dimension of the array A. Ida $\geq \max (1, m)$.
jpvt INTEGER.
Array, DIMENSION (n). On entry, if $j p v t(i) \neq 0$, the i-th column of A is permuted to the front of $A * P$ (a leading column); if jpvt $(i)=0$, the i-th column of A is a free column.

```
vn1, vn2 REAL for slaqp2/claqp2
    DOUBLE PRECISION for dlaqp2/zlaqp2
    Arrays, DIMENSION ( n) each. Contain the vectors with the partial and exact
    column norms, respectively.
work REAL for slaqp2
    DOUBLE PRECISION for dlaqp2
    COMPLEX for claqp2
    COMPLEX*16 for zlaqp2
    Workspace array, DIMENSION (n).
```


Output Parameters

On exit, the upper triangle of block $A(o f f s e t+1: m, 1: n$) is the triangular factor obtained; the elements in block $A(o f f s e t+1: m, 1: n)$ below the diagonal, together with the array tau, represent the orthogonal matrix Q as a product of elementary reflectors. Block $A(1: \circ f f$ set, $1: n)$ has been accordingly pivoted, but not factorized.

jpvt	On exit, if $j p v t(i)=k$, then the i-th column of $A * P$ was the k-th column of A.		
tau	REAL for slaqp2		
DOUBLE PRECISION for dlaqp2			
COMPLEX for claqp2			
	COMPLEX*16 for zlaqp 2	\quad	Array, DIMENSION $(\min (m, n))$. The scalar factors of the elementary reflectors.
:---			

vn1, vn2 Contain the vectors with the partial and exact column norms, respectively.

```

\section*{?laqps}

Computes a step of QR factorization with column pivoting of a real m-by-n matrix \(A\) by using BLAS level 3.

\section*{Syntax}
```

call slaqps (m, n, offset, nb, kb, a, lda, jpvt, tau,
vn1, vn2, auxv, f, ldf)
call dlaqps (m, n, offset, nb, kb, a, lda, jpvt, tau,
vn1, vn2, auxv, f, ldf)

```
```

call claqps (m, n, offset, nb, kb, a, lda, jpvt, tau,
vn1, vn2, auxv, f, ldf)
call zlaqps (m, n, offset, nb, kb, a, lda, jpvt, tau,
vn1, vn2, auxv, f, ldf)

```

\section*{Description}

This routine computes a step of \(Q R\) factorization with column pivoting of a real \(m\)-by-n matrix \(A\) by using BLAS level 3 . The routine tries to factorize \(n b\) columns from \(A\) starting from the row offset+1, and updates all of the matrix with BLAS level 3 routine ?gemm.

In some cases, due to catastrophic cancellations, ? laqps cannot factorize nb columns. Hence, the actual number of factorized columns is returned
in \(k b\).
Block \(A(1: \circ f f s e t, 1: n)\) is accordingly pivoted, but not factorized.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline m & INTEGER. The number of rows of the matrix \(A\). \(m \geq 0\). \\
\hline n & INTEGER. The number of columns of the matrix \(A\). \(n \geq 0\). \\
\hline offset & INTEGER. The number of rows of \(A\) that have been factorized in previous steps. \\
\hline nb & INTEGER. The number of columns to factorize. \\
\hline \multirow[t]{6}{*}{a} & REAL for slaqps \\
\hline & DOUBLE PRECISION for dlaqps \\
\hline & COMPLEX for claqps \\
\hline & COMPLEX*16 for zlaqps \\
\hline & Array, DIMENSION (lda,n). \\
\hline & On entry, the m-by-n matrix \(A\). \\
\hline Ida & INTEGER. The leading dimension of the array \(a\). \(I d a \geq \max (1, m)\). \\
\hline \multirow[t]{2}{*}{jpvt} & INTEGER. \\
\hline & Array, DIMENSION (n). If jpvt (i) \(=k\) then column \(k\) of the full matrix \(A\) has been permuted into position \(i\) in \(A P\). \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{vn1, vn2} & ReAL for slaqps/claqps \\
\hline & DOUBLE PRECISION for dlaqps/zlaqps \\
\hline & Arrays, DIMENSION ( \(n\) ) each. Contain the vectors with the partial and exact column norms, respectively. \\
\hline \multirow[t]{5}{*}{auxv} & REAL for slaqps \\
\hline & DOUBLE PRECISION for dlaqps \\
\hline & COMPLEX for claqps \\
\hline & COMPLEX*16 for zlaqps \\
\hline & Array, DIMENSION (nb). Auxiliary vector. \\
\hline \multirow[t]{5}{*}{f} & REAL for slaqps \\
\hline & DOUBLE PRECISION for dlaqps \\
\hline & COMPLEX for claqps \\
\hline & COMPLEX*16 for zlaqps \\
\hline & Array, dimension (ldf,nb). Matrix \(F^{\prime}=L \star Y^{\prime} \star A\). \\
\hline \multirow[t]{2}{*}{\(1 d f\)} & Integer. The leading dimension of the array \(£\). \\
\hline & \(l d f \geq \max (1, \mathrm{n})\). \\
\hline \multicolumn{2}{|l|}{Output Parameters} \\
\hline kb & INTEGER. The number of columns actually factorized. \\
\hline \multirow[t]{2}{*}{a} & On exit, block \(A\) (offset \(+1: \mathrm{m}, 1: \mathrm{kb}\) ) is the triangular factor obtained and block \\
\hline & \(A(1: o f f s e t, 1: n)\) has been accordingly pivoted, but no factorized. The rest of the matrix, block \(A(o f f s e t+1: m, k b+1: n)\) has been updated. \\
\hline jpvt & INTEGER array, DIMENSION (n). If jpvt (i) \(=k\) then column \(k\) of the full matrix \(A\) has been permuted into position \(i\) in \(A P\). \\
\hline \multirow[t]{5}{*}{tau} & REAL for slaqps \\
\hline & DOUBLE PRECISION for dlaqps \\
\hline & COMPLEX for claqps \\
\hline & COMPLEX*16 for zlaqps \\
\hline & Array, DIMENSION ( kb ) . The scalar factors of the elementary reflectors. \\
\hline vn1, vn2 & The vectors with the partial and exact column norms, respectively. \\
\hline auxv & Auxiliary vector. \\
\hline & Matrix \(F^{\prime}=L * Y^{\prime} * A\). \\
\hline
\end{tabular}

\section*{?laqsb}

Scales a symmetric/Hermitian band matrix, using scaling factors computed by ?pbequ.

\section*{Syntax}
```

call slaqsb (uplo, n, kd, ab, ldab, s, scond, amax, equed)

```
call dlaqsb ( uplo, \(n, k d, a b, l d a b, s, s c o n d, ~ a m a x, ~ e q u e d)\)
call claqsb ( uplo, \(n, k d, a b, l d a b, s, s c o n d, ~ a m a x, ~ e q u e d)\)
call zlaqsb ( uplo, \(n, k d, a b, l d a b, s, s c o n d, ~ a m a x, ~ e q u e d ~) ~\)

\section*{Description}

The routine equilibrates a symmetric band matrix \(A\) using the scaling factors in the vector \(s\).

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline uplo & \begin{tabular}{l}
CHARACTER*1. Specifies whether the upper or lower triangular part of the symmetric matrix \(A\) is stored. \\
If uplo = 'v': upper triangular. \\
If uplo = 'L': lower triangular.
\end{tabular} \\
\hline \(n\) & INTEGER. The order of the matrix \(A\).
\[
n \geq 0
\] \\
\hline kd & INTEGER. The number of super-diagonals of the matrix \(A\) if uplo \(=\) ' \(\mathbf{u}\) ', or the number of sub-diagonals if \(u p l o=' L ' . k d \geq 0\). \\
\hline ab & ```
REAL for slaqsb
DOUBLE PRECISION for dlaqsb
COMPLEX for claqsb
COMPLEX*16 for zlaqsb
Array, DIMENSION ( \(1 \mathrm{dab}, n\) ). On entry, the upper or lower triangle of the
symmetric band matrix \(A\), stored in the first \(k d+1\) rows of the array. The \(j\)-th
column of \(A\) is stored in the \(j\)-th column of the array ab as follows:
if uplo = ' U ', \(a b(k d+1+i-j, j)=\mathrm{A}(i, j)\) for
\(\max (1, j-k d) \leq i \leq j\);
if uplo='L', ab \((1+i-j, j)=A(i, j)\) for
\(j \leq i \leq \min (n, j+k d)\).
``` \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Idab & Integer. The leading dimension of the array \(a b\). \(l d a b \geq k d+1\). \\
\hline \multirow[t]{3}{*}{scond} & REAL for slaqsb/claqsb \\
\hline & DOUBLE PRECISION for dlaqsb/zlaqsb \\
\hline & Ratio of the smallest \(s(i)\) to the largest \(s(i)\). \\
\hline \multirow[t]{3}{*}{amax} & REAL for slaqsb/claqsb \\
\hline & DOUBLE PRECISION for dlaqsb/zlaqsb \\
\hline & Absolute value of largest matrix entry. \\
\hline
\end{tabular}

\section*{Output Parameters}
\(a b \quad\) On exit, if info \(=0\), the triangular factor \(U\) or \(L\) from the Cholesky factorization \(A=U^{\prime} U\) or \(A=L L^{\prime}\) of the band matrix \(A\), in the same storage format as \(A\).
s
REAL for slaqsb/claqsb DOUBLE PRECISION for dlaqsb/zlaqsb Array, DIMENSION (\(n\)). The scale factors for \(A\).

CHARACTER*1.
Specifies whether or not equilibration was done.
If equed = ' N ': No equilibration.
If equed \(=\) ' \(Y\) ': Equilibration was done, that is, \(A\) has been replaced by \(\operatorname{diag}(s) * A * \operatorname{diag}(s)\).

\section*{Application Notes}

The routine uses internal parameters thresh, large, and small, which have the following meaning. thresh is a threshold value used to decide if scaling should be based on the ratio of the scaling factors. If scond<thresh, scaling is done. large and small are threshold values used to decide if scaling should be done based on the absolute size of the largest matrix element. If amax \(>\) large or amax \(<\) small, scaling is done.

\section*{?laqsp}

Scales a symmetric/Hermitian matrix in packed
storage, using scaling factors computed by ?ppequ.

\section*{Syntax}
```

call slaqsp ( uplo, n, ap, s, scond, amax, equed )
call dlaqsp ( uplo, n, ap, s, scond, amax, equed )
call claqsp ( uplo, n, ap, s, scond, amax, equed )
call zlaqsp ( uplo, n, ap, s, scond, amax, equed )

```

\section*{Description}

The routine ? laqsp equilibrates a symmetric matrix \(A\) using the scaling factors in the vector \(s\).

\section*{Internal Parameters}
```

uplo
n
ap REAL for slaqsp
DOUBLE PRECISION for dlaqsp
COMPLEX for claqsp
COMPLEX*16 for zlaqsp
Array, DIMENSION (n(n+1)/2). On entry, the upper or lower triangle of the
symmetric matrix }A\mathrm{ , packed columnwise in a linear array. The j-th column of
A is stored in the array ap as follows:
if uplo= 'U', ap(i + (j-1)j/2)=A(i,j) for 1\leqi\leq j;
if uplo = 'L', ap(i+(j-1)(2n-j)/2)=A(i,j) for j\leqi\leqn.
S
REAL for slaqsp/claqsp
DOUBLE PRECISION for dlaqsp/zlaqsp
Array, DIMENSION (n). The scale factors for }A\mathrm{ .

```
```

scond REAL for slaqsp/claqsp
DOUBLE PRECISION for dlaqsp/zlaqsp
Ratio of the smallest s(i) to the largest s(i).
amax REAL for slaqsp/claqsp
DOUBLE PRECISION for dlaqsp/zlaqsp
Absolute value of largest matrix entry.

```

\section*{Output Parameters}

On exit, the equilibrated matrix: \(\operatorname{diag}(s) * A * \operatorname{diag}(s)\), in the same storage format as \(A\).
equed

\section*{CHARACTER*1.}

Specifies whether or not equilibration was done.
If equed = ' N ': No equilibration.
If equed \(=\) ' \(Y\) ': Equilibration was done, that is, \(A\) has been replaced by \(\operatorname{diag}(s) * A * \operatorname{diag}(s)\).

\section*{Application Notes}

The routine uses internal parameters thresh, large, and small, which have the following meaning. thresh is a threshold value used to decide if scaling should be based on the ratio of the scaling factors. If scond<thresh, scaling is done. large and small are threshold values used to decide if scaling should be done based on the absolute size of the largest matrix element. If amax \(>\) large or amax \(<\) small, scaling is done.

\section*{?laqsy}

Scales a symmetric/Hermitian matrix, using scaling factors computed by ?poequ.

\section*{Syntax}
```

call slaqsy ( uplo, n, a, lda, s, scond, amax, equed )
call dlaqsy ( uplo, n, a, lda, s, scond, amax, equed )
call claqsy ( uplo, n, a, lda, s, scond, amax, equed )
call zlaqsy ( uplo, n, a, lda, s, scond, amax, equed )

```

\section*{Description}

The routine equilibrates a symmetric matrix \(A\) using the scaling factors in the vector \(s\).

\section*{Input Parameters}
uplo CHARACTER*1. Specifies whether the upper or lower triangular part of the symmetric matrix \(A\) is stored.
If uplo = 'u': upper triangular. If uplo = 'L': lower triangular.
\(n \quad\) integer. The order of the matrix \(A\). \(n \geq 0\).
a REAL for slaqsy DOUBLE PRECISION for dlaqsy COMPLEX for claqsy COMPLEX*16 for zlaqsy Array, dIMENSION (lda,n). On entry, the symmetric matrix \(A\). If uplo = ' u ', the leading \(n\)-by- \(n\) upper triangular part of a contains the upper triangular part of the matrix \(A\), and the strictly lower triangular part of \(a\) is not referenced. If uplo= ' L ', the leading \(n\)-by- \(n\) lower triangular part of a contains the lower triangular part of the matrix \(A\), and the strictly upper triangular part of \(a\) is not referenced.

Ida INTEGER. The leading dimension of the array a. \(l d a \geq \max (n, 1)\).
s REAL for slaqsy/claqsy DOUBLE PRECISION for dlaqsy/zlaqsy Array, dimension (n). The scale factors for \(A\).
scond REAL for slaqsy/claqsy DOUBLE PRECISION for dlaqsy/zlaqsy Ratio of the smallest \(s(i)\) to the largest \(s(i)\).
amax REAL for slaqsy/claqsy DOUBLE PRECISION for dlaqsy/zlaqsy Absolute value of largest matrix entry.

\section*{Output Parameters}

On exit, if equed \(=\) ' Y ', the equilibrated matrix: \(\operatorname{diag}(s) * A * \operatorname{diag}(s)\).
```

equed CHARACTER*1.
Specifies whether or not equilibration was done.
If equed = ' N': No equilibration.
If equed = 'Y': Equilibration was done, i.e., }A\mathrm{ has been replaced by
diag(s)* ** diag(s).

```

\section*{Application Notes}

The routine uses internal parameters thresh, large, and small, which have the following meaning. thresh is a threshold value used to decide if scaling should be based on the ratio of the scaling factors. If scond < thresh, scaling is done. large and small are threshold values used to decide if scaling should be done based on the absolute size of the largest matrix element. If amax > large or amax < small, scaling is done.

\section*{?laqtr}

Solves a real quasi-triangular system of equations, or a complex quasi-triangular system of special form, in real arithmetic.

\section*{Syntax}
```

call slaqtr ( ltran, lreal, n, t, ldt, b, w, scale, x,
work, info )
call dlaqtr ( ltran, lreal, n, t, ldt, b, w, scale, x,
work, info )

```

\section*{Description}

The routine ? laqtr solves the real quasi-triangular system
\[
\mathrm{op}(T) * p=\text { scale } c, \quad \text { if lreal }=. \text { TRUE } .
\]
or the complex quasi-triangular systems
\(\mathrm{op}(T+\boldsymbol{i} B) *(p+\boldsymbol{i} q)=\) scale* \((c+\boldsymbol{i d}), \quad\) if lreal \(=\). FALSE.
in real arithmetic, where \(T\) is upper quasi-triangular.
If 1 real \(=\). FALSE., then the first diagonal block of \(T\) must be 1 -by- 1 ,
\(B\) is the specially structured matrix
\(B=\left[\begin{array}{ccccc}b_{1} & b_{2} & \ldots & \ldots & b_{n} \\ & w & & & \\ & & w & & \\ & & & \ldots & \\ & & & & \\ & & & & \end{array}\right]\)
\(\operatorname{op}(A)=A\) or \(A^{\prime}, A^{\prime}\) denotes the conjugate transpose of matrix \(A\).
On input,
\(x=\left[\begin{array}{l}c \\ d\end{array}\right], \quad\) on output \(x=\left[\begin{array}{l}p \\ q\end{array}\right]\)

This routine is designed for the condition number estimation in routine ?trsna.

\section*{Input Parameters}

Itran LOGICAL.
On entry, Itran specifies the option of conjugate transpose:
\(=\). FALSE., \(\mathrm{op}(T+\boldsymbol{i} B)=T+\boldsymbol{i} B\),
\(=\). TRUE., \(\quad \operatorname{op}(T+\boldsymbol{i} B)=(T+\boldsymbol{i} B)^{\prime}\).
Ireal LOGICAL.
On entry, lreal specifies the input matrix structure:
\(=\). FALSE. , the input is complex
\(=\). TRUE., the input is real.
n
INTEGER. On entry, \(n\) specifies the order of \(T+\boldsymbol{i} B\). \(n \geq 0\).

REAL for slaqtr DOUBLE PRECISION for dlaqtr
Array, dimension (\(1 d t, n\)). On entry, \(t\) contains a matrix in Schur canonical form. If lreal \(=\). FALSE ., then the first diagonal block of \(t\) must be 1-by-1.
Idt INTEGER. The leading dimension of the matrix \(T\).
\(l d t \geq \max (1, n)\).
b
w
work

REAL for slaqtr
DOUBLE PRECISION for dlaqtr
Array, dimension (\(n\)). On entry, \(b\) contains the elements to form the matrix \(B\) as described above. If lreal \(=\). TRUE., \(b\) is not referenced.

REAL for slaqtr
DOUBLE PRECISION for dlaqtr
On entry, \(w\) is the diagonal element of the matrix \(B\). If lreal \(=\). TRUE., w is not referenced.

REAL for slaqtr
DOUBLE PRECISION for dlaqtr
Array, dimension \((2 n)\). On entry, \(x\) contains the right hand side of the system.
REAL for slaqtr
DOUBLE PRECISION for dlaqtr
Workspace array, dimension (n).

\section*{Output Parameters}
```

scale REAL for slaqtr
DOUBLE PRECISION for dlaqtr
On exit, scale is the scale factor.
On exit,x is overwritten by the solution.
INTEGER.
If info = 0: successful exit.
If info = 1: the some diagonal 1-by-1 block has been perturbed by a small
number smin to keep nonsingularity.
If info =2: the some diagonal 2-by-2 block has been perturbed by a small
number in ?laln2 to keep nonsingularity.

```

NOTE. In the interests of speed, this routine does not check the inputs for errors.

\section*{?lar1v}

Computes the (scaled) r-th column of the inverse of the submatrix in rows b1 through bn of the tridiagonal matrix \(L D L^{T}-\sigma I\).

\section*{Syntax}
```

call slarlv ( n, bl, bn, sigma, d, l, ld, lld, gersch, z,
ztz, mingma, r, isuppz, work )
call dlarlv ( n, bl, bn, sigma, d, l, ld, lld, gersch, z,
ztz, mingma, r, isuppz, work )
call clarlv ( n, bl, bn, sigma, d, l, ld, lld, gersch, z,
ztz, mingma, r, isuppz, work )
call zlarlv ( n, bl, bn, sigma, d, l, ld, lld, gersch, z,
ztz, mingma, r, isuppz, work )

```

\section*{Description}

The routine ? larlv computes the (scaled) r-th column of the inverse of the submatrix in rows \(b 1\) through bn of the tridiagonal matrix
\(L D L^{T}-\sigma \star I\).
The following steps accomplish this computation :
1. Stationary \(q d\) transform, \(L D L^{T}-\sigma * I=L(+) D(+) L(+)^{T}\)
2. Progressive \(q d\) transform, \(L D L^{T}-\sigma \star I=U(-) D(-) U(-)^{T}\),
3. Computation of the diagonal elements of the inverse of \(L D L^{T}-\sigma \star I\) by combining the above transforms, and choosing \(r\) as the index where the diagonal of the inverse is (one of the) largest in magnitude.
4. Computation of the (scaled) \(r\)-th column of the inverse using the twisted factorization obtained by combining the top part of the stationary and the bottom part of the progressive transform.

\section*{Input Parameters}
\begin{tabular}{ll}
\(n\) & INTEGER. The order of the matrix \(L D L^{T}\). \\
b1 & INTEGER. First index of the submatrix of \(L D L^{T}\). \\
bn & INTEGER. Last index of the submatrix of \(L D L^{T}\).
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{sigma} & REAL for slarlv/clarlv \\
\hline & DOUBLE PRECISION for dlarlv/zlarlv \\
\hline & The shift. Initially, when \(r=0\), sigma should be a good approximation to an eigenvalue of \(L D L^{T}\). \\
\hline \multirow[t]{3}{*}{1} & REAL for slarlv/clarlv \\
\hline & DOUBLE PRECISION for dlarlv/zlar1v \\
\hline & Array, DIMENSION (\(n-1\)). The (\(n-1\)) subdiagonal elements of the unit \\
\hline \multirow[t]{3}{*}{d} & REAL for slarlv/clarlv \\
\hline & DOUBLE PRECISION for dlarlv/zlar1v \\
\hline & Array, DIMENSION (n). The \(n\) diagonal elements of the diagonal matrix \(D\). \\
\hline \multirow[t]{3}{*}{1d} & REAL for slarlv/clarlv \\
\hline & DOUBLE PRECISION for dlarlv/zlarlv \\
\hline & Array, dimension (n-1). The n-1 elements \(L_{i}{ }^{*} D_{i}\). \\
\hline \multirow[t]{3}{*}{lld} & REAL for slarlv/clarlv \\
\hline & DOUBLE PRECISION for dlarlv/zlar1v \\
\hline & Array, DIMENSION (n-1). The n-1 elements \(L_{i} * L_{i}{ }^{*} D_{i}\). \\
\hline \multirow[t]{3}{*}{gersch} & REAL for slarlv/clarlv \\
\hline & DOUBLE PRECISION for dlarlv/zlar1v \\
\hline & Array, DImension (2n). The \(n\) Gerschgorin intervals. These are used to restrict the initial search for \(r\), when \(r\) is input as 0 . \\
\hline \multirow[t]{2}{*}{\(r\)} & INTEGER. \\
\hline & Initially \(r\) should be input to be 0 and is then output as the index where the diagonal element of the inverse is largest in magnitude. In later iterations, this same value of \(r\) should be input. \\
\hline \multirow[t]{3}{*}{work} & REAL for slarlv/clarlv \\
\hline & DOUBLE PRECISION for dlarlv/zlar1v \\
\hline & Workspace array, DIMENSION (4n). \\
\hline \multicolumn{2}{|l|}{Output Parameters} \\
\hline \multirow[t]{5}{*}{\(z\)} & REAL for slarlv \\
\hline & DOUBLE PRECISION for dlarlv \\
\hline & COMPLEX for clarlv \\
\hline & COMPLEX*16 for zlarlv \\
\hline & Array, DIMENSION (n). The (scaled) \(r\)-th column of the inverse. \(z(r)\) is returned to be 1 . \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{\(z t z\)} & REAL for slarlv/clarlv \\
\hline & DOUBLE PRECISION for dlarlv/zlarlv \\
\hline & The square of the norm of \(z\). \\
\hline \multirow[t]{3}{*}{mingma} & REAL for slarlv/clarlv \\
\hline & DOUBLE PRECISION for dlar1v/zlar1v \\
\hline & The reciprocal of the largest (in magnitude) diagonal element of the inverse of \(L D L^{T}-\sigma * I\). \\
\hline \(r\) & On output, \(r\) is the index where the diagonal element of the inverse is largest in magnitude. \\
\hline \multirow[t]{2}{*}{isuppz} & INTEGER. \\
\hline & Array, DIMENSION (2). The support of the vector in \(z\), that is, the vector \(z\) is nonzero only in elements isuppz(1) through isuppz(2). \\
\hline
\end{tabular}

\section*{?lar2v}

Applies a vector of plane rotations with real cosines and real/complex sines from both sides to a sequence of 2-by-2 symmetric/Hermitian matrices.

\section*{Syntax}
```

call slar2v ( n, x, y, z, incx, c, s, incc )
call dlar2v ( n, x, y, z, incx, c, s, incc )
call clar2v ( n, x, y, z, incx, c, s, incc )
call zlar2v ( n, x, y, z, incx, c, s, incc )

```

\section*{Description}

The routine ? lar2v applies a vector of real/complex plane rotations with real cosines from both sides to a sequence of 2-by-2 real symmetric or complex Hermitian matrices, defined by the elements of the vectors \(x, y\) and \(z\). For \(i=1,2, \ldots, n\)
\[
\left[\begin{array}{cc}
x_{i} & z_{i} \\
\operatorname{conjg}\left(z_{i}\right) & y_{i}
\end{array}\right]:=\left[\begin{array}{cc}
c(i) & \operatorname{conjg}(s(i)) \\
-s(i) & c(i)
\end{array}\right]\left[\begin{array}{cc}
x_{i} & z_{i} \\
\operatorname{conjg}\left(z_{i}\right) & y_{i}
\end{array}\right]\left[\begin{array}{cc}
c(i) & -\operatorname{conjg}(s(i)) \\
s(i) & c(i)
\end{array}\right]
\]

\section*{Input Parameters}
n
\(x, y, z\)
incx
c
s
incc

INTEGER. The number of plane rotations to be applied.
REAL for slar2v
DOUBLE PRECISION for dlar2v
COMPLEX for clar2v
COMPLEX*16 for zlar2v
Arrays, DIMENSION \((1+(n-1) *\) incx \()\) each. Contain the vectors \(x, y\) and \(z\), respectively. For all flavors of ? lar2v, elements of \(x\) and \(y\) are assumed to be real.
integer. The increment between elements of \(x, y\), and \(z\). incx \(>0\).
REAL for slar2v/clar2v
DOUBLE PRECISION for dlar2v/zlar2v
Array, dIMENSION \((1+(n-1) * i n c c)\). The cosines of the plane rotations.
REAL for slar2v
DOUBLE PRECISION for dlar2v
COMPLEX for clar2v
COMPLEX*16 for zlar2v
Array, DIMENSION (\(1+(n-1) *\) incc). The sines of the plane rotations.
INTEGER. The increment between elements of \(c\) and \(s\). incc \(>0\).

\section*{Output Parameters}
\(x, y, z \quad\) Vectors \(x, y\) and \(z\), containing the results of transform.

\section*{?larf}

Applies an elementary reflector to a general rectangular matrix.

\section*{Syntax}
```

call slarf ( side, m, n, v, incv, tau, c, ldc, work )
call dlarf ( side, m, n, v, incv, tau, c, ldc, work )
call clarf ( side, m, n, v, incv, tau, c, ldc, work )
call zlarf ( side, m, n, v, incv, tau, c, ldc, work )

```

\section*{Description}

The routine applies a real/complex elementary reflector \(H\) to a real/complex m-by-n matrix \(C\), from either the left or the right. \(H\) is represented in the form \(H=I-\operatorname{tau} * v^{*} v^{\prime}\), where \(t a u\) is a real/complex scalar and \(v\) is a real/complex vector.

If \(t a u=0\), then \(H\) is taken to be the unit matrix.
For clarf/zlarf, to apply \(H^{\prime}\) (the conjugate transpose of \(H\)), supply conjg(tau) instead of tau.

\section*{Input Parameters}
side CHARACTER*1.
If side = 'L': form \(H * C\)
If side \(=\) ' R ': form \(C * H\).
m
INTEGER. The number of rows of the matrix \(C\).
INTEGER. The number of columns of the matrix \(C\).
REAL for slarf
DOUBLE PRECISION for dlarf
COMPLEX for clarf
COMPLEX*16 for zlarf
Array, DIMENSION
\((1+(m-1) * \operatorname{abs}(\) incv \())\) if side \(=\) ' L ' or
\((1+(n-1) * \operatorname{abs}(\) incv \())\) if side \(=\) ' \(R\) '.
The vector \(v\) in the representation of \(H\). \(v\) is not used if \(\operatorname{tau}=0\).
incv integer. The increment between elements of \(v\). incv \(\neq 0\).
tau REAL for slarf
DOUBLE PRECISION for dlarf
COMPLEX for clarf
COMPLEX*16 for zlarf
The value tau in the representation of \(H\).
REAL for slarf
DOUBLE PRECISION for dlarf
COMPLEX for clarf
COMPLEX*16 for zlarf
Array, DIMENSION (\(1 d c, n\)).
On entry, the \(m\)-by-n matrix \(C\).
\begin{tabular}{ll}
ldc & INTEGER. The leading dimension of the array \(c\). \\
& ldc \(\geq \max (1, m)\). \\
work & REAL for slarf \\
& DOUBLE PRECISION for dlarf \\
& COMPLEX for clarf \\
& COMPLEX*16 for zlarf \\
& Workspace array, DIMENSION \\
& \((n)\) if side \(=\) 'L' or \\
& \((m)\) if side \(=\) ' R '.
\end{tabular}

\section*{Output Parameters}

On exit, \(c\) is overwritten by the matrix \(H \star C\) if side \(=\) ' L ', or \(C \star H\) if side \(=\) ' R '.

\section*{?larfb}

Applies a block reflector or its transpose/conjugate-transpose to a general rectangular matrix.

\section*{Syntax}
```

call slarfb ( side, trans, direct, storev, m, n, k, v,
ldv, t, ldt, c, ldc, work, ldwork )
call dlarfb ( side, trans, direct, storev, m, n, k, v,
ldv, t, ldt, c, ldc, work, ldwork )
call clarfb ( side, trans, direct, storev, m, n, k, v,
ldv, t, ldt, c, ldc, work, ldwork )
call zlarfb ( side, trans, direct, storev, m, n, k, v,
ldv, t, ldt, c, ldc, work, ldwork )

```

\section*{Description}

The routine ?larfb applies a complex block reflector \(H\) or its transpose \(H^{\prime}\) to a complex m-by-n matrix \(C\) from either left or right.

\section*{Input Parameters}
```

side CHARACTER*1.
If side = 'L': apply H or H' from the left
If side = 'R': apply H or H' from the right
trans CHARACTER*1.
If trans = 'N': apply H (No transpose)
If trans = 'c': apply H'(Conjugate transpose)
direct CHARACTER*1. Indicates how H is formed from a product of elementary
reflectors
If direct = 'F': H=H(1) H(2) . . H(k) (forward)
If direct = 'В': H=H(k) . . H(2)H(1) (backward)
storev CHARACTER*1. Indicates how the vectors which define the elementary
reflectors are stored:
If storev = 'C': Column-wise
If storev = 'R': Row-wise
m INTEGER. The number of rows of the matrix C.
REAL for slarfb
DOUBLE PRECISION for dlarfb
COMPLEX for clarfb

```
\begin{tabular}{|c|c|}
\hline & \begin{tabular}{l}
COMPLEX*16 for zlarfb \\
Array, DIMENSION (ldt,k). \\
Contains the triangular \(k\)-by- \(k\) matrix \(T\) in the representation of the block reflector.
\end{tabular} \\
\hline Idt & INTEGER. The leading dimension of the array \(t\). \(l d t \geq k\). \\
\hline c & \begin{tabular}{l}
REAL for slarfb \\
DOUBLE PRECISION for dlarfb \\
COMPLEX for clarfb \\
COMPLEX*16 for zlarfb \\
Array, DIMENSION (ldc, \(n\)). \\
On entry, the m-by-n matrix \(C\).
\end{tabular} \\
\hline \(1 d c\) & INTEGER. The leading dimension of the array \(c\). \(1 d c \geq \max (1, m)\). \\
\hline work & \begin{tabular}{l}
REAL for slarfb \\
DOUBLE PRECISION for dlarfb \\
COMPLEX for clarfb \\
COMPLEX*16 for zlarfb \\
Workspace array, DIMENSION (ldwork, k).
\end{tabular} \\
\hline ldwork & \begin{tabular}{l}
INTEGER. The leading dimension of the array work. \\
If side \(=\) 'L', 1 dwork \(\geq \max (1, n)\); \\
if side \(=\) ' R ', 1 dwork \(\geq \max (1, m)\).
\end{tabular} \\
\hline \multicolumn{2}{|l|}{Output parameters} \\
\hline C & On exit, c is overwritten by \(H^{\star} C\) or \(H^{\prime}{ }^{\text {c }}\) (or \(C * H\) or \(C * H^{\prime}\). \\
\hline
\end{tabular}

\section*{?larfg}

Generates an elementary reflector (Householder
matrix).

\section*{Syntax}
```

call slarfg ( n, alpha, x, incx, tau )
call dlarfg ( n, alpha, x, incx, tau )

```
call clarfg (\(n, ~ a l p h a, ~ x, ~ i n c x, ~ t a u) ~\)
call zlarfg (\(n\), alpha, \(x\), incx, tau)

\section*{Description}

The routine ?larfg generates a real/complex elementary reflector \(H\) of order \(n\), such that
\[
H^{\prime *}\left[\begin{array}{c}
\text { alpha } \\
x
\end{array}\right]=\left[\begin{array}{c}
b e t a \\
0
\end{array}\right], \quad H^{\prime} * H=I,
\]
where alpha and beta are scalars (with beta real for all flavors), and \(x\) is an (n-1)-element real/complex vector. \(H\) is represented in the form
\[
H=I-\operatorname{tau}^{*}\left[\begin{array}{l}
1 \\
V
\end{array}\right] *\left[\begin{array}{ll}
1 & v^{\prime}
\end{array}\right]
\]
where \(t a u\) is a real/complex scalar and \(v\) is a real/complex \((n-1)\)-element vector. Note that for clarfg/zlarfg, \(H\) is not Hermitian.

If the elements of \(x\) are all zero (and, for complex flavors, alpha is real), then \(t a u=0\) and \(H\) is taken to be the unit matrix.

Otherwise, \(1 \leq\) tau \(\leq 2\) (for real flavors), or
\(1 \leq \operatorname{Re}(t a u) \leq 2\) and \(\operatorname{abs}(t a u-1) \leq 1\) (for complex flavors).

\section*{Input Parameters}
```

n
alpha REAL forslarfg
DOUBLE PRECISION for dlarfg
COMPLEX for clarfg
COMPLEX*16 for zlarfg
On entry, the value alpha.
x REAL for slarfg
DOUBLE PRECISION for dlarfg
COMPLEX for clarfg

```
\begin{tabular}{ll}
& COMPLEX*16 for zlarfg \\
Array, DIMENSION \((1+(n-2) * \operatorname{abs}(\) incx \())\). \\
On entry, the vector \(x\). \\
incx & INTEGER. \\
& The increment between elements of \(x\). incx \(>0\).
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{ll}
alpha & On exit, it is overwritten with the value beta. \\
\(x\) & On exit, it is overwritten with the vector \(v\). \\
tau & \begin{tabular}{l}
REAL for slarfg \\
\\
\\
DOUBLE PRECISION for dlarfg \\
\\
\\
\\
\\
\\
COMPLEX for clarfg \\
COMPLEX*16 for zlarfg \\
The value tau.
\end{tabular}
\end{tabular}

\section*{?larft}

Forms the triangular factor \(T\) of a block reflector \(H=I\)
\(-V T V^{H}\).

\section*{Syntax}
```

call slarft ( direct, storev, n, k, v, ldv, tau, t, ldt )
call dlarft ( direct, storev, n, k, v, ldv, tau, t, ldt )
call clarft ( direct, storev, n, k, v, ldv, tau, t, ldt )
call zlarft ( direct, storev, n, k, v, ldv, tau, t, ldt )

```

\section*{Description}

The routine ? larft forms the triangular factor \(T\) of a real/complex block reflector \(H\) of order \(n\), which is defined as a product of \(k\) elementary reflectors.

If direct \(=\) ' F ', \(H=H(1) H(2) \ldots H(k)\) and \(T\) is upper triangular;
If direct \(=\) ' B ', \(H=H(k) \ldots H(2) H(1)\) and \(T\) is lower triangular.
If storev \(=\) ' C ', the vector which defines the elementary reflector \(\mathrm{H}(i)\) is stored in the \(i\)-th column of the array v , and \(H=I-V * T * V^{\prime}\).

If storev = 'R', the vector which defines the elementary reflector \(\mathrm{H}(i)\) is stored in the \(i\)-th row of the array v , and \(H=I-V^{\prime} * T * V\).

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline direct & \begin{tabular}{l}
CHARACTER*1. Specifies the order in which the elementary reflectors are multiplied to form the block reflector: \\
\(=\) ' F : \(: H=H(1) H(2) \ldots H(\mathrm{k})\) (forward) \\
= 'B': H=H(k) \(\ldots H(2) H(1)\) (backward)
\end{tabular} \\
\hline storev & \begin{tabular}{l}
CHARACTER*1. Specifies how the vectors which define the elementary reflectors are stored (see also Application Notes below): \\
\(=\) 'C': column-wise \\
= 'R': row-wise.
\end{tabular} \\
\hline \(n\) & INTEGER. The order of the block reflector \(H . n \geq 0\). \\
\hline k & INTEGER. The order of the triangular factor \(T\) (equal to the number of elementary reflectors). \(k \geq 1\). \\
\hline \(v\) & \begin{tabular}{l}
REAL for slarft \\
DOUBLE PRECISION for dlarft \\
COMPLEX for clarft \\
COMPLEX*16 for zlarft \\
Array, DIMENSION \\
\((l d v, k)\) if storev= 'C' or \\
\((1 d v, n)\) if storev \(=\) ' \(R\) '. \\
The matrix \(V\).
\end{tabular} \\
\hline \(1 d v\) & \begin{tabular}{l}
INTEGER. The leading dimension of the array v . \\
If storev = 'C', \(1 d v \geq \max (1, n)\); \\
if storev = 'R', \(1 d v \geq k\).
\end{tabular} \\
\hline tau & \begin{tabular}{l}
REAL for slarft \\
DOUBLE PRECISION for dlarft \\
COMPLEX for clarft \\
COMPLEX*16 for zlarft \\
Array, DIMENSION (\(k\)). tau(i) must contain the scalar factor of the elementary reflector \(H(i)\).
\end{tabular} \\
\hline \(1 d t\) & INTEGER. The leading dimension of the output array \(t\). \(1 d t \geq k\). \\
\hline
\end{tabular}

\section*{Output Parameters}
t
```

REAL for slarft
DOUBLE PRECISION for dlarft

```
 COMPLEX for clarft
 COMPLEX*16 for zlarft
 Array, DIMENSION (\(1 d t, k\)). The \(k\)-by- \(k\) triangular factor \(T\) of the block
 reflector. If direct = ' F ', \(T\) is upper triangular; if direct \(=\) ' B ', \(T\) is lower
 triangular. The rest of the array is not used.
v The matrix \(V\).

\section*{Application Notes}

The shape of the matrix \(V\) and the storage of the vectors which define the \(H(i)\) is best illustrated by the following example with \(n=5\) and \(k=3\). The elements equal to 1 are not stored; the corresponding array elements are modified but restored on exit. The rest of the array is not used.
```

    direct = 'F' and storev = 'C': direct = 'F' and storev = 'R':
    ```
\[
\left[\begin{array}{ccc}
1 & & \\
v_{1} & 1 & \\
v_{1} & v_{2} & 1 \\
v_{1} & v_{2} & v_{3} \\
v_{1} & v_{2} & v_{3}
\end{array}\right]
\]
\[
\left[\begin{array}{cccc}
1 & v_{1} & v_{1} & v_{1} \\
& v_{1} \\
& 1 & v_{2} & v_{2} \\
& v_{2} \\
& & 1 & v_{3} \\
& & & \\
\hline
\end{array}\right]
\]
direct = 'B' and storev = 'C': direct = 'B' and storev = 'R':
\[
\left[\begin{array}{ccc}
v_{1} & v_{2} & v_{3} \\
v_{1} & v_{2} & v_{3} \\
1 & v_{2} & v_{3} \\
& 1 & v_{3} \\
& & 1
\end{array}\right] \quad\left[\begin{array}{cccc}
v_{1} & v_{1} & 1 & \\
v_{2} & v_{2} & v_{2} & 1 \\
v_{3} & v_{3} & v_{3} & v_{3}
\end{array}\right]
\]

\section*{? larfx}
```

Applies an elementary reflector to a general
rectangular matrix, with loop unrolling when the
reflector has
order \leq10.

```

\section*{Syntax}
```

call slarfx ( side, m, n, v, tau, c, ldc, work )
call dlarfx ( side, m, n, v, tau, c, ldc, work )
call clarfx ( side, m, n, v, tau, c, ldc, work )
call zlarfx ( side, m, n, v, tau, c, ldc, work )

```

\section*{Description}

The routine ?larfx applies a real/complex elementary reflector \(H\) to a real/complex \(m\)-by- \(n\) matrix \(C\), from either the left or the right.
\(H\) is represented in the form
\(H=I-\operatorname{tau} * v^{*} v^{\prime}\), where tau is a real/complex scalar and \(v\) is a real/complex vector.
If \(\operatorname{tau}=0\), then \(H\) is taken to be the unit matrix

\section*{Input Parameters}
```

side CHARACTER*1.
If side = 'L': form H*C
If side = 'R': form C*H.
m INTEGER. The number of rows of the matrix C.
n INTEGER. The number of columns of the matrix C.
v REAL for slarfx
DOUBLE PRECISION for dlarfx
COMPLEX for clarfx
COMPLEX*16 for zlarfx
Array, DIMENSION
(m) if side = 'L' or
(n) if side = 'R'.
The vector v}\mathrm{ in the representation of }H\mathrm{ .

```
\begin{tabular}{|c|c|}
\hline \multirow[t]{5}{*}{tau} & REAL for slarfx \\
\hline & DOUBLE PRECISION for dlarfx \\
\hline & COMPLEX for clarfx \\
\hline & COMPLEX*16 for zlarfx \\
\hline & The value tau in the representation of \(H\). \\
\hline \multirow[t]{5}{*}{C} & REAL for slarfx \\
\hline & DOUBLE PRECISION for dlarfx \\
\hline & COMPLEX for clarfx \\
\hline & COMPLEX*16 for zlarfx \\
\hline & Array, DIMENSION (ldc,n). On entry, the m-by-n matrix C. \\
\hline \(1 d \mathrm{c}\) & Integer. The leading dimension of the array \(c\). \(1 d a \geq(1, m)\). \\
\hline \multirow[t]{8}{*}{work} & REAL for slarfx \\
\hline & DOUBLE PRECISION for dlarfx \\
\hline & COMPLEX for clarfx \\
\hline & COMPLEX*16 for zlarfx \\
\hline & Workspace array, DIMENSION \\
\hline & (n) if side \(=\) 'L' or \\
\hline & \((m)\) if side \(=\) 'R'. \\
\hline & work is not referenced if \(H\) has order \(<11\). \\
\hline
\end{tabular}

\section*{Output Parameters}
c
On exit, C is overwritten by the matrix \(H \star C\) if side \(=\) ' L ', or \(C \star H\) if side \(=\) 'R'.

\section*{?largv}

Generates a vector of plane rotations with real cosines and real/complex sines.

\section*{Syntax}
```

call slargv ( }n,x,incx, y, incy, c, incc )
call dlargv ( n, x, incx, y, incy, c, incc )
call clargv ( n, x, incx, y, incy, c, incc )
call zlargv ( n, x, incx, y, incy, c, incc )

```

\section*{Description}

The routine generates a vector of real/complex plane rotations with real cosines, determined by elements of the real/complex vectors \(x\) and \(y\).

For slargv/dlargv:
\[
\left[\begin{array}{cc}
c(i) & s(i) \\
-s(i) & c(i)
\end{array}\right]\left[\begin{array}{l}
x_{i} \\
y_{i}
\end{array}\right]=\left[\begin{array}{c}
a_{i} \\
0
\end{array}\right], \text { for } i=1,2, \ldots, n
\]

For clargv/zlargv:
\[
\left[\begin{array}{cc}
c(i) & s(i) \\
-\operatorname{conjg}(s(i)) & c(i)
\end{array}\right]\left[\begin{array}{c}
x_{i} \\
y_{i}
\end{array}\right]=\left[\begin{array}{c}
r_{i} \\
0
\end{array}\right], \text { for } i=1,2, \ldots, n
\]
where \(c(i)^{2}+\operatorname{abs}(s(i))^{2}=1\) and the following conventions are used (these are the same as in clartg/zlartg but differ from the BLAS Level 1 routine crotg/zrotg):
If \(y_{i}=0\), then \(c(i)=1\) and \(s(i)=0\);
If \(x_{i}=0\), then \(c(i)=0\) and \(s(i)\) is chosen so that \(r_{i}\) is real.

\section*{Input Parameters}
incx INTEGER. The increment between elements of \(x\).
incy INTEGER. The increment between elements of \(y\).
incc INTEGER. The increment between elements of the output array c. incc \(>0\).
n
\(x, y\)

INTEGER. The number of plane rotations to be generated.
REAL for slargv DOUBLE PRECISION for dlargv COMPLEX for clargv COMPLEX*16 for zlargv Arrays, DIMENSION \((1+(n-1) *\) incx \()\) and \(\left(1+(n-1)^{*}\right.\) incy \()\), respectively. On entry, the vectors \(x\) and \(y\). incx \(>0\). incy \(>0\).

\section*{Output Parameters}
\begin{tabular}{ll}
x & \begin{tabular}{l}
On exit, \(x(i)\) is overwritten by \(a_{i}\) (for real flavors), or by \(r_{i}\) (for complex \\
flavors), for \(i=1, \ldots, n\).
\end{tabular} \\
\(y\) & On exit, the sines \(s(i)\) of the plane rotations. \\
\(c\) & REAL for slargv/clargv \\
DOUBLE PRECISION for dlargv/zlargv \\
& Array, DIMENSION \(\left(1+(n-1)^{*}\right.\) incc). The cosines of the plane rotations.
\end{tabular}

\section*{?larnv}

Returns a vector of random numbers from a uniform or normal distribution.

\section*{Syntax}
```

call slarnv ( idist, iseed, n, x )
call dlarnv ( idist, iseed, n, x )
call clarnv ( idist, iseed, n, x )
call zlarnv ( idist, iseed, n, x )

```

\section*{Description}

The routine ? larnv returns a vector of \(n\) random real/complex numbers from a uniform or normal distribution.

This routine calls the auxiliary routine ? laruv to generate random real numbers from a uniform \((0,1)\) distribution, in batches of up to 128 using vectorisable code. The Box-Muller method is used to transform numbers from a uniform to a normal distribution.

\section*{Input Parameters}
```

idist
INTEGER. Specifies the distribution of the random numbers:
for slarnv and dlanrv:
=1: uniform (0,1)
=2: uniform (-1,1)
=3: normal (0,1).
for clarnv and zlanrv:
= 1: real and imaginary parts each uniform (0,1)

```
```

    =2: real and imaginary parts each uniform (-1,1)
    =3: real and imaginary parts each normal (0,1)
    = 4: uniformly distributed on the disc abs(z)<1
    = 5: uniformly distributed on the circle abs (z)=1
    iseed INTEGER.
Array, DIMENSION (4).
On entry, the seed of the random number generator, the array elements must be
between 0 and 4095, and iseed(4) must be odd.
n
INTEGER. The number of random numbers to be generated.

```

\section*{Output Parameters}
```

x REAL for slarnv

```
x REAL for slarnv
 DOUBLE PRECISION for dlarnv
 DOUBLE PRECISION for dlarnv
 COMPLEX for clarnv
 COMPLEX for clarnv
 COMPLEX*16 for zlarnv
 COMPLEX*16 for zlarnv
 Array, DIMENSION (n). The generated random numbers.
 Array, DIMENSION (n). The generated random numbers.
iseed On exit, the seed is updated.
```

iseed On exit, the seed is updated.

```

\section*{? larrb \\ Provides limited bisection to locate eigenvalues for more accuracy.}

\section*{Syntax}
```

call slarrb ( n, d, l, ld, lld, ifirst, ilast, sigma,
reltol, w, wgap, werr, work, iwork, info )
call dlarrb ( n, d, l, ld, lld, ifirst, ilast, sigma,
reltol, w, wgap, werr, work, iwork, info )

```

\section*{Description}

Given the relatively robust representation(RRR) \(L D L^{T}\), the routine does "limited" bisection to locate the eigenvalues of \(L D L^{T}\), w(ifirst) through w(ilast), to more accuracy. Intervals [left, \(r i g h t]\) are maintained by storing their mid-points and semi-widths in the arrays \(w\) and werr respectively.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline n & Integer. The order of the matrix. \\
\hline d & \begin{tabular}{l}
REAL for slarrb \\
DOUBLE PRECISION for dlarrb \\
Array, DIMENSION (\(n\)). The \(n\) diagonal elements of the diagonal matrix \(D\).
\end{tabular} \\
\hline 1 & \begin{tabular}{l}
REAL for slarrb \\
DOUBLE PRECISION for dlarrb \\
Array, DIMENSION (\(n-1\)). The \(n-1\) subdiagonal elements of the unit bidiagonal matrix \(L\).
\end{tabular} \\
\hline ld & \begin{tabular}{l}
REAL for slarrb \\
DOUBLE PRECISION for dlarrb \\
Array, dimension (\(n-1\)). The \(n-1\) elements \(L_{i}{ }^{*} D_{i}\).
\end{tabular} \\
\hline lld & \begin{tabular}{l}
REAL for slarrb \\
DOUBLE PRECISION for dlarrb \\
Array, dimension (\(n-1\)). The \(n-1\) elements \(L_{i}{ }^{*} L_{i}{ }^{*} D_{i}\).
\end{tabular} \\
\hline ifirst & Integer. The index of the first eigenvalue in the cluster. \\
\hline ilast & integer. The index of the last eigenvalue in the cluster. \\
\hline sigma & \begin{tabular}{l}
REAL for slarrb \\
DOUBLE PRECISION for dlarrb \\
The shift used to form \(L D L^{T}\) (see ?larrf).
\end{tabular} \\
\hline reltol & \begin{tabular}{l}
REAL for slarrb \\
DOUBLE PRECISION for dlarrb \\
The relative tolerance.
\end{tabular} \\
\hline w & \begin{tabular}{l}
REAL for slarrb \\
DOUBLE PRECISION for dlarrb \\
Array, DIMENSION (n). On input, w(ifirst) through w(ilast) are estimates of the corresponding eigenvalues of \(L D L^{T}\).
\end{tabular} \\
\hline wgap & \begin{tabular}{l}
REAL for slarrb \\
DOUBLE PRECISION for dlarrb \\
Array, DIMENSION (\(n\)). The gaps between the eigenvalues of \(L D L^{T}\).
\end{tabular} \\
\hline werr & \begin{tabular}{l}
REAL for slarrb \\
DOUBLE PRECISION for dlarrb \\
Array, DIMENSION (n). On input, werr(ifirst) through werr(ilast) are the errors in the estimates w(ifirst) through w(ilast).
\end{tabular} \\
\hline
\end{tabular}
```

work REAL for slarrb
DOUBLE PRECISION for dlarrb
Workspace array. Note that this parameter is never used in the routine.
iwork INTEGER.
Workspace array, DIMENSION (2n).

```

\section*{Output Parameters}
```

werr On output, "refined" errors in the estimates w(ifirst) through w(ilast).
info INTEGER.

```

Error flag. Note that this parameter is never set in the routine.

\section*{?larre}

Given the tridiagonal matrix \(T\), sets small off-diagonal elements to zero and for each unreduced block \(T_{i}\), finds base representations and eigenvalues.

\section*{Syntax}
```

call slarre ( n, d, e, tol, nsplit, isplit, m, w, woff,
gersch, work, info )
call dlarre ( n, d, e, tol, nsplit, isplit, m, w, woff,
gersch, work, info )

```

\section*{Description}

Given the tridiagonal matrix \(T\), the routine sets "small" off-diagonal elements to zero, and for each unreduced block \(T_{i}\), it finds
- the numbers \(\sigma_{i}\)
- the base \(T_{i}-\sigma_{i} I=L_{i} D_{i} L_{i}{ }^{T}\) representations and
- eigenvalues of each \(L_{i} D_{i} L_{i}^{T}\).

The representations and eigenvalues found are then used by ?stegr to compute the eigenvectors of a symmetric tridiagonal matrix. Currently, the base representations are limited to being positive or negative definite, and the eigenvalues of the definite matrices are found by the \(d q d s\) algorithm (subroutine ?lasq2). As an added benefit, ? larre also outputs the \(n\) Gerschgorin intervals for each \(L_{i} D_{i} L_{i}{ }^{T}\).

\section*{Input Parameters}
\(n\) INTEGER. The order of the matrix.
d REAL for slarre
DOUBLE PRECISION for dlarre
Array, DIMENSION (\(n\)). On entry, the \(n\) diagonal elements of the tridiagonal matrix \(T\).
e
REAL for slarre
DOUBLE PRECISION for dlarre
Array, dimension (\(n\)). On entry, the (\(n-1\)) subdiagonal elements of the tridiagonal matrix \(T ; e(n)\) need not be set.
tol REAL for slarre
DOUBLE PRECISION for dlarre
The threshold for splitting. If on input \(|e(i)|<t o l\), then the matrix \(T\) is split into smaller blocks.
nsplit Integer. The number of blocks \(T\) splits into. \(1 \leq n s p l i t \leq n\).
work REAL for slarre DOUBLE PRECISION for dlarre Workspace array, DIMENSION \(\left(4 *_{n}\right)\).

\section*{Output Parameters}
\begin{tabular}{ll}
\(d\) & On exit, the \(n\) diagonal elements of the diagonal matrices \(D_{i}\). \\
\(e\) & On exit, the subdiagonal elements of the unit bidiagonal matrices \(L_{i}\). \\
isplit & INTEGER. \\
Array, DIMENSION (2n). The splitting points, at which \(T\) breaks up into \\
submatrices. The first submatrix consists of rows/columns 1 to \(i\) isplit \((1)\), the \\
second of rows/columns isplit(1)+1 through isplit(2), etc., and the \\
nsplit-th consists of rows/columns isplit(nsplit-1)+1 through \\
isplit(nsplit) \(=n\).
\end{tabular}
```

m
INTEGER. The total number of eigenvalues (of all the $L_{i} D_{i} L_{i}^{T}$ ) found.
w REAL for slarre
DOUBLE PRECISION for dlarre
Array, DIMENSION ( }n\mathrm{ ). The first m elements contain the eigenvalues. The
eigenvalues of each of the blocks, L}\mp@subsup{L}{i}{}\mp@subsup{D}{i}{}\mp@subsup{L}{i}{T}\mathrm{ , are sorted in ascending order.
woff REAL for slarre
DOUBLE PRECISION for dlarre
Array, DIMENSION (n).The nsplit base points }\mp@subsup{\sigma}{i}{}\mathrm{ .
gersch REAL for slarre
DOUBLE PRECISION for dlarre
Array, DIMENSION (2n). The n Gerschgorin intervals.
info INTEGER. Output error code from ?lasq2.

```

\section*{? larrf}

Finds a new relatively robust representation such that at least one of the eigenvalues is relatively isolated.

\section*{Syntax}
```

call slarrf ( n, d, l, ld, lld, ifirst, ilast, w, dplus,
lplus, work, iwork, info )
call dlarrf ( n, d, l, ld, lld, ifirst, ilast, w, dplus,
lplus, work, iwork, info )

```

\section*{Description}

Given the initial representation \(L D L^{T}\) and its cluster of close eigenvalues (in a relative measure), \(w(\) ifirst \(), w(\) ifirst +1\(), \ldots\) (ilast), the routine ? larrf finds a new relatively robust representation
\[
L D L^{T}-\sigma_{i} I=L(+) D(+) L(+)^{T}
\]
such that at least one of the eigenvalues of \(L(+) D(+) L(+)^{T}\) is relatively isolated.

\section*{Input Parameters}
\(n\)
INTEGER. The order of the matrix.
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{d} & REAL for slarrf \\
\hline & DOUBLE PRECISION for dlarrf \\
\hline & Array, dimension (n). The n diagonal elements of the diagonal matrix \(D\). \\
\hline \multirow[t]{3}{*}{1} & REAL for slarrf \\
\hline & Double precision for dlarff \\
\hline & Array, DIMENSION (\(n-1\)). The (\(n-1\)) subdiagonal elements of the unit \\
\hline \multirow[t]{3}{*}{\(1 d\)} & REAL for slarrf \\
\hline & DOUBLE PRECISION for dlarrf \\
\hline & Array, dimension (\(n-1\)). The \(n-1\) elements \(L_{i}{ }^{*} D_{i}\). \\
\hline \multirow[t]{3}{*}{lld} & REAL for slarrf \\
\hline & DOUBLE PRECISION for dlarrf \\
\hline & Array, DIMENSION (\(n-1\)). The \(\mathrm{n}-1\) elements \(L_{i}{ }^{*} L_{i}{ }^{*} D_{i}\). \\
\hline ifirst & Integer. The index of the first eigenvalue in the cluster. \\
\hline ilast & integer. The index of the last eigenvalue in the cluster. \\
\hline \multirow[t]{3}{*}{w} & REAL for slarrf \\
\hline & DOUBLE PRECISION for dlarrf \\
\hline & Array, DIMENSION (n). On input, the eigenvalues of \(L D L^{T}\) in ascending order. \(w\) (ifirst) through \(w\) (ilast) form the cluster of relatively close eigenvalues. \\
\hline \multirow[t]{3}{*}{sigma} & REAL for slarre \\
\hline & DOUBLE PRECISION for dlarrf \\
\hline & The shift used to form \(L(+) D(+) L(+)^{T}\). \\
\hline \multirow[t]{3}{*}{work} & REAL for slarrf \\
\hline & Double precision for dlarrf \\
\hline & Workspace array. \\
\hline \multicolumn{2}{|l|}{Output Parameters} \\
\hline w & On output, w(ifirst) through w(ilast) are estimates of the corresponding eigenvalues of \(L(+) D(+) L(+)^{T}\). \\
\hline \multirow[t]{3}{*}{dplus} & REAL for slarrf \\
\hline & DOUBLE PRECISION for dlarrf \\
\hline & Array, dimension (\(n\)). The \(n\) diagonal elements of the diagonal matrix \(D(+)\). \\
\hline
\end{tabular}
```

lplus REAL forslarrf
DOUBLE PRECISION for dlarrf
Array, DIMENSION (n). The first (n-1) elements of lplus contain the
subdiagonal elements of the unit bidiagonal matrix L(+).lplus(n) is set to
sigma.

```

\section*{? larrv}

Computes the eigenvectors of the tridiagonal matrix \(T\) \(=L D L^{T}\) given \(L, D\) and the eigenvalues of \(L D L^{T}\).

\section*{Syntax}
```

call slarrv ( n, d, l, isplit, m, w, iblock, gersch,
tol, z, ldz, isuppz, work, iwork, info )
call dlarrv ( n, d, l, isplit, m, w, iblock, gersch,
tol, z, ldz, isuppz, work, iwork, info )
call clarrv ( n, d, l, isplit, m, w, iblock, gersch,
tol, z, ldz, isuppz, work, iwork, info )
call zlarrv ( n, d, l, isplit, m, w, iblock, gersch,
tol, z, ldz, isuppz, work, iwork, info )

```

\section*{Description}

The routine ? larrv computes the eigenvectors of the tridiagonal matrix \(T=L D L^{T}\) given \(L, D\) and the eigenvalues of \(L D L^{T}\). The input eigenvalues should have high relative accuracy with respect to the entries of \(L\) and \(D\). The desired accuracy of the output can be specified by the input parameter tol.

\section*{Input Parameters}
\(n \quad\) INTEGER. The order of the matrix. \(n \geq 0\).
d REAL for slarrv/clarrv
DOUBLE PRECISION for dlarrv/zlarrv
Array, DIMENSION (n). On entry, the \(n\) diagonal elements of the diagonal matrix \(D\).

1

REAL for slarrv/clarrv
DOUBLE PRECISION for dlarrv/zlarrv
Array, DIMENSION (\(n-1\)). On entry, the (\(n-1\)) subdiagonal elements of the unit bidiagonal matrix \(L\) are contained in elements 1 to \(n-1\) of 1 . \(1(n)\) need not be set.

INTEGER.
Array, DIMENSION (n). The splitting points, at which \(T\) breaks up into submatrices. The first submatrix consists of rows/columns 1 to isplit(1), the second of rows/columns isplit(1)+1 through isplit(2), etc.

REAL for slarrv/clarrv
DOUBLE PRECISION for dlarrv/zlarrv
The absolute error tolerance for the eigenvalues/eigenvectors.
Errors in the input eigenvalues must be bounded by tol. The eigenvectors output have residual norms bounded by tol, and the dot products between different eigenvectors are bounded by tol. tol must be at least \(n * e p s *|T|\), where \(e p s\) is the machine precision and \(|T|\) is the 1-norm of the tridiagonal matrix.

INTEGER. The total number of eigenvalues found.
\(0 \leq m \leq n\). If range \(=\) ' \(A\) ', \(m=n\), and if range \(=\) ' \(I\) ',
\(m=i u-i l+1\).
REAL for slarrv/clarrv
DOUBLE PRECISION for dlarrv/zlarrv
Array, DIMENSION (\(n\)). The first \(m\) elements of \(w\) contain the eigenvalues for which eigenvectors are to be computed. The eigenvalues should be grouped by split-off block and ordered from smallest to largest within the block (The output array w from ?larre is expected here). Errors in w must be bounded by tol.

INTEGER.
Array, DIMENSION (n). The submatrix indices associated with the corresponding eigenvalues in \(w, i b l o c k(i)=1\) if eigenvalue \(w(i)\) belongs to the first submatrix from the top, \(=2\) if \(w(i)\) belongs to the second submatrix, etc.

INTEGER. The leading dimension of the output array \(z . l d z \geq 1\), and if jobz \(='^{\prime}\) ', \(1 d z \geq \max (1, n)\).

REAL for slarrv/clarrv DOUBLE PRECISION for dlarrv/zlarrv
Workspace array, DIMENSION (13n).
```

iwork INTEGER.
Workspace array, DIMENSION (6n).

```

\section*{Output Parameters}
```

d On exit, $d$ may be overwritten.
$1 \quad$ On exit, $I$ is overwritten.
z
REAL for slarrv
DOUBLE PRECISION for dlarrv
COMPLEX for clarrv
COMPLEX*16 for zlarrv
Array, Dimension ( $1 d z, \max (1, m)$ ).
If $j o b z=' \mathrm{~V}$ ', then if info $=0$, the first $m$ columns of $z$ contain the orthonormal eigenvectors of the matrix $T$ corresponding to the selected eigenvalues, with the $i$-th column of $z$ holding the eigenvector associated with $w(i)$.
If $j 0 b z=N^{\prime}{ }^{\prime}$, then $z$ is not referenced.

```

isuppz

\footnotetext{
info
}
```

NOTE. The user must ensure that at least $\max (1, m)$ columns are supplied in the array $z$; if range $=$ ' $V$ ', the exact value of $m$ is not known in advance and an upper bound must be used.
INTEGER.
Array, DIMENSION $(2 * \max (1, m))$. The support of the eigenvectors in $z$, i.e., the indices indicating the nonzero elements in $z$. The $i$-th eigenvector is nonzero only in elements isuppz(2i-1) through isuppz(2i).
INTEGER.
If info $=0$ : successful exit
If info $=-i<0$ : the $i$-th argument had an illegal value
info $>0$ : if info $=1$, there is an internal error in ?larrb;
if info $=2$, there is an internal error in ?stein.

```

\section*{?lartg}

Generates a plane rotation with real cosine and real/complex sine.

\section*{Syntax}
```

call slartg ( f, g, cs, sn, r )
call dlartg ( f, g, cs, sn, r )
call clartg ( f, g, cs, sn, r )
call zlartg ( f, g, cs, sn, r )

```

\section*{Description}

The routine generates a plane rotation so that
\[
\left[\begin{array}{cc}
c s & s n \\
-\operatorname{conjg}(s n) & c s
\end{array}\right] \cdot\left[\begin{array}{l}
f \\
g
\end{array}\right]=\left[\begin{array}{l}
r \\
0
\end{array}\right]
\]
where \(c s^{2}+|s n|^{2}=1\)
This is a slower, more accurate version of the BLAS Level 1 routine ?rotg, except for the following differences.

\section*{For slartg/dlartg:}
\(f\) and \(g\) are unchanged on return;
If \(g=0\), then \(c s=1\) and \(s n=0\);
If \(f=0\) and \(g \neq 0\), then \(c s=0\) and \(s n=1\) without doing any floating point operations (saves work in ?bdsqr when there are zeros on the diagonal);
If \(f\) exceeds \(g\) in magnitude, cs will be positive.
```

For clartg/zlartg:
f and g}\mathrm{ are unchanged on return;
If g=0, then cs=1 and sn=0;
If }f=0\mathrm{ , then }cs=0\mathrm{ and }sn\mathrm{ is chosen so that }r\mathrm{ is real.

```

\section*{Input Parameters}
```

f, g REAL for slartg
DOUBLE PRECISION for dlartg
COMPLEX for clartg
COMPLEX*16 for zlartg
The first and second component of vector to be rotated.

```

\section*{Output Parameters}
cs REAL for slartg/clartg
 DOUBLE PRECISION for dlartg/zlartg
 The cosine of the rotation.
sn REAL for slartg
 DOUBLE PRECISION for dlartg
 COMPLEX for clartg
 COMPLEX*16 for zlartg
 The sine of the rotation.
\(r\)
REAL for slartg
DOUBLE PRECISION for dlartg
COMPLEX for clartg
COMPLEX*16 for zlartg
The nonzero component of the rotated vector.

\section*{? lartv}

Applies a vector of plane rotations with real cosines and real/complex sines to the elements of a pair of vectors.

\section*{Syntax}
```

call slartv ( n, x, incx, y, incy, c, s, incc )
call dlartv ( n, x, incx, y, incy, c, s, incc )
call clartv ( n, x, incx, y, incy, c, s, incc )
call zlartv ( n, x, incx, y, incy, c, s, incc )

```

\section*{Description}

The routine applies a vector of real/complex plane rotations with real cosines to elements of the real/complex vectors \(x\) and \(y\). For \(\mathrm{i}=1,2, \ldots, n\)
\[
\left[\begin{array}{l}
x_{i} \\
y_{i}
\end{array}\right]:=\left[\begin{array}{cc}
c(i) & s(i) \\
-\operatorname{conjg}(s(i)) & c(i)
\end{array}\right]\left[\begin{array}{l}
x_{i} \\
y_{i}
\end{array}\right]
\]

\section*{Input Parameters}
n
\(x, y\)
incy INTEGER. The increment between elements of \(y\). incy \(>0\).

REAL for slartv/clartv DOUBLE PRECISION for dlartv/zlartv Array, dimension \(\left(1+(n-1)^{*}\right.\) incc). The cosines of the plane rotations.
\(s\)
incc INTEGER. The increment between elements of \(c\) and \(s\). incc \(>0\).
Output Parameters
\(x, y \quad\) The rotated vectors \(x\) and \(y\).
INTEGER. The number of plane rotations to be applied.
REAL for slartv DOUBLE PRECISION for dlartv COMPLEX for clartv COMPLEX*16 for zlartv Arrays, DIMENSION \(\left(1+(n-1)^{*}\right.\) incx \()\) and \((1+(n-1) *\) incy \()\), respectively. The input vectors \(x\) and \(y\).
incx INTEGER. The increment between elements of \(x\). incx \(>0\).

REAL for slartv DOUBLE PRECISION for dlartv COMPLEX for clartv COMPLEX*16 for zlartv Array, DIMENSION \(\left(1+(n-1)^{*}\right.\) incc). The sines of the plane rotations.

\section*{?laruv}

Returns a vector of n random real numbers from a uniform distribution.

\section*{Syntax}
```

call slaruv ( iseed, n, x )

```
call dlaruv (iseed, \(n, ~ x\))

\section*{Description}

The routine ? laruv returns a vector of \(n\) random real numbers from a uniform \((0,1)\) distribution (\(\mathrm{n} \leq 128\)).

This is an auxiliary routine called by ?larnv.

\section*{Input Parameters}
```

iseed INTEGER.
Array, DIMENSION (4). On entry, the seed of the random number generator; the
array elements must be between 0 and 4095, and iseed(4) must be odd.
n
INTEGER. The number of random numbers to be generated. n\leq128.

```

\section*{Output Parameters}
```

| $x$ | REAL for slaruv <br> DOUBLE PRECISION for dlaruv <br>  <br>  <br> Array, DIMENSION ( $n$ ). The generated random numbers. |
| :--- | :--- |
| seed | On exit, the seed is updated. |

```

\section*{?larz}

Applies an elementary reflector (as returned by ?tzrzf) to a general matrix.

\section*{Syntax}
```

call slarz ( side, m, n, l, v, incv, tau, C, ldc, work )
call dlarz ( side, m, n, l, v, incv, tau, C, ldc, work )
call clarz ( side, m, n, l, v, incv, tau, c, ldc, work )
call zlarz ( side, m, n, l, v, incv, tau, c, ldc, work )

```

\section*{Description}

The routine ? larz applies a real/complex elementary reflector \(H\) to a real/complex \(m\)-by- \(n\) matrix \(C\), from either the left or the right.
\(H\) is represented in the form
\(H=I-\operatorname{tau} * v^{*} v^{\prime}\),
where \(t a u\) is a real/complex scalar and \(v\) is a real/complex vector.
If \(t a u=0\), then \(H\) is taken to be the unit matrix.
For complex flavors, to apply \(H^{\prime}\) (the conjugate transpose of \(H\)), supply conjg(tau) instead of tau. \(H\) is a product of \(k\) elementary reflectors as returned by ?tzrzf.

\section*{Input Parameters}
side CHARACTER*1.
If side = 'L': form \(H * C\) If side = 'R': form \(C \star H\)
m
n
1

V

INTEGER. The number of rows of the matrix \(C\).
INTEGER. The number of columns of the matrix \(C\).
INTEGER. The number of entries of the vector \(v\) containing the meaningful part of the Householder vectors. If side \(=\) 'L', \(m \geq 1 \geq 0\), if side \(=\) ' \(R\) ', \(n \geq 1 \geq 0\).

REAL for slarz
DOUBLE PRECISION for dlarz
COMPLEX for clarz
COMPLEX*16 for zlarz
incv
work

Array, DIMENSION (1+(1-1)*abs(incv)). The vector \(v\) in the representation of \(H\) as returned by ?tzrzf. \(v\) is not used if \(t a u=0\).

INTEGER. The increment between elements of \(v\). incv \(\neq 0\).

REAL for slarz
DOUBLE PRECISION for dlarz
COMPLEX for clarz
COMPLEX*16 for zlarz
The value tau in the representation of \(H\).
REAL for slarz
DOUBLE PRECISION for dlarz
COMPLEX for clarz
COMPLEX*16 for zlarz
Array, DIMENSION (ldc,n).
On entry, the \(m\)-by- \(n\) matrix \(C\).
INTEGER. The leading dimension of the array \(c\). \(l d c \geq \max (1, m)\).

REAL for slarz
DOUBLE PRECISION for dlarz
COMPLEX for clarz
COMPLEX*16 for zlarz
Workspace array, DIMENSION
(n) if side = 'L' or
(m) if side = 'R'.

\section*{Output Parameters}

On exit, \(c\) is overwritten by the matrix \(H \star C\) if side \(=\) ' L ', or \(C \star H\) if side \(=\) ' R '.

\section*{?larzb}

Applies a block reflector or its transpose/conjugate-transpose to a general matrix.
```

call slarzb ( side, trans, direct, storev, m, n, k, l, v, ldv, t, ldt, c,
ldc, work, ldwork )
call dlarzb ( side, trans, direct, storev, m, n, k, l, v, ldv, t, ldt, c,
ldc, work, ldwork )
call clarzb ( side, trans, direct, storev, m, n, k, l, v, ldv, t, ldt, c,
ldc, work, ldwork )
call zlarzb ( side, trans, direct, storev, m, n, k, l, v, ldv, t, ldt, c,
ldc, work, ldwork )

```

\section*{Description}

The routine applies a real/complex block reflector \(H\) or its transpose \(H^{T}\) (or \(H^{H}\) for complex flavors) to a real/complex distributed \(m\)-by-n matrix \(C\) from the left or the right.
Currently, only storev = 'R' and direct = 'B' are supported.

\section*{Input Parameters}
```

side CHARACTER*1.
If side = 'L': apply H or H' from the left
If side = 'R': apply H or H' from the right
trans CHARACTER*1.
If trans = 'N': apply H (No transpose)
If trans='C': apply H' (Transpose/conjugate transpose)
direct CHARACTER*1. Indicates how }H\mathrm{ is formed from a product of elementary
reflectors
= 'F': H=H(1) H(2)... H(k) (forward, not supported yet)
= 'в': H=H(k)... H(2) H(1) (backward)
storev CHARACTER*1. Indicates how the vectors which define the elementary
reflectors are stored:
= 'c': Column-wise (not supported yet)
= 'R': Row-wise.
INTEGER. The number of rows of the matrix C.

```

INTEGER. The number of columns of the matrix \(C\).
INTEGER. The order of the matrix \(T\) (equal to the number of elementary reflectors whose product defines the block reflector).

INTEGER. The number of columns of the matrix \(V\) containing the meaningful part of the Householder reflectors.
If side \(=\) 'L', \(m \geq 1 \geq 0\), if side \(=\) 'R', \(n \geq 1 \geq 0\).
REAL for slarzb
DOUBLE PRECISION for dlarzb
COMPLEX for clarzb
COMPLEX*16 for zlarzb
Array, DIMENSION (ldv, nv).
If storev = 'C', nv \(=k\); if storev \(=\) ' R ', \(\mathrm{nv}=1\).
INTEGER. The leading dimension of the array \(v\). If storev = 'C', \(l d v \geq 1\); if storev \(=\) ' \(R\) ', \(l d v \geq k\).

REAL for slarzb
DOUBLE PRECISION for dlarzb
COMPLEX for clarzb
COMPLEX*16 for zlarzb
Array, DIMENSION (\(1 d t, k\)). The triangular \(k\)-by- \(k\) matrix \(T\) in the representation of the block reflector.
INTEGER. The leading dimension of the array \(t\). \(1 d t \geq k\).

REAL for slarzb
DOUBLE PRECISION for dlarzb
COMPLEX for clarzb
COMPLEX*16 for zlarzb
Array, dimension (\(1 d c, n\)). On entry, the \(m-\) by- \(n\) matrix \(C\).
INTEGER. The leading dimension of the array \(c\).
\(1 d c \geq \max (1, m)\).
REAL for slarzb
DOUBLE PRECISION for dlarzb
COMPLEX for clarzb
COMPLEX*16 for zlarzb
Workspace array, DIMENSION (ldwork, k).
```

Idwork INTEGER. The leading dimension of the array work.
If side = 'L', ldwork \geq max(1,n);
if side = 'R', ldwork \geq max(1,m).

```

\section*{Output Parameters}
c On exit, \(c\) is overwritten by \(H^{\star} C\) or \(H^{\prime} \star C\) or \(C \star H\) or \(C \star H^{\prime}\).

\section*{?larzt}

Forms the triangular factor \(T\) of a block reflector \(H=I\) - \(V T V^{H}\).

\section*{Syntax}
```

call slarzt ( direct, storev, n, k, v, ldv, tau, t, ldt )
call dlarzt ( direct, storev, n, k, v, ldv, tau, t, ldt )
call clarzt ( direct, storev, n, k, v, ldv, tau, t, ldt )
call zlarzt ( direct, storev, n, k, v, ldv, tau, t, ldt )

```

\section*{Description}

The routine forms the triangular factor \(T\) of a real/complex block reflector \(H\) of order \(>n\), which is defined as a product of \(k\) elementary reflectors.
If direct \(=' \mathrm{~F}\) ', \(H=H(1) H(2) \ldots H(k)\) and \(T\) is upper triangular.
If direct \(=\) ' B ', \(H=H(k) \ldots H(2) H(1)\) and T is lower triangular.
If storev \(=\) ' \(C\) ', the vector which defines the elementary reflector \(H(i)\) is stored in the \(i\)-th column of the array v , and
\(H=I-V * T * V^{\prime}\)
If storev \(=\) ' R ', the vector which defines the elementary reflector \(H(i)\) is stored in the \(i\)-th row of the array v , and
\(H=I-V^{\prime} * T * V\)
Currently, only storev \(=\) ' R ' and direct \(=\) ' B ' are supported.

\section*{Input Parameters}
direct CHARACTER*1. Specifies the order in which the elementary reflectors are multiplied to form the block reflector: If direct = 'F': \(H=H(1) H(2) \ldots H(k)\) (forward, not supported yet) If direct = 'B': H=H(k) \(\ldots H(2) H(1)\) (backward)
storev CHARACTER*1. Specifies how the vectors which define the elementary reflectors are stored (see also Application Notes below):
If storev = 'C': column-wise (not supported yet) If storev = 'R': row-wise
n
INTEGER. The order of the block reflector \(H\). \(n \geq 0\).
\(k \quad\) INTEGER. The order of the triangular factor \(T\) (equal to the number of elementary reflectors). \(k \geq 1\).
REAL for slarzt
DOUBLE PRECISION for dlarzt
COMPLEX for clarzt
COMPLEX*16 for zlarzt
Array, DIMENSION
\((l d v, k)\) if storev = 'C'
\((l d v, n)\) if storev \(=\) ' \(R\) '
The matrix \(V\).
Idv INTEGER. The leading dimension of the array \(v\).
If storev = 'C', \(1 d v \geq \max (1, n)\);
if storev = 'R', \(l d v \geq k\).
tau REAL for slarzt
DOUBLE PRECISION for dlarzt
COMPLEX for clarzt
COMPLEX*16 for zlarzt
Array, DIMENSION (\(k\)). tau(i) must contain the scalar factor of the elementary reflector \(H(i)\).
ldt INTEGER. The leading dimension of the output array \(t\). \(l d t \geq k\).

\section*{Output Parameters}

\section*{COMPLEX*16 for zlarzt}

Array, dimension (\(l d t, k\)). The \(k\)-by- \(k\) triangular factor \(T\) of the block reflector. If direct \(=\) ' F ', \(T\) is upper triangular; if direct \(=\) ' B ', \(T\) is lower triangular. The rest of the array is not used.

\section*{Application Notes}

The shape of the matrix \(V\) and the storage of the vectors which define the \(H(i)\) is best illustrated by the following example with \(n=5\) and \(k=3\). The elements equal to 1 are not stored; the corresponding array elements are modified but restored on exit. The rest of the array is not used.
\[
\begin{aligned}
& \text { direct }=\text { ' } \mathrm{F} \text { ' and storev }=\text { ' } \mathrm{C} \text { ': direct }=\text { ' } \mathrm{F} \text { ' and storev }=\text { ' } \mathrm{R} \text { ': } \\
& V=\left[\begin{array}{lll}
v_{1} & v_{2} & v_{3} \\
v_{1} & v_{2} & v_{3}
\end{array}\right] \\
& {\left[\begin{array}{llllllll}
v_{1} & v_{1} & v_{1} & v_{1} & v_{1} & \ldots & \cdots & 1 \\
v_{2} & v_{2} & v_{2} & v_{2} & v_{2} & \ldots & 1 \\
v_{3} & v_{3} & v_{3} & v_{3} & v_{3} & \ldots & 1
\end{array}\right]} \\
& 1 \text {. } \\
& 1 \text {. } \\
& 1
\end{aligned}
\]
\[
\begin{aligned}
& \text { direct }=\text { ' } B \text { ' and storev }=\text { ' } C \text { ': direct = ' } B \text { ' and storev = ' } \mathrm{R} \text { ': } \\
& 1 \\
& \text {. } 1 \\
& \text {. . } 1 \\
& V=\left[\begin{array}{ccc}
\cdot & \cdots & \cdot \\
v_{1} & v_{2} & v_{3} \\
v_{1} & v_{2} & v_{3}
\end{array}\right] \\
& {\left[\begin{array}{cccccccc}
1 & \cdots & \cdots & v_{1} & v_{1} & v_{1} & v_{1} & v_{1} \\
. & 1 & \ldots & v_{2} & v_{2} & v_{2} & v_{2} & v_{2} \\
\cdots & 1 & \ldots & v_{3} & v_{3} & v_{3} & v_{3} & v_{3}
\end{array}\right]}
\end{aligned}
\]

\section*{?las2}

Computes singular values of a 2-by-2 triangular matrix.

\section*{Syntax}
call slas2 (f, g, h, ssmin, ssmax)
call dlas2 (f, g, h, ssmin, ssmax)

\section*{Description}

The routine ?las2 computes the singular values of the 2-by-2 matrix
\[
\left[\begin{array}{ll}
f & g \\
0 & h
\end{array}\right]
\]

On return, ssmin is the smaller singular value and ssmax is the larger singular value.

\section*{Input Parameters}
```

f, g, h REAL for slas2
DOUBLE PRECISION for dlas2
The (1,1), (1,2) and (2,2) elements of the 2-by-2 matrix, respectively.

```

\section*{Output Parameters}
```

ssmin, ssmax REAL for slas2
DOUBLE PRECISION for dlas2
The smaller and the larger singular values, respectively.

```

\section*{Application Notes}

Barring over/underflow, all output quantities are correct to within a few units in the last place (ulps), even in the absence of a guard digit in addition/subtraction.
In IEEE arithmetic, the code works correctly if one matrix element is infinite.
Overflow will not occur unless the largest singular value itself overflows, or is within a few ulps of overflow. (On machines with partial overflow, like the Cray, overflow may occur if the largest singular value is within a factor of 2 of overflow.)
Underflow is harmless if underflow is gradual. Otherwise, results may correspond to a matrix modified by perturbations of size near the underflow threshold.

\section*{?lascl}

Multiplies a general rectangular matrix by a real scalar
defined as \(c_{t o} / c_{\text {from }}\).

\section*{Syntax}
```

call slascl ( type, kl, ku, cfrom, cto, m, n, a, lda, info )
call dlascl ( type, kl, ku, cfrom, cto, m, n, a, lda, info )
call clascl ( type, kl, ku, cfrom, cto, m, n, a, lda, info )
call zlascl ( type, kl, ku, cfrom, cto, m, n, a, lda, info )

```

\section*{Description}

The routine ?lascl multiplies the \(m\)-by- \(n\) real/complex matrix \(A\) by the real scalar cto/cfrom. The operation is performed without over/underflow as long as the final result cto* \(A(i, j) /\) cfrom does not over/underflow.
type specifies that \(A\) may be full, upper triangular, lower triangular, upper Hessenberg, or banded.

\section*{Input Parameters}
```

type CHARACTER*1. type indices the storage type of the input matrix.
= 'G': A is a full matrix.
= 'L': A is a lower triangular matrix.
= 'U': A is an upper triangular matrix.
= 'H':}A\mathrm{ is an upper Hessenberg matrix.
= 'B': A is a symmetric band matrix with lower bandwidth kl and upper
bandwidth ku and with the only the lower half stored
= 'Q':A is a symmetric band matrix with lower bandwidth kl and upper
bandwidth ku and with the only the upper half stored.
= 'z':A is a band matrix with lower bandwidth kl and upper bandwidth ku.
kl INTEGER. The lower bandwidth of A. Referenced only if type = 'B', 'Q' or 'z'.
ku INTEGER. The upper bandwidth of A. Referenced only if type = 'B', 'Q' or 'z'.
cfrom, cto REAL for slascl/clascl
DOUBLE PRECISION for dlascl/zlascl
The matrix }A\mathrm{ is multiplied by cto/cfrom. A(i,j) is computed without
over/underflow if the final result
cto*}A(i,j)/ cfrom can be represented without over/underflow. cfrom must b
nonzero.

```
m

Ida INTEGER. The leading dimension of the array a. \(I d a \geq \max (1, m)\).

\section*{Output Parameters}
\begin{tabular}{ll}
a & The multiplied matrix \(A\). \\
info & INTEGER. \\
& If info \(=0-\) successful exit \\
& If info \(=-i<0\), the \(i\)-th argument had an illegal value.
\end{tabular}

\section*{?lasd0}

Computes the singular values of a real upper
bidiagonal n-by-m matrix \(B\) with diagonal \(d\) and off-diagonal e.
Used by ?bdsdc.

\section*{Syntax}
```

call slasdo ( n, sqre, d, e, u, ldu, vt, ldvt, smlsiz,
iwork, work, info )
call dlasdo ( n, sqre, d, e, u, ldu, vt, ldvt, smlsiz,
iwork, work, info )

```

\section*{Description}

Using a divide and conquer approach, the routine ? lasdo computes the singular value decomposition (SVD) of a real upper bidiagonal \(n\)-by- \(m\) matrix \(B\) with diagonal \(d\) and offdiagonal \(e\), where \(m=n+\) sqre.

The algorithm computes orthogonal matrices \(U\) and \(V T\) such that \(B=U \star S \star V T\). The singular values \(S\) are overwritten on \(d\).

A related subroutine, ? lasda, computes only the singular values, and optionally, the singular vectors in compact form.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \(n\) & INTEGER. On entry, the row dimension of the upper bidiagonal matrix. This is also the dimension of the main diagonal array \(d\). \\
\hline sqre & INTEGER. Specifies the column dimension of the bidiagonal matrix. If sqre \(=0\) : The bidiagonal matrix has column dimension \(m=n\); If sqre \(=1\) : The bidiagonal matrix has column dimension \(m=n+1\); \\
\hline
\end{tabular}
d
work

REAL for slasdo
DOUBLE PRECISION for dlasdo
Array, DIMENSION (\(n\)). On entry, \(d\) contains the main diagonal of the bidiagonal matrix.

REAL for slasdo
DOUBLE PRECISION for dlasdo
Array, DIMENSION (m-1). Contains the subdiagonal entries of the bidiagonal matrix. On exit, e is destroyed.

INTEGER. On entry, leading dimension of the output array \(u\).
INTEGER. On entry, leading dimension of the output array vt.
INTEGER. On entry, maximum size of the subproblems at the bottom of the computation tree.

INTEGER.
Workspace array, DIMENSION must be at least (\(8 n\)).
REAL for slasdo
DOUBLE PRECISION for dlasdo
Workspace array, DIMENSION must be at least \(\left(3 m^{2}+2 m\right)\).

\section*{Output Parameters}

On exit \(d\), if info \(=0\), contains singular values of the bidiagonal matrix.
REAL for slasdo
DOUBLE PRECISION for dlasdo
Array, DIMENSION at least (\(1 d q, n\)). On exit, \(u\) contains the left singular vectors.

REAL for slasdo
DOUBLE PRECISION for dlasdo
Array, DIMENSION at least (Idvt, \(m\)). On exit, \(v t^{\prime}\) contains the right singular vectors.

INTEGER.
If info \(=0\) : successful exit.
If info \(=-i<0\), the \(i\)-th argument had an illegal value.
If info \(=1\), an singular value did not converge .

\section*{?lasd1}

Computes the SVD of an upper bidiagonal matrix B of the specified size. Used by ?bdsdc.

\section*{Syntax}
```

call slasdl ( nl, nr, sqre, d, alpha, beta, u, ldu, vt,
ldvt, idxq, iwork, work, info )
call dlasdl ( nl, nr, sqre, d, alpha, beta, u, ldu, vt,
ldvt, idxq, iwork, work, info )

```

\section*{Description}

This routine computes the SVD of an upper bidiagonal \(n\)-by- \(m\) matrix \(B\), where \(n=n l+n r+1\) and \(m=n+\) sqre. The routine ? lasdl is called from ?lasdo.

A related subroutine ?lasd7 handles the case in which the singular values (and the singular vectors in factored form) are desired.
?lasdi computes the SVD as follows:
\[
\begin{aligned}
& B=U(\text { in }) *\left[\begin{array}{cccc}
D 1(\text { in }) & 0 & 0 & 0 \\
z 1^{\prime} & a & z 2^{\prime} & b \\
0 & 0 & D 2(\text { in }) & 0
\end{array}\right] * V T(\text { in }) \\
&=U(\text { out }) *(D(\text { out }) \\
&0) * V T(\text { out })
\end{aligned}
\]
where \(Z=\left(Z 1^{\prime} a Z 2^{\prime} b\right)=u^{\prime} V T^{\prime}\), and \(u\) is a vector of dimension \(m\) with alpha and beta in the \(n 1+1\) and \(n 1+2\)-th entries and zeros elsewhere; and the entry \(b\) is empty if sqre \(=0\).

The left singular vectors of the original matrix are stored in \(u\), and the transpose of the right singular vectors are stored in \(v t\), and the singular values are in \(d\). The algorithm consists of three stages:

The first stage consists of deflating the size of the problem when there are multiple singular values or when there are zeros in the \(Z\) vector. For each such occurrence the dimension of the secular equation problem is reduced by one. This stage is performed by the routine ?lasd2.

The second stage consists of calculating the updated singular values. This is done by finding the square roots of the roots of the secular equation via the routine ?lasd4 (as called by ?lasd3). This routine also calculates the singular vectors of the current problem.

The final stage consists of computing the updated singular vectors directly using the updated singular values. The singular vectors for the current problem are multiplied with the singular vectors from the overall problem.

\section*{Input Parameters}
nl INTEGER. The row dimension of the upper block. \(n \geq \geq 1\).
nr INTEGER. The row dimension of the lower block. \(n r \geq 1\).
sqre INTEGER.
If sqre \(=0\) : the lower block is an \(n r\)-by-nr square matrix.
If sqre \(=1\) : the lower block is an \(n r-b y-(n r+1)\) rectangular matrix. The bidiagonal matrix has row dimension \(n=n l+n r+1\), and column dimension \(m=n+\) sqre.
d
REAL for slasd1
DOUBLE PRECISION for dlasd1
Array, DIMENSION (\(n=n l+n r+1\)). On entry \(d(1: n 1,1: n l)\) contains the singular values of the upper block; and \(d(n 1+2: n)\) contains the singular values of the lower block.
alpha REAL for slasd1
DOUBLE PRECISION for dlasd1
Contains the diagonal element associated with the added row.
beta REAL for slasd1
DOUBLE PRECISION for dlasd1
Contains the off-diagonal element associated with the added row.
\(u\)

Idu INTEGER. The leading dimension of the array \(u\). \(l d u \geq \max (1, n)\).
\begin{tabular}{|c|c|}
\hline vt & \begin{tabular}{l}
REAL for slasd1 \\
DOUBLE PRECISION for dlasd1 \\
Array, DIMENSION (\(l d v t, m\)), where \(m=n+\) sqre. \\
On entry \(v t(1: n 1+1,1: n 1+1)^{\prime}\) contains the right singular vectors of the upper block; \(v t(n l+2: m, n l+2: m)^{\prime}\) contains the right singular vectors of the lower block.
\end{tabular} \\
\hline \(1 d v t\) & INTEGER. The leading dimension of the array \(v t\). \(l d v t \geq \max (1, m)\). \\
\hline iwork & \begin{tabular}{l}
INTEGER. \\
Workspace array, DIMENSION (4n).
\end{tabular} \\
\hline work & \begin{tabular}{l}
REAL for slasd1 \\
DoUble precision for dlasd1 \\
Workspace array, DIMENSION \(\left(3 m^{2}+2 m\right)\).
\end{tabular} \\
\hline Output & ters \\
\hline d & On exit \(d(1: n)\) contains the singular values of the modified matrix. \\
\hline \(u\) & On exit \(u\) contains the left singular vectors of the bidiagonal matrix. \\
\hline vt & On exit vt' contains the right singular vectors of the bidiagonal matrix. \\
\hline idxq & \begin{tabular}{l}
INTEGER \\
Array, DIMENSION (n). Contains the permutation which will reintegrate the subproblem just solved back into sorted order, that is, \(d(i d x q(i=1, n))\) will be in ascending order.
\end{tabular} \\
\hline info & \begin{tabular}{l}
INTEGER. \\
If info \(=0\) : successful exit. \\
If info \(=-i<0\), the \(i\)-th argument had an illegal value. \\
If info \(=1\), an singular value did not converge.
\end{tabular} \\
\hline
\end{tabular}

\section*{?lasd2}

Merges the two sets of singular values together into a single sorted set. Used by ?bdsdc.

\section*{Syntax}
```

call slasd2 ( nl, nr, sqre, k, d, z, alpha, beta, u, ldu,
vt, ldvt, dsigma, u2, ldu2, vt2, ldvt2,
idxp, idx, idxc, idxq, coltyp, info )
call dlasd2 ( nl, nr, sqre, k, d, z, alpha, beta, u, ldu,
vt, ldvt, dsigma, u2, ldu2, vt2, ldvt2,
idxp, idx, idxc, idxq, coltyp, info )

```

\section*{Description}

The routine ? lasd2 merges the two sets of singular values together into a single sorted set. Then it tries to deflate the size of the problem. There are two ways in which deflation can occur: when two or more singular values are close together or if there is a tiny entry in the \(Z\) vector. For each such occurrence the order of the related secular equation problem is reduced by one.

The routine ?lasd2 is called from ?lasd1.

\section*{Input Parameters}
\(\left.\begin{array}{ll}n l & \text { INTEGER. The row dimension of the upper block. } \\
n l \geq 1 .\end{array}\right]\)\begin{tabular}{l}
INTEGER. The row dimension of the lower block. \\
\(n r \geq 1\).
\end{tabular}
\begin{tabular}{ll}
alpha & REAL for slasd2 \\
DOUBLE PRECISION for dlasd2 \\
beta & Contains the diagonal element associated with the added row. \\
REAL for slasd2 \\
DOUBLE PRECISION for dlasd2 \\
Contains the off-diagonal element associated with the added row. \\
& REAL for slasd2 \\
& DOUBLE PRECISION for dlasd2 \\
& Array, DIMENSION (ldu, n). On entry u contains the left singular vectors of \\
two submatrices in the two square blocks with corners at \((1,1),(n l, n l)\) and \\
(nl+2, nl+2), \((n, n)\).
\end{tabular}

2 : non-zero in the lower half only
3 : dense
4 : deflated.
INTEGER.
Array, dIMENSION (\(n\)). This contains the permutation which separately sorts the two sub-problems in \(d\) into ascending order. Note that entries in the first half of this permutation must first be moved one position backward; and entries in the second half must first have \(n l+1\) added to their values.

\section*{Output Parameters}

INTEGER. Contains the dimension of the non-deflated matrix, This is the order of the related secular equation. \(1 \leq k \leq n\).

On exit \(d\) contains the trailing (\(n-k\)) updated singular values (those which were deflated) sorted into increasing order.

On exit \(u\) contains the trailing (\(n-k\)) updated left singular vectors (those which were deflated) in its last \(n-k\) columns.

REAL for slasd2
DOUBLE PRECISION for dlasd2
Array, DIMENSION (n). On exit \(z\) contains the updating row vector in the secular equation.
REAL for slasd2
DOUBLE PRECISION for dlasd2
Array, DIMENSION (\(n\)). Contains a copy of the diagonal elements (\(k-1\) singular values and one zero) in the secular equation.

REAL for slasd2
DOUBLE PRECISION for dlasd2
Array, DIMENSION (ldu2, n). Contains a copy of the first \(k\) - 1 left singular vectors which will be used by ? lasd3 in a matrix multiply (?gemm) to solve for the new left singular vectors. \(u 2\) is arranged into four blocks. The first block contains a column with 1 at \(n l+1\) and zero everywhere else; the second block contains non-zero entries only at and above \(n l\); the third contains non-zero entries only below \(n 1+1\); and the fourth is dense.
On exit \(v t^{\prime}\) contains the trailing (\(n-k\)) updated right singular vectors (those which were deflated) in its last \(n-k\) columns. In case sqre \(=1\), the last row of vt spans the right null space.
\begin{tabular}{|c|c|}
\hline vt2 & REAL for slasd2 \\
\hline & \begin{tabular}{l}
DOUBLE PRECISION for dlasd2 \\
Array, DIMENSION (ldvt2, n). vt2' contains a copy of the first \(k\) right singular vectors which will be used by ?lasd3 in a matrix multiply (?gemm) to solve for the new right singular vectors. vt 2 is arranged into three blocks. The first block contains a row that corresponds to the special 0 diagonal element in sigma; the second block contains non-zeros only at and before \(n l+1\); the third block contains non-zeros only at and after \(n l+2\).
\end{tabular} \\
\hline \(i d x c\) & \begin{tabular}{l}
INTEGER. \\
Array, DIMENSION (n). This will contain the permutation used to arrange the columns of the deflated \(U\) matrix into three groups: the first group contains non-zero entries only at and above \(n l\), the second contains non-zero entries only below \(n l+2\), and the third is dense.
\end{tabular} \\
\hline coltyp & On exit, it is an array of dimension 4, with coltyp (i) being the dimension of the \(i\)-th type columns. \\
\hline info & \begin{tabular}{l}
INTEGER. \\
If info \(=0\) : successful exit \\
If info \(=-i<0\), the \(i\)-th argument had an illegal value.
\end{tabular} \\
\hline
\end{tabular}

\section*{?lasd3}

Finds all square roots of the roots of the secular equation, as defined by the values in \(D\) and \(Z\), and then updates the singular vectors by matrix multiplication. Used by ?bdsdc.

\section*{Syntax}
```

call slasd3 ( nl, nr, sqre, k, d, q, ldq, dsigma, u, ldu,
u2, ldu2, vt, ldvt, vt2, ldvt2, idxc, ctot,
z, info )
call dlasd3 ( nl, nr, sqre, k, d, q, ldq, dsigma, u, ldu,
u2, ldu2, vt, ldvt, vt2, ldvt2, idxc, ctot,
z, info )

```

\section*{Description}

The routine ?lasd3 finds all the square roots of the roots of the secular equation, as defined by the values in \(D\) and \(Z\). It makes the appropriate calls to ?lasd4 and then updates the singular vectors by matrix multiplication.

The routine ?lasd3 is called from ?lasd1.

\section*{Input Parameters}
n1 INTEGER. The row dimension of the upper block. \(n \geq \geq 1\).
integer. The row dimension of the lower block. \(n r \geq 1\).
sqre INTEGER.
If sqre \(=0\) : the lower block is an \(n r\)-by- \(n r\) square matrix.
If sqre \(=1\) : the lower block is an \(n r\)-by- \((n r+1)\) rectangular matrix. The bidiagonal matrix has \(n=n l+n r+1\) rows and \(m=n+s q r e \geq n\) columns.
k
q
\({ }^{l d q}\)
\(1 d u\)
INTEGER.The size of the secular equation, \(1 \leq k \leq n\).
REAL for slasd3
DOUBLE PRECISION for dlasd3
Workspace array, DIMENSIon at least (\(1 d q, k\)).
dsigma
u

INTEGER. The leading dimension of the array \(q\). \(1 d q \geq k\).

REAL for slasd3
DOUBLE PRECISION for dlasd3
Array, DIMENSION (\(k\)). The first \(k\) elements of this array contain the old roots of the deflated updating problem. These are the poles of the secular equation.

REAL for slasd3
DOUBLE PRECISION for dlasd3
Array, DIMENSION (\(l d u, n\)). The last \(n-k\) columns of this matrix contain the deflated left singular vectors.

INTEGER. The leading dimension of the array \(u\). \(l d u \geq n\).
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{u2} & REAL for slasd3 \\
\hline & DOUBLE PRECISION for dlasd3 \\
\hline & Array, DIMENSION (Idu2, n). The first \(k\) columns of this matrix contain the non-deflated left singular vectors for the split problem. \\
\hline \multirow[t]{2}{*}{Idu2} & INTEGER. The leading dimension of the array \(u 2\). \\
\hline & \(1 \mathrm{du} 2 \geq \mathrm{n}\). \\
\hline \multirow[t]{3}{*}{\(v t\)} & REAL for slasd3 \\
\hline & DOUBLE PRECISION for dlasd3 \\
\hline & Array, DIMENSION (ldvt, \(m\)). The last \(m-k\) columns of \(v t^{\prime}\) contain the deflated right singular vectors. \\
\hline \multirow[t]{2}{*}{\(1 d v t\)} & INTEGER. The leading dimension of the array vt. \\
\hline & \(l d v t \geq n\). \\
\hline \multirow[t]{3}{*}{vt2} & REAL for slasd3 \\
\hline & DOUBLE PRECISION for dlasd3 \\
\hline & Array, dimension (\(1 d v t 2, n\)). The first \(k\) columns of \(v t 2\) contain the non-deflated right singular vectors for the split problem. \\
\hline ldvt2 & INTEGER. The leading dimension of the array vt \(2.1 d v t 2 \geq n\). \\
\hline \multirow[t]{2}{*}{\(i d x c\)} & INTEGER. \\
\hline & Array, DIMENSION (n). The permutation used to arrange the columns of \(u\) (and rows of \(v t\)) into three groups: the first group contains non-zero entries only at and above (or before) \(n l+1\); the second contains non-zero entries only at and below (or after) \(n l+2\); and the third is dense. The first column of \(u\) and the row of \(v t\) are treated separately, however. The rows of the singular vectors found by ?lasd4 must be likewise permuted before the matrix multiplies can take place. \\
\hline \multirow[t]{2}{*}{ctot} & INTEGER. \\
\hline & Array, DIMENSION (4). A count of the total number of the various types of columns in \(u\) (or rows in \(v t\)), as described in idxc. The fourth column type is any column which has been deflated. \\
\hline \multirow[t]{3}{*}{\(z\)} & REAL for slasd3 \\
\hline & DOUBLE PRECISION for dlasd3 \\
\hline & Array, DIMENSION (\(k\)). The first \(k\) elements of this array contain the components of the deflation-adjusted updating row vector. \\
\hline
\end{tabular}

\section*{Output Parameters}
d
REAL for slasd3
DOUBLE PRECISION for dlasd3
Array, DIMENSION (\(k\)). On exit the square roots of the roots of the secular equation, in ascending order.
info INTEGER.
If info \(=0\) : successful exit.
If info \(=-i<0\), the \(i\)-th argument had an illegal value.
If info \(=1\), an singular value did not converge.

\section*{Application Notes}

This code makes very mild assumptions about floating point arithmetic. It will work on machines with a guard digit in add/subtract, or on those binary machines without guard digits which subtract like the Cray XMP, Cray YMP, Cray C 90, or Cray 2. It could conceivably fail on hexadecimal or decimal machines without guard digits, but we know of none.

\section*{?lasd4}

Computes the square root of the \(i\)-th updated eigenvalue of a positive symmetric rank-one modification to a positive diagonal matrix.
Used by ?bdsdc.

\section*{Syntax}
```

call slasd4 ( n, i, d, z, delta, rho, sigma, work, info )
call dlasd4 ( n, i, d, z, delta, rho, sigma, work, info )

```

\section*{Description}

This routine computes the square root of the \(i\)-th updated eigenvalue of a positive symmetric rank-one modification to a positive diagonal matrix whose entries are given as the squares of the corresponding entries in the array \(d\), and that \(0 \leq d(i)<d(j)\) for \(i<j\) and that rho>0. This is arranged by the calling routine, and is no loss in generality. The rank-one modified system is thus \(\operatorname{diag}(d) * \operatorname{diag}(d)+r h o * Z * Z_{-}\)transpose
where we assume the Euclidean norm of \(Z\) is 1 .The method consists of approximating the rational functions in the secular equation by simpler interpolating rational functions.

\section*{Input Parameters}
\(n\) integer. The length of all arrays.
i Integer. The index of the eigenvalue to be computed. \(1 \leq i \leq n\).
d REAL for slasd4
DOUBLE PRECISION for dlasd4
Array, DIMENSION (n).
The original eigenvalues. It is assumed that they are in order, \(0 \leq d(i)<d(j)\) for \(i<j\).
z
REAL for slasd4
DOUBLE PRECISION for dlasd4
Array, DIMENSION (\(n\)).
The components of the updating vector.
rho REAL for slasd4
DOUBLE PRECISION for dlasd4
The scalar in the symmetric updating formula.
work REAL for slasd4
DOUBLE PRECISION for dlasd4
Workspace array, DIMENSION (\(n\)).
If \(n \neq 1\), work contains \((a(j)+\) sigma_ \(i)\) in its \(j\)-th component. If \(n=1\), then \(\operatorname{work}(1)=1\).

\section*{Output Parameters}
```

delta REAL for slasd4
DOUBLE PRECISION for dlasd4
Array, DIMENSION (n).
If }n\not=1\mathrm{ , del ta contains (d(j)-sigma_i) in its j-th component. If n}=1\mathrm{ , then
delta (1)=1. The vector delta contains the information necessary to
construct the (singular) eigenvectors.
sigma REAL for slasd4
DOUBLE PRECISION for dlasd4
The computed }\mp@subsup{\lambda}{i}{}\mathrm{ , the i-th updated eigenvalue.
info INTEGER.
=0: successful exit
>0: if infO}=1\mathrm{ , the updating process failed.

```

\section*{?lasd5}

Computes the square root of the \(i\)-th eigenvalue of \(a\) positive symmetric rank-one modification of a 2-by-2 diagonal matrix.Used by ?bdsdc.

\section*{Syntax}
```

call slasd5 ( i, d, z, delta, rho, dsigma, work )
call dlasd5 ( i, d, z, delta, rho, dsigma, work )

```

\section*{Description}

This routine computes the square root of the \(i\)-th eigenvalue of a positive symmetric rank-one modification of a 2-by-2 diagonal matrix
\(\operatorname{diag}(d) * \operatorname{diag}(d)+r h o * Z * Z \_\)transpose
The diagonal entries in the array \(d\) are assumed to satisfy \(0 \leq d(i)<d(j)\) for \(i<j\). We also assume rho \(>0\) and that the Euclidean norm of the vector \(Z\) is one.

\section*{Input Parameters}
i
d REAL for slasd5
DOUBLE PRECISION for dlasd5
Array, DIMENSION (2).
The original eigenvalues. We assume \(0 \leq a(1)<a(2)\).
z
rho REAL for slasd5
DOUBLE PRECISION for dlasd5
The scalar in the symmetric updating formula.
work REAL for slasd5
DOUBLE PRECISION for dlasd5.
Workspace array, DIMENSION (2).
Contains \(\left(d(j)+s i g m a \_i\right)\) in its \(j\)-th component.

\section*{Output Parameters}
```

delta REAL for slasd5
DOUBLE PRECISION for dlasd5.
Array, DIMENSION (2).
Contains (d(j)-\lambdai) in its j-th component. The vector delta contains the
information necessary to construct the eigenvectors.
dsigma REAL for slasd5
DOUBLE PRECISION for dlasd5.
The computed }\mp@subsup{\lambda}{i}{}\mathrm{ , the i-th updated eigenvalue.

```

\section*{?lasd6}

Computes the SVD of an updated upper bidiagonal matrix obtained by merging two smaller ones by appending a row. Used by ?bdsdc.

\section*{Syntax}
call slasd6 (icompq, nl, nr, sqre, d, vf, vl, alpha, beta, idxq, perm, givptr, givcol, ldgcol, givnum, ldgnum, poles, difl, difr, \(z, k, c, s\), work, iwork, info)
call dlasd6 (icompq, nl, nr, sqre, d, vf, vl, alpha, beta, idxq, perm, givptr, givcol, ldgcol, givnum, ldgnum, poles, difl, difr, \(z, k, c, s, w o r k, ~ i w o r k\), info)

\section*{Description}

The routine ?lasd6 computes the \(S V D\) of an updated upper bidiagonal matrix \(B\) obtained by merging two smaller ones by appending a row. This routine is used only for the problem which requires all singular values and optionally singular vector matrices in factored form. \(B\) is an \(n-b y-m\) matrix with
\(n=n l+n r+1\) and \(m=n+\) sqre. \(A\) related subroutine, ? lasd1, handles the case in which all singular values and singular vectors of the bidiagonal matrix are desired. ? lasd6 computes the SVD as follows:
\[
\begin{aligned}
& B=U(\text { in }) *\left[\begin{array}{cccc}
D 1(\text { in }) & 0 & 0 & 0 \\
z 1^{\prime} & a & z 2^{\prime} & b \\
0 & 0 & D 2(\text { in }) & 0
\end{array}\right] * V T(\text { in }) \\
&=U(\text { out }) *(D(\text { out }) \\
&0) * V T(\text { out })
\end{aligned}
\]
where \(Z=\left(Z 1^{\prime} a \quad Z 2^{\prime} b\right)=u^{\prime} V T^{\prime}\), and \(u\) is a vector of dimension \(m\) with alpha and beta in the \(n l+1\) and \(n l+2\)-th entries and zeros elsewhere; and the entry \(b\) is empty if sqre \(=0\).

The singular values of \(B\) can be computed using \(D 1, D 2\), the first components of all the right singular vectors of the lower block, and the last components of all the right singular vectors of the upper block. These components are stored and updated in \(v f\) and \(v l\), respectively, in ?lasd6. Hence \(U\) and \(V T\) are not explicitly referenced.
The singular values are stored in \(D\). The algorithm consists of two stages:
the first stage consists of deflating the size of the problem when there are multiple singular values or if there is a zero in the \(Z\) vector. For each such occurrence the dimension of the secular equation problem is reduced by one. This stage is performed by the routine ?lasd7.

The second stage consists of calculating the updated singular values. This is done by finding the roots of the secular equation via the routine ?lasd4 (as called by ?lasd8). This routine also updates \(v f\) and \(v l\) and computes the distances between the updated singular values and the old singular values. ?lasd6 is called from ?lasda.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline icompq & INTEGER. Specifies whether singular vectors are to be computed in factored form: \\
\hline & \(=0\) : Compute singular values only \\
\hline & \(=1\) : Compute singular vectors in factored form as well. \\
\hline \(n 1\) & INTEGER.The row dimension of the upper block. \(n \geq \geq 1\). \\
\hline \(n \mathrm{r}\) & INTEGER.The row dimension of the lower block. \(n r \geq 1\). \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline sqre & \begin{tabular}{l}
INTEGER. \\
\(=0\) : the lower block is an \(n r\)-by-nr square matrix. \\
\(=1\) : the lower block is an \(n r\)-by- \((n r+1)\) rectangular matrix. \\
The bidiagonal matrix has row dimension \(n=n l+n r+1\), and column dimension \(m=n+\) sqre .
\end{tabular} \\
\hline d & \begin{tabular}{l}
REAL for slasd6 \\
DOUBLE PRECISION for dlasd6 \\
Array, DIMENSION (\(n l+n r+1\)). On entry \(d(1: n l, 1: n l)\) contains the singular values of the upper block, and \(d(n l+2: n)\) contains the singular values of the lower block.
\end{tabular} \\
\hline vf & \begin{tabular}{l}
REAL for slasd6 \\
DOUBLE PRECISION for dlasd6 \\
Array, DIMENSION (\(m\)). On entry, \(v f(1: n l+1)\) contains the first components of all right singular vectors of the upper block; and \(v f(n l+2: m)\) contains the first components of all right singular vectors of the lower block.
\end{tabular} \\
\hline v1 & \begin{tabular}{l}
REAL for slasd6 \\
DOUBLE PRECISION for dlasd6 \\
Array, DIMENSION (\(m\)). On entry, \(v l(1: n l+1)\) contains the last components of all right singular vectors of the upper block; and \(v l(n l+2: m)\) contains the last components of all right singular vectors of the lower block.
\end{tabular} \\
\hline alpha & \begin{tabular}{l}
REAL for slasd6 \\
DOUBLE PRECISION for dlasd6 \\
Contains the diagonal element associated with the added row.
\end{tabular} \\
\hline beta & \begin{tabular}{l}
REAL for slasd6 \\
DOUBLE PRECISION for dlasd6 \\
Contains the off-diagonal element associated with the added row.
\end{tabular} \\
\hline Idgcol & integer.The leading dimension of the output array givcol, must be at least \(n\). \\
\hline Idgnum & integer. The leading dimension of the output arrays givnum and poles, must be at least \(n\). \\
\hline work & \begin{tabular}{l}
REAL for slasd6 \\
DOUBLE PRECISION for dlasd6 \\
Workspace array, DIMENSION (4 m).
\end{tabular} \\
\hline iwork & \begin{tabular}{l}
INTEGER \\
Workspace array, DIMENSION (3n).
\end{tabular} \\
\hline
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{|c|c|}
\hline d & On exit \(d(1: n)\) contains the singular values of the modified matrix. \\
\hline vf & On exit, \(v f\) contains the first components of all right singular vectors of the bidiagonal matrix. \\
\hline vl & On exit, vl contains the last components of all right singular vectors of the bidiagonal matrix. \\
\hline \(i d x q\) & \begin{tabular}{l}
INTEGER. \\
Array, DIMENSION (n). This contains the permutation which will reintegrate the subproblem just solved back into sorted order, that is, \(d(\operatorname{idxq}(i=1, n))\) will be in ascending order.
\end{tabular} \\
\hline perm & \begin{tabular}{l}
INTEGER. \\
Array, DIMENSION (n). The permutations (from deflation and sorting) to be applied to each block. Not referenced if icompq \(=0\).
\end{tabular} \\
\hline givptr & INTEGER. The number of Givens rotations which took place in this subproblem. Not referenced if \(i c o m p q=0\). \\
\hline givcol & \begin{tabular}{l}
INTEGER. \\
Array, DIMENSION (\(1 d g c o 1,2\)). Each pair of numbers indicates a pair of columns to take place in a Givens rotation. Not referenced if icompq \(=0\).
\end{tabular} \\
\hline givnum & \begin{tabular}{l}
REAL for slasd6 \\
DOUBLE PRECISION for dlasd6 \\
Array, DIMENSION (Idgnum, 2). Each number indicates the \(C\) or \(S\) value to be used in the corresponding Givens rotation. Not referenced if icompq \(=0\).
\end{tabular} \\
\hline poles & \begin{tabular}{l}
REAL for slasd6 \\
DOUBLE PRECISION for dlasd6 \\
Array, DIMENSION (ldgnum, 2). On exit, poles(\(1,{ }^{*}\)) is an array containing the new singular values obtained from solving the secular equation, and poles \(\left(2,{ }^{*}\right)\) is an array containing the poles in the secular equation. Not referenced if \(i c o m p q=0\).
\end{tabular} \\
\hline difl & \begin{tabular}{l}
REAL for slasd6 \\
DOUBLE PRECISION for dlasd6 \\
Array, DIMENSION (\(n\)). On exit, \(\operatorname{difl}(i)\) is the distance between \(i\)-th updated (undeflated) singular value and the \(i\)-th (undeflated) old singular value.
\end{tabular} \\
\hline difr & \begin{tabular}{l}
REAL for slasd6 \\
DOUBLE PRECISION for dlasd6 \\
Array,
\end{tabular} \\
\hline
\end{tabular}

DIMENSION (ldgnum, 2) if \(i c o m p q=1\) and DIMENSION (\(n\)) if icompq \(=0\). On exit, \(\operatorname{difr}(i, 1)\) is the distance between \(i\)-th updated (undeflated) singular value and the \(i+1\)-th (undeflated) old singular value. If \(i\) compq \(=1\), \(\operatorname{difr}(1: k, 2)\) is an array containing the normalizing factors for the right singular vector matrix.

See ?lasd8 for details on difl and difr.

REAL for slasd6
DOUBLE PRECISION for dlasd6
Array, DIMENSION (\(m\)).
The first elements of this array contain the components of the deflation-adjusted updating row vector.
integer. Contains the dimension of the non-deflated matrix. This is the order of the related secular equation. \(1 \leq k \leq n\).

REAL for slasd6
DOUBLE PRECISION for dlasd6
c contains garbage if sqre \(=0\) and the \(C\)-value of a Givens rotation related to the right null space if
sqre \(=1\).
REAL for slasd6
DOUBLE PRECISION for dlasd6
\(s\) contains garbage if sqre \(=0\) and the \(S\)-value of a Givens rotation related to the right null space if
sqre \(=1\).
INTEGER.
= 0: successful exit.
\(<0\) : if info \(=-i\), the \(i\)-th argument had an illegal value.
>0: if info \(=1\), an singular value did not converge

\section*{?lasd7}

Merges the two sets of singular values together into a single sorted set. Then it tries to deflate the size of the problem. Used by ?bdsdc.

\section*{Syntax}
```

call slasd7 ( icompq, nl, nr, sqre, k, d, z, zw, vf, vfw, vl, vlw, alpha, beta,
dsigma, idx, idxp, idxq, perm, givptr, givcol, ldgcol, givnum, ldgnum, c, s,
info )
call dlasd7 ( icompq, nl, nr, sqre, k, d, z, zw, vf, vfw, vl, vlw, alpha, beta,
dsigma, idx, idxp, idxq, perm, givptr, givcol, ldgcol, givnum, ldgnum, c, s,
info )

```

\section*{Description}

The routine ?lasd7 merges the two sets of singular values together into a single sorted set. Then it tries to deflate the size of the problem. There are two ways in which deflation can occur: when two or more singular values are close together or if there is a tiny entry in the \(Z\) vector. For each such occurrence the order of the related secular equation problem is reduced by one. ?lasd7 is called from ?lasd6.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline icompq & \begin{tabular}{l}
INTEGER.Specifies whether singular vectors are to be computed in compact form, as follows: \\
\(=0\) : Compute singular values only. \\
\(=1\) : Compute singular vectors of upper bidiagonal matrix in compact form.
\end{tabular} \\
\hline nl & INTEGER. The row dimension of the upper block.
\[
n I \geq 1
\] \\
\hline \(n r\) & INTEGER. The row dimension of the lower block. \(n r \geq 1\). \\
\hline sqre & \begin{tabular}{l}
INTEGER. \\
\(=0\) : the lower block is an \(n r\)-by- \(n r\) square matrix. \\
\(=1\) : the lower block is an \(n r\)-by- \((n r+1)\) rectangular matrix. The bidiagonal matrix has \(n=n l+n r+1\) rows and \(m=n+s q r e \geq n\) columns.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{d} & REAL for slasd7 \\
\hline & DOUBLE PRECISION for dlasd7 \\
\hline & Array, DIMENSION (n). On entry d contains the singular values of the two submatrices to be combined. \\
\hline \multirow[t]{3}{*}{zW} & REAL for slasd7 \\
\hline & DOUBLE PRECISION for dlasd7 \\
\hline & Array, DIMENSION (m). Workspace for \(z\). \\
\hline \multirow[t]{3}{*}{vf} & REAL forslasd7 \\
\hline & DOUBLE PRECISION for dlasd7 \\
\hline & Array, DIMENSION (\(m\)). On entry, \(v f(1: n l+1)\) contains the first components of all right singular vectors of the upper block; and \(v f(n l+2: m)\) contains the first components of all right singular vectors of the lower block. \\
\hline \multirow[t]{3}{*}{vfw} & REAL for slasd7 \\
\hline & DOUBLE PRECISION for dlasd7 \\
\hline & Array, DIMENSION (m). Workspace for vf. \\
\hline \multirow[t]{3}{*}{vl} & REAL for slasd7 \\
\hline & DOUBLE PRECISION for dlasd7 \\
\hline & Array, DIMENSION (\(m\)). On entry, \(\mathrm{vl}(1: n 1+1\)) contains the last components of all right singular vectors of the upper block; and \(v l(n l+2: m)\) contains the last components of all right singular vectors of the lower block. \\
\hline \multirow[t]{3}{*}{vlw} & REAL for slasd7 \\
\hline & DOUBLE PRECISION for dlasd7 \\
\hline & Array, DIMENSION (m). Workspace for vl. \\
\hline \multirow[t]{3}{*}{alpha} & REAL for slasd7 \\
\hline & DOUBLE PRECISION for dlasd7. \\
\hline & Contains the diagonal element associated with the added row. \\
\hline \multirow[t]{3}{*}{beta} & REAL for slasd7 \\
\hline & DOUBLE PRECISION for dlasd7 \\
\hline & Contains the off-diagonal element associated with the added row. \\
\hline \multirow[t]{2}{*}{\(i d x\)} & INTEGER. \\
\hline & Workspace array, DIMENSION (\(n\)). This will contain the permutation used to sort the contents of \(d\) into ascending order. \\
\hline \multirow[t]{2}{*}{idxp} & INTEGER. \\
\hline & Workspace array, DIMENSION (n). This will contain the permutation used to place deflated values of \(d\) at the end of the array. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \(i d x q\) & \begin{tabular}{l}
INTEGER. \\
Array, DIMENSION (\(n\)). This contains the permutation which separately sorts the two sub-problems in \(d\) into ascending order. Note that entries in the first half of this permutation must first be moved one position backward; and entries in the second half must first have \(n l+1\) added to their values.
\end{tabular} \\
\hline Idgcol & INTEGER.The leading dimension of the output array givcol, must be at least n. \\
\hline Idgnum & INTEGER. The leading dimension of the output array givnum, must be at least n. \\
\hline Outpu & \\
\hline k & INTEGER. Contains the dimension of the non-deflated matrix, this is the order of the related secular equation.
\[
1 \leq k \leq n
\] \\
\hline d & On exit, \(d\) contains the trailing \((n-k)\) updated singular values (those which were deflated) sorted into increasing order. \\
\hline \(z\) & \begin{tabular}{l}
REAL for slasd7 \\
DOUBLE PRECISION for dlasd7. \\
Array, DIMENSION (\(m\)). On exit, \(z\) contains the updating row vector in the secular equation.
\end{tabular} \\
\hline \(v f\) & On exit, vf contains the first components of all right singular vectors of the bidiagonal matrix. \\
\hline vl & On exit, vl contains the last components of all right singular vectors of the bidiagonal matrix. \\
\hline dsigma & \begin{tabular}{l}
REAL for slasd7 \\
DOUBLE PRECISION for dlasd7. \\
Array, DIMENSION (n). Contains a copy of the diagonal elements (\(k\) - 1 singular values and one zero) in the secular equation.
\end{tabular} \\
\hline idxp & On output, \(i d x p(2: k)\) points to the nondeflated \(d\)-values and \(i d x p(k+1: n)\) points to the deflated singular values. \\
\hline perm & \begin{tabular}{l}
INTEGER. \\
Array, DIMENSION (\(n\)). The permutations (from deflation and sorting) to be applied to each singular block. Not referenced if \(i c o m p q=0\).
\end{tabular} \\
\hline givptr & INTEGER.The number of Givens rotations which took place in this subproblem. Not referenced if icompq \(=0\). \\
\hline
\end{tabular}
```

givcol INTEGER.
Array, DIMENSION ( ldgcol, 2 ). Each pair of numbers indicates a pair of
columns to take place in a Givens rotation. Not referenced if icompq =0.
givnum REAL for slasd7
DOUBLE PRECISION for dlasd7.
Array, DIMENSION ( Idgnum, 2 ). Each number indicates the C or S value to be
used in the corresponding Givens rotation. Not referenced if icompq}=0
C REAL for slasd7.
DOUBLE PRECISION for dlasd7.
c contains garbage if sqre =0 and the C-value of a Givens rotation related to
the right null space if
sqre=1.
REAL for slasd7.
DOUBLE PRECISION for dlasd7.
s contains garbage if sqre =0 and the S-value of a Givens rotation related to
the right null space if
sqre = 1.
info INTEGER.
= 0: successful exit.
<0: if info =-i, the i-th argument had an illegal value.

```

\section*{?lasd8}

Finds the square roots of the roots of the secular equation, and stores, for each element in \(D\), the distance to its two nearest poles. Used by ?bdsdc.

\section*{Syntax}
```

call slasd8 ( icompq, k, d, z, vf, vl, difl, difr, lddifr, dsigma, work, info )

```
call dlasd8 (icompq, k, d, \(z, ~ v f, ~ v l, ~ d i f l, ~ d i f r, ~ l d d i f r, ~ d s i g m a, ~ w o r k, ~ i n f o ~) ~\)

\section*{Description}

The routine ? lasd8 finds the square roots of the roots of the secular equation, as defined by the values in dsigma and \(z\). It makes the appropriate calls to ?lasd4, and stores, for each element in \(d\), the distance to its two nearest poles (elements in dsigma). It also updates the arrays \(v f\) and vl , the first and last components of all the right singular vectors of the original bidiagonal matrix. ?lasd8 is called from ?lasd6.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline icompq & \begin{tabular}{l}
INTEGER. Specifies whether singular vectors are to be computed in factored form in the calling routine: \\
\(=0\) : Compute singular values only. \\
\(=1\) : Compute singular vectors in factored form as well.
\end{tabular} \\
\hline k & INTEGER. The number of terms in the rational function to be solved by ?lasd4. \(k \geq 1\). \\
\hline \(z\) & \begin{tabular}{l}
REAL for slasd8 \\
DOUBLE PRECISION for dlasd8. \\
Array, DIMENSION (\(k\)). The first \(k\) elements of this array contain the components of the deflation-adjusted updating row vector.
\end{tabular} \\
\hline vf & \begin{tabular}{l}
REAL for slasd8 \\
DOUBLE PRECISION for dlasd8. \\
Array, DIMENSION (\(k\)). On entry, \(v f\) contains information passed through dbede8.
\end{tabular} \\
\hline vl & \begin{tabular}{l}
REAL for slasd8 \\
DOUBLE PRECISION for dlasd8. \\
Array, DIMENSION (\(k\)).On entry, vl contains information passed through dbede8.
\end{tabular} \\
\hline lddifr & INTEGER.The leading dimension of the output array difr, must be at least \(k\). \\
\hline dsigma & \begin{tabular}{l}
REAL for slasd8 \\
DOUBLE PRECISION for dlasd8. \\
Array, DIMENSION (\(k\)). The first \(k\) elements of this array contain the old roots of the deflated updating problem. These are the poles of the secular equation.
\end{tabular} \\
\hline work & REAL for slasd8 DOUBLE PRECISION for dlasd8. Workspace array, DIMENSION at least (3 k). \\
\hline
\end{tabular}
```

Output Parameters

| d | REAL for slasd8 |
| :---: | :---: |
|  | DOUBLE PRECISION for dlasd8. |
|  | Array, DIMENSION ( $k$ ). On output, $d$ contains the updated singular values. |
| vf | On exit, $v f$ contains the first $k$ components of the first components of all right singular vectors of the bidiagonal matrix. |
| vl | On exit, $v 1$ contains the first $k$ components of the last components of all right singular vectors of the bidiagonal matrix. |
| difl | REAL for slasd8 |
|  | DOUBLE PRECISION for dlasd8. |
|  | Array, DIMENSION ( $k$ ). On exit, difl $(i)=d(i)-d$ sigma $(i)$. |
| difr | REAL for slasd8 |
|  | DOUBLE PRECISION for dlasd8. |
|  | Array, |
|  | DIMENSION ( lddifr, 2 ) if icompq = 1 and |
|  | DIMENSION $(k)$ if $i$ compq $=0$. |
|  | On exit, $\operatorname{difr}(i, 1)=d(i)-\operatorname{dsigma}(i+1), \operatorname{difr}(k, 1)$ is not defined and will not be referenced. |
|  | If icompq $=1$, $\operatorname{difr}(1: k, 2)$ is an array containing the normalizing factors for the right singular vector matrix. |
| info | INTEGER. |
|  | $=0$ : successful exit. |
|  | $<0$ : if info $=-i$, the $i$-th argument had an illegal value. $>0$ : if info $=1$, an singular value did not converge. |

```

\section*{?lasd9}

Finds the square roots of the roots of the secular equation, and stores, for each element in \(D\), the distance to its two nearest poles. Used by ?bdsdc.

\section*{Syntax}
```

call slasd9 ( icompq, ldu, k, d, z, vf, vl, difl, difr, dsigma, work, info )

```
call dlasd9 (icompq, ldu, k, d, \(z, ~ v f, ~ v l, ~ d i f l, ~ d i f r, ~ d s i g m a, ~ w o r k, ~ i n f o ~) ~\)

\section*{Description}

The routine ?lasd9 finds the square roots of the roots of the secular equation, as defined by the values in dsigma and \(z\). It makes the appropriate calls to ?lasd4, and stores, for each element in \(d\), the distance to its two nearest poles (elements in dsigma). It also updates the arrays \(v f\) and \(v l\), the first and last components of all the right singular vectors of the original bidiagonal matrix. ?lasd9 is called from ?lasd7.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline icompq & \begin{tabular}{l}
INTEGER.Specifies whether singular vectors are to be computed in factored form in the calling routine: \\
If \(i\) compq \(=0\), compute singular values only; \\
If icompq \(=1\), compute singular vector matrices in factored form also.
\end{tabular} \\
\hline k & INTEGER. The number of terms in the rational function to be solved by slasd4. \(k \geq 1\). \\
\hline dsigma & \begin{tabular}{l}
REAL for slasd9 \\
DOUBLE PRECISION for dlasd9. \\
Array, DIMENSION \((k)\). The first \(k\) elements of this array contain the old roots of the deflated updating problem. These are the poles of the secular equation
\end{tabular} \\
\hline \(z\) & \begin{tabular}{l}
REAL for slasd9 \\
DOUBLE PRECISION for dlasd9. \\
Array, DIMENSION (\(k\)). The first \(k\) elements of this array contain the components of the deflation-adjusted updating row vector.
\end{tabular} \\
\hline vf & \begin{tabular}{l}
REAL for slasd9 \\
DOUBLE PRECISION for dlasd9. \\
Array, DIMENSION(\(k\)). On entry, \(v f\) contains information passed through sbede8.
\end{tabular} \\
\hline vl & \begin{tabular}{l}
REAL for slasd9 \\
DOUBLE PRECISION for dlasd9. \\
Array, DIMENSION \((k)\). On entry, vl contains information passed through sbede8.
\end{tabular} \\
\hline work & \begin{tabular}{l}
REAL for slasd9 \\
DOUBLE PRECISION for dlasd9. \\
Workspace array, DIMENSION at least (\(3 k\)).
\end{tabular} \\
\hline
\end{tabular}

\section*{Output Parameters}

\section*{?lasda}

Computes the singular value decomposition (SVD) of a real upper bidiagonal matrix with diagonal d and off-diagonal e. Used by ?bdsdc.

\section*{Syntax}
call slasda (icompq, smlsiz, \(n, ~ s q r e, ~ d, ~ e, ~ u, ~ l d u, ~ v t, ~ k, ~ d i f l, ~ d i f r, ~ z, ~\) poles, givptr, givcol, ldgcol, perm, givnum, \(c, s\), work, iwork, info)
```

call dlasda ( icompq, smlsiz, n, sqre, d, e, u, ldu, vt, k, difl, difr, z,
poles, givptr, givcol, ldgcol, perm, givnum, c, s, work, iwork, info )

```

\section*{Description}

Using a divide and conquer approach, ? lasda computes the singular value decomposition (SVD) of a real upper bidiagonal \(n\)-by- \(m\) matrix \(B\) with diagonal \(d\) and off-diagonal e, where \(m=n+\) sqre. The algorithm computes the singular values in the \(S V D B=U * S * V T\). The orthogonal matrices \(U\) and \(V T\) are optionally computed in compact form. \(A\) related subroutine, ?lasdo, computes the singular values and the singular vectors in explicit form.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline icompq & \begin{tabular}{l}
INTEGER. Specifies whether singular vectors are to be computed in compact form, as follows: \\
\(=0\) : Compute singular values only. \\
\(=1\) : Compute singular vectors of upper bidiagonal matrix in compact form.
\end{tabular} \\
\hline smlsiz & INTEGER. The maximum size of the subproblems at the bottom of the computation tree. \\
\hline \(n\) & INTEGER. The row dimension of the upper bidiagonal matrix. This is also the dimension of the main diagonal array \(d\). \\
\hline sqre & INTEGER. Specifies the column dimension of the bidiagonal matrix. If sqre \(=0\) : The bidiagonal matrix has column dimension \(m=n\); If sqre \(=1\) : The bidiagonal matrix has column dimension \(m=n+1\). \\
\hline d & \begin{tabular}{l}
REAL for slasda \\
DOUBLE PRECISION for dlasda. \\
Array, DIMENSION (\(n\)). On entry \(d\) contains the main diagonal of the bidiagonal matrix.
\end{tabular} \\
\hline \(e\) & \begin{tabular}{l}
REAL for slasda \\
DOUBLE PRECISION for dlasda. \\
Array, DIMENSION (\(m-1\)). Contains the subdiagonal entries of the bidiagonal matrix. On exit, e has been destroyed.
\end{tabular} \\
\hline \(1 d u\) & integer. The leading dimension of arrays \(u\), vt, difl, difr, poles, givnum, and \(z . l d u \geq n\). \\
\hline 1 dgcol & INTEGER. The leading dimension of arrays givcol and perm. 1 dgcol \(\geq \mathrm{n}\). \\
\hline work & REAL for slasda \\
\hline & \begin{tabular}{l}
DOUBLE PRECISION for dasda. \\
Workspace array, DIMENSION \(\left(6 n+(s m l s i z+1)^{2}\right)\).
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{ll}
iwork & INTEGER. \\
& Workspace array, DIMENSION must be at least (7n).
\end{tabular}

\section*{Output Parameters}

On exit \(d\), if info \(=0\), contains the singular values of the bidiagonal matrix.
REAL for slasda DOUBLE PRECISION for dlasda. Array, DIMENSION (ldu, smlsiz) if \(i c o m p q=1\). Not referenced if \(i\) compq \(=0\). If icompq \(=1\), on exit, \(u\) contains the left singular vector matrices of all subproblems at the bottom level.

REAL for slasda DOUBLE PRECISION for dlasda. Array, DIMENSION (\(1 d u\), smlsiz+1) if \(i c o m p q=1\), and not referenced if icompq \(=0\). If \(i\) compq \(=1\), on exit, vt contains the right singular vector matrices of all subproblems at the bottom level.

INTEGER.
Array,
DIMENSION (n) if \(i\) compq \(=1\) and
DIMENSION (1) if \(i c o m p q=0\).
If \(i\) compq \(=1\), on exit, \(k(i)\) is the dimension of the \(i\)-th secular equation on the computation tree.

REAL for slasda
DOUBLE PRECISION for dlasda.
Array, DIMENSION (ldu, nlvl),
where \(n l v l=\) floor \(\left.\left(\log _{2}(n / s m l s i z)\right)\right)\).
REAL for slasda
DOUBLE PRECISION for dlasda.
Array,
DIMENSION (\(1 d u, 2 \mathrm{nlvl}\)) if \(\mathrm{icompq}=1\) and
DIMENSION (n) if i compq \(=0\).
If \(i\) compq \(=1\), on exit, \(\operatorname{difl}(1: n, i)\) and \(\operatorname{difr}(1: n, 2 i-1)\) record distances between singular values on the \(i\)-th level and singular values on the (\(i\) \(-1)\)-th level, and \(\operatorname{difr}(1: n, 2 i)\) contains the normalizing factors for the right singular vector matrix. See ?lasd8 for details.
\begin{tabular}{|c|c|}
\hline \multirow[t]{6}{*}{\(z\)} & REAL for slasda \\
\hline & DOUBLE PRECISION for dlasda. \\
\hline & Array, \\
\hline & DIMENSION (ldu, nlvl) if icompq = 1 and \\
\hline & DIMENSION (\(n\)) if icompq \(=0\). \\
\hline & The first \(k\) elements of \(z(1, i)\) contain the components of the deflation-adjusted updating row vector for subproblems on the \(i\)-th level. \\
\hline \multirow[t]{3}{*}{poles} & REAL for slasda \\
\hline & DOUBLE PRECISION for dlasda \\
\hline & Array, DIMENSION (\(1 d u, 2 * n l v l\)) if \(i c o m p q=1\), and not referenced if icompq \(=0\). If \(i c o m p q=1\), on exit, poles \((1,2 i-1)\) and poles \((1,2 i)\) contain the new and old singular values involved in the secular equations on the \(i\)-th level. \\
\hline \multirow[t]{2}{*}{givptr} & INTEGER. \\
\hline & Array, DIMENSION (\(n\)) if icompq \(=1\), and not referenced if icompq \(^{\text {c }} 0\). If icompq \(=1\), on exit, givptr(\(i\)) records the number of Givens rotations performed on the \(i\)-th problem on the computation tree. \\
\hline \multirow[t]{2}{*}{givcol} & INTEGER. \\
\hline & Array, DIMENSION (1 dgcol, \(2 *_{n l} \mathrm{vl}\)) if icompq \(=1\), and not referenced if \(i_{c o m p q}=0\). If \(i c o m p q=1\), on exit, for each \(i, \operatorname{givcol}(1,2 i-1)\) and givcol(1,2 \(i\)) record the locations of Givens rotations performed on the \(i\)-th level on the computation tree. \\
\hline \multirow[t]{2}{*}{perm} & INTEGER. \\
\hline & Array, DIMENSION (ldgcol, nlvl) if icompq \(=1\), and not referenced if \(i_{\text {compq }}=0\). If icompq \(=1\), on exit, perm \((1, i)\) records permutations done on the \(i\)-th level of the computation tree. \\
\hline \multirow[t]{3}{*}{givnum} & REAL for slasda \\
\hline & DOUBLE PRECISION for dlasda. \\
\hline & Array DIMENSION (\(l d u, 2 *_{n l v l}\)) if \(i\) compq \(=1\), and not referenced if \(i c o m p q=0\). If \(i c o m p q=1\), on exit, for each \(i\), \(\operatorname{givnum}(1,2 i-1)\) and givnum \((1,2 i)\) record the \(C\) - and \(S\)-values of Givens rotations performed on the \(i\)-th level on the computation tree. \\
\hline \multirow[t]{5}{*}{C} & REAL for slasda \\
\hline & DOUBLE PRECISION for dlasda. \\
\hline & Array, \\
\hline & DIMENSION (n) if \(i\) compq \(=1\), and \\
\hline & DIMENSION (1) if icompq \(=0\). \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline & If \(i\) compq \(=1\) and the \(i\)-th subproblem is not square, on exit, \(c(i)\) contains the \(C\)-value of a Givens rotation related to the right null space of the \(i\)-th subproblem. \\
\hline \multirow[t]{7}{*}{s} & REAL for slasda \\
\hline & DOUBLE PRECISION for dlasda. \\
\hline & Array, \\
\hline & DIMENSION (n) icompq \(=1\), and \\
\hline & DIMENSION (1) if \(i\) compq \(=0\). \\
\hline & If \(i\) compq \(=1\) and the \(i\)-th subproblem is not square, on exit, \(s(i)\) contains the \\
\hline & \(S\)-value of a Givens rotation related to the right null space of the \(i\)-th subproblem. \\
\hline \multirow[t]{2}{*}{info} & INTEGER.
\[
=0: \text { successful exit. }
\] \\
\hline & \(<0\) : if info \(=-i\), the \(i\)-th argument had an illegal value \(>0\) : if info \(=1\), an singular value did not converge \\
\hline
\end{tabular}

\section*{?lasdq}

Computes the SVD of a real bidiagonal matrix with diagonal \(d\) and off-diagonal e. Used by ?bdsdc.

\section*{Syntax}
```

call slasdq ( uplo, sqre, n, ncvt, nru, ncc, d, e, vt,
ldvt, u, ldu, c, ldc, work, info )
call dlasdq ( uplo, sqre, n, ncvt, nru, ncc, d, e, vt,
ldvt, u, ldu, c, ldc, work, info )

```

\section*{Description}

The routine ?lasdq computes the singular value decomposition (SVD) of a real (upper or lower) bidiagonal matrix with diagonal \(d\) and off-diagonal \(e\), accumulating the transformations if desired. Letting \(B\) denote the input bidiagonal matrix, the algorithm computes orthogonal matrices \(Q\) and \(P\) such that \(B=Q S P^{\prime}\left(P^{\prime}\right.\) denotes the transpose of \(\left.P\right)\). The singular values \(S\) are overwritten on \(d\). The input matrix \(U\) is changed to \(U Q\) if desired. The input matrix \(V T\) is changed to \(P^{\prime} V T\) if desired. The input matrix \(C\) is changed to \(Q^{\prime} C\) if desired.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline uplo & \begin{tabular}{l}
CHARACTER*1. On entry, uplo specifies whether the input bidiagonal matrix is upper or lower bidiagonal. \\
If uplo = 'U' or 'u', \(B\) is upper bidiagonal; \\
If uplo = 'L' or ' 1 ', \(B\) is lower bidiagonal.
\end{tabular} \\
\hline sqre & \begin{tabular}{l}
INTEGER. \\
\(=0\) : then the input matrix is \(n-b y-n\). \\
\(=1\) : then the input matrix is \(n\)-by- \((n+1)\) if \(u p l u=\) ' \(u\) ' and \((n+1)\)-by- \(n\) if \(u p l u\) \\
\(=\) ' \(L\) '. The bidiagonal matrix has \(n=n l+n r+1\) rows and \(m=n+\) sqre \(\geq\) \(n\) columns.
\end{tabular} \\
\hline n & INTEGER. On entry, \(n\) specifies the number of rows and columns in the matrix. \(n\) must be at least 0 . \\
\hline ncvt & INTEGER. On entry, ncvt specifies the number of columns of the matrix \(V T\). ncvt must be at least 0 . \\
\hline nru & INTEGER. On entry, nru specifies the number of rows of the matrix \(U\). nru must be at least 0 . \\
\hline ncc & INTEGER. On entry, ncc specifies the number of columns of the matrix \(C\). ncc must be at least 0 . \\
\hline d & \begin{tabular}{l}
REAL for slasdq \\
DOUBLE PRECISION for dlasdq. \\
Array, DIMENSION (n). On entry, \(d\) contains the diagonal entries of the bidiagonal matrix whose \(S V D\) is desired.
\end{tabular} \\
\hline \(e\) & \begin{tabular}{l}
REAL for slasdq \\
DOUBLE PRECISION for dlasdq. \\
Array, DIMENSION is \((n-1)\) if sqre \(=0\) and \(n\) if sqre \(=1\). On entry, the entries of e contain the off-diagonal entries of the bidiagonal matrix whose \(S V D\) is desired.
\end{tabular} \\
\hline vt & \begin{tabular}{l}
REAL for slasdq \\
DOUBLE PRECISION for dlasdq. \\
Array, DIMENSION (ldvt, ncvt). On entry, contains a matrix which on exit has been premultiplied by \(P^{\prime}\), dimension \(n\)-by-ncvt if sqre \(=0\) and \((n+1)\)-by-ncvt if sqre \(=1(\) not referenced if \(n c v t=0)\).
\end{tabular} \\
\hline ldvt & integer. On entry, ldvt specifies the leading dimension of \(v t\) as declared in the calling (sub) program. Idvt must be at least 1 . If nevt is nonzero, \(1 d v t\) must also be at least \(n\). \\
\hline
\end{tabular}

REAL for slasdq
DOUBLE PRECISION for dlasdq.
Array, DIMENSION (\(1 d u, n\)). On entry, contains a matrix which on exit has been postmultiplied by \(Q\), dimension nru-by-n if sqre \(=0\) and nru-by- \((n+1)\) if sqre \(=1\) (not referenced if nru=0).

INTEGER.On entry, Idu specifies the leading dimension of \(u\) as declared in the calling (sub) program. Idu must be at least max(1 , nru) .

REAL for slasdq DOUBLE PRECISION for dlasdq. Array, DIMENSION (ldc, ncc). On entry, contains an \(n\)-by-ncc matrix which on exit has been premultiplied by \(Q^{\prime}\), dimension \(n\)-by-ncc if sqre \(=0\) and \((n+1)\)-by-ncc if sqre \(=1(\) not referenced if ncc=0).

INTEGER. On entry, ldc specifies the leading dimension of \(c\) as declared in the calling (sub) program. \(1 d c\) must be at least 1 . If ncc is non-zero, \(1 d c\) must also be at least \(n\).

REAL for slasdq
DOUBLE PRECISION for dlasdq.
Array, DIMENSION (\(4 n\)).This is a workspace array. Only referenced if one of ncvt, nru, or ncc is nonzero, and if \(n\) is at least 2 .

\section*{Output Parameters}

On normal exit, \(d\) contains the singular values in ascending order.
\(e\)
On normal exit, e will contain 0 . If the algorithm does not converge, \(d\) and \(e\) will contain the diagonal and superdiagonal entries of a bidiagonal matrix orthogonally equivalent to the one given as input.
vt On exit, the matrix has been premultiplied by \(P^{\prime}\).
\(u\)

C
info
On exit, the matrix has been postmultiplied by \(Q\).
On exit, the matrix has been premultiplied by \(Q^{\prime}\).
Integer. On exit, a value of 0 indicates a successful exit. If info \(<0\), argument number-info is illegal. If info \(>0\), the algorithm did not converge, and info specifies how many superdiagonals did not converge.

\section*{?lasdt}

Creates a tree of subproblems for bidiagonal divide and conquer.
Used by ?bdsdc.

\section*{Syntax}
```

call slasdt ( n, lvl, nd, inode, ndiml, ndimr, msub )
call dlasdt ( n, lvl, nd, inode, ndiml, ndimr, msub )

```

\section*{Description}

The routine creates a tree of subproblems for bidiagonal divide and conquer.

\section*{Input Parameters}
n
msub INTEGER. On entry, the maximum row dimension each subproblem at the bottom of the tree can be of.

\section*{Output Parameters}

Iv1 INTEGER. On exit, the number of levels on the computation tree.
nd INTEGER. On exit, the number of nodes on the tree.
inode
ndim1
ndimr

INTEGER. On entry, the number of diagonal elements of the bidiagonal matrix.
integer. Array, DIMENSION (n). On exit, centers of subproblems. INTEGER. Array, DIMEnSion (\(n\)). On exit, row dimensions of left children. INTEGER. Array, DIMENSION (\(n\)). On exit, row dimensions of right children.

\section*{?laset}

\section*{Initializes the off-diagonal elements and the diagonal} elements of a matrix to given values.

\section*{Syntax}
```

call slaset ( uplo, m, n, alpha, beta, a, lda )
call dlaset ( uplo, m, n, alpha, beta, a, lda )
call claset ( uplo, m, n, alpha, beta, a, lda )
call zlaset ( uplo, m, n, alpha, beta, a, lda )

```

\section*{Description}

The routine initializes an \(m\)-by- \(n\) matrix \(A\) to beta on the diagonal and alpha on the off-diagonals .

\section*{Input parameters}
```

uplo CHARACTER*1. Specifies the part of the matrix A to be set.
If uplo = 'U', upper triangular part is set; the strictly lower triangular part of }
is not changed.
If uplo = 'L': lower triangular part is set; the strictly upper triangular part of }
is not changed.
Otherwise: all of the matrix }A\mathrm{ is set.
m
n
alpha, beta REAL for slaset
DOUBLE PRECISION for dlaset
COMPLEX for claset
COMPLEX*16 for zlaset.
The constants to which the off-diagonal and diagonal elements are to be set,
respectively.
a
REAL for slaset
DOUBLE PRECISION for dlaset
COMPLEX for claset

```

Ida INTEGER. The leading dimension of the array \(A\).
\(I d a \geq \max (1, m)\).

\section*{Output Parameters}

On exit, the leading \(m\)-by- \(n\) submatrix of \(A\) is set as follows:
if uplo = 'U', \(A(i, j)=\) alpha, \(\quad 1 \leq i \leq j-1,1 \leq j \leq n\), if uplo = 'L', \(A(i, j)=\) alpha, \(j+1 \leq i \leq m, 1 \leq j \leq n\), otherwise, \(A(i, j)=\) alpha, \(1 \leq i \leq m, 1 \leq j \leq n, i \neq j\),
and, for all uplo, \(A(i, i)=\) beta, \(1 \leq i \leq \min (m, n)\).

\section*{?lasq1}

Computes the singular values of a real square
bidiagonal matrix. Used by ?bdsqr.

\section*{Syntax}
```

call slasq1 ( n, d, e, work, info )
call dlasq1 ( n, d, e, work, info )

```

\section*{Description}

The routine ? lasq1 computes the singular values of a real \(n\)-by- \(n\) bidiagonal matrix with diagonal \(d\) and off-diagonal \(e\). The singular values are computed to high relative accuracy, in the absence of denormalization, underflow and overflow.

\section*{Input Parameters}
n
d REAL for slasq1
DOUBLE PRECISION for dlasq1.
Array, DIMENSION (\(n\)). On entry, \(d\) contains the diagonal elements of the bidiagonal matrix whose \(S V D\) is desired.
```

e REAL for slasq1
DOUBLE PRECISION for dlasq1.
Array, DIMENSION (n). On entry, elements e(1:n-1) contain the off-diagonal
elements of the bidiagonal matrix whose SVD is desired.
work REAL for slasq1
DOUBLE PRECISION for dlasq1.
Workspace array, DIMENSION (4n).

```

\section*{Output Parameters}
d
e
info

On normal exit, \(d\) contains the singular values in decreasing order.
On exit, \(e\) is overwritten.
INTEGER.
\(=0\) : successful exit;
\(<0\) : if info \(=-i\), the \(i\)-th argument had an illegal value; \(>0\) : the algorithm failed:
\(=1\), a split was marked by a positive value in \(e\);
\(=2\), current block of \(z\) not diagonalized after \(30 * n\) iterations (in inner while loop);
\(=3\), termination criterion of outer while loop not met (program created more than \(n\) unreduced blocks.

\section*{?lasq2}

Computes all the eigenvalues of the symmetric positive definite tridiagonal matrix associated with the qd array \(z\) to high relative accuracy. Used by ?bdsqr and
?stegr.

\section*{Syntax}
```

call slasq2 ( n, z, info )
call dlasq2 ( n, z, info )

```

\section*{Description}

The routine ?lasq2 computes all the eigenvalues of the symmetric positive definite tridiagonal matrix associated with the \(q d\) array \(z\) to high relative accuracy, in the absence of denormalization, underflow and overflow.

To see the relation of \(z\) to the tridiagonal matrix, let \(L\) be a unit lower bidiagonal matrix with subdiagonals \(z(2,4,6, . .\).\() and let U\) be an upper bidiagonal matrix with 1's above and diagonal \(z(1,3,5, \ldots\).\() . The tridiagonal is L U\) or, if you prefer, the symmetric tridiagonal to which it is similar.

\section*{Input Parameters}
\(n \quad\) INTEGER. The number of rows and columns in the matrix. \(n \geq 0\).
\(z \quad\) REAL for slasq2
DOUBLE PRECISION for dlasq2.
Array, DIMENSION (4 n). On entry, \(z\) holds the \(q d\) array.

\section*{Output Parameters}

\section*{Application Notes}

The routine ?lasq2 defines a logical variable, ieee, which is .TRUE. on machines which follow IEEE-754 floating-point standard in their handling of infinities and NaNs, and .FALSE. otherwise. This variable is passed to ?lasq3.

\section*{?lasq3}

Checks for deflation, computes a shift and calls dqds.
Used by ?bdsqr.

\section*{Syntax}
```

call slasq3 ( i0, n0, z, pp, dmin, sigma, desig, qmax, nfail, iter, ndiv,
ieee, ttype )
call dlasq3 ( io, no, z, pp, dmin, sigma, desig, qmax, nfail, iter, ndiv,
ieee, ttype )

```

\section*{Description}

The routine ? lasq3 checks for deflation, computes a shift (tau) and calls \(d q d s\). In case of failure, it changes shifts, and tries again until output is positive.

\section*{Input Parameters}
io INTEGER. First index.

\section*{\(z \quad\) REAL for slasq3}

DOUBLE PRECISION for dlasq3. Array, DIMENSION (4n). \(z\) holds the \(q d\) array.

INTEGER. \(p p=0\) for ping, \(p p=1\) for pong.
desig REAL for slasq3 DOUBLE PRECISION for dlasq3. Lower order part of sigma.
qmax REAL for slasq3 DOUBLE PRECISION for dlasq3. Maximum value of \(q\).
ieee LOGICAL. Flag for IEEE or non-IEEE arithmetic (passed to ?lasq5).

\section*{Output Parameters}
```

dmin REAL for slasq3
DOUBLE PRECISION for dlasq3.
Minimum value of d
sigma REAL for slasq3
DOUBLE PRECISION for dlasq3.
Sum of shifts used in current segment.
desig Lower order part of sigma.
nfail INTEGER. Number of times shift was too big.
iter INTEGER. Number of iterations.
ndiv INTEGER. Number of divisions.
ttype INTEGER. Shift type.

```

\section*{?lasq4}

Computes an approximation to the smallest eigenvalue using values of \(d\) from the previous transform. Used by ?bdsqr.

\section*{Syntax}
```

call slasq4 ( iO, n0, z, pp, nOin, dmin, dmin1, dmin2, dn, dn1, dn2, tau,
ttype )
call dlasq4 ( i0, n0, z, pp, n0in, dmin, dmin1, dmin2, dn, dn1, dn2, tau,
ttype )

```

\section*{Description}

The routine computes an approximation tau to the smallest eigenvalue using values of \(d\) from the previous transform.

\section*{Input Parameters}
```

io Integer. First index.
no INTEGER. Last index.

```
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{\(z\)} & REAL forslasq4 \\
\hline & DOUBLE PRECISION for dlasq4. \\
\hline & Array, DIMENSION (4n). \(z\) holds the \(q d\) array. \\
\hline pp & INTEGER. \(p p=0\) for ping, \(p p=1\) for pong. \\
\hline noin & INTEGER. The value of no at start of eigtest. \\
\hline \multirow[t]{3}{*}{\(d m i n\)} & REAL forslasq4 \\
\hline & DOUBLE PRECISION for dlasq4. \\
\hline & Minimum value of \(d\). \\
\hline \multirow[t]{3}{*}{\(d m i n 1\)} & REAL forslasq4 \\
\hline & DOUBLE PRECISION for dlasq4. \\
\hline & Minimum value of \(d\), excluding \(d(n 0)\). \\
\hline \multirow[t]{3}{*}{dmin2} & REAL forslasq4 \\
\hline & DOUBLE PRECISION for dlasq4. \\
\hline & Minimum value of \(d\), excluding \(d(\mathrm{nO})\) and \(d(\mathrm{nO}-1)\). \\
\hline \multirow[t]{3}{*}{\(d n\)} & REAL forslasq4 \\
\hline & DOUBLE PRECISION for dlasq4. \\
\hline & Contains \(d(n)\). \\
\hline \multirow[t]{3}{*}{\(d n 1\)} & REAL forslasq4 \\
\hline & DOUBLE PRECISION for dlasq4. \\
\hline & Contains d(n-1). \\
\hline \multirow[t]{3}{*}{dn2} & REAL forslasq4 \\
\hline & DOUBLE PRECISION for dlasq4. \\
\hline & Contains \(d(n-2)\). \\
\hline \multicolumn{2}{|l|}{Output Parameters} \\
\hline \multirow[t]{3}{*}{tau} & REAL forslasq4 \\
\hline & DOUBLE PRECISION for dlasq4. \\
\hline & This is the shift. \\
\hline ttype & INTEGER. Shift type. \\
\hline
\end{tabular}

\section*{?lasq5}

Computes one dqds transform in ping-pong form. Used by ?bdsqr and ?stegr.

\section*{Syntax}
```

call slasq5 ( i0, n0, z, pp, tau, dmin, dmin1, dmin2, dn, dnm1, dnm2,
ieee )
call dlasq5 ( i0, n0, z, pp, tau, dmin, dmin1, dmin2, dn, dnm1, dnm2,
ieee )

```

\section*{Description}

The routine computes one \(d q d s\) transform in ping-pong form, one version for IEEE machines another for non-IEEE machines.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline io & integer First index. \\
\hline no & INTEGER Last index. \\
\hline z & REAL for slasq5 \\
\hline & DOUBLE PRECISION for dlasq5. \\
\hline & Array, DIMENSION (\(4 n\)). \(z\) holds the \(q d\) array. emin is stored in \(z\left(4 *_{n} 0\right)\) to avoid an extra argument. \\
\hline \(p p\) & INTEGER. \(p p=0\) for ping, \(p p=1\) for pong. \\
\hline tau & REAL for slasq5 \\
\hline & DOUBLE PRECISION for dlasq5. \\
\hline & This is the shift. \\
\hline ieee & LOGICAL. Flag for IEEE or non-IEEE arithmetic. \\
\hline
\end{tabular}

\section*{Output Parameters}
```

dmin
REAL for slasq5
DOUBLE PRECISION for dlasq5.
Minimum value of d

```
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{dmin1} & REAL forslasq5 \\
\hline & DOUBLE PRECISION for dlasq5. \\
\hline & Minimum value of \(d\), excluding \(d(n 0)\). \\
\hline \multirow[t]{3}{*}{dmin2} & REAL forslasq5 \\
\hline & DOUBLE PRECISION for dlasq5. \\
\hline & Minimum value of \(d\), excluding \(d(\mathrm{nO})\) and \(d(\mathrm{nO}-1)\). \\
\hline \multirow[t]{3}{*}{\(d n\)} & REAL forslasq5 \\
\hline & DOUBLE PRECISION for dlasq5. \\
\hline & Contains \(d(n 0)\), the last value of \(d\). \\
\hline \multirow[t]{3}{*}{dnm1} & REAL forslasq5 \\
\hline & DOUBLE PRECISION for dlasq5. \\
\hline & Contains \(d(n 0-1)\). \\
\hline \multirow[t]{3}{*}{dnm2} & REAL forslasq5 \\
\hline & DOUBLE PRECISION for dlasq5. \\
\hline & Contains \(d\) (n0-2). \\
\hline
\end{tabular}

\section*{?lasq6}

Computes one dqds transform in ping-pong form. Used
by ?bdsqr and ?stegr.

\section*{Syntax}
```

call slasq6 ( i0, n0, z, pp, dmin, dmin1, dmin2, dn, dnm1, dnm2 )
call dlasq6 ( i0, n0, z, pp, dmin, dmin1, dmin2, dn, dnm1, dnm2 )

```

\section*{Description}

The routine ?lasq6 computes one \(d q d\) (shift equal to zero) transform in ping-pong form, with protection against underflow and overflow.

\section*{Input Parameters}
\begin{tabular}{ll}
io & INTEGER. First index. \\
no & INTEGER. Last index.
\end{tabular}

REAL for slasq6
DOUBLE PRECISION for dlasq6.
Array, DIMENSION \((4 n) . z\) holds the \(q d\) array. emin is stored in \(z(4 * n 0)\) to avoid an extra argument.
\(p p\) INTEGER. \(p p=0\) for \(\mathrm{ping}, p p=1\) for pong.

\section*{Output Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{dmin} & REAL for slasq6 \\
\hline & DOUBLE PRECISION for dlasq6. \\
\hline & Minimum value of \(d\). \\
\hline \multirow[t]{3}{*}{dmin1} & REAL for slasq6 \\
\hline & DOUBLE PRECISION for dlasq6. \\
\hline & Minimum value of \(d\), excluding \(d(n 0)\). \\
\hline \multirow[t]{3}{*}{\(d m i n 2\)} & REAL for slasq6 \\
\hline & DOUBLE PRECISION for dlasq6. \\
\hline & Minimum value of \(d\), excluding \(d(\mathrm{nO})\) and \(d(\mathrm{nO}-1)\). \\
\hline \multirow[t]{3}{*}{\(d n\)} & REAL for slasq6 \\
\hline & DOUBLE PRECISION for dlasq6. \\
\hline & Contains \(d(n 0)\), the last value of \(d\). \\
\hline \multirow[t]{3}{*}{dnm1} & REAL for slasq6 \\
\hline & DOUBLE PRECISION for dlasq6. \\
\hline & Contains \(d(\mathrm{nO}-1)\). \\
\hline \multirow[t]{3}{*}{dnm2} & REAL for slasq6 \\
\hline & DOUBLE PRECISION for dlasq6. Contains \(d(n 0-2)\) \\
\hline & Contains \(d(n 0-2)\). \\
\hline
\end{tabular}

\section*{?lasr}

Applies a sequence of plane rotations to a general rectangular matrix.

\section*{Syntax}
```

call slasr ( side, pivot, direct, m, n, c, s, a, lda )
call dlasr ( side, pivot, direct, m, n, c, s, a, lda )

```
```

call clasr ( side, pivot, direct, m, n, c, s, a, lda )
call zlasr ( side, pivot, direct, m, n, c, s, a, lda )

```

\section*{Description}

The routine performs the transformation:
\(A:=P A, \quad\) when side = 'L' or 'l' (Left-hand side)
\(A:=A P ', \quad\) when side \(=\) ' R ' or ' \(r\) ' (Right-hand side)
where \(A\) is an \(m-b y-n\) real matrix and \(P\) is an orthogonal matrix, consisting of a sequence of plane rotations determined by the parameters pivot and direct as follows (\(z=m\) when side \(=\) ' \(L\) ' or ' 1 ' and \(z=n\) when side \(=\) ' \(R\) ' or ' \(r\) '):

When direct \(=\) ' \(F\) ' or ' \(£\) ' (Forward sequence) then
\[
P=P(z-1) \ldots P(2) P(1)
\]
and when direct \(=\) ' B ' or 'b' (Backward sequence \()\) then
\[
P=P(1) P(2) \ldots P(z-1),
\]
where \(P(k)\) is a plane rotation matrix for the following planes:
when pivot \(=\) ' v ' or ' v ' (Variable pivot), the plane \((k, k+1)\)
when pivot \(=\) ' T ' or ' t ' (Top pivot), the plane (\(1, k+1\))
when pivot = ' B ' or ' b ' (Bottom pivot), the plane (\(k, z\))
\(c(k)\) and \(s(k)\) must contain the cosine and sine that define the matrix
\(P(k)\). The 2-by-2 plane rotation part of the matrix \(P(k), R(k)\), is assumed to be of the form:
\(R(k)=\left[\begin{array}{cc}c(k) & s(k) \\ -s(k) & c(k)\end{array}\right]\)
Input Parameters
side CHARACTER*1. Specifies whether the plane rotation matrix \(P\) is applied to \(A\) on the left or the right.
\(=\) 'L': Left, compute \(A:=P A\)
\(=\) 'R': Right, compute \(A:=A P^{\prime}\)
direct CHARACTER*1. Specifies whether \(P\) is a forward or backward sequence of plane rotations.
\(=' \mathrm{~F}\) ': Forward, \(P=P(z-1) \ldots P(2) P(1)\)
\(=\) 'B': Backward, \(P=P(1) P(2) \ldots P(z-1)\)
```

pivot CHARACTER*1. Specifies the plane for which P(k) is a plane rotation matrix.
= 'v':Variable pivot, the plane (k,k+1)
= 'T':Top pivot, the plane (1,k+1)
= 'B': Bottom pivot, the plane (k,z)
m
n
c, s
a
Ida INTEGER. The leading dimension of the array }A\mathrm{ .
lda }\geq\operatorname{max}(1,m)

```

\section*{Output Parameters}
On exit, \(A\) is overwritten by \(P A\) if side \(=\) ' R ' or by \(A P\) ' if side \(=\) 'L'.
```


## ?lasrt

Sorts numbers in increasing or decreasing order.

## Syntax

```
call slasrt (id, n, d, info)
call dlasrt (id, n, d, info)
```


## Description

The routine ? lasrt sorts the numbers in $d$ in increasing order (if $i d=$ ' $I$ ') or in decreasing order (if id = 'D' ). It uses Quick Sort, reverting to Insertion Sort on arrays of size $\leq 20$. Dimension of stack limits $n$ to about $2^{32}$.

## Input Parameters

```
id CHARACTER*1.
 = 'I': sort d in increasing order;
 = 'D': sort d in decreasing order.
n INTEGER. The length of the array d.
d REAL for slasrt
 DOUBLE PRECISION for dlasrt.
 On entry, the array to be sorted.
```


## Output Parameters

| $d$ | On exit, $d$ has been sorted into increasing order |
| :--- | :--- |
| $(d(1) \leq \ldots \leq a(n))$ or into decreasing order |  |
|  | $(d(1) \geq \ldots \geq d(n))$, depending on id. |
| info $\quad$ | INTEGER. |
|  | $=0:$ successful exit |
|  | $<0:$ if info $=-i$, the $i$-th argument had an illegal value. |

## ?lassq

Updates a sum of squares represented in scaled form.

## Syntax

```
call slassq (n, x, incx, scale, sumsq)
call dlassq (n, x, incx, scale, sumsq)
call classq (n, x, incx, scale, sumsq)
call zlassq (n, x, incx, scale, sumsq)
```


## Description

The real routines slassq/dlassq return the values $s c l$ and $s m s q$ such that
$s c l^{2} * s m s q=x(1)^{2}+\ldots+x(n)^{2}+s c a l e^{2} * s u m s q$,
where $x(i)=x(1+(i-1)$ incx $)$.
The value of sumsq is assumed to be non-negative and scl returns the value scl $=\max (\operatorname{scale}, \operatorname{abs}(x(i)))$.

Values scale and sumsq must be supplied in scale and sumsq, and scl and smsq are overwritten on scale and sumsq, respectively.

The complex routines classq/zlassq return the values $s c l$ and $s s q$ such that
$s c l^{2} * s s q=x(1)^{2}+\ldots+x(n)^{2}+s c a l e^{2} * s u m s q$,
where $\quad x(i)=\operatorname{abs}(x(1+(i-1)$ incx $))$.
The value of $s u m s q$ is assumed to be at least unity and the value of $s s q$ will then satisfy
$1.0 \leq s s q \leq s u m s q+2 n$
scale is assumed to be non-negative and scl returns the value
$s c l=\max _{i}(\operatorname{scale}, \operatorname{abs}(\operatorname{real}(x(i))), \quad \operatorname{abs}(\operatorname{aimag}(x(i))))$.
Values scale and sumsq must be supplied in scale and sumsq, and scl and ssq are overwritten on scale and sumsq, respectively.

All routines ?lassq make only one pass through the vector $x$.

## Input Parameters

```
n INTEGER. The number of elements to be used from the vector x.
x REAL for slassq
 DOUBLE PRECISION for dlassq
 COMPLEX for classq
 COMPLEX*16 for zlassq.
 The vector for which a scaled sum of squares is computed: x(i)=x(1+(i-1)
 incx), 1\leqi\leqn.
incx INTEGER. The increment between successive values of the vector x. incx >0.
scale REAL for slassq/classq
 DOUBLE PRECISION for dlassq/zlassq.
 On entry, the value scale in the equation above.
```

```
sumsq
 REAL forslassq/classq
 DOUBLE PRECISION for dlassq/zlassq.
 On entry, the value sumsq in the equation above.
```


## Output Parameters

| scale | On exit, scale is overwritten with $s c l$, the scaling factor for the sum of |
| :--- | :--- |
| squares. |  |
| sumsq | For real flavors: |
| On exit, sumsq is overwritten with the value $s m s q$ in the equation above. |  |
| For complex flavors: |  |
| On exit, sumsq is overwritten with the value $s s q$ in the equation above. |  |

## ?lasv2

Computes the singular value decomposition of a 2-by-2
triangular matrix.

## Syntax

```
call slasv2 (f, g, h, ssmin, ssmax, snr, csr, snl, csl)
call dlasv2 (f, g, h, ssmin, ssmax, snr, csr, snl, csl)
```


## Description

The routine ? lasv2 computes the singular value decomposition of a 2-by-2 triangular matrix

$$
\left[\begin{array}{ll}
f & g \\
0 & h
\end{array}\right]
$$

On return, abs(ssmax) is the larger singular value, $\operatorname{abs}(\operatorname{ssmin})$ is the smaller singular value, and (csl,snl) and (csr,snr) are the left and right singular vectors for abs(ssmax), giving the decomposition

$$
\left[\begin{array}{cc}
c s l & s n l \\
-s n l & c s l
\end{array}\right]\left[\begin{array}{ll}
f & g \\
0 & h
\end{array}\right]\left[\begin{array}{cc}
c s r & -s n r \\
s n r & c s r
\end{array}\right]=\left[\begin{array}{cc}
s s m a x & 0 \\
0 & \text { ssmin }
\end{array}\right]
$$

## Input Parameters

```
f, g, h REAL for slasv2
 DOUBLE PRECISION for dlasv2.
 The (1,1), (1,2) and (2,2) elements of the 2-by-2 matrix, respectively.
```


## Output Parameters

```
ssmin, ssmax REAL for slasv2
 DOUBLE PRECISION for dlasv2.
 abs(ssmin) and abs(ssmax) is the smaller and the larger singular value,
 respectively.
snl, csl REAL for slasv2
 DOUBLE PRECISION for dlasv2.
 The vector (csl, snl) is a unit left singular vector for the singular value
 abs(ssmax).
snr, csr REAL for slasv2
 DOUBLE PRECISION for dlasv2.
 The vector (csr, snr) is a unit right singular vector for the singular value
 abs(ssmax).
```


## Application Notes

Any input parameter may be aliased with any output parameter.
Barring over/underflow and assuming a guard digit in subtraction, all output quantities are correct to within a few units in the last place (ulps).

In IEEE arithmetic, the code works correctly if one matrix element is infinite.
Overflow will not occur unless the largest singular value itself overflows or is within a few ulps of overflow. (On machines with partial overflow, like the Cray, overflow may occur if the largest singular value is within a factor of 2 of overflow.)
Underflow is harmless if underflow is gradual. Otherwise, results may correspond to a matrix modified by perturbations of size near the underflow threshold.

## ?laswp

## Performs a series of row interchanges on a general

 rectangular matrix.
## Syntax

```
call slaswp (n, a, lda, k1, k2, ipiv, incx)
call dlaswp (n, a, lda, k1, k2, ipiv, incx)
call claswp (n, a, lda, k1, k2, ipiv, incx)
call zlaswp (n, a, lda, k1, k2, ipiv, incx)
```


## Description

The routine performs a series of row interchanges on the matrix $A$. One row interchange is initiated for each of rows $k 1$ through $k 2$ of $A$.

## Input Parameters

Array, DIMENSION ( $m$ * abs(incx)).
The vector of pivot indices. Only the elements in positions k1 through $k 2$ of ipiv are accessed.
$\operatorname{ipiv}(k)=l$ implies rows $k$ and $l$ are to be interchanged.
INTEGER. The increment between successive values of ipiv. If ipiv is negative, the pivots are applied in reverse order.

## Output Parameters

a On exit, the permuted matrix.

## ?lasy2

Solves the Sylvester matrix equation where the matrices are of order 1 or 2 .

## Syntax

```
call slasy2 (ltranl, ltranr, isgn, n1, n2, tl, ldtl, tr,ldtr, b, ldb,
 scale, x, ldx, xnorm, info)
call dlasy2 (ltranl, ltranr, isgn, nl, n2, tl, ldtl, tr,ldtr, b, ldb,
 scale, x, ldx, xnorm, info)
```


## Description

The routine solves for the $n 1$-by- $n 2$ matrix $X, 1 \leq n 1, n 2 \leq 2$, in

$$
\mathrm{op}(T L) * X+i s g n * X * \mathrm{op}(T R)=\text { scale } * B,
$$

where
$T L$ is $n 1-b y-n 1$,
$T R$ is $n 2$ - by- $n 2$,
$B$ is n1-by-n2,
and isgn $=1$ or $-1 . \operatorname{op}(T)=T$ or $T$, where $T$ denotes the transpose of $T$.

## Input Parameters

| Itranl | LOGICAL. |
| :---: | :---: |
|  | On entry, ltranl specifies the op( $T L)$ : |
|  | $=. \operatorname{FALSE} ., \mathrm{op}(T L)=T L,$ |
| Itranr | LOGICAL. |
|  | On entry, 1 tranr specifies the op( $T R$ ): |
|  | $=. \operatorname{FALSE} ., \mathrm{op}(T R)=T R$, |
|  | $=. \operatorname{TRUE} ., \mathrm{op}(T R)=T R^{\prime}$. |
| isgn | INTEGER. On entry, isgn specifies the sign of the equation as described before isgn may only be 1 or -1 |


| n1 | INTEGER. On entry, $n 1$ specifies the order of matrix $T L$. n1 may only be 0,1 or 2 . |
| :---: | :---: |
| n2 | INTEGER. <br> On entry, n2 specifies the order of matrix $T R$. $n 2$ may only be 0,1 or 2 . |
| t1 | REAL for slasy2 <br> DOUBLE PRECISION for dlasy2. <br> Array, DIMENSION (ldtl,2). On entry, $t 1$ contains an nl-by-nl matrix $T L$ |
| IdtI | INTEGER.The leading dimension of the matrix $t$. $l d t 1 \geq \max (1, n 1)$. |
| tr | REAL for slasy2 <br> DOUBLE PRECISION for dlasy2. <br> Array, DIMENSION (ldtr,2). On entry, tr contains an $n 2$-by-n2 matrix $T R$. |
| Idtr | INTEGER. <br> The leading dimension of the matrix $t r$. ldtr $\geq \max (1, n 2)$. |
| b | REAL for slasy2 <br> DOUBLE PRECISION for dlasy2. <br> Array, DIMENSION ( $1 \mathrm{db}, 2$ ). On entry, the n1-by-n2 matrix $b$ contains the right-hand side of the equation. |
| $1 d b$ | INTEGER. <br> The leading dimension of the matrix $b$. $1 d b \geq \max (1, n 1)$. |
| $1 d x$ | INTEGER. <br> The leading dimension of the output matrix $x$. $I d x \geq \max (1, n 1)$. |
| Outpu | ters |
| scale | REAL for slasy2 <br> DOUBLE PRECISION for dlasy2. <br> On exit, scale contains the scale factor. <br> scale is chosen less than or equal to 1 to prevent the solution overflowing. |
| x | REAL for slasy2 <br> DOUBLE PRECISION for dlasy2. <br> Array, DIMENSION ( $1 d x, 2$ ). On exit, $x$ contains the n1-by-n2 solution. |

```
xnorm REAL for slasy2
 DOUBLE PRECISION for dlasy2.
 On exit, xnorm is the infinity-norm of the solution.
info INTEGER. On exit, info is set to
 0: successful exit.
 1:TL and TR have too close eigenvalues, so TL or TR is perturbed to get a
 nonsingular equation.
```

NOTE. In the interests of speed, this routine does not check the inputs for errors.

## ?lasyf

Computes a partial factorization of a real/complex
symmetric matrix, using the diagonal pivoting method.

## Syntax

```
call slasyf (uplo, n, nb, kb, a, lda, ipiv, w, ldw, info)
call dlasyf (uplo, n, nb, kb, a, lda, ipiv, w, ldw, info)
call clasyf (uplo, n, nb, kb, a, lda, ipiv, w, ldw, info)
call zlasyf (uplo, n, nb, kb, a, lda, ipiv, w, ldw, info)
```


## Description

The routine ?lasyf computes a partial factorization of a real/complex symmetric matrix $A$ using the Bunch-Kaufman diagonal pivoting method. The partial factorization has the form:

$$
A=\left[\begin{array}{cc}
I & U_{12} \\
0 & U_{22}
\end{array}\right]\left[\begin{array}{cc}
A_{11} & 0 \\
0 & D
\end{array}\right]\left[\begin{array}{cc}
I & 0 \\
U_{12}^{\prime} & U_{22}{ }^{\prime}
\end{array}\right] \quad \text { if uplo= 'u', or }
$$

$$
A=\left[\begin{array}{ll}
L_{11} & 0 \\
L_{21} & I
\end{array}\right]\left[\begin{array}{cc}
D & 0 \\
0 & A_{22}
\end{array}\right]\left[\begin{array}{cc}
L_{11}^{\prime} & L_{21}^{\prime} \\
0 & I
\end{array}\right] \quad \text { if uplo }=\text { 'L' }
$$

where the order of $D$ is at most $n b$. The actual order is returned in the argument $k b$, and is either $n b$ or $n b-1$, or $n$ if $n \leq n b$.

This is an auxiliary routine called by ?sytrf. It uses blocked code (calling Level 3 BLAS) to update the submatrix $A_{11}$ (if uplo = 'u') or $A_{22}$ (if uplo = 'L').

## Input Parameters

```
uplo CHARACTER*1.
 Specifies whether the upper or lower triangular part of the symmetric matrix }
 is stored:
 = 'U': Upper triangular
 = 'L':Lower triangular
 n
nb
a
lda
INTEGER
The order of the matrix }A.n\geq0\mathrm{ .
INTEGER.
The maximum number of columns of the matrix }A\mathrm{ that should be factored. nb
should be at least 2 to allow for 2-by-2 pivot blocks.
REAL for slasyf
DOUBLE PRECISION for dlasyf
COMPLEX for clasyf
COMPLEX*16 for zlasyf.
Array, DIMENSION (lda, n). On entry, the symmetric matrix A. If uplo = 'u',
the leading n-by-n upper triangular part of a contains the upper triangular part
of the matrix }A\mathrm{ , and the strictly lower triangular part of a is not referenced. If
uplo = 'L', the leading n-by-n lower triangular part of a contains the lower
triangular part of the matrix }A\mathrm{ , and the strictly upper triangular part of }a\mathrm{ is not
referenced.
INTEGER.
The leading dimension of the array a. lda }\geq\operatorname{max}(1,\textrm{n})\mathrm{ .
```

w

## Output Parameters

| kb | INTEGER. <br> The number of columns of $A$ that were actually factored $k b$ is either $n b-1$ or $n b$, or $n$ if $n \leq n b$. |
| :---: | :---: |
| a | On exit, a contains details of the partial factorization. |
| ipiv | INTEGER. <br> Array, DIMENSION ( $n$ ). Details of the interchanges and the block structure of D. <br> If uplo = ' U ', only the last $k b$ elements of ipiv are set; <br> if uplo = 'L', only the first kb elements are set. |
|  | If $\operatorname{ipiv}(k)>0$, then rows and columns $k$ and $\operatorname{ipiv}(k)$ were interchanged and $D(k, k)$ is a 1-by-1 diagonal block. If uplo = 'U' and ipiv $(k)=\operatorname{ipiv}(k-1)<0$, then rows and columns $k$-land -ipiv $(k)$ were interchanged and $D(k-1: k, k-1: k)$ is a 2-by-2 diagonal block. <br> If uplo $=$ 'L' and $\operatorname{ipiv}(k)=\operatorname{ipiv}(k+1)<0$, then rows and columns $k+1$ and -ipiv $(k)$ were interchanged and $D(k: k+1, k: k+1)$ is a 2-by-2 diagonal block. |
| info | INTEGER. <br> = 0: successful exit <br> $>0$ : if info $=k, D(k, k)$ is exactly zero. The factorization has been completed, but the block diagonal matrix $D$ is exactly singular. |

## ?lahef

Computes a partial factorization of a complex
Hermitian indefinite matrix, using the diagonal pivoting method.

## Syntax

```
call clahef (uplo, n, nb, kb, a, lda, ipiv, w, ldw, info)
call zlahef (uplo, n, nb, kb, a, lda, ipiv, w, ldw, info)
```


## Description

The routine ? lahef computes a partial factorization of a complex Hermitian matrix $A$, using the Bunch-Kaufman diagonal pivoting method. The partial factorization has the form:

$$
\begin{aligned}
& A=\left[\begin{array}{ll}
I & U_{12} \\
0 & U_{22}
\end{array}\right]\left[\begin{array}{cc}
A_{11} & 0 \\
0 & D
\end{array}\right]\left[\begin{array}{cc}
I & 0 \\
U_{12}^{\prime} & U_{22}^{\prime}
\end{array}\right] \quad \text { if uplo }=\text { 'U', or } \\
& A=\left[\begin{array}{ll}
L_{11} & 0 \\
L_{21} & I
\end{array}\right]\left[\begin{array}{cc}
D & 0 \\
0 & A_{22}
\end{array}\right]\left[\begin{array}{cc}
L_{11}^{\prime} & L_{21}^{\prime} \\
0 & I
\end{array}\right] \quad \text { if uplo }=\text { 'L' }
\end{aligned}
$$

where the order of $D$ is at most $n b$. The actual order is returned in the argument $k b$, and is either $n b$ or $n b-1$, or $n$ if $n \leq n b$.
Note that $U^{\prime}$ denotes the conjugate transpose of $U$.
This is an auxiliary routine called by ?hetrf. It uses blocked code (calling Level 3 BLAS) to update the submatrix $A_{11}$ (if uplo = 'U') or $A_{22}$ (if uplo = 'L').

## Input Parameters

| uplo | CHARACTER*1. |
| :--- | :--- |
|  | Specifies whether the up |
| is stored: |  |
|  | $=$ 'U': Upper triangular |
|  | $=$ 'L': Lower triangular |

$n$

INTEGER.
The order of the matrix $A . n \geq 0$.
INTEGER.
The maximum number of columns of the matrix $A$ that should be factored. nb should be at least 2 to allow for 2-by-2 pivot blocks.

COMPLEX for clahef
COMPLEX*16 for zlahef.
Array, DIMENSION (lda, n).
On entry, the Hermitian matrix $A$. If uplo $=$ ' U ', the leading $n$-by- $n$ upper triangular part of a contains the upper triangular part of the matrix $A$, and the strictly lower triangular part of $a$ is not referenced.
If uplo = ' $L$ ', the leading $n$-by- $n$ lower triangular part of a contains the lower triangular part of the matrix $A$, and the strictly upper triangular part of $a$ is not referenced.

INTEGER.
The leading dimension of the array a. Ida $\geq \max (1, n)$.
COMPLEX for clahef
COMPLEX*16 for zlahef.
Workspace array, DIMENSION (ldw, nb).
INTEGER.
The leading dimension of the array w. $\quad l d w \geq \max (1, n)$.

## Output Parameters

| kb | INTEGER. <br> The number of columns of $A$ that were actually factored $k b$ is either $n b-1$ or $n b$, or $n$ if $n \leq n b$. |
| :---: | :---: |
| a | On exit, a contains details of the partial factorization. |
| ipiv | INTEGER. <br> Array, DIMENSION ( $n$ ). Details of the interchanges and the block structure of D. <br> If uplo = ' v ', only the last $k b$ elements of ipiv are set; <br> if uplo = ' L ', only the first $k b$ elements are set. |
|  | If $\operatorname{ipiv}(k)>0$, then rows and columns $k$ and $\operatorname{ipiv}(k)$ were interchanged and $D(k, k)$ is a 1-by-1 diagonal block. If uplo = 'U' and ipiv $(k)=\operatorname{ipiv}(k-1)<0$, then rows and columns $k$-land -ipiv $(k)$ were interchanged and $D(k-1: k, k-1: k)$ |

is a 2-by-2 diagonal block.
If uplo $=$ 'L' and $\operatorname{ipiv}(k)=\operatorname{ipiv}(k+1)<0$, then rows and columns $k+1$ and
-ipiv $(k)$ were interchanged and $D(k: k+1, k: k+1)$ is a 2-by-2 diagonal block.
info $\quad$ INTEGER.

$=0:$ successful exit

$>0$ : if $\operatorname{info}=k, D(k, k)$ is exactly zero. The factorization has been completed,
but the block diagonal matrix $D$ is exactly singular.

## ?latbs

Solves a triangular banded system of equations.

## Syntax

```
call slatbs (uplo, trans, diag, normin, n, kd, ab, ldab, x, scale,
 cnorm, info)
call dlatbs (uplo, trans, diag, normin, n, kd, ab, ldab, x, scale,
 cnorm, info)
call clatbs (uplo, trans, diag, normin, n, kd, ab, ldab, x, scale,
 cnorm, info)
call zlatbs (uplo, trans, diag, normin, n, kd, ab, ldab, x, scale,
 cnorm, info)
```


## Description

The routine solves one of the triangular systems
$A x=s b$ or $A^{\mathrm{T}} x=s b$ or $A^{\mathrm{H}} x=s b$ (for complex flavors)
with scaling to prevent overflow, where $A$ is an upper or lower triangular band matrix. Here $A^{\mathrm{T}}$ denotes the transpose of $A, A^{\mathrm{H}}$ denotes the conjugate transpose of $A, x$ and $b$ are $n$-element vectors, and $s$ is a scaling factor, usually less than or equal to 1 , chosen so that the components of $x$ will be less than the overflow threshold. If the unscaled problem will not cause overflow, the Level 2 BLAS routine ? tbsv is called. If the matrix $A$ is $\operatorname{singular}(A(j, j)=0$ for some $j$ ), then $s$ is set to 0 and a non-trivial solution to $A x=0$ is returned.

## Input Parameters

```
uplo CHARACTER*1.
 Specifies whether the matrix }A\mathrm{ is upper or lower triangular.
 = 'v': Upper triangular
 = 'L':Lower triangular
 trans CHARACTER*1.
 Specifies the operation applied to }A\mathrm{ .
 = 'n':Solve Ax = s b (no transpose)
 = 'T': Solve A}\mp@subsup{A}{}{\textrm{T}}x=sb\mathrm{ (transpose)
 = 'C':Solve A '
diag CHARACTER*1.
 Specifies whether or not the matrix }A\mathrm{ is unit triangular
 = 'v':Non-unit triangular
 = 'U': Unit triangular
normin CHARACTER*1.
 Specifies whether cnorm has been set or not.
 = 'Y': cnorm contains the column norms on entry;
 = 'N': cnorm is not set on entry. On exit, the norms will be computed and
 stored in cnorm.
 INTEGER.
 The order of the matrix }A.n\geq0\mathrm{ .
 INTEGER.
 The number of subdiagonals or superdiagonals in the triangular matrix }A.\textrm{kd
 \geq0
 REAL for slatbs
 DOUBLE PRECISION for dlatbs
 COMPLEX for clatbs
 COMPLEX*16 for zlatbs.
 Array, DIMENSION (ldab, n). The upper or lower triangular band matrix }A\mathrm{ ,
 stored in the first kd+1 rows of the array. The j-th column of }A\mathrm{ is stored in the
 j-th column of the array ab as follows:
 if uplo = 'u', ab(kd+1+i-j,j) = A(i,j) for
 max(1,j-kd)\leqi\leqj;
 if uplo = 'L', ab(1+i-j,j) = A(i,j) for
 j \leqi\leqmin(n,j+kd).
Idab
INTEGER.
The leading dimension of the array \(a b . l d a b \geq k d+1\).
```

```
x
 REAL for slatbs
 DOUBLE PRECISION for dlatbs
 COMPLEX for clatbs
 COMPLEX*16 for zlatbs.
 Array, DIMENSION (n).
 On entry, the right hand side b of the triangular system.
cnorm
 REAL for slatbs/clatbs
 DOUBLE PRECISION for dlatbs/zlatbs.
 Array, DIMENSION (n).
 If normin = 'Y',cnorm is an input argument and cnorm(j) contains the norm
 of the off-diagonal part of the j-th column of }A\mathrm{ . If trans = ' N', cnorm(j)
 must be greater than or equal to the infinity-norm, and if
 trans = 'T' or 'C', cnorm(j) must be greater than or equal to the 1-norm.
```


## Output Parameters

```
scale REAL for slatbs/clatbs
 DOUBLE PRECISION for dlatbs/zlatbs.
 The scaling factor }s\mathrm{ for the triangular system as described above.
 If scale = 0, the matrix }A\mathrm{ is singular or badly scaled, and the vector }x\mathrm{ is an
 exact or approximate solution to Ax}=0\mathrm{ .
cnorm
info INTEGER.
 = 0: successful exit
 <0: if info =-k, the k-th argument had an illegal value
```


## ?latdf

Uses the LU factorization of the n-by-n matrix computed by ?getc2 and computes a contribution to the reciprocal Dif-estimate.

## Syntax

call slatdf ( ijob, $n, z, l d z, ~ r h s, ~ r d s u m, ~ r d s c a l, ~ i p i v, ~ j p i v) ~$
call dlatdf ( ijob, $n, z, l d z, ~ r h s, ~ r d s u m, ~ r d s c a l, ~ i p i v, ~ j p i v) ~$

```
call clatdf (ijob, n, z, ldz, rhs, rdsum, rdscal, ipiv, jpiv)
call zlatdf (ijob, n, z, ldz, rhs, rdsum, rdscal, ipiv, jpiv)
```


## Description

The routine ?latdf uses the $L U$ factorization of the $n$-by-n matrix $Z$ computed by ?getc 2 and computes a contribution to the reciprocal
Dif-estimate by solving $Z x=b$ for $x$, and choosing the right-hand side $b$ such that the norm of $x$ is as large as possible. On entry rhs $=b$ holds the contribution from earlier solved sub-systems, and on return rhs $=x$.

The factorization of $Z$ returned by ? getc 2 has the form $Z=P L U Q$, where $P$ and $Q$ are permutation matrices. $L$ is lower triangular with unit diagonal elements and $U$ is upper triangular.

## Input Parameters

| ijob | INTEGER. |
| :--- | :--- |
| ijob $=2$ : First compute an approximative null-vector $e$ of $Z$ using ? gecon, $e$ |  |
| is normalized, and solve for |  |
|  | $Z x= \pm e-f$ with the sign giving the greater value of 2-norm $(x)$. This option is |
| about 5 times as expensive as default. |  |
| ijob $\neq 2$ (default): Local look ahead strategy where all entries of the |  |
| right-hand side $b$ is chosen as either +1 or -1. |  |


|  | under computation by ? tgsyl, where the scaling factor rdscal has been factored out. <br> If trans = ' T ', rdsum is not touched. <br> Note that rdsum only makes sense when ?tgsy2 is called by ?tgsyl. |
| :---: | :---: |
| rdscal | REAL for slatdf/clatdf <br> DOUBLE PRECISION for dlatdf/zlatdf. <br> On entry, scaling factor used to prevent overflow in rdsum. If trans $=T^{\prime}$, rdscal is not touched. <br> Note that rdscal only makes sense when ?tgsy2 is called by ?tgsyl. |
| ipiv | INTEGER. <br> Array, DIMENSION (n). <br> The pivot indices; for $1 \leq i \leq n$, row $i$ of the matrix has been interchanged with row ipiv(i). |
| jpiv | INTEGER. <br> Array, DIMENSION ( $n$ ). <br> The pivot indices; for $1 \leq j \leq n$, column $j$ of the matrix has been interchanged with column jpiv(j). |

## Output Parameters

```
rhs On exit, rhs contains the solution of the subsystem with entries according to
 the value of ijob.
rdsum On exit, the corresponding sum of squares updated with the contributions from
 the current sub-system.
 If trans = 'T', rdsum is not touched.
rdscal On exit, rdscal is updated with respect to the current contributions in rdsum.
 If trans= 'T', rdscal is not touched.
```


## ?latps

Solves a triangular system of equations with the matrix held in packed storage.

## Syntax

```
call slatps (uplo, trans, diag, normin, n, ap, x, scale, cnorm, info)
call dlatps (uplo, trans, diag, normin, n, ap, x, scale, cnorm, info)
```

```
call clatps (uplo, trans, diag, normin, n, ap, x, scale, cnorm, info)
call zlatps (uplo, trans, diag, normin, n, ap, x, scale, cnorm, info)
```


## Description

The routine ?latps solves one of the triangular systems
$A x=s b$ or $A^{\mathrm{T}} x=s b$ or $A^{\mathrm{H}} x=s b$ (for complex flavors)
with scaling to prevent overflow, where $A$ is an upper or lower triangular matrix stored in packed form. Here $A^{\mathrm{T}}$ denotes the transpose of $A, A^{\mathrm{H}}$ denotes the conjugate transpose of $A, x$ and $b$ are n-element vectors, and $s$ is a scaling factor, usually less than or equal to 1 , chosen so that the components of $x$ will be less than the overflow threshold. If the unscaled problem will not cause overflow, the Level 2 BLAS routine ?tpsv is called. If the matrix $A$ is singular $(A(j, j)=0$ for some $j$ ), then $s$ is set to 0 and a non-trivial solution to $A x=0$ is returned.

## Input Parameters

```
uplo CHARACTER*1.
 Specifies whether the matrix }A\mathrm{ is upper or lower triangular.
 = 'U': Upper triangular
 = 'L': Lower triangular
trans CHARACTER*1.
 Specifies the operation applied to }A\mathrm{ .
 = 'N':Solve Ax = s b (no transpose)
 = 'T': Solve }\mp@subsup{A}{}{\textrm{T}}x=sb (transpose)
 = 'C': Solve }\mp@subsup{A}{}{H}x=sb\mathrm{ (conjugate transpose)
diag CHARACTER*1.
 Specifies whether or not the matrix }A\mathrm{ is unit triangular.
 = 'N':Non-unit triangular
 = 'u':Unit triangular
normin CHARACTER*1.
 Specifies whether cnorm has been set or not.
 = 'Y': cnorm contains the column norms on entry;
 = 'N':cnorm is not set on entry. On exit, the norms will be computed and
 stored in cnorm.
n
INTEGER.
 The order of the matrix }A.n\geq0\mathrm{ .
```

```
ap
REAL for slatps
DOUBLE PRECISION for dlatps
COMPLEX for clatps
COMPLEX*16 for zlatps.
Array, DIMENSION (n(n+1)/2). The upper or lower triangular matrix }A\mathrm{ , packed
columnwise in a linear array. The j-th column of }A\mathrm{ is stored in the array ap as
follows:
if uplo = 'U', ap(i+(j-1)j/2)=A(i,j) for 1\leqi\leqj;
if uplo = 'L', ap(i+(j-1)(2n-j)/2)=A(i,j) for j\leqi\leqn.
x
REAL for slatps
DOUBLE PRECISION for dlatps
COMPLEX for clatps
COMPLEX*16 for zlatps.
Array, DIMENSION (n)
On entry, the right hand side b of the triangular system.
cnorm
REAL for slatps/clatps
DOUBLE PRECISION for dlatps/zlatps.
Array, DIMENSION (n).
If normin = 'Y',cnorm is an input argument and cnorm(j) contains the norm
of the off-diagonal part of the j-th column of }A\mathrm{ . If trans = 'N', cnorm(j)
must be greater than or equal to the infinity-norm, and if
trans = 'T' or 'C', cnorm(j) must be greater than or equal to the 1-norm.
```


## Output Parameters

cnorm If normin $=$ ' N ', cnorm is an output argument and cnorm $(j)$ returns the

```
scale
```

info

On exit, $x$ is overwritten by the solution vector $x$.
REAL for slatps/clatps
DOUBLE PRECISION for dlatps/zlatps.
The scaling factor $s$ for the triangular system as described above.
If scale $=0$, the matrix $A$ is singular or badly scaled, and the vector $x$ is an exact or approximate solution to
$A x=0$. 1 -norm of the off-diagonal part of the $j$-th column of $A$.

INTEGER.
= 0: successful exit
$<0$ : if info $=-k$, the $k$-th argument had an illegal value

## ?latrd

## Reduces the first nb rows and columns of a

 symmetric/Hermitian matrix A to real tridiagonal form by an orthogonal/unitary similarity transformation.
## Syntax

```
call slatrd (uplo, n, nb, a, lda, e, tau, w, ldw)
call dlatrd (uplo, n, nb, a, lda, e, tau, w, ldw)
call clatrd (uplo, n, nb, a, lda, e, tau, w, ldw)
call zlatrd (uplo, n, nb, a, lda, e, tau, w, ldw)
```


## Description

The routine ?latrd reduces nb rows and columns of a real symmetric or complex Hermitian matrix $A$ to symmetric/Hermitian tridiagonal form by an orthogonal/unitary similarity transformation $Q^{\prime} A Q$, and returns the matrices $V$ and $W$ which are needed to apply the transformation to the unreduced part of $A$.
If uplo = 'U', ? latrd reduces the last nb rows and columns of a matrix, of which the upper triangle is supplied;
if uplo = 'L', ? latrd reduces the first nb rows and columns of a matrix, of which the lower triangle is supplied.

This is an auxiliary routine called by ?sytrd/?hetrd.

## Input Parameters

```
uplo CHARACTER
 Specifies whether the upper or lower triangular part of the
 symmetric/Hermitian matrix }A\mathrm{ is stored:
 = 'U': Upper triangular
 = 'L': Lower triangular
n INTEGER.
 The order of the matrix }A\mathrm{ .
nb INTEGER.
 The number of rows and columns to be reduced.
```

```
a
 REAL forslatrd
 DOUBLE PRECISION for dlatrd
 COMPLEX for clatrd
 COMPLEX*16 for zlatrd.
 Array, DIMENSION (lda, n).
 On entry, the symmetric/Hermitian matrix }
 If uplo = ' }\textrm{U}\mathrm{ ', the leading n-by-n upper triangular part of a contains the upper
 triangular part of the matrix }A\mathrm{ , and the strictly lower triangular part of a is not
 referenced. If uplo = 'L', the leading n-by-n lower triangular part of a
 contains the lower triangular part of the matrix }A\mathrm{ , and the strictly upper
 triangular part of a is not referenced.
Ida INTEGER.
 The leading dimension of the array a. lda \geq(1,n).
ldw
 INTEGER.
 The leading dimension of the output array w.
 ldw}\geq\operatorname{max}(1,n)
```


## Output Parameters

On exit, if uplo = ' u ', the last $n b$ columns have been reduced to tridiagonal form, with the diagonal elements overwriting the diagonal elements of $a$; the elements above the diagonal with the array $\operatorname{tau}$, represent the orthogonal/unitary matrix $Q$ as a product of elementary reflectors; if uplo = 'L', the first nb columns have been reduced to tridiagonal form, with the diagonal elements overwriting the diagonal elements of $a$; the elements below the diagonal with the array $t a u$, represent the orthogonal/unitary matrix $Q$ as a product of elementary reflectors.
$e$
REAL for slatrd/clatrd
DOUBLE PRECISION for dlatrd/zlatrd.
If uplo = ' $v$ ', e(n-nb:n-1) contains the superdiagonal elements of the last nb columns of the reduced matrix;
if uplo = 'L', e(1:nb) contains the subdiagonal elements of the first nb columns of the reduced matrix.
tau REAL for slatrd
DOUBLE PRECISION for dlatrd
COMPLEX for clatrd
COMPLEX*16 for zlatrd.

```
```

Array, DIMENSION (lda, n).
The scalar factors of the elementary reflectors, stored in tau(n-nb:n-1) if
uplo = 'U', and in tau(1:nb) if uplo = 'L'.
REAL forslatrd
DOUBLE PRECISION for dlatrd
COMPLEX for clatrd
COMPLEX*16 for zlatrd.
Array, DIMENSION (lda, n).
The n-by-nb matrix }W\mathrm{ required to update the unreduced part of }A\mathrm{ .

```

\section*{Application Notes}

If uplo = ' U ', the matrix \(Q\) is represented as a product of elementary reflectors
\[
Q=H(n) H(n-1) \ldots H(n-n b+1)
\]

Each \(H(i)\) has the form
\(H(i)=I-t a u^{*} v^{*} v^{\prime}\)
where tau is a real/complex scalar, and \(v\) is a real/complex vector with \(v(i: n)=0\) and \(v(i-1)=\) \(1 ; v(1: i-1)\) is stored on exit in \(a(1: i-1, i)\), and tau in \(\operatorname{tau}(i-1)\).

If uplo = ' L ', the matrix \(Q\) is represented as a product of elementary reflectors
\[
Q=H(1) H(2) \ldots H(n b)
\]

Each \(H(i)\) has the form
\(H(i)=I-\operatorname{tau}{ }^{*} v^{*} v^{\prime}\)
where tau is a real/complex scalar, and \(v\) is a real/complex vector with \(v(1: i)=0\) and \(v(i+1)=1\); \(v(i+1: n)\) is stored on exit in \(a(i+1: n, i)\), and tau in \(\operatorname{tau}(\mathrm{i})\).

The elements of the vectors \(v\) together form the \(n\)-by-nb matrix \(V\) which is needed, with \(W\), to apply the transformation to the unreduced part of the matrix, using a symmetric/Hermitian rank-2k update of the form:
\(A:=A-V W^{\prime}-W V^{\prime}\).
The contents of a on exit are illustrated by the following examples with
\(n=5\) and \(n b=2\) :
if uplo= 'U': if uplo= 'L':
\[
\left[\begin{array}{rrrr}
a & a & a & v_{4} \\
& v_{5} \\
& a & a & v_{4} \\
v_{5} \\
& a & 1 & v_{5} \\
& & d & 1 \\
& & & d
\end{array}\right] \quad\left[\begin{array}{cccc}
d & & & \\
1 & d & & \\
v_{1} & 1 & a & \\
v_{1} & v_{2} & a & a \\
v_{1} & v_{2} & a & a
\end{array}\right]
\]
where \(d\) denotes a diagonal element of the reduced matrix, \(a\) denotes an element of the original matrix that is unchanged, and \(v_{i}\) denotes an element of the vector defining \(H(i)\).

\section*{?latrs}

Solves a triangular system of equations with the scale factor set to prevent overflow.

\section*{Syntax}
```

call slatrs ( uplo, trans, diag, normin, n, a, lda, x, scale, cnorm, info )
call dlatrs ( uplo, trans, diag, normin, n, a, lda, x, scale, cnorm, info )
call clatrs ( uplo, trans, diag, normin, n, a, lda, x, scale, cnorm, info )
call zlatrs ( uplo, trans, diag, normin, n, a, lda, x, scale, cnorm, info )

```

\section*{Description}

The routine solves one of the triangular systems
\(A x=s b\) or \(A^{\mathrm{T}} x=s b\) or \(A^{\mathrm{H}} x=s b\) (for complex flavors)
with scaling to prevent overflow. Here \(A\) is an upper or lower triangular matrix, \(A^{\mathrm{T}}\) denotes the transpose of \(A, A^{\mathrm{H}}\) denotes the conjugate transpose of \(A, x\) and \(b\) are \(n\)-element vectors, and \(s\) is a scaling factor, usually less than or equal to 1 , chosen so that the components of \(x\) will be less than the overflow threshold. If the unscaled problem will not cause overflow, the Level 2 BLAS routine ? trsv is called. If the matrix \(A\) is singular \((A(j, j)=0\) for some \(j)\), then \(s\) is set to 0 and a non-trivial solution to \(A x=0\) is returned.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{4}{*}{uplo} & CHARACTER*1. \\
\hline & Specifies whether the matrix \(A\) is upper or lower triangular. \\
\hline & = 'u': Upper triangular \\
\hline & = 'L': Lower triangular \\
\hline \multirow[t]{5}{*}{trans} & CHARACTER*1. \\
\hline & Specifies the operation applied to \(A\). \\
\hline & \(={ }^{\prime} \mathrm{N}\) ': Solve \(A \mathrm{x}=s b\) (no transpose) \\
\hline & \(=\) 'T': Solve \(A^{\mathrm{T}} x=s b\) (transpose) \\
\hline & \(=\mathrm{C}^{\prime}\) ': Solve \(A^{\mathrm{H}} x=s b\) (conjugate transpose) \\
\hline \multirow[t]{4}{*}{diag} & CHARACTER*1. \\
\hline & Specifies whether or not the matrix \(A\) is unit triangular. \\
\hline & \(=\) ' N ': Non-unit triangular \\
\hline & \(=\) 'U': Unit triangular \\
\hline \multirow[t]{4}{*}{normin} & CHARACTER*1. \\
\hline & Specifies whether cnorm has been set or not. \\
\hline & = 'Y': cnorm contains the column norms on entry; \\
\hline & \(=\) ' \(N\) ': cnorm is not set on entry. On exit, the norms will be computed and stored in cnorm. \\
\hline \multirow[t]{2}{*}{\(n\)} & INTEGER. \\
\hline & The order of the matrix \(A\). \(n \geq 0\) \\
\hline \multirow[t]{6}{*}{a} & REAL for slatrs \\
\hline & DOUBLE PRECISION for dlatrs \\
\hline & COMPLEX for clatrs \\
\hline & COMPLEX*16 for zlatrs. \\
\hline & Array, DIMENSION (lda, n). Contains the triangular matrix \(A\). If uplo = ' u ', the leading \(n\)-by- \(n\) upper triangular part of the array a contains the upper triangular matrix, and the strictly lower triangular part of \(a\) is not referenced. \\
\hline & If uplo = ' L ', the leading \(n\)-by- \(n\) lower triangular part of the array a contains the lower triangular matrix, and the strictly upper triangular part of \(a\) is not referenced. If diag = 'U', the diagonal elements of a are also not referenced and are assumed to be 1 . \\
\hline \multirow[t]{2}{*}{1 da} & INTEGER. \\
\hline & The leading dimension of the array a. 1 da \(\geq \max (1, n)\). \\
\hline
\end{tabular}

REAL forslatrs
DOUBLE PRECISION for dlatrs
COMPLEX for clatrs
COMPLEX*16 for zlatrs.
Array, DIMENSION (\(n\)). On entry, the right hand side \(b\) of the triangular system.
cnorm
REAL for slatrs/clatrs)
DOUBLE PRECISION for dlatrs/zlatrs.
Array, DIMENSION (n). If normin = ' Y ', cnorm is an input argument and cnorm (\(j\)) contains the norm of the off-diagonal part of the \(j\)-th column of \(A\). If trans \(=\) ' N ', cnorm \((j)\) must be greater than or equal to the infinity-norm, and if trans \(=\) ' T ' or ' C ', cnorm \((j)\) must be greater than or equal to the 1 -norm.

\section*{Output Parameters}

On exit, \(x\) is overwritten by the solution vector \(x\).
scale
cnorm If normin = ' \(N\) ', cnorm is an output argument and cnorm(\(j\)) returns the
info
REAL for slatrs/clatrs)
DOUBLE PRECISION for dlatrs/zlatrs.
Array, DIMENSION (lda, n). The scaling factor \(s\) for the triangular system as described above.
If scale \(=0\), the matrix \(A\) is singular or badly scaled, and the vector \(x\) is an exact or approximate solution to \(A x=0\). 1 -norm of the off-diagonal part of the \(j\)-th column of \(A\).

INTEGER.
\(=0\) : successful exit
\(<0\) : if info \(=-k\), the \(k\)-th argument had an illegal value

\section*{Application Notes}

A rough bound on \(x\) is computed; if that is less than overflow, ?trsv is called, otherwise, specific code is used which checks for possible overflow or divide-by-zero at every operation.

A columnwise scheme is used for solving \(A x=b\). The basic algorithm if \(A\) is lower triangular is
```

$x[1: n]:=b[1: n]$
for $j=1, \ldots, n$
$x(j):=x(j) / A(j, j)$
$x[j+1: n]:=x[j+1: n]-x(j) \star A[j+1: n, j]$
end

```

Define bounds on the components of \(x\) after \(j\) iterations of the loop:
```

$M(j)=$ bound on $x[1: j]$
$G(j)=$ bound on $x[j+1: n]$
Initially, let $M(0)=0$ and $G(0)=\max \{x(\mathrm{i}), \mathrm{i}=1, \ldots, \mathrm{n}\}$.
Then for iteration $j+1$ we have

```
```

$\mathrm{M}(j+1) \leq \mathrm{G}(j) /|A(j+1, j+1)|$

```
\(\mathrm{M}(j+1) \leq \mathrm{G}(j) /|A(j+1, j+1)|\)
\(G(j+1) \leq G(j)+M(j+1) \star|A[j+2: n, j+1]|\)
\(G(j+1) \leq G(j)+M(j+1) \star|A[j+2: n, j+1]|\)
\(\leq G(j)(1+\operatorname{cnorm}(j+1) /|A(j+1, j+1)|\),
```

$\leq G(j)(1+\operatorname{cnorm}(j+1) /|A(j+1, j+1)|$,

```
where \(\operatorname{cnorm}(j+1)\) is greater than or equal to the infinity-norm of column \(j+1\) of \(A\), not counting the diagonal. Hence
\[
G(j) \leq G(0) \prod_{1 \leq i \leq j}(1+\operatorname{cnorm}(i) \backslash A(i, i) \mid)
\]
and
\[
|x(j)| \leq(G(0) \backslash A(j, j) \mid) \prod_{1 \leq i \leq j}(1+\operatorname{cnorm}(i) \backslash A(i, i) \mid)
\]

Since \(|x(j)| \leq M(j)\), we use the Level 2 BLAS routine ? trsv if the reciprocal of the largest \(M(j)\), \(j=1, . ., n\), is larger than \(\max\) (underflow, 1 /overflow).
The bound on \(x(j)\) is also used to determine when a step in the columnwise method can be performed without fear of overflow. If the computed bound is greater than a large constant, \(x\) is scaled to prevent overflow, but if the bound overflows, \(x\) is set to \(0, x(j)\) to 1 , and scale to 0 , and a non-trivial solution to \(A x=0\) is found.

Similarly, a row-wise scheme is used to solve \(A^{\mathrm{T}} x=b\) or \(A^{\mathrm{H}} x=b\). The basic algorithm for \(A\) upper triangular is
```

for $j=1, \ldots, n$
$x(j):=\left(b(j)-A[1: j-1, j]^{\prime} x[1: j-1]\right) / A(j, j)$
end

```

We simultaneously compute two bounds
\(G(j)=\) bound on \(\left(b(i)-A[1: i-1, i]^{\prime} * x[1: i-1]\right), \quad 1 \leq i \leq j\)
\(M(j)=\) bound on \(x(i), 1 \leq i \leq j\)

The initial values are \(G(0)=0, M(0)=\max \{b(i), i=1, . ., n\}\), and we add the constraint \(G(j) \geq\) \(G(j-1)\) and \(M(j) \geq M(j-1)\) for \(j \geq 1\).
Then the bound on \(x(j)\) is
\[
\begin{aligned}
& M(j) \leq M(j-1) *(1+\operatorname{cnorm}(j)) /|A(j, j)| \\
& \quad \leq M(0) \prod_{1 \leq i \leq j}(1+\operatorname{cnorm}(i) \backslash A(i, i) \mid)
\end{aligned}
\]
and we can safely call ?trsv if \(1 / M(n)\) and \(1 / G(n)\) are both greater than max(underflow, 1/overflow).

\section*{?latrz}

Factors an upper trapezoidal matrix by means of orthogonal/unitary transformations.

\section*{Syntax}
```

call slatrz ( m, n, l, a, lda, tau, work )
call dlatrz ( m, n, l, a, lda, tau, work )
call clatrz ( m, n, l, a, lda, tau, work )
call zlatrz ( m, n, l, a, lda, tau, work )

```

\section*{Description}

The routine ?latrz factors the \(m\)-by- \((m+1)\) real/complex upper trapezoidal matrix \(\left[\begin{array}{ll}A 1 & A 2\end{array}\right]=\left[\begin{array}{ll}A(1: m, 1: m\end{array} \quad A(1: m, n-1+1: n)\right]\)
as \(\left(\begin{array}{ll}R & 0\end{array}\right) \star Z\), by means of orthogonal/unitary transformations. \(Z\) is an \((m+1)\)-by- \((m+1)\) orthogonal/unitary matrix and \(R\) and \(A 1\) are \(m\)-by- \(m\) upper triangular matrices.

\section*{Input Parameters}

INTEGER.
The number of rows of the matrix \(A . m \geq 0\).
INTEGER.
The number of columns of the matrix \(A . \mathrm{n} \geq 0\).
work REAL for slatrz

1
a
lda

INTEGER.
The number of columns of the matrix \(A\) containing the meaningful part of the Householder vectors.
\(n-m \geq 1 \geq 0\).
REAL for slatrz
DOUBLE PRECISION for dlatrz
COMPLEX for clatrz
COMPLEX*16 for zlatrz.
Array, DIMENSION (lda, n).
On entry, the leading m-by-n upper trapezoidal part of the array a must contain the matrix to be factorized.

DOUBLE PRECISION for dlatrz
COMPLEX for clatrz
COMPLEX*16 for zlatrz.
Workspace array, DIMENSION (m).

\section*{Output Parameters}

On exit, the leading \(m\)-by- \(m\) upper triangular part of a contains the upper triangular matrix \(R\), and elements \(n-1+1\) to \(n\) of the first \(m\) rows of \(a\), with the array tau, represent the orthogonal/unitary matrix \(Z\) as a product of \(m\) elementary reflectors.
tau REAL for slatrz
DOUBLE PRECISION for dlatrz
COMPLEX for clatrz
COMPLEX*16 for zlatrz.
Array, DIMENSION (m). The scalar factors of the elementary reflectors.

\section*{Application Notes}

The factorization is obtained by Householder's method. The \(k\)-th transformation matrix, \(Z(k)\), which is used to introduce zeros into the (\(m-k+1\))-th row of \(A\), is given in the form
\[
Z(k)=\left[\begin{array}{cc}
I & 0 \\
0 & T(k)
\end{array}\right]
\]
where
\[
T(k)=\mathrm{I}-\operatorname{tau} * u(k) * u(k)^{\prime}, \quad u(k)=\left[\begin{array}{c}
1 \\
0 \\
z(k)
\end{array}\right]
\]
tau is a scalar and \(z(k)\) is an \(l\)-element vector. tau and \(z(k)\) are chosen to annihilate the elements of the \(k\)-th row of \(A 2\). The scalar tau is returned in the \(k\)-th element of tau and the vector \(u(k)\) in the \(k\)-th row of \(A 2\), such that the elements of \(z(k)\) are in \(a(k, l+1), \ldots, a(k, n)\). The elements of \(R\) are returned in the upper triangular part of \(A 1\).
\(Z\) is given by
\[
Z=Z(1) Z(2) \ldots Z(\mathrm{~m}) .
\]

\section*{?lauu2}

Computes the product \(U U^{H}\) or \(L^{H} L\), where \(U\) and \(L\) are upper or lower triangular matrices (unblocked algorithm).

\section*{Syntax}
```

call slauu2 ( uplo, n, a, lda, info )
call dlauu2 ( uplo, n, a, lda, info )
call clauu2 ( uplo, n, a, lda, info )
call zlauu2 ( uplo, n, a, lda, info )

```

\section*{Description}

The routine ? lauu 2 computes the product \(U U^{\prime}\) or \(L^{\prime} L\), where the triangular factor \(U\) or \(L\) is stored in the upper or lower triangular part of the array a.
If uplo = ' \(u\) ' or ' \(u\) ', then the upper triangle of the result is stored, overwriting the factor \(U\) in a. If uplo = ' L ' or ' 1 ', then the lower triangle of the result is stored, overwriting the factor \(L\) in a.

This is the unblocked form of the algorithm, calling Level 2 BLAS.

\section*{Input Parameters}
uplo CHARACTER*1.
Specifies whether the triangular factor stored in the array a is upper or lower triangular:
= 'U': Upper triangular
= 'L': Lower triangular
INTEGER.
The order of the triangular factor \(U\) or \(L . n \geq 0\).
REAL for slauu2
DOUBLE PRECISION for dlauu2
COMPLEX for clauu2
COMPLEX*16 for zlauu2.
Array, DIMENSION (lda, n).On entry, the triangular factor \(U\) or \(L\).
lda
INTEGER.
The leading dimension of the array a. \(1 d a \geq \max (1, n)\).

\section*{Output Parameters}
\begin{tabular}{|c|c|}
\hline a & On exit, if uplo = ' U ', the upper triangle of \(a\) is overwritten with the upper triangle of the product \(U U\) '; if uplo = 'L', the lower triangle of \(a\) is overwritten with the lower triangle of the product \(L^{\prime} L\). \\
\hline info & \begin{tabular}{l}
INTEGER. \\
\(=0\) : successful exit \\
\(<0\) : if info \(=-k\), the \(k\)-th argument had an illegal value
\end{tabular} \\
\hline
\end{tabular}

\section*{?lauum}

Computes the product \(U U^{H}\) or \(L^{H} L\), where \(U\) and \(L\) are upper or lower triangular matrices.

\section*{Syntax}
```

call slauum ( uplo, n, a, lda, info )
call dlauum ( uplo, n, a, lda, info )
call clauum ( uplo, n, a, lda, info )
call zlauum ( uplo, n, a, lda, info )

```

\section*{Description}

The routine ? lauum computes the product \(U U^{\prime}\) or \(L^{\prime} L\), where the triangular factor \(U\) or \(L\) is stored in the upper or lower triangular part of the array \(a\).

If uplo = ' \(u\) ' or ' \(u\) ' , then the upper triangle of the result is stored, overwriting the factor \(U\) in a. If uplo = 'L' or ' 1 ', then the lower triangle of the result is stored, overwriting the factor \(L\) in a.

This is the blocked form of the algorithm, calling Level 3 BLAS.

\section*{Input Parameters}
```

uplo CHARACTER*1.
Specifies whether the triangular factor stored in the array a is upper or lower
triangular:
= 'u': Upper triangular
= 'L':Lower triangular
n INTEGER.
The order of the triangular factor }U\mathrm{ or }L.n\geq0\mathrm{ .
a REAL for slauum
DOUBLE PRECISION for dlauum
COMPLEX for clauum
COMPLEX*16 for zlauum.
Array, DIMENSION (lda, n). On entry, the triangular factor }U\mathrm{ or }L\mathrm{ .
lda INTEGER.
The leading dimension of the array a. lda }\geq\operatorname{max}(1,n)\mathrm{ .

```

\section*{Output Parameters}
```

a
On exit, if uplo = 'U', the upper triangle of a is overwritten with the upper
triangle of the product UU'; if uplo = 'L', the lower triangle of a is
overwritten with the lower triangle of the product L'L.
info INTEGER.
= 0: successful exit
<0: if info = -k, the k-th argument had an illegal value

```

\section*{?org2I/?ung2I}

Generates all or part of the orthogonal/unitary matrix
\(Q\) from a QL factorization determined by ?geqlf (unblocked algorithm).

\section*{Syntax}
```

call sorg2l ( m, n, k, a, lda, tau, work, info )
call dorg2l ( m, n, k, a, lda, tau, work, info )
call cung2l ( m, n, k, a, lda, tau, work, info )
call zung2l ( m, n, k, a, lda, tau, work, info )

```

\section*{Description}

The routine ?org2l/?ung2l generates an \(m\)-by-n real/complex matrix \(Q\) with orthonormal columns, which is defined as the last \(n\) columns of a product of \(k\) elementary reflectors of order m:
\(Q=H(k) \ldots H(2) H(1)\) as returned by ?geqle.

\section*{Input Parameters}
\begin{tabular}{ll}
\(m\) & INTEGER. \\
The number of rows of the matrix \(Q . m \geq 0\). \\
& INTEGER. \\
& The number of columns of the matrix \(Q . m \geq n \geq 0\).
\end{tabular}
```

k
a
lda
tau
INTEGER.
The number of elementary reflectors whose product defines the matrix Q.n \geq
k}\geq0
REAL for sorg2l
DOUBLE PRECISION for dorg2l
COMPLEX for cung2l
COMPLEX*16 for zung2l.
Array, DIMENSION (lda,n).
On entry, the (n-k+i)-th column must contain the vector which defines the
elementary reflector H(i), for
i=1,2,···,k, as returned by ?geqlf in the last k columns of its array argument
a.
INTEGER.
The first dimension of the array a. lda }\geq\operatorname{max}(1,m)
REAL for sorg2l
DOUBLE PRECISION for dorg2l
COMPLEX for cung2l
COMPLEX*16 for zung2l.
Array, DIMENSION (k).
tau(i) must contain the scalar factor of the elementary reflector H(i), as
returned by ?geqlf.
work REAL for sorg2l
DOUBLE PRECISION for dorg2l
COMPLEX for cung2l
COMPLEX*16 for zung2l.
Workspace array, DIMENSION (n).

```

\section*{Output Parameters}
a
info

On exit, the \(m\)-by-n matrix \(Q\).
INTEGER.
= 0: successful exit
\(<0\) : if info \(=-i\), the \(i\)-th argument has an illegal value

\section*{?org2r/?ung2r}

Generates all or part of the orthogonal/unitary matrix \(Q\) from a QR factorization determined by ?geqrf (unblocked algorithm).

\section*{Syntax}
```

call sorg2r ( m, n, k, a, lda, tau, work, info )
call dorg2r ( m, n, k, a, lda, tau, work, info )
call cung2r ( m, n, k, a, lda, tau, work, info )
call zung2r ( m, n, k, a, lda, tau, work, info )

```

\section*{Description}

The routine ? org \(2 \mathrm{r} /\) ? ung 2 r generates an \(m\)-by- \(n\) real/complex matrix \(Q\) with orthonormal columns, which is defined as the first \(n\) columns of a product of \(k\) elementary reflectors of order m
\[
Q=H(1) H(2) \ldots H(k)
\]
as returned by ?geqre.

\section*{Input Parameters}
\(m\) INTEGER.
The number of rows of the matrix \(Q . m \geq 0\).
\(n\) INTEGER.
The number of columns of the matrix \(Q . m \geq n \geq 0\).
\(k\) INTEGER.
The number of elementary reflectors whose product defines the matrix \(Q . n \geq\) \(k \geq 0\).
a
REAL for sorg2r
DOUBLE PRECISION for dorg2r
COMPLEX for cung2r
COMPLEX*16 for zung2r.
Array, DIMENSION (lda, n).
\begin{tabular}{|c|c|}
\hline & On entry, the \(i\)-th column must contain the vector which defines the elementary reflector \(H(i)\), for \(i=1,2, \ldots, k\), as returned by ?geqrf in the first \(k\) columns of its array argument \(a\). \\
\hline lda & \begin{tabular}{l}
INTEGER. \\
The first DIMENSION of the array \(a\). \(1 d a \geq \max (1, m)\).
\end{tabular} \\
\hline tau & \begin{tabular}{l}
REAL for sorg2r \\
DOUBLE PRECISION for dorg2r \\
COMPLEX for cung2r \\
COMPLEX*16 for zung2r. \\
Array, DIMENSION (k). \\
\(\operatorname{tau}(i)\) must contain the scalar factor of the elementary reflector \(H(i)\), as returned by ?geqrf.
\end{tabular} \\
\hline work & \begin{tabular}{l}
REAL for sorg2r \\
DOUBLE PRECISION for dorg2r \\
COMPLEX for cung2r \\
COMPLEX*16 for zung2r. \\
Workspace array, DIMENSION (n).
\end{tabular} \\
\hline \multicolumn{2}{|l|}{Output Parameters} \\
\hline a & On exit, the m-by-n matrix \(Q\). \\
\hline info & \begin{tabular}{l}
INTEGER. \\
\(=0\) : successful exit \\
\(<0\) : if info \(=-i\), the \(i\)-th argument has an illegal value
\end{tabular} \\
\hline
\end{tabular}

\section*{?orgl2/?ung|2}

Generates all or part of the orthogonal/unitary matrix
\(Q\) from an LQ factorization determined by ?gelqf (unblocked algorithm).

\section*{Syntax}
```

call sorgl2 ( m, n, k, a, lda, tau, work, info )
call dorgl2 ( m, n, k, a, lda, tau, work, info )
call cungl2 ( m, n, k, a, lda, tau, work, info )
call zungl2 ( m, n, k, a, lda, tau, work, info )

```

\section*{Description}

The routine ?orgl2/?ungl2 generates a \(m\)-by- \(n\) real/complex matrix \(Q\) with orthonormal rows, which is defined as the first \(m\) rows of a product of \(k\) elementary reflectors of order \(n\)
\[
Q=H(k) \ldots H(2) H(1) \text { or } Q=H(k)^{\prime} \ldots H(2)^{\prime} H(1)^{\prime}
\]
as returned by ?gelqf.

\section*{Input Parameters}

INTEGER. The number of rows of the matrix \(Q . m \geq 0\).

INTEGER.
The number of columns of the matrix \(Q . n \geq m\).
k
a
INTEGER.
The number of elementary reflectors whose product defines the matrix \(Q . m \geq\) \(k \geq 0\).

REAL for sorgl2
DOUBLE PRECISION for dorgl2
COMPLEX for cungl2
COMPLEX*16 for zungl2.
Array, DIMENSION (lda, n). On entry, the \(i\)-th row must contain the vector which defines the elementary reflector \(H(i)\), for \(i=1,2, \ldots, k\), as returned by ? gelqf in the first \(k\) rows of its array argument \(a\).

INTEGER.
The first dimension of the array \(a . I d a \geq \max (1, m)\).
tau REAL for sorgl2
DOUBLE PRECISION for dorgl2
COMPLEX for cungl2
COMPLEX*16 for zungl2.
Array, DIMENSION (\(k\)).
\(\operatorname{tau}(i)\) must contain the scalar factor of the elementary reflector \(\mathrm{H}(i)\), as returned by ?gelqf.
work REAL for sorgl2
DOUBLE PRECISION for dorgl2
COMPLEX for cungl2
COMPLEX*16 for zungl2.
Workspace array, DIMENSION (m).

\section*{Output Parameters}
\begin{tabular}{ll}
a & On exit, the \(m\)-by-n matrix \(Q\). \\
info & INTEGER. \\
& \(=0\) successful exit \\
& \(<0\) if info \(=-i\), the \(i\)-th argument has an illegal value.
\end{tabular}

\section*{?orgr2/?ungr2}

Generates all or part of the orthogonal/unitary matrix
\(Q\) from an RQ factorization determined by ?gerqf (unblocked algorithm).

\section*{Syntax}
```

call sorgr2 ( m, n, k, a, lda, tau, work, info )
call dorgr2 ( m, n, k, a, lda, tau, work, info )
call cungr2 ( m, n, k, a, lda, tau, work, info )
call zungr2 ( m, n, k, a, lda, tau, work, info )

```

\section*{Description}

The routine ?orgr2/?ungr2 generates an \(m\)-by- \(n\) real matrix \(Q\) with orthonormal rows, which is defined as the last \(m\) rows of a product of \(k\) elementary reflectors of order \(n\) \(Q=H(1) H(2) \ldots H(k)\) or \(Q=H(1)^{\prime} H(2)^{\prime} \ldots H(k)^{\prime}\) as returned by ?gerqf.

\section*{Input Parameters}
m
n
k
a

INTEGER. The number of rows of the matrix \(Q . m \geq 0\).
INTEGER.
The number of columns of the matrix \(Q . n \geq m\).
INTEGER.
The number of elementary reflectors whose product defines the matrix \(Q . m \geq\) \(k \geq 0\).

REAL for sorgr2
DOUBLE PRECISION for dorgr2
COMPLEX for cungr2
\begin{tabular}{|c|c|}
\hline Ida & \begin{tabular}{l}
INTEGER. \\
The first dimension of the array a. \(1 d a \geq \max (1, m)\).
\end{tabular} \\
\hline \multirow[t]{5}{*}{tau} & REAL for sorgr2 \\
\hline & DOUBLE PRECISION for dorgr2 \\
\hline & COMPLEX for cungr2 \\
\hline & COMPLEX*16 for zungr2. \\
\hline & Array, DIMENSION \((k) . \operatorname{tau}(i)\) must contain the scalar factor of the elementary reflector \(H(i)\), as returned by ?gerqf. \\
\hline \multirow[t]{5}{*}{work} & REAL for sorgr2 \\
\hline & DOUBLE PRECISION for dorgr2 \\
\hline & COMPLEX for cungr2 \\
\hline & COMPLEX*16 for zungr2. \\
\hline & Workspace array, DIMENSION (m). \\
\hline \multicolumn{2}{|l|}{Output Parameters} \\
\hline a & On exit, the m-by-n matrix \(Q\). \\
\hline \multirow[t]{3}{*}{info} & INTEGER. \\
\hline & \(=0\) : successful exit \\
\hline & \(<0\) : if info \(=-i\), the \(i\)-th argument has an illegal value \\
\hline
\end{tabular}

\section*{?orm2I/?unm2|}

Multiplies a general matrix by the orthogonal/unitary matrix from a QL factorization determined by ?geqle (unblocked algorithm).

\section*{Syntax}
```

call sorm2l ( side, trans, m, n, k, a, lda, tau, c, ldc, work, info )
call dorm2l ( side, trans, m, n, k, a, lda, tau, c, ldc, work, info )
call cunm2l ( side, trans, m, n, k, a, lda, tau, c, ldc, work, info )
call zunm2l ( side, trans, m, n, k, a, lda, tau, c, ldc, work, info )

```

\section*{Description}

The routine ?orm21/?unm2l overwrites the general real/complex m-by-n matrix \(C\) with
```

$Q * C$ if side $=$ ' L ' and trans $=$ ' N ', or
$Q^{\prime} \star C$ if side = 'L' and trans = 'T' (for real flavors) or
trans = 'c' (for complex flavors), or
$C \star Q$ if side $=$ ' R ' and trans $=$ ' N ', or
$C * Q$ ' if side $=$ ' R ' and trans $=$ ' T ' (for real flavors) or
trans = 'c' (for complex flavors)

```
where \(Q\) is a real orthogonal or complex unitary matrix defined as the product of \(k\) elementary reflectors
\[
Q=H(k) \ldots H(2) H(1)
\]
as returned by ?geqle. \(Q\) is of order \(m\) if side = 'L' and of order \(n\) if side = 'R'.

\section*{Input Parameters}
side CHARACTER*1.
= 't': apply \(Q\) or \(Q\) ' from the left
= 'R': apply \(Q\) or \(Q\) ' from the right
trans CHARACTER*1.
= 'n': apply \(Q\) (No transpose)
= 'T': apply \(Q\) ' (Transpose, for real flavors)
\(=\) 'c': apply \(Q^{\prime}\) (Conjugate transpose, for complex flavors)

INTEGER.
The number of rows of the matrix \(C . m \geq 0\).
INTEGER.
The number of columns of the matrix \(C . n \geq 0\).
INTEGER.
The number of elementary reflectors whose product defines the matrix Q .
If side \(=\) 'L', \(m \geq k \geq 0\);
if side \(=\) ' \(R\) ', \(n \geq k \geq 0\).
REAL for sorm21
DOUBLE PRECISION for dorm21
COMPLEX for cunm2l
COMPLEX*16 for zunm21.

Array, DIMENSION (lda,k).The \(i\)-th column must contain the vector which defines the elementary reflector \(H(i)\), for \(i=1,2, \ldots, k\), as returned by ? geqlf in the last \(k\) columns of its array argument \(a\). The array \(a\) is modified by the routine but restored on exit.

INTEGER.
The leading dimension of the array \(a\).
If side \(=\) 'L', Ida \(\geq \max (1, m)\);
if side \(=\) ' \(R\) ', lda \(\geq \max (1, n)\).
REAL for sorm2l
DOUBLE PRECISION for dorm2l
COMPLEX for cunm2l
COMPLEX*16 for zunm2l.
Array, DIMENSION (\(k\)). tau(\(i\)) must contain the scalar factor of the elementary reflector \(\mathrm{H}(i)\), as returned by ?geqlf.
REAL for sorm2l
DOUBLE PRECISION for dorm2l
COMPLEX for cunm2l
COMPLEX*16 for zunm2l.
Array, DIMENSION (\(1 d c, n\)).On entry, the \(m\)-by-n matrix \(C\).
INTEGER.
The leading dimension of the array \(C . I d c \geq \max (1, m)\).
REAL for sorm2l
DOUBLE PRECISION for dorm2l
COMPLEX for cunm2l
COMPLEX*16 for zunm2l.
Workspace array, DIMENSION:
(n) if side = 'L',
(m) if side = 'R'.

\section*{Output Parameters}

C
info

On exit, c is overwritten by \(Q C\) or \(Q^{\prime} C\) or \(C Q^{\prime}\) or \(C Q\).
INTEGER.
\(=0\) : successful exit
\(<0\) : if info \(=-i\), the \(i\)-th argument had an illegal value

\section*{?orm2r/?unm2r}

Multiplies a general matrix by the orthogonal/unitary matrix from a \(Q R\) factorization determined by ?geqr£ (unblocked algorithm).

\section*{Syntax}
```

call sorm2r ( side, trans, m, n, k, a, lda, tau, c, ldc, work, info )
call dorm2r ( side, trans, m, n, k, a, lda, tau, c, ldc, work, info )
call cunm2r ( side, trans, m, n, k, a, lda, tau, c, ldc, work, info )
call zunm2r ( side, trans, m, n, k, a, lda, tau, c, ldc, work, info )

```

\section*{Description}

The routine ?orm2r/?unm2r overwrites the general real/complex \(m\)-by- \(n\) matrix \(C\) with
\[
\begin{aligned}
& Q * C \text { if side }=\text { ' } \mathrm{L} \text { ' and trans }=\text { ' } \mathrm{N} \text { ', or } \\
& Q{ }^{*}{ }^{*} C \text { if side }=\text { 'L' and trans = 'T' (for real flavors) or } \\
& \text { trans = 'C' (for complex flavors), or } \\
& C * Q \text { if side }=\text { ' } \mathrm{R} \text { ' and trans }=\text { ' } \mathrm{N} \text { ', or } \\
& C * Q \text { ' if side = ' } \mathrm{R} \text { ' and trans = ' } T \text { ' (for real flavors) or } \\
& \text { trans = 'C' (for complex flavors) }
\end{aligned}
\]
where \(Q\) is a real orthogonal or complex unitary matrix defined as the product of \(k\) elementary reflectors
\[
Q=H(1) H(2) \ldots H(k)
\]
as returned by ? geqre. \(Q\) is of order \(m\) if side = 'L' and of order \(n\) if side = 'R'.

\section*{Input Parameters}
```

side CHARACTER*1.
= '''': apply Q or Q' from the left
= 'R': apply Q or Q' from the right
trans CHARACTER*1.
= 'N': apply Q (No transpose)
= 'T': apply Q' (Transpose, for real flavors)
= 'C': apply Q' (Conjugate transpose, for complex
flavors)

```
m

INTEGER.
The number of rows of the matrix \(C . m \geq 0\).
INTEGER.
The number of columns of the matrix \(C . n \geq 0\).
INTEGER.
The number of elementary reflectors whose product defines the matrix \(Q\).
If side \(=\) 'L', \(m \geq k \geq 0\);
if side \(=\) ' \(R\) ', \(n \geq k \geq 0\).
REAL for sorm2r
DOUBLE PRECISION for dorm2r
COMPLEX for cunm2r
COMPLEX*16 for zunm2r.
Array, DIMENSION (lda,k).The \(i\)-th column must contain the vector which defines the elementary reflector \(H(i)\), for \(i=1,2, \ldots, k\), as returned by ? geqrf in the first \(k\) columns of its array argument \(a\). The array a is modified by the routine but restored on exit.

INTEGER.
The leading dimension of the array a.
If side = 'L', lda \(\geq \max (1, m)\);
if side \(=\) ' \(R\) ', lda \(\geq \max (1, n)\).
REAL for sorm2r
DOUBLE PRECISION for dorm2r
COMPLEX for cunm2r
COMPLEX*16 for zunm2r.
Array, DIMENSION (\(k\)).
tau(\(i\)) must contain the scalar factor of the elementary reflector \(H(i)\), as
returned by ?geqrf.
REAL for sorm2r
DOUBLE PRECISION for dorm2r
COMPLEX for cunm2r
COMPLEX*16 for zunm2r.
Array, DIMENSION (ldc, n). On entry, the m-by-n matrix \(C\).
INTEGER.
The leading dimension of the array \(C .1 d c \geq \max (1, m)\).
REAL for sorm2r
DOUBLE PRECISION for dorm2r
COMPLEX for cunm2r

COMPLEX*16 for zunm2r.
Workspace array, DIMENSION
(n) if side = 'L',
(\(m\)) if side = 'R'.

\section*{Output Parameters}
\begin{tabular}{ll}
c & On exit, \(c\) is overwritten by \(Q C\) or \(Q^{\prime} C\) or \(C Q^{\prime}\) or \(C Q\). \\
info & INTEGER. \\
& \(=0:\) successful exit \\
& \(<0\) : if info \(=-i\), the \(i\)-th argument had an illegal value
\end{tabular}

\section*{?orml2/?unml2}

Multiplies a general matrix by the orthogonal/unitary matrix from a LQ factorization determined by ?gelqf (unblocked algorithm).

\section*{Syntax}
```

call sorml2 ( side, trans, m, n, k, a, lda, tau, c, ldc, work, info )
call dorml2 ( side, trans, m, n, k, a, lda, tau, c, ldc, work, info )
call cunml2 ( side, trans, m, n, k, a, lda, tau, c, ldc, work, info )
call zunml2 ( side, trans, m, n, k, a, lda, tau, c, ldc, work, info )

```

\section*{Description}

The routine ?orml2/?unml2 overwrites the general real/complex m-by-n matrix \(C\) with
\[
\begin{array}{cc}
Q \star C & \text { if side }=\text { 'L' and trans }=\text { 'N', or } \\
Q^{\prime} * C \text { if side }=\text { 'L' and trans }=\text { 'T' (for real flavors) or } \\
\text { trans }=\text { 'C' (for complex flavors), or } \\
C * Q & \text { if side }=\text { 'R' and trans }=\text { 'N', or } \\
C * Q \text { ' if side }=\text { 'R' and trans }=\text { ' } \mathrm{T} \text { ' (for real flavors) or } \\
\text { trans }=\text { ' ' ' (for complex flavors) }
\end{array}
\]
where \(Q\) is a real orthogonal or complex unitary matrix defined as the product of \(k\) elementary reflectors
\[
Q=H(k) \ldots H(2) H(1) \text { or } Q=H(k)^{\prime} \ldots H(2)^{\prime} H(1)^{\prime}
\]
as returned by ?gelqf. \(Q\) is of order \(m\) if side = 'L' and of order \(n\) if side \(=\) ' \(R\) '.

\section*{Input Parameters}
side CHARACTER*1.
= 'L': apply \(Q\) or \(Q^{\prime}\) from the left
\(=\) 'R': apply \(Q\) or \(Q\) ' from the right
trans CHARACTER*1.
= ' N ': apply \(Q\) (No transpose)
= 'T': apply \(Q^{\prime}\) (Transpose, for real flavors)
= 'C': apply \(Q^{\prime}\) (Conjugate transpose, for complex
flavors)
m
n
k
a

Ida
tau

INTEGER. The number of rows of the matrix \(C . m \geq 0\).

INTEGER.
The number of columns of the matrix \(C . n \geq 0\).
INTEGER.
The number of elementary reflectors whose product defines the matrix \(Q\).
If side \(=\) 'L', \(m \geq k \geq 0\);
if side \(=\) ' \(R\) ', \(n \geq k \geq 0\).
REAL for sorml2
DOUBLE PRECISION for dorml2
COMPLEX for cunml2
COMPLEX*16 for zunml2.
Array, DIMENSION
(lda, m) if side = 'L',
\((1 d a, n)\) if side \(=\) ' \(R\) '
The \(i\)-th row must contain the vector which defines the elementary reflector \(H(i)\), for \(i=1,2, \ldots, k\), as returned by ?gelqf in the first \(k\) rows of its array argument \(a\). The array \(a\) is modified by the routine but restored on exit.

INTEGER.
The leading dimension of the array a. \(1 d a \geq \max (1, k)\).
REAL for sorml2
DOUBLE PRECISION for dorml2
COMPLEX for cunml2
COMPLEX*16 for zunml2.
```

Array, DIMENSION ( $k$ ).
$\operatorname{tau}(i)$ must contain the scalar factor of the elementary reflector $H(i)$, as returned by ?gelqf.

```
c
\(1 d c\)
work
```

REAL for sorml2
DOUBLE PRECISION for dorml2
COMPLEX for cunml2
COMPLEX*16 for zunml2.
Array, DIMENSION ( $1 d c, n$ )
On entry, the $m-b y-n$ matrix $C$.
INTEGER.
The leading dimension of the array $c . I d c \geq \max (1, m)$.
REAL for sorml2
DOUBLE PRECISION for dorml2
COMPLEX for cunml2
COMPLEX*16 for zunml2.
Workspace array, DIMENSION
(n) if side = 'L',
(m) if side = ' R '

```

\section*{Output Parameters}

C
info
```

On exit, $c$ is overwritten by $Q C$ or $Q^{\prime} C$ or $C Q^{\prime}$ or $C Q$.
INTEGER.
$=0$ : successful exit
<0: if info $=-i$, the $i$-th argument had an illegal value

```

\section*{?ormr2/?unmr2}

Multiplies a general matrix by the orthogonal/unitary matrix from a RQ factorization determined by ?gerqf (unblocked algorithm).

\section*{Syntax}
```

call sormr2 ( side, trans, m, n, k, a, lda, tau, c, ldc, work, info )
call dormr2 ( side, trans, m, n, k, a, lda, tau, c, ldc, work, info )
call cunmr2 ( side, trans, m, n, k, a, lda, tau, c, ldc, work, info )

```
```

call zunmr2 ( side, trans, m, n, k, a, lda, tau, c, ldc, work, info )

```

\section*{Description}

The routine ?ormr2/?unmr2 overwrites the general real/complex m-by-n matrix \(C\) with
\[
\begin{array}{cc}
Q \star C & \text { if side }=\text { 'L' and trans }=\text { 'N', or } \\
Q^{\prime} \star C \text { if side }=\text { 'L' and trans }=\text { 'T' (for real flavors) or } \\
\text { trans }=\text { 'C' (for complex flavors), or } \\
C \star Q & \text { if side }=\text { 'R' and trans }=\text { 'N', or } \\
C \star Q \text { ' if side }=\text { 'R' and trans }=\text { ' } \mathrm{T} \text { ' (for real flavors) or } \\
\text { trans = 'C' (for complex flavors) }
\end{array}
\]
where \(Q\) is a real orthogonal or complex unitary matrix defined as the product of \(k\) elementary reflectors
\[
Q=H(1) H(2) \ldots H(k) \text { or } Q=H(1)^{\prime} H(2)^{\prime} \ldots H(k)^{\prime}
\]
as returned by ? gerqf. \(Q\) is of order \(m\) if side = 'L' and of order \(n\) if side \(=\) ' \(R\) '.

\section*{Input Parameters}
```

side CHARACTER*1.
= 'L': apply Q or Q' from the left
= 'R': apply Q or Q' from the right
trans CHARACTER*1.
= 'N': apply Q (No transpose)
= 'т': apply Q' (Transpose, for real flavors)
= 'C': apply Q' (Conjugate transpose, for complex
flavors)
m INTEGER.
The number of rows of the matrix C.m\geq0.
INTEGER.
The number of columns of the matrix C. n \geq0.
INTEGER.
The number of elementary reflectors whose product defines the matrix Q.
If side = 'L', m \geqk \geq0;
if side = 'R', n \geqk \geq0.
REAL for sormr2
DOUBLE PRECISION for dormr2
COMPLEX for cunmr2

```
\begin{tabular}{|c|c|}
\hline & \begin{tabular}{l}
COMPLEX*16 for zunmr2. \\
Array, DIMENSION \\
\((1 d a, m)\) if side = 'L', \\
\((1 d a, n)\) if side \(=\) ' \(R\) ' \\
The \(i\)-th row must contain the vector which defines the elementary reflector \(H(i)\), for \(i=1,2, \ldots, k\), as returned by ? gerqf in the last \(k\) rows of its array argument \(a\). The array \(a\) is modified by the routine but restored on exit.
\end{tabular} \\
\hline \(1 d a\) & \begin{tabular}{l}
INTEGER. \\
The leading dimension of the array \(a .1 d a \geq \max (1, k)\).
\end{tabular} \\
\hline tau & \begin{tabular}{l}
REAL for sormr2 \\
DOUBLE PRECISION for dormr2 \\
COMPLEX for cunmr2 \\
COMPLEX*16 for zunmr2. \\
Array, DIMENSION (\(k\)). \\
\(\operatorname{tau}(i)\) must contain the scalar factor of the elementary reflector \(\mathrm{H}(i)\), as returned by ? gerqf.
\end{tabular} \\
\hline c & \begin{tabular}{l}
REAL for sormr2 \\
DOUBLE PRECISION for dormr2 \\
COMPLEX for cunmr2 \\
COMPLEX*16 for zunmr2. \\
Array, Dimension (\(1 d c, n\)). \\
On entry, the \(m\)-by- \(n\) matrix \(C\).
\end{tabular} \\
\hline \(1 d c\) & \begin{tabular}{l}
INTEGER. \\
The leading dimension of the array \(C . I d c \geq \max (1, m)\).
\end{tabular} \\
\hline work & \begin{tabular}{l}
REAL for sormr2 \\
DOUBLE PRECISION for dormr2 \\
COMPLEX for cunmr2 \\
COMPLEX*16 for zunmr2. \\
Workspace array, DIMENSION \\
(n) if side = 'L', \\
(m) if side = 'R'
\end{tabular} \\
\hline \multicolumn{2}{|l|}{Output Parameters} \\
\hline & On exit, c is overwritten by \(Q C\) or \(Q^{\prime} C\) or \(C Q^{\prime}\) or \(C Q\). \\
\hline info & \begin{tabular}{l}
INTEGER. \\
= 0: successful exit \\
\(<0\) : if info \(=-i\), the \(i\)-th argument had an illegal value
\end{tabular} \\
\hline
\end{tabular}

\section*{?ormr3/?unmr3}

\section*{Multiplies a general matrix by the orthogonal/unitary} matrix from a RZ factorization determined by ? tzrzf (unblocked algorithm).

\section*{Syntax}
```

call sormr3 ( side, trans, m, n, k, l, a, lda, tau, c, ldc, work, info )
call dormr3 ( side, trans, m, n, k, l, a, lda, tau, c, ldc, work, info )
call cunmr3 ( side, trans, m, n, k, l, a, lda, tau, c, ldc, work, info )
call zunmr3 ( side, trans, m, n, k, l, a, lda, tau, c, ldc, work, info )

```

\section*{Description}

The routine ?ormr3/?unmr3 overwrites the general real/complex \(m\)-by- \(n\) matrix \(C\) with
```

Q*C if side = 'L' and trans = ' }\textrm{N}\mathrm{ ', or
Q'*C if side = 'L' and trans = 'T' (for real flavors) or
trans = 'C' (for complex flavors), or
C*Q if side = 'R' and trans = 'N', or
C*Q' if side = 'R' and trans = 'T' (for real flavors) or
trans = 'C' (for complex flavors)

```
where \(Q\) is a real orthogonal or complex unitary matrix defined as the product of \(k\) elementary reflectors
\[
Q=H(1) H(2) \ldots H(k)
\]
as returned by ?tzrzf. \(Q\) is of order \(m\) if side = 'L' and of order \(n\) if side = 'R'.

\section*{Input Parameters}
```

side CHARACTER*1.
= 'L': apply Q or Q' from the left
= 'R': apply Q or Q' from the right
trans CHARACTER*1.
= 'n': apply Q (No transpose)
= 'T': apply Q' (Transpose, for real flavors)
= 'C': apply Q' (Conjugate transpose, for complex
flavors)

```
\begin{tabular}{ll}
m & INTEGER. \\
The number of rows of the matrix \(C . m \geq 0\). \\
\(n\) & INTEGER. \\
The number of columns of the matrix \(C . n \geq 0\).
\end{tabular}
```

    COMPLEX*16 for zunmr3.
    Array, DIMENSION (ldc, n).
    On entry, the m-by-n matrix C.
    Idc INTEGER.
The leading dimension of the array c. ldc }\geq\operatorname{max}(1,m)
work REAL for sormr3
DOUBLE PRECISION for dormr3
COMPLEX for cunmr3
COMPLEX*16 for zunmr3.
Workspace array, DIMENSION
(n) if side = 'L',
(m) if side = 'R'.

```

\section*{Output Parameters}
```

| c | On exit, $c$ is overwritten by $Q C$ or $Q^{\prime} C$ or $C Q^{\prime}$ or $C Q$. |
| :--- | :--- |
| info | INTEGER. |
|  | $=0:$ successful exit |
|  | $<0$ : if info $=-i$, the $i$-th argument had an illegal value |

```

\section*{?pbtf2}

Computes the Cholesky factorization of a symmetric/ Hermitian positive definite band matrix (unblocked algorithm).

\section*{Syntax}
```

call spbtf2 ( uplo, n, kd, ab, ldab, info )
call dpbtf2 ( uplo, n, kd, ab, ldab, info )
call cpbtf2 ( uplo, n, kd, ab, ldab, info )
call zpbtf2 ( uplo, n, kd, ab, ldab, info )

```

\section*{Description}

The routine computes the Cholesky factorization of a real symmetric or complex Hermitian positive definite band matrix \(A\). The factorization has the form
\(A=U\) ' \(U\), if uplo = ' ' ', or
\(A=L L\) ', if uplo = 'L',
where \(U\) is an upper triangular matrix, \(U^{\prime}\) is the transpose of \(U\), and \(L\) is lower triangular. This is the unblocked version of the algorithm, calling Level 2 BLAS.

\section*{Input Parameters}
```

uplo CHARACTER*1.
Specifies whether the upper or lower triangular part of the
symmetric/Hermitian matrix A is stored:
= 'U': Upper triangular
= 'L':Lower triangular
INTEGER.
The order of the matrix }A.n\geq0\mathrm{ .
INTEGER.
The number of super-diagonals of the matrix }A\mathrm{ if uplo = 'U , or the number of
sub-diagonals if uplo = 'L'.
kd\geq0.
REAL for spbtf2
DOUBLE PRECISION for dpbtf2
COMPLEX for cpbtf2
COMPLEX*16 for zpbtf2.
Array, DIMENSION (ldab, n).
On entry, the upper or lower triangle of the symmetric/ Hermitian band matrix
A, stored in the first kd+1 rows of the array. The j-th column of A is stored in
the j-th column of the array ab as follows:
if uplo = 'u', ab(kd+1+i-j,j) = A(i,j) for
max(1,j-kd)\leqi\leqj;
if uplo = 'L', ab(1+i-j,j) = A(i,j) for
j \leqi\leqmin(n,j+kd).
ldab INTEGER.
The leading dimension of the array ab. ldab \geqkd+1.

```

\section*{Output Parameters}
\begin{tabular}{|c|c|}
\hline \(a b\) & On exit, if info \(=0\), the triangular factor \(U\) or \(L\) from the Cholesky factorization \(A=U^{\prime} U\) or \(A=L L^{\prime}\) of the band matrix \(A\), in the same storage format as \(A\). \\
\hline info & \begin{tabular}{l}
INTEGER. \\
\(=0\) : successful exit \\
\(<0\) : if info \(=-k\), the \(k\)-th argument had an illegal value \\
\(>0\) : if info \(=k\), the leading minor of order \(k\) is not positive definite, and the factorization could not be completed.
\end{tabular} \\
\hline
\end{tabular}

\section*{?potf2}

Computes the Cholesky factorization of a symmetric/Hermitian positive definite matrix (unblocked algorithm).

\section*{Syntax}
```

call spotf2 ( uplo, n, a, lda, info )
call dpotf2 ( uplo, n, a, lda, info )
call cpotf2 ( uplo, n, a, lda, info )
call zpotf2 ( uplo, n, a, lda, info )

```

\section*{Description}

The routine ?potf2 computes the Cholesky factorization of a real symmetric or complex Hermitian positive definite matrix \(A\). The factorization has the form
\(A=U\) ' \(U\), if uplo = ' ' ', or
\(A=L L ', \quad\) if uplo = 'L',
where \(U\) is an upper triangular matrix and \(L\) is lower triangular.
This is the unblocked version of the algorithm, calling Level 2 BLAS.

\section*{Input Parameters}
```

uplo CHARACTER*1.
Specifies whether the upper or lower triangular part of the
symmetric/Hermitian matrix }A\mathrm{ is stored.
= 'U':Upper triangular
= 'L':Lower triangular
INTEGER.
The order of the matrix }A\mathrm{ . n }\geq0\mathrm{ .
REAL for spotf2
DOUBLE PRECISION or dpotf2
COMPLEX for cpotf2
COMPLEX*16 for zpotf2.
Array, DIMENSION (lda, n).
On entry, the symmetric/Hermitian matrix }A\mathrm{ .
If uplo = 'U', the leading n-by-n upper triangular part of a contains the upper
triangular part of the matrix }A\mathrm{ , and the strictly lower triangular part of a is not
referenced. If uplo = 'L', the leading n-by-n lower triangular part of a
contains the lower triangular part of the matrix }A\mathrm{ , and the strictly upper
triangular part of a is not referenced.
lda INTEGER.
The leading dimension of the array a. lda }\geq\operatorname{max}(1,n)

```

\section*{Output Parameters}

On exit, if info \(=0\), the factor \(U\) or \(L\) from the Cholesky factorization \(A=U^{\prime}\) \(U\) or \(A=L L^{\prime}\).

INTEGER.
\(=0\) : successful exit
\(<0\) : if info \(=-k\), the \(k\)-th argument had an illegal value
\(>0\) : if \(\operatorname{info}=k\), the leading minor of order \(k\) is not positive definite, and the factorization could not be completed.

\section*{?ptts2}

Solves a tridiagonal system of the form \(A X=B\) using the \(L D L^{H}\) factorization computed by ?pttrf.

\section*{Syntax}
```

call sptts2 ( n, nrhs, d, e, b, ldb )
call dptts2 ( n, nrhs, d, e, b, ldb )
call cptts2 ( iuplo, n, nrhs, d, e, b, ldb )
call zptts2 ( iuplo, n, nrhs, d, e, b, ldb )

```

\section*{Description}

The routine ?ptts2 solves a tridiagonal system of the form \(A X=B\)
Real flavors sptts2/dptts2 use the \(L D L^{\prime}\) factorization of \(A\) computed by spttrf/dpttrf, and complex flavors cptts2/zptts2 use the \(U^{\prime} D U\) or \(L D L^{\prime}\) factorization of \(A\) computed by cpttrf/zpttrf.
\(D\) is a diagonal matrix specified in the vector \(d, U(\) or \(L)\) is a unit bidiagonal matrix whose superdiagonal (subdiagonal) is specified in the vector \(e\), and \(X\) and \(B\) are \(n\)-by-nrhs matrices.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{iuplo} & INTEGER. Used with complex flavors only. \\
\hline & \begin{tabular}{l}
Specifies the form of the factorization and whether the vector \(e\) is the superdiagonal of the upper bidiagonal factor \(U\) or the subdiagonal of the lower bidiagonal factor \(L\). \\
\(=1: A=U^{\prime} D U\), e is the superdiagonal of \(U\); \\
\(=0: A=L D L^{\prime}, e\) is the subdiagonal of \(L\)
\end{tabular} \\
\hline \multirow[t]{2}{*}{\(n\)} & INTEGER. \\
\hline & The order of the tridiagonal matrix \(A . n \geq 0\). \\
\hline \multirow[t]{2}{*}{nrhs} & INTEGER. \\
\hline & The number of right hand sides, that is, the number of columns of the matrix \(B\). nrhs \(\geq 0\). \\
\hline
\end{tabular}
d
e
b
\(1 d b\)

REAL for sptts2/cptts2
DOUBLE PRECISION for dptts2/zptts2.
Array, dimension (n).
The \(n\) diagonal elements of the diagonal matrix \(D\) from the factorization of \(A\).
REAL for sptts2
DOUBLE PRECISION for dptts2
COMPLEX for cptts2
COMPLEX*16 for zptts2.
Array, DIMENSION (n-1).
Contains the (\(n-1\)) subdiagonal elements of the unit bidiagonal factor \(L\) from the \(L D L^{\prime}\) factorization of \(A\) (for real flavors, or for complex flavors when iuplo =0).
For complex flavors when iuplo \(=1\), e contains the (\(n-1\)) superdiagonal elements of the unit bidiagonal factor \(U\) from the factorization \(A=U^{\prime} D U\).

REAL for sptts2/cptts2
DOUBLE PRECISION for dptts2/zptts2.
Array, DIMENSION (1 db, nrhs).
On entry, the right hand side vectors \(B\) for the system of linear equations.
INTEGER.
The leading dimension of the array \(B . \quad l d b \geq \max (1, n)\).

\section*{Output Parameters}
b On exit, the solution vectors, \(X\).

\section*{?rscl}

Multiplies a vector by the reciprocal of a real scalar.

\section*{Syntax}
```

call srscl ( n, sa, sx, incx )
call drscl ( n, sa, sx, incx )
call csrscl ( n, sa, sx, incx )
call zdrscl ( n, sa, sx, incx )

```

\section*{Description}

The routine ?rscl multiplies an \(n\)-element real/complex vector \(x\) by the real scalar \(1 / a\). This is done without overflow or underflow as long as the final result \(x / a\) does not overflow or underflow.

\section*{Input Parameters}
```

n INTEGER.

```
 The number of components of the vector \(x\).
sa REAL for srscl/csrscl
 DOUBLE PRECISION for drscl/zdrscl.
 The scalar \(a\) which is used to divide each component of the vector \(x\). sa must
 be \(\geq 0\), or the subroutine will divide by zero.
SX \(\quad\) REAL for srscl
 DOUBLE PRECISION for drscl
 COMPLEX for csrscl
 COMPLEX*16 for zdrscl.
 Array, DIMENSION \((1+(n-1) * \operatorname{abs}(i n c x))\).
 The \(n\)-element vector \(x\).
incx INTEGER.
 The increment between successive values of the vector \(s x\).
 If incx \(>0, s x(1)=x(1)\) and
 \(s x(1+(i-1) * i n c x)=x(i), \quad 1<i \leq n\).

\section*{Output Parameters}
\(s x \quad\) On exit, the result \(x / a\).

\section*{?sygs2/?hegs2}

Reduces a symmetric/Hermitian definite generalized eigenproblem to standard form, using the factorization results obtained from ?potrf (unblocked algorithm).

\section*{Syntax}
```

call ssygs2 ( itype, uplo, n, a, lda, b, ldb, info )
call dsygs2 ( itype, uplo, n, a, lda, b, ldb, info )

```
```

call chegs2 ( itype, uplo, n, a, lda, b, ldb, info )
call zhegs2 ( itype, uplo, n, a, lda, b, ldb, info )

```

\section*{Description}

The routine ?sygs2/?hegs2 reduces a real symmetric-definite or a complex Hermitian-definite generalized eigenproblem to standard form.
If itype \(=1\), the problem is
\(A x=\lambda B x\),
and \(A\) is overwritten by \(\operatorname{inv}\left(U^{\prime}\right) \star A * \operatorname{inv}(U)\) or \(\operatorname{inv}(L) * A * \operatorname{inv}\left(L^{\prime}\right)\).
If itype \(=2\) or 3 , the problem is
\(A B x=\lambda x\) or \(B A x=\lambda x\),
and \(A\) is overwritten by \(U A U^{\prime}\) or \(L^{\prime} A L\). B must have been previously factorized as \(U^{\prime} U\) or \(L L^{\prime}\) by ?potrf.

\section*{Input Parameters}
itype INTEGER.
\(=1\) : compute \(\operatorname{inv}\left(U^{\prime}\right) \star A * \operatorname{inv}(U)\) or \(\operatorname{inv}(L) * A * \operatorname{inv}\left(L^{\prime}\right)\);
\(=2\) or 3 : compute \(U A U^{\prime}\) or \(L^{\prime} A L\).

CHARACTER
Specifies whether the upper or lower triangular part of the symmetric/Hermitian matrix \(A\) is stored, and how \(B\) has been factorized.
= 'U': Upper triangular
= ' L ': Lower triangular
INTEGER.
The order of the matrices \(A\) and \(B . n \geq 0\).
a
REAL for ssygs 2
DOUBLE PRECISION for dsygs2
COMPLEX for chegs2
COMPLEX*16 for zhegs2.
Array, DIMENSION (Ida, n).
On entry, the symmetric/Hermitian matrix \(A\).
If uplo = ' U ', the leading \(n\)-by- \(n\) upper triangular part of a contains the upper triangular part of the matrix \(A\), and the strictly lower triangular part of \(a\) is not referenced. If uplo \(=\) ' \(L\) ', the leading \(n\)-by- \(n\) lower triangular part of a contains the lower triangular part of the matrix \(A\), and the strictly upper triangular part of \(a\) is not referenced.
```

lda INTEGER.
The leading dimension of the array a. Ida }\geq\operatorname{max}(1,n)
b REAL for ssygs2
DOUBLE PRECISION for dsygs2
COMPLEX for chegs2
COMPLEX*16 for zhegs2.
Array, DIMENSION (ldb, n).
The triangular factor from the Cholesky factorization of B as returned by
?potrf.
Idb INTEGER.
The leading dimension of the array B. Idb \geq max(1,n).

```

\section*{Output Parameters}
a
info

On exit, if info \(=0\), the transformed matrix, stored in the same format as \(A\).
INTEGER.
= 0: successful exit.
\(<0\) : if info \(=-i\), the \(i\)-th argument had an illegal value .

\section*{?sytd2/?hetd2}

Reduces a symmetric/Hermitian matrix to real symmetric tridiagonal form by an orthogonal/unitary similarity transformation (unblocked algorithm).

\section*{Syntax}
```

call ssytd2 ( uplo, n, a, lda, d, e, tau, info )
call dsytd2 ( uplo, n, a, lda, d, e, tau, info )
call chetd2 ( uplo, n, a, lda, d, e, tau, info )
call zhetd2 ( uplo, n, a, lda, d, e, tau, info )

```

\section*{Description}

The routine ?sytd2/?hetd2 reduces a real symmetric/complex Hermitian matrix \(A\) to real symmetric tridiagonal form \(T\) by an orthogonal/unitary similarity transformation: \(Q^{\prime} A Q=T\).

\section*{Input Parameters}
```

uplo CHARACTER*1.
Specifies whether the upper or lower triangular part of the
symmetric/Hermitian matrix }A\mathrm{ is stored:
= 'U': Upper triangular
= 'L': Lower triangular
INTEGER.
The order of the matrix }A.n\geq0\mathrm{ .
REAL for ssytd2
DOUBLE PRECISION for dsytd2
COMPLEX for chetd2
COMPLEX*16 for zhetd2.
Array, DIMENSION (lda, n).
On entry, the symmetric/Hermitian matrix }A\mathrm{ .
If uplo = 'U', the leading n-by-n upper triangular part of a contains the upper
triangular part of the matrix }A\mathrm{ , and the strictly lower triangular part of }a\mathrm{ is not
referenced. If uplo = 'L', the leading n-by-n lower triangular part of a
contains the lower triangular part of the matrix }A\mathrm{ , and the strictly upper
triangular part of a is not referenced.
lda
INTEGER.
The leading dimension of the array a. lda }\geq\operatorname{max}(1,n)

```

\section*{Output Parameters}

On exit, if uplo = ' u ', the diagonal and first superdiagonal of a are overwritten by the corresponding elements of the tridiagonal matrix \(T\), and the elements above the first superdiagonal, with the array tau, represent the orthogonal/unitary matrix \(Q\) as a product of elementary reflectors; if uplo = ' L ', the diagonal and first subdiagonal of a are overwritten by the corresponding elements of the tridiagonal matrix \(T\), and the elements below the first subdiagonal, with the array tau, represent the orthogonal/unitary matrix \(Q\) as a product of elementary reflectors.
\(d\)
REAL for ssytd2/chetd2
DOUBLE PRECISION for dsytd2/zhetd2.
Array, DIMENSION (n).
The diagonal elements of the tridiagonal matrix \(T\) :
\(a(i)=a(i, i)\).
```

e
REAL for ssytd2/chetd2
DOUBLE PRECISION for dsytd2/zhetd2.
Array, DIMENSION (n-1).
The off-diagonal elements of the tridiagonal matrix T:
e(i)=a(i,i+1) if uplo = 'U',
e(i)=a(i+1,i) if uplo = 'L'.
tau REAL for ssytd2
DOUBLE PRECISION for dsytd2
COMPLEX for chetd2
COMPLEX*16 for zhetd2.
Array, DIMENSION (n-1).
The scalar factors of the elementary reflectors .
info INTEGER.
= 0: successful exit
<0: if info =-i, the i-th argument had an illegal value.

```

\section*{?sytf2}

Computes the factorization of a real/complex symmetric indefinite matrix, using the diagonal pivoting method (unblocked algorithm).

\section*{Syntax}
```

call ssytf2 ( uplo, n, a, lda, ipiv, info )
call dsytf2 ( uplo, n, a, lda, ipiv, info )
call ñsytf2 ( uplo, n, a, lda, ipiv, info )
call zsytf2 ( uplo, n, a, lda, ipiv, info )

```

\section*{Description}

The routine ?sytf2 computes the factorization of a real/complex symmetric matrix \(A\) using the Bunch-Kaufman diagonal pivoting method:
\[
A=U D U^{\prime} \text { or } A=L D L^{\prime}
\]
where \(U\) (or \(L\)) is a product of permutation and unit upper (lower) triangular matrices, \(U^{\prime}\) is the transpose of \(U\), and \(D\) is symmetric and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.

This is the unblocked version of the algorithm, calling Level 2 BLAS.

\section*{Input Parameters}
```

uplo CHARACTER*1.
Specifies whether the upper or lower triangular part of the symmetric matrix }
is stored
= 'U': Upper triangular
= 'L': Lower triangular
n
a
lda
INTEGER.
The leading dimension of the array a. lda }\geq\operatorname{max}(1,n)

```

\section*{Output Parameters}

On exit, the block diagonal matrix \(D\) and the multipliers used to obtain the factor \(U\) or \(L\).

INTEGER.
Array, DIMENSION (n).
Details of the interchanges and the block structure of \(D\) If ipiv \((k)>0\), then rows and columns \(k\) and \(\operatorname{ipiv}(k)\) were interchanged and \(D(k, k)\) is a 1-by-1 diagonal block.
If uplo \(=\) ' u ' and \(\operatorname{ipiv}(k)=\operatorname{ipiv}(k-1)<0\), then rows and columns \(k-1\) and -ipiv(\(k\)) were interchanged and \(D(k-1: k, k-1: k)\) is a 2-by-2 diagonal block. If uplo ='L' and \(\operatorname{ipiv}(k)=\operatorname{ipiv}(k+1)<0\), then rows and columns \(k+1\) and \(-i p i v(k)\) were interchanged and \(D(k: k+1, k: k+1)\) is a 2-by-2 diagonal block.
```

info INTEGER.
= 0: successful exit
< 0: if info = -k, the k-th argument had an illegal value
>0: if info = k, D(k,k) is exactly zero. The factorization has been
completed, but the block diagonal matrix D is exactly singular, and division by
zero will occur if it is used to solve a system of equations.

```

\section*{?hetf2}

Computes the factorization of a complex Hermitian matrix, using the diagonal pivoting method (unblocked algorithm).

\section*{Syntax}
```

call chetf2 ( uplo, n, a, lda, ipiv, info )

```
call zhetf2 (uplo, \(n, a, ~ l d a, ~ i p i v, ~ i n f o ~) ~\)

\section*{Description}

The routine computes the factorization of a complex Hermitian matrix \(A\) using the Bunch-Kaufman diagonal pivoting method:
\[
A=U D U^{\prime} \text { or } A=L D L^{\prime}
\]
where \(U(\) or \(L)\) is a product of permutation and unit upper (lower) triangular matrices, \(U^{\prime}\) is the conjugate transpose of \(U\), and \(D\) is Hermitian and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.

This is the unblocked version of the algorithm, calling Level 2 BLAS.

\section*{Input Parameters}
```

uplo CHARACTER*1.
Specifies whether the upper or lower triangular part of the Hermitian matrix }
is stored:
= 'U': Upper triangular
= 'L':Lower triangular
n
INTEGER.
The order of the matrix }A.n\geq0\mathrm{ .

```
```

a
lda
COMPLEX for chetf2
COMPLEX*16 for zhetf2.
Array, DIMENSION (lda, n).
On entry, the Hermitian matrix }A\mathrm{ .
If uplo = ' }\textrm{U}\mathrm{ ', the leading n-by-n upper triangular part of a contains the upper
triangular part of the matrix }A\mathrm{ , and the strictly lower triangular part of a is not
referenced.
If uplo = 'L', the leading n-by-n lower triangular part of a contains the lower
triangular part of the matrix }A\mathrm{ , and the strictly upper triangular part of }a\mathrm{ is not
referenced.
INTEGER.
The leading dimension of the array a. lda }\geq\operatorname{max}(1,n)\mathrm{ .

```

\section*{Output Parameters}

On exit, the block diagonal matrix \(D\) and the multipliers used to obtain the factor \(U\) or \(L\).

INTEGER.
Array, dimension (n).
Details of the interchanges and the block structure of \(D\) If \(\operatorname{ipiv}(k)>0\), then rows and columns \(k\) and \(\operatorname{ipiv}(k)\) were interchanged and \(D(k, k)\) is a 1-by-1 diagonal block.
If uplo \(=\) ' U ' and \(\operatorname{ipiv}(k)=\operatorname{ipiv}(k-1)<0\), then rows and columns \(k-1\) and -ipiv \((k)\) were interchanged and \(D(k-1: k, k-1: k)\) is a 2 -by-2 diagonal block. If uplo \(=\) 'L' and \(\operatorname{ipiv}(k)=\operatorname{ipiv}(k+1)<0\), then rows and columns \(k+1\) and \(-i p i v(k)\) were interchanged and \(D(k: k+1, k: k+1)\) is a 2-by-2 diagonal block. INTEGER.
\(=0\) : successful exit
\(<0\) : if info \(=-k\), the \(k\)-th argument had an illegal value
\(>0\) : if info \(=k, D(k, k)\) is exactly zero. The factorization has been completed, but the block diagonal matrix \(D\) is exactly singular, and division by zero will occur if it is used to solve a system of equations.

\section*{?tgex2}

Swaps adjacent diagonal blocks in an upper (quasi) triangular matrix pair by an orthogonal/unitary equivalence transformation.

\section*{Syntax}
```

call stgex2 ( wantq, wantz, n, a, lda, b, ldb, q, ldq, z, ldz, jl, nl,
n2, work, lwork, info )
call dtgex2 ( wantq, wantz, n, a, lda, b, ldb, q, ldq, z, ldz, jl, nl,
n2, work, lwork, info )
call ctgex2 ( wantq, wantz, n, a, lda, b, ldb, q, ldq, z, ldz, jl, info )
call ztgex2 ( wantq, wantz, n, a, lda, b, ldb, q, ldq, z, ldz, jl, info )

```

\section*{Description}

The real routines stgex \(2 /\) dtgex2 swap adjacent diagonal blocks \((A 11, B 11)\) and \((A 22, B 22)\) of size 1-by-1 or 2-by-2 in an upper (quasi) triangular matrix pair \((A, B)\) by an orthogonal equivalence transformation. \((A, B)\) must be in generalized real Schur canonical form (as returned by sgges/dgges), that is, \(A\) is block upper triangular with 1-by-1 and 2-by-2 diagonal blocks. \(B\) is upper triangular.

The complex routines ctgex2/ztgex2 swap adjacent diagonal 1-by-1 blocks \((A 11, B 11)\) and (\(A 22, B 22\)) in an upper triangular matrix pair \((A, B)\) by an unitary equivalence transformation. \((A, B)\) must be in generalized Schur canonical form, that is, \(A\) and \(B\) are both upper triangular.

All routines optionally update the matrices \(Q\) and \(Z\) of generalized Schur vectors:
```

$Q(\mathrm{in}) * A(\mathrm{in}) * Z(\mathrm{in})^{\prime}=Q($ out $) * A($ out $) * Z(\text { out })^{\prime}$
$Q($ in $) \star B($ in $) \star Z($ in $) '=Q($ out $) \star B($ out $) \star Z(\text { out })^{\prime}$

```

\section*{Input Parameters}
```

wantq LOGICAL.
If wantq = .TRUE. : update the left transformation matrix Q;
If wantq = .FALSE.: do not update Q.
wantz LOGICAL.
If wantz = .TRUE. : update the right transformation matrix Z;
If wantz = .FALSE.: do not update Z.

```
\begin{tabular}{|c|c|}
\hline \(n\) & \begin{tabular}{l}
INTEGER. \\
The order of the matrices \(A\) and \(B . n \geq 0\).
\end{tabular} \\
\hline \multirow[t]{6}{*}{\(a, b\)} & REAL for stgex2 \\
\hline & DOUBLE PRECISION for dtgex2 \\
\hline & COMPLEX for ctgex2 \\
\hline & COMPLEX*16 for ztgex2. \\
\hline & Arrays, DIMENSION (lda, \(n\)) and (\(1 \mathrm{db}, n\)), respectively. \\
\hline & On entry, the matrices \(A\) and \(B\) in the pair \((A, B)\). \\
\hline \multirow[t]{2}{*}{Ida} & INTEGER. \\
\hline & The leading dimension of the array \(a .1 d a \geq \max (1, n)\). \\
\hline \multirow[t]{2}{*}{1 db} & INTEGER. \\
\hline & The leading dimension of the array \(b\). \(1 d b \geq \max (1, n)\). \\
\hline \multirow[t]{7}{*}{q, z} & REAL for stgex2 \\
\hline & DOUBLE PRECISION for dtgex2 \\
\hline & COMPLEX for ctgex2 \\
\hline & COMPLEX*16 for ztgex2. \\
\hline & Arrays, DIMENSION (ldq, \(n\)) and (\(1 \mathrm{dz}, \mathrm{n}\)), respectively. \\
\hline & On entry, if want \(q=\). TRUE.,\(q\) contains the orthogonal/unitary matrix \(Q\), and if want \(z=\).TRUE., \\
\hline & \(z\) contains the orthogonal/unitary matrix \(Z\). \\
\hline \multirow[t]{3}{*}{\(1 d q\)} & INTEGER. \\
\hline & The leading dimension of the array \(q\). \(1 d q \geq 1\). \\
\hline & If want \(q=\). TRUE., Idq \(\geq\) n. \\
\hline \multirow[t]{3}{*}{\(1 d z\)} & INTEGER. \\
\hline & The leading dimension of the array z. \(1 d z \geq 1\). \\
\hline & If wantz \(=\). TRUE., \(1 d z \geq n\). \\
\hline \multirow[t]{2}{*}{j1} & INTEGER. \\
\hline & The index to the first block (\(A 11, B 11\)). \(1 \leq j 1 \leq n\). \\
\hline \multirow[t]{2}{*}{n1} & INTEGER. Used with real flavors only. \\
\hline & The order of the first block \((A 11, B 11) . n 1=0,1\) or 2 . \\
\hline \multirow[t]{2}{*}{n2} & INTEGER. Used with real flavors only. \\
\hline & The order of the second block (\(A 22, B 22\)). n2 \(=0,1\) or 2 . \\
\hline \multirow[t]{3}{*}{work} & REAL for stgex2 \\
\hline & DOUBLE PRECISION for dtgex2. \\
\hline & Workspace array, DIMENSION (lwork). Used with real flavors only. \\
\hline
\end{tabular}
```

lwork
INTEGER
The dimension of the array work.
lwork}\geq\operatorname{max}(n*(n2+n1),2*(n2+n1)2

```

\section*{Output Parameters}
a On exit, the updated matrix \(A\).
b On exit, the updated matrix \(B\).
\(q \quad\) On exit, the updated matrix \(Q\).
Not referenced if want \(q=\). FALSE..
On exit, the updated matrix \(Z\).
Not referenced if want \(z=\). FALSE. .
info
INTEGER.
\(=0\) : Successful exit
For stgex2/dtgex2: if info \(=1\), the transformed matrix \((A, B)\) would be too far from generalized Schur form; the blocks are not swapped and \((A, B)\) and \((Q, Z)\) are unchanged. The problem of swapping is too ill-conditioned. If info \(=-16\) : 1 work is too small. Appropriate value for 1 work is returned in work(1).
For ctgex2/ztgex2: if info \(=1\), the transformed matrix pair \((A, B)\) would be too far from generalized Schur form; the problem is ill-conditioned. \((A, B)\) may have been partially reordered, and ilst points to the first row of the current position of the block being moved.

\section*{?tgsy2}

Solves the generalized Sylvester equation (unblocked algorithm).

\section*{Syntax}
```

call stgsy2 ( trans, ijob, m, n, a, lda, b, ldb, c, ldc, d, ldd, e, lde,
f, ldf, scale, rdsum, rdscal, iwork, pq, info )
call dtgsy2 ( trans, ijob, m, n, a, lda, b, ldb, c, ldc, d, ldd, e, lde,
f, ldf, scale, rdsum, rdscal, iwork, pq, info )
call ctgsy2 ( trans, ijob, m, n, a, lda, b, ldb, c, ldc, d, ldd, e, lde,
f, ldf, scale, rdsum, rdscal, iwork, pq, info )

```
```

call ztgsy2 ( trans, ijob, m, n, a, lda, b, ldb, c, ldc, d, ldd, e, lde,

```
 f, ldf, scale, rdsum, rdscal, iwork, pq, info)

\section*{Description}

The routine ?tgsy2 solves the generalized Sylvester equation:
\[
\begin{equation*}
A R-L B=\text { scale } * C \tag{1}
\end{equation*}
\]
\[
D R-L E=\text { scale } \star F,
\]
using Level 1 and 2 BLAS, where \(R\) and \(L\) are unknown \(m\)-by-n matrices, \((A, D),(B, E)\) and (\(C\), \(F\)) are given matrix pairs of size \(m\)-by- \(m, n\)-by- \(n\) and \(m\)-by-n, respectively.
For stgsy2/dtgsy2, pairs \((A, D)\) and \((B, E)\) must be in generalized Schur canonical form, that is, \(A, B\) are upper quasi triangular and \(D, E\) are upper triangular. For ctgsy2/ztgsy2, matrices \(A, B, D\) and \(E\) are upper triangular (that is, \((A, D)\) and \((B, E)\) in generalized Schur form).
The solution \((R, L)\) overwrites \((C, F) .0 \leq\) scale \(\leq 1\) is an output scaling factor chosen to avoid overflow.

In matrix notation, solving equation (1) corresponds to solve
\[
\mathrm{Z} x=\text { scale } * b,
\]
where \(Z\) is defined as
\[
Z=\left[\begin{array}{ll}
\operatorname{kron}\left(I_{n}, A\right) & -\operatorname{kron}\left(B^{\prime}, I_{m}\right) \tag{2}\\
\operatorname{kron}\left(I_{n}, D\right) & -\operatorname{kron}\left(E^{\prime}, I_{m}\right)
\end{array}\right]
\]

Here \(I_{k}\) is the identity matrix of size \(k\) and \(X^{\prime}\) is the transpose of \(X\).
\(\operatorname{kron}(X, Y)\) denotes the Kronecker product between the matrices \(X\) and \(Y\).
If trans = ' T ' , solve the transposed (conjugate transposed) system
\[
Z y=\text { scale } * b
\]
for \(y\), which is equivalent to solve for \(R\) and \(L\) in
\[
\begin{align*}
& A^{\prime} R+D^{\prime} L=\text { scale } \star C \tag{3}\\
& \quad R B^{\prime}+L E^{\prime}=\operatorname{scale} \star(-F)
\end{align*}
\]

This case is used to compute an estimate of \(\operatorname{Dif}[(A, D),(B, E)]=\operatorname{sigma} \_\min (Z)\) using reverse communication with ?lacon.
?tgsy2 also (for ijob \(\geq 1\)) contributes to the computation in ?tgsyl of an upper bound on the separation between two matrix pairs. Then the input \((A, D),(B, E)\) are sub-pencils of the matrix pair (two matrix pairs) in ?tgsyl. See ?tgsyl for details.

\section*{Input Parameters}
```

trans CHARACTER
If trans = 'N', solve the generalized Sylvester
equation (1);
If trans = 'T': solve the 'transposed' system (3).
ijob INTEGER.
Specifies what kind of functionality is to be performed.
If ijob = 0: solve (1) only.
If ijob = 1: a contribution from this subsystem to a Frobenius norm-based
estimate of the separation between two matrix pairs is computed (look ahead
strategy is used);
If ijob =2: a contribution from this subsystem to a Frobenius norm-based
estimate of the separation between two matrix pairs is computed (?gecon on
sub-systems is used).
Not referenced if trans = 'T'.
INTEGER.
On entry, m specifies the order of A and D, and the row
dimension of C,F,R and L.
n
a, b
lda
ldb
C, f
INTEGER.
On entry, n specifies the order of B and E, and the column dimension of C, F,
R and L.

```
```

REAL for stgsy2
DOUBLE PRECISION for dtgsy2
COMPLEX for ctgsy2
COMPLEX*16 for ztgsy2.
Arrays, DIMENSION (lda,m) and (ldb, n), respectively. On entry, a contains
an upper (quasi) triangular matrix }A\mathrm{ and }b\mathrm{ contains an upper (quasi) triangular
matrix B.
INTEGER.
The leading dimension of the array a. lda }\geq\operatorname{max}(1,m)
INTEGER.
The leading dimension of the array b. ldb }\geq\operatorname{max}(1,n)
REAL for stgsy2
DOUBLE PRECISION for dtgsy2
COMPLEX for ctgsy2
COMPLEX*16 for ztgsy2.

```

Arrays, DIMENSION (\(1 d c, n\)) and (\(1 d f, n\)), respectively. On entry, \(c\) contains the right-hand-side of the first matrix equation in (1) and \(f\) contains the right-hand-side of the second matrix equation in (1).
ldc
INTEGER.
The leading dimension of the array \(c .1 d c \geq \max (1, m)\).
REAL for stgsy2
DOUBLE PRECISION for dtgsy2
COMPLEX for ctgsy2
COMPLEX*16 for ztgsy2.
Arrays, DIMENSION (ldd, m) and (lde, \(n\)), respectively. On entry, d contains an upper triangular matrix \(D\) and e contains an upper triangular matrix \(E\).

INTEGER.
The leading dimension of the array \(d .1 d d \geq \max (1, m)\).
INTEGER.
The leading dimension of the array \(e . I d e \geq \max (1, n)\).
ldf
INTEGER.
The leading dimension of the array \(f .1 d f \geq \max (1, m)\).
REAL for stgsy2/ctgsy2
DOUBLE PRECISION for dtgsy2/ztgsy2.
On entry, the sum of squares of computed contributions to the Dif-estimate under computation by ?tgsyl, where the scaling factor rdscal has been factored out.

REAL for stgsy2/ctgsy2
DOUBLE PRECISION for dtgsy2/ztgsy2.
On entry, scaling factor used to prevent overflow in rdsum.
iwork INTEGER. Used with real flavors only.
Workspace array, DIMENSION (\(m+n+2\)).

\section*{Output Parameters}

\section*{c}
\(f\)
scale

On exit, if \(i\) job \(=0, c\) has been overwritten by the solution \(R\).
On exit, if \(i\) job \(=0, f\) has been overwritten by the solution \(L\).
REAL for stgsy2/ctgsy2
DOUBLE PRECISION for dtgsy2/ztgsy2.
On exit, \(0 \leq\) scale \(\leq 1\). If \(0<\) scale \(<1\), the solutions \(R\) and \(L\) (\(C\) and \(F\) on
\begin{tabular}{|c|c|}
\hline rdsum & \begin{tabular}{l}
On exit, the corresponding sum of squares updated with the contributions from the current sub-system. \\
If trans = ' T ', rdsum is not touched. \\
Note that rdsum only makes sense when ?tgsy2 is called by ?tgsyl.
\end{tabular} \\
\hline rdscal & \begin{tabular}{l}
On exit, rdscal is updated with respect to the current contributions in rdsum. If trans \(=\) ' T ', rdscal is not touched. \\
Note that rdscal only makes sense when ?tgsy2 is called by ?tgsyl.
\end{tabular} \\
\hline \(p q\) & \begin{tabular}{l}
INTEGER. Used with real flavors only. \\
On exit, the number of subsystems (of size 2-by-2, 4-by-4 and 8-by-8) solved by the routine stgsy2/dtgsy 2 .
\end{tabular} \\
\hline info & \begin{tabular}{l}
INTEGER. \\
On exit, if info is set to \\
\(=0\) : Successful exit \\
\(<0\) : If info \(=-i\), the \(i\)-th argument had an illegal value. \\
\(>0\) : The matrix pairs \((A, D)\) and \((B, E)\) have common or very close eigenvalues.
\end{tabular} \\
\hline
\end{tabular}

\section*{?trti2}

Computes the inverse of a triangular matrix (unblocked algorithm).

\section*{Syntax}
```

call strti2 ( uplo, diag, n, a, lda, info )
call dtrti2 ( uplo, diag, n, a, lda, info )
call ctrti2 ( uplo, diag, n, a, lda, info )
call ztrti2 ( uplo, diag, n, a, lda, info )

```

\section*{Description}

The routine ?trti2 computes the inverse of a real/complex upper or lower triangular matrix.
This is the Level 2 BLAS version of the algorithm.

\section*{Input Parameters}
```

uplo CHARACTER*1.
Specifies whether the matrix }A\mathrm{ is upper or lower triangular.
= 'U':Upper triangular
= 'L': Lower triangular
diag CHARACTER*1.
Specifies whether or not the matrix }A\mathrm{ is unit triangular.
= 'N':Non-unit triangular
= 'U': Unit triangular
INTEGER.
The order of the matrix }A.n\geq0\mathrm{ .
REAL for strti2
DOUBLE PRECISION for dtrti2
COMPLEX for ctrti2
COMPLEX*16 for ztrti2.
Array, DIMENSION (lda, n).
On entry, the triangular matrix }A\mathrm{ . If uplo = 'u', the leading n-by-n upper
triangular part of the array a contains the upper triangular matrix, and the
strictly lower triangular part of a is not referenced. If uplo = 'L', the leading
n-by-n lower triangular part of the array a contains the lower triangular matrix,
and the strictly upper triangular part of a is not referenced. If diag= 'u', the
diagonal elements of a are also not referenced and are assumed to be 1.
lda
INTEGER.
The leading dimension of the array a. lda }\geq\operatorname{max}(1,n)

```

\section*{Output Parameters}
info

On exit, the (triangular) inverse of the original matrix, in the same storage format.

INTEGER.
\(=0\) : successful exit
\(<0\) : if info \(=-k\), the \(k\)-th argument had an illegal value

\section*{Utility Functions and Routines}

This section describes LAPACK utility functions and routines. Summary information about these routines is given in the following table:

Table 5-2 LAPACK Utility Routines
\begin{tabular}{|c|c|c|}
\hline Routine Name & \begin{tabular}{l}
Data \\
Types
\end{tabular} & Description \\
\hline ilaenv & & Environmental enquiry function which returns values for tuning algorithmic performance. \\
\hline ieeeck & & Checks if the infinity and NaN arithmetic is safe. Called by ilaenv. \\
\hline \(\underline{\text { lsame }}\) & & Tests two characters for equality regardless of case. \\
\hline 1 samen & & Tests two character strings for equality regardless of case. \\
\hline ?labad & s,d & Returns the square root of the underflow and overflow thresholds if the exponent-range is very large. \\
\hline ? 1 amch & s,d & Determines machine parameters for floating-point arithmetic. \\
\hline ? lamc1 & s,d & Called from ? lamc2. Determines machine parameters given by beta, \(t\), rnd, ieeel. \\
\hline ? 1 amc 2 & s,d & Used by ?lamch. Determines machine parameters specified in its arguments list. \\
\hline ? \(1 \mathrm{amc3}\) & s,d & Called from ? lamcl-? lamc5. Intended to force \(a\) and \(b\) to be stored prior to doing the addition of \(a\) and \(b\). \\
\hline ? lamc4 & s,d & This is a service routine for ? lamc2. \\
\hline ?lamc5 & s,d & Called from ? lamc2. Attempts to compute the largest machine floating-point number, without overflow. \\
\hline \[
\frac{\text { second } / ~}{\text { dsecnd }}
\] & & Return user time for a process. \\
\hline xerbla & & Error handling routine called by LAPACK routines. \\
\hline
\end{tabular}

\section*{ilaenv}

Environmental enquiry function which returns values for tuning algorithmic performance.

\section*{Syntax}
```

value = ilaenv ( ispec, name, opts, n1, n2, n3, n4 )

```

\section*{Description}

Enquiry function ilaenv is called from the LAPACK routines to choose problem-dependent parameters for the local environment. See ispec for a description of the parameters.

This version provides a set of parameters which should give good, but not optimal, performance on many of the currently available computers. Users are encouraged to modify this subroutine to set the tuning parameters for their particular machine using the option and problem size information in the arguments.

This routine will not function correctly if it is converted to all lower case. Converting it to all upper case is allowed.

\section*{Input Parameters}
ispec
integer. Specifies the parameter to be returned as the value of ilaenv:
\(=1\) : the optimal blocksize; if this value is 1 , an unblocked algorithm will give the best performance.
\(=2\) : the minimum block size for which the block routine should be used; if the usable block size is less than this value, an unblocked routine should be used.
\(=3\) : the crossover point (in a block routine, for \(N\) less than this value, an unblocked routine should be used)
\(=4\) : the number of shifts, used in the nonsymmetric eigenvalue routines
\(=5\) : the minimum column dimension for blocking to be used; rectangular blocks must have dimension at least k by m , where k is given by ilaenv \((2, \ldots)\) and m by ilaenv(\(5, \ldots\))
\(=6\) : the crossover point for the SVD (when reducing an m by n matrix to bidiagonal form, if \(\max (\mathrm{m}, \mathrm{n}) / \min (\mathrm{m}, \mathrm{n})\) exceeds this value, a \(Q R\) factorization is used first to reduce the matrix to a triangular form.)
\(=7\) : the number of processors
\(=8\) : the crossover point for the multishift \(Q R\) and \(Q Z\) methods for nonsymmetric eigenvalue problems.
\(=9\) : maximum size of the subproblems at the bottom of the computation tree in the divide-and-conquer algorithm (used by ?gelsd and ?gesdd)
\(=10\) : IEEE NaN arithmetic can be trusted not to trap
\(=11\) : infinity arithmetic can be trusted not to trap
```

name
CHARACTER* (*).The name of the calling subroutine, in either upper case or
lower case.
opts CHARACTER* (*). The character options to the subroutine name, concatenated
into a single character string. For example, uplo = 'U', trans = 'T', and
diag = 'N' for a triangular routine would be specified as opts='UTN'.
n1,n2,n3,n4 INTEGER. Problem dimensions for the subroutine name; these may not all be
required.

```

\section*{Output Parameters}
```

value INTEGER.

```
value INTEGER.
 If value }\geq0\mathrm{ : the value of the parameter specified by ispec;
 If value }\geq0\mathrm{ : the value of the parameter specified by ispec;
 If value = -k < 0: the k-th argument had an illegal value.
```

    If value = -k < 0: the k-th argument had an illegal value.
    ```

\section*{Application Notes}

The following conventions have been used when calling ilaenv from the LAPACK routines:
1) opts is a concatenation of all of the character options to subroutine name, in the same order that they appear in the argument list for name, even if they are not used in determining the value of the parameter specified by ispec.
2) The problem dimensions \(n 1, n 2, n 3, n 4\) are specified in the order that they appear in the argument list for name. \(n 1\) is used first, \(n 2\) second, and so on, and unused problem dimensions are passed a value of -1 .
3) The parameter value returned by ilaenv is checked for validity in the calling subroutine. For example, ilaenv is used to retrieve the optimal blocksize for strtri as follows:
```

nb = ilaenv( 1, 'strtri', uplo // diag, n, -1, -1, -1 )
if( nb.le.1 ) nb = max( 1, n )

```

\section*{ieeeck}

\section*{Checks if the infinity and NaN arithmetic is safe. Called by il aenv.}

\section*{Syntax}
```

ival = ieeeck( ispec, zero, one )

```

\section*{Description}

The function ieeeck is called from the ilaenv to verify that infinity and possibly NaN arithmetic is safe, that is, will not trap.

\section*{Input Parameters}
ispec INTEGER. Specifies whether to test just for inifinity arithmetic or both for infinity and NaN arithmetic:
If \(i\) spec \(=0\) : Verify infinity arithmetic only.
If \(i s p e c=1\) : Verify infinity and NaN arithmetic.
zero REAL. Must contain the value 0.0 This is passed to prevent the compiler from optimizing away this code.
one \(\quad\) REAL. Must contain the value 1.0
This is passed to prevent the compiler from optimizing away this code.

\section*{Output Value}
```

ival INTEGER.
If ival = 0: Arithmetic failed to produce the correct answers.
If ival=1: Arithmetic produced the correct answers.

```

\section*{Isame}

Tests two characters for equality regardless of case.

Syntax
val \(=1\) same (ca, cb)

\section*{Description}

This logical function returns. TRUE. if ca is the same letter as \(c b\) regardless of case.
Input Parameters
\(c a, c b\) CHARACTER*1. Specify the single characters to be compared.

\section*{Output Parameters}
val LOGICAL. Result of the comparison.

\section*{Isamen}

Tests two character strings for equality regardless of case.

\section*{Syntax}
```

val = lsamen ( n, ca, cb )

```

\section*{Description}

This logical function tests if the first \(n\) letters of the string ca are the same as the first \(n\) letters of \(c b\), regardless of case. The function 1 samen returns. TRUE. if \(c a\) and \(c b\) are equivalent except for case and. FALSE. otherwise. Isamen also returns.FALSE. if len (ca) or len (cb) is less than \(n\).

\section*{Input Parameters}
\(n\)
INTEGER. The number of characters in \(c a\) and \(c b\) to be compared.
\(c a, c b \quad\) CHARACTER* (*). Specify two character strings of length at least \(n\) to be
compared. Only the first \(n\) characters of each string will be accessed.

\section*{Output Parameters}
val LOGICAL. Result of the comparison.

\section*{?labad}

Returns the square root of the underflow and overflow thresholds if the exponent-range is very large.

\section*{Syntax}
```

call slabad ( small, large )

```
call dlabad (small, large)

\section*{Description}

This routine takes as input the values computed by slamch/dlamch for underflow and overflow, and returns the square root of each of these values if the log of large is sufficiently large. This subroutine is intended to identify machines with a large exponent range, such as the Crays, and redefine the underflow and overflow limits to be the square roots of the values computed by ? lamch. This subroutine is needed because ?lamch does not compensate for poor arithmetic in the upper half of the exponent range, as is found on a Cray.

\section*{Input Parameters}
```

small REAL for slabad
DOUBLE PRECISION for dlabad.
The underflow threshold as computed by ?lamch.
large REAL for slabad
DOUBLE PRECISION for dlabad.
The overflow threshold as computed by ?lamch.

```

\section*{Output Parameters}
small On exit, if \(\log 10\) (large) is sufficiently large, the square root of small, otherwise unchanged.

\section*{large On exit, if \(\log 10\) (large) is sufficiently large, the square root of large, otherwise unchanged.}

\section*{?lamch}

Determines machine parameters for floating-point arithmetic.

\section*{Syntax}
```

val = slamch ( cmach )
val = dlamch ( cmach )

```

\section*{Description}

The function ?lamch determines single precision and double precision machine parameters.

\section*{Input Parameters}
```

cmach CHARACTER*1. Specifies the value to be returned by ?lamch:
= 'E' or 'e', val = eps
= 's' or's,val = sfmin
= 'B' or 'b', val = base
= ' }P\mathrm{ ' or 'p', val = eps*base
= 'N' or 'n', val = t
= 'R' or 'r', val = rnd
= 'M' or 'm', val = emin
= 'U' or 'u', val = rmin
= 'L' or '1',val = emax
= 'o' or 'o', val = rmax
where
eps = relative machine precision;
sfmin}=\mathrm{ safe minimum, such that 1/sfmin does not overflow;
base = base of the machine;
prec = eps*base;
t = number of (base) digits in the mantissa;
rnd = 1.0 when rounding occurs in addition, 0.0 otherwise;
emin = minimum exponent before (gradual) underflow;

```
```

rmin = underflow_threshold - base**(emin-1);
emax = largest exponent before overflow;
rmax = overflow_threshold - (base**emax)*(1-eps).

```

\section*{Output Parameters}
```

val REAL for slamch
DOUBLE PRECISION for dlamch
Value returned by the function.

```

\section*{?lamc1}

Called from ? lamc2.
Determines machine parameters given by beta, \(t\), rnd, ieeel.

\section*{Syntax}
```

call slamc1 ( beta, t, rnd, ieee1 )
call dlamc1 ( beta, t, rnd, ieee1 )

```

\section*{Description}

The routine ?lamcl determines machine parameters given by beta, \(t\), rnd, ieeel.

\section*{Output Parameters}
\begin{tabular}{|c|c|}
\hline beta & INTEGER. The base of the machine. \\
\hline \(t\) & INTEGER. The number of (beta) digits in the mantissa. \\
\hline \multirow[t]{2}{*}{rnd} & LOGICAL. \\
\hline & Specifies whether proper rounding (\(r n d=\). TRUE.) or chopping (\(r n d=\) . FALSE.) occurs in addition. This may not be a reliable guide to the way in which the machine performs its arithmetic. \\
\hline \multirow[t]{2}{*}{ieeel} & LOGICAL. \\
\hline & Specifies whether rounding appears to be done in the ieee 'round to nearest' style. \\
\hline
\end{tabular}

\section*{?lamc2}

Used by ?lamch.
Determines machine parameters specified in its arguments list.

\section*{Syntax}
```

call slamc2 ( beta, t, rnd, eps, emin, rmin, emax, rmax )
call dlamc2 ( beta, t, rnd, eps, emin, rmin, emax, rmax )

```

\section*{Description}

The routine ?lamc2 determines machine parameters specified in its arguments list.

\section*{Output Parameters}
beta INTEGER. The base of the machine.
\(t\)
rnd
INTEGER. The number of (beta) digits in the mantissa.
LOGICAL.
Specifies whether proper rounding (rnd=.TRUE.) or chopping (rnd= .FALSE.) occurs in addition. This may not be a reliable guide to the way in which the machine performs its arithmetic.
eps REAL for slamc2
DOUBLE PRECISION for dlamc2
The smallest positive number such that \(f 1(1.0-e p s)<1.0\),
where \(f l\) denotes the computed value.
emin INTEGER. The minimum exponent before (gradual) underflow occurs.
rmin REAL for slamc2
DOUBLE PRECISION for dlamc2
The smallest normalized number for the machine, given by base \({ }^{\operatorname{emin}-1}\), where base is the floating point value of beta.
emax INTEGER.The maximum exponent before overflow occurs.
```

rmax REAL for slamc2
DOUBLE PRECISION for dlamc2
The largest positive number for the machine, given by base emax (1-eps),
where base is the floating point value of beta.

```

\section*{?lamc3}

Called from ? lamc1-? lamc5. Intended to force a and \(b\) to be stored prior to doing the addition of \(a\) and \(b\).

\section*{Syntax}
```

val = slamc3 ( a, b )
val = dlamc3 ( a, b )

```

\section*{Description}

The routine is intended to force \(a\) and \(b\) to be stored prior to doing the addition of \(a\) and \(b\), for use in situations where optimizers might hold one of these in a register.

\section*{Input Parameters}
```

a,b
REAL for slamc3
DOUBLE PRECISION for dlamc3
The values a and b.

```

\section*{Output Parameters}
```

val
REAL for slamc3
DOUBLE PRECISION for dlamc3
The result of adding values a and b.

```

\section*{?lamc4}

This is a service routine for ?lamc2.

\section*{Syntax}
call slamc4 (emin, start, base)
call dlamc4 (emin, start, base)

\section*{Description}

This is a service routine for ?lamc2 .

\section*{Input Parameters}
```

start REAL for slamc4
DOUBLE PRECISION for dlamc4
The starting point for determining emin.
base INTEGER. The base of the machine.

```

\section*{Output Parameters}
emin INTEGER. The minimum exponent before (gradual) underflow, computed by setting \(a=\) start and dividing by base until the previous a can not be recovered.

\section*{?lamc5}

Called from ?lamc2.
Attempts to compute the largest machine floating-point number, without overflow.
```

Syntax
call slamc5 ( beta, p, emin, ieee, emax, rmax )
call dlamc5 ( beta, p, emin, ieee, emax, rmax )

```

\section*{Description}

The routine ?lamc5 attempts to compute rmax, the largest machine floating-point number, without overflow. It assumes that
emax \(+\mathrm{abs}(\mathrm{emin})\) sum approximately to a power of 2 . It will fail on machines where this assumption does not hold, for example, the Cyber 205 (\(\mathrm{emin}=-28625\), emax \(=28718\)). It will also fail if the value supplied for emin is too large (that is, too close to zero), probably with overflow.

\section*{Input Parameters}
\begin{tabular}{ll}
beta & INTEGER. The base of floating-point arithmetic. \\
\(p\) & INTEGER. The number of base beta digits in the mantissa of a floating-point \\
value. \\
emin & INTEGER. The minimum exponent before (gradual) underflow. \\
ieee & \begin{tabular}{l}
LOGICAL. A logical flag specifying whether or not the arithmetic system is \\
thought to comply with the IEEE standard.
\end{tabular}
\end{tabular}

\section*{Output Parameters.}
```

emax INTEGER. The largest exponent before overflow.
rmax REAL for slamc5
DOUBLE PRECISION for dlamC5
The largest machine floating-point number.

```

\section*{second/dsecnd}

Return user time for a process.

\section*{Syntax}
```

val = second()
val = dsecnd()

```

\section*{Description}

The functions second/dsecnd return the user time for a process in seconds. These versions get the time from the system function etime. The difference is that dseend returns the result with double presision.

\section*{Output Parameters}
```

val REAL for second
DOUBLE PRECISION for dsecnd
User time for a process.

```

\section*{xerbla}

Error handling routine called by LAPACK routines.

\section*{Syntax}
```

call xerbla ( srname, info )

```

\section*{Description}

The routine xerbla is an error handler for the LAPACK routines. It is called by a LAPACK routine if an input parameter has an invalid value.
\(A\) message is printed and execution stops.
Installers may consider modifying the stop statement in order to call system-specific exception-handling facilities.

Input Parameters
```

srname CHARACTER*6
The name of the routine which called xerbla.
info INTEGER.
The position of the invalid parameter in the parameter list of the calling
routine.

```

\section*{ScaLAPACK Routines}

This chapter describes the Intel \({ }^{\circledR}\) Math Kernel Library implementation of routines from the ScaLAPACK package for distributed-memory architectures.Routines are supported for both real and complex dense and band matrices to perform the tasks of solving systems of linear equations, solving linear least-squares problems, eigenvalue and singular value problems, as well as performing a number of related computational tasks. All routines are available in both single precision and double precision.

NOTE. ScaLAPACK routines are provided with Intel® Cluster MKL product only which is a superset of Intel MKL.

Sections in this chapter include descriptions of ScaLAPACK computational routines that perform distinct computational tasks, as well as driver routines for solving standard types of problems in one call.

Generally, ScaLAPACK runs on a network of computers using MPI as a message-passing layer and a set of prebuilt communication subprograms (BLACS), as well as a set of BLAS optimized for the target architecture. Intel® Cluster MKL version of ScaLAPACK is optimized for Intel \({ }^{\circledR}\) processors. For the detailed system and environment requirements see Intel MKL Release Notes and Intel MKL Technical UserNotes.

For full reference on ScaLAPACK routines and related information see [SLUG].

\section*{Overview}

The model of the computing environment for ScaLAPACK is represented as a one-dimensional array of processes (for operations on band or tridiagonal matrices) or also a two-dimensional process grid (for operations on dense matrices). To use ScaLAPACK, all global matrices or vectors should be distributed on this array or grid prior to calling the ScaLAPACK routines.

ScaLAPACK uses the two-dimensional block-cyclic data distribution as a layout for dense matrix computations.
This distribution provides good work balance between available processors, as well as gives the opportunity to use BLAS Level 3 routines for optimal local computations. Information about the data distribution that is required to establish the mapping between each global array and its corresponding process and memory location is contained in the so called array descriptor associated with each global array.
An example of an array descriptor structure is given in Table 6-1
Table 6-1 Content of the array descriptor for dense matrices
\begin{tabular}{lll}
\begin{tabular}{l}
Array \\
Element \#
\end{tabular} & Name & Definition \\
\hline 1 & dtype & Descriptor type (=1 for dense matrices) \\
2 & ctxt & BLACS context handle for the process grid \\
3 & \(m\) & Number of rows in the global array \\
4 & \(n\) & Number of columns in the global array \\
5 & mb & \begin{tabular}{l}
Row blocking factor
\end{tabular} \\
6 & nb & \begin{tabular}{l}
Column blocking factor
\end{tabular} \\
7 & csrc & \begin{tabular}{l}
Process row over which the first row of the global array is \\
distributed
\end{tabular} \\
8 & Process column over which the first column of the global \\
9 & array is distributed \\
Leading dimension of the local array
\end{tabular}

The number of rows and columns of a global dense matrix that a particular process in a grid receives after data distributing is denoted by \(L O C_{r}()\) and \(L O C_{c}()\), respectively. To compute these numbers, you can use the ScaLAPACK tool routine numroc.

After the block-cyclic distribution of global data is done, you may choose to perform an operation on a submatrix of the global matrix \(A\), which is contained in the global subarray \(\operatorname{sub}(A)\), defined by the following 6 values (for dense matrices):
m
The number of rows of \(\operatorname{sub}(A)\)
n
a
ia
ja
desca

The number of columns of \(\operatorname{sub}(A)\)
A pointer to the local array containing the entire global array \(A\)
The row index of \(\operatorname{sub}(A)\) in the global array
The column index of \(\operatorname{sub}(A)\) in the global array
The array descriptor for the global array

\section*{Routine Naming Conventions}

For each routine introduced in this chapter, you can use the ScaLAPACK name. The naming convention for ScaLAPACK routines is similar to that used for LAPACK routines (see Routine Naming Conventions in Chapter 4). A general rule is that each routine name in ScaLAPACK, which has an LAPACK equivalent, is simply the LAPACK name prefixed by initial letter p .

ScaLAPACK names have the structure pxyyzzz or pxyyzz, which is described below.
The initial letter \(p\) is a distinctive prefix of ScaLAPACK routines and is present in each such routine.
The second letter \(\mathbf{x}\) indicates the data type:
s real, single precision c
d real, double precision z complex, double precision

The second and third letters yy indicate the matrix type as:
ge general
gb general band
gg a pair of general matrices (for a generalized problem)
dt general tridiagonal (diagonally dominant-like)
\(\mathrm{db} \quad\) general band (diagonally dominant-like)
po symmetric or Hermitian positive-definite
pb symmetric or Hermitian positive-definite band
pt symmetric or Hermitian positive-definite tridiagonal
sy symmetric
st symmetric tridiagonal (real)
he Hermitian
or orthogonal
tr triangular (or quasi-triangular)
tz trapezoidal
un unitary
For computational routines, the last three letters zzz indicate the computation performed and have the same meaning as for LAPACK routines.

For driver routines, the last two letters \(\mathbf{z z}\) or three letters \(\mathbf{z z z}\) have the following meaning:
sv a simple driver for solving a linear system
svx an expert driver for solving a linear system
ls a driver for solving a linear least squares problem
ev a simple driver for solving a symmetric eigenvalue problem
evx an expert driver for solving a symmetric eigenvalue problem
svd a driver for computing a singular value decomposition
gvx an expert driver for solving a generalized symmetric definite
eigenvalue problem
Simple driver here mean that the driver just solves the general problem, whereas an expert driver is more versatile and can also optionally perform some related computations (such, for example, as refining the solution and computing error bounds after the linear system is solved).

\section*{Computational Routines}

In the sections that follow, the descriptions of ScaLAPACK computational routines are given. These routines perform distinct computational tasks that can be used for:
- Solving Systems of Linear Equations
- Orthogonal Factorizations and LLS Problems
- Symmetric Eigenproblems
- Nonsymmetric Eigenvalue Problems
- Singular Value Decomposition
- Generalized Symmetric-Definite Eigenproblems

See also the respective driver routines.

\section*{Linear Equations}

ScaLAPACK supports routines for the systems of equations with the following types of matrices:
- general
- general banded
- general diagonally dominant-like banded (including general tridiagonal)
- symmetric or Hermitian positive-definite
- symmetric or Hermitian positive-definite banded
- symmetric or Hermitian positive-definite tridiagonal

A diagonally dominant-like matrix is defined as a matrix for which it is known in advance that pivoting is not required in the LU factorization of this matrix.

For the above matrix types, the library includes routines for performing the following computations: factoring the matrix; equilibrating the matrix; solving a system of linear equations; estimating the condition number of a matrix; refining the solution of linear equations and computing its error bounds; inverting the matrix. Note that for some of the listed matrix types only part of the computational routines are provided (for example, routines that refine the solution are not provided for band or tridiagonal matrices). See Table 6-2 for full list of available routines.

To solve a particular problem, you can either call two or more computational routines or call a corresponding driver routine that combines several tasks in one call. Thus, to solve a system of linear equations with a general matrix, you can first call p?getrf (\(L U\) factorization) and then p?getrs (computing the solution). Then, you might wish to call p?gerfs to refine the solution and get the error bounds. Alternatively, you can just use the driver routine p?gesvx which performs all these tasks in one call.

Table 6-2 lists the ScaLAPACK computational routines for factorizing, equilibrating, and inverting matrices, estimating their condition numbers, solving systems of equations with real matrices, refining the solution, and estimating its error.

Table 6-2 Computational Routines for Systems of Linear Equations
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Matrix type, storage scheme & Factorize matrix & Equilibrate matrix & Solve system & Condition number & Estimate error & Invert matrix \\
\hline general (partial pivoting) & p?getrf & p?geequ & p?getrs & p?gecon & p?gerfs & p?getri \\
\hline general band (partial pivoting) & p?gbtrf & & p?gbtrs & & & \\
\hline general band (no pivoting) & p?dbtrf & & p?dbtrs & & & \\
\hline general tridiagonal (no pivoting) & p?dttrf & & p?dttrs & & & \\
\hline symmetric/Hermitian positive-definite & p?potrf & p?poequ & p?potrs & p?pocon & p?porfs & p?potri \\
\hline symmetric/Hermitian positive-definite, band & p?pbtrf & & p?pbtrs & & & \\
\hline symmetric/Hermitian positive-definite, tridiagonal & p?pttrf & & p?pttrs & & & \\
\hline triangular & & & p?trtrs & p?trcon & p?trrfs & p?trtri \\
\hline
\end{tabular}

In this table ? stands for \(\mathbf{s}\) (single precision real), d (double precision real), c (single precision complex), or \(\mathbf{z}\) (double precision complex).

\section*{Routines for Matrix Factorization}

This section describes the ScaLAPACK routines for matrix factorization. The following factorizations are supported:
- LU factorization of general matrices
- LU factorization of diagonally dominant-like matrices
- Cholesky factorization of real symmetric or complex Hermitian positive-definite matrices

You can compute the factorizations using full and band storage of matrices.

\section*{p?getrf}

Computes the LU factorization of a general \(m\) by \(n\) distributed matrix.

\section*{Syntax}
```

call psgetrf ( m, n, a, ia, ja, desca, ipiv, info )
call pdgetrf ( m, n, a, ia, ja, desca, ipiv, info )
call pcgetrf ( m, n, a, ia, ja, desca, ipiv, info )
call pzgetrf ( m, n, a, ia, ja, desca, ipiv, info )

```

\section*{Description}

The routine forms the \(L U\) factorization of a general \(m\)-by- \(n\) distributed matrix
\(\operatorname{sub}(A)=A(i a: i a+n-1, j a: j a+n-1)\) as
\[
A=P L U
\]
where \(P\) is a permutation matrix, \(L\) is lower triangular with unit diagonal elements (lower trapezoidal if \(m>n\)) and \(U\) is upper triangular (upper trapezoidal if \(m<n\)). \(L\) and \(U\) are stored in \(\operatorname{sub}(A)\).

The routine uses partial pivoting, with row interchanges.

\section*{Input Parameters}
\(m\)
(global) INTEGER. The number of rows in the distributed submatrix \(\operatorname{sub}(A)\); \(m \geq 0\).
(global) INTEGER. The number of columns in the distributed submatrix \(\operatorname{sub}(A) ; n \geq 0\).
(local)
REAL for psgetrf
DOUBLE PRECISION for pdgetrf
COMPLEX for pcgetrf
DOUBLE COMPLEX for pzgetrf.
Pointer into the local memory to an array of local dimension (lld_a, \(\left.L O C_{c}(j a+n-1)\right)\).
Contains the local pieces of the distributed matrix \(\operatorname{sub}(A)\) to be factored.
ia, ja (global) INTEGER. The row and column indices in the global array \(A\) indicating the first row and the first column of the submatrix \(A(i a: i a+n-1\), ja:ja+n-1), respectively.
(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(A\).

\section*{Output Parameters}

Overwritten by local pieces of the factors \(L\) and \(U\) from the factorization \(A=P L U\). The unit diagonal elements of \(L\) are not stored.
ipiv (local) INTEGER array.
The dimension of ipiv is \(\left(L O C_{r}\left(m_{-} a\right)+m b \_a\right)\).
This array contains the pivoting information: local row \(i\) was interchanged with global row ipiv(i). This array is tied to the distributed matrix \(A\).
info
(global) INTEGER.
If \(\inf O=0\), the execution is successful.
info \(<0\) : if the \(i\) th argument is an array and the \(j\) th entry had an illegal value, then info \(=-(i * 100+j)\); if the \(i\) th argument is a scalar and had an illegal value, then info \(=-i\). If info \(=i, u_{i i}\) is 0 . The factorization has been completed, but the factor \(U\) is exactly singular. Division by zero will occur if you use the factor \(U\) for solving a system of linear equations.

\section*{p?gbtrf}

Computes the LU factorization of a general \(n\)-by-n banded distributed matrix.

\section*{Syntax}
```

call psgbtrf ( n, bwl, bwu, a, ja, desca, ipiv, af, laf, work, lwork,
info )
call pdgbtrf ( n, bwl, bwu, a, ja, desca, ipiv, af, laf, work, lwork,
info )
call pcgbtrf ( n, bwl, bwu, a, ja, desca, ipiv, af, laf, work, lwork,
info )
call pzgbtrf ( n, bwl, bwu, a, ja, desca, ipiv, af, laf, work, lwork,
info )

```

\section*{Description}

The routine computes the \(L U\) factorization of a general \(n\)-by-n real/complex banded distributed matrix \(A(1: n, j a: j a+n-1)\) using partial pivoting with row interchanges.

The resulting factorization is not the same factorization as returned from the LAPACK routine ?gbtrf. Additional permutations are performed on the matrix for the sake of parallelism.

The factorization has the form
\[
A(1: n, j a: j a+n-1)=P L U Q
\]
where \(P\) and \(Q\) are permutation matrices, and \(L\) and \(U\) are banded lower and upper triangular matrices, respectively. The matrix \(Q\) represents reordering of columns for the sake of parallelism, while \(P\) represents reordering of rows for numerical stability using classic partial pivoting.

\section*{Input Parameters}
(global) INTEGER. The number of rows and columns in the distributed submatrix \(A(1: n\), ja:ja+n-1); \(n \geq 0\).
bwl (global) INTEGER. The number of sub-diagonals within the band of \(A\) (\(0 \leq\) bwl \(\leq n-1\)).
bwu
(global) INTEGER. The number of super-diagonals within the band of \(A\) (\(0 \leq\) bwu \(\leq n-1\)).
a
(local)
REAL for psgbtrf
DOUBLE PRECISION for pdgbtrf
COMPLEX for pcgbtrf
DOUBLE COMPLEX for pzgbtrf.
Pointer into the local memory to an array of local dimension (lld_a,
\(\left.L O C_{c}(j a+n-1)\right)\) where
lld_a \(\geq 2\) *bwl \(+2^{*}\) bwu +1 .
Contains the local pieces of the \(n\)-by-n distributed banded matrix
\(A(1: n, j a: j a+n-1)\) to be factored.
(global) INTEGER. The index in the global array \(A\) that points to the start of the matrix to be operated on (which may be either all of \(A\) or a submatrix of \(A\)).
(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(A\).
If desca(dtype_) \(=501\), then dlen_ \(\geq 7\);
else if desca(dtype_) \(=1\), then dlen_ \(\geq 9\).
(local) INTEGER. The dimension of the array af.
Must be laf \(\geq(\mathrm{NB}+\mathrm{bwu}) *(b w 1+b w u)+6 *(b w 1+b w u) *(b w 1+2 * b w u)\).
If laf is not large enough, an error code will be returned and the minimum acceptable size will be returned in \(a f(1)\).
(local) Same type as a. Workspace array of dimension lwork .
(local or global) Integer. The size of the work array (1 work \(\geq 1\)). If 1 work is too small, the minimal acceptable size will be returned in work(1) and an error code is returned.

\section*{Output Parameters}

On exit, this array contains details of the factorization. Note that additional permutations are performed on the matrix, so that the factors returned are different from those returned by LAPACK.
ipiv (local) INTEGER array.
The dimension of ipiv must be \(\geq\) desca(NB).
Contains pivot indices for local factorizations. Note that you should not alter the contents of this array between factorization and solve.
af (local)
```

REAL for psgbtrf
DOUBLE PRECISION for pdgbtrf
COMPLEX for pcgbtrf
DOUBLE COMPLEX for pzgbtrf.

```

Array, dimension (laf).
Auxiliary Fillin space. Fillin is created during the factorization routine \(p\) ?gbtrf and this is stored in af.
Note that if a linear system is to be solved using p?gbtrs after the factorization routine, af must not be altered after the factorization.
```

work(1) On exit, work (1) contains the minimum value of l work required for optimum
performance.
info (global) INTEGER.

```
If info \(=0\), the execution is successful.
info<0:
if the \(i\) th argument is an array and the \(j\) th entry had an illegal value, then
info \(=-(i * 100+j)\); if the \(i\) th argument is a scalar and had an illegal value,
then info \(=-i\).
info>0:

If info \(=k \leq\) NPROCS, the submatrix stored on processor info and factored locally was not nonsingular, and the factorization was not completed. If info \(=k>\) NPROCS, the submatrix stored on processor info-NPROCS representing interactions with other processors was not nonsingular, and the factorization was not completed.

\section*{p?dbtrf \\ Computes the LU factorization of a n-by-n diagonally dominant-like banded distributed matrix.}

\section*{Syntax}
```

call psdbtrf ( n, bwl, bwu, a, ja, desca, af, laf, work, lwork, info )
call pddbtrf ( n, bwl, bwu, a, ja, desca, af, laf, work, lwork, info )
call pcdbtrf ( n, bwl, bwu, a, ja, desca, af, laf, work, lwork, info )
call pzdbtrf ( n, bwl, bwu, a, ja, desca, af, laf, work, lwork, info )

```

\section*{Description}

The routine computes the \(L U\) factorization of a \(n\)-by-n real/complex diagonally dominant-like banded distributed matrix \(A(1: n, j a: j a+n-1)\) without pivoting.

Note that the resulting factorization is not the same factorization as returned from LAPACK. Additional permutations are performed on the matrix for the sake of parallelism.

\section*{Input Parameters}
n (global) INTEGER. The number of rows and columns in the distributed submatrix \(A(1: n, j a: j a+n-1) ; n \geq 0\).
bwl (global) INTEGER. The number of sub-diagonals within the band of \(A\) (\(0 \leq\) bwl \(^{\leq_{n-1}}\)).
bwu (global) INTEGER. The number of super-diagonals within the band of \(A\) (\(0 \leq\) bwu \(\leq n-1\)).
(local)
REAL for psdbtrf
DOUBLE PRECISION for pddbtrf
COMPLEX for pcdbtrf
DOUBLE COMPLEX for pzdbtrf.
Pointer into the local memory to an array of local dimension (lld_a, \(\left.L O C_{c}(j a+n-1)\right)\). Contains the local pieces of the \(n\)-by-n distributed banded matrix \(A(1: n, \mathrm{ja}: \mathrm{ja+n-1})\) to be factored.
(global) Integer. The index in the global array \(A\) that points to the start of the matrix to be operated on (which may be either all of \(A\) or a submatrix of \(A\)).
desca (global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(A\).
If desca(dtype_) \(=501\), then dlen_ \(\geq 7\); else if desca(dtype_) \(=1\), then dlen_ \(\geq 9\).
laf (local) INTEGER. The dimension of the array af. Must be laf \(\geq \mathrm{NB}^{*}(b w 1+b w u)+6 *(\max (b w 1, b w u))^{2}\).

If laf is not large enough, an error code will be returned and the minimum acceptable size will be returned in \(a f(1)\).
work (local) Same type as a. Workspace array of dimension 1 work .
lwork (local or global) INTEGER. The size of the work array, must be lwork \(\geq\) \((\max (b w l, b w u))^{2}\). If 1 work is too small, the minimal acceptable size will be returned in work(1) and an error code is returned.

\section*{Output Parameters}

On exit, this array contains details of the factorization. Note that additional permutations are performed on the matrix, so that the factors returned are different from those returned by LAPACK.
(local)
REAL for psdbtrf
DOUBLE PRECISION for pddbtrf
COMPLEX for pcdbtrf
DOUBLE COMPLEX for pzdbtrf.
Array, dimension (laf).
Auxiliary Fillin space. Fillin is created during the factorization routine \(p\) ? dbtrf and this is stored in af.
Note that if a linear system is to be solved using p?dbtrs after the factorization routine, af must not be altered after the factorization.
work (1) On exit, work (1) contains the minimum value of 1 work required for optimum performance.
info (global) INTEGER.
If info \(=0\), the execution is successful.
info \(<0\) :
if the \(i\) th argument is an array and the \(j\) th entry had an illegal value, then info \(=-(i * 100+j) ;\) if the \(i\) th argument is a scalar and had an illegal value, then info \(=-i\).
info>0:
If info \(=k \leq\) NPROCS, the submatrix stored on processor info and factored locally was not diagonally dominant-like, and the factorization was not completed. If info \(=k>\) NPROCS, the submatrix stored on processor info-NPROCS representing interactions with other processors was not nonsingular, and the factorization was not completed.

\section*{p?potrf}

\section*{Computes the Cholesky factorization of a symmetric (Hermitian) positive-definite distributed matrix.}

\section*{Syntax}
```

call pspotrf ( uplo, n, a, ia, ja, desca, info )
call pdpotrf ( uplo, n, a, ia, ja, desca, info )
call pcpotrf ( uplo, n, a, ia, ja, desca, info )
call pzpotrf ( uplo, n, a, ia, ja, desca, info )

```

\section*{Description}

This routine computes the Cholesky factorization of a real symmetric or complex Hermitian positive-definite distributed \(n\)-by-n matrix \(A(i a: i a+n-1\), ja:ja+n-1), denoted below as \(\operatorname{sub}(A)\).

The factorization has the form
```

$\operatorname{sub}(A)=U^{H} U \quad$ if uplo='U', or
$\operatorname{sub}(A)=L L^{H} \quad$ if uplo='L'

```
where \(L\) is a lower triangular matrix and \(U\) is upper triangular.

\section*{Input Parameters}
```

uplo (global) CHARACTER*1. Must be 'U' or 'L'.
Indicates whether the upper or lower triangular part of \operatorname{sub}(A)\mathrm{ is stored:}
If uplo= 'U', the array a stores the upper triangular part of the matrix \operatorname{sub}(A),
and }\operatorname{sub}(A)\mathrm{ is factored as }\mp@subsup{U}{}{H}U\mathrm{ .
If uplo= 'L', the array a stores the lower triangular part of the matrix sub(A),
and }\operatorname{sub}(A)\mathrm{ is factored as }L\mp@subsup{L}{}{H}\mathrm{ .
n
(global) INTEGER. The order of the distributed submatrix \operatorname{sub}(A)(n\geq0).
(local)

```
```

REAL for pspotrf
DOUBLE PRECISION for pdpotrf
COMPLEX for pcpotrf
DOUBLE COMPLEX for pzpotrf.

```

Pointer into the local memory to an array of dimension (lld_a, \(\left.L O C_{c}(j a+n-1)\right)\).

On entry, this array contains the local pieces of the \(n\)-by-n symmetric/Hermitian distributed matrix \(\operatorname{sub}(A)\) to be factored.

Depending on uplo, the array a contains either the upper or the lower triangular part of the matrix \(\operatorname{sub}(A)(\) see uplo).
ia, ja (global) INTEGER. The row and column indices in the global array \(A\) indicating the first row and the first column of the submatrix \(\operatorname{sub}(A)\), respectively.
desca (global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(A\).

\section*{Output Parameters}
a
info

The upper or lower triangular part of \(a\) is overwritten by the Cholesky factor \(U\) or \(L\), as specified by uplo.
(global) INTEGER.
If info \(=0\), the execution is successful;
info \(<0\) : if the \(i\) th argument is an array and the \(j\) th entry had an illegal value, then info \(=-(i * 100+j)\); if the \(i\) th argument is a scalar and had an illegal value, then info \(=-i\).
If info \(=k>0\), the leading minor of order \(k\), \(A(i a: i a+k-1\), ja:ja+k-1), is not positive-definite, and the factorization could not be completed.

\section*{p?pbtrf}

Computes the Cholesky factorization of a symmetric
(Hermitian) positive-definite banded distributed matrix.

\section*{Syntax}
```

call pspbtrf ( uplo, n, bw, a, ja, desca, af, laf, work, lwork, info )

```
```

call pdpbtrf ( uplo, n, bw, a, ja, desca, af, laf, work, lwork, info )
call pcpbtrf ( uplo, n, bw, a, ja, desca, af, laf, work, lwork, info )
call pzpbtrf ( uplo, n, bw, a, ja, desca, af, laf, work, lwork, info )

```

\section*{Description}

This routine computes the Cholesky factorization of an \(n-b y-n\) real symmetric or complex Hermitian positive-definite banded distributed matrix \(A(1: n\), ja:ja+n-1).

The resulting factorization is not the same factorization as returned from LAPACK. Additional permutations are performed on the matrix for the sake of parallelism.

The factorization has the form:
\[
\begin{array}{ll}
A(1: n, j a: j a+n-1)=P U^{H} U P^{T}, & \text { if uplo='U', or } \\
A(1: n, j a: j a+n-1)=P L L^{H} P^{T}, & \text { if uplo='L', }
\end{array}
\]
where \(P\) is a permutation matrix and \(U\) and \(L\) are banded upper and lower triangular matrices, respectively.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline uplo & (global) CHARACTER*1. Must be 'U' or 'L'. \\
\hline & \begin{tabular}{l}
If uplo \(=\) 'U', upper triangle of \(A(1: n, j a: j a+n-1)\) is stored; \\
If uplo='L', lower triangle of \(A(1: n, j a: j a+n-1)\) is stored.
\end{tabular} \\
\hline \(n\) & (global) INTEGER. The order of the distributed submatrix \(A(1: n, j a: j a+n-1)(n \geq 0)\). \\
\hline bw & (global) INTEGER. The number of superdiagonals of the distributed matrix if uplo \(=' U '\), or the number of subdiagonals if uplo \(=' U '\left(b_{w} \geq 0\right)\). \\
\hline a & (local) \\
\hline & REAL for pspbtrf \\
\hline & DOUBLE PRECISION for pdpbtrf \\
\hline & COMPLEX for pcpbtrf \\
\hline & DOUBLE COMPLEX for pzpbtrf. \\
\hline & Pointer into the local memory to an array of dimension (Ild_a, \(\left.L O C_{c}(j a+n-1)\right)\). \\
\hline
\end{tabular}

On entry, this array contains the local pieces of the upper or lower triangle of the symmetric/Hermitian band distributed matrix \(A(1: n, j a: j a+n-1)\) to be factored.
\begin{tabular}{|c|c|}
\hline ja & (global) INTEGER. The index in the global array \(A\) that points to the start of the matrix to be operated on (which may be either all of \(A\) or a submatrix of \(A\)). \\
\hline \multirow[t]{2}{*}{desca} & (global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(A\). \\
\hline & If desca(dtype_) \(=501\), then dlen_ \(\geq 7\); else if desca(dtype_) \(=1\), then dlen_ \(\geq 9\). \\
\hline \multirow[t]{2}{*}{laf} & (local) INTEGER. The dimension of the array af. Must be laf \(\geq(\mathrm{NB}+2 * b \mathrm{w}) *\) bw . \\
\hline & If \(l a f\) is not large enough, an error code will be returned and the minimum acceptable size will be returned in \(a f(1)\). \\
\hline work & (local) Same type as a. Workspace array of dimension 1work . \\
\hline 1 work & (local or global) INTEGER. The size of the work array, must be 1 work \(\geq \mathrm{bw}^{2}\). \\
\hline \multicolumn{2}{|l|}{Output Parameters} \\
\hline a & On exit, if info \(=0\), contains the permuted triangular factor \(U\) or \(L\) from the Cholesky factorization of the band matrix \(A(1: n, j a: j a+n-1)\), as specified by uplo. \\
\hline work (1) & On exit, work (1) contains the minimum value of 1 work required for optimum performance. \\
\hline \multirow[t]{3}{*}{info} & (global) INTEGER. \\
\hline & \begin{tabular}{l}
If info \(=0\), the execution is successful. \\
info \(<0\) : \\
if the \(i\) th argument is an array and the \(j\) th entry had an illegal value, then info \(=-(i * 100+j)\); if the \(i\) th argument is a scalar and had an illegal value, then info \(=-i\).
info >0:
\end{tabular} \\
\hline & If info \(=\mathrm{k} \leq\) NPRocs, the submatrix stored on processor info and factored locally was not positive definite, and the factorization was not completed. If info \(=k>\) NPROCS, the submatrix stored on processor info-NPROCS representing interactions with other processors was not nonsingular, and the factorization was not completed. \\
\hline
\end{tabular}

\section*{p?pttrf}

\section*{Computes the Cholesky factorization of a symmetric (Hermitian) positive-definite tridiagonal distributed matrix.}

\section*{Syntax}
```

call pspttrf ( n, d, e, ja, desca, af, laf, work, lwork, info )
call pdpttrf ( n, d, e, ja, desca, af, laf, work, lwork, info )
call pcpttrf ( n, d, e, ja, desca, af, laf, work, lwork, info )
call pzpttrf ( n, d, e, ja, desca, af, laf, work, lwork, info )

```

\section*{Description}

This routine computes the Cholesky factorization of an \(n-b y-n\) real symmetric or complex Hermitian positive-definite tridiagonal distributed matrix \(A(1: n\), ja:ja+n-1).

The resulting factorization is not the same factorization as returned from LAPACK. Additional permutations are performed on the matrix for the sake of parallelism.

The factorization has the form:
\[
\begin{aligned}
& A(1: n, j a: j a+n-1)=P L D L^{H} P^{T}, \text { or } \\
& A(1: n, j a: j a+n-1)=P U^{H} D U P^{T},
\end{aligned}
\]
where \(P\) is a permutation matrix, and \(U\) and \(L\) are tridiagonal upper and lower triangular matrices, respectively.

\section*{Input Parameters}
\begin{tabular}{ll}
\(n\) \\
\(d, e\) & \begin{tabular}{l}
(global) INTEGER. The order of the distributed submatrix \\
\(A(1: n, j a: j a+n-1)(n \geq 0)\).
\end{tabular} \\
(local) \\
REAL for pspttrff \\
DOUBLE PRECISION for pdpttrf \\
COMPLEX for ppttrf \\
DOUBLE COMPLEX for pzpttrf. \\
& Pointers into the local memory to arrays of dimension (desca (nb_)) each.
\end{tabular}

On entry, the array \(d\) contains the local part of the global vector storing the main diagonal of the distributed matrix \(A\).

On entry, the array e contains the local part of the global vector storing the upper diagonal of the distributed matrix \(A\).
\begin{tabular}{|c|c|}
\hline ja & (global) INTEGER. The index in the global array \(A\) that points to the start of the matrix to be operated on (which may be either all of \(A\) or a submatrix of \(A\)). \\
\hline desca & (global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(A\). \\
\hline & If desca(dtype_) \(=501\), then dlen_ \(\geq 7\); else if desca(dtype_) \(=1\), then dlen_ \(\geq 9\). \\
\hline laf & (local) INTEGER. The dimension of the array af. Must be laf \(\geq \mathrm{NB}+2\). \\
\hline & If \(l a f\) is not large enough, an error code will be returned and the minimum acceptable size will be returned in \(a f(1)\). \\
\hline work & (local) Same type as d and e. Workspace array of dimension 1 work. \\
\hline lwork & (local or global) INTEGER. The size of the work array, must be at least 1 work \(\geq 8 * \mathrm{NPCOL}\). \\
\hline
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{|c|c|}
\hline a, e & On exit, overwritten by the details of the factorization. (local) \\
\hline & REAL for pspttrf \\
\hline & DOUBLE PRECISION for pdpttrf \\
\hline & COMPLEX for pcpttrf \\
\hline & double complex for pzpttrf. \\
\hline & Array, dimension (laf). \\
\hline & Auxiliary Fillin space. Fillin is created during the factorization routine \(p\) ?pttrf and this is stored in af. \\
\hline & Note that if a linear system is to be solved using p?pttrs after the factorization routine, af must not be altered. \\
\hline work(1) & On exit, work (1) contains the minimum value of 1 work required for optimum performance. \\
\hline info & (global) INTEGER. \\
\hline
\end{tabular}

If info \(=0\), the execution is successful.
info \(<0\) :
if the \(i\) th argument is an array and the \(j\) th entry had an illegal value, then info \(=-(i * 100+j)\); if the \(i\) th argument is a scalar and had an illegal value, then info \(=-i\). info>0:

If info \(=\mathrm{k} \leq\) NPROCS, the submatrix stored on processor info and factored locally was not positive definite, and the factorization was not completed. If info \(=\mathrm{k}>\) NPROCS, the submatrix stored on processor info-NPROCS representing interactions with other processors was not nonsingular, and the factorization was not completed.

\section*{p?dttrf}

Computes the LU factorization of a diagonally
dominant-like tridiagonal distributed matrix.

\section*{Syntax}
```

call psdttrf ( n, dl, d, du, ja, desca, af, laf, work, lwork, info )
call pddttrf ( n, dl, d, du, ja, desca, af, laf, work, lwork, info )
call pcdttrf ( n, dl, d, du, ja, desca, af, laf, work, lwork, info )
call pzdttrf ( n, dl, d, du, ja, desca, af, laf, work, lwork, info )

```

\section*{Description}

This routine computes the \(L U\) factorization of an \(n\)-by- \(n\) real/complex diagonally dominant-like tridiagonal distributed matrix \(A(1: n, j a: j a+n-1)\) without pivoting for stability.

The resulting factorization is not the same factorization as returned from LAPACK. Additional permutations are performed on the matrix for the sake of parallelism.

The factorization has the form:
\[
A(1: n, j a: j a+n-1)=P L U P^{T},
\]
where \(P\) is a permutation matrix, and \(L\) and \(U\) are banded lower and upper triangular matrices, respectively.

\section*{Input Parameters}
work (local) Same type as \(d\). Workspace array of dimension Iwork .
n
\(d l, d, d u\)
ja
desca
laf
lwork
(global) INTEGER. The number of rows and columns to be operated on, that is, the order of the distributed submatrix \(A(1: n, j a: j a+n-1)(n \geq 0)\).
(local)
REAL for pspttrf
DOUBLE PRECISION for pdpttrf
COMPLEX for pcpttrf
DOUBLE COMPLEX for pzpttrf.
Pointers to the local arrays of dimension (desca (nb_)) each.
On entry, the array \(d l\) contains the local part of the global vector storing the subdiagonal elements of the matrix. Globally, \(d l(1)\) is not referenced, and \(d l\) must be aligned with \(d\).

On entry, the array \(d\) contains the local part of the global vector storing the diagonal elements of the matrix.

On entry, the array \(d u\) contains the local part of the global vector storing the super-diagonal elements of the matrix. \(d u(n)\) is not referenced, and \(d u\) must be aligned with \(d\).
(global) INTEGER. The index in the global array \(A\) that points to the start of the matrix to be operated on (which may be either all of \(A\) or a submatrix of \(A\)).
(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(A\).
If desca(dtype_) \(=501\), then dlen_ \(\geq 7\);
else if desca(dtype_) \(=1\), then dlen_ \(\geq 9\). Must be laf \(\geq 2^{*}(\mathrm{NB}+2)\).

If laf is not large enough, an error code will be returned and the minimum acceptable size will be returned in \(a f(1)\).
(local or global) INTEGER. The size of the work array, must be at least lwork \(\geq 8 *\) NPCOL .

\section*{Output Parameters}
\(d l, d, d u \quad\) On exit, overwritten by the information containing the factors of the matrix.
```

af
(local)
REAL for psdttrf
DOUBLE PRECISION for pddttrf
COMPLEX for pcdttrf
DOUBLE COMPLEX for pzdttrf.
Array, dimension (laf).
Auxiliary Fillin space. Fillin is created during the factorization routine p?dttrf and this is stored in af.
Note that if a linear system is to be solved using p?dttrs after the factorization routine, af must not be altered.
work (1) On exit, work (1) contains the minimum value of 1 work required for optimum performance.
info (global) INTEGER.
If info $=0$, the execution is successful.
info $<0$ :
if the $i$ th argument is an array and the $j$ th entry had an illegal value, then info $=-(i * 100+j)$; if the $i$ th argument is a scalar and had an illegal value, then info $=-i$.
info>0:

```

If info \(=\mathrm{k} \leq\) NPRocs, the submatrix stored on processor info and factored locally was not diagonally dominant-like, and the factorization was not completed.
If info \(=k>\) NPROCS, the submatrix stored on processor info-NPROCS representing interactions with other processors was not nonsingular, and the factorization was not completed.

\section*{Routines for Solving Systems of Linear Equations}

This section describes the ScaLAPACK routines for solving systems of linear equations. Before calling most of these routines, you need to factorize the matrix of your system of equations (see Routines for Matrix Factorization in this chapter). However, the factorization is not necessary if your system of equations has a triangular matrix.

\section*{p?getrs}

Solves a system of distributed linear equations with a general square matrix, using the \(L U\) factorization computed by p?getrf.

\section*{Syntax}
```

call psgetrs (trans, n, nrhs, a, ia, ja, desca, ipiv, b, ib, jb, descb,
info)
call pdgetrs (trans, n, nrhs, a, ia, ja, desca, ipiv, b, ib, jb, descb,
info)
call pcgetrs (trans, n, nrhs, a, ia, ja, desca, ipiv, b, ib, jb, descb,
info)
call pzgetrs (trans, n, nrhs, a, ia, ja, desca, ipiv, b, ib, jb, descb,
info)

```

\section*{Description}

This routine solves a system of distributed linear equations with a general \(n\)-by- \(n\) distributed matrix \(\operatorname{sub}(A)=A(i a: i a+n-1, j a: j a+n-1)\) using the \(L U\) factorization computed by p?getrf.

The system has one of the following forms specified by trans:
\(\operatorname{sub}(A) * X=\operatorname{sub}(B)\) (no transpose),
\(\operatorname{sub}(A)^{T *}{ }^{T}=\operatorname{sub}(B)\) (transpose),
\(\operatorname{sub}(A)^{H} * X=\operatorname{sub}(B)\) (conjugate transpose),
where \(\operatorname{sub}(B)=B(i b: i b+n-1, j b: j b+n r h s-1)\).
Before calling this routine, you must call p?getrf to compute the \(L U\) factorization of \(\operatorname{sub}(A)\).
Input Parameters
trans (global) CHARACTER*1. Must be 'N' or 'T' or 'C'.
Indicates the form of the equations:
If trans \(=' \mathrm{~N}\) ', then \(\operatorname{sub}(A)^{*} X=\operatorname{sub}(B)\) is solved for \(X\).
If trans \(=' T\) ', then \(\operatorname{sub}(A)^{T *} X=\operatorname{sub}(B)\) is solved for \(X\).
If trans \(=\) ' C ', then \(\operatorname{sub}(A)^{H} * X=\operatorname{sub}(B)\) is solved for \(X\).
\begin{tabular}{|c|c|}
\hline \(n\) & (global) INTEGER. The number of linear equations; the order of the submatrix \(\operatorname{sub}(A)(n \geq 0)\). \\
\hline nrhs & (global) INTEGER. The number of right hand sides; the number of columns of the distributed submatrix \(\operatorname{sub}(B)(n r h s \geq 0)\). \\
\hline \multirow[t]{7}{*}{\(a, b\)} & (global) \\
\hline & REAL for psgetrs \\
\hline & DOUBLE PRECISION for pdgetrs \\
\hline & COMPLEX for pcgetrs \\
\hline & DOUBLE COMPLEX for pzgetrs. \\
\hline & Pointers into the local memory to arrays of local dimension a(lld_a, \\
\hline & On entry, the array a contains the local pieces of the factors \(L\) and \(U\) from the factorization \(\operatorname{sub}(A)=P L U\); the unit diagonal elements of \(L\) are not stored. On entry, the array \(b\) contains the right hand sides \(\operatorname{sub}(B)\). \\
\hline ia,ja & (global) INTEGER. The row and column indices in the global array \(A\) indicating the first row and the first column of the submatrix \(\operatorname{sub}(A)\), respectively. \\
\hline desca & (global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(A\). \\
\hline \multirow[t]{4}{*}{ipiv} & (local) INTEGER array. \\
\hline & The dimension of ipiv is (\(\left.L O C_{r}\left(m_{-} a\right)+m b / a\right)\). \\
\hline & This array contains contains the pivoting information: local row i of the matrix was interchanged with the global row ipiv(i). \\
\hline & This array is tied to the distributed matrix \(A\). \\
\hline ib, jb & (global) INTEGER. The row and column indices in the global array \(B\) indicating the first row and the first column of the submatrix \(\operatorname{sub}(B)\), respectively. \\
\hline descb & (global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(B\). \\
\hline \multicolumn{2}{|l|}{Output Parameters} \\
\hline b & On exit, overwritten by the solution distributed matrix \(X\). \\
\hline info & INTEGER. If info \(=0\), the execution is successful. info \(<0\) : \\
\hline
\end{tabular}
if the \(i\) th argument is an array and the \(j\) th entry had an illegal value, then info \(=-(i * 100+j)\); if the \(i\) th argument is a scalar and had an illegal value, then info \(=-i\).

\section*{p?gbtrs}

Solves a system of distributed linear equations with a general band matrix, using the LU factorization computed by p?gbtrf.

\section*{Syntax}
```

call psgbtrs (trans, n, bwl, bwu, nrhs, a, ja, desca, ipiv, b, ib, descb,
af, laf, work, lwork, info)
call pdgbtrs (trans, n, bwl, bwu, nrhs, a, ja, desca, ipiv, b, ib, descb,
af, laf, work, lwork, info)
call pcgbtrs (trans, n, bwl, bwu, nrhs, a, ja, desca, ipiv, b, ib, descb,
af, laf, work, lwork, info)
call pzgbtrs (trans, n, bwl, bwu, nrhs, a, ja, desca, ipiv, b, ib, descb,
af, laf, work, lwork, info)

```

\section*{Description}

This routine solves a system of distributed linear equations with a general band distributed matrix \(\operatorname{sub}(A)=A(1: n, j a: j a+n-1)\) using the \(L U\) factorization computed by p?gbtrf.

The system has one of the following forms specified by trans:
\(\operatorname{sub}(A)^{*} X=\operatorname{sub}(B)\) (no transpose),
\(\operatorname{sub}(A)^{T} * X=\operatorname{sub}(B)(\) transpose \()\),
\(\operatorname{sub}(A)^{H} * X=\operatorname{sub}(B)(\) conjugate transpose),
where \(\operatorname{sub}(B)=B(i b: i b+n-1,1: n r h s)\).
Before calling this routine, you must call p?gbtrf to compute the \(L U\) factorization of \(\operatorname{sub}(A)\).

\section*{Input Parameters}
\begin{tabular}{ll}
trans & (global) CHARACTER*1. Must be 'N' or 'T' or 'C'. \\
& Indicates the form of the equations:
\end{tabular}
\begin{tabular}{|c|c|}
\hline bwl & (global) INTEGER. The number of sub-diagonals within the band of \(A\) \((0 \leq b w l \leq n-1)\). \\
\hline bwu & (global) INTEGER. The number of super-diagonals within the band of \(A\) (\(0 \leq \leq_{b w u} \leq n-1\)). \\
\hline nrhs & (global) INTEGER. The number of right hand sides; the number of columns of the distributed submatrix \(\operatorname{sub}(B)(n r h s \geq 0)\). \\
\hline \multirow[t]{8}{*}{\(a, b\)} & (global) \\
\hline & REAL for psgbtrs \\
\hline & DOUBLE PRECISION for pdgbtrs \\
\hline & COMPLEX for pcgbtrs \\
\hline & DOUBLE COMPLEX for pzgbtrs. \\
\hline & Pointers into the local memory to arrays of local dimension \(a\left(l l d \_a, L O C_{c}(j a+n-1)\right)\) and b(lld_b, \(\left.L O C_{c}(n r h s)\right)\), respectively. \\
\hline & The array a contains details of the \(L U\) factorization of the distributed band matrix \(A\). \\
\hline & On entry, the array \(b\) contains the local pieces of the right hand sides B(ib:ib+n-1, \(1: n r h s\)). \\
\hline ja & (global) INTEGER. The index in the global array \(A\) that points to the start of the matrix to be operated on (which may be either all of \(A\) or a submatrix of \(A\)). \\
\hline \multirow[t]{2}{*}{desca} & (global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(A\). \\
\hline & If desca(dtype_) \(=501\), then dlen_ \(\geq 7\); else if desca(dtype_) \(=1\), then dlen_ \(\geq 9\). \\
\hline ib & (global) INTEGER. The index in the global array \(A\) that points to the start of the matrix to be operated on (which may be either all of \(A\) or a submatrix of \(A\)). \\
\hline \multirow[t]{2}{*}{descb} & (global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(A\). \\
\hline & If desca(dtype_) \(=501\), then dlen_ \(\geq 7\); else if desca(dtype) \(=1\), then dlen \(\geq 9\). \\
\hline
\end{tabular}
\begin{tabular}{ll}
laf & (local) INTEGER. The dimension of the array \(a f\). \\
Must be \(l a f \geq N B *(b w l+b w u)+6 *(b w l+b w u) *(b w l+2 * b w u)\).
\end{tabular}

If laf is not large enough, an error code will be returned and the minimum acceptable size will be returned in \(a f(1)\).
work (local) Same type as a. Workspace array of dimension Iwork.
lwork (local or global) INTEGER. The size of the work array, must be at least lwork \(\geq\) nrhs*(NB+2*bwl+4*bwu).

\section*{Output Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{ipiv} & (local) INTEGER array. \\
\hline & The dimension of ipiv must be \(\geq\) desca(NB). Contains pivot indices for local factorizations. Note that you should not alter the contents of this array between factorization and solve. \\
\hline b & On exit, overwritten by the local pieces of the solution distributed matrix \(X\). \\
\hline \multirow[t]{8}{*}{af} & (local) \\
\hline & REAL for psgbtrs \\
\hline & DOUBLE PRECISION for pdgbtrs \\
\hline & COMPLEX for pcgbtrs \\
\hline & DOUBLE COMPLEX for pzgbtrs. \\
\hline & Array, dimension (laf). \\
\hline & Auxiliary Fillin space. Fillin is created during the factorization routine p?gbtrf and this is stored in af. \\
\hline & Note that if a linear system is to be solved using p?gbtrs after the factorization routine, af must not be altered after the factorization. \\
\hline work(1) & On exit, work (1) contains the minimum value of 1 work required for optimum performance. \\
\hline info & INTEGER. If info \(=0\), the execution is successful. info \(<0\) : \\
\hline
\end{tabular}
if the \(i\) th argument is an array and the \(j\) th entry had an illegal value, then info \(=-(i * 100+j)\); if the \(i\) th argument is a scalar and had an illegal value, then info \(=-i\).

\section*{p?potrs}

\section*{Solves a system of linear equations with a Cholesky-factored symmetric/Hermitian distributed positive-definite matrix.}

\section*{Syntax}
```

call pspotrs ( uplo, n, nrhs, a, ia, ja, desca, b, ib, jb, descb, info )
call pdpotrs ( uplo, n, nrhs, a, ia, ja, desca, b, ib, jb, descb, info )
call pcpotrs ( uplo, n, nrhs, a, ia, ja, desca, b, ib, jb, descb, info )
call pzpotrs ( uplo, n, nrhs, a, ia, ja, desca, b, ib, jb, descb, info )

```

\section*{Description}

The routine p?potrs solves for \(X\) a system of distributed linear equations in the form:
\[
\operatorname{sub}(A) * X=\operatorname{sub}(B),
\]
where \(\operatorname{sub}(A)=A(i a: i a+n-1, j a: j a+n-1)\) is an \(n\)-by-n real symmetric or complex Hermitian positive definite distributed matrix, and \(\operatorname{sub}(B)\) denotes the distributed matrix
\(B(i b: i b+n-1, j b: j b+n r h s-1)\).
This routine uses Cholesky factorization
\[
\operatorname{sub}(A)=U^{H} U \operatorname{or} \operatorname{sub}(A)=L L^{H}
\]
computed by p?potrf.

\section*{Input Parameters}
```

uplo (global) CHARACTER*1. Must be 'U' or 'L'.
If uplo= 'U', upper triangle of \operatorname{sub}(A)\mathrm{ is stored;}
If uplo= 'L', lower triangle of \operatorname{sub}(A)\mathrm{ is stored.}

```

```

nrhs (global) INTEGER. The number of right hand sides; the number of columns of
the distributed submatrix sub(B) (nrhs \geq0).
a, b
(local)

```

REAL for pspotrs
DOUBLE PRECISION for pdpotrs
COMPLEX for pcpotrs
DOUBLE COMPLEX for pzpotrs.
Pointers into the local memory to arrays of local dimension
\(a\left(l l d \_a, L O C_{c}(j a+n-1)\right)\) and b(lld_b, \(\left.L O C_{c}(j b+n r h s-1)\right)\), respectively.

The array a contains the factors \(L\) or \(U\) from the Cholesky factorization \(\operatorname{sub}(A)=L L^{H}\) or \(\operatorname{sub}(A)=U^{H} U\), as computed by p?potrf.

On entry, the array \(b\) contains the local pieces of the right hand sides \(\operatorname{sub}(B)\).
ia, ja (global) INTEGER. The row and column indices in the global array \(A\) indicating the first row and the first column of the submatrix \(\operatorname{sub}(A)\), respectively.
desca (global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(A\).
\(i b, j b \quad\) (global) INTEGER. The row and column indices in the global array \(B\) indicating the first row and the first column of the submatrix \(\operatorname{sub}(B)\), respectively.
descb (global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(B\).

\section*{Output Parameters}
```b
info INTEGER. If info=0, the execution is successful.
    info<0:
if the \(i\) th argument is an array and the \(j\) th entry had an illegal value, then info \(=-(i * 100+j) ;\) if the \(i\) th argument is a scalar and had an illegal value, then info \(=-i\).
```


p?pbtrs

Solves a system of linear equations with a
Cholesky-factored symmetric/Hermitian positive-definite band matrix.

Syntax

```
call pspbtrs ( uplo, n, bw, nrhs, a, ja, desca, b, ib, descb, af, laf,
    work, lwork, info )
call pdpbtrs ( uplo, n, bw, nrhs, a, ja, desca, b, ib, descb, af, laf,
    work, lwork, info )
call pcpbtrs ( uplo, n, bw, nrhs, a, ja, desca, b, ib, descb, af, laf,
    work, lwork, info )
call pzpbtrs ( uplo, n, bw, nrhs, a, ja, desca, b, ib, descb, af, laf,
    work, lwork, info )
```


Description

The routine p?pbtrs solves for X a system of distributed linear equations in the form:

$$
\operatorname{sub}(A)^{*} X=\operatorname{sub}(B),
$$

where $\operatorname{sub}(A)=A(1: n, j a: j a+n-1)$ is an n-by-n real symmetric or complex Hermitian positive definite distributed band matrix, and $\operatorname{sub}(B)$ denotes the distributed matrix

$$
B(i b: i b+n-1,1: n r h s) .
$$

This routine uses Cholesky factorization

$$
\operatorname{sub}(A)=P U^{H} U P^{T} \text { or } \operatorname{sub}(A)=P L L^{H} P^{T}
$$

computed by p?pbtrf.

Input Parameters

```
uplo (global) CHARACTER*1. Must be 'U' or 'L'.
    If uplo= 'U', upper triangle of \operatorname{sub}(A)\mathrm{ is stored;}
        If uplo= 'L', lower triangle of \operatorname{sub}(A)\mathrm{ is stored.}
n
    (global) INTEGER. The order of the distributed submatrix }\operatorname{sub}(A)(n\geq0)
bw
(global) INTEGER. The number of superdiagonals of the distributed matrix if
    uplo= 'U', or the number of subdiagonals if uplo= 'L' (bw \geq0).
```

nrhs	(global) INTEGER. The number of right hand sides; the number of columns of the distributed submatrix $\operatorname{sub}(B)(n r h s \geq 0)$.
a, b	(local)
	REAL for pspbtrs
	DOUBLE PRECISION for pdpbtrs
	COMPLEX for pcpbtrs
	DOUBLE COMPLEX for pzpbtrs.
	Pointers into the local memory to arrays of local dimension a(lld_a,
	$\left.L O C_{c}(j a+n-1)\right)$ and b(lld_b, $\left.L O C_{c}(n r h s-1)\right)$, respectively. The array a contains the permuted triangular factor U or L from the Cholesky factorization $\operatorname{sub}(A)=P U^{H} U P^{T}$ or $\operatorname{sub}(A)=P L L^{H} P^{T}$ of the band matrix A, as returned by p?pbtrf.
	On entry, the array b contains the local pieces of the n-by-nrhs right hand side distributed matrix $\operatorname{sub}(B)$.
ja	(global) INTEGER. The index in the global array A that points to the start of the matrix to be operated on (which may be either all of A or a submatrix of A).
desca	(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix A.
	If desca(dtype_) $=501$, then dlen_ ≥ 7; else if desca(dtype_) $=1$, then dlen_ ≥ 9.
ib	(global) INTEGER. The row index in the global array B indicating the first row of the submatrix $\operatorname{sub}(B)$.
descb	(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix B.
	If descb(dtype_) $=502$, then dlen_ ≥ 7; else if descb(dtype_) $=1$, then dlen_ ≥ 9.
af, work	(local) Arrays, same type as a.
	The array $a f$ is of dimension (laf). It contains auxiliary Fillin space. Fillin is created during the factorization routine p ? dbtrf and this is stored in af.
	The array work is a workspace array of dimension lwork.
laf	(local) INTEGER. The dimension of the array af.
	Must be laf \geq nrhs* ${ }^{\text {b }}$.
	If laf is not large enough, an error code will be returned and the minimum acceptable size will be returned in $a f(1)$.

Iwork (local or global) INTEGER. The size of the array work, must be at least 1 work $\geq \mathrm{bw}^{2}$.

Output Parameters

b
work(1)
info

On exit, if info=0, this array contains the local pieces of the n-by-nrhs solution distributed matrix X.

On exit, work (1) contains the minimum value of 1 work required for optimum performance.

INTEGER. If info $=0$, the execution is successful.
info<0:
if the i th argument is an array and the j th entry had an illegal value, then info $=-(i * 100+j)$; if the i th argument is a scalar and had an illegal value, then info $=-i$.

p?pttrs

Solves a system of linear equations with a symmetric (Hermitian) positive-definite tridiagonal distributed matrix using the factorization computed by p?pttrf

Syntax

```
call pspttrs ( n, nrhs, d, e, ja, desca, b, ib, descb, af, laf, work,
    lwork, info )
call pdpttrs ( n, nrhs, d, e, ja, desca, b, ib, descb, af, laf, work,
    lwork, info )
call pcpttrs ( uplo, n, nrhs, d, e, ja, desca, b, ib, descb, af, laf,
    work, lwork, info )
call pzpttrs ( uplo, n, nrhs, d, e, ja, desca, b, ib, descb, af, laf,
    work, lwork, info )
```


Description

The routine p?pttrs solves for X a system of distributed linear equations in the form:

$$
\operatorname{sub}(A)^{*} X=\operatorname{sub}(B),
$$

where $\operatorname{sub}(A)=A(1: n, j a: j a+n-1)$ is an n-by-n real symmetric or complex Hermitian positive definite tridiagonal distributed matrix, and $\operatorname{sub}(B)$ denotes the distributed matrix $B(i b: i b+n-1,1: n r h s)$.
This routine uses the factorization

$$
\operatorname{sub}(A)=P L D L^{H} P^{T} \text { or } \operatorname{sub}(A)=P U^{H} D U P^{T}
$$

computed by p?pttrf.

Input Parameters

uplo (global, used in complex flavors only)

If uplo $=$ ' U ', upper triangle of $\operatorname{sub}(A)$ is stored; If uplo $=$ ' L ', lower triangle of $\operatorname{sub}(A)$ is stored.
n
b
(global) INTEGER. The order of the distributed submatrix $\operatorname{sub}(A)(n \geq 0)$.
(global) INTEGER. The number of right hand sides; the number of columns of the distributed submatrix $\operatorname{sub}(B)(n r h s \geq 0)$.
(local)
REAL for pspttrs
DOUBLE PRECISION for pdpttrs
COMPLEX for pcpttrs
DOUBLE COMPLEX for pzpttrs.
Pointers into the local memory to arrays of dimension (desca (nb_)) each.
These arrays contain details of the factorization as returned by p?pttrf
(global) Integer. The index in the global array A that points to the start of the matrix to be operated on (which may be either all of A or a submatrix of A).
(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix A.
If desca(dtype_) $=501$ or 502 , then dlen_ ≥ 7;
else if desca(dtype_) $=1$, then $d l e n_{-} \geq 9$.
(local) Same type as $d, \quad e$.
Pointer into the local memory to an array of local dimension b(lld_b, $L O C_{c}($ nrhs $\left.)\right)$.
On entry, the array b contains the local pieces of the n-by-nrhs right hand side distributed matrix $\operatorname{sub}(B)$.

ib	(global) INTEGER. The row index in the global array B that points to the first row of the matrix to be operated on (which may be either all of B or a submatrix of B).
descb	(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix B.
	If descb(dtype_) $=502$, then dlen_ ≥ 7; else if descb(dtype_) $=1$, then dlen_ ≥ 9.
af, work	(local)
	REAL for pspttrs
	DOUBLE PRECISION for pdpttrs
	COMPLEX for pepttrs
	DOUBLE COMPLEX for pzpttrs.
	Arrays of dimension (laf) and (lwork), respectively
	The array af contains auxiliary Fillin space. Fillin is created during the factorization routine p?pttrf and this is stored in af.
	The array work is a workspace array.
laf	(local) INTEGER. The dimension of the array $a f$.
	Must be laf $\geq \mathrm{NB}+2$.
	If laf is not large enough, an error code will be returned and the minimum acceptable size will be returned in $a f(1)$.
Iwork	(local or global) InTEGER. The size of the array work, must be at least lwork $\geq(10+2 * \min (100, n r h s)) *$ NPCOL $+4 *_{n r h s}$.

Output Parameters

b
work(1)
info

On exit, this array contains the local pieces of the solution distributed matrix X.

On exit, work (1) contains the minimum value of 1 work required for optimum performance.
INTEGER. If info $=0$, the execution is successful. info<0:
if the i th argument is an array and the j th entry had an illegal value, then info $=-(i * 100+j) ;$ if the i th argument is a scalar and had an illegal value, then info $=-i$.

p?dttrs

Solves a system of linear equations with a diagonally dominant-like tridiagonal distributed matrix using the factorization computed by p?dttrf .

Syntax

```
call psdttrs ( trans, n, nrhs, dl, d, du, ja, desca, b, ib, descb, af,
    laf, work, lwork, info )
call pddttrs ( trans, n, nrhs, dl, d, du, ja, desca, b, ib, descb, af,
    laf, work, lwork, info )
call pcdttrs ( trans, n, nrhs, dl, d, du, ja, desca, b, ib, descb, af,
    laf, work, lwork, info )
call pzdttrs ( trans, n, nrhs, dl, d, du, ja, desca, b, ib, descb, af,
    laf, work, lwork, info )
```


Description

The routine p?dttrs solves for X one of the systems of equations:

$$
\begin{aligned}
& \operatorname{sub}(A) \star X=\operatorname{sub}(B), \\
& (\operatorname{sub}(A))^{T} \star X=\operatorname{sub}(B), \text { or } \\
& (\operatorname{sub}(A))^{H_{\star}} \star=\operatorname{sub}(B),
\end{aligned}
$$

where $\operatorname{sub}(A)=A(1: n, j a: j a+n-1)$ is a diagonally dominant-like tridiagonal distributed matrix, and $\operatorname{sub}(B)$ denotes the distributed matrix $B(i b: i b+n-1,1: n r h s)$.
This routine uses the $L U$ factorization computed by p?dttrf.

Input Parameters

n
(global) CHARACTER*1. Must be 'N' or 'T' or 'C'.
Indicates the form of the equations:
If trans $={ }^{\prime} \mathrm{N}$ ', then $\operatorname{sub}(A)^{*} X=\operatorname{sub}(B)$ is solved for X.
If trans $=$ ' T ', then $\operatorname{sub}(A)^{T *} X=\operatorname{sub}(B)$ is solved for X.
If trans $=' \mathrm{C}$ ', then $\operatorname{sub}(A)^{H} * X=\operatorname{sub}(B)$ is solved for X.
(global) INTEGER. The order of the distributed submatrix $\operatorname{sub}(A)(n \geq 0)$.

nrhs	(global) INTEGER. The number of right hand sides; the number of columns of the distributed submatrix $\operatorname{sub}(B)(n r h s \geq 0)$.
$d l, d, d u$	(local)
	REAL for psdttrs
	DOUBLE PRECISION for pddttrs
	COMPLEX for pcdttrs
	DOUBLE COMPLEX for pzdttrs.
	Pointers to the local arrays of dimension (desca (nb_)) each.
	On entry, these arrays contain details of the factorization. Globally, $d l(1)$ and $d u(n)$ are not referenced; $d l$ and $d u$ must be aligned with d.
ja	(global) INTEGER. The index in the global array A that points to the start of the matrix to be operated on (which may be either all of A or a submatrix of A).
desca	(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix A.
	If desca(dtype_) $=501$ or 502 , then dlen_ ≥ 7; else if desca(dtype_) $=1$, then dlen_ ≥ 9.
b	(local) Same type as d.
	Pointer into the local memory to an array of local dimension b(lld_b, $L O C_{c}$ (nrhs)). On entry, the array b contains the local pieces of the n-by-nrhs right hand side distributed matrix $\operatorname{sub}(B)$.
ib	(global) Integer. The row index in the global array B that points to the first row of the matrix to be operated on (which may be either all of B or a submatrix of B).
descb	(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix B.
	If descb(dtype_) $=502$, then dlen_ ≥ 7; else if descb(dtype_) $=1$, then dlen_ ≥ 9.
af, work	(local)
	REAL for psdttrs
	DOUBLE PRECISION for pddttrs
	COMPLEX for pcdttrs
	DOUBLE COMPLEX for pzdttrs.

Arrays of dimension (laf) and (lwork), respectively.
The array af contains auxiliary Fillin space. Fillin is created during the factorization routine p?dttrf and this is stored in $a f$. If a linear system is to be solved using p?dttrs after the factorization routine, af must not be altered.

The array work is a workspace array.
laf (local) INTEGER. The dimension of the array af.
Must be laf $\geq \mathrm{NB} *(b w l+b w u)+6 *(b w l+b w u) *(b w l+2 * b w u)$.
If laf is not large enough, an error code will be returned and the minimum acceptable size will be returned in $a f(1)$.
lwork (local or global) INTEGER. The size of the array work, must be at least lwork $\geq 10 *$ NPCOL+4*nrhs.

Output Parameters

b
work (1) On exit, work (1) contains the minimum value of 1 work required for optimum performance.
info INTEGER. If info $=0$, the execution is successful. info<0:
if the i th argument is an array and the j th entry had an illegal value, then info $=-(i * 100+j)$; if the i th argument is a scalar and had an illegal value, then info $=-i$.

p?dbtrs

Solves a system of linear equations with a diagonally dominant-like banded distributed matrix using the factorization computed by p?dbtrf.

Syntax

```
call psdbtrs ( trans, n, bwl, bwu, nrhs, a, ja, desca, b, ib, descb, af,
    laf, work, lwork, info )
```

```
call pddbtrs ( trans, n, bwl, bwu, nrhs, a, ja, desca, b, ib, descb, af,
    laf, work, lwork, info )
call pcdbtrs ( trans, n, bwl, bwu, nrhs, a, ja, desca, b, ib, descb, af,
    laf, work, lwork, info )
call pzdbtrs ( trans, n, bwl, bwu, nrhs, a, ja, desca, b, ib, descb, af,
    laf, work, lwork, info )
```


Description

The routine p?dbtrs solves for X one of the systems of equations:

$$
\begin{aligned}
& \operatorname{sub}(A) \star X=\operatorname{sub}(B), \\
& (\operatorname{sub}(A))^{T} \star X=\operatorname{sub}(B), \text { or } \\
& (\operatorname{sub}(A))^{H} \star X=\operatorname{sub}(B),
\end{aligned}
$$

where $\operatorname{sub}(A)=A(1: n, j a: j a+n-1)$ is a diagonally dominant-like banded distributed matrix, and $\operatorname{sub}(B)$ denotes the distributed matrix B (ib:ib+n-1, $1: n r h s$).
This routine uses the $L U$ factorization computed by p? dbtrf.

Input Parameters

```
trans (global) CHARACTER*1. Must be 'N' or 'T' or 'C'.
    Indicates the form of the equations:
    If trans = 'N', then \operatorname{sub}(A)*X=\operatorname{sub}(B)\mathrm{ is solved for }X\mathrm{ .}
    If trans = 'T', then \operatorname{sub}(A\mp@subsup{)}{}{T}*X=\operatorname{sub}(B)\mathrm{ is solved for }X\mathrm{ .}
    If trans = ' C', then sub (A) H}*X=\operatorname{sub}(B)\mathrm{ is solved for }X\mathrm{ .
```

n
(global) INTEGER. The order of the distributed submatrix $\operatorname{sub}(A)(n \geq 0)$.
(global) INTEGER. The number of subdiagonals within the band of A ($0 \leq b w l \leq n-1$).
(global) INTEGER. The number of superdiagonals within the band of A ($0 \leq b w u \leq n-1$).
(global) INTEGER. The number of right hand sides; the number of columns of the distributed submatrix $\operatorname{sub}(B)(n r h s \geq 0)$.
(local)

```
REAL for psdbtrs
DOUBLE PRECISION for pddbtrs
COMPLEX for pcdbtrs
DOUBLE COMPLEX for pzdbtrs.
```

Pointers into the local memory to arrays of local dimension a(lld_a, $\left.L O C_{c}(j a+n-1)\right)$ and $b\left(11 d_{-} b, L O C_{c}\right.$ (nrhs)), respectively.

On entry, the array a contains details of the $L U$ factorization of the band matrix A, as computed by p?dbtrf.

On entry, the array b contains the local pieces of the right hand side distributed matrix $\operatorname{sub}(B)$.
(global) INTEGER. The index in the global array A that points to the start of the matrix to be operated on (which may be either all of A or a submatrix of A).
(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix A.
If desca(dtype_) $=501$, then dlen_ ≥ 7;
else if desca(dtype_) $=1$, then dlen_ ≥ 9.
(global) INTEGER. The row index in the global array B that points to the first row of the matrix to be operated on (which may be either all of B or a submatrix of B).
(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix B.

If descb(dtype_) $=502$, then dlen_ ≥ 7;
else if $\operatorname{descb}\left(d t y p e \_\right)=1$, then dlen_ ≥ 9.
af, work (local)
REAL for psdbtrs
DOUBLE PRECISION for pddbtrs
COMPLEX for pcdbtrs
DOUBLE COMPLEX for pzdbtrs.
Arrays of dimension (laf) and (lwork), respectively The array af contains auxiliary Fillin space. Fillin is created during the factorization routine p?dbtrf and this is stored in af.
The array work is a workspace array.
(local) INTEGER. The dimension of the array $a f$.
Must be laf \geq NB* $(b w l+b w u)+6 *(\max (b w l, b w u))^{2}$.

If laf is not large enough, an error code will be returned and the minimum acceptable size will be returned in $a f(1)$.
lwork (local or global) INTEGER. The size of the array work, must be at least 1 work $\geq(\max (b w l, b w u))^{2}$.

Output Parameters

b
work(1)
info

On exit, this array contains the local pieces of the solution distributed matrix X.

On exit, work (1) contains the minimum value of 1 work required for optimum performance.
INTEGER. If info $=0$, the execution is successful. info <0 :
if the i th argument is an array and the j th entry had an illegal value, then info $=-(i * 100+j) ;$ if the i th argument is a scalar and had an illegal value, then info $=-i$.

p?trtrs

Solves a system of linear equations with a triangular distributed matrix.

Syntax

```
call pstrtrs (uplo, trans, diag, n, nrhs, a, ia, ja, desca, b, ib, jb,
    descb, info)
call pdtrtrs (uplo, trans, diag, n, nrhs, a, ia, ja, desca, b, ib, jb,
    descb, info)
call pctrtrs (uplo, trans, diag, n, nrhs, a, ia, ja, desca, b, ib, jb,
    descb, info)
call pztrtrs (uplo, trans, diag, n, nrhs, a, ia, ja, desca, b, ib, jb,
    descb, info)
```


Description

This routine solves for X one of the following systems of linear equations:

$$
\operatorname{sub}(A) \star X=\operatorname{sub}(B),
$$

$$
\begin{aligned}
& (\operatorname{sub}(A))^{T_{\star}} X=\operatorname{sub}(B), \text { or } \\
& (\operatorname{sub}(A))^{H_{\star}} X=\operatorname{sub}(B),
\end{aligned}
$$

where $\operatorname{sub}(A)=A(i a: i a+n-1, j a: j a+n-1)$ is a triangular distributed matrix of order n, and $\operatorname{sub}(B)$ denotes the distributed matrix $B(i b: i b+n-1, j b: j b+n r h s-1)$.
A check is made to verify that $\operatorname{sub}(A)$ is nonsingular.
Input Parameters

uplo	(global) CHARACTER*1. Must be 'U' or 'L'.
	Indicates whether $\operatorname{sub}(A)$ is upper or lower triangular:
	If uplo $=$ ' U ', then $\operatorname{sub}(A)$ is upper triangular. If uplo='L', then $\operatorname{sub}(A)$ is lower triangular.
trans	(global) CHARACTER*1. Must be 'N' or 'T' or 'C'.
	Indicates the form of the equations:
	If trans $={ }^{\prime} \mathrm{N}^{\prime}$, then $\operatorname{sub}(A)^{*} X=\operatorname{sub}(B)$ is solved for X.
	If trans $=$ ' T ', then $\operatorname{sub}(A)^{T *} X=\operatorname{sub}(B)$ is solved for X.
	If trans $=$ ' C^{\prime}, then $\operatorname{sub}(A)^{H} * X=\operatorname{sub}(B)$ is solved for X.
diag	(global) CHARACTER*1. Must be 'N' or 'U'.
	If diag $={ }^{\prime} \mathrm{N}$ ', then $\operatorname{sub}(A)$ is not a unit triangular matrix.
	If diag = ' U ', then $\operatorname{sub}(A)$ is unit triangular.
n	(global) INTEGER. The order of the distributed submatrix $\operatorname{sub}(A)(n \geq 0)$.
nrhs	(global) InTEGER. The number of right-hand sides; i.e., the number of columns of the distributed matrix $\operatorname{sub}(B)(n r h s \geq 0)$.
a, b	(local)
	REAL for pstrtrs
	DOUBLE PRECISION for pdtrtrs
	COMPLEX for petrtrs
	DOUbLe COMPLEX for pztrtrs.

Pointers into the local memory to arrays of local dimension a(lld_a, $\left.L O C_{c}(j a+n-1)\right)$ and $b\left(11 d \_b, L O C_{c}(j b+n r h s-1)\right)$, respectively.

The array a contains the local pieces of the distributed triangular matrix $\operatorname{sub}(A)$.
If uplo = ' U ', the leading n-by-n upper triangular part of $\operatorname{sub}(A)$ contains the
upper triangular matrix, and the strictly lower triangular part of $\operatorname{sub}(A)$ is not referenced.
If uplo = 'L', the leading n-by-n lower triangular part of $\operatorname{sub}(A)$ contains the lower triangular matrix, and the strictly upper triangular part of $\operatorname{sub}(A)$ is not referenced.
If diag = ' U ', the diagonal elements of $\operatorname{sub}(A)$ are also not referenced and are assumed to be 1 .

On entry, the array b contains the local pieces of the right hand side distributed matrix sub (B).
ia, ja (global) INTEGER. The row and column indices in the global array A indicating the first row and the first column of the submatrix $\operatorname{sub}(A)$, respectively.
desca (global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix A.
$i b, j b \quad$ (global) INTEGER. The row and column indices in the global array B indicating the first row and the first column of the submatrix $\operatorname{sub}(B)$, respectively.
descb
(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix B.

Output Parameters

b
info

On exit, if info $=0, \operatorname{sub}(B)$ is overwritten by the solution matrix X.
INTEGER. If info $=0$, the execution is successful.
info <0 :
if the i th argument is an array and the j th entry had an illegal value, then info $=-(i * 100+j)$; if the i th argument is a scalar and had an illegal value, then info $=-i$;
info >0 :
If info $=i$, the i th diagonal element of $\operatorname{sub}(A)$ is zero, indicating that the submatrix is singular and the solutions X have not been computed.

Routines for Estimating the Condition Number

This section describes the ScaLAPACK routines for estimating the condition number of a matrix. The condition number is used for analyzing the errors in the solution of a system of linear equations. Since the condition number may be arbitrarily large when the matrix is nearly singular, the routines actually compute the reciprocal condition number.

p?gecon

Estimates the reciprocal of the condition number of a general distributed matrix in either the 1-norm or the infinity-norm.

Syntax

```
call psgecon ( norm, n, a, ia, ja, desca, anorm, rcond, work, lwork,
    iwork, liwork, info )
call pdgecon ( norm, n, a, ia, ja, desca, anorm, rcond, work, lwork,
    iwork, liwork, info )
call pcgecon ( norm, n, a, ia, ja, desca, anorm, rcond, work, lwork,
    rwork, lrwork, info )
call pzgecon ( norm, n, a, ia, ja, desca, anorm, rcond, work, lwork,
    rwork, lrwork, info )
```


Description

This routine estimates the reciprocal of the condition number of a general distributed real/complex matrix $\operatorname{sub}(A)=A($ ia: $i a+n-1, j a: j a+n-1)$ in either the 1-norm or infinity-norm, using the LU factorization computed by p?getrf.

An estimate is obtained for $\left\|(\operatorname{sub}(A))^{-1}\right\|$, and the reciprocal of the condition number is computed as

$$
\text { rcond }=\frac{1}{\|\operatorname{sub}(A)\| \times\left\|(\operatorname{sub}(A))^{-1}\right\|}
$$

Input Parameters

[^4]Specifies whether the 1-norm condition number or the infinity-norm condition number is required.

If norm $=$ '1' or 'O', then the 1 -norm is used;
If norm = 'I ', then the infinity-norm is used.

I work
en
(global) INTEGER. The order of the distributed submatrix $\operatorname{sub}(A)(n \geq 0)$.
(local)
REAL for psgecon
DOUBLE PRECISION for pdgecon
COMPLEX for pcgecon
DOUBLE COMPLEX for pzgecon.
Pointer into the local memory to an array of dimension a(lld_a, $\left.L O C_{c}(j a+n-1)\right)$.

The array a contains the local pieces of the factors L and U from the factorization $\operatorname{sub}(A)=P L U$; the unit diagonal elements of L are not stored.
(global) INTEGER. The row and column indices in the global array A indicating the first row and the first column of the submatrix $\operatorname{sub}(A)$, respectively.
(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix A.
(global) REAL for single precision flavors, DOUBLE PRECISION for double precision flavors.
If norm $=$ '1' or ' O^{\prime}, the 1 -norm of the original distributed matrix $\operatorname{sub}(A)$;
If norm $=$ ' I', the infinity-norm of the original distributed matrix $\operatorname{sub}(A)$.
(local)
REAL for psgecon
DOUBLE PRECISION for pdgecon
COMPLEX for pcgecon
DOUBLE COMPLEX for pzgecon.
The array work of dimension (1work) is a workspace array.
(local or global) INTEGER. The dimension of the array work.
For real flavors:
l work must be at least
lwork $\geq 2 * L O C_{r}\left(n+\bmod \left(i a-1, m b \_a\right)\right)+$

$$
\begin{aligned}
& 2 * L O C_{c}\left(n+\bmod \left(j a-1, n b \_a\right)\right)+ \\
& \max \left(2, \max \left(n b \_a * \max (1, \text { ceil(NPROW-1,NPCOL)), }\right.\right. \\
& \left.L O C_{c}\left(n+\bmod \left(j a-1, n b \_a\right)\right)+n b \_a * \max (1, \text { ceil(NPCOL-1, NPROW) })\right) .
\end{aligned}
$$

For complex flavors:
lwork must be at least
1 work $\geq 2 * L O C_{r}\left(\right.$ n $\left.+\bmod \left(i a-1, m b \_a\right)\right)+$ $\max \left(2, \max \left(n b \_a * \operatorname{ceil}(\right.\right.$ NPROW-1, NPCOL), $L O C_{c}\left(n+\bmod \left(j a-1, n b \_a\right)\right)+n b \_a *$ ceil(NPCOL-1, NPROW))).
$L O C_{r}$ and $L O C_{c}$ values can be computed using the ScaLAPACK tool function numroc; NPROW and NPCOL can be determined by calling the subroutine blacs_gridinfo.
rwork (local) REAL for pcgecon
iwork
liwork
lrwork
(local) INTEGER.
Workspace array, DIMENSION (liwork). Used in real flavors only.
(local or global) INTEGER.
The dimension of the array iwork; used in real flavors only. Must be at least liwork $\geq L O C_{r}\left(n+\bmod \left(i a-1, m b \_a\right)\right)$. DOUBLE PRECISION for pzgecon Workspace array, DIMENSION (lrwork). Used in complex flavors only.
(local or global) INTEGER.
The dimension of the array rwork; used in complex flavors only. Must be at least
lrwork $\geq 2 * L O C_{c}\left(n+\bmod \left(j a-1, n b \_a\right)\right)$.

Output Parameters

(global) REAL for single precision flavors. DOUBLE PRECISION for double precision flavors.
The reciprocal of the condition number of the distributed matrix $\operatorname{sub}(A)$. See Description.
work (1) On exit, work (1) contains the minimum value of I work required for optimum performance.
iwork(1) On exit, iwork (1) contains the minimum value of liwork required for optimum performance (for real flavors).
rwork (1) On exit, rwork (1) contains the minimum value of Irwork required for optimum performance (for complex flavors).

```
info (global) INTEGER. If info=0, the execution is successful.
info<0:
```

if the i th argument is an array and the j th entry had an illegal value, then info $=-(i * 100+j)$; if the i th argument is a scalar and had an illegal value, then $\operatorname{info}=-i$.

p?pocon

Estimates the reciprocal of the condition number (in the
1 - norm) of a symmetric / Hermitian positive-definite distributed matrix.

Syntax

```
call pspocon ( uplo, n, a, ia, ja, desca, anorm, rcond, work, lwork,
    iwork, liwork, info )
call pdpocon ( uplo, n, a, ia, ja, desca, anorm, rcond, work, lwork,
    iwork, liwork, info )
call pcpocon ( uplo, n, a, ia, ja, desca, anorm, rcond, work, lwork,
    rwork, lrwork, info )
call pzpocon ( uplo, n, a, ia, ja, desca, anorm, rcond, work, lwork,
    rwork, lrwork, info )
```


Description

This routine estimates the reciprocal of the condition number (in the 1 -norm) of a real symmetric or complex Hermitian positive definite distributed matrix $\operatorname{sub}(A)=A(i a: i a+n-1$, ja:ja+n-1), using the Cholesky factorization $\operatorname{sub}(A)=U^{H} U$ or $\operatorname{sub}(A)=L L^{H}$ computed by p?potrf.

An estimate is obtained for $\left\|(\operatorname{sub}(A))^{-1}\right\|$, and the reciprocal of the condition number is computed as

Input Parameters

uplo
(global) CHARACTER*1. Must be 'U' or 'L'.

Specifies whether the factor stored in $\operatorname{sub}(A)$ is upper or lower triangular.
If uplo= ' U ', $\operatorname{sub}(A)$ stores the upper triangular factor U of the Cholesky factorization $\operatorname{sub}(A)=U^{H} U$.
If uplo= 'L', $\operatorname{sub}(A)$ stores the lower triangular factor L of the Cholesky factorization $\operatorname{sub}(A)=L L^{H}$.
(global) Integer. The order of the distributed submatrix $\operatorname{sub}(A)(n \geq 0)$.
(local)
REAL for pspocon
DOUBLE PRECISION for pdpocon
COMPLEX for pcpocon
DOUBLE COMPLEX for pzpocon.
Pointer into the local memory to an array of dimension a(lld_a, $\left.L O C_{c}(j a+n-1)\right)$.

The array a contains the local pieces of the factors L or U from the Cholesky factorization $\operatorname{sub}(A)=U^{H} U$ or $\operatorname{sub}(A)=L L^{H}$, as computed by p?potrf.

I work
(global) INTEGER. The row and column indices in the global array A indicating the first row and the first column of the submatrix $\operatorname{sub}(A)$, respectively.
(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix A.
(global) REAL for single precision flavors, DOUBLE PRECISION for double precision flavors.
The 1-norm of the symmetric/Hermitian distributed matrix $\operatorname{sub}(A)$.
(local)
REAL for pspocon
DOUBLE PRECISION for pdpocon
COMPLEX for pcpocon
DOUBLE COMPLEX for pzpocon.
The array work of dimension (lwork) is a workspace array.
(local or global) Integer. The dimension of the array work.
For real flavors:
I work must be at least

```
lwork \geq 2*LOC (n+mod(ia-1,mb_a))+
    2*LOC
```

```
max(2, max(nb_a*ceil(NPROW-1, NPCOL),
LOC c}(n+\operatorname{mod}(ja-1,nb_a)) +
nb_a*ceil(NPCOL-1, NPROW))).
```

For complex flavors:
lwork must be at least
lwork $\geq 2 * L O C_{r}\left(n+\bmod \left(i a-1, m b \_a\right)\right)+$
$\max \left(2, \max \left(n b \_a * \max (1, \operatorname{ceil(NPROW-1,~NPCOL})\right)\right.$,
$L O C_{c}\left(n+\bmod \left(j a-1, n b \_a\right)\right)+$ nb_a*max (1, ceil(NPCOL-1, NPROW)))).
iwork (local) INTEGER.
Workspace array, DIMENSION (liwork). Used in real flavors only.
liwork (local or global) INTEGER.
The dimension of the array iwork; used in real flavors only. Must be at least liwork $\geq L O C_{r}\left(n+\bmod \left(i a-1, m b \_a\right)\right)$.
rwork (local) REAL for pcpocon
DOUBLE PRECISION for pzpocon
Workspace array, DIMENSION (lrwork). Used in complex flavors only.
lrwork (local or global) INTEGER.
The dimension of the array rwork; used in complex flavors only. Must be at least $\operatorname{lrwork} \geq 2 * L O C_{c}\left(n+\bmod \left(j a-1, n b \_a\right)\right)$.

Output Parameters

```
rcond (global) REAL for single precision flavors.
    DOUBLE PRECISION for double precision flavors.
    The reciprocal of the condition number of the distributed matrix }\operatorname{sub}(A)\mathrm{ .
work(1) On exit, work (1) contains the minimum value of lwork required for optimum
        performance.
iwork(1) On exit, iwork(1) contains the minimum value of liwork required for
        optimum performance (for real flavors).
rwork(1) On exit, rwork (1) contains the minimum value of lrwork required for
        optimum performance (for complex flavors).
info (global) INTEGER. If info=0, the execution is successful.
    info<0:
```

if the i th argument is an array and the j th entry had an illegal value, then info $=-(i * 100+j)$; if the i th argument is a scalar and had an illegal value, then info $=-i$.

p?trcon

Estimates the reciprocal of the condition number of a triangular distributed matrix in either 1-norm or infinity-norm.

Syntax

```
call pstrcon ( norm, uplo, diag, n, a, ia, ja, desca, rcond, work,
    lwork, iwork, liwork, info )
call pdtrcon ( norm, uplo, diag, n, a, ia, ja, desca, rcond, work,
    lwork, iwork, liwork, info )
call pctrcon ( norm, uplo, diag, n, a, ia, ja, desca, rcond, work,
    lwork, rwork, lrwork, info )
call pztrcon ( norm, uplo, diag, n, a, ia, ja, desca, rcond, work,
    lwork, rwork, lrwork, info )
```


Description

This routine estimates the reciprocal of the condition number of a triangular distributed matrix $\operatorname{sub}(A)=A(i a: i a+n-1, j a: j a+n-1)$, in either the $1-$ norm or the infinity-norm.
The norm of $\operatorname{sub}(A)$ is computed and an estimate is obtained for $\left\|(\operatorname{sub}(A))^{-1}\right\|$, then the reciprocal of the condition number is computed as

$$
\text { rcond }=\frac{1}{\|\operatorname{sub}(A)\| \times\left\|(\operatorname{sub}(A))^{-1}\right\|}
$$

Input Parameters

norm
(global) CHARACTER*1. Must be '1' or 'O' or 'I'.
Specifies whether the 1-norm condition number or the infinity-norm condition number is required.

If norm $=1$ ' or ' 0 ', then the 1 -norm is used;

If norm = ' I ', then the infinity-norm is used.

uplo	(global) CHARACTER*1. Must be 'U' or 'L'.
	If uplo = 'U', $\operatorname{sub}(A)$ is upper triangular.
	If uplo = 'L', $\operatorname{sub}(A)$ is lower triangular.
diag	(global) CHARACTER*1. Must be 'N' or 'U'.
	If diag $=$ ' N ', $\operatorname{sub}(A)$ is non-unit triangular. If diag $=$ ' U ', $\operatorname{sub}(A)$ is unit triangular.
n	(global) INTEGER. The order of the distributed submatrix $\operatorname{sub}(A)(n \geq 0)$.
a	(local)
	REAL for pstrcon
	DOUBLE PRECISION for pdtrcon
	COMPLEX for pctrcon
	DOUBLE COMPLEX for pztrcon.
	Pointer into the local memory to an array of dimension a(lld_a, $\left.L O C_{c}(j a+n-1)\right)$.
	The array a contains the local pieces of the triangular distributed matrix $\operatorname{sub}(A)$.
	If uplo = ' U ', the leading n-by- n upper triangular part of this distributed matrix contains the upper triangular matrix, and its strictly lower triangular part is not referenced.
	If uplo = ' L ', the leading n-by- n lower triangular part of this distributed matrix contains the lower triangular matrix, and its strictly upper triangular part is not referenced.
	If diag $=' U '$, the diagonal elements of $\operatorname{sub}(A)$ are also not referenced and are assumed to be 1 .
ia,ja	(global) INTEGER. The row and column indices in the global array A indicating the first row and the first column of the submatrix $\operatorname{sub}(A)$, respectively.
desca	(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix A.
work	(local)
	REAL for pstrcon
	DOUBLE PRECISION for pdtrcon
	COMPLEX for pctrcon
	DOUBLE COMPLEX for pztrcon.

The array work of dimension (lwork) is a workspace array.
1work (local or global) INTEGER. The dimension of the array work.
For real flavors:
lwork must be at least
1work $\geq 2 * L O C_{r}($ n+mod (ia-1,mb_a) $)+$
$L O C_{c}\left(n+\bmod \left(j a-1, n b \_a\right)\right)+$
$\max \left(2, \max \left(n b \_a * \max (1, \operatorname{ceil(NPROW-1,~NPCOL})\right)\right.$,
$L O C_{c}\left(n+\bmod \left(j a-1, n b \_a\right)\right)+$
nb_a*max (1, ceil(NPCOL-1, NPROW))).
For complex flavors:
lwork must be at least
1 work $\geq 2 * L O C_{r}\left(n+\bmod \left(i a-1, m b \_a\right)\right)+$
$\max \left(2, \max \left(n b \_a * \operatorname{ceil}(\right.\right.$ NPROW-1, NPCOL),
$L O C_{c}\left(n+\bmod \left(j a-1, n b \_a\right)\right)+$
nb_a*ceil(NPCOL-1, NPROW))).
iwork (local) INTEGER.
Workspace array, DIMENSION (liwork). Used in real flavors only.
liwork (local or global) INTEGER.
The dimension of the array iwork; used in real flavors only. Must be at least liwork $\geq L O C_{r}\left(n+\bmod \left(i a-1, m b \_a\right)\right)$.
rwork (local) REAL for pcpocon
DOUBLE PRECISION for pzpocon
Workspace array, DIMENSION (lrwork). Used in complex flavors only.
lrwork (local or global) Integer.
The dimension of the array rwork; used in complex flavors only. Must be at least $1 r w o r k \geq L O C_{c}\left(n+\bmod \left(j a-1, n b \_a\right)\right)$.

Output Parameters

(global) REAL for single precision flavors. DOUBLE PRECISION for double precision flavors. The reciprocal of the condition number of the distributed matrix $\operatorname{sub}(A)$.
work (1) On exit, work (1) contains the minimum value of 1 work required for optimum performance.
iwork (1) On exit, iwork (1) contains the minimum value of liwork required for optimum performance (for real flavors).

```
rwork(1) On exit, rwork (1) contains the minimum value of lrwork required for
optimum performance (for complex flavors).
info (global) INTEGER. If info=0, the execution is successful.
info<0:
```

if the i th argument is an array and the j th entry had an illegal value, then info $=-(i * 100+j)$; if the i th argument is a scalar and had an illegal value, then info $=-i$.

Refining the Solution and Estimating Its Error

This section describes the ScaLAPACK routines for refining the computed solution of a system of linear equations and estimating the solution error. You can call these routines after factorizing the matrix of the system of equations and computing the solution (see "Routines for Matrix Factorization" and "Routines for Solving Systems of Linear Equations").

p?gerfs

> Improves the computed solution to a system of linear equations and provides error bounds and backward error estimates for the solution.

Syntax

```
call psgerfs (trans, n, nrhs, a, ia, ja, desca, af, iaf, jaf, descaf,
    ipiv, b, ib, jb, descb, x, ix, jx, descx, ferr, berr, work, lwork,
    iwork, liwork, info)
call pdgerfs (trans, n, nrhs, a, ia, ja, desca, af, iaf, jaf, descaf,
    ipiv, b, ib, jb, descb, x, ix, jx, descx, ferr, berr, work, lwork,
    iwork, liwork, info)
call pcgerfs (trans, n, nrhs, a, ia, ja, desca, af, iaf, jaf, descaf,
    ipiv, b, ib, jb, descb, x, ix, jx, descx, ferr, berr, work, lwork,
    rwork, lrwork, info)
call pzgerfs (trans, n, nrhs, a, ia, ja, desca, af, iaf, jaf, descaf,
    ipiv, b, ib, jb, descb, x, ix, jx, descx, ferr, berr, work, lwork,
    rwork, lrwork, info)
```


Description

This routine improves the computed solution to one of the systems of linear equations

$$
\begin{aligned}
& \operatorname{sub}(A) * \operatorname{sub}(X)=\operatorname{sub}(B), \\
& \operatorname{sub}(A)^{T}+\operatorname{sub}(X)=\operatorname{sub}(B), \operatorname{or} \\
& \operatorname{sub}(A)^{T} * \operatorname{sub}(X)=\operatorname{sub}(B)
\end{aligned}
$$

and provides error bounds and backward error estimates for the solution.
Here $\operatorname{sub}(A)=A(i a: i a+n-1, j a: j a+n-1), \operatorname{sub}(B)=B(i b: i b+n-1, j b: j b+n r h s-1)$, and $\operatorname{sub}(X)=X(i x: i x+n-1, j x: j x+n r h s-1)$.

Input Parameters

trans (global) CHARACTER*1. Must be 'N' or 'T' or 'C'
Specifies the form of the system of equations:
If trans $=$ ' N ', the system has the form $\operatorname{sub}(A) * \operatorname{sub}(X)=\operatorname{sub}(B)$ (No transpose);

If trans $=$ ' T ', the system has the form $\operatorname{sub}(A)^{T} * \operatorname{sub}(X)=\operatorname{sub}(B)$ (Transpose);

If trans $=$ ' C ', the system has the form $\operatorname{sub}(A)^{H} * \operatorname{sub}(X)=\operatorname{sub}(B)$ (Conjugate transpose).
n
nrhs
(global) INTEGER. The order of the distributed submatrix $\operatorname{sub}(A)(n \geq 0)$.
(global) INTEGER. The number of right-hand sides, i.e., the number of columns of the matrices $\operatorname{sub}(B)$ and $\operatorname{sub}(X)(n r h s \geq 0)$.
$a, a f, b, x$
(local)
REAL for psgerfs
DOUBLE PRECISION for pdgerfs
COMPLEX for pcgerfs
DOUBLE COMPLEX for pzgerfs.
Pointers into the local memory to arrays of local dimension a(lld_a, $\left.L O C_{c}(j a+n-1)\right), a f\left(11 d \_a f, L O C_{c}(j a f+n-1)\right), b\left(l l d \_b\right.$, $\left.L O C_{c}(j b+n r h s-1)\right)$, and $x\left(11 d_{-} x, L O C_{c}(j x+n r h s-1)\right)$, respectively.

The array a contains the local pieces of the distributed matrix $\operatorname{sub}(A)$.
The array af contains the local pieces of the distributed factors of the matrix $\operatorname{sub}(A)=P L U$ as computed by p?getrf.

ia,ja	(global) INTEGER. The row and column indices in the global array A indicating the first row and the first column of the submatrix $\operatorname{sub}(A)$, respectively.
desca	(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix A.
iaf,jaf	(global) INTEGER. The row and column indices in the global array $A F$ indicating the first row and the first column of the submatrix $\operatorname{sub}(A F)$, respectively.
descaf	(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix $A F$.
ib, j.b	(global) INTEGER. The row and column indices in the global array B indicating the first row and the first column of the submatrix $\operatorname{sub}(B)$, respectively.
descb	(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix B.
ix, jx	(global) INTEGER. The row and column indices in the global array X indicating the first row and the first column of the submatrix $\operatorname{sub}(X)$, respectively.
descx	(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix X.
ipiv	(local) INTEGER.
	Array, dimension $L O C_{r}\left(m_{-} a f\right)+m b a f$.
	This array contains pivoting information as computed by p?getrf. If $\operatorname{ipiv}(i)=j$, then the local row i was swapped with the global row j. This array is tied to the distributed matrix A.
work	(local)
	REAL for psgerfs
	DOUBLE PRECISION for pdgerfs
	COMPLEX for pcgerfs
	DOUBLE COMPLEX for pzgerfs.

The array work of dimension (lwork) is a workspace array.

lwork	(local or global) INTEGER. The dimension of the array work.
	For real flavors:
	1 work must be at least
	1 work $\geq 3 * L O C_{r}($ n+mod (ia-1, mb_a) $)$
	For complex flavors:
	1 work must be at least
	1 work $\geq 2 * L O C_{r}\left(\mathrm{n}+\mathrm{mod}\left(\mathrm{ia-1,mb}{ }^{\text {a }}\right.\right.$) $)$
iwork	(local) Integer.
	Workspace array, DIMENSION (liwork). Used in real flavors only.
liwork	(local or global) INTEGER.
	The dimension of the array iwork; used in real flavors only. Must be at least liwork $\geq L O C_{r}\left(n+\bmod \left(i b-1, m b \_b\right)\right)$.
rwork	(local) REAL for pcgerfs
	DOUBLE PRECISION for pzgerfs
	Workspace array, dimension (lrwork). Used in complex flavors only.
lrwork	(local or global) INTEGER.
	The dimension of the array rwork; used in complex flavors only. Must be at least 1 rwork $\left.\geq L O C_{r}\left(n+\bmod \left(i b-1, m b \_b\right)\right)\right)$.
Output Parameters	
x	On exit, contains the improved solution vectors.
ferr, berr	REAL for single precision flavors.
	DOUBLE PRECISION for double precision flavors.
	Arrays, dimension $L O C_{c}(j b+n r h s-1)$ each.
	The array ferr contains the estimated forward error bound for each solution vector of $\operatorname{sub}(X)$.
	If XTRUE is the true solution corresponding to $\operatorname{sub}(X)$, ferr is an estimated upper bound for the magnitude of the largest element in $(\operatorname{sub}(X)-\operatorname{XTRUE})$ divided by the magnitude of the largest element in $\operatorname{sub}(X)$. The estimate is as reliable as the estimate for rcond , and is almost always a slight overestimate of the true error.
	This array is tied to the distributed matrix X.
	The array berr contains the component-wise relative backward error of each solution vector (that is, the smallest relative change in any entry of $\operatorname{sub}(A)$ or $\operatorname{sub}(B)$ that makes $\operatorname{sub}(X)$ an exact solution). This array is tied to the distributed matrix X.

```
work (1) On exit, work (1) contains the minimum value of lwork required for optimum performance.
iwork(1) On exit, iwork(1) contains the minimum value of liwork required for optimum performance (for real flavors).
rwork(1) On exit, rwork (1) contains the minimum value of lrwork required for optimum performance (for complex flavors).
info (global) INTEGER. If \(\operatorname{info}=0\), the execution is successful.
```

```
info<0:
```

```
info<0:
```

if the i th argument is an array and the j th entry had an illegal value, then info $=-(i * 100+j)$; if the i th argument is a scalar and had an illegal value, then info $=-i$.

p?porfs

Improves the computed solution to a system of linear equations with symmetric/Hermitian positive definite distributed matrix and provides error bounds and backward error estimates for the solution.

Syntax

```
call psporfs (uplo, n, nrhs, a, ia, ja, desca, af, iaf, jaf, descaf, b,
    ib, jb, descb, x, ix, jx, descx, ferr, berr, work, lwork, iwork,
    liwork, info)
call pdporfs (uplo, n, nrhs, a, ia, ja, desca, af, iaf, jaf, descaf, b,
    ib, jb, descb, x, ix, jx, descx, ferr, berr, work, lwork, iwork,
    liwork, info)
call pcporfs (uplo, n, nrhs, a, ia, ja, desca, af, iaf, jaf, descaf, b,
    ib, jb, descb, x, ix, jx, descx, ferr, berr, work, lwork, rwork,
    lrwork, info)
call pzporfs (uplo, n, nrhs, a, ia, ja, desca, af, iaf, jaf, descaf, b,
    ib, jb, descb, x, ix, jx, descx, ferr, berr, work, lwork, rwork,
    lrwork, info)
```


Description

The routine p?porfs improves the computed solution to the system of linear equations $\operatorname{sub}(A) * \operatorname{sub}(X)=\operatorname{sub}(B)$,
where $\operatorname{sub}(A)=A(i a: i a+n-1, j a: j a+n-1)$ is a real symmetric or complex Hermitian positive definite distributed matrix and

$$
\begin{aligned}
& \operatorname{sub}(B)=B(i b: i b+n-1, j b: j b+n r h s-1), \\
& \operatorname{sub}(X)=X(i x: i x+n-1, j x: j x+n r h s-1)
\end{aligned}
$$

are right-hand side and solution submatrices, respectively.
This routine also provides error bounds and backward error estimates for the solution.
Input Parameters

The array a contains the local pieces of the n-by- n symmetric/Hermitian distributed matrix $\operatorname{sub}(A)$.
If uplo = ' U ', the leading n-by- n upper triangular part of $\operatorname{sub}(A)$ contains the upper triangular part of the matrix, and its strictly lower triangular part is not referenced.
If uplo = ' L ', the leading n-by- n lower triangular part of $\operatorname{sub}(A)$ contains the lower triangular part of the distributed matrix, and its strictly upper triangular part is not referenced.

The array af contains the factors L or U from the Cholesky factorization $\operatorname{sub}(A)=L L^{H}$ or $\operatorname{sub}(A)=U^{H} U$, as computed by p?potrf.
On entry, the array b contains the local pieces of the distributed matrix of right hand sides $\operatorname{sub}(B)$.

On entry, the array x contains the local pieces of the solution vectors $\operatorname{sub}(X)$.

ia,ja	(global) INTEGER. The row and column indices in the global array A indicating the first row and the first column of the submatrix $\operatorname{sub}(A)$, respectively.
desca	(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix A.
iaf, jaf	(global) INTEGER. The row and column indices in the global array $A F$ indicating the first row and the first column of the submatrix $\operatorname{sub}(A F)$, respectively.
descaf	(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix $A F$.
ib, jb	(global) INTEGER. The row and column indices in the global array B indicating the first row and the first column of the submatrix $\operatorname{sub}(B)$, respectively.
descb	(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix B.
ix, jx	(global) INTEGER. The row and column indices in the global array X indicating the first row and the first column of the submatrix $\operatorname{sub}(X)$, respectively.
descx	(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix X.
work	(local)
	REAL for psporfs
	DOUBLE PRECISION for pdporfs
	COMPLEX for pcporfs
	DOUBLE COMPLEX for pzporfs.

The array work of dimension (lwork) is a workspace array.

lwork	(local) Integer. The dimension of the array work.
	For real flavors:
	1 work must be at least
	1 work $\geq 3 * L O C_{r}($ n+mod (ia-1, mb_a))
	For complex flavors:
	1 work must be at least
	1 work $\geq 2 * L O C_{r}($ n+mod (ia-1, mb_a) $)$
iwork	(local) Integer.
	Workspace array, DIMENSION (liwork). Used in real flavors only.
liwork	(local or global) INTEGER.
	The dimension of the array iwork; used in real flavors only. Must be at least liwork $\geq L O C_{r}\left(n+\bmod \left(i b-1, m b \_b\right)\right)$.
rwork	(local) ReAL for pcporfs
	DOUBLE PRECISION for pzporfs
	Workspace array, DIMENSION (lrwork). Used in complex flavors only.
lrwork	(local or global) INTEGER.
	The dimension of the array rwork; used in complex flavors only. Must be at least 1 rwork $\left.\geq L O C_{r}\left(n+\bmod \left(i b-1, m b \_b\right)\right)\right)$.
Output Parameters	
x	On exit, contains the improved solution vectors.
ferr, berr	REAL for single precision flavors.
	DOUBLE PRECISION for double precision flavors.
	Arrays, dimension $L O C_{c}(j b+n r h s-1)$ each.
	The array ferr contains the estimated forward error bound for each solution vector of $\operatorname{sub}(X)$.
	If XTRUE is the true solution corresponding to $\operatorname{sub}(X)$, ferr is an estimated upper bound for the magnitude of the largest element in ($\operatorname{sub}(X)$ - XTRUE) divided by the magnitude of the largest element in $\operatorname{sub}(X)$. The estimate is as reliable as the estimate for rcond , and is almost always a slight overestimate of the true error.
	This array is tied to the distributed matrix X.
	The array berr contains the component-wise relative backward error of each solution vector (that is, the smallest relative change in any entry of $\operatorname{sub}(A)$ or $\operatorname{sub}(B)$ that makes $\operatorname{sub}(X)$ an exact solution). This array is tied to the distributed matrix X.

```
work (1) On exit, work (1) contains the minimum value of lwork required for optimum performance.
iwork(1) On exit, iwork(1) contains the minimum value of liwork required for optimum performance (for real flavors).
rwork(1) On exit, rwork (1) contains the minimum value of lrwork required for optimum performance (for complex flavors).
info (global) INTEGER. If info \(=0\), the execution is successful.
```

```
info<0:
```

```
info<0:
```

if the i th argument is an array and the j th entry had an illegal value, then info $=-(i * 100+j)$; if the i th argument is a scalar and had an illegal value, then info $=-i$.

p?trrfs

Provides error bounds and backward error estimates

for the solution to a system of linear equations with a distributed triangular coefficient matrix.

Syntax

```
call pstrrfs (uplo, trans, diag, n, nrhs, a, ia, ja, desca, b, ib, jb,
    descb, x, ix, jx, descx, ferr, berr, work, lwork, iwork, liwork, info)
call pdtrrfs (uplo, trans, diag, n, nrhs, a, ia, ja, desca, b, ib, jb,
    descb, x, ix, jx, descx, ferr, berr, work, lwork, iwork, liwork, info)
call pctrrfs (uplo, trans, diag, n, nrhs, a, ia, ja, desca, b, ib, jb,
    descb, x, ix, jx, descx, ferr, berr, work, lwork, rwork, lrwork, info)
call pztrrfs (uplo, trans, diag, n, nrhs, a, ia, ja, desca, b, ib, jb,
    descb, x, ix, jx, descx, ferr, berr, work, lwork, rwork, lrwork, info)
```


Description

The routine p?trrfs provides error bounds and backward error estimates for the solution to one of the systems of linear equations

$$
\begin{aligned}
& \operatorname{sub}(A) * \operatorname{sub}(X)=\operatorname{sub}(B), \\
& \operatorname{sub}(A)^{T} * \operatorname{sub}(X)=\operatorname{sub}(B), \text { or } \\
& \operatorname{sub}(A)^{T} * \operatorname{sub}(X)=\operatorname{sub}(B),
\end{aligned}
$$

```
where \(\operatorname{sub}(A)=A(i a: i a+n-1, j a: j a+n-1)\) is a triangular matrix,
    \(\operatorname{sub}(B)=B(i b: i b+n-1, j b: j b+n r h s-1)\), and
    \(\operatorname{sub}(X)=X(i x: i x+n-1, j x: j x+n r h s-1)\).
```

The solution matrix X must be computed by p?trtrs or some other means before entering this routine. The routine p?trrfs does not do iterative refinement because doing so cannot improve the backward error.

Input Parameters

trans	If uplo = ' U ', $\operatorname{sub}(A)$ is upper triangular. If uplo $=' \mathrm{~L} ', \operatorname{sub}(A)$ is lower triangular.
	(global) CHARACTER*1. Must be 'N' or 'T' or 'C'.
	Specifies the form of the system of equations:
	If trans $=$ ' N ', the system has the form $\operatorname{sub}(A) * \operatorname{sub}(X)=\operatorname{sub}(B)$ (No transpose);
	If trans $=$ ' T ', the system has the form $\operatorname{sub}(A)^{T} * \operatorname{sub}(X)=\operatorname{sub}(B)$ (Transpose);
	If trans $=$ ' C ' , the system has the form $\operatorname{sub}(A)^{H} * \operatorname{sub}(X)=\operatorname{sub}(B)$ (Conjugate transpose).
diag	ChARACTER*1. Must be 'N' or 'U'.
	If diag = ${ }^{\mathrm{N}}$ ', then $\operatorname{sub}(A)$ is non-unit triangular.
n	If diag $=$ ' U ', then $\operatorname{sub}(A)$ is unit triangular. (global) INTEGER. The order of the distributed matrix $\operatorname{sub}(A)(n \geq 0)$.
nrhs	(global) INTEGER. The number of right-hand sides, i.e., the number of columns of the matrices $\operatorname{sub}(B)$ and $\operatorname{sub}(X)(n r h s \geq 0)$.
a, b, x	(local)
	REAL for pstrrfs
	DOUBLE PRECISION for pdtrrfs
	COMPLEX for pctrrfs DOUBLE COMPLEX for pztrrfs.

Pointers into the local memory to arrays of local dimension a(lld_a, $\left.L O C_{c}(j a+n-1)\right)$, b(lld_b, $\left.L O C_{c}(j b+n r h s-1)\right)$, and $x\left(11 d_{-} x, L O C_{c}(j x+n r h s-1)\right)$, respectively.

The array a contains the local pieces of the original triangular distributed matrix $\operatorname{sub}(A)$.
If uplo = ' U ', the leading n-by- n upper triangular part of $\operatorname{sub}(A)$ contains the upper triangular part of the matrix, and its strictly lower triangular part is not referenced.
If uplo = 'L', the leading n-by-n lower triangular part of $\operatorname{sub}(A)$ contains the lower triangular part of the distributed matrix, and its strictly upper triangular part is not referenced.
If diag = ' U', the diagonal elements of $\operatorname{sub}(A)$ are also not referenced and are assumed to be 1 .

On entry, the array b contains the local pieces of the distributed matrix of right hand sides $\operatorname{sub}(B)$.

On entry, the array x contains the local pieces of the solution vectors $\operatorname{sub}(X)$.
ia,ja
descx (global) INTEGER. The row and column indices in the global array A indicating the first row and the first column of the submatrix $\operatorname{sub}(A)$, respectively.
(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix A.
(global) INTEGER. The row and column indices in the global array B indicating the first row and the first column of the submatrix $\operatorname{sub}(B)$, respectively.
(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix B.
(global) INTEGER. The row and column indices in the global array X indicating the first row and the first column of the submatrix $\operatorname{sub}(X)$, respectively.
(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix X.

work	(local)
	REAL for pstrrfs
	DOUBLE PRECISION for pdtrrfs
	COMPLEX for pctrrfs
	DOUBLE COMPLEX for pztrrfs.
	The array work of dimension (lwork) is a workspace array.
lwork	(local) INTEGER. The dimension of the array work.
	For real flavors:
	I work must be at least
	1 work $\geq 3 * L O C_{r}($ n+mod (ia-1, mb_a) $)$
	For complex flavors:
	1 work must be at least
	1 work $\geq 2 * L O C_{r}\left(n+\bmod \left(i a-1, m b \_a\right)\right)$
iwork	(local) INTEGER.
	Workspace array, DIMENSION (liwork). Used in real flavors only.
liwork	(local or global) INTEGER.
	The dimension of the array iwork; used in real flavors only. Must be at least
	liwork $\geq L O C_{r}\left(n+\bmod \left(i b-1, m b \_b\right)\right)$.
rwork	(local) REAL for pctrrfs
	DOUBLE PRECISION for pztrrfs
	Workspace array, DIMENSION (lrwork). Used in complex flavors only.
lrwork	(local or global) INTEGER.
	The dimension of the array rwork; used in complex flavors only. Must be at least $\left.\operatorname{lrwork} \geq L O C_{r}(n+\bmod (i b-1, m b-b))\right)$.
Output Parameters	
ferr, berr	REAL for single precision flavors.
	DOUBLE PRECISION for double precision flavors.
	Arrays, dimension $L O C_{c}(j b+n r h s-1)$ each.
	The array ferr contains the estimated forward error bound for each solution vector of $\operatorname{sub}(X)$.
	If XTRUE is the true solution corresponding to $\operatorname{sub}(X)$, ferr is an estimated upper bound for the magnitude of the largest element in $(\operatorname{sub}(X)-X T R U E)$ divided by the magnitude of the largest element in $\operatorname{sub}(X)$. The estimate is as

reliable as the estimate for rcond, and is almost always a slight overestimate of the true error.
This array is tied to the distributed matrix X.
The array berr contains the component-wise relative backward error of each solution vector (that is, the smallest relative change in any entry of $\operatorname{sub}(A)$ or $\operatorname{sub}(B)$ that makes $\operatorname{sub}(X)$ an exact solution). This array is tied to the distributed matrix X.
work (1) On exit, work (1) contains the minimum value of 1 work required for optimum performance.
iwork(1) On exit, iwork(1) contains the minimum value of liwork required for optimum performance (for real flavors).
rwork (1) On exit, rwork (1) contains the minimum value of lrwork required for optimum performance (for complex flavors).
info (global) INTEGER. If info $=0$, the execution is successful.

```
info<0:
```

if the i th argument is an array and the j th entry had an illegal value, then info $=-(i * 100+j) ;$ if the i th argument is a scalar and had an illegal value, then info $=-i$.

Routines for Matrix Inversion

This sections describes ScaLAPACK routines that compute the inverse of a matrix based on the previously obtained factorization. Note that it is not recommended to solve a system of equations $A x=b$ by first computing A^{-1} and then forming the matrix-vector product $x=A^{-1} b$. Call a solver routine instead (see "Routines for Solving Systems of Linear Equations"); this is more efficient and more accurate.

p?getri

Computes the inverse of a $L U$-factored distributed matrix.

Syntax

```
call psgetri (n, a, ia, ja, desca, ipiv, work, lwork, iwork, liwork,
    info)
call pdgetri (n, a, ia, ja, desca, ipiv, work, lwork, iwork, liwork,
    info)
call pcgetri (n, a, ia, ja, desca, ipiv, work, lwork, iwork, liwork,
    info)
call pzgetri (n, a, ia, ja, desca, ipiv, work, lwork, iwork, liwork,
    info)
```


Description

This routine computes the inverse of a general distributed matrix $\operatorname{sub}(A)=A(i a: i a+n-1, j a: j a+n-1)$ using the $L U$ factorization computed by p?getrf. This method inverts U and then computes the inverse of $\operatorname{sub}(A)$ denoted by InvA by solving the system

$$
\operatorname{Inv} A * L=U^{-1}
$$

for InvA.

Input Parameters

(global) INTEGER. The number of rows and columns to be operated on, that is, the order of the distributed submatrix $\operatorname{sub}(A)(n \geq 0)$.
(local)
REAL for psgetri
DOUBLE PRECISION for pdgetri
COMPLEX for pcgetri
DOUBLE COMPLEX for pzgetri.
Pointer into the local memory to an array of local dimension a(lld_a, $\left.L O C_{c}(j a+n-1)\right)$.
On entry, the array a contains the local pieces of the L and U obtained by the factorization $\operatorname{sub}(A)=P L U$ computed by p?getrf.

ia,ja	(global) INTEGER. The row and column indices in the global array A indicating the first row and the first column of the submatrix $\operatorname{sub}(A)$, respectively.
desca	(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix A.
work	(local)
	REAL for psgetri
	DOUBLE PRECISION for pdgetri
	COMPLEX for pcgetri
	DOUBLE COMPLEX for pzgetri.
	The array work of dimension (lwork) is a workspace array.
lwork	(local) INTEGER. The dimension of the array work.
	l work must be at least
	1 work $\geq L O C C_{r}\left(n+\bmod \left(i a-1, m b \_a\right)\right){ }^{\text {a }}$ nb_a .
	The array work is used to keep at most an entire column block of $\operatorname{sub}(A)$.
iwork	(local) INTEGER.
	Workspace array used for physically transposing the pivots, DIMENSION (liwork).
liwork	(local or global) INTEGER.
	The dimension of the array iwork.
	The minimal value liwork of is determined by the following code:
	```If NPROW == NPCOL then liwork = LOCC(n_a + mod(ja-1,nb_a)) + nb_a```
	Else
	liwork $=$ LOCc (n_a $\left.+\bmod \left(j a-1, n b \_a\right)\right)+$
	$\max ($ ceil (ceil (LOCr (m_a)/mb_a)/(lcm/NPROW)), nb_a)
	End if   where 1 cm is the least common multiple of process rows and columns (NPROW and NPCOL).
Output Parameters	
ipiv	(local) INTEGER.
	Array, dimension ( $\left.L O C_{r}\left(m_{-} a\right)+m b \_a\right)$.
	This array contains the pivoting information.
	If $\operatorname{ipiv}(i)=j$, then the local row $i$ was swapped with the global row $j$. This array is tied to the distributed matrix $A$.

```
work (1) On exit, work (1) contains the minimum value of 1 work required for optimum
 performance.
iwork(1) On exit, iwork (1) contains the minimum value of liwork required for
 optimum performance.
info
(global) INTEGER. If info=0, the execution is successful.
info<0:
if the ith argument is an array and the jth entry had an illegal value, then
info = - (i*100+j); if the ith argument is a scalar and had an illegal value,
then info=-i.
info>0:
if info= i, U(i,i) is exactly zero. The factorization has been completed, but
the factor U is exactly singular, and division by zero will occur if it is used to
solve a system of equations.
```


## p?potri

Computes the inverse of a symmetric/Hermitian positive definite distributed matrix.

## Syntax

```
call pspotri (uplo, n, a, ia, ja, desca, info)
call pdpotri (uplo, n, a, ia, ja, desca, info)
call pcpotri (uplo, n, a, ia, ja, desca, info)
call pzpotri (uplo, n, a, ia, ja, desca, info)
```


## Description

This routine computes the inverse of a real symmetric or complex Hermitian positive definite distributed matrix $\operatorname{sub}(A)=A(i a: i a+n-1, j a: j a+n-1)$ using the Cholesky factorization $\operatorname{sub}(A)=U^{H} U$ or $\operatorname{sub}(A)=L L^{H}$ computed by p?potrf.

## Input Parameters

uplo (global) CHARACTER*1. Must be 'U' or 'L'.
Specifies whether the upper or lower triangular part of the symmetric/Hermitian matrix $\operatorname{sub}(A)$ is stored.

If uplo= 'U', upper triangle of $\operatorname{sub}(A)$ is stored. If uplo='L', lower triangle of $\operatorname{sub}(A)$ is stored.
$n$
a
ia,ja
desca
(global) INTEGER. The number of rows and columns to be operated on, that is, the order of the distributed submatrix $\operatorname{sub}(A)(n \geq 0)$.
(local)
REAL for pspotri
DOUBLE PRECISION for pdpotri
COMPLEX for pcpotri
DOUBLE COMPLEX for pzpotri.
Pointer into the local memory to an array of local dimension a (lld_a, $\left.L O C_{C}(j a+n-1)\right)$.

On entry, the array a contains the local pieces of the triangular factor $U$ or $L$ from the Cholesky factorization $\operatorname{sub}(A)=U^{H} U$ or $\operatorname{sub}(A)=L L^{H}$, as computed by p?potrf.
(global) INTEGER. The row and column indices in the global array $A$ indicating the first row and the first column of the submatrix $\operatorname{sub}(A)$, respectively.
(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix $A$.

## Output Parameters

On exit, overwritten by the local pieces of the upper or lower triangle of the (symmetric/Hermitian) inverse of $\operatorname{sub}(A)$.
info
(global) INTEGER. If info $=0$, the execution is successful.
info $<0$ :
if the $i$ th argument is an array and the $j$ th entry had an illegal value, then info $=-(i * 100+j)$; if the $i$ th argument is a scalar and had an illegal value, then info $=-i$.
info $>0$ :
if info $=i$, the $(i, i)$ element of the factor $U$ or $L$ is zero, and the inverse could not be computed.

## p?trtri

Computes the inverse of a triangular distributed matrix.

## Syntax

```
call pstrtri (uplo, diag, n, a, ia, ja, desca, info)
call pdtrtri (uplo, diag, n, a, ia, ja, desca, info)
call pctrtri (uplo, diag, n, a, ia, ja, desca, info)
call pztrtri (uplo, diag, n, a, ia, ja, desca, info)
```


## Description

This routine computes the inverse of a real or complex upper or lower triangular distributed matrix $\operatorname{sub}(A)=A($ ia:ia+n-1, ja:ja+n-1).

## Input Parameters

uplo	(global) CHARACTER*1. Must be 'U' or 'L'.
	Specifies whether the distributed matrix $\operatorname{sub}(A)$ is upper or lower triangular.
	If uplo $=\mathbf{U} ', \operatorname{sub}(A)$ is upper triangular.   If uplo $=$ ' $\mathrm{L} ', \operatorname{sub}(A)$ is lower triangular.
diag	CHARACTER*1. Must be 'N' or 'U'.   Specifies whether or not the distributed matrix $\operatorname{sub}(A)$ is unit triangular.
	If diag = ' $\mathrm{N}^{\prime}$, then $\operatorname{sub}(A)$ is non-unit triangular.
	If diag $=$ ' U ', then $\operatorname{sub}(A)$ is unit triangular.
$n$	(global) INTEGER. The number of rows and columns to be operated on, that is, the order of the distributed submatrix $\operatorname{sub}(A)(n \geq 0)$.
a	(local)
	REAL for pstrtri
	DOUBLE PRECISION for pdtrtri
	COMPLex for petrtri
	DOUBLE COMPLEX for pztrtri.
	Pointer into the local memory to an array of local dimension a(lld_a, $\left.L O C_{c}(j a+n-1)\right)$.

The array a contains the local pieces of the triangular distributed matrix $\operatorname{sub}(A)$.
If uplo = 'U', the leading $n$-by- $n$ upper triangular part of $\operatorname{sub}(A)$ contains the upper triangular matrix to be inverted, and the strictly lower triangular part of $\operatorname{sub}(A)$ is not referenced.
If uplo = 'L', the leading n-by-n lower triangular part of $\operatorname{sub}(A)$ contains the lower triangular matrix, and the strictly upper triangular part of $\operatorname{sub}(A)$ is not referenced.
ia, ja (global) INTEGER. The row and column indices in the global array $A$ indicating the first row and the first column of the submatrix $\operatorname{sub}(A)$, respectively.
desca (global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix $A$.

## Output Parameters

a
info

On exit, overwritten by the (triangular) inverse of the original matrix.
(global) INTEGER. If info $=0$, the execution is successful.

## info<0:

if the $i$ th argument is an array and the $j$ th entry had an illegal value, then info $=-(i * 100+j)$; if the $i$ th argument is a scalar and had an illegal value, then info $=-i$.
info $>0$ :
if $i n f o=k, A(i a+k-1, j a+k-1)$ is exactly zero. The triangular matrix $\operatorname{sub}(A)$ is singular and its inverse can not be computed.

## Routines for Matrix Equilibration

ScaLAPACK routines described in this section are used to compute scaling factors needed to equilibrate a matrix. Note that these routines do not actually scale the matrices.

## p?geequ

Computes row and column scaling factors intended to equilibrate a general rectangular distributed matrix and reduce its condition number.

## Syntax

```
call psgeequ (m, n, a, ia, ja, desca, r, c, rowcnd, colcnd, amax, info)
call pdgeequ (m, n, a, ia, ja, desca, r, c, rowcnd, colcnd, amax, info)
call pcgeequ (m, n, a, ia, ja, desca, r, c, rowcnd, colcnd, amax, info)
call pzgeequ (m, n, a, ia, ja, desca, r, c, rowcnd, colcnd, amax, info)
```


## Description

This routine computes row and column scalings intended to equilibrate an $m$-by- $n$ distributed matrix $\operatorname{sub}(A)=A(i a: i a+m-1, j a: j a+n-1)$ and reduce its condition number. The output array $r$ returns the row scale factors and the array $c$ the column scale factors. These factors are chosen to try to make the largest element in each row and column of the matrix $B$ with elements $b_{i j}=r(\mathrm{i}) \star a_{i j} * c(\mathrm{j})$ have absolute value 1 .
$r(\mathrm{i})$ and $c(\mathrm{j})$ are restricted to be between $S M L N U M=$ smallest safe number and BIGNUM $=$ largest safe number. Use of these scaling factors is not guaranteed to reduce the condition number of $\operatorname{sub}(A)$ but works well in practice.

## Input Parameters

m
n
a
(global) INTEGER. The number of rows to be operated on, that is, the number of rows of the distributed submatrix $\operatorname{sub}(A)(m \geq 0)$.
(global) INTEGER. The number of columns to be operated on, that is, the number of columns of the distributed submatrix $\operatorname{sub}(A)(n \geq 0)$.
(local)
REAL for psgeequ
DOUBLE PRECISION for pdgeequ
COMPLEX for pcgeequ
DOUBLE COMPLEX for pzgeequ.
Pointer into the local memory to an array of local dimension a(lld_a, $\left.L O C_{C}(j a+n-1)\right)$.

The array a contains the local pieces of the $m-b y-n$ distributed matrix whose equilibration factors are to be computed.

ia, ja	(global) INTEGER. The row and column indices in the global array $A$
indicating the first row and the first column of the submatrix $\operatorname{sub}(A)$,	
respectively.	
desca	(global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix $A$.	

## Output Parameters



```
info>0:
If info=i and
 i\leqm, the ith row of the distributed matrix
 \operatorname{sub}(A) is exactly zero;
 i> m, the (i-m)th column of the distributed
 matrix sub}(A)\mathrm{ is exactly zero.
```


## p?poequ

Computes row and column scaling factors intended to equilibrate a symmetric (Hermitian) positive definite distributed matrix and reduce its condition number.

## Syntax

```
call pspoequ (n, a, ia, ja, desca, sr, sc, scond, amax, info)
call pdpoequ (n, a, ia, ja, desca, sr, sc, scond, amax, info)
call pcpoequ (n, a, ia, ja, desca, sr, sc, scond, amax, info)
call pzpoequ (n, a, ia, ja, desca, sr, sc, scond, amax, info)
```


## Description

This routine computes row and column scalings intended to equilibrate a real symmetric or complex Hermitian positive definite distributed matrix $\operatorname{sub}(A)=A(i a: i a+n-1, j a: j a+n-1)$ and reduce its condition number (with respect to the two-norm). The output arrays sr and sc return the row and column scale factors

$$
s(i)=\frac{1}{\sqrt{a_{i, i}}}
$$

These factors are chosen so that the scaled distributed matrix $B$ with elements $b_{i j}=s(\mathrm{i}) \star a_{i j} \star s(\mathrm{j})$ has ones on the diagonal.

This choice of $s r$ and $s c$ puts the condition number of $B$ within a factor $n$ of the smallest possible condition number over all possible diagonal scalings.

## Input Parameters

n
a
desca (global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix $A$.

## Output Parameters

sr, SC	(local) REAL for single precision flavors;
	DOUBLE PRECISION for double precision flavors.
	Arrays, dimension $L O C_{r}\left(m_{-}\right.$a) and $L O C_{c}\left(n_{-}\right.$a), respectively.
	If info $=0$, the array sr (ia:ia+n-1) contains the row scale factors for $\operatorname{sub}(A)$. sr is aligned with the distributed matrix $A$, and replicated across every process column. sr is tied to the distributed matrix $A$.
	If info $=0$, the array $\operatorname{sc}(j a: j a+n-1)$ contains the column scale factors for $\operatorname{sub}(A) . s c$ is aligned with the distributed matrix $A$, and replicated down every process row. Sc is tied to the distributed matrix $A$.
scond	(global) REAL for single precision flavors;
	DOUBLE PRECISION for double precision flavors.
	If info $=0$, scond contains the ratio of the smallest $\operatorname{sr}(\mathrm{i})($ or $\operatorname{sc}(\mathrm{j}))$ to the
	largest sr(i) ( or sc(j) ), with
	ia $\leq i \leq i a+n-1$ and ja $\leq j \leq j a+n-1$.
	If scond $\geq 0.1$ and amax is neither too large nor too small, it is not worth
	scaling by sr ( or sc).


amax	(global) REAL for single precision flavors;
	DOUBLE PRECISION for double precision flavors.
	Absolute value of the largest matrix element. If amax is very close to overflow or very close to underflow, the matrix should be scaled.
info	(global) INTEGER. If info $=0$, the execution is successful.
	info $<0$ :
	if the $i$ th argument is an array and the $j$ th entry had an illegal value, then
	info $=-(i * 100+j)$; if the $i$ th argument is a scalar and had an illegal value, then info $=-i$.
	info $>0$ :
	If info $=k$, the $k$ th diagonal entry of $\operatorname{sub}(A)$ is nonpositive.

## Orthogonal Factorizations

This section describes the ScaLAPACK routines for the $Q R(R Q)$ and $L Q(Q L)$ factorization of matrices. Routines for the $R Z$ factorization as well as for generalized $Q R$ and $R Q$ factorizations are also included. For the mathematical definition of the factorizations, see the respective LAPACK sections or refer to [SLUG].

Table 5-1 lists ScaLAPACK routines that perform orthogonal factorization of matrices.
Table 6-3 Computational Routines for Orthogonal Factorizations


## p?geqrf

Computes the QR factorization of a general $m$ by $n$ matrix.

## Syntax

```
call psgeqrf (m, n, a, ia, ja, desca, tau, work, lwork, info)
call pdgeqrf (m, n, a, ia, ja, desca, tau, work, lwork, info)
call pcgeqrf (m, n, a, ia, ja, desca, tau, work, lwork, info)
call pzgeqrf (m, n, a, ia, ja, desca, tau, work, lwork, info)
```


## Description

The routine forms the $Q R$ factorization of a general $m$ by $n$ distributed matrix $\operatorname{sub}(A)=A(i a: i a+m-1, j a: j a+n-1)$ as

$$
A=Q R
$$

## Input Parameters

$m \quad$ (global) INTEGER. The number of rows in the distributed submatrix $\operatorname{sub}(A)$; ( $m \geq 0$ ).
n
a
(global) INTEGER. The number of columns in the distributed submatrix $\operatorname{sub}(A) ;(n \geq 0)$.
(local)
REAL for psgeqre
DOUBLE PRECISION for pdgeqrf
COMPLEX for pcgeqrf
DOUBLE COMPLEX for pzgeqrf.
Pointer into the local memory to an array of local dimension (lld_a, LOCc (ja+n-1)). Contains the local pieces of the distributed matrix $\operatorname{sub}(A)$ to be factored.
ia, ja (global) INTEGER. The row and column indices in the global array a indicating the first row and the first column of the submatrix $A(\mathrm{ia}: \mathrm{ia}+\mathrm{m}-1, \mathrm{ja}: \mathrm{ja}+\mathrm{n}-1$ ), respectively.
desca (global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix $A$
work (local).
REAL for psgeqri
DOUBLE PRECISION for pdgeqrf.
COMPLEX for pcgeqrf.
DOUBLE COMPLEX for pzgeqrf
Workspace array of dimension 1 work.
Iwork (local or global) INTEGER, dimension of work, must be at least lwork $\geq n b \_a$ * (mp0+nq0+nb_a), where
iroff $=\bmod \left(i a-1, m b \_a\right), i c o f f=\bmod \left(j a-1, n b \_a\right)$,
iarow $=$ indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW),
iacol = indxg2p(ja, nb_a, MYCOL, csrc_a, NPCOL),

```
\(m p 0=\) numroc \(\left(m+i r o f f, m b _a\right.\), MYROW, iarow, NPROW),
\(n q 0=n u m r o c\left(n+i c o f f, n b _a, M Y C O L, i a c o l, N P C O L\right)\),
and numroc, indxg2p are ScaLAPACK tool functions;
MYROW, MYCOL, NPROW and NPCOL can be determined by calling the
subroutine blacs_gridinfo.
```

If 1 work $=-1$, then 1 work is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

## Output Parameters

The elements on and above the diagonal of $\operatorname{sub}(A)$ contain the $\min (m, n)$-by- $n$ upper trapezoidal matrix $R$ ( $R$ is upper triangular if $m \geq n$ ); the elements below the diagonal, with the array $t a u$, represent the orthogonal/unitary matrix $Q$ as a product of elementary reflectors (see Application Notes below).

```
(local)
```

REAL for psgeqre
DOUBLE PRECISION for pdgeqre
COMPLEX for pcgeqrf
DOUBLE COMPLEX for pzgeqrf.
Array, DIMENSION $\operatorname{LOCc}(j a+\min (m, n)-1)$.
Contains the scalar factor tau of elementary reflectors. tau is tied to the distributed matrix $A$.
work (1) On exit, work (1) contains the minimum value of 1 work required for optimum performance.
info (global) INTEGER. $=0$, the execution is successful.
$<0$, if the $i$-th argument is an array and the $j$-entry had an illegal value, then info $=-\left(i^{*} 100+j\right)$, if the $i$-th argument is a scalar and had an illegal value, then info $=-i$.

## Application Notes

The matrix $Q$ is represented as a product of elementary reflectors $Q=H(j a) H(j a+1) \ldots H(j a+k-1)$,
where $k=\min (m, n)$.

Each $H(i)$ has the form
$H(j)=I-\operatorname{tau} * v^{*} v^{\prime}$
where tau is a real/complex scalar, and $v$ is a real/complex vector with $v(1: i-1)=0$ and $v(i)=1$; $v(i+1: m)$ is stored on exit in $A(i a+i: i a+m-1, j a+i-1)$, and tau in $\operatorname{tau}(j a+i-1)$.

## p?geqpf

Computes the $Q R$ factorization of a general $m$ by $n$ matrix with pivoting.

## Syntax

```
call psgeqpf (m, n, a, ia, ja, desca, ipiv, tau, work, lwork, info)
call pdgeqpf (m, n, a, ia, ja, desca, ipiv, tau, work, lwork, info)
call pcgeqpf (m, n, a, ia, ja, desca, ipiv, tau, work, lwork, info)
call pzgeqpf (m, n, a, ia, ja, desca, ipiv, tau, work, lwork, info)
```


## Description

The routine forms the $Q R$ factorization with column pivoting of a general $m$ by $n$ distributed matrix $\operatorname{sub}(A)=A(i a: i a+m-1, j a: j a+n-1)$ as

$$
\operatorname{sub}(A) P=Q R
$$

## Input Parameters

m
n
a
(global) INTEGER. The number of rows in the submatrix $\operatorname{sub}(A)(m \geq 0)$.
(global) INTEGER. The number of columns in the submatrix $\operatorname{sub}(A)(n \geq 0)$.
(local)
REAL for psgeqpf
DOUBLE PRECISION for pdgeqpf
COMPLEX for pcgeqpf
DOUBLE COMPLEX for pzgeqpf.
Pointer into the local memory to an array of local dimension (lld_a, $L O C c(j a+n-1)$ ).
Contains the local pieces of the distributed matrix $\operatorname{sub}(A)$ to be factored.

ia,ja	(global) Integer. The row and column indices in the global array a indicating the first row and the first column of the submatrix $A($ ia:ia+m-1, ja:ja+n-1), respectively.
desca	(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix $A$.
work	(local).
	REAL for psgeqpf
	DOUBLE PRECISION for pdgeqpf.
	COMPLEX for pcgeqpf.
	DOUBLE COMPLEX for pzgeqpf
	Workspace array of dimension lwork.
I work	(local or global) INTEGER, dimension of work, must be at least
	For real flavors:
	1 work $\geq \max (3, m p 0+n q 0)+L O C c(j a+n-1)+n q 0$.
	For complex flavors:
	1 work $\geq \max (3, m p 0+n q 0)$
	Here
	iroff $=\bmod \left(i a-1, m b \_a\right)$, icoff $=\bmod \left(j a-1, n b \_a\right)$,
	iarow $=$ indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW),
	iacol $=$ indxg2p(ja, nb_a, MYCOL, Csrc_a, NPCOL $)$,
	$m p 0=$ numroc (m+iroff, mb_a, MYROW, iarow, NPROW ),
	$n q 0=$ numroc ( $\left.n+i C O f f, n b \_a, ~ M Y C O L, ~ i a c o l, ~ N P C O L\right), ~$
	LOCc $(j a+n-1)=$ numroc (ja+n-1, nb_a, MYCOL, csrc_a, NPCOL $)$, and numroc, indxg2p are ScaLAPACK tool functions;
	MYROW, MYCOL, NPROW and NPCOL can be determined by calling the subroutine blacs gridinfo.

If 1 work $=-1$, then 1 work is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

## Output Parameters

a
info

The elements on and above the diagonal of $\operatorname{sub}(A)$ contain the $\min (m, n)-b y-n$ upper trapezoidal matrix $R$ ( $R$ is upper triangular if $m \geq n$ ); the elements below the diagonal, with the array tau, represent the orthogonal/unitary matrix $Q$ as a product of elementary reflectors (see Application Notes below)
(local) INTEGER. Array, DIMENSION LOCc (ja+n-1).
$\operatorname{ipiv}(i)=k$, the local $i$-th column of $\operatorname{sub}(A)^{*} P$ was the global $k$-th column of $\operatorname{sub}(A)$. ipiv is tied to the distributed matrix $A$.
(local)
REAL for psgeqpf
DOUBLE PRECISION for pdgeqpf
COMPLEX for pcgeqpf
DOUBLE COMPLEX for pzgeqpf.
Array, dimension $L O C c(j a+\min (m, n)-1))$.
Contains the scalar factor tau of elementary reflectors. tau is tied to the distributed matrix $A$.
work (1) On exit, work (1) contains the minimum value of 1 work required for optimum performance.
(global) INTEGER.
$=0$, the execution is successful.
$<0$, if the $i$-th argument is an array and the $j$-entry had an illegal value, then info $=-\left(i^{*} 100+j\right)$, if the $i$-th argument is a scalar and had an illegal value, then info $=-i$.

## Application Notes

The matrix $Q$ is represented as a product of elementary reflectors
$Q=H(1) H(2) \ldots H(n)$,
Each $H(i)$ has the form
$H=I-t a u * v * v^{\prime}$
where $t a u$ is a real/complex scalar, and $v$ is a real/complex vector with $v(1: i-1)=0$ and $v(i)=1$; $v(i+1: m)$ is stored on exit in $A(i a+i-1: i a+m-1, j a+i-1)$.

The matrix $P$ is represented in $j p v t$ as follows: if $j p v t(j)=i$ then the $j$-th column of $P$ is the i-th canonical unit vector.

## p?orgqr

Generates the orthogonal matrix $Q$ of the $Q R$ factorization formed by p?geqrf.

## Syntax

```
call psorgqr (m, n, k, a, ia, ja, desca, tau, work, lwork, info)
```



## Description

The routine generates the whole or part of $m$ by $n$ real distributed matrix $Q$ denoting $A(i a: i a+m-1, j a: j a+n-1)$ with orthonormal columns, which is defined as the first $n$ columns of a product of $k$ elementary reflectors of order $m$

$$
Q=H(1) H(2) \ldots H(\mathrm{k})
$$

as returned by p?geqre.

## Input Parameters

$m \quad$ (global) INTEGER. The number of rows in the submatrix $\operatorname{sub}(Q)(m \geq 0)$.
$n \quad$ (global) INTEGER. The number of columns in the submatrix $\operatorname{sub}(Q)(m \geq n \geq$ $0)$.
$k$ (global) INTEGER. The number of elementary reflectors whose product defines the matrix $Q(n \geq k \geq 0)$.
a
(local)
REAL for psorgqr
DOUBLE PRECISION for pdorgqr
Pointer into the local memory to an array of local dimension (lld_a, LOCc ( $j a+n-1$ ) ). The $j$-th column must contain the vector which defines the elementary reflector $H(j), j a \leq j \leq j a+k-1$, as returned by p?geqrf in the $k$ columns of its distributed matrix argument $a\left(i a:^{*}, j a: j a+k-1\right)$.
ia, ja (global) INTEGER. The row and column indices in the global array a indicating the first row and the first column of the submatrix A(ia:ia+m-1,ja:ja+n-1), respectively.

desca	(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix $A$.
tau	(local)
	REAL for psorgqr   DOUBLE PRECISION for pdorgqr   Array, dimension LOCc (ja+k-1)).   Contains the scalar factor $\operatorname{tau}(j)$ of elementary reflectors $H(j)$ as returned by p?geqrf. tau is tied to the distributed matrix $A$.
work	(local)
	REAL for psorgqr   DOUBLE PRECISION for pdorgqr   Workspace array of dimension of 1 work.
lwork	(local or global) INTEGER, dimension of work.   Must be at least 1 work $\geq n b \quad a^{*}(n q a 0+m p a 0+n b \quad a)$, where
	iroffa $=\bmod \left(i a-1, m b \_a\right), ~ i c o f f a=m o d\left(j a-1, ~ n b \_a\right), ~$
	iarow $=$ indxg2p( $i a, m b \_a$, MYROW, rsrc_a, NPROW),
	$\begin{aligned} & \text { iacol }=\text { indxg2p(ja, nb_a, MYCOL, CSrc_a, NPCOL }), \\ & m p a 0=\text { numroc }\left(m+i r o f f a, m b \_a, ~ M Y R O W, ~ i a r o w, ~ N P R O W ~\right. \end{aligned},$
	indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the subroutine blacs_gridinfo.
	If 1 work $=-1$, then 1 work is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.
Output Parameters	
a	Contains the local pieces of the m-by-n distributed matrix Q .
work (1)	On exit, work (1) contains the minimum value of 1 work required for optimum performance.

```
info (global) INTEGER.
 =0: the execution is successful.
 <0: if the i-th argument is an array and the j-entry had an illegal value, then
 info = - (i* 100+j), if the i-th argument is a scalar and had an illegal value,
 then info=-i.
```


## p?ungqr

Generates the complex unitary matrix $Q$ of the $Q R$
factorization formed by p?geqre.

## Syntax

```
call pcungqr (m, n, k, a, ia, ja, desca, tau, work, lwork, info)
call pzungqr (m, n, k, a, ia, ja, desca, tau, work, lwork, info)
```


## Description

The routine generates the whole or part of $m$ by $n$ complex distributed matrix $Q$ denoting $A(i a: i a+m-1, j a: j a+n-1)$ with orthonormal columns, which is defined as the first $n$ columns of a product of $k$ elementary reflectors of order $m$

$$
Q=H(1) H(2) \ldots H(k)
$$

as returned by p?geqrf.

## Input Parameters

m
$n$
k
a
(global) INTEGER. The number of rows in the submatrix $\operatorname{sub}(Q) ;(m \geq 0)$.
(global) INTEGER. The number of columns in the submatrix $\operatorname{sub}(Q)(m \geq n \geq$ 0 ).
(global) INTEGER. The number of elementary reflectors whose product defines the matrix $Q(\mathrm{n} \geq k \geq 0)$.
(local)
COMPLEX for pcungqr double complex for pzungqr Pointer into the local memory to an array of dimension (1ld_a,
$\operatorname{LOCc}(j a+n-1))$.The $j$-th column must contain the vector which defines the elementary reflector $H(j), j a \leq j \leq j a+k-1$, as returned by p?geqrf in the $k$ columns of its distributed matrix argument $a(i a: *, j a: j a+k-1)$.

ia,ja	(global) INTEGER. The row and column indices in the global array a indicating the first row and the first column of the submatrix $A$, respectively.
desca	(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix $A$.
tau	(local)
	COMPLEx for pcungqr
	DOUBLE COMPLEX for pzungqr
	Array, dimension LOCc( $j$ a $+k-1$ ) ).
	Contains the scalar factor $\operatorname{tau}(j)$ of elementary reflectors $H(j)$ as returned by p?geqrf. tau is tied to the distributed matrix $A$.
work	(local)
	COMPLEX for pcungqr
	DOUBLE COMPLEX for pzungqr
	Workspace array of dimension of 1 work.
Iwork	(local or global) INTEGER, dimension of work, must be at least Iwork $\geq$ $n b \quad$ a* $(n q a 0+m p a 0+n b a)$, where
	iroffa $=$ mod( $\left.i a-1, m b \_a\right)$,
	icoffa $=\bmod \left(j a-1, n b \_a\right)$,
	iarow $=$ indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW),
	iacol $=$ indxg2p(ja, nb_a, MYCOL, csrc_a, NPCOL $)$,
	mpa0 $=$ numroc( ( + iroffa, mb_a, MYROW, iarow, NPROW),
	nqa0 = numroc(n+icoffa, nb_a, MYCOL, iacol, NPCOL)
	indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the subroutine blacs gridinfo.

If 1 work $=-1$, then 1 work is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

## Output Parameters

a
work (1) On exit work (1) contains the minimum value of 1 work required for optimum performance.
info
Contains the local pieces of the $m$ by $n$ distributed matrix $Q$.
(global) INTEGER.
$=0$ : the execution is successful.
$<0$ : if the $i$-th argument is an array and the $j$-entry had an illegal value, then info $=-\left(i^{*} 100+j\right)$, if the $i$-th argument is a scalar and had an illegal value, then info $=-i$.

## p?ormqr

Multiplies a general matrix by the orthogonal matrix $Q$ of the QR factorization formed by p?geqre.

## Syntax

```
call psormqr (side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc,
 descc, work, lwork, info)
call pdormqr (side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc,
 descc, work, lwork, info)
```


## Description

The routine overwrites the general real $m-b y-n$ distributed matrix $\operatorname{sub}(C)=C(i c: i c+m-1, j c: j c+n-1)$ with

	side $=$ 'L'	side $=$ ' ${ }^{\prime}$
trans = 'N':	$Q \operatorname{sub}(C)$	$\operatorname{sub}(C) Q$
trans = 'T':	$Q^{T} \operatorname{sub}(C)$	$\operatorname{sub}(C) Q^{T}$

where $Q$ is a real orthogonal distributed matrix defined as the product of $k$ elementary reflectors $Q=H(1) H(2) \ldots H(k)$
as returned by p?geqrf. $Q$ is of order $m$ if side $=L^{\prime} L^{\prime}$ and of order $n$ if side='R'.

## Input Parameters

side	(global) CHARACTER
	$=$ ' L' $: Q$ or $Q^{T}$ is applied from the left.   $={ }^{\prime} \mathrm{R}$ ' $: Q$ or $Q^{T}$ is applied from the right.
trans	(global) CHARACTER
	$=$ ' $\mathrm{N}^{\prime}$, no transpose, $Q$ is applied.   $=' T$ ', transpose, $Q^{T}$ is applied.
m	(global) INTEGER. The number of rows in the distributed matrix $\operatorname{sub}(C)(m \geq$ $0)$.
$n$	(global) INTEGER. The number of columns in the distributed matrix $\operatorname{sub}(C)$ ( $n \geq 0$ ).
k	(global) INTEGER. The number of elementary reflectors whose product defines the matrix $Q$. Constraints:   if side $=$ 'L', $m \geq k \geq 0$   if side $='^{\prime}$ ', $n \geq k \geq 0$.
a	(local)
	REAL for psormqr
	DOUBLE PRECISION for pdormqr.
	Pointer into the local memory to an array of dimension (lld_a, LOCc (ja+k-1)).The $j$-th column must contain the vector which defines the elementary reflector $H(j), j a \leq j \leq j a+k-1$, as returned by p?geqre in the $k$ columns of its distributed matrix argument $a\left(i a:^{*}, j a: j a+k-1\right) . a\left(i a:^{*}, j a: j a+k-1\right)$ is modified by the routine but restored on exit.
	if side $=$ 'L', lld_a $\geq$ max $(1, \operatorname{LOCr}(\mathrm{ia}+\mathrm{m}-1)$
	if side $=$ 'R', lld_a $\geq$ max $(1, \operatorname{LOCr}(\mathrm{ia}+\mathrm{n}-1)$
ia,ja	(global) INTEGER. The row and column indices in the global array a indicating the first row and the first column of the submatrix $A$, respectively.
desca	(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix $A$.
tau	(local)
	REAL for psormqr
	DOUBLE PRECISION for pdormqr

Array, DIMENSION LOCc(ja+k-1).).
Contains the scalar factor $\operatorname{tau}(j)$ of elementary reflectors $H(j)$ as returned by p?geqrf. tau is tied to the distributed matrix $A$.
$i c, j c \quad$ (global) INTEGER. The row and column indices in the global array $c$ indicating

C
descc
work
lwork
(local)
REAL for psormqr
DOUBLE PRECISION for pdormqr
Pointer into the local memory to an array of local dimension (lld_c, LOCc (jc+n-1)).

Contains the local pieces of the distributed matrix $\operatorname{sub}(C)$ to be factored. the first row and the first column of the submatrix $C$, respectively.
(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix $C$.
(local)
REAL for psormqr
DOUBLE PRECISION for pdormqr. Workspace array of dimension of lwork.
(local or global) INTEGER, dimension of work, must be at least:
if side = 'L',
lwork $\geq \max \left(\left(n b \_a^{*}\left(n b \_a-1\right)\right) / 2,(n q c 0+m p c 0) * n b \_a\right)+n b \_a * n b \_a$
else if side = 'R',
lwork $\geq \max \left(\left(n b \_a^{*}\left(n b \_a-1\right)\right) / 2\right.$, (nqc0 $+\max$
(npa0 + numroc (numroc( $n+i C O f f c, n b \_a, 0,0$, NPCOL) , nb_a, $\left.0,0,1 \mathrm{cmq}\right)$, $\left.m p(0)) * n b \_a\right)+n b \_a * n b \_a$
end if
where
$1 \mathrm{cmq}=1 \mathrm{~cm} / \mathrm{NPCOL}$ with $1 \mathrm{~cm}=\mathrm{ilcm}$ (NPROW, NPCOL),
iroffa $=\bmod \left(i a-1, m b \_a\right)$,
icoffa $=\bmod \left(j a-1, n b \_a\right)$,
iarow $=$ indxg2p (ia, mb_a, MYROW, rsrc_a, NPROW),
npa0 $=$ numroc(n+iroffa, mb_a, MYROW, iarow, NPROW),
iroffc $=\bmod \left(i c-1, m b \_c\right)$,

```
icoffc \(=\bmod \left(j c-1, n b _c\right)\),
icrow \(=\) indxg \(2 \mathrm{p}\left(i c, m b _c\right.\), MYROW, rsrc_c, NPROW),
iccol \(=\) indxg2p(jc, nb_c, MYCOL, csrc_c, NPCOL),
\(m p c 0=\) numroc(\(m+i r o f f c, m b _c\), MYROW, icrow, NPROW),
\(n q c 0=\) numroc \(\left(n+i c o f f c, n b _c, M Y C O L, i c c o l, N P C O L\right)\),
ilcm, indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL,
NPROW and NPCOL can be determined by calling the subroutine
blacs_gridinfo.
```

if 1 work $=-1$, then 1 work is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

## Output Parameters

Overwritten by the product $Q^{*} \operatorname{sub}(C)$ or $Q^{T} \operatorname{sub}(C)$, or $\operatorname{sub}(C)^{*} Q^{T}$, or $\operatorname{sub}(C)^{*} Q$.
On exit work (1) contains the minimum value of 1 work required for optimum performance.
info (global) INTEGER. $=0$ : the execution is successful.
$<0$ : if the $i$-th argument is an array and the $j$-entry had an illegal value, then info $=-\left(i^{*} 100+j\right)$, if the $i$-th argument is a scalar and had an illegal value, then info $=-i$.

## p?unmqr

## Multiplies a complex matrix by the unitary matrix $Q$ of the

$Q R$ factorization formed by p?geqre.

## Syntax

```
call cunmqr (side,trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc,
 descc, work, lwork, info)
call zunmqr (side,trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc,
 descc, work, lwork, info)
```


## Description

The routine overwrites the general complex $m$-by- $n$ distributed matrix sub $\quad(C)=$ $C(i c: i c+m-1, j c: j c+n-1)$ with

	side $=$ ' L'	side $=$ ' R' $^{\prime}$
trans $=$ ' N ':	$Q \operatorname{sub}(C)$	$\operatorname{sub}(C) Q$
trans $=$ ' T ':	$Q^{H} \operatorname{sub}(C)$	$\operatorname{sub}(C) Q^{H}$

where $Q$ is a complex unitary distributed matrix defined as the product of $k$ elementary reflectors $Q=H(1) H(2) \ldots H(k)$
as returned by p?geqre. $Q$ is of order mif side ='L' and of order $n$ if side='R'.

## Input Parameters

```
side (global) CHARACTER
 ='L':Q or Q Q is applied from the left.
 = 'R':Q or Q Q is applied from the right.
trans (global) CHARACTER
 = 'N', no transpose, Q is applied.
 = ' C', conjugate transpose, }\mp@subsup{Q}{}{H}\mathrm{ is applied.
m
 (global) INTEGER. The number of rows in the distributed matrix sub(C) (m\geq
 0).
 (global) INTEGER. The number of columns in the distributed matrix sub(C) (n
 \geq).
```

(global) INTEGER. The number of elementary reflectors whose product defines the matrix $Q$. Constraints:
if side = 'L', $m \geq k \geq 0$
if side ='R', $n \geq k \geq 0$.
(local)
COMPLEX for pcunmqr DOUBLE COMPLEX for pzunmqr.
Pointer into the local memory to an array of dimension (lld_a, LOCc (ja+k-1)).The $j$-th column must contain the vector which defines the elementary reflector $H(j), j a \leq j \leq j a+k-1$, as returned by p?geqrif in the $k$ columns of its distributed matrix argument $a\left(i a:^{*}, j a: j a+k-1\right)$. $a\left(i a:^{*}, j a: j a+k-1\right)$ is modified by the routine but restored on exit.
if side $=$ 'L', Ild_a $\geq \max (1, \operatorname{LOCr}(i a+m-1)$
if side = 'R', Ild_a $\geq \max (1, \operatorname{LOCr}(i a+n-1)$
(global) INTEGER. The row and column indices in the global array a indicating the first row and the first column of the submatrix $A$, respectively.
(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix $A$.
(local)
COMPLEX for pcunmqr
double Complex for pzunmqr
Array, DIMENSION LOCc( $j a+k-1)$ ).
Contains the scalar factor $\operatorname{tau}(j)$ of elementary reflectors $H(j)$ as returned by p?geqrf. tau is tied to the distributed matrix $A$.
(local)
COMPLEX for pcunmqr
DOUBLE COMPLEX for pzunmqr.
Pointer into the local memory to an array of local dimension (lld_c, LOCc (jc+n-1)).
Contains the local pieces of the distributed matrix $\operatorname{sub}(C)$ to be factored.
(global) INTEGER. The row and column indices in the global array $c$ indicating the first row and the first column of the submatrix $C$, respectively.
(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix $C$.
work
lwork
(local)
COMPLEX for pcunmqr
DOUBLE COMPLEX for pzunmqr. Workspace array of dimension of lwork.
(local or global) INTEGER, dimension of work, must be at least:
if side = 'L',
lwork $\geq \max \left(\left(n b \_a *\left(n b \_a-1\right)\right) / 2,(n q c 0+m p c 0) * n b \_a\right)+n b \_a * n b \_a$
else if side = 'R',
lwork $\geq \max \left(\left(n b \_a^{*}\left(n b \_a-1\right)\right) / 2,(n q c 0+\max \right.$
(npa0 + numroc (numroc( $n+i c o f f c, n b \_a, 0,0$, NPCOL), nb_a, $\left.0,0,1 c m q\right)$, $\left.m p c 0))^{*} n b \_a\right)+n b \_a * n b \_a$
end if
where
$1 \mathrm{cmq}=1 \mathrm{~cm} / \mathrm{NPCOL}$ with $1 \mathrm{~cm}=\mathrm{ilcm}$ ( $\mathrm{NPROW}, \mathrm{NPCOL}$ ),
iroffa $=\bmod \left(i a-1, m b \_a\right)$,
icoffa $=\bmod \left(j a-1, n b \_a\right)$,
iarow $=$ indxg2p ( $i a, m b \_a$, MYROW, rssc_a, NPROW),
npa0 $=$ numroc $($ n+iroffa, mb_a, MYROW, iarow, NPROW $)$,
iroffc $=\bmod \left(i c-1, m b \_c\right)$,
icoffc $=\bmod \left(j c-1, n b \_c\right)$,
icrow $=$ indxg2p(ic, mb_c, MYROW, rsrc_c, NPROW),
iccol $=$ indxg2p(jc, nb_c, MYCOL, csrc_c, NPCOL),
mpc0 $=$ numroc ( $m+$ iroffc, mb_c, MYROW, icrow, NPROW),
nqc0 $=$ numroc(n+icoffc, nb_c, MYCOL, iccol, NPCOL),
ilcm, indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the subroutine blacs_gridinfo.
if 1 work $=-1$, then 1 work is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

## Output Parameters

c Overwritten by the product $Q^{*} \operatorname{sub}(C)$ or $Q^{H} \operatorname{sub}(C)$, or $\operatorname{sub}(C)^{*} Q^{H}$, or $\operatorname{sub}(C)^{*} Q$.
work (1) On exit work (1) contains the minimum value of 1 work required for optimum performance.
info (global) INTEGER.
$=0$ : the execution is successful.
$<0$ : if the $i$-th argument is an array and the $j$-entry had an illegal value, then info $=-\left(i^{*} 100+j\right)$, if the $i$-th argument is a scalar and had an illegal value, then info $=-i$.

## p?gelqf

Computes the LQ factorization of a general rectangular
matrix.

## Syntax

```
call psgelqf (m, n, a, ia, ja, desca, tau, work, lwork, info)
call pdgelqf (m, n, a, ia, ja, desca, tau, work, lwork, info)
call pcgelqf (m, n, a, ia, ja, desca, tau, work, lwork, info)
call pzgelqf (m, n, a, ia, ja, desca, tau, work, lwork, info)
```


## Description

The routine computes the $L Q$ factorization of a real/complex distributed $m$ by $n$ matrix $\operatorname{sub}(A)=A(i a: i a+m-1, i a: i a+n-1)=L^{*} Q$

## Input Parameters

(global) INTEGER. The number of rows in the submatrix $\operatorname{sub}(Q) ;(m \geq 0)$. (global) INTEGER. The number of columns in the submatrix $\operatorname{sub}(Q)(n \geq 0)$. (global) INTEGER. The number of elementary reflectors whose product defines the matrix $Q(n \geq k \geq 0)$.
(local)

REAL for psgelqf
DOUBLE PRECISION for pdgelqf
COMPLEX for pcgelqf
DOUBLE COMPLEX for pzgelqf
Pointer into the local memory to an array of local dimension (lld_a, $L O C c(j a+n-1)$ ). Contains the local pieces of the distributed matrix $\operatorname{sub}(A)$ to be factored.

ia,ja	(global) INTEGER. The row and column indices in the global array a indicating the first row and the first column of the submatrix $A((i a: i a+m-1, i a: i a+n-1)$, respectively.
desca	(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix $A$.
work	(local)
	REAL for psgelqf
	DOUBLE PRECISION for pdgelqf
	COMPLEX for pcgelqf
	DOUBLE COMPLEX for pzgelqf
	Workspace array of dimension of l work.
lwork	(local or global) INTEGER, dimension of work, must be at least lwork $\geq$ $m b \_a *\left(m p 0+n q 0+m b \_a\right)$, where
	iroff $=\bmod \left(i a-1, m b \_a\right)$,
	$i C O f f=\bmod \left(j a-1, n b \_a\right)$,
	iarow $=$ indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW),
	iacol $=$ indxg2p(ja, nb_a, MYCOL, Csrc_a, NPCOL $)$,
	$m p 0=$ numroc ( $\left.m+i r o f f, ~ m b \_a, ~ M Y R O W, ~ i a r o w, ~ N P R O W\right), ~$
	indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the subroutine blacs_gridinfo.

If 1 work $=-1$, then 1 work is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

## Output Parameters

a
The elements on and below the diagonal of $\operatorname{sub}(A)$ contain the $m$ by $\min (m, n)$ lower trapezoidal matrix $L$ ( $L$ is lower trapezoidal if $m \leq n$ ); the elements above the diagonal, with the array $t a u$, represent the orthogonal/unitary matrix $Q$ as a product of elementary reflectors (see Application Notes below)
tau (local)
REAL for psgelqf
DOUBLE PRECISION for pdgelqf
COMPLEX for pcgelqf
DOUBLE COMPLEX for pzgelqf
Array, DIMENSION $\operatorname{LOCr}(\operatorname{ia}+\min (m, n)-1))$.
Contains the scalar factors of elementary reflectors. tau is tied to the distributed matrix $A$.
work (1) On exit, work (1) contains the minimum value of 1 work required for optimum performance.
info (global) INTEGER. $=0$ : the execution is successful.
$<0$ : if the $i$-th argument is an array and the $j$-entry had an illegal value, then info $=-\left(i^{*} 100+j\right)$, if the $i$-th argument is a scalar and had an illegal value, then info $=-i$.

## Application Notes

The matrix $Q$ is represented as a product of elementary reflectors
$Q=H(i a+k-1) H(i a+k-2) \ldots H(i a)$,
where $k=\min (m, n)$
Each $H(i)$ has the form
$H(i)=I-\operatorname{tau} * v^{*} v^{\prime}$
where $t a u$ is a real/complex scalar, and $v$ is a real/complex vector with $v(1: i-1)=0$ and $v(i)=1$; $v(i+1: n)$ is stored on exit in $A(i a+i-1: i a+i-1, j a+n-1)$, and $\operatorname{tau}$ in $\operatorname{tau}(i a+i-1)$.

## p?orglq

Generates the real orthogonal matrix $Q$ of the $L Q$ factorization formed by p?gelqf.

## Syntax

```
call psorglq (m, n, k, a, ia, ja, desca, tau, work, lwork, info)
```

call pdorglq ( $m, n, k, a, i a, j a, ~ d e s c a, ~ t a u, ~ w o r k, ~ l w o r k, ~ i n f o ~) ~$

## Description

The routine generates the whole or part of $m$ by $n$ real distributed matrix $Q$ denoting $A(i a: i a+m-1, j a: j a+n-1)$ with orthonormal rows, which is defined as the first $m$ rows of a product of $k$ elementary reflectors of order $n$

$$
Q=H(k) \ldots H(2) H(1)
$$

as returned by p?gelqf.

## Input Parameters

$m \quad$ (global) INTEGER. The number of rows in the submatrix $\operatorname{sub}(Q) ;(m \geq 0)$.
$n$
(global) Integer. The number of columns in the submatrix $\operatorname{sub}(Q)$ ( $n \geq m \geq 0$ ).
$k \quad$ (global) INTEGER. The number of elementary reflectors whose product defines the matrix $Q(m \geq k \geq 0)$.
$a$
(local)
REAL for psorglq
DOUBLE PRECISION for pdorglq
Pointer into the local memory to an array of local dimension (lld_a, LOCc ( $j a+n-1$ ) ).On entry, the $i$-th row must contain the vector which defines the elementary reflector $H(i), i a \leq i \leq i a+k-1$, as returned by p?gelqf in the $k$ rows of its distributed matrix argument $A$ (ia:ia+k-1,ja:*).
ia, ja (global) INTEGER. The row and column indices in the global array a indicating the first row and the first column of the submatrix $A((i a: i a+m-1, j a: j a+n-1)$, respectively.

```
desca (global and local) INTEGER array, dimension (dlen_). The array descriptor
 for the distributed matrix }A\mathrm{ .
work (local)
 REAL for psorglq
 DOUBLE PRECISION for pdorglq
 Workspace array of dimension of lwork.
lwork (local or global) INTEGER, dimension of work, must be at least lwork \geq
 mb_a* (mpa0 + nqa0 + mb_a), where
iroffa = mod(ia-1,mb_a),
icoffa= mod(ja-1, nb_a),
iarow = indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW),
iacol = indxg2p(ja, nb_a, MYCOL, csrc_a, NPCOL),
mpa0 = numroc(m+iroffa, mb_a, MYROW, iarow, NPROW),
nqa0 = numroc(n+icoffa, nb_a, MYCOL, iacol, NPCOL)
indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL,
NPROW and NPCOL can be determined by calling the subroutine
blacs_gridinfo.
```

If 1 work $=-1$, then 1 work is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

## Output Parameters

Contains the local pieces of the $m$-by- $n$ distributed matrix $Q$ to be factored. (local)

REAL for psorglq
DOUBLE PRECISION for pdorglq
Array, dimension $\operatorname{LOCr}(i a+k-1)$ ).
Contains the scalar factors tau of elementary reflectors $H(i)$. tau is tied to the distributed matrix $A$.

On exit, work (1) contains the minimum value of 1 work required for optimum performance.

```
info (global) INTEGER.
 =0: the execution is successful.
 <0: if the i-th argument is an array and the j-entry had an illegal value, then
 info =-(i* 100+j), if the i-th argument is a scalar and had an illegal value,
 then info=-i.
```


## p? unglq

Generates the unitary matrix $Q$ of the $L Q$ factorization
formed by p?gelqf.

## Syntax

```
call pcunglq (m, n, k, a, ia, ja, desca, tau, work, lwork, info)
call pzunglq (m, n, k, a, ia, ja, desca, tau, work, lwork, info)
```


## Description

The routine generates the whole or part of m by n complex distributed matrix $Q$ denoting $A(i a: i a+m-1, j a: j a+n-1)$ with orthonormal rows, which is defined as the first $m$ rows of a product of $k$ elementary reflectors of order $n$
$Q=H(k) \ldots H(2)^{\prime} H(1)^{\prime}$
as returned by p?gelqf.

## Input Parameters

m
n
k
a
(global) INTEGER. The number of rows in the submatrix $\operatorname{sub}(Q) ;(m \geq 0)$.
(global) INTEGER. The number of columns in the submatrix $\operatorname{sub}(Q)(n \geq m \geq$ $0)$.
(global) INTEGER. The number of elementary reflectors whose product defines the matrix $Q(m \geq k \geq 0)$.
(local)
COMPLEX for pcunglq DOUBLE COMPLEX for pzunglq Pointer into the local memory to an array of local dimension (lld_a,

LOCc ( $j a+n-1$ ) ).On entry, the $i$-th row must contain the vector which defines the elementary reflector $H(i)$, $i a \leq i \leq i a+k-1$, as returned by p?gelqf in the $k$ rows of its distributed matrix argument $A$ (ia:ia+k-1,ja:*).

ia,ja	(global) Integer. The row and column indices in the global array a indicating the first row and the first column of the submatrix A(ia:ia+m-1, ja:ja+n-1), respectively.
desca	(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix $A$.
tau	(local)
	COMPLEX for pcunglq
	DOUBLE COMPLEX for pzunglq
	Array, dimension $L O C r(i a+k-1)$ ).
	Contains the scalar factors tau of elementary reflectors $H(i)$. tau is tied to the distributed matrix $A$.
work	(local)
	COMPLEX for pcunglq
	DOUBLE COMPLEX for pzunglq
	Workspace array of dimension of lwork.
Iwork	(local or global) INTEGER, dimension of work, must be at least lwork $\geq$ $m b \_a *\left(m p a 0+n q a 0+m b \_a\right)$, where
	iroffa $=$ mod(ia-1, mb_a),
	icoffa $=\bmod \left(j a-1, n b \_a\right)$,
	iarow $=$ indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW),
	iacol $=$ indxg2p(ja, nb_a, MYCOL, Csrc_a, NPCOL $)$,
	$m p a 0=$ numroc( $m+i$ iroffa, mb_a, MYROW, iarow, NPROW $)$,
	indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the subroutine blacs_gridinfo.

If 1 work $=-1$, then 1 work is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

## Output Parameters

a
work(1)
info

Contains the local pieces of the m-by-n distributed matrix $Q$ to be factored.
On exit, work (1) contains the minimum value of 1 work required for optimum performance.
(global) INTEGER.
$=0$ : the execution is successful.
$<0$ : if the $i$-th argument is an array and the $j$-entry had an illegal value, then info $=-\left(i^{*} 100+j\right)$, if the $i$-th argument is a scalar and had an illegal value, then info $=-i$.

## p?ormlq

Multiplies a general matrix by the orthogonal matrix $Q$ of the LQ factorization formed by p?gelqf.

## Syntax

```
call psormlq (side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc,
 work, lwork, info)
call pdormlq (side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc,
 work, lwork, info)
```


## Description

The routine overwrites the general real $m-b y-n$ distributed matrix $\operatorname{sub}(C)=C(i c: i c+m-1, j c: j c+n-1)$ with

	side $=$ 'L'	side $=$ 'R'
trans $=$ 'N':	$Q \operatorname{sub}(C)$	$\operatorname{sub}(C) Q$
trans $=$ 'T':	$Q^{T} \operatorname{sub}(C)$	$\operatorname{sub}(C) Q^{T}$

where $Q$ is a real orthogonal distributed matrix defined as the product of $k$ elementary reflectors $Q=H(k) \ldots H(2) H(1)$
as returned by p?gelqf. $Q$ is of order $m$ if side $=L^{\prime} L^{\prime}$ and of order $n$ if side='R'.

## Input Parameters

side	(global) CHARACTER   $=$ 'L' $: Q$ or $Q^{T}$ is applied from the left.   $={ }^{\prime} \mathrm{R}^{\prime}: Q$ or $Q^{T}$ is applied from the right.
trans	(global) CHARACTER   $=$ ' $\mathrm{N}^{\prime}$, no transpose, $Q$ is applied.   $=$ ' T ', transpose, $Q^{T}$ is applied.
m	(global) INTEGER. The number of rows in the distributed matrix $\operatorname{sub}(C)(m \geq$ $0)$.
n	(global) INTEGER. The number of columns in the distributed matrix $\operatorname{sub}(C)$ ( $n$ $\geq 0$ ).
k	(global) INTEGER. The number of elementary reflectors whose product defines the matrix $Q$. Constraints:   if side = ' L', $m \geq k \geq 0$   if side $='^{\prime}{ }^{\prime}, n \geq k \geq 0$.
a	(local)
	REAL for psormlq   DOUBLE PRECISION for pdormlq.   Pointer into the local memory to an array of dimension (lld_a, $\operatorname{LOCc}(j a+m-1)$ ), if side = 'L' and (lld_a, LOCc (ja+n-1)), if side $=' R$ '. The $i$-th row must contain the vector which defines the elementary reflector $H(i)$, ia $\leq i \leq i a+k-1$, as returned by p?gelqf in the $k$ rows of its distributed matrix argument $a\left(i a: i a+k-1, j a:^{*}\right)$.   $a\left(i a: i a+k-1, j a:^{*}\right)$ is modified by the routine but restored on exit.
ia, ja	(global) INTEGER. The row and column indices in the global array a indicating the first row and the first column of the submatrix $A$, respectively.
desca	(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix $A$.
tau	(local)
	REAL for psormlq   DOUBLE PRECISION for pdormlq   Array, DIMENSION LOCc ( $j a+k-1)$ ).   Contains the scalar factor tau(i) of elementary reflectors $H(i)$ as returned by p?gelqf. tau is tied to the distributed matrix $A$.
	(local)

REAL for psormlq
DOUBLE PRECISION for pdormlq
Pointer into the local memory to an array of local dimension (lld_c, LOCc (jc+n-1) ).
Contains the local pieces of the distributed matrix $\operatorname{sub}(C)$ to be factored.

ic,jc	(global) INTEGER. The row and column indices in the global array $c$ indicating the first row and the first column of the submatrix $C$, respectively.
descc	(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix $C$.
work	(local)
	REAL for psormlq   DOUBLE PRECISION for pdormlq. Workspace array of dimension of lwork.
lwork	(local or global) INTEGER, dimension of the array work; must be at least: if side = 'L',
	```lwork \geqmax ((mb_a*(mb_a-1))/2,(mpc0 + max mqa0)+ numroc (numroc (m + iroffc, mb_a, 0, 0, NPROW),mb_a, 0, 0, lcmp), nqc0))* mb_a) + mb_a*mb_a else if side = 'R',```
	```lwork \geq max ((mb_a* (mb_a-1))/2, (mpc0 + nqc0)*mb_a +mb_a*mb_a end if```
	where
	```lcmp = lcm / NPROW with lcm= ilcm (NPROW, NPCOL), iroffa=mod(ia-1,mb_a),```
	icoffa $=\bmod \left(j a-1, n b \_a\right)$,
	iacol $=$ indxg2p (ja, nb_a, MYCOL, csrc_a, NPCOL),
	$m q a 0=n u m r o c\left(m+i c o f f a, ~ n b \_a, ~ M Y C O L, ~ i a c o l, ~ N P C O L ~\right), ~$
	iroffc $=\bmod (i c-1, m b / c)$,
	$i c o f f c=m o d\left(j c-1, n b \_c\right)$,
	icrow $=$ indxg $2 \mathrm{p}(\mathrm{ic}, \mathrm{mb}$ c, MYROW, rsrc_c, NPROW),
	iccol $=$ indxg2p(jc, nb_c, MYCOL, csrc_c, NPCOL $)$,
	$m p c 0=$ numroc $\left(m+i r o f f c, m b \_c, ~ M Y R O W, ~ i c r o w, ~ N P R O W ~\right) ~, ~$

nqc0 $=$ numroc(n+icoffc, nb_c, MYCOL, iccol, NPCOL),
ilcm, indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the subroutine blacs_gridinfo.
if 1 work $=-1$, then 1 work is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

Output Parameters

Overwritten by the product $Q^{*} \operatorname{sub}(C)$ or $Q^{\prime} \operatorname{sub}(C)$, or $\operatorname{sub}(C)^{*} Q^{\prime}$, or $\operatorname{sub}(C)^{*}$ Q
work (1) On exit work (1) contains the minimum value of 1 work required for optimum performance.
info (global) INTEGER. $=0$: the execution is successful.
<0 : if the i-th argument is an array and the j-entry had an illegal value, then info $=-\left(i^{*} 100+j\right)$, if the i-th argument is a scalar and had an illegal value, then $\operatorname{info}=-i$.

p?unmlq

Multiplies a general matrix by the unitary matrix Q of the

LQ factorization formed by p?gelq£.

Syntax

```
call pcunmlq ( side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc,
    descc, work, lwork, info )
call pzunmlq ( side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc,
    descc, work, lwork, info )
```


Description

The routine overwrites the general complex m-by-n distributed matrix sub $(C)=C(i c: i c+m-1, j c: j c+n-1)$ with
side='L' side='R'

$$
\text { trans = 'N': } \quad Q \operatorname{sub}(C) \quad \operatorname{sub}(C) Q
$$

$$
\text { trans }=\text { ' } \mathrm{T} \text { ': } \quad Q^{H} \operatorname{sub}(C) \quad \operatorname{sub}(C) Q^{H}
$$

where Q is a complex unitary distributed matrix defined as the product of k elementary reflectors $Q=H(k)^{\prime} . . . H(2) ' H(1)^{\prime}$
as returned by p?gelqf. Q is of order m if side ='L' and of order n if side='R'.

Input Parameters

```
side (global) CHARACTER
    =' L': Q or Q Q is applied from the left.
    ='R':Q or Q Q is applied from the right.
trans (global) CHARACTER
    ='N', no transpose, Q is applied.
    = ' C', conjugate transpose, Q Q is applied.
m
    (global) INTEGER. The number of rows in the distributed matrix sub(C)
    (m\geq0).
    (global) INTEGER. The number of columns in the distributed matrix sub(C)
    (n\geq0).
```

k	(global) INTEGER. The number of elementary reflectors whose product defines the matrix Q. Constraints: if side ='L', $m \geq k \geq 0$ if side $='^{\prime}, n \geq k \geq 0$.
a	(local)
	COMPLEX for pcunmlq DOUBLE COMPLEX for pzunmlq. Pointer into the local memory to an array of dimension (lld_a, LOCc (ja+m-1)), if side='L', and (lld_a, $\operatorname{LOCc}(j a+n-1))$, if side ='R', where lld_a $\geq \max (1, \operatorname{LOCr}(i a+k-1))$. The i-th column must contain the vector which defines the elementary reflector $H(i)$, ia $\leq i \leq i a+k-1$, as returned by p?gelqf in the k rows of its distributed matrix argument a(ia:ia+k-1,ja:*). $a\left(i a: i a+k-1, j a:^{*}\right)$ is modified by the routine but restored on exit.
ia,ja	(global) INTEGER. The row and column indices in the global array a indicating the first row and the first column of the submatrix A, respectively.
desca	(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix A.
tau	(local)
	COMPLEX for pcunmlq
	DOUBLE COMPLEX for pzunmlq
	Array, DIMENSION $L O C c(i a+k-1)$).
	Contains the scalar factor tau (i) of elementary reflectors H (i) as returned by p?gelqf. tau is tied to the distributed matrix A.
C	(local)
	COMPLEX for pcunmlq
	DOUBLE COMPLEX for pzunmlq.
	Pointer into the local memory to an array of local dimension (lld_c, LOCc (jc+n-1)).
	Contains the local pieces of the distributed matrix $\operatorname{sub}(C)$ to be factored.
ic,jc	(global) INTEGER. The row and column indices in the global array C indicating the first row and the first column of the submatrix C, respectively.
descc	(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix C.

work
lwork
(local)
COMPLEX for pcunmlq
DOUBLE COMPLEX for pzunmlq. Workspace array of dimension of lwork.
(local or global) INTEGER, dimension of the array work; must be at least:
if side = 'L',
lwork $\geq \max \left(\left(m b \_a^{*}\left(m b \_a-1\right)\right) / 2,(m p c 0+\max m q a 0)+\right.$ numroc (numroc $\left.\left.\left.\left.\left(m+i r o f f c, m b \_a, 0,0, N P R O W\right), m b \_a, 0,0,1 c m p\right), n q c 0\right)\right) * m b \_a\right)+$ mb_a*mb_a
else if side = 'R',
lwork $\geq \max \left(\left(m b \_a^{*}\left(m b \_a-1\right)\right) / 2,(m p c 0+n q c 0) * m b \_a+m b \_a * m b \_a\right.$
end if
where
lcmp $=1 \mathrm{~cm} /$ NPROW with $1 \mathrm{~cm}=\mathrm{ilcm}$ (NPROW, NPCOL),
iroffa $=\bmod \left(i a-1, m b \_a\right)$,
icoffa $=\bmod \left(j a-1, n b \_a\right)$,
iacol $=$ indxg2p (ja, nb_a, MYCOL, CSrC_a, NPCOL),
$m q a 0=$ numroc $\left(m+i C O f f a, n b \_a\right.$, MYCOL, $i a c o l$, NPCOL $)$,
$i r o f f c=\bmod \left(i c-1, m b \_c\right)$,
$i c o f f c=\bmod \left(j c-1, n b \_c\right)$,
icrow $=$ indxg2p(ic, mb_c, MYROW, rsrc_c, NPROW),
iccol $=$ indxg2p(jc, nb_c, MYCOL, csrc_c, NPCOL),
$\operatorname{mpc} 0=$ numroc $\left(m+i r o f f c, m b \_c\right.$, MYROW, icrow, NPROW $)$,
$n q c 0=$ numroc $\left(n+i c o f f c, n b \_c, M Y C O L, i c c o l, N P C O L\right)$,
ilcm, indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the subroutine blacs_gridinfo.
if 1 work $=-1$, then 1 work is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

Output Parameters

c Overwritten by the product $Q^{*} \operatorname{sub}(C)$ or $Q^{\prime} \operatorname{sub}(C), \operatorname{or} \operatorname{sub}(C)^{*} Q^{\prime}$, or $\operatorname{sub}(C)^{*}$ Q
work (1) On exit work (1) contains the minimum value of 1 work required for optimum performance.
info (global) INTEGER.
$=0$: the execution is successful.
<0 : if the i-th argument is an array and the j-entry had an illegal value, then info $=-\left(i^{*} 100+j\right)$, if the i-th argument is a scalar and had an illegal value, then info $=-i$.

p?geqlf

Computes the QL factorization of a general matrix.

Syntax

```
call psgeqlf ( m, n, a, ia, ja, desca, tau, work, lwork, info )
call pdgeqlf ( m, n, a, ia, ja, desca, tau, work, lwork, info )
call pcgeqlf ( m, n, a, ia, ja, desca, tau, work, lwork, info )
call pzgeqlf ( m, n, a, ia, ja, desca, tau, work, lwork, info )
```


Description

The routine forms the $Q L$ factorization of a real/complex distributed $m-b y-n$ matrix $\operatorname{sub}(A)=A\left(\right.$ ia:ia+m-1,ja:ja+n-1) $=Q^{*} L$.

Input Parameters

m
n
a
(global) INTEGER. The number of rows in the submatrix $\operatorname{sub}(Q) ;(m \geq 0)$.
(global) INTEGER. The number of columns in the submatrix $\operatorname{sub}(Q)(n \geq 0)$.
(local)
REAL for psgeqlf
DOUBLE PRECISION for pdgeqlf
COMPLEX for pcgeqlf
DOUBLE COMPLEX for pzgeqlf
ia, ja (global) INTEGER. The row and column indices in the global array a indicating the first row and the first column of the submatrix $A((i a: i a+m-1, i a: i a+n-1)$, respectively.
desca (global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix A.
work (local)
REAL for psgeqlf
DOUBLE PRECISION for pdgeqlf
COMPLEX for pcgeqlf
DOUBLE COMPLEX for pzgeqlf
Workspace array of dimension of 1 work.
Iwork (local or global) INTEGER, dimension of work, must be at least lwork \geq $n b \_a^{*}\left(m p 0+n q 0+n b \_a\right)$, where
iroff $=\bmod \left(i a-1, m b \_a\right)$,
$i c o f f=\bmod \left(j a-1, n b \_a\right)$,
iarow $=$ indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW),
iacol $=$ indxg2p(ja, nb_a, MYCOL, csrc_a, NPCOL),
$m p 0=$ numroc (m+iroff, mb_a, MYROW, iarow, NPROW),
$n q 0=$ numroc $\left(n+i c o f f, n b \_a, M Y C O L, i a c o l, N P C O L\right)$
numroc and indxg2p are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the subroutine blacs_gridinfo.

If 1 work $=-1$, then 1 work is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

Output Parameters

On exit, if $m \geq n$, the lower triangle of the distributed submatrix
$A($ ia+m- $: i a+m-1, j a: j a+n-1)$ contains the n-by- n lower triangular matrix L;
if $m \leq n$, the elements on and below the $(n-m)$-th superdiagonal contain the m by

```
\(n\) lower trapezoidal matrix \(L\); the remaining elements, with the array \(\operatorname{tau}\), represent the orthogonal/unitary matrix \(Q\) as a product of elementary reflectors (see Application Notes below)
(local)
REAL for psgeqlf
DOUBLE PRECISION for pdgeqlf
COMPLEX for pcgeqlf
DOUBLE COMPLEX for pzgeqlf
Array, DIMENSION \(L O C c(j a+n-1))\).
Contains the scalar factors of elementary reflectors. tau is tied to the distributed matrix \(A\).
work (1) On exit, work (1) contains the minimum value of 1 work required for optimum performance.
info (global) INTEGER. \(=0\) : the execution is successful.
\(<0\) : if the \(i\)-th argument is an array and the \(j\)-entry had an illegal value, then info \(=-\left(i^{*} 100+j\right)\), if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).
```


Application Notes

The matrix Q is represented as a product of elementary reflectors
$Q=H(j a+k-1) \ldots H(j a+1) H(j a)$,
where $k=\min (m, n)$
Each $H(i)$ has the form
$H(i)=I-\operatorname{tau} * v^{*} v^{\prime}$
where $t a u$ is a real/complex scalar, and v is a real/complex vector with $v(m-k+i+1: m)=0$ and $v(m-k+i)=1 ; v(m-k+i-1)$ is stored on exit in $A(i a+i a+m-k+i-2, j a+n-k+i-1)$, and tau in tau (ja+n-k+i-1).

p?orgql

Generates the orthogonal matrix Q of the QL factorization formed by p?geqlf.

Syntax

```
call psorgql ( m, n, k, a, ia, ja, desca, tau, work, lwork, info )
call pdorgql ( m, n, k, a, ia, ja, desca, tau, work, lwork, info )
```


Description

The routine generates the whole or part of m by n real distributed matrix Q denoting $A(i a: i a+m-1, j a: j a+n-1)$ with orthonormal rows, which is defined as the first m rows of a product of k elementary reflectors of order n

$$
Q=H(k) \ldots H(2) H(1)
$$

as returned by p?gelqf.

Input Parameters

$m \quad$ (global) INTEGER. The number of rows in the submatrix $\operatorname{sub}(Q) ;(m \geq 0)$.
n
(global) Integer. The number of columns in the submatrix $\operatorname{sub}(Q)$ ($m \geq n \geq 0$).
$k \quad$ (global) INTEGER. The number of elementary reflectors whose product defines the matrix $Q(n \geq k \geq 0)$.
a
(local)
REAL for psorgql
DOUBLE PRECISION for pdorgq1
Pointer into the local memory to an array of local dimension (lld_a, LOCc ($j a+n-1$)).On entry, the j-th column must contain the vector which defines the elementary reflector $H(j), j a+n-k \leq j \leq j a+n-1$, as returned by p?geqle in the k columns of its distributed matrix argument A(ia:*ja+n-k:ja+n-1).
$i a, j a \quad$ (global) INTEGER. The row and column indices in the global array a indicating the first row and the first column of the submatrix $A((i a: i a+m-1, j a: j a+n-1)$, respectively.

desca	(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix A.
tau	(local)
	REAL for psorgql
	DOUBLE PRECISION for pdorgql
	Array, dimension $L O C c(j a+n-1)$).
	Contains the scalar factors $\operatorname{tau}(j)$ of elementary reflectors $H(j)$. tau is tied to the distributed matrix A.
work	(local)
	REAL for psorgq1
	DOUBLE PRECISION for pdorgql
	Workspace array of dimension of l work.
lwork	(local or global) INTEGER, dimension of work, must be at least lwork \geq $n b \_a *\left(n q a 0+m p a 0+n b \_a\right)$, where
	iroffa $=\bmod \left(i a-1, m b \_a\right)$,
	$i c o f f a=\bmod \left(j a-1, n b \_a\right)$,
	iarow $=$ indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW),
	iacol $=$ indxg2p(ja, nb_a, MYCOL, csrc_a, NPCOL $)$,
	$m p a 0=$ numroc $\left(m+i r o f f a, m b \_a, ~ M Y R O W, ~ i a r o w, ~ N P R O W ~\right), ~$
	nqa0 $=$ numroc($n+i C O f f a, n b \_a$, MYCOL, iacol, NPCOL $)$
	indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the subroutine
	blacs_gridinfo.

If 1 work $=-1$, then 1 work is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

Output Parameters

work(1)

Contains the local pieces of the m-by- n distributed matrix Q to be factored.
On exit, work (1) contains the minimum value of I work required for optimum performance.

```
info (global) INTEGER.
    = 0: the execution is successful.
    <0: if the i-th argument is an array and the j-entry had an illegal value, then
    info =-(i* 100+j), if the i-th argument is a scalar and had an illegal value,
    then info=-i.
```


p?ungql

Generates the unitary matrix Q of the QL factorization
formed by p?geqle.

Syntax

```
call pcungql ( m, n, k, a, ia, ja, desca, tau, work, lwork, info )
call pzungql ( m, n, k, a, ia, ja, desca, tau, work, lwork, info )
```


Description

The routine generates the whole or part of m by n complex distributed matrix Q denoting $A(i a: i a+m-1, j a: j a+n-1)$ with orthonormal rows, which is defined as the first n columns of a product of k elementary reflectors of order m
$Q=H(k) \ldots H(2) H(1)$
as returned by p?geqle.

Input Parameters

m
n
k
a
(global) INTEGER. The number of rows in the submatrix $\operatorname{sub}(Q)(m \geq 0)$.
(global) INTEGER. The number of columns in the submatrix $\operatorname{sub}(Q)$ ($m \geq n \geq 0$).
(global) INTEGER. The number of elementary reflectors whose product defines the matrix $Q(\mathrm{n} \geq k \geq 0)$.
(local)
COMPLEX for pcungq1
double Complex for pzungql
Pointer into the local memory to an array of local dimension (lld_a, LOCc ($j a+n-1$)).On entry, the j-th column must contain the vector which
defines the elementary reflector $H(j), j a+n-k \leq j \leq j a+n-1$, as returned by p?geqle in the k columns of its distributed matrix argument $A\left(i a:^{*}, j a+n-k\right.$: ja+n-1).
ia, ja (global) INTEGER. The row and column indices in the global array a indicating the first row and the first column of the submatrix A(ia:ia+m-1,ja:ja+n-1), respectively.
desca (global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix A.
tau (local)
COMPLEX for pcungq1
double Complex for pzungql
Array, DIMENSION $\operatorname{LOCr}(i a+n-1))$.
Contains the scalar factors tau (j) of elementary reflectors $H(j)$. tau is tied to the distributed matrix A.
work
lwork
(local)
COMPLEX for pcungql
DOUBLE COMPLEX for pzungql
Workspace array of dimension of 1 work.
(local or global) INTEGER, dimension of work, must be at least 1 work $\geq n b \_a^{*}\left(n q a 0+m p a 0+n b \_a\right)$, where
iroffa $=$ mod(ia-1, mb_a),
icoffa $=$ mod(ja-1, nb_a),
iarow $=$ indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW),
iacol $=$ indxg2p($j a, n b \_a$, MYCOL, csrc_a, NPCOL $)$,
mpa0 $=$ numroc $\left(m+i r o f f a, ~ m b \_a, ~ M Y R O W, ~ i a r o w, ~ N P R O W\right), ~$
nqa0 $=$ numroc(n+icoffa, nb_a, MYCOL, iacol, NPCOL)
indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the subroutine blacs_gridinfo.

If 1 work $=-1$, then 1 work is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

Output Parameters

a
work(1)
info

Contains the local pieces of the m-by-n distributed matrix Q to be factored.
On exit, work (1) contains the minimum value of 1 work required for optimum performance.
(global) INTEGER.
$=0$: the execution is successful.
<0 : if the i-th argument is an array and the j-entry had an illegal value, then info $=-\left(i^{*} 100+j\right)$, if the i-th argument is a scalar and had an illegal value, then info $=-i$.

p?ormql

Multiplies a general matrix by the orthogonal matrix Q of the QL factorization formed by p?geqle.

Syntax

```
call psormql ( side, trans, m, n, k, a, ia, ja, desca, tau, c,ic, jc,
    descc, work, lwork, info )
call pdormql ( side, trans, m, n, k, a, ia, ja, desca, tau, c,ic, jc,
    descc, work, lwork, info )
```


Description

The routine overwrites the general real m-by-n distributed matrix $\operatorname{sub}(C)=C(i c: i c+m-1, j c: j c+n-1)$ with

	side $=$ 'L'	side $=$ ' R^{\prime}
trans $=$ 'N':	$Q \operatorname{sub}(C)$	$\operatorname{sub}(C) Q$
trans $=$ 'T':	$Q^{T} \operatorname{sub}(C)$	$\operatorname{sub}(C) Q^{T}$

where Q is a real orthogonal distributed matrix defined as the product of k elementary reflectors $Q=H(k)^{\prime} \ldots H(2)^{\prime} H(1)^{\prime}$
as returned by p?geqle. Q is of order m if side $=L^{\prime} L^{\prime}$ and of order n if side='R'.

Input Parameters

side	(global) CHARACTER $=$ 'L' $: Q$ or Q^{T} is applied from the left. $={ }^{\prime} \mathrm{R}^{\prime}: Q$ or Q^{T} is applied from the right.
trans	(global) CHARACTER $=$ ' N^{\prime}, no transpose, Q is applied. $=$ ' T ', transpose, Q^{T} is applied.
m	(global) INTEGER. The number of rows in the distributed matrix $\operatorname{sub}(C)(m \geq$ $0)$.
n	(global) INTEGER. The number of columns in the distributed matrix sub(C) ($n \geq 0$).
k	(global) INTEGER. The number of elementary reflectors whose product defines the matrix Q. Constraints: if side = ' L', $m \geq k \geq 0$ if side $='^{\prime}{ }^{\prime}, n \geq k \geq 0$.
a	(local)
	REAL for psormql
	DOUBLE PRECISION for pdormq1.
	Pointer into the local memory to an array of dimension (lld_a, LOCc ($j a+k-1$)).The j-th column must contain the vector which defines the elementary reflector $H(j), j a \leq j \leq j a+k-1$, as returned by p?gelqf in the k columns of its distributed matrix argument $a\left(i a:^{*}, j a: j a+k-1\right) \cdot a\left(i a:^{*}, j a: j a+k-1\right)$ is modified by the routine but restored on exit.
	if side = 'L',lld_a \geq max ($1, \operatorname{LOCr}(\mathrm{ia}+\mathrm{m}-1)$),
	if side = 'R',lld_a \geq max $(1, \operatorname{LOCr}(i a+n-1)$).
ia,ja	(global) INTEGER. The row and column indices in the global array a indicating the first row and the first column of the submatrix A, respectively.
desca	(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix A.
tau	(local)

REAL for psormql
DOUBLE PRECISION for pdormql.
Array, DIMENSION $L O C c(j a+n-1)$).
Contains the scalar factor $\operatorname{tau}(j)$ of elementary reflectors $H(j)$ as returned by p?geqlf. tau is tied to the distributed matrix A.
lwork
work
ic,jc
(local)
REAL for psormql
DOUBLE PRECISION for pdormql.
Pointer into the local memory to an array of local dimension (lld_c, $L O C c(j c+n-1)$).

Contains the local pieces of the distributed matrix $\operatorname{sub}(C)$ to be factored.
(global) INTEGER. The row and column indices in the global array c indicating the first row and the first column of the submatrix C, respectively.
(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix C.
(local)
REAL for psormql.
DOUBLE PRECISION for pdormql. Workspace array of dimension of 1 work.
(local or global) INTEGER, dimension of work, must be at least:
if side ='L',
lwork $\geq \max \left(\left(n b \_a *\left(n b \_a-1\right)\right) / 2,(n q c 0+\operatorname{mpc} 0) * n b \_a+n b \_a * n b \_a\right.$
else if side = 'R',
lwork $\geq \max \left(\left(n b \_a^{*}\left(n b \_a-1\right)\right) / 2,(n q c 0+\max n p a 0)+\right.$ numroc (numroc $\left(n+i c o f f C, n b \_a, 0,0\right.$, NPCOL $\left.\left.\left.\left.), n b \_a, 0,0,1 \mathrm{cmq}\right), \operatorname{mpc} 0\right)\right) * n b \_a\right)+$ $n b \_a * n b \_a$
end if
where
l cmp $=1 \mathrm{~cm} / \mathrm{NPCOL}$ with $1 \mathrm{~cm}=\mathrm{ilcm}$ (NPROW, NPCOL),
iroffa $=\bmod \left(i a-1, m b \_a\right)$,
icoffa $=\bmod \left(j a-1, n b \_a\right)$,
iarow $=$ indxg2p (ia, mb_a, MYROW, rsrc_a, NPROW),
$n p a 0=$ numroc(n + iroffa, mb_a, MYROW, iarow, NPROW $)$,

```
iroffc \(=\bmod \left(i c-1, m b _c\right)\),
\(i c o f f c=\bmod \left(j c-1, n b _c\right)\),
icrow \(=\) indxg2p(ic, mb_c, MYROW, rsrc_c, NPROW),
iccol \(=\) indxg2p(jc, nb_c, MYCOL, csrc_c, NPCOL),
\(m p c 0=\) numroc(m+iroffc, mb_c, MYROW, icrow, NPROW),
\(n q c 0=\) numroc \(\left(n+i c o f f c, n b _c, M Y C O L, i c c o l, N P C O L\right)\),
ilcm, indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL,
NPROW and NPCOL can be determined by calling the subroutine
blacs_gridinfo.
```

if 1 work $=-1$, then 1 work is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

Output Parameters

info

Overwritten by the product $Q^{*} \operatorname{sub}(C)$ or $Q^{\prime} \operatorname{sub}(C)$, or $\operatorname{sub}(C)^{*} Q^{\prime}$, or $\operatorname{sub}(C)^{*}$ Q
On exit work (1) contains the minimum value of 1 work required for optimum performance.
(global) Integer. $=0$: the execution is successful.
<0 : if the i-th argument is an array and the j-entry had an illegal value, then info $=-\left(i^{*} 100+j\right)$, if the i-th argument is a scalar and had an illegal value, then info $=-i$.

p?unmql

Multiplies a general matrix by the unitary matrix Q of the

 QL factorization formed by p?geqle.
Syntax

```
call pcunmql ( side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc,
    descc, work, lwork, info )
call pzunmql ( side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc,
    descc, work, lwork, info )
```


Description

The routine overwrites the general complex m-by-n distributed matrix $\operatorname{sub}(C)=C(i c: i c+m-1, j c: j c+n-1)$ with side ='L' side ='R'
trans = ' N ': $\quad Q \operatorname{sub}(C) \quad \operatorname{sub}(C) Q$
trans = 'C': $\quad Q^{H} \operatorname{sub}(C) \quad \operatorname{sub}(C) Q^{H}$
where Q is a complex unitary distributed matrix defined as the product of k elementary reflectors $Q=H(k)^{\prime} . . . H(2) ' H(1)^{\prime}$
as returned by p?geqle. Q is of order m if side ='L' and of order n if side='R'.

Input Parameters

```
side (global) CHARACTER
    ='L':}:Q\mathrm{ or }\mp@subsup{Q}{}{H}\mathrm{ is applied from the left.
    ='R':Q or Q Q is applied from the right.
trans (global) CHARACTER
    ='N', no transpose, Q is applied.
    = ' C', conjugate transpose, Q Q is applied.
m
    (global) INTEGER. The number of rows in the distributed matrix sub(C)
    (m\geq0).
    (global) INTEGER. The number of columns in the distributed matrix sub(C)
    (n\geq0).
```

k	(global) INTEGER. The number of elementary reflectors whose product defines the matrix Q. Constraints: if side $=$ 'L', $m \geq k \geq 0$ if side $='^{\prime}, n \geq k \geq 0$.
a	(local)
	COMPLEX for pcunmql
	DOUBLE COMPLEX for pzunmql.
	Pointer into the local memory to an array of dimension (lld_a, $\operatorname{LOCc}(j a+k-1)$).The j-th column must contain the vector which defines the elementary reflector $H(j), j a \leq j \leq j a+k-1$, as returned by p?geqle in the k columns of its distributed matrix argument $a\left(i a:^{*}, j a: j a+k-1\right)$. $a\left(i a:^{*}, j a: j a+k-1\right)$ is modified by the routine but restored on exit.
	if side = L',lld_a \geq max $(1, \operatorname{LOCr}($ ia+m-1) $)$,
	if side = 'R',lld_a \geq max $(1, \operatorname{LOCr}($ ia+n-1) $)$.
ia,ja	(global) INTEGER. The row and column indices in the global array a indicating the first row and the first column of the submatrix A, respectively.
desca	(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix A.
tau	(local)
	COMPLEX for pcunmql
	DOUBLE COMPLEX for pzunmql
	Array, DIMENSION $\operatorname{LOCc}($ ia+n-1)).
	Contains the scalar factor tau (j) of elementary reflectors $H(j)$ as returned by p?geqle. tau is tied to the distributed matrix A.
C	(local)
	COMPLEX for pcunmql
	DOUBLE COMPLEX for pzunmql.
	Pointer into the local memory to an array of local dimension (lld_c, LOCc (jc+n-1)).
	Contains the local pieces of the distributed matrix $\operatorname{sub}(C)$ to be factored.
ic,jc	(global) INTEGER. The row and column indices in the global array c indicating the first row and the first column of the submatrix C, respectively.
descc	(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix C.

work
lwork
(local)
COMPLEX for pcunmql
DOUBLE COMPLEX for pzunmql. Workspace array of dimension of lwork. (local or global) INTEGER, dimension of work, must be at least: if side = 'L', lwork \geq max $\left(\left(n b \_a *\left(n b \_a-1\right)\right) / 2,(n q c 0+m p c 0) * n b \_a+n b \_a * n b \_a\right.$ else if side = 'R',
lwork $\geq \max \left(\left(n b \_a^{*}\left(n b \_a-1\right)\right) / 2,(n q c 0+\max n p a 0)+\right.$ numroc (numroc $\left.\left.\left.\left.\left(n+i \operatorname{coffc}, n b \_a, 0,0, N P C O L\right), n b \_a, 0,0,1 c m q\right), m p c 0\right)\right) * n b \_a\right)+$ nb_a*nb_a
end if
where
lcmp $=1 \mathrm{~cm} / \mathrm{NPCOL}$ with $1 \mathrm{~cm}=\mathrm{ilcm}$ ($\mathrm{NPROW}, \mathrm{NPCOL}$),
iroffa $=\bmod \left(i a-1, m b \_a\right)$,
icoffa $=\bmod \left(j a-1, n b \_a\right)$,
iarow $=$ indxg2p (ia, mb_a, MYROW, rssc_a, NPROW),
npa0 $=$ numroc ($n+i r o f f a, m b \_a$, MYROW, iarow, NPROW),
iroffc $=\bmod \left(i c-1, m b \_c\right)$,
icoffc $=\bmod \left(j c-1, n b \_c\right)$,
icrow $=$ indxg2p(ic, mb_c, MYROW, rsrc_c, NPROW),
iccol = indxg2p(jc, nb_c, MYCOL, csrc_c, NPCOL),
$\operatorname{mpc} 0=$ numroc ($m+$ iroffc, mb_c, MYROW, icrow, NPROW),
nqc0 $=$ numroc (n+icoffc, nb_c, MYCOL, iccol, NPCOL),
ilcm, indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the subroutine blacs_gridinfo.
if 1 work $=-1$, then 1 work is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

Output Parameters

c
Overwritten by the product $Q^{*} \operatorname{sub}(C)$ or $Q^{\prime} \operatorname{sub}(C)$, or $\operatorname{sub}(C)^{*} Q^{\prime}$, or $\operatorname{sub}(C)^{*}$ Q
work (1) On exit work (1) contains the minimum value of 1 work required for optimum performance.
info (global) INTEGER.
$=0$: the execution is successful.
<0 : if the i-th argument is an array and the j-entry had an illegal value, then info $=-\left(i^{*} 100+j\right)$, if the i-th argument is a scalar and had an illegal value, then info $=-i$.

p?gerqf

Computes the RQ factorization of a general rectangular
matrix.

Syntax

```
call psgerqf ( m, n, a, ia, ja, desca, tau, work, lwork, info )
call pdgerqf ( m, n, a, ia, ja, desca, tau, work, lwork, info )
call pcgerqf ( m, n, a, ia, ja, desca, tau, work, lwork, info )
call pzgerqf ( m, n, a, ia, ja, desca, tau, work, lwork, info )
```


Description

The routine forms the $Q R$ factorization of a general m by n distributed matrix
$\operatorname{sub}(A)=A(i a: i a+m-1, j a: j a+n-1)$ as

$$
A=R Q
$$

Input Parameters

m (global) INTEGER. The number of rows in the distributed submatrix $\operatorname{sub}(A)$; ($m \geq 0$).
n
(global) INTEGER. The number of columns in the distributed submatrix $\operatorname{sub}(A)$; $(n \geq 0)$.
(local)

REAL for psgeqrf
DOUBLE PRECISION for pdgeqrf
COMPLEX for pcgeqrf
DOUBLE COMPLEX for pzgeqrf.
Pointer into the local memory to an array of local dimension (lld_a, $L O C c(j a+n-1)$).
Contains the local pieces of the distributed matrix $\operatorname{sub}(A)$ to be factored.
ia, ja (global) INTEGER. The row and column indices in the global array a indicating the first row and the first column of the submatrix A(ia:ia+m-1,ja:ja+n-1), respectively.
desca (global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix A
work (local).
REAL for psgeqrf
DOUBLE PRECISION for pdgeqre.
COMPLEX for pcgeqrf.
DOUBLE COMPLEX for pzgeqrf
Workspace array of dimension lwork.
I work (local or global) INTEGER, dimension of work, must be at least lwork \geq mb_a * (mp0+nq0+mb_a), where
iroff $=\bmod \left(i a-1, m b \_a\right)$,
$i C O f f=\bmod \left(j a-1, n b \_a\right)$,
iarow $=$ indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW),
iacol $=$ indxg2p(ja, nb_a, MYCOL, csrc_a, NPCOL),
$m p 0=$ numroc (m+iroff, mb_a, MYROW, iarow, NPROW),
nq0 $=$ numroc ($n+i c o f f, n b \_a$, MYCOL, iacol, NPCOL) and numroc, indxg2p are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the subroutine blacs_gridinfo.

If 1 work $=-1$, then 1 work is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

Output Parameters

a
On exit, if $m \leq n$, the upper triangle of $A(i a: i a+m-1, j a: j a+n-1)$ contains the m by m upper triangular matrix R; if $m \geq n$, the elements on and above the (m n)-th subdiagonal contain the m by n upper trapezoidal matrix R; the remaining elements, with the array $t a u$, represent the orthogonal/unitary matrix Q as a product of elementary reflectors (see Application Notes below)
tau (local)
REAL for psgeqrf
DOUBLE PRECISION for pdgeqrf
COMPLEX for pcgeqrf DOUBLE COMPLEX for pzgeqrf.
Array, dimension $L O C_{r}($ ia + m-1 $)$.
Contains the scalar factor tau of elementary reflectors. tau is tied to the distributed matrix A.
work (1) On exit, work (1) contains the minimum value of 1 work required for optimum performance.
info (global) INTEGER. $=0$, the execution is successful.
<0, if the i-th argument is an array and the j-entry had an illegal value, then info $=-\left(i^{*} 100+j\right)$, if the i-th argument is a scalar and had an illegal value, then info $=-i$.

Application Notes

The matrix Q is represented as a product of elementary reflectors
$Q=H(i a) H(i a+1) \ldots H(i a+k-1)$,
where $k=\min (m, n)$.
Each $H(i)$ has the form
$H(i)=I-\operatorname{tau} * v^{*} v^{\prime}$
where $t a u$ is a real/complex scalar, and v is a real/complex vector with $v(n-k+i+1: n)=0$ and $v(n-k+i)=1 ; v(1: n-k+i-1) /$ conjg $(v(1: n-k+i-1))$ is stored on exit in $A(i a+m-k+i-1, j a: j a+n-k+i-2)$, and $t a u$ in tau(ia+m-k+i-1).

p?orgrq

Generates the orthogonal matrix Q of the RQ factorization formed by p?gerqf.

Syntax

```
call psorgrq ( m, n, k, a, ia, ja, desca, tau, work, lwork, info )
call pdorgrq ( m, n, k, a, ia, ja, desca, tau, work, lwork, info )
```


Description

The routine generates the whole or part of m by n real distributed matrix Q denoting $A(i a: i a+m-1, j a: j a+n-1)$ with orthonormal columns, which is defined as the last m rows of a product of k elementary reflectors of order m
$Q=H(1) H(2) \ldots H(k)$
as returned by p?gerqf.

Input Parameters

$m \quad$ (global) INTEGER. The number of rows in the submatrix $\operatorname{sub}(Q) ;(m \geq 0)$.
n (global) INTEGER. The number of columns in the submatrix $\operatorname{sub}(Q)(n \geq m \geq$ $0)$.
$k \quad$ (global) INTEGER. The number of elementary reflectors whose product defines the matrix $Q(m \geq k \geq 0)$.
a
(local)
REAL for psorgrq
DOUBLE PRECISION for pdorgrq
Pointer into the local memory to an array of local dimension (lld_a, $\operatorname{LOCc}(j a+n-1)$).The i-th column must contain the vector which defines the elementary reflector $H(i), j a \leq j \leq j a+k-1$, as returned by p?geqrf in the k columns of its distributed matrix argument $a\left(i a:^{*}, j a: j a+k-1\right)$.
$i a, j a \quad$ (global) Integer. The row and column indices in the global array a indicating the first row and the first column of the submatrix $A($ ia:ia+m-1,ja:ja+n-1), respectively.

```
desca
tau (local)
    REAL for psorgrq
    DOUBLE PRECISION for pdorgrq
    Array, DIMENSION \(\operatorname{LOCc}(j a+k-1))\).
    Contains the scalar factor tau(i) of elementary reflectors \(H(i)\) as returned by
    p?gerqf. tau is tied to the distributed matrix \(A\).
work (local)
    REAL for psorgrq
    DOUBLE PRECISION for pdorgrq
    Workspace array of dimension of 1 work.
I work (local or global) INTEGER, dimension of work, must be at least lwork \(\geq\)
\(m b _a *\left(m p a 0+n q a 0+m b _a\right)\), where
iroffa \(=\) mod(ia-1, mb_a),
\(i c o f f a=\bmod \left(j a-1, n b _a\right)\),
iarow \(=\) indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW),
iacol \(=\) indxg2p(ja, nb_a, MYCOL, csrc_a, NPCOL),
mpa0 \(=\) numroc( \(m+\) iroffa, mb_a, MYROW, iarow, NPROW),
nqa0 \(=\) numroc ( \(n+i c o f f a, n b _a\), MYCOL, \(\left.i a c o l, N P C O L\right) ~\)
indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL,
NPROW and NPCOL can be determined by calling the subroutine
blacs_gridinfo.
```

If 1 work $=-1$, then 1 work is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

Output Parameters

a	Contains the local pieces of the $m-b y-n$ distributed matrix Q.
work(1)	On exit, work (1) contains the minimum value of 1 work required for optimum
performance.	

```
info (global) INTEGER.
    = 0: the execution is successful.
    <0: if the i-th argument is an array and the j-entry had an illegal value, then
    info =-(i* 100+j), if the i-th argument is a scalar and had an illegal value,
    then info=-i.
```


p?ungrq

Generates the unitary matrix Q of the $R Q$ factorization
formed by p?gerqf.

Syntax

```
call pcungrq ( m, n, k, a, ia, ja, desca, tau, work, lwork, info )
call pzungrq ( m, n, k, a, ia, ja, desca, tau, work, lwork, info )
```


Description

The routine generates the m by n complex distributed matrix Q denoting $A(i a: i a+m-1, j a: j a+n-1)$ with orthonormal rows, which is defined as the last m rows of a product of k elementary reflectors of order n
$Q=H(1)^{\prime} H(2)^{\prime} \ldots . H(k)^{\prime}$
as returned by p?gerqf.

Input Parameters

m
n
k
a
(global) INTEGER. The number of rows in the submatrix $\operatorname{sub}(Q) ;(m \geq 0)$.
(global) INTEGER. The number of columns in the submatrix $\operatorname{sub}(Q)(n \geq m \geq$ $0)$.
(global) INTEGER. The number of elementary reflectors whose product defines the matrix $Q(m \geq k \geq 0)$.
(local)
COMPLEX for pcungrq DOUBLE COMPLEX for pzungrq Pointer into the local memory to an array of dimension (1ld_a,
ia,ja
desca
ia,ja
desca
$L O C c(j a+n-1))$. The i-th row must contain the vector which defines the elementary reflector $H(i)$, $i a+m-k \leq i \leq i a+m-1$, as returned by p?gerqf in the k rows of its distributed matrix argument $a\left(i a+m-k: i a+m-1, j a:^{*}\right)$. (global) INTEGER. The row and column indices in the global array a indicating the first row and the first column of the submatrix A, respectively.
(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix A.
(local)
COMPLEX for pcungrq DOUBLE COMPLEX for pzungrq Array, dIMENSION $\operatorname{LOCr}($ ia+m-1)).
Contains the scalar factor tau(i) of elementary reflectors $H(i)$ as returned by p? gerqf. tau is tied to the distributed matrix A.
(local)
COMPLEX for pcungrq DOUBLE COMPLEX for pzungrq Workspace array of dimension of 1 work.
(local or global) INTEGER, dimension of work, must be at least lwork \geq $m b \_a *\left(m p a 0+n q a 0+m b \_a\right)$, where
iroffa $=\bmod \left(i a-1, m b \_a\right)$,
$i C O f f a=\bmod \left(j a-1, n b \_a\right)$,
iarow $=$ indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW),
iacol $=$ indxg2p(ja, nb_a, MYCOL, Csrc_a, NPCOL),
mpa0 $=$ numroc($m+$ iroffa, mb_a, MYROW, iarow, NPROW),

indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the subroutine blacs_gridinfo.

If lwork $=-1$, then 1 work is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

Output Parameters

a
work (1) On exit work (1) contains the minimum value of 1 work required for optimum performance.
info (global) INTEGER.
$=0$: the execution is successful.
<0 : if the i-th argument is an array and the j-entry had an illegal value, then info $=-\left(i^{*} 100+j\right)$, if the i-th argument is a scalar and had an illegal value, then info $=-i$.

p?ormrq

Multiplies a general matrix by the orthogonal matrix Q of the $R Q$ factorization formed by p?gerqf.

Syntax

```
call psormrq ( side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc,
    descc, work, lwork, info )
call pdormrq ( side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc,
    descc, work, lwork, info )
```


Description

The routine overwrites the general real m-by- n distributed matrix $\operatorname{sub}(C)=$ $C(i c: i c+m-1, j c: j c+n-1)$ with

	side $=$ 'L'	side $=^{\prime}$ '
trans $=$ 'N':	$Q \operatorname{sub}(C)$	$\operatorname{sub}(C) Q$
trans $=$ 'T':	$Q^{T} \operatorname{sub}(C)$	$\operatorname{sub}(C) Q^{T}$

where Q is a real orthogonal distributed matrix defined as the product of k elementary reflectors $Q=H(1) H(2) \ldots H(k)$
as returned by p?geqre. Q is of order mif side ='L' and of order n if side='R'.

Input Parameters

side	(global) CHARACTER $=$ 'L' $: Q$ or Q^{T} is applied from the left. $={ }^{\prime} \mathrm{R}^{\prime}: Q$ or Q^{T} is applied from the right.
trans	(global) CHARACTER $=$ ' N^{\prime}, no transpose, Q is applied. $=$ ' T ', transpose, Q^{T} is applied.
m	(global) Integer. The number of rows in the distributed matrix $\operatorname{sub}(C)$ ($m \geq 0$).
n	(global) INTEGER. The number of columns in the distributed matrix sub(C) ($n \geq 0$).
k	(global) INTEGER. The number of elementary reflectors whose product defines the matrix Q. Constraints: if side = ' L', $m \geq k \geq 0$ if side $='^{\prime}$ ', $n \geq k \geq 0$.
a	(local)
	REAL for psormqr
	DOUBLE PRECISION for pdormqr.
	Pointer into the local memory to an array of dimension (lld_a, $L O C c(j a+m-1))$ if side $=$ 'L', and (lld_a, LOCc (ja+n-1)) if side $=$ 'R'. The i-th row must contain the vector which defines the elementary reflector $H(i)$, $i a \leq i \leq i a+k-1$, as returned by p?gerqf in the k rows of its distributed matrix argument $a\left(i a: i a+k-1, j a:^{*}\right) . a\left(i a: i a+k-1, j a:^{*}\right)$ is modified by the routine but restored on exit.
ia,ja	(global) INTEGER. The row and column indices in the global array a indicating the first row and the first column of the submatrix A, respectively.
desca	(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix A.
tau	(local)
	REAL for psormqr
	DOUBLE PRECISION for pdormqr
	Array, DIMENSION $L O C_{c}(j a+k-1)$).
	Contains the scalar factor tau (i) of elementary reflectors H (i) as returned by p? gerqf. tau is tied to the distributed matrix A.
	(local)

REAL for psormrq
DOUBLE PRECISION for pdormrq
Pointer into the local memory to an array of local dimension (lld_c, $L O C c(j c+n-1)$).

Contains the local pieces of the distributed matrix $\operatorname{sub}(C)$ to be factored.

ic,jc	(global) INTEGER. The row and column indices in the global array c indicating the first row and the first column of the submatrix C, respectively.
descc	(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix C.
work	(local)
	REAL for psormrq
I work	DOUBLE PRECISION for pdormrq. Workspace array of dimension of lwork. (local or global) INTEGER, dimension of work, must be at least: if side = 'L',
	```Iwork \geqmax ((mb_a* (mb_a-1))/2,(mpc0 + max (mqa0 + numroc (numroc(n+iroffc,mb_a, 0, 0, NPROW), mb_a, 0, 0, 1cmp), nqc0))*mb_a)+mb_a *mb_a else if side = 'R',```
	```lwork \geqmax ((mb_a*(mb_a-1))/2,(mpc0 + nqc0)*mb_a)+mb_a*mb_a end if where```
	lcmp $=1 \mathrm{~cm} / \mathrm{NPROW}$ with $1 \mathrm{~cm}=\mathrm{ilcm}$ (NPROW, NPCOL),
	iroffa $=\bmod (i a-1, m b a)$,
	icoffa $=\bmod \left(j a-1, n b \_a\right)$,
	iacol $=$ indxg2p (ja, nb_a, MYCOL, Csrc_a, NPCOL),
	$m q a 0=n u m r o c\left(n+i C O f f a, ~ n b \_a, ~ M Y C O L, ~ i a c o l, ~ N P C O L ~\right), ~$
	iroffc $=\bmod \left(\mathrm{ic-1}, \mathrm{mb} C_{\text {c }}\right)$,
	$i C O f f C=\bmod \left(j c-1, n b \_c\right)$,
	icrow $=$ indxg $2 \mathrm{p}(\mathrm{ic}, \mathrm{mb}$ c, MYROW, rsrc_c, NPROW),
	iccol $=$ indxg2p(jc, nb_c, MYCOL, csrc_c, NPCOL $)$,
	$m p c 0=$ numroc($\left.m+i r o f f c, m b \_c, ~ M Y R O W, ~ i c r o w, ~ N P R O W\right), ~$

nqc0 $=$ numroc(n+icoffc, nb_c, MYCOL, iccol, NPCOL),
ilcm, indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the subroutine blacs_gridinfo.
if 1 work $=-1$, then 1 work is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

Output Parameters

Overwritten by the product $Q^{*} \operatorname{sub}(C)$ or $Q^{\prime} \operatorname{sub}(C)$, or $\operatorname{sub}(C)^{*} Q^{\prime}$, or $\operatorname{sub}(C)^{*}$ Q
work (1) On exit work (1) contains the minimum value of 1 work required for optimum performance.
info (global) INTEGER. $=0$: the execution is successful.
<0 : if the i-th argument is an array and the j-entry had an illegal value, then info $=-\left(i^{*} 100+j\right)$, if the i-th argument is a scalar and had an illegal value, then $\operatorname{info}=-i$.

p?unmrq

Multiplies a general matrix by the unitary matrix Q of the
$R Q$ factorization formed by p?gerqf.

Syntax

```
call pcunmrq ( side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc,
    descc, work, lwork, info )
call pzunmrq ( side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc,
    descc, work, lwork, info )
```


Description

The routine overwrites the general complex m-by- n distributed matrix sub $\quad(C)=$ $C(i c: i c+m-1, j c: j c+n-1)$ with

	side $=$ ' L'	side $=$ ' $^{\prime} '$
trans $=$ ' N ':	$Q \operatorname{sub}(C)$	$\operatorname{sub}(C) Q$
trans $=$ ' $\mathrm{C}^{\prime}:$	$Q^{H} \operatorname{sub}(C)$	$\operatorname{sub}(C) Q^{H}$

where Q is a complex unitary distributed matrix defined as the product of k elementary reflectors $Q=H(1)^{\prime} H(2)^{\prime} . . . H(k)^{\prime}$
as returned by p?gerqf. Q is of order m if side ='L' and of order n if side='R'.

Input Parameters

```
side (global) CHARACTER
    ='L':Q or Q Q is applied from the left.
    = 'R':Q or Q Q is applied from the right.
trans (global) CHARACTER
    = 'N', no transpose, Q is applied.
    = ' C', conjugate transpose, }\mp@subsup{Q}{}{H}\mathrm{ is applied.
m
n
    (global) INTEGER. The number of rows in the distributed matrix sub(C)
    (m\geq0).
    (global) INTEGER. The number of columns in the distributed matrix sub(C)
    (n\geq0).
```

(global) INTEGER. The number of elementary reflectors whose product defines the matrix Q. Constraints:
if side = 'L', $m \geq k \geq 0$
if side $='^{\prime}$ ', $n \geq k \geq 0$.
(local)
COMPLEX for pcunmrq DOUBLE COMPLEX for pzunmrq.
Pointer into the local memory to an array of dimension (lld_a, $L O C c(j a+m-1))$ if side ='L', and (lld_a, LOCc (ja+n-1)) if side = 'R'. The i-th row must contain the vector which defines the elementary reflector $H(i)$, ia $\leq i \leq i a+k-1$, as returned by p?gerqf in the k rows of its distributed matrix argument $a\left(i a: i a+k-1, j a^{*}\right) . a\left(i a: i a+k-1, j a^{*}\right)$ is modified by the routine but restored on exit.
(global) INTEGER. The row and column indices in the global array a indicating the first row and the first column of the submatrix A, respectively.
(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix A.
(local)
COMPLEX for pcunmrq DOUBLE COMPLEX for pzunmrq Array, dimension $L O C c(j a+k-1))$.
Contains the scalar factor tau(i) of elementary reflectors $H(i)$ as returned by p?gerqf. tau is tied to the distributed matrix A.
(local)
COMPLEX for pcunmrq
DOUBLE COMPLEX for pzunmrq.
Pointer into the local memory to an array of local dimension (Ild_c, $L O C c(j c+n-1)$).

Contains the local pieces of the distributed matrix $\operatorname{sub}(C)$ to be factored.
(global) INTEGER. The row and column indices in the global array c indicating the first row and the first column of the submatrix C, respectively.
(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix C.
(local)

COMPLEX for pcunmrq
DOUBLE COMPLEX for pzunmrq. Workspace array of dimension of lwork.
lwork
(local or global) INTEGER, dimension of work, must be at least:
if side = 'L',
lwork $\geq \max \left(\left(m b \_a *\left(m b \_a-1\right)\right) / 2,(m p c 0+\max \right.$
($m q a 0$ + numroc (numroc $\left(n+i r o f f c, m b \_a, 0,0\right.$, NPROW), mb_a, 0, 0, 1 cmp),
$\left.n q(0)) * m b \_a\right)+m b \_a * m b \_a$
else if side = 'R',
lwork $\geq \max \left(\left(m b \_a *\left(m b \_a-1\right)\right) / 2,(m p c 0+n q c 0) * m b \_a\right)+m b \_a * m b \_a$
end if
where
lcmp $=1 \mathrm{~cm} /$ NPROW with $1 \mathrm{~cm}=\mathrm{ilcm}(\mathrm{NPROW}$, NPCOL),
iroffa $=\bmod \left(i a-1, m b \_a\right)$,
icoffa $=\bmod \left(j a-1, n b \_a\right)$,
iacol $=$ indxg2p (ja, nb_a, MYCOL, csrc_a, NPCOL $)$,
$m q a 0=$ numroc $\left(m+i c o f f a, n b \_a\right.$, MYCOL, iacol, NPCOL $)$,
$\operatorname{irOff}_{C}=\bmod \left(i c-1, m b \_c\right)$,
$i c o f f c=\bmod \left(j c-1, n b \_c\right)$,
icrow $=$ indxg $2 \mathrm{p}\left(i c, m b \_c\right.$, MYROW, rsrc_c, NPROW),
iccol $=$ indxg2p(jc, nb_c, MYCOL, csrc_c, NPCOL),
$m p c 0=$ numroc $\left(m+i r o f f c, m b \_c\right.$, MYROW, icrow, NPROW $)$,
$n q c 0=n u m r o c\left(n+i c o f f c, n b \_c, M Y C O L, i c c o l, N P C O L\right)$,
ilcm, indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the subroutine blacs_gridinfo.
if 1 work $=-1$, then 1 work is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

Output Parameters

c Overwritten by the product $Q^{*} \operatorname{sub}(C)$ or $Q^{\prime} \operatorname{sub}(C), \operatorname{or} \operatorname{sub}(C)^{*} Q^{\prime}, \operatorname{or} \operatorname{sub}(C)^{*}$ Q
work (1) On exit work (1) contains the minimum value of 1 work required for optimum performance.
info (global) INTEGER.
$=0$: the execution is successful.
<0 : if the i-th argument is an array and the j-entry had an illegal value, then info $=-\left(i^{*} 100+j\right)$, if the i-th argument is a scalar and had an illegal value, then info $=-i$.

p?tzrzf
 Reduces the upper trapezoidal matrix A to upper triangular form.

Syntax

```
call pstzrzf ( m, n, a, ia, ja, desca, tau, work, lwork, info )
call pdtzrzf ( m, n, a, ia, ja, desca, tau, work, lwork, info )
call pctzrzf ( m, n, a, ia, ja, desca, tau, work, lwork, info )
call pztzrzf ( m, n, a, ia, ja, desca, tau, work, lwork, info )
```


Description

This routine reduces the m-by- $n(m \leq n)$ real/complex upper trapezoidal matrix $\operatorname{sub}(A)=(i a: i a+m-1, j a: j a+n-1)$ to upper triangular form by means of orthogonal/unitary transformations. The upper trapezoidal matrix A is factored as

$$
A=(R 0) * Z,
$$

where Z is an n-by-n orthogonal/unitary matrix and R is an m-by- m upper triangular matrix.

Input Parameters

m (global) INTEGER. The number of rows in the submatrix $\operatorname{sub}(A) ;(m \geq 0)$.
n
(global) INTEGER. The number of columns in the submatrix $\operatorname{sub}(A)(n \geq 0)$.
a
work
lwork
(local)
REAL for pstzrzf
DOUBLE PRECISION for pdtzrzf.
COMPLEX for pctzrzf.
DOUBLE COMPLEX for pztzrzf.
Pointer into the local memory to an array of dimension (lld_a, $L O C c(j a+n-1)$). Contains the local pieces of the m by n distributed matrix $\operatorname{sub}(A)$ to be factored.
(global) INTEGER. The row and column indices in the global array a indicating the first row and the first column of the submatrix A, respectively.
(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix A.
(local)
REAL for pstzrzf
DOUBLE PRECISION for pdtzrzf.
COMPLEX for pctzrzf.
DOUBLE COMPLEX for pztzrzf.
Workspace array of dimension of 1 work.
(local or global) INTEGER, dimension of work, must be at least 1 work \geq $m b \_a *\left(m p 0+n q 0+m b \_a\right)$, where
iroff $=\bmod \left(i a-1, m b \_a\right)$,
icoff $=\bmod \left(j a-1, n b \_a\right)$,
iarow $=$ indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW),
iacol $=$ indxg2p(ja, nb_a, MYCOL, csrc_a, NPCOL),
$m p 0=$ numroc $\left(m+i r o f f, m b \_a, ~ M Y R O W, ~ i a r o w, ~ N P R O W\right), ~$

indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the subroutine blacs_gridinfo.

If 1 work $=-1$, then 1 work is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

Output Parameters

a
work(1)
tau
info

On exit, the leading m-by-m upper triangular part of $\operatorname{sub}(A)$ contains the upper triangular matrix R, and elements $m+1$ to n of the first m rows of $\operatorname{sub}(A)$, with the array $t a u$, represent the orthogonal/unitary matrix Z as a product of m elementary reflectors.

On exit work (1) contains the minimum value of 1 work required for optimum performance.
(local)
REAL for pstzrzf
DOUBLE PRECISION for pdtzrzf.
COMPLEX for pctzrzf. DOUBLE COMPLEX for pztzrzf. Array, DIMENSION $L O C r(i a+m-1))$. Contains the scalar factor of elementary reflectors. tau is tied to the distributed matrix A.
(global) INTEGER. $=0$: the execution is successful.
<0 : if the i-th argument is an array and the j-entry had an illegal value, then info $=-\left(i^{*} 100+j\right)$, if the i-th argument is a scalar and had an illegal value, then info $=-i$.

Application Notes

The factorization is obtained by the Householder's method. The k-th transformation matrix, $Z(k)$, which is or whose conjugate transpose is used to introduce zeros into the ($m-k+1$)-th row of $\operatorname{sub}(A)$, is given in the form
$Z(k)=\left[\begin{array}{cc}i & 0 \\ 0 & T(k)\end{array}\right]$
where

$$
\begin{aligned}
T(k) & =i-\tan ^{*} u(k)^{*} u(k)^{\prime}, \\
u(k) & =\left[\begin{array}{c}
1 \\
0 \\
z(k)
\end{array}\right]
\end{aligned}
$$

tau is a scalar and $Z(k)$ is an $(n-m)$ element vector. tau and $Z(k)$ are chosen to annihilate the elements of the k-th row of $\operatorname{sub}(A)$. The scalar tau is returned in the k-th element of tau and the vector $u(k)$ in the k-th row of $\operatorname{sub}(A)$, such that the elements of $Z(k)$ are in $a(k, m+1), \ldots, a(k, n)$. The elements of R are returned in the upper triangular part of $\operatorname{sub}(A)$. Z is given by

$$
Z=Z(1) * Z(2) * \ldots * Z(m)
$$

p?ormrz

Multiplies a general matrix by the orthogonal matrix from a reduction to upper triangular form formed by p?tzrzf.

Syntax

```
call psormrz ( side, trans, m, n, k, l, a, ia, ja, desca, tau, c, ic, jc,
    descc, work, lwork, info )
call pdormrz ( side, trans, m, n, k, l, a, ia, ja, desca, tau, c, ic, jc,
    descc, work, lwork, info )
```


Description

The routine overwrites the general real m-by-n distributed matrix
$\operatorname{sub}(C)=C(i c: i c+m-1, j c: j c+n-1)$ with

	side $=$ ' L'	side $=$ ' $^{\prime}$
trans $=$ ' N ':	$Q \operatorname{sub}(C)$	$\operatorname{sub}(C) Q$
trans $=$ ' T ':	$Q^{T} \operatorname{sub}(C)$	$\operatorname{sub}(C) Q^{T}$

where Q is a real orthogonal distributed matrix defined as the product of k elementary reflectors $Q=H(1) H(2) \ldots H(k)$
as returned by p?tzrzf. Q is of order m if side ='L' and of order n if side='R'.

Input Parameters

```
side
    (global) CHARACTER
    = 'L':Q or }\mp@subsup{Q}{}{T}\mathrm{ is applied from the left.
    ='R':Q or Q Q is applied from the right.
```


REAL for psormrz
DOUBLE PRECISION for pdormrz
Array, DIMENSION $L O C c(i a+k-1))$.
Contains the scalar factor $\operatorname{tau}(i)$ of elementary reflectors $H(i)$ as returned by p?tzrzf. tau is tied to the distributed matrix A.
$i c, j c \quad$ (global) INTEGER. The row and column indices in the global array c indicating

C
descc
work
lwork
(local)
REAL for psormrz
DOUBLE PRECISION for pdormrz
Pointer into the local memory to an array of local dimension (lld_c, LOCc (jc+n-1)).
Contains the local pieces of the distributed matrix $\operatorname{sub}(C)$ to be factored. the first row and the first column of the submatrix C, respectively.
(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix C.
(local)
REAL for psormrz
DOUBLE PRECISION for pdormrz. Workspace array of dimension of lwork.
(local or global) INTEGER, dimension of work, must be at least:
if side = 'L',

```
lwork \geq max ((mb_a* (mb_a-1))/2, (mpc0 + max
```

(mqa0 + numroc (numroc(n+iroffc, mb_a, 0, 0, NPROW), mb_a, 0, 0, Icmp),
$\left.n q(0)) * m b \_a\right)+m b \_a * m b \_a$
else if side = 'R',

```
lwork \geq max ((mb_a*(mb_a-1))/2,(mpc0 + nqc0)*mb_a) +mb_a *mb_a
```

end if
where
l $\mathrm{cmp}=1 \mathrm{~cm} /$ NPROW with $1 \mathrm{~cm}=\mathrm{ilcm}$ (NPROW, NPCOL),
iroffa $=\bmod \left(i a-1, m b \_a\right)$, $i c o f f a=\bmod \left(j a-1, n b \_a\right)$,
iacol $=$ indxg2p (ja, nb_a, MYCOL, CSrC_a, NPCOL),
$m q a 0=$ numroc(n+icoffa, nb_a, MYCOL, iacol, NPCOL),
iroffc $=\bmod \left(i c-1, m b \_c\right)$,

```
icoffc \(=\bmod \left(j c-1, n b _c\right)\),
icrow \(=\) indxg \(2 p\left(i c, m b _c, M Y R O W, r s r c _c, N P R O W\right)\),
iccol \(=\) indxg2p(jc, nb_c, MYCOL, csrc_c, NPCOL),
\(m p c 0=\) numroc \(\left(m+i r o f f c, m b _c\right.\), MYROW, icrow, NPROW \()\),
\(n q c 0=n u m r o c\left(n+i c o f f c, n b _c, M Y C O L, i c c o l, N P C O L\right)\),
ilcm, indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL,
NPROW and NPCOL can be determined by calling the subroutine
blacs_gridinfo.
```

if 1 work $=-1$, then 1 work is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

Output Parameters

Overwritten by the product $Q^{*} \operatorname{sub}(C)$ or $Q^{\prime} \operatorname{sub}(C)$, or $\operatorname{sub}(C)^{*} Q^{\prime}$, or $\operatorname{sub}(C)^{*} Q$
work(1)
On exit work (1) contains the minimum value of 1 work required for optimum performance.
info (global) INTEGER. $=0$: the execution is successful.
<0 : if the i-th argument is an array and the j-entry had an illegal value, then info $=-\left(i^{*} 100+j\right)$, if the i-th argument is a scalar and had an illegal value, then info $=-i$.

p?unmrz

Multiplies a general matrix by the unitary transformation

 matrix from a reduction to upper triangular form determined by p?tzrzf.
Syntax

```
call pcunmrz ( side, trans, m, n, k, l, a, ia, ja, desca, tau, c, ic, jc,
    descc, work, lwork, info )
call pzunmrz ( side, trans, m, n, k, l, a, ia, ja, desca, tau, c, ic, jc,
    descc, work, lwork, info )
```


Description

The routine overwrites the general complex m-by- n distributed matrix
$\operatorname{sub}(C)=C(i c: i c+m-1, j c: j c+n-1)$ with
side='L' side='R'
trans = ' N ': $\quad Q \operatorname{sub}(C) \quad \operatorname{sub}(C) Q$
trans $=$ 'c': $\quad Q^{H} \operatorname{sub}(C) \quad \operatorname{sub}(C) Q^{H}$
where Q is a complex unitary distributed matrix defined as the product of k elementary reflectors $Q=H(1)^{\prime} H(2)^{\prime} . . . H(k)^{\prime}$
as returned by pctzrzf/pztzrzf. Q is order mif side='L' and of order nif side='R'.

Input Parameters

```
side (global) CHARACTER
    ='L':}Q\mathrm{ or Q Q is applied from the left.
    ='R':Q or Q Q is applied from the right.
trans (global) CHARACTER
    ='N', no transpose, Q is applied.
    = ' C', conjugate transpose, Q Q is applied.
m (global) INTEGER. The number of rows in the distributed matrix sub(C)
    (m\geq0).
    (global) INTEGER. The number of columns in the distributed matrix sub(C)
    ( }n\geq0)\mathrm{ .
```

(global) INTEGER. The number of elementary reflectors whose product defines the matrix Q. Constraints:
if side $=$ 'L', $m \geq k \geq 0$
if side $='^{\prime}, ~ n \geq k \geq 0$.
(local)
COMPLEX for pcunmrz
DOUBLE COMPLEX for pzunmrz.
Pointer into the local memory to an array of dimension (lld_a, $L O C c(j a+m-1))$ if side ='L', and (lld_a, LOCc (ja+n-1)) if side $={ }^{\prime} R^{\prime}$, where lld_a $\geq \max (1, L O C r(j a+k-1)$ The i-th row must contain the vector which defines the elementary reflector $H(i)$, ia $\leq i \leq i a+k-1$, as returned by p?gerqf in the k rows of its distributed matrix argument $a\left(i a: i a+k-1, j a^{*}\right)$.
$a\left(i a: i a+k-1, j a^{*}\right)$ is modified by the routine but restored on exit.
(global) INTEGER. The row and column indices in the global array a indicating the first row and the first column of the submatrix A, respectively.
(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix A.
(local)
COMPLEX for pcunmrz
DOUBLE COMPLEX for pzunmrz
Array, DIMENSION $L O C c(i a+k-1))$.
Contains the scalar factor tau (i) of elementary reflectors $H(i)$ as returned by p?gerqf. tau is tied to the distributed matrix A.
(local)
COMPLEX for pcunmrz
DOUBLE COMPLEX for pzunmrz.
Pointer into the local memory to an array of local dimension (Ild_c, LOCc (jc+n-1)).
Contains the local pieces of the distributed matrix $\operatorname{sub}(C)$ to be factored.
(global) INTEGER. The row and column indices in the global array c indicating the first row and the first column of the submatrix C, respectively.
(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix C.
(local)

COMPLEX for pcunmrz
DOUBLE COMPLEX for pzunmrz. Workspace array of dimension lwork.
lwork
(local or global) INTEGER, dimension of work, must be at least:
if side = 'L',
lwork $\geq \max \left(\left(m b \_a *\left(m b \_a-1\right)\right) / 2,(m p c 0+\max \right.$
($m q a 0$ + numroc (numroc $\left(n+i r o f f c, m b \_a, 0,0\right.$, NPROW), mb_a, 0, 0, 1 cmp),
$\left.n q(0)) * m b \_a\right)+m b \_a * m b \_a$
else if side = 'R',
lwork $\geq \max \left(\left(m b \_a *\left(m b \_a-1\right)\right) / 2,(m p c 0+n q c 0) * m b \_a\right)+m b \_a * m b \_a$
end if
where
lcmp $=1 \mathrm{~cm} /$ NPROW with $1 \mathrm{~cm}=\mathrm{ilcm}$ (NPROW, NPCOL),
iroffa $=\bmod \left(i a-1, m b \_a\right)$,
icoffa $=\bmod \left(j a-1, n b \_a\right)$,
iacol $=$ indxg2p (ja, nb_a, MYCOL, CSrC_a, NPCOL),
$m q a 0=$ numroc $\left(m+i C o f f a, n b \_a\right.$, MYCOL, iacol, NPCOL $)$,
iroffc $=\bmod \left(i c-1, m b \_c\right)$,
$i c o f f c=\bmod \left(j c-1, n b \_c\right)$,
icrow $=$ indxg $2 \mathrm{p}\left(i c, m b \_\right.$, MYROW, rsrc_c, NPROW),
iccol $=$ indxg2p(jc, nb_c, MYCOL, csrc_c, NPCOL),
$m p c 0=$ numroc $\left(m+i r o f f c, m b \_c\right.$, MYROW, icrow, NPROW $)$,
$n q c 0=n u m r o c\left(n+i c o f f c, n b \_c, M Y C O L, i c c o l, N P C O L\right)$,
ilcm, indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the subroutine blacs_gridinfo.
if 1 work $=-1$, then 1 work is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

Output Parameters

```
c
Overwritten by the product Q* sub(C) or Q' sub (C), or sub(C)*Q',
or sub(C)*Q
```

work (1) On exit work (1) contains the minimum value of 1 work required for optimum performance.
info (global) INTEGER.
$=0$: the execution is successful.
<0 : if the i-th argument is an array and the j-entry had an illegal value, then info $=-\left(i^{*} 100+j\right)$, if the i-th argument is a scalar and had an illegal value, then info $=-i$.

p?ggqrf

Computes the generalized $Q R$ factorization.

Syntax

```
call psggqrf (n, m, p, a, ia, ja, desca, taua, b, ib, jb, descb, taub,
    work, lwork, info)
call pdggqrf (n, m, p, a, ia, ja, desca, taua, b, ib, jb, descb, taub,
    work, lwork, info)
call pcggqrf (n, m, p, a, ia, ja, desca, taua, b, ib, jb, descb, taub,
    work, lwork, info)
call pzggqrf (n, m, p, a, ia, ja, desca, taua, b, ib, jb, descb, taub,
    work, lwork, info)
```


Description

The routine forms the generalized $Q R$ factorization of an n-by- m matrix
$\operatorname{sub}(A)=A(i a: i a+n-1, j a: j a+m-1)$
and an n-by- p matrix

$$
\operatorname{sub}(B)=B(i b: i b+n-1, j b: j b+p-1):
$$

as

$$
\operatorname{sub}(A)=Q R, \quad \operatorname{sub}(B)=Q T Z,
$$

where Q is an n-by-n orthogonal/unitary matrix, Z is a p-by- p orthogonal/unitary matrix, and R and T assume one of the forms:
if $n \geq m$

$$
R=\binom{R_{11}}{0}_{n-m}^{m}
$$

m
or if $n<m$

$$
\begin{gathered}
R=\left(\begin{array}{cc}
R_{11} & R_{12}
\end{array}\right) n \\
n \quad m-n
\end{gathered}
$$

where R_{11} is upper triangular, and
$T=\left(\begin{array}{ll}0 & T_{12}\end{array}\right)_{n}, \quad$ if $n \leq p$,

$$
p-n \quad n
$$

or $T=\binom{T_{11}}{T_{21}}\binom{n-p}{p}, \quad$ if $n>p$
p
where T_{12} or T_{21} is an upper triangular matrix.
In particular, if $\operatorname{sub}(B)$ is square and nonsingular, the $G Q R$ factorization of $\operatorname{sub}(A)$ and $\operatorname{sub}(B)$ implicitly gives the $Q R$ factorization of inv $(\operatorname{sub}(B))^{*} \operatorname{sub}(A)$:

$$
\operatorname{inv}(\operatorname{sub}(B)) * \operatorname{sub}(A)=\mathrm{Z}^{H}\left(T^{-1} R\right)
$$

Input Parameters

n
m
p
(global) INTEGER. The number of rows in the distributed matrices sub (A) and $\operatorname{sub}(B)(n \geq 0)$.
(global) INTEGER. The number of columns in the distributed matrix $\operatorname{sub}(A)$ (m ≥ 0).

INTEGER. The number of columns in the distributed matrix $\operatorname{sub}(B)(p \geq 0)$.


```
iacol = indxg2p(ja, nb_a, MYCOL, Csrc_a, NPCOL),
npa0 = numroc (n+iroffa, mb_a, MYROW, iarow, NPROW),
mqaO = numroc (m+icoffa, nb_a, MYCOL, iacol, NPCOL)
iroffb = mod(ib-1, mb_b),
icoffb = mod(jb-1, nb_b),
ibrow = indxg2p(ib, mb_b, MYROW, rsrc_b, NPROW),
ibcol = indxg2p(jb, nb_b, MYCOL, csrc_b, NPCOL),
npbo = numroc (n+iroffa, mb_b, MYROW, ibrow, NPROW),
pqbo = numroc (m+icoffb, nb_b, MYCOL, ibcol, NPCOL)
and numroc, indxg2p are ScaLAPACK tool functions; MYROW, MYCOL,
NPROW and NPCOL can be determined by calling the subroutine
blacs_gridinfo.
```

If 1 work $=-1$, then 1 work is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

Output Parameters

On exit, the elements on and above the diagonal of sub (A) contain the $\min (n, m)$-by- m upper trapezoidal matrix $R(R$ is upper triangular if $n \geq m)$; the elements below the diagonal, with the array taua, represent the orthogonal/unitary matrix Q as a product of $\min (n, m)$ elementary reflectors. (See Application Notes below).
taua, taub
(local)
REAL for psggqrf
DOUBLE PRECISION for pdggqrf
COMPLEX for pcggqrf
DOUBLE COMPLEX for pzggqrf.
Arrays, DIMENSION $\operatorname{LOCc}(j \operatorname{a}+\min (n, m)-1)$ for taua and $\operatorname{LOCr}(i b+n-1)$ for taub.
The array taua contains the scalar factors of the elementary reflectors which represent the orthogonal/unitary matrix Q.taua is tied to the distributed matrix A.(See Application Notes below).

The array taub contains the scalar factors of the elementary reflectors which represent the orthogonal/unitary matrix Z.taub is tied to the distributed matrix B.(See Application Notes below).
work (1) On exit work (1) contains the minimum value of 1 work required for optimum performance.
info (global) INTEGER.
$=0$: the execution is successful.
<0 : if the i-th argument is an array and the j-entry had an illegal value, then info $=-\left(i^{*} 100+j\right)$, if the i-th argument is a scalar and had an illegal value, then info $=-i$.

Application Notes

The matrix Q is represented as a product of elementary reflectors
$Q=H(j a) H(j a+1) \ldots H(j a+k-1)$,
where $k=\min (n, m)$.
Each $H(i)$ has the form
$H(i)=i-\operatorname{tana} * v * v^{\prime}$
where taua is a real/complex scalar, and v is a real/complex vector with $v(1: i-1)=0$ and $v(i)=1 ; v(i+1: n)$ is stored on exit in $A(i a+i: i a+n-1, j a+i-1)$, and taua in taua($j a+i-1)$.To form Q explicitly, use ScaLAPACK subroutine p?orgqı/p?ungqr. To use Q to update another matrix, use ScaLAPACK subroutine p?ormqq/p?unmqr.

The matrix Z is represented as a product of elementary reflectors
$Z=H(i b) H(i b+1) \ldots H(i b+k-1)$,
where $k=\min (n, p)$.
Each $H(i)$ has the form
$H(i)=i-t a u b * v^{*} v^{\prime}$
where taub is a real/complex scalar, and v is a real/complex vector with $v(p-k+i+1: p)=0$ and $v(p-k+i)=1 ; v(1: p-k+i-1)$ is stored on exit in $B(i b+n-k+i-1, j b: j b+p-k+i-2)$, and taub in taub(ib+n-k+i-1).To form Z explicitly, use ScaLAPACK subroutine p?orgrq/p?ungrq. To use Z to update another matrix, use ScaLAPACK subroutine p?ormrq/p?unmrq.

p?ggrqf

Computes the generalized RQ factorization.

Syntax

```
call psggrqf (m, p, n, a, ia, ja, desca, taua, b, ib, jb, descb, taub,
    work, lwork, info)
call pdggrqf (m, p, n, a, ia, ja, desca, taua, b, ib, jb, descb, taub,
    work, lwork, info)
call pcggrqf (m, p, n, a, ia, ja, desca, taua, b, ib, jb, descb, taub,
    work, lwork, info)
call pzggrqf (m, p, n, a, ia, ja, desca, taua, b, ib, jb, descb, taub,
    work, lwork, info)
```


Description

The routine forms the generalized $R Q$ factorization of an m-by- n matrix $\operatorname{sub}(A)=(i a: i a+m-1, j a: j a+n-1)$ and a $p-b y-n$ matrix $\operatorname{sub}(B)=(i b: i b+p-1, j a: j a+n-1)$:

$$
\operatorname{sub}(A)=R Q, \quad \operatorname{sub}(B)=Z T Q,
$$

where Q is an n-by-n orthogonal/unitary matrix, Z is a p-by- p orthogonal/unitary matrix, and R and T assume one of the forms:

$$
\left.R=m \underset{n-m}{(\underset{n-m}{(0}} \begin{array}{c}
0 \\
m
\end{array}\right) \quad, \quad \text { if } m \leq n,
$$

or

$$
\begin{array}{rl}
R= & \binom{R_{11}}{R_{12}} \\
n & m-n \\
n
\end{array}, \quad \text { if } m>n
$$

where R_{11} or R_{21} is upper triangular, and

$$
T=\binom{T_{11}}{0}_{p-n} \quad, \quad \text { if } p \geq n
$$

or

$$
\begin{gathered}
T=p \quad\left(\begin{array}{ll}
T_{11} & T_{12}
\end{array}\right) \quad p, \text { if } p<n \\
p \quad n-p
\end{gathered}
$$

where T_{11} is upper triangular.
In particular, if $\operatorname{sub}(B)$ is square and nonsingular, the $G R Q$ factorization of $\operatorname{sub}(A)$ and $\operatorname{sub}(B)$ implicitly gives the $R Q$ factorization of $\operatorname{sub}(A) * \operatorname{inv}(\operatorname{sub}(B))$:

$$
\operatorname{sub}(A) * \operatorname{inv}(\operatorname{sub}(B))=\left(R^{*} \operatorname{inv}(T)\right) * Z^{\prime}
$$

where $\operatorname{inv}(\operatorname{sub}(B))$ denotes the inverse of the matrix $\operatorname{sub}(B)$, and Z^{\prime} denotes the transpose of matrix Z.

Input Parameters

m
p
n
a
ia,ja
desca
b
(global) INTEGER. The number of rows in the distributed matrices sub (A) ($\mathrm{m} \geq$ $0)$.

INTEGER. The number of rows in the distributed matrix $\operatorname{sub}(B)(p \geq 0)$.
(global) INTEGER. The number of columns in the distributed matrices $\operatorname{sub}(A)$ and $\operatorname{sub}(B)(n \geq 0)$.
(local)
REAL for psggrqf
DOUBLE PRECISION for pdggrqf
COMPLEX for pcggrqf
DOUBLE COMPLEX for pzggrqf.
Pointer into the local memory to an array of dimension (lld_a,
$\operatorname{LOCc}(j a+n-1)$).Contains the local pieces of the m-by-n distributed matrix $\operatorname{sub}(A)$ to be factored.
(global) INTEGER. The row and column indices in the global array a indicating the first row and the first column of the submatrix A, respectively. for the distributed matrix A.
(local)
REAL for psggrqf
DOUBLE PRECISION for pdggrqf
COMPLEX for pcggrqf
DOUBLE COMPLEX for pzggrqf.
ib, jb
descb
work
lwork

Pointer into the local memory to an array of dimension (lld_b, $L O C c(j b+n-1))$. Contains the local pieces of the $p-b y-n$ matrix $\operatorname{sub}(B)$ to be factored.
(global) INTEGER. The row and column indices in the global array b indicating the first row and the first column of the submatrix B, respectively.
(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix B.
(local)
REAL for psggrqf
DOUBLE PRECISION for pdggrqf
COMPLEX for pcggrqf
DOUBLE COMPLEX for pzggrqf. Workspace array of dimension of 1 work.
(local or global) INTEGER, dimension of work, must be at least 1 work \geq max $\left(m b \_a *\left(m p a 0+n q a 0+m b \_a\right), \max \left(\left(m b \_a *\left(m b \_a-1\right)\right) / 2,(p p b 0+n q b 0) * m b \_a\right)\right.$ $+m b \_a$ * mb_a, $\left.n b \_b *\left(p p b 0+n q b 0+n b \_b\right)\right)$, where iroffa $=\bmod \left(i a-1, m b \_a\right)$, icoffa $=\bmod \left(j a-1, n b \_a\right)$, iarow $=$ indxg2p (ia, mb_a, MYROW, rsrc_a, NPROW), iacol $=$ indxg2p (ja, nb_a, MYCOL, Csrc_a, NPCOL), mpa0 $=$ numroc (m+iroffa, mb_a, MYROW, iarow, NPROW), nqa0 $=$ numroc (m+icoffa, nb_a, MYCOL, iacol, NPCOL) iroffb $=\bmod \left(i b-1, m b \_b\right)$, $i c o f f b=\bmod \left(j b-1, n b \_b\right)$, ibrow $=$ indxg2p (ib, mb_b, MYROW, rsrc_b, NPROW), ibcol $=$ indxg2p (jb, nb_b, MYCOL, csrc_b, NPCOL $)$, ppbo $=$ numroc ($p+i r o f f b, m b \_b$, MYROW, ibrow, NPROW), nqbo $=$ numroc ($\left.n+i c o f f b, n b \_b, M Y C O L, i b c o l, ~ N P C O L\right) ~$
and numroc, indxg2p are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the subroutine blacs_gridinfo.

If 1 work $=-1$, then 1 work is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

Output Parameters

On exit, if $m \leq n$, the upper triangle of $A(i a: i a+m-1$, ja+n-m:ja+n-1) contains the m by m upper triangular matrix R; if $m \geq n$, the elements on and above the ($m-n$)-th subdiagonal contain the m by n upper trapezoidal matrix R; the remaining elements, with the array taua, represent the orthogonal/unitary matrix Q as a product of $\min (n, m)$ elementary reflectors. (See Application Notes below).
taua, taub (local)
REAL for psggqrf
DOUBLE PRECISION for pdggqrf
COMPLEX for pcggqrf
DOUBLE COMPLEX for pzggqrf.
Arrays, DIMENSION $\operatorname{LOCr}(i a+m-1)$ for taua and $\operatorname{LOCc}(j b+m i n(p, n)-1)$ for taub.
The array taua contains the scalar factors of the elementary reflectors which represent the orthogonal/unitary matrix Q.taua is tied to the distributed matrix A.(See Application Notes below).

The array taub contains the scalar factors of the elementary reflectors which represent the orthogonal/unitary matrix Z.taub is tied to the distributed matrix B.(See Application Notes below).
work (1) On exit work (1) contains the minimum value of 1 work required for optimum performance.
info (global) INTEGER. $=0$: the execution is successful.
<0 : if the i-th argument is an array and the j-entry had an illegal value, then info $=-\left(i^{*} 100+j\right)$, if the i-th argument is a scalar and had an illegal value, then info $=-i$.

Application Notes

The matrix Q is represented as a product of elementary reflectors
$Q=H(i a) H(i a+1) \ldots H(i a+k-1)$,
where $k=\min (m, n)$.
Each $H(i)$ has the form
$H(i)=i-\operatorname{taua} * v * v^{\prime}$
where taua is a real/complex scalar, and v is a real/complex vector with $v(n-k+i+1: n)=0$ and $v(n-k+i)=1 ; v(1: n-k+i-1)$ is stored on exit in $A(i a+m-k+i-1$, ja:ja+n-k+i-2), and taua in taua(ia+m-k+i-1).To form Q explicitly, use ScaLAPACK subroutine p?orgrg/p?ungrg. To use Q to update another matrix, use ScaLAPACK subroutine \underline{p} ? ormrq/p? unmrq.

The matrix Z is represented as a product of elementary reflectors
$Z=H(j b) H(j b+1) \ldots H(j b+k-1)$,
where $k=\min (p, n)$.
Each $H(i)$ has the form
$H(i)=i-\operatorname{taub} * v^{*} v^{\prime}$
where taub is a real/complex scalar, and v is a real/complex vector with $v(1: i-1)=0$ and $v(i)=1$; $v(i+1: p)$ is stored on exit in $B(i b+i: i b+p-1, j b+i-1)$, and taub in $\operatorname{taub}(j b+i-1)$.To form Z explicitly, use ScaLAPACK subroutine p?orgqr/p?ungqs. To use Z to update another matrix, use ScaLAPACK subroutine p?ormqr/p?unmqr.

Symmetric Eigenproblems

To solve a symmetric eigenproblem with ScaLAPACK, you usually need to reduce the matrix to real tridiagonal form T and then find the eigenvalues and eigenvectors of the tridiagonal matrix T. ScaLAPACK includes routines for reducing the matrix to a tridiagonal form by an orthogonal (or unitary) similarity transformation $A=Q T Q^{H}$ as well as for solving tridiagonal symmetric eigenvalue problems. These routines are listed in Table 6-4.

There are different routines for symmetric eigenproblems, depending on whether you need eigenvalues only or eigenvectors as well, and on the algorithm used (either the $Q R$ algorithm, or bisection followed by inverse iteration).

Table 6-4 Computational Routines for Solving Symmetric Eigenproblems

Operation	Dense symmetric/Hermitian matrix	Orthogonal/ unitary matrix	Symmetric tridiagonal matrix
Reduce to tridiagonal form p?sytrd/p?hetrd $A=Q T Q^{H}$ Multiply matrix after reduction p?ormtr/p?unmtr			

Find all eigenvalues and	?steqr2*)
eigenvectors of a tridiagonal	
matrix T by a $Q R$ method	
Find selected eigenvalues of a tridiagonal matrix T via bisection	p?stebz
Find selected eigenvectors of a tridiagonal matrix T by inverse iteration	p?stein

*) This routine will be described as part of auxiliary ScaLAPACK routines.

p?sytrd

Reduces a symmetric matrix to real symmetric tridiagonal
form by an orthogonal similarity transformation.

```
Syntax
call pssytrd ( uplo, n, a, ia, ja, desca, d, e, tau, work, lwork, info )
```

```
call pdsytrd ( uplo, n, a, ia, ja, desca, d, e, tau, work, lwork, info )
```


Description

This routine reduces a real symmetric matrix $\operatorname{sub}(A)$ to symmetric tridiagonal form T by an orthogonal similarity transformation:

$$
Q^{\prime} \operatorname{sub}(A) * Q=T
$$

where $\operatorname{sub}(A)=A(i a: i a+n-1, j a: j a+n-1)$.

Input Parameters

uplo	(global) CHARACTER.
	Specifies whether the upper or lower triangular part of the symmetric matrix $\operatorname{sub}(A)$ is stored:
	If uplo= 'U', upper triangular If uplo = 'L', lower triangular
n	(global) INTEGER. The order of the distributed matrix $\operatorname{sub}(A)(n \geq 0)$.
a	(local)
	REAL for pssytrd
	DOUBLE PRECISION for pdsytrd.
	Pointer into the local memory to an array of dimension (lld_a, $\operatorname{LOCc}(j a+n-1))$.On entry, this array contains the local pieces of the symmetric distributed matrix $\operatorname{sub}(A)$.
	If uplo = ' v ', the leading n-by- n upper triangular part of $\operatorname{sub}(A)$ contains the upper triangular part of the matrix, and its strictly lower triangular part is not referenced.
	If $u p l o=$ ' L ', the leading n-by- n lower triangular part of $\operatorname{sub}(A)$ contains the lower triangular part of the matrix, and its strictly upper triangular part is not referenced.(See Application Notes below).
ia,ja	(global) INTEGER. The row and column indices in the global array a indicating the first row and the first column of the submatrix A, respectively.
desca	(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix A.
work	(local)

REAL for pssytrd
DOUBLE PRECISION for pdsytrd.
Workspace array of dimension lwork.
Iwork (local or global) INTEGER, dimension of work, must be at least:
1 work $\geq \max (\mathrm{NB} *(n p+1), 3$ * NB)
where NB $=m b \_a=n b \_a$,
$n p=\operatorname{numroc}(n, N B, M Y R O W$, iarow, NPROW),
iarow = indxg2p(ia, NB, MYROW, rsrc_a, NPROW).
indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the subroutine blacs_gridinfo.

If 1 work $=-1$, then 1 work is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

Output Parameters

d

On exit, if uplo $=$ ' U ', the diagonal and first superdiagonal of $\operatorname{sub}(A)$ are overwritten by the corresponding elements of the tridiagonal matrix T, and the elements above the first superdiagonal, with the array tau, represent the orthogonal matrix Q as a product of elementary reflectors; if uplo= ' L ', the diagonal and first subdiagonal of $\operatorname{sub}(A)$ are overwritten by the corresponding elements of the tridiagonal matrix T, and the elements below the first subdiagonal, with the array tau, represent the orthogonal matrix Q as a product of elementary reflectors. (See Application Notes below).
(local)
REAL for pssytrd
DOUBLE PRECISION for pdsytrd.
Arrays, DIMENSION $L O C c(j a+n-1)$.The diagonal elements of the tridiagonal matrix T :
$d(i)=A(i, i)$.
d is tied to the distributed matrix A.
e
info
work(1)
(local)
REAL for pssytrd
DOUBLE PRECISION for pdsytrd.
Arrays, DIMENSION LOCc(ja+n-1) if uplo = 'U', LOCc (ja+n-2) otherwise. The off-diagonal elements of the tridiagonal matrix T :
$e(i)=A(i, i+1)$ if uplo = ' u ',
$e(i)=A(i+1, i)$ if uplo $=$ ' L '.
e is tied to the distributed matrix A.
(local)
REAL for pssytrd
DOUBLE PRECISION for pdsytrd.
Arrays, DIMENSION $L O C c(j a+n-1)$. This array contains the scalar factors tau of the elementary reflectors. tau is tied to the distributed matrix A.

On exit work (1) contains the minimum value of 1 work required for optimum performance.
(global) INTEGER. $=0$: the execution is successful.
<0 : if the i-th argument is an array and the j-entry had an illegal value, then info $=-\left(i^{*} 100+j\right)$, if the i-th argument is a scalar and had an illegal value, then info $=-i$.

Application Notes

If uplo = ' U ', the matrix Q is represented as a product of elementary reflectors
$Q=H(n-1) \ldots H(2) H(1)$.
Each $H(i)$ has the form
$H(i)=i-\operatorname{tau} * v^{*} v^{\prime}$,
where $t a u$ is a real scalar, and v is a real vector with $v(i+1: n)=0$ and $v(i)=1 ; v(1: i-1)$ is stored on exit in A (ia:ia+i-2,ja+i), and tau in tau (ja+i-1).

If uplo= 'L', the matrix Q is represented as a product of elementary reflectors
$Q=H(1) H(2) \ldots H(n-1)$.
Each $H(i)$ has the form
$H(i)=i-\operatorname{tau} * v^{*} v^{\prime}$,
where $t a u$ is a real scalar, and v is a real vector with $v(1: i)=0$ and $v(i+1)=1 ; v(i+2: n)$ is stored on exit in $A(i a+i+1: i a+n-1, j a+i-1)$, and tau in $\operatorname{tau}(j a+i-1)$.

The contents of $\operatorname{sub}(A)$ on exit are illustrated by the following examples with $n=5$:
if uplo = 'u':
$\left[\begin{array}{cccc}d & e & v 2 & v 3 \\ & v 4 \\ d & e & v 3 & v 4 \\ & d & e & v 4 \\ & & d & e \\ & & & \\ & & & \end{array}\right]$
if uplo = 'L':
$\left[\begin{array}{cccc}d & & & \\ e & d & & \\ v 1 & e & d & \\ v 1 & v 2 & e & d \\ v 1 & v 2 & v 3 & e\end{array}\right]$
where d and e denote diagonal and off-diagonal elements of T, and $v i$ denotes an element of the vector defining $H(i)$.

p?ormtr

Multiplies a general matrix by the orthogonal transformation matrix from a reduction to tridiagonal form determined by p?sytrd.

Syntax

```
call psormtr ( side, uplo, trans, m, n, a, ia, ja, desca, tau, c, ic, jc,
    descc, work, lwork, info )
call pdormtr ( side, uplo, trans, m, n, a, ia, ja, desca, tau, c, ic, jc,
    descc, work, lwork, info )
```


Description

The routine overwrites the general real distributed m-by- n matrix
$\operatorname{sub}(C)=C(i c: i c+m-1, j c: j c+n-1)$ with
side $=$ 'L' side $=$ 'R'
trans $=$ ' n ': $Q \operatorname{sub}(C) \quad \operatorname{sub}(C) \mathrm{Q}$
trans = 'T': $Q^{T} \operatorname{sub}(\mathrm{C}) \quad \operatorname{sub}(C) Q^{T}$
where Q is a real orthogonal distributed matrix of order $n q$, with $n q=m$ if side $=$ ' L ' and $n q=n$ if side = 'R'. Q is defined as the product of $n q$ elementary reflectors, as returned by p?sytrd.
if uplo = 'u', $Q=H(n q-1) \ldots H(2) H(1)$;
if uplo = 'ธ', $Q=H(1) H(2) \ldots H(n q-1)$.

Input Parameters

side	(global) CHARACTER $=$ ' L': Q or Q^{T} is applied from the left. $={ }^{\prime} \mathrm{R}^{\prime}: Q$ or Q^{T} is applied from the right.
trans	(global) CHARACTER $=$ ' N^{\prime}, no transpose, Q is applied. $=$ ' T ', transpose, Q^{T} is applied.
uplo	(global) CHARACTER. = ' U ': Upper triangle of $A\left(i a:{ }^{*}, j a:^{*}\right)$ contains elementary reflectors from p?sytrd;

= 'L': Lower triangle of $A(i a: *, j a: *)$ contains elementary reflectors from p?sytrd
m
n

C

(global) INTEGER. The number of rows in the distributed matrix $\operatorname{sub}(C)$ ($m \geq 0$).
(global) INTEGER. The number of columns in the distributed matrix sub(C) ($n \geq 0$).
(local)
REAL for psormtr
DOUBLE PRECISION for pdormtr.
Pointer into the local memory to an array of dimension (lld_a,
$\operatorname{LOCc}(j a+m-1))$ if side='L', or (lld_a, LOCc $(j a+n-1))$ if side = 'R'.
Contains the vectors which define the elementary reflectors, as returned by
p?sytrd.
If side='L', lld_a $\geq \max (1, L O C r(i a+m-1))$;
if side $=$ 'R', lld_a $\geq \max (1, L O C r(i a+n-1))$.
(global) INTEGER. The row and column indices in the global array a indicating the first row and the first column of the submatrix A, respectively.
(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix A.
(local)
REAL for psormtr
DOUBLE PRECISION for pdormtr.
Array, DIMENSION of 1 tau where
if side = 'L' and uplo= 'U', Itau $=\operatorname{LOCc}\left(m_{-} a\right)$,
if side $=$ 'L' and uplo = 'L', Itau $=L O C c(j a+m-2)$,
if side $=$ 'R' and uplo = 'U', ltau $=\operatorname{LOCc}\left(n_{-} a\right)$,
if side $=$ ' R ' and uplo= 'L', ltau $=\operatorname{LOCc}(j a+n-2)$. tau(i) must contain the scalar factor of the elementary reflector $H(i)$, as returned by p? sytrd. tau is tied to the distributed matrix A.
(local)
REAL for psormtr
DOUBLE PRECISION for pdormtr.
Pointer into the local memory to an array of dimension (lld_a,
$\operatorname{LOCc}(j a+n-1))$. Contains the local pieces of the distributed matrix sub (C).

```
work
(local)
REAL for psormtr
DOUBLE PRECISION for pdormtr.
Workspace array of dimension lwork.
lwork
(local or global) INTEGER, dimension of work, must be at least:
If uplo = 'U',
iaa=ia; jaa=ja+1, icc=ic; jcc=jc;
else uplo = 'L',
iaa=ia+1, jaa=ja;
if side = 'L',
\(i c c=i c+1 ; j c C=j c ;\)
else \(i c c=i c ; j c c=j c+1\);
    end if
end if
If side = 'L',
\(m i=m-1 ; n i=n\)
1 work \(\geq \max \left(\left(n b _a^{*}\left(n b _a-1\right)\right) / 2,(n q c 0+m p c 0) * n b _a\right)+n b _a * n b _a\)
else if side = ' R ',
\(m i=m ; m i=n-1 ;\)
lwork \(\geq \max \left(\left(n b _a^{*}\left(n b _a-1\right)\right) / 2,(n q c 0+\max (n p a 0+\right.\)
numroc(numroc(ni+icoffc, nb_a, 0, 0, NPCOL), * nb_a, \(0,0,1 \mathrm{cmq})\),
\(\left.m p(0))^{*} n b _a\right)+n b _a * n b _a\)
end if
where \(1 \mathrm{cmq}=1 \mathrm{~cm} /\) NPCOL with \(1 \mathrm{~cm}=\) ilcm(NPROW, NPCOL),
iroffa \(=\bmod \left(i a a-1, m b _a\right)\),
icoffa \(=\bmod \left(j a a-1, n b _a\right)\),
iarow \(=\) indxg2p (iaa, mb_a, MYROW, rsrc_a, NPROW),
npa0 \(=\) numroc(ni+iroffa, mb_a, MYROW, iarow, NPROW),
\(i r o f f c=\bmod \left(i c c-1, m b _c\right)\),
```

```
icoffc \(=\bmod \left(j c c-1, n b _c\right)\),
icrow \(=\) indxg2p (icc, mb_c, MYROW, rsrc_c, NPROW),
iccol = indxg2p (jcc, nb_c, MYCOL, csrc_c, NPCOL),
mpc0 = numroc(mi+iroffc, mb_c, MYROW, icrow, NPROW),
nqc0 \(=\) numroc(ni+icoffc, nb_c, MYCOL, iccol, NPCOL),
ilcm, indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL,
NPROW and NPCOL can be determined by calling the subroutine
blacs_gridinfo. If 1 work \(=-1\), then 1 work is global input and a workspace
query is assumed; the routine only calculates the minimum and optimal size for
all work arrays. Each of these values is returned in the first entry of the
corresponding work array, and no error message is issued by pxerbla.
```


Output Parameters

c

work (1)
info

Overwritten by the product $Q \operatorname{sub}(C)$, or $Q^{\prime} \operatorname{sub}(C)$ or $\operatorname{sub}(C) Q^{\prime}$ or $\operatorname{sub}(C) Q$.
On exit work (1) contains the minimum value of 1 work required for optimum performance.
(global) InTEGER. $=0$: the execution is successful.
<0 : if the i-th argument is an array and the j-entry had an illegal value, then info $=-\left(i^{*} 100+j\right)$, if the i-th argument is a scalar and had an illegal value, then $\operatorname{info}=-i$.

p?hetrd

Reduces a Hermitian matrix to Hermitian tridiagonal form
by a unitary similarity transformation.

Syntax

```
call pchetrd ( uplo, n, a, ia, ja, desca, d, e, tau, work, lwork, info )
call pzhetrd ( uplo, n, a, ia, ja, desca, d, e, tau, work, lwork, info )
```


Description

This routine reduces a complex Hermitian matrix $\operatorname{sub}(A)$ to Hermitian tridiagonal form T by a unitary similarity transformation:

$$
Q^{\prime} \operatorname{sub}(A) Q=T
$$

where $\operatorname{sub}(A)=A(i a: i a+n-1, j a: j a+n-1)$.

Input Parameters

uplo (global) CHARACTER.
Specifies whether the upper or lower triangular part of the Hermitian matrix $\operatorname{sub}(A)$ is stored:
If uplo = ' U ', upper triangular
If uplo = ' L', lower triangular
n
(global) INTEGER. The order of the distributed matrix $\operatorname{sub}(A)(n \geq 0)$.
a
(local)
COMPLEX for pchetrd
DOUBLE COMPLEX for pzhetrd.
Pointer into the local memory to an array of dimension (1ld_a, $\operatorname{LOCc}(j a+n-1))$.On entry, this array contains the local pieces of the Hermitian distributed matrix $\operatorname{sub}(A)$.
If uplo= ' u ', the leading n-by- n upper triangular part of $\operatorname{sub}(A)$ contains the upper triangular part of the matrix, and its strictly lower triangular part is not referenced.
If uplo= ' L ', the leading n-by- n lower triangular part of $\operatorname{sub}(A)$ contains the lower triangular part of the matrix, and its strictly upper triangular part is not referenced.(See Application Notes below).
ia, ja (global) INTEGER. The row and column indices in the global array a indicating the first row and the first column of the submatrix A, respectively.
desca (global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix A.
work
lwork
(local)
COMPLEX for pchetrd DOUBLE COMPLEX for pzhetrd. Workspace array of dimension 1 work. (local or global) INTEGER, dimension of work, must be at least:

1 work $\geq \max (\mathrm{NB} *(\mathrm{np}+1), 3$ *NB)
where $\mathrm{NB}=m b \_a=n b \_a$,
$n p=$ numroc(n, NB, MYROW, i iarow, NPROW),
iarow $=$ indxg2p(ia, NB, MYROW, rsrc_a, NPROW)
indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the subroutine blacs_gridinfo.

If 1 work $=-1$, then 1 work is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

Output Parameters

e

On exit, if uplo= ' u ', the diagonal and first superdiagonal of $\operatorname{sub}(A)$ are overwritten by the corresponding elements of the tridiagonal matrix T, and the elements above the first superdiagonal, with the array $t a u$, represent the unitary matrix Q as a product of elementary reflectors; if uplo = ' L ', the diagonal and first subdiagonal of $\operatorname{sub}(A)$ are overwritten by the corresponding elements of the tridiagonal matrix T, and the elements below the first subdiagonal, with the array $t a u$, represent the unitary matrix Q as a product of elementary reflectors. (See Application Notes below).
(local)
REAL for pchetrd
double precision for pzhetrd.
Arrays, DIMENSION $L O C c(j a+n-1)$.The diagonal elements of the tridiagonal matrix T :
$a(i)=A(i, i)$.
d is tied to the distributed matrix A.
(local)
REAL for pchetrd
DOUBLE PRECISION for pzhetrd.
Arrays, DIMENSION LOCc (ja+n-1) if uplo = 'U', LOCc ($j a+n-2)$ otherwise.
The off-diagonal elements of the tridiagonal matrix T :
$e(i)=A(i, i+1)$ if uplo $=$ ' u ', $e(i)=A(i+1, i)$ if uplo = 'L'.
e is tied to the distributed matrix A.
tau
(local)
COMPLEX for pchetrd
double complex for pzhetrd.
Arrays, DIMENSION $\operatorname{LOCc}(j a+n-1)$.This array contains the scalar factors tau of the elementary reflectors. tau is tied to the distributed matrix A.
work (1) On exit work (1) contains the minimum value of 1 work required for optimum performance.
info (global) INTEGER.
$=0$: the execution is successful.
<0 : if the i-th argument is an array and the j-entry had an illegal value, then info $=-\left(i^{*} 100+j\right)$, if the i-th argument is a scalar and had an illegal value, then info $=-i$.

Application Notes

If uplo = ' U ', the matrix Q is represented as a product of elementary reflectors
$Q=H(n-1) \ldots H(2) H(1)$.
Each $H(i)$ has the form
$H(i)=i-\operatorname{tau} * v * v^{\prime}$,
where tau is a complex scalar, and v is a complex vector with $v(i+1: n)=0$ and $v(i)=1 ; v(1: i-1)$ is stored on exit in $A(i a: i a+i-2, j a+i)$, and tau in $\operatorname{tau}(j a+i-1)$.

If uplo= 'L', the matrix Q is represented as a product of elementary reflectors
$Q=H(1) H(2) \ldots H(n-1)$.
Each $H(i)$ has the form
$H(i)=i-\operatorname{tau} * v * v^{\prime}$,
where t au is a complex scalar, and v is a complex vector with $v(1: i)=0$ and $v(i+1)=1 ; v(i+2: n)$ is stored on exit in $A(i a+i+1: i a+n-1, j a+i-1)$, and tau in $\operatorname{tau}(j a+i-1)$.

The contents of $\operatorname{sub}(A)$ on exit are illustrated by the following examples with $n=5$:

```
if uplo= 'u':
\(\left[\begin{array}{cccc}d e & v 2 & v 3 & v 4 \\ d & e & v 3 & v 4 \\ & d & e & v 4 \\ & & d & e \\ & & & \\ & & & \\ d\end{array}\right]\)
if uplo= 'L':
\(\left[\begin{array}{ccccc}d & & & \\ e & d & & \\ v 1 & e & d & \\ v 1 & v 2 & e & d \\ v 1 & v 2 & v 3 & e & d\end{array}\right]\)
```

where d and e denote diagonal and off-diagonal elements of T, and $v i$ denotes an element of the vector defining $H(i)$.

p?unmtr

Multiplies a general matrix by the unitary transformation matrix from a reduction to tridiagonal form determined by p?hetrd.

Syntax

```
call pcunmtr ( side, uplo, trans, m, n, a, ia, ja, desca, tau, c, ic, jc,
    descc, work, lwork, info )
call pzunmtr ( side, uplo, trans, m, n, a, ia, ja, desca, tau, c, ic, jc,
    descc, work, lwork, info )
```


Description

The routine overwrites the general complex distributed m-by- n matrix
$\operatorname{sub}(C)=C(i c: i c+m-1, j c: j c+n-1)$ with
side = 'L' side = 'R'
trans $=$ ' N ': $\quad Q \operatorname{sub}(C) \quad \operatorname{sub}(C) \mathrm{Q}$
trans = 'C': $Q^{H} \operatorname{sub}(\mathrm{C}) \quad \operatorname{sub}(C) Q^{H}$
where Q is a complex unitary distributed matrix of order $n q$, with $n q=m$ if side $=$ ' L ' and $n q=n$ if side = ' R '. Q is defined as the product of $n q-1$ elementary reflectors, as returned by p?hetrd.
if uplo = 'u', $Q=H(n q-1) \ldots H(2) H(1)$;
if uplo = 's', $Q=H(1) H(2) \ldots H(n q-1)$.

Input Parameters

side	(global) CHARACTER $=$ ' L': Q or Q^{H} is applied from the left. $={ }^{\prime} \mathrm{R}^{\prime}: Q$ or Q^{H} is applied from the right.
trans	(global) CHARACTER $={ }^{\prime} \mathrm{N}^{\prime}$, no transpose, Q is applied. $=$ ' C', conjugate transpose, Q^{H} is applied.
uplo	(global) CHARACTER. = 'u': Upper triangle of A (ia:*,ja:*) contains elementary reflectors from p?hetrd; = 'L': Lower triangle of $A(i a: *, j a: *)$ contains elementary reflectors from p?hetrd
m	(global) INTEGER. The number of rows in the distributed matrix $\operatorname{sub}(C)$ ($m \geq 0$).
n	(global) INTEGER. The number of columns in the distributed matrix sub(C) ($n \geq 0$).
a	(local)
	REAL for pcunmtr
	DOUBLE PRECISION for pzunmtr.
	Pointer into the local memory to an array of dimension (1ld_a,
	$\operatorname{LOCc}(j a+m-1))$ if side='L', or (1ld_a, LOCc(ja+n-1)) if side = 'R'. Contains the vectors which define the elementary reflectors, as returned by

	p?hetrd. If side='L', lld_a $\geq \max (1, L O C r(i a+m-1))$; if side $=$ 'R', lld_a $\geq \max (1, L O C r(i a+n-1))$.
ia,ja	(global) INTEGER. The row and column indices in the global array a indicating the first row and the first column of the submatrix A, respectively.
desca	(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix A.
tau	(local)
	COMPLEX for pcunmtr
	DOUBLE COMPLEX for pzunmtr.
	if side $=$ ' L ' and uplo = ' U ', Itau $=\operatorname{LOCc}\left(\right.$ m_a $\left.^{2}\right)$, if side $=$ 'L' and uplo = 'L', Itau $=L O C c(j a+m-2)$, if side $=$ 'R' and uplo = 'U', Itau $=\operatorname{LOCc}\left(\right.$ n_a $\left.^{2}\right)$, if side $=$ 'R' and uplo $=$ 'L', Itau $=\operatorname{LOCc}(j a+n-2)$. $\operatorname{tau}(i)$ must contain the scalar factor of the elementary reflector $H(i)$, as returned by p? hetrd. tau is tied to the distributed matrix A.
C	(local)
	COMPLEX for pcunmtr
	DOUBLE COMPLEX for pzunmtr.
	Pointer into the local memory to an array of dimension (lld_a,
	$\operatorname{LOCc}(j a+n-1))$. Contains the local pieces of the distributed matrix sub (C).
work	(local)
	COMPLEX for pcunmtr
	DOUBLE COMPLEX for pzunmtr.
	Workspace array of dimension 1 work.
Iwork	(local or global) INTEGER, dimension of work, must be at least:
	If uplo = 'U',
	iaa=ia; jaa=ja+1, icc=ic; jcc=jc;
	else uplo = 'L',
	iaa=ia+1, jaa=ja;
	if side = 'L',
	$i C C=i c+1 ; j c c=j c ;$
	else $i c c=i c ; j c c=j c+1$;

```
end if
end if
If side = 'L',
mi=m-1;ni=n
lwork \geqmax((nb_a*(nb_a-1))/2, (nqc0 + mpc0)*nb_a)+ nb_a* nb_a
else if side = 'R',
mi=m; mi = n-1;
lwork \geqmax((nb_a*(nb_a-1))/2,(nqc0 + max(npa0 +
numroc(numroc(ni+icoffc, nb_a, 0, 0, NPCOL),* nb_a, 0, 0, lcmq),
mpc0))*nb_a)+nb_a * nb_a
end if
where lcmq = lcm/ NPCOL with lcm= ilcm(NPROW,NPCOL),
iroffa=mod(iaa-1, mb_a),
icoffa=mod(jaa-1, nb_a),
iarow = indxg2p (iaa,mb_a, MYROW, rsrc_a, NPROW),
npa0 = numroc(ni+iroffa,mb_a,MYROW, iarow, NPROW),
iroffc}=\operatorname{mod}(icc-1,mb_c)
icoffc}=\operatorname{mod}(jcc-1,nb c)
icrow = indxg2p (icc,mb_c, MYROW, rsrc_c, NPROW),
iccol = indxg2p (jcc, nb_c, MYCOL, csrc_c, NPCOL),
mpc0 = numroc(mi+iroffc,mb_c, MYROW, icrow, NPROW),
nqc0 = numroc(ni+icoffc, nb_c, MYCOL, iccol, NPCOL),
ilcm, indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the subroutine
blacs_gridinfo. If lwork \(=-1\), then lwork is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.
```


Output Parameters

c \quad Overwritten by the product $Q \operatorname{sub}(C)$, or $Q^{\prime} \operatorname{sub}(C)$ or $\operatorname{sub}(C) Q^{\prime}$ or $\operatorname{sub}(C) Q$.
work (1) On exit work (1) contains the minimum value of 1 work required for optimum performance.
info (global) INTEGER.
$=0$: the execution is successful.
<0 : if the i-th argument is an array and the j-entry had an illegal value, then info $=-i$

p?stebz

Computes the eigenvalues of a symmetric tridiagonal matrix by bisection.

Syntax

```
call psstebz ( ictxt, range, order, n, vl, vu, il, iu, abstol, d, e, m,
    nsplit, w, iblock, isplit, work, iwork, liwork, info)
call pdstebz ( ictxt, range, order, n, vl, vu, il, iu, abstol, d, e, m,
    nsplit, w, iblock, isplit, work, iwork, liwork, info)
```


Description

This routine computes the eigenvalues of a symmetric tridiagonal matrix in parallel. These may be all eigenvalues, all eigenvalues in the interval
[vI vu], or the eigenvalues indexed il through iu. A static partitioning of work is done at the beginning of p ?stebz which results in all processes finding an (almost) equal number of eigenvalues.

Input Parameters

```
ictxt (global) INTEGER.
    The BLACS context handle.
range (global) CHARACTER. Must be 'A' or 'V' or 'I'.
        If range ='A', the routine computes all eigenvalues.
        If range ='V', the routine computes eigenvalues in the
        interval [ vl vu]
```

If range $=$ 'I', the routine computes eigenvalues with indices $i l$ to $i u$.
d
(global) CHARACTER. Must be 'B' or 'E'.
If order ='B', the eigenvalues are to be ordered from smallest to largest within each split-off block.
If order $=1 E$ ', the eigenvalues for the entire matrix are to be ordered from smallest to largest.
(global) INTEGER. The order of the tridiagonal matrix $T(n \geq 0)$.
(global)
REAL for psstebz
DOUBLE PRECISION for pdstebz.
If range $=' V$ ', the routine computes the lower and the upper bounds for the eigenvalues on the interval $[\mathrm{vl} \mathrm{vu}]$.

If range $=$ 'A' or 'I', vl and vu are not referenced.
(global)
INTEGER. Constraint: $1 \leq i 1 \leq i u \leq n$.
If range $=$ 'I', the index of the smallest eigenvalue is returned for $i l$ and of the largest eigenvalue for $i u$ (assuming that the eigenvalues are in ascending order) must be returned.
il must be at least 1 . iu must be at least il and no greater than n.
If range $=$ ' A ' or 'V', il and iu are not referenced.
(global)
REAL for psstebz
DOUBLE PRECISION for pdstebz.
The absolute tolerance to which each eigenvalue is required. An eigenvalue (or cluster) is considered to have converged if it lies in an interval of width abstol. If abstol ≤ 0, then the tolerance is taken as $u l p\|T\|$, where $u l p$ is the machine precision and $\|T\|$ means the 1 -norm of T

Eigenvalues will be computed most accurately when abstol is set to the underflow threshold slamch('U'), not 0 .
Note that if eigenvectors are desired later by inverse iteration (p?stein), abstol should be set to $2 *$ p? lamch ('S').
(global)
REAL for psstebz
DOUBLE PRECISION for pdstebz.
Array, DIMENSION (n).

Contains n diagonal elements of the tridiagonal matrix T. To avoid overflow, the matrix must be scaled so that its largest entry is no greater than the overflow ${ }^{(1 / 2)} *$ underflow $^{(1 / 4)}$ in absolute value, and for greatest accuracy, it should not be much smaller than that.

(global)
REAL for psstebz
DOUBLE PRECISION for pdstebz.
Array, DIMENSION ($n-1$).
Contains ($n-1$) off-diagonal elements of the tridiagonal matrix T. To avoid overflow, the matrix must be scaled so that its largest entry is no greater than overflow ${ }^{(1 / 2)}$ * underflow ${ }^{(1 / 4)}$ in absolute value, and for greatest accuracy, it should not be much smaller than that.
(local)
REAL for psstebz
DOUBLE PRECISION for pdstebz.
Array, DIMENSION $\max (5 n, 7)$. This is a workspace array.
(local) INTEGER.
the size of the work array must be $\geq \max (5 n, 7)$.
If 1 work $=-1$, then 1 work is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.
(local) INTEGER.
Array, DIMENSION $\max (4 n, 14)$. This is a workspace array.
(local) INTEGER. the size of the i work array must be $\geq \max (4 n, 14$, NPROCS).
If 1 iwork $=-1$, then liwork is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

Output Parameters

(global) INTEGER. The actual number of eigenvalues found. $0 \leq m \leq n$
nsplit (global) INTEGER. The number of diagonal blocks detected in T. $1 \leq$ nsplit $\leq n$
w
iblock

isplit
info
(global) REAL for psstebz
DOUBLE PRECISION for pdstebz.
Array, DIMENSION (n).
On exit, the first m elements of w contain the eigenvalues on all processes.
(global)
INTEGER.
Array, DIMENSION (n).
At each row/column j where $e(j)$ is zero or small, the matrix T is considered to split into a block diagonal matrix. On exit iblock(i) specifies which block (from 1 to the number of blocks) the eigenvalue $w(i)$ belongs to.

NOTE. In the (theoretically impossible) event that bisection does not converge for some or all eigenvalues, info is set to 1 and the ones for which it did not are identified by a negative block number.
(global)
INTEGER.
Array, DIMENSION (n).
Contains the splitting points, at which T breaks up into submatrices. The first submatrix consists of rows/columns 1 to $i \operatorname{split}(1)$, the second of rows/columns isplit(1)+1 through isplit(2), etc., and the nsplit-th consists of rows/columns isplit(nsplit-1)+1 through isplit(nsplit)=n. (Only the first nsplit elements are used, but since the nsplit values are not known, n words must be reserved for isplit.)
(global)
INTEGER.
If info $=0$, the execution is successful.
If info <0, if info $=-i$, the i-th argument has an illegal value.
If info >0, some or all of the eigenvalues fail to converge or not computed.
If info $=1$, bisection fails to converge for some eigenvalues; these eigenvalues are flagged by a negative block number. The effect is that the eigenvalues may not be as accurate as the absolute and relative tolerances.
If info $=2$, mismatch between the number of eigenvalues output and the number desired.
If info = 3: range $=$ ' i ', and the Gershgorin interval initially used is incorrect. No eigenvalues are computed. Probable cause: the machine has a sloppy floating point arithmetic. Increase the fudge parameter, recompile, and try again.

p?stein

Computes the eigenvectors of a tridiagonal matrix using inverse iteration.

Syntax

```
call psstein ( n, d, e, m, w, iblock, isplit, orfac, z, iz, jz, descz,
    work, lwork, iwork, liwork, ifail, iclustr, gap, info)
call pdstein ( n, d, e, m, w, iblock, isplit, orfac, z, iz, jz, descz,
    work, lwork, iwork, liwork, ifail, iclustr, gap, info)
call pcstein ( n, d, e, m, w, iblock, isplit, orfac, z, iz, jz, descz,
    work, lwork, iwork, liwork, ifail, iclustr, gap, info)
call pzstein ( n, d, e, m, w, iblock, isplit, orfac, z, iz, jz, descz,
    work, lwork, iwork, liwork, ifail, iclustr, gap, info)
```


Description

This routine computes the eigenvectors of a symmetric tridiagonal matrix T corresponding to specified eigenvalues, by inverse iteration. p?stein does not orthogonalize vectors that are on different processes. The extent of orthogonalization is controlled by the input parameter 1work. Eigenvectors that are to be orthogonalized are computed by the same process. p?stein decides on the allocation of work among the processes and then calls sstein2 (modified LAPACK routine) on each individual process. If insufficient workspace is allocated, the expected orthogonalization may not be done.

NOTE. If the eigenvectors obtained are not orthogonal, increase 1 work and run the code again.
$p=$ NPROW $*$ NPCOL is the total number of processes.

Input Parameters

$n \quad$ (global) INTEGER. The order of the matrix $T(n \geq 0)$.
m
(global) INTEGER. The number of eigenvectors to be returned.

d, e, w	(global)		
	REAL for single-precision flavors		
	DOUBLE PRECISION for double-precision flavors.		
	Arrays:		
	$d(*)$ contains the diagonal elements of T.		
	DIMENSION (n).		
	e (*) contains the off-diagonal elements of T.		
	DIMENSION ($n-1$).		
	$w(*)$ contains all the eigenvalues grouped by split-off block. The eigenvalues are supplied from smallest to largest within the block. (Here the output array w from p ? stebz with order = ' B' is expected. The array should be replicated in all processes.		
	DIMENSION(m)		
iblock	(global) INTEGER.		
	Array, DIMENSION (n).		
	The submatrix indices associated with the corresponding eigenvalues in $w-1$ for eigenvalues belonging to the first submatrix from the top, 2 for those belonging to the second submatrix, etc. (The output array iblock from p?stebz is expected here).		
isplit	(global) INTEGER.		
	Array, DIMENSION (n).		
	The splitting points, at which T breaks up into submatrices. The first submatrix consists of rows/columns 1 to isplit (1), the second of rows/columns		
	isplit(1)+1 through isplit(2), etc., and the nsplit-th consists of rows/columns isplit (nsplit-1)+1 through isplit(nsplit)=n (The output array isplit from p?stebz is expected here.)		
orfac	(global)		
	REAL for single-precision flavors		
	DOUBLE PRECISION for double-precision flavors. orfac specifies which eigenvectors should be orthogonalized. Eigenvectors that correspond to eigenvalues within orfac* $\\|T\\|$ of each other are to be orthogonalized.		
	However, if the workspace is insufficient (see lwork), this tolerance may be decreased until all eigenvectors can be stored in one process. No orthogonalization is done if orfac is equal to zero. A default value of 10^{3} is used if orfac is negative. orfac should be identical on all processes		
iz, jz	(global) INTEGER. The row and column indices in the global array z indicating the first row and the first column of the submatrix Z, respectively.		

descz	(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix Z.
work	(local). REAL for single-precision flavors double precision for double-precision flavors. Workspace array, DIMENSION (lwork).
Iwork	(local) Integer. lwork controls the extent of orthogonalization which can be done. The number of eigenvectors for which storage is allocated on each process is nvec $=f l o o r((1 w o r k-\max (5 * n, n p 00 * m q 00)) / n)$. Eigenvectors corresponding to eigenvalue clusters of size nvec- ceil $(\mathrm{m} / \mathrm{p})+1$ are guaranteed to be orthogonal (the orthogonality is similar to that obtained from?stein2).
$\underbrace{8.8}$	NOTE. I work must be no smaller than: $\operatorname{nax}\left(5^{*} n, n p 00^{*} m q 00\right)+\operatorname{ceil}(m / p)^{*} n,$ and should have the same input value on all processes.

It is the minimum value of 1 work input on different processes * that is significant.

If 1 work $=-1$, then 1 work is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.
iwork
liwork
(local) INTEGER.
Workspace array, DIMENSION ($3 n+p+1$).
(local) INTEGER. The size of the array iwork. It must be $\geq 3^{*_{n}}+p+1$.
If 1 iwork $=-1$, then liwork is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

Output Parameters

work (1) On exit, work(1) gives a lower bound on the workspace (1work) that
z
iwork
ifail
iclustr
gap
(local)
REAL for psstein
DOUBLE PRECISION for pdstein
COMPLEX for pcstein
DOUBLE COMPLEX for pzstein.
Array, DIMENSION (descz(dlen_), n/NPCOL + NB). z contains the computed eigenvectors associated with the specified eigenvalues. Any vector which fails to converge is set to its current iterate after MAXIT iterations (See?stein2). On output, z is distributed across the p processes in block cyclic format. guarantees the user desired orthogonalization (see orfac). Note that this may overestimate the minimum workspace needed.

On exit, iwork(1) contains the amount of integer workspace required. On exit, the i work (2) through $i w o r k(p+2)$ indicate the eigenvectors computed by each process. Process i computes eigenvectors indexed iwork(i+2)+1 through iwork(i+3).
(global).
INTEGER. Array, DIMENSION (m).
On normal exit, all elements of ifail are zero. If one or more eigenvectors fail to converge after MAXIT iterations (as in ?stein), then info >0 is returned. If $\bmod (i n f o, m+1)>0$, then for $i=1$ to $\bmod (i n f o, m+1)$, the eigenvector corresponding to the eigenvalue w (ifail(i)) failed to converge (w refers to the array of eigenvalues on output).
(global) INTEGER. Array, DIMENSION ($2^{*} p$)
This output array contains indices of eigenvectors corresponding to a cluster of eigenvalues that could not be orthogonalized due to insufficient workspace (see lwork, orfac and info). Eigenvectors corresponding to clusters of eigenvalues indexed iclustr($2 * \mathrm{I}-1$) to iclustr($2 * \mathrm{I}$), $i=1$ to info/($m+1$), could not be orthogonalized due to lack of workspace. Hence the eigenvectors corresponding to these * clusters may not be orthogonal. iclustr is a zero terminated array --- (iclustr($2^{*} k$).ne.o.and. iclustr($2 *{ }_{k}+1$).eq.0) if and only if k is the number of clusters.
(global)
REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
This output array contains the gap between eigenvalues whose eigenvectors
could not be orthogonalized. The info/m output values in this array correspond to the infol($m+1$) clusters indicated by the array iclustr. As a result, the dot product between eigenvectors corresponding to the $i^{\text {th }}$ cluster may be as high as $\left(O(n)^{*}\right.$ macheps $) / \operatorname{gap}(i)$.
(global) INTEGER.
If info $=0$, the execution is successful.
If info <0 : If the i-th argument is an array and the j-entry had an illegal value, then info $=-\left(i^{*} 100+j\right)$,
if the i-th argument is a scalar and had an illegal value, then info $=-i$. If info <0 : if info $=-i$, the i-th argument had an illegal value. If info> 0 : if $\bmod ($ info,m+1) $=i$, then i eigenvectors failed to converge in MAXIT iterations. Their indices are stored in the array ifail. if info/($\mathrm{m}+1$) $=i$, then eigenvectors corresponding to i clusters of eigenvalues could not be orthogonalized due to insufficient workspace. The indices of the clusters are stored in the array iclustr.

Nonsymmetric Eigenvalue Problems

This section describes ScaLAPACK routines for solving nonsymmetric eigenvalue problems, computing the Schur factorization of general matrices, as well as performing a number of related computational tasks.
For the definition of the nonsymmetric eigenproblem, see Chapter 5.
To solve a nonsymmetric eigenvalue problem with ScaLAPACK, you usually need to reduce the matrix to the upper Hessenberg form and then solve the eigenvalue problem with the Hessenberg matrix obtained.

Table 6-5 lists ScaLAPACK routines for reducing the matrix to the upper Hessenberg form by an orthogonal (or unitary) similarity transformation
$A=Q H Q^{H}$, as well as routines for solving eigenproblems with Hessenberg matrices, and multiplying the matrix after reduction.

Table 6-5 Computational Routines for Solving Nonsymmetric Eigenproblems

Operation performed	General matrix	Orthogonal/unitary matrix	Hessenberg matrix
Reduce to Hessenberg form $A=Q H Q$	$\underline{p ? g e h r d}$		

p?gehrd

Reduces a general matrix to upper Hessenberg form.

Syntax

```
call psgehrd ( n, ilo, ihi, a, ia, ja, desca, tau, work, lwork,
    info )
call pdgehrd ( n, ilo, ihi, a, ia, ja, desca, tau, work, lwork,
    info )
call pcgehrd ( n, ilo, ihi, a, ia, ja, desca, tau, work, lwork,
    info )
call pzgehrd ( n, ilo, ihi, a, ia, ja, desca, tau, work, lwork,
    info )
```


Description

The routine reduces a real/complex general distributed matrix sub (A) to upper Hessenberg form H by an orthogonal or unitary similarity transformation

$$
Q^{\prime} \operatorname{sub}(A) Q=H,
$$

where $\operatorname{sub}(A)=A(i a+n-1: i a+n-1, j a+n-1: j a+n-1)$.

Input Parameters

a
(global) INTEGER. The order of the distributed matrix $\operatorname{sub}(A)(n \geq 0)$.
(global) INTEGER. It is assumed that $\operatorname{sub}(A)$ is already upper triangular in rows ia:ia+ilo-2 and ia+ihi:ia+n-1 and columns ja:ja+ilo-2 and ja+ihi:ja+n-1. (See Application Notes below). If $n>0,1 \leq i l o \leq i h i \leq n$; otherwise set ilo $=1$, ihi $=n$.
(local)
REAL for psgehrd DOUBLE PRECISION for pdgehrd COMPLEX for pcgehrd DOUBLE COMPLEX for pzgehrd. Pointer into the local memory to an array of dimension (lld_a, $\operatorname{LOCc}(j a+n-1))$. On entry, this array contains the local pieces of the $n-b y-n$ general distributed matrix $\operatorname{sub}(A)$ to be reduced.

ia, ja	(global) INTEGER. The row and column indices in the global array a
indicating the first row and the first column of the submatrix A, respectively.	
desca	(global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix A.	
work	(local)
REAL for psgehrd	
	DOUBLE PRECISION for pdgehrd
	COMPLEX for pcgehrd
	DOUBLE COMPLEX for pzgehrd. Workspace array of dimension lwork.
Iwork	(local or global) INTEGER, dimension of the array work. Iwork is local input and must be at least

```
lwork \geqNB*NB + NB*max(ihip+1, ihlp+inlq)
where NB= mb_a = nb_a,
iroffa=mod(ia-1, NB),
icoffa=mod(ja-1,NB),
ioff=mod(ia+ilo-2,NB),
iarow = indxg2p(ia, NB, MYROW, rsrc_a, NPROW), ihip=
numroc(ihi+iroffa, NB, MYROW, iarow, NPROW),
ilrow = indxg2p(ia+ilo-1, NB, MYROW, rsrc_a, NPROW),
ihlp = numroc(ihi-ilo+ioff+1, NB,MYROW, ilrow, NPROW),
ilcol = indxg2p(ja+ilo-1, NB, MYCOL, Csrc_a, NPCOL),
inlq= numroc(n-ilo+ioff+1,NB, MYCOL, ilcol, NPCOL),
indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL,
NPROW and NPCOL can be determined by calling the subroutine
blacs_gridinfo.
```

If 1 work $=-1$, then 1 work is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

Output Parameters

On exit, the upper triangle and the first subdiagonal of $\operatorname{sub}(A)$ are overwritten with the upper Hessenberg matrix H, and the elements below the first subdiagonal, with the array tau, represent the orthogonal/unitary matrix Q as a product of elementary reflectors. (See Application Notes below).

```
tau
info (global) INTEGER.
    =0: the execution is successful.
    <0: if the i-th argument is an array and the j-entry had an illegal value, then
    info =-(i* 100+j), if the i-th argument is a scalar and had an illegal value,
    then info=-i.
```


Application Notes

The matrix Q is represented as a product of (ihi-ilo) elementary reflectors
$Q=H(i l o) H(i l o+1) . . . H(i h i-1)$.
Each $H(i)$ has the form
$H(i)=i-\operatorname{tau} * v^{*} v^{\prime}$
where t au is a real/complex scalar, and v is a real/complex vector with $v(1: i)=0, v(i+1)=1$ and $v(i h i+1: n)=0 ; v(i+2: i h i)$ is stored on exit in a(ia+ilo+i:ia+ihi-1,ja+ilo+i-2), and tau in $\operatorname{tau}(j a+i l o+i-2)$. The contents of $a(i a: i a+n-1, j a: j a+n-1)$ are illustrated by the following example, with $n=7$, ilo $=2$ and ihi $=6$:
on entry

$$
\left[\begin{array}{cccccc}
a & a & a & a & a & a \\
a & a \\
a & a & a & a & a & a \\
a & a & a & a & a & a \\
a & a & a & a & a & a \\
a & a & a & a & a & a \\
a & a & a & a & a & a \\
& & & & &
\end{array}\right]
$$

on exit

$$
\left[\begin{array}{ccccccc}
a & a & h & h & h & h & a \\
a & h & h & h & h & a \\
h & h & h & h & h & h \\
\text { V2 } & h & h & h & h & h \\
\text { v2 } & \mathrm{V} 3 & h & h & h & h \\
\text { v2 } & \text { v3 } & \text { v4 } & h & h & h \\
& & & & & a
\end{array}\right]
$$

where a denotes an element of the original matrix $\operatorname{sub}(A), H$ denotes a modified element of the upper Hessenberg matrix H, and $v i$ denotes an element of the vector defining $H(j a+i l o+i-2)$.

p?ormhr

Multiplies a general matrix by the orthogonal transformation matrix from a reduction to Hessenberg form determined by p?gehrd.

Syntax

```
call psormhr ( side, trans, m, n, ilo, ihi, a, ia, ja, desca, tau, c, ic,
    jc, descc, work, lwork, info )
call pdormhr ( side, trans, m, n, ilo, ihi, a, ia, ja, desca, tau, c, ic,
    jc, descc, work, lwork, info )
```


Description

The routine overwrites the general real distributed m-by- n matrix $\operatorname{sub}(C)=$ $C\left(i c: i c^{+} m-1, j c: j c^{+} n-1\right)$ with

side $=$ 'L'	side $=$ 'R'	
trans = 'N':	$Q \operatorname{sub}(C)$	$\operatorname{sub}(C) Q$
trans $=$ ' T ':	$Q^{T} \operatorname{sub}(C)$	$\operatorname{sub}(C) Q^{\mathrm{T}}$

where Q is a real orthogonal distributed matrix of order $n q$, with $n q=m$ if side $=$ ' L ' and $n q=n$ if side = 'R'. Q is defined as the product of ihi-ilo elementary reflectors, as returned by p?gehrd.
$Q=H(i l o) H(i l o+1) \ldots H(i h i-1)$.

Input Parameters

```
side (global) CHARACTER
    ='L':Q or Q Q is applied from the left.
    ='R':Q or Q Q is applied from the right.
```

trans (global) CHARACTER
$=$ ' ${ }^{\prime}$ ', no transpose, Q is applied.
$=$ ' T ', transpose, Q^{T} is applied.
(global) INTEGER. The number of rows in the distributed matrix sub (C)
($m \geq 0$).
$n \quad$ (global) INTEGER. The number of columns in he distributed matrix sub (C)
($n \geq 0$).
ilo, ihi (global) INTEGER.
ilo and ihi must have the same values as in the previous call of p?gehrd. Q
is equal to the unit matrix except for the distributed submatrix
$Q(i a+i l o: i a+i h i-1, i a+i l o: j a+i h i-1)$.
If side = 'L', $1 \leq$ ilo $\leq i h i \leq \max (1, m)$;
if side $=$ 'R', $1 \leq i l o \leq i h i \leq \max (1, n)$;
ilo and ihi are relative indexes.
a
(local)
REAL for psormhr
DOUBLE PRECISION for pdormhr
Pointer into the local memory to an array of dimension (lld_a,
$\operatorname{LOCc}(j a+m-1))$ if side='L', and (1ld_a, LOCc(ja+n-1)) if side = 'R'.
Contains the vectors which define the elementary reflectors, as returned by
p?gehrd.
ia, ja (global) INTEGER. The row and column indices in the global array a
indicating the first row and the first column of the submatrix A, respectively.
desca (global and local) INTEGER array, dimension (dlen_). The array descriptor
for the distributed matrix A.

tau	(local)
	REAL for psormhr
	DOUBLE PRECISION for pdormhr
	Array, DIMENSION LOCc(ja+m-2), if side = 'L', and $L O C c(j a+n-2)$ if side $=$ ' R '.
	This array contains the scalar factors $\operatorname{tau}(j)$ of the elementary reflectors $H(j)$ as returned by p?gehrd. tau is tied to the distributed matrix A.
C	(local)
	REAL for psormhr
	DOUBLE PRECISION for pdormhr
	Pointer into the local memory to an array of dimension
	(lld_c,LOCc $\left(j^{c+n}-1\right)$). Contains the local pieces of the distributed matrix $\operatorname{sub}(C)$.
ic,jc	(global) INTEGER. The row and column indices in the global array c indicating the first row and the first column of the submatrix C, respectively.
descc	(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix C.
work	(local)
	REAL for psormhr
	DOUBLE PRECISION for pdormhr
	Workspace array with dimension 1 work.
Iwork	(local or global) INTEGER.
	The dimension of the array work.
	l work must be at least
	$\begin{aligned} & \text { iaa= ia+ilo; jaa= ja+ilo-1; } \\ & \text { if side = 'L', } \end{aligned}$
	$\begin{aligned} & m i=i h i-i l o ; n i=n ; i c c=i c+i l o ; j c c=j c ; 1 \text { work } \geq \\ & \max \left(\left(n b \_a^{*}\left(n b \_a-1\right)\right) / 2,(n q c 0+m p c 0)^{*} n b \_a\right)+n b \_a * n b \_a \end{aligned}$
	else if side = 'R',
	$\begin{aligned} & m i=m ; n i=i h i-i l o ; i c c=i c ; j c c=j c+i l o ; 1 w o r k \geq \\ & \max \left(\left(n b \_a *\left(n b \_a-1\right)\right) / 2,(n q c 0+\max (n p a 0+\text { numroc }(\operatorname{numroc}(n i+i c o f f c,\right. \\ & \left.\left.\left.\left.\left.n b \_a, 0,0, \text { NPCOL }\right), n b \_a, 0,0,1 c m q\right), m p c 0\right)\right){ }^{*} n b \_a\right)+n b \_a * n b \_a \end{aligned}$
	end if
	where $1 \mathrm{cmq}=1 \mathrm{~cm} / \mathrm{NPCOL}$ with $1 \mathrm{~cm}=\mathrm{ilcm}($ NPROW, NPCOL $)$,

```
iroffa=mod(iaa-1,mb_a),
icoffa=mod(jaa-1, nb_a),
iarow = indxg2p (iaa, mb_a, MYROW, rsrc_a, NPROW),
npa0 = numroc(ni+iroffa,mb_a, MYROW, iarow, NPROW),
iroffc=mod(icc-1,mb_c),
icoffc= mod(jcc-1, nb_c),
icrow = indxg2p (icc, mb_c, MYROW, rsrc_c, NPROW),
iccol = indxg2p (jcc, nb_c, MYCOL, csrc_c, NPCOL),
mpc0 = numroc(mi+iroffc, mb_c, MYROW, icrow, NPROW),
nqc0 = numroc(ni+icoffc, nb_c, MYCOL, iccol, NPCOL),
ilcm, indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL,
NPROW and NPCOL can be determined by calling the subroutine
blacs_gridinfo.
```

If 1 work $=-1$, then 1 work is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

Output Parameters

C
work(1)
info
$\operatorname{sub}(C)$ is overwritten by $Q \operatorname{sub}(C)$ or $Q ' \operatorname{sub}(C)$ or $\operatorname{sub}(C) Q^{\prime}$ or $\operatorname{sub}(C) Q$.

On exit work (1) contains the minimum value of 1 work required for optimum performance.
(global) INTEGER.
$=0$: the execution is successful.
<0 : if the i-th argument is an array and the j-entry had an illegal value, then info $=-\left(i^{*} 100+j\right)$, if the i-th argument is a scalar and had an illegal value, then info $=-i$.

p?unmhr

Multiplies a general matrix by the unitary transformation matrix from a reduction to Hessenberg form determined by p?gehrd.

Syntax

```
call pcunmhr ( side, trans, m, n, ilo, ihi, a, ia, ja, desca, tau, c, ic,
    jc, descc, work, lwork, info )
call pzunmhr ( side, trans, m, n, ilo, ihi, a, ia, ja, desca, tau, c, ic,
    jc, descc, work, lwork, info )
```


Description

The routine overwrites the general complex distributed m-by- n matrix
$\operatorname{sub}(C)=C\left(i c: i c^{+} m-1, j c: j c^{+} n-1\right)$ with
side $=$ 'L' side $=$ ' R '
trans = ' N ': $Q \operatorname{sub}(C) \quad \operatorname{sub}(C) \mathrm{Q}$
trans = 'c': $Q^{H} \operatorname{sub}(\mathrm{C}) \quad \operatorname{sub}(C) Q^{H}$
where Q is a complex unitary distributed matrix of order $n q$, with $n q=m$ if side $=$ ' L ' and $n q=n$ if side = 'R'. Q is defined as the product of ihi-ilo elementary reflectors, as returned by p?gehrd.
$Q=H($ ilo $) H($ ilo 1$) \ldots H(i h i-1)$.

Input Parameters

side (global) CHARACTER
$=$ ' L' $: Q$ or Q^{H} is applied from the left.
= 'R': Q or Q^{H} is applied from the right.
trans (global) CHARACTER
$=$ 'N', no transpose, Q is applied.
$=' \mathrm{C}$ ', conjugate transpose, Q^{H} is applied.
m
(global) InTEGER. The number of rows in the distributed submatrix sub (C) ($m \geq 0$).
n
ilo, ihi
a
ia,ja
desca
tau

C
ic,jc
descc
(global) INTEGER. The number of columns in the distributed submatrix $\operatorname{sub}(C)(n \geq 0)$.
(global) INTEGER. These must be the same parameters ilo and ihi, respectively, as supplied to p?gehrd. Q is equal to the unit matrix except in the distributed submatrix
$Q(i a+i l o: i a+i h i-1, i a+i l o: j a+i h i-1)$.
If side $=$ 'L', then $1 \leq i l o \leq i h i \leq \max (1, m)$.
If side $=$ 'R', then $1 \leq i l o \leq i h i \leq \max (1, n)$
ilo and ihi are relative indexes.
(local)
COMPLEX for pcunmhr
DOUBLE COMPLEX for pzunmhr.
Pointer into the local memory to an array of dimension (lld_a, $L O C c(j a+m-1))$ if side='L', and (1ld_a, LOCc(ja+n-1)) if side = 'R'. Contains the vectors which define the elementary reflectors, as returned by p?gehrd.
(global) INTEGER. The row and column indices in the global array a indicating the first row and the first column of the submatrix A, respectively.
(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix A.
(local)
COMPLEX for pcunmhr
DOUBLE COMPLEX for pzunmhr.
Array, DIMENSION $L O C c(j a+m-2)$, if side = 'L', and $L O C c(j a+n-2)$ if side $=$ ' R '.
This array contains the scalar factors $\operatorname{tau}(j)$ of the elementary reflectors $H(j)$ as returned by p?gehrd. tau is tied to the distributed matrix A.
(local)
COMPLEX for pcunmhr
DOUBLE COMPLEX for pzunmhr.
Pointer into the local memory to an array of dimension (lld_c,
$L O C c(j c+n-1))$. Contains the local pieces of the distributed matrix $\operatorname{sub}(C)$.
(global) INTEGER. The row and column indices in the global array c indicating the first row and the first column of the submatrix C, respectively.
(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix C.

```
work
lwork
(local)
COMPLEX for pcunmhr
DOUBLE COMPLEX for pzunmhr.
Workspace array with dimension lwork.
(local or global)
The dimension of the array work.
lwork must be at least
iaa=ia+ilo; jaa= ja+ilo-1;
if side = 'L',
mi=ihi-ilo; ni= n; icc= ic+ilo; jcc= jc; lwork\geq
max((nb_a*(nb_a-1))/2,(nqc0 + mpc0)*nb_a) + nb_a* nb_a
else if side = 'R',
mi=m; ni = ihi-ilo; icc=ic; jcc= jc+ilo; lwork \geq
max((nb_a*(nb_a-1))/2, (nqc0 + max(npa0 + numroc(numroc(ni+icoffc,
nb_a, 0, 0, NPCOL), nb_a, 0, 0, lcmq ),mpc0))*nb_a) + nb_a * nb_a
end if
where lcmq = lcm/ NPCOL with lcm= ilcm(NPROW, NPCOL),
iroffa=mod(iaa-1,mb_a),
icoffa=mod(jaa-1, nb_a),
iarow = indxg2p (iaa, mb_a, MYROW, rsrc_a, NPROW),
npa0 = numroc(ni+iroffa,mb_a, MYROW, iarow, NPROW),
iroffc=mod(icc-1,mb_c),
icoffc=mod(jcc-1,nb_c),
icrow = indxg2p (icc,mb_c, MYROW, rsrc_c, NPROW),
iccol = indxg2p (jcc, nb_c, MYCOL, csrc_c, NPCOL),
mpc0 = numroc(mi+iroffc, mb_c, MYROW, icrow, NPROW),
nqc0 = numroc(ni+icoffc, nb_c, MYCOL, iccol, NPCOL),
ilcm, indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL,
NPROW and NPCOL can be determined by calling the subroutine
blacs_gridinfo.
```

If 1 work $=-1$, then 1 work is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

Output Parameters

c
C is overwritten by $Q^{*} \operatorname{sub}(C)$ or $Q^{*} \operatorname{sub}(C)$ or $\operatorname{sub}(C)^{*} Q^{\prime}$ or $\operatorname{sub}(C) * Q$.
work (1) On exit work (1) contains the minimum value of 1 work required for optimum performance.
info (global) INTEGER.
$=0$: the execution is successful.
<0 : if the i-th argument is an array and the j-entry had an illegal value, then info $=-\left(i^{*} 100+j\right)$, if the i-th argument is a scalar and had an illegal value, then info $=-i$.

p?lahqr

Computes the Schur decomposition and/or eigenvalues of a matrix already in Hessenberg form.

Syntax

call pslahqr (wantt, wantz, n, ilo, ihi, a, desca, wr, wi, iloz, ihiz, z, descz, work, lwork, iwork, ilwork, infol
call pdlahqr (wantt, wantz, $n, ~ i l o, ~ i h i, ~ a, ~ d e s c a, ~ w r, ~ w i, ~ i l o z, ~ i h i z, ~ z, ~$ descz, work, lwork, iwork, ilwork, info)

Description

This is an auxiliary routine used to find the Schur decomposition and/or eigenvalues of a matrix already in Hessenberg form from columns ilo to ihi.

Input Parameters

```
wantt (global) LOGICAL.
    If wantt = .TRUE., the full Schur form T is required;
    If wantt =. FALSE., only eigenvalues are required.
wantz (global) LOGICAL.
        If wantz=.TRUE., the matrix of Schur vectors z is required;
        If want z= .FALSE., Schur vectors are not required.
```

n
ilo, ihi
a
desca
iloz,ihiz
z
descz
work
lwork
iwork
(global) INTEGER. The order of the Hessenberg matrix A (and z if wantz). ($n \geq 0$).
(global) INTEGER.
It is assumed that A is already upper quasi-triangular in rows and columns ihi $+1: n$, and that $A(i l o, i l o-1)=0$ (unless ilo $=1$). p?lahqr works primarily with the Hessenberg submatrix in rows and columns ilo to ihi, but applies transformations to all of h if wantt is .TRUE.. $1 \leq$ ilo \leq $\max (1, i h i) ; i h i \leq n$.
(global)
REAL for pslahqr
DOUBLE PRECISION for pdlahqr
Array, DIMENSION (desca(lld_),*) .On entry, the upper Hessenberg matrix A.
(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix A.
(global) INTEGER. Specify the rows of z to which transformations must be applied if wantz is .TRUE.. $1 \leq i l o z \leq i l o$; ihi $\leq i h i z \leq n$.
(global) REAL for pslahqr
DOUBLE PRECISION for pdlahqr
Array. If want z is .TRUE., on entry z must contain the current matrix Z of transformations accumulated by pdhseqr. If want z is . FALSE., z is not referenced.
(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix Z.
(local)
REAL for pslahqr
DOUBLE PRECISION for pdlahqr
Workspace array with dimension lwork.
(local)
INTEGER. The dimension of work. 1 work is assumed big enough so that lwork $\geq 3 *_{n}+\max \left(2 * \max \left(\operatorname{descz}\left(1 l d \_\right)\right.\right.$,desca(lld_)) $+2 * \operatorname{LOCq}(n)$, 7*ceil(n/hbl)/lcm(NPROW,NPCOL))).
If 1 work $=-1$, then work(1) gets set to the above number and the code returns immediately.
(global and local)
INTEGER array of size ilwork.
ilwork
(local) INTEGER. This holds some of the $i b l k$ integer arrays.

Output Parameters

work (1) On exit work (1) contains the minimum value of 1 work required for optimum
$w r, w i \quad$ (global replicated output)
a
z
info

On exit, if wantt is .TRUE., A is upper quasi-triangular in rows and columns ilo:ihi, with any 2-by-2 or larger diagonal blocks not yet in standard form. If wantt is . FALSE., the contents of A are unspecified on exit. performance.

REAL for pslahqr
DOUBLE PRECISION for pdlahqr
Arrays, DIMENSION (n) each.
The real and imaginary parts, respectively, of the computed eigenvalues $i l o$ to ihi are stored in the corresponding elements of wr and wi. If two eigenvalues are computed as a complex conjugate pair, they are stored in consecutive elements of $w r$ and wi, say the i-th and ($i+1$)-th, with $w i(i)>0$ and $w i(i+1)<0$. If wantt is . TRUE., the eigenvalues are stored in the same order as on the diagonal of the Schur form returned in A. A may be returned with larger diagonal blocks until the next release.

On exit z has been updated; transformations are applied only to the submatrix z(iloz:ihiz, ilo:ihi).
(global) INTEGER.
$=0$: the execution is successful.
<0: parameter number -info incorrect or inconsistent
>0 : p? lahqr failed to compute all the eigenvalues ilo to ihi in a total of $30 *(i h i-i l o+1)$ iterations; if info $=i$, elements $i+1: i h i$ of $w r$ and wi contain those eigenvalues which have been successfully computed.

Singular Value Decomposition

This section describes ScaLAPACK routines for computing the singular value decomposition (SVD) of a general m by n matrix A (see $<>$).

To find the SVD of a general matrix A, this matrix is first reduced to a bidiagonal matrix B by a unitary (orthogonal) transformation, and then SVD of the bidiagonal matrix is computed. Note that the SVD of B is computed using the LAPACK routine ?bdsqr.

Table 6-6 lists ScaLAPACK computational routines for performing this decomposition.
Table 6-6 Computational Routines for Singular Value Decomposition (SVD)

Operation	General matrix	Orthogonal/unitary matrix	
Reduce A to a bidiagonal matrix	\underline{p} ? gebrd		p?ormbr/ p? unmbr
Multiply matrix after reduction		\underline{y}	

p?gebrd

Reduces a general matrix to bidiagonal form.

Syntax

```
call psgebrd ( m, n, a, ia, ja, desca, d, e, tauq, taup, work, lwork,
    info )
call pdgebrd ( m, n, a, ia, ja, desca, d, e, tauq, taup, work, lwork,
    info )
call pcgebrd ( m, n, a, ia, ja, desca, d, e, tauq, taup, work, lwork,
    info )
call pzgebrd ( m, n, a, ia, ja, desca, d, e, tauq, taup, work, lwork,
    info )
```


Description

The routine reduces a real/complex general m-by- n distributed matrix $\operatorname{sub}(A)=$ $A($ ia:ia + m-1,ja:ja+n-1) to upper or lower bidiagonal form B by an orthogonal/unitary transformation:

$$
Q^{\prime} * \operatorname{sub}(A) * P=B .
$$

If $m>=n, B$ is upper bidiagonal; if $m<n, B$ is lower bidiagonal.

Input Parameters

m
(global) INTEGER. The number of rows in the distributed matrix $\operatorname{sub}(A)$ ($m \geq 0$).
n
a
ia,ja
desca
work
lwork
(global) INTEGER. The number of columns in the distributed matrix $\operatorname{sub}(A)$ ($n \geq 0$).
(local)
REAL for psgebrd
DOUBLE PRECISION for pdgebrd
COMPLEX for pcgebrd
DOUBLE COMPLEX for pzgebrd.
Real pointer into the local memory to an array of dimension (lld_a, $L O C c(j a+n-1))$. On entry, this array contains the distributed matrix sub (A).
(global) INTEGER. The row and column indices in the global array a indicating the first row and the first column of the submatrix A, respectively.
(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix A.
(local)
REAL for psgebrd
DOUBLE PRECISION for pdgebrd
COMPLEX for pcgebrd DOUBLE COMPLEX for pzgebrd.Workspace array of dimension lwork.
(local or global) INTEGER, dimension of work, must be at least:
lwork $\geq n b^{*}(m p a 0+n q a 0+1)+n q a 0$
where NB $=m b \_a=n b \_a$,
iroffa $=\bmod (i a-1, n b)$,
icoffa $=\bmod (j a-1, N B)$,
iarow $=$ indxg2p (ia, nb, MYROW, rsrc_a, NPROW),
iacol $=$ indxg2p (ja, NB, MYCOL, Csrc_a, NPCOL),
mpa0 $=$ numroc $(m+i r o f f a, ~ N B, ~ M Y R O W, ~ i a r o w, ~ N P R O W), ~$
$n q a 0=\operatorname{numroc}(n+i c o f f a, N B, M Y C O L, i a c o l, N P C O L)$,
indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the subroutine blacs_gridinfo.
if 1 work $=-1$, then 1 work is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

Output Parameters

a
d
e
tauq, taup

On exit, if $m \geq n$, the diagonal and the first superdiagonal of $\operatorname{sub}(A)$ are overwritten with the upper bidiagonal matrix B; the elements below the diagonal, with the array tauq, represent the orthogonal/unitary matrix Q as a product of elementary reflectors, and the elements above the first superdiagonal, with the array taup, represent the orthogonal matrix P as a product of elementary reflectors. If $m<n$, the diagonal and the first subdiagonal are overwritten with the lower bidiagonal matrix B; the elements below the first subdiagonal, with the array tauq, represent the orthogonal/unitary matrix Q as a product of elementary reflectors, and the elements above the diagonal, with the array taup, represent the orthogonal matrix P as a product of elementary reflectors. (See Application Notes below)
(local)
REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors. Array, DIMENSION
$\operatorname{LOCc}(j \operatorname{a}+\min (m, n)-1)$ if $m \geq n ; \operatorname{LOCr}(i a+\min (m, n)-1)$ otherwise. The distributed diagonal elements of the bidiagonal matrix $B: d(i)=a(i, i)$. d is tied to the distributed matrix A.
(local)
REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors. Array, DIMENSION
$\operatorname{LOCr}($ ia $+\min (m, n)-1)$ if $m \geq n ; \operatorname{LOCc}(j a+\min (m, n)-2)$ otherwise. The distributed off-diagonal elements of the bidiagonal distributed matrix B :
if $m \geq n$,
$e(i)=a(i, i+1)$ for $i=1,2, \ldots, n-1$;
if $m<n$,
$e(i)=a(i+1, i)$ for $i=1,2, \ldots, m-1$.
e is tied to the distributed matrix A.
(local)
REAL for psgebrd
DOUBLE PRECISION for pdgebrd
COMPLEX for pcgebrd
DOUBLE COMPLEX for pzgebrd.
Arrays, DIMENSION $\operatorname{LOCc}(j a+\min (m, n)-1)$ for tauq and
$L O C r(i a+m i n(m, n)-1)$ for taup.
Contain the scalar factors of the elementary reflectors which represent the orthogonal/unitary matrices Q and P, respectively.tauq and taup are tied to the distributed matrix A. (See Application Notes below)
work (1) On exit work (1) contains the minimum value of 1 work required for optimum performance.
info (global) INTEGER.
$=0$: the execution is successful.
<0 : if the i-th argument is an array and the j-entry had an illegal value, then info $=-\left(i^{*} 100+j\right)$, if the i-th argument is a scalar and had an illegal value, then info $=-i$.

Application Notes

The matrices Q and P are represented as products of elementary reflectors:
If $m \geq n$,
$Q=H(1) H(2) \ldots H(n)$ and $P=G(1) G(2) \ldots G(n-1)$.
Each $H(i)$ and $G(i)$ has the form:
$H(i)=i-\operatorname{tauq} * v^{*} v^{\prime}$ and $G(i)=i-\operatorname{taup} * u^{*} u^{\prime}$
where tauq and taup are real/complex scalars, and v and u are real/complex vectors;
$v(1: i-1)=0, v(i)=1$, and $v(i+1: m)$ is stored on exit in $A(i a+i: i a+m-1, j a+i-1)$;
$u(1: i)=0, u(i+1)=1$, and $u(i+2: n)$ is stored on exit in $A(i a+i-1, j a+i+1: j a+n-1)$;
tauq is stored in $\operatorname{tauq}(j a+i-1)$ and taup in $\operatorname{taup}(i a+i-1)$.
If $m<n$,
$Q=H(1) H(2) \ldots H(m-1)$ and $P=G(1) G(2) \ldots G(m)$
Each $H(i)$ and $G(i)$ has the form:
$H(i)=i-\operatorname{tauq} * v^{*} v^{\prime}$ and $G(i)=i-\operatorname{taup} * u * u^{\prime}$
where tauq and taup are real/complex scalars, and v and u are real/complex vectors;
$v(1: i)=0, v(i+1)=1$, and $v(i+2: m)$ is stored on exit in $A(i a+i: i a+m-1, j a+i-1) ; u(1: i-1)=0$, $u(i)=1$, and $u(i+1: n)$ is stored on exit in $A(i a+i-1, j a+i+1: j a+n-1)$;
tauq is stored in tauq(ja+i-1) and taup in taup(ia+i-1).
The contents of $\operatorname{sub}(A)$ on exit are illustrated by the following examples:

$$
\left.\begin{array}{l}
m=6 \text { and } n=5(m>n): \\
{\left[\begin{array}{ccccc}
d & e & u & u & u \\
v 1 & d & e & u 2 & u 2 \\
v 1 & v 2 & d & e & u 3 \\
v 1 & v 2 & v 3 & d & e \\
v 1 & v 2 & v 3 & v 4 & d \\
v 1 & v 2 & v 3 & v 4 & v 5
\end{array}\right]} \\
m=5
\end{array}\right)
$$

where d and e denote diagonal and off-diagonal elements of $B, v i$ denotes an element of the vector defining $H(i)$, and $u i$ an element of the vector defining $G(i)$.

p?ormbr

```
Multiplies a general matrix by one of the orthogonal
matrices from a reduction to bidiagonal form
determined by p?gebrd.
```


Syntax

```
call psormbr (vect, side, trans, m, n, k, a, ia, ja, desca, tau, c, ic,
```

call psormbr (vect, side, trans, m, n, k, a, ia, ja, desca, tau, c, ic,
jc, descc, work, lwork, info)
jc, descc, work, lwork, info)
call pdormbr (vect, side, trans, m, n, k, a, ia, ja, desca, tau, c, ic,
call pdormbr (vect, side, trans, m, n, k, a, ia, ja, desca, tau, c, ic,
jc, descc, work, lwork, info)

```
    jc, descc, work, lwork, info)
```


Description

If vect = ' Q ', the routine overwrites the general real distributed m-by- n matrix
$\operatorname{sub}(C)=C(c: i c+m-1, j c: j c+n-1)$ with

```
    side \(=\) 'L'
                                    side \(=\) ' R '
trans = 'n': Q \(\operatorname{sub}(C) \quad \operatorname{sub}(C) Q\)
trans = 'T': \(Q^{T} \operatorname{sub}(C) \quad \operatorname{sub}(C) Q^{T}\)
```

If vect $=$ ' P ', the routine overwrites $\operatorname{sub}(C)$ with

```
    side \(=\) 'L' side \(=\) ' \(R\) '
trans \(=\) ' N ': \(\quad P \operatorname{sub}(C) \quad \operatorname{sub}(C) P\)
trans \(=\) ' \(T\) ': \(\quad P^{T} \operatorname{sub}(C) \quad \operatorname{sub}(C) P^{T}\)
```

Here Q and P^{T} are the orthogonal distributed matrices determined by p?gebrd when reducing a real distributed matrix $A\left(\mathrm{ia}:^{*}, \mathrm{j}\right.$ a:*) to bidiagonal form: $A\left(\mathrm{ia}:^{*}, \mathrm{j} a:^{*}\right)=Q B P^{T}$. Q and P^{T} are defined as products of elementary reflectors $H(i)$ and $G(i)$ respectively.

Let $n q=m$ if side $=$ ' L ' and $n q=n$ if side $=$ ' R '. Thus $n q$ is the order of the orthogonal matrix Q or P^{T} that is applied.

If vect = ' Q ', $A($ ia:*, $j a: *)$ is assumed to have been an nq-by- k matrix:
if $n q \geq k, Q=H(1) H(2) \ldots H(k)$;
if $n q<k, Q=H(1) H(2) \ldots H(n q-1)$.

If vect $=$ ' P ', $A($ ia:*, j a:*) is assumed to have been a k-by-nq matrix:
if $k<\mathrm{nq}, P=G(1) G(2) \ldots G(k)$;
if $k \geq \mathrm{nq}, P=G(1) G(2) \ldots G(n q-1)$.

Input Parameters

vect (global) CHARACTER.
if vect $=$ ' Q ', then Q or Q^{T} is applied.
if vect $=$ ' P ', then P or P^{T} is applied.
side
trans
m
n
k
a
(global) CHARACTER.
if side $=$ 'L', then Q or Q^{T}, P or P^{T} is applied from the left.
if side ='R', then Q or Q^{T}, P or P^{T} is applied from the right.
(global) CHARACTER.
if trans $=1 \mathrm{~N}$ ', no transpose, Q or P is applied.
if trans =' T ', then Q^{T} or P^{T} is applied.
(global)
INTEGER. The number of rows in the distributed matrix sub (C).
(global) INTEGER. The number of columns in the distributed matrix sub (C).
(global) INTEGER.
If vect $=' Q$ ', the number of columns in the original distributed matrix reduced by p?gebrd;
If vect = ' P ', the number of rows in the original distributed matrix reduced by p?gebrd.

Constraints: $k \geq 0$.
(local)
REAL for psormbr
DOUBLE PRECISION for pdormbr.
Pointer into the local memory to an array of dimension (lld_a, $\operatorname{LOCc}(j a+\min (n q, k)-1))$ if vect=' Q^{\prime}, and (lld_a, LOCc(ja+nq-1)) if vect = ' P '. $n q=m$ if $s i d e=$ ' L ', and $n q=n$ otherwise.
The vectors which define the elementary reflectors $H(i)$ and $G(i)$, whose products determine the matrices Q and P, as returned by p?gebrd.
If vect $=$ 'Q', $11 d_{-} a \geq \max (1, L O C r(i a+n q-1))$; if vect $=$ ' P ', $11 d_{-} a \geq \max (1, \operatorname{LOCr}(\mathrm{i} a+\min (n q, k)-1))$.

ia,ja	(global) Integer. The row and column indices in the global array a indicating the first row and the first column of the submatrix A, respectively.
desca	(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix A.
tau	(local)
	REAL for psormbr
	DOUBLE PRECISION for pdormbr.
	Array, DIMENSION LOCc (ja+min(nq,k)-1), if vect = ' Q ', and
	tau(i) must contain the scalar factor of the elementary reflector $H(i)$ or $G(i)$, which determines Q or P, as returned by pdgebrd in its array argument tauq or taup. tau is tied to the distributed matrix A.
C	(local)
	REAL for psormbr
	DOUBLE PRECISION for pdormbr.
	Pointer into the local memory to an array of dimension (lld_a, $L O C c(j c+n-1))$. Contains the local pieces of the distributed matrix sub (C)
ic,je	(global) INTEGER. The row and column indices in the global array c indicating the first row and the first column of the submatrix C, respectively.
descc	(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix C.
work	(local)
	REAL for psormbr
	DOUBLE PRECISION for pdormbr.
	Workspace array of dimension lwork.
Iwork	(local or global) INTEGER, dimension of work, must be at least:
	if side = 'L'
	$n \mathrm{q}=\mathrm{m} ;$
	$\operatorname{if}(($ vect $=$ ' Q ' and $n q \geq k)$ or (vect is not equal to ' Q ' and $n q>k)$), iaa=ia; jaa=ja; mi=m; ni=n; icc=ic; jcc=jc;
	else
	$\begin{aligned} & \text { iaa=ia+1; jaa=ja; mi=m-1; ni=n; icc=ic+1; jcc=jc; } \\ & \text { end if } \end{aligned}$
	else if side = 'R', n q = n;

```
if((vect = 'Q' and nq \geqk) or (vect is not equal to 'Q' and nq>k)),
iaa=ia; jaa=ja; mi=m; ni=n; icc=ic; jcc=jc;
else
iaa=ia; jaa=ja+1; mi=m; ni=n-1; icc=ic; jcc=jc+1;
    end if
end if
If vect = 'Q',
If side = 'L', lwork \geq max((nb_a*(nb_a-1))/2,(nqc0 + mpc0)*nb_a) +
nb_a* nb_a
else if side = 'R',
lwork \geqmax((nb_a*(nb_a-1))/2,(nqc0 + max(npa0 +
numroc(numroc(ni+icoffc, nb_a, 0, 0, NPCOL), nb_a, 0, 0, lcmq),
mpc0))*nb_a)+nb_a * nb_a * end if
else if vect is not equal to 'Q', if side = 'L',
lwork \geqmax ((mb_a* (mb_a-1))/2,(mpc0 + max(mqa0 +
numroc(numroc(mi+iroffc, mb_a, 0, 0, NPROW), mb_a, 0, 0, lcmp),
nqc(0))*mb_a) + mb_a *mb_a
else if side = 'R',
lwork \geqmax ((mb_a*(mb_a-1))/2,(mpc0 + nqc0)*mb_a) +mb_a* mb_a
    end if
end if
where lcmp = lcm / NPROW, lcmq= 1cm/ NPCOL,
with lcm=ilcm(NPROW, NPCOL),
iroffa = mod(iaa-1,mb a),
icoffa= mod(jaa-1,nb_a),
iarow = indxg2p (iaa,mb_a, MYROW, rsrc_a, NPROW),
iacol = indxg2p (jaa, nb_a, MYCOL, csrc_a, NPCOL),
mqa0 = numroc(mi+icoffa, nb_a, MYCOL, iacol, NPCOL),
npa0 = numroc(ni+iroffa,mb_a, MYROW, iarow, NPROW),
```

$i r o f f_{C}=\bmod \left(i c c-1, m b \_c\right)$,
$i c o f f c=\bmod \left(j c c-1, n b \_c\right)$,
icrow $=$ indxg2p (icc, mb_c, MYROW, rsrc_c, NPROW),
iccol $=$ indxg2p (jcc, nb_c, MYCOL, csrc_c, NPCOL),
$m p c 0=$ numroc(mi+iroffc, mb_c, MYROW, icrow, NPROW),
$n q c 0=\operatorname{numroc}\left(n i+i c o f f c, n b \_c\right.$, MYCOL, iccol, NPCOL $)$,
indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the subroutine blacs_gridinfo.

If 1 work $=-1$, then 1 work is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

Output Parameters

On exit, if vect='Q', $\operatorname{sub}(C)$ is overwritten by $Q^{*} \operatorname{sub}(C)$ or $Q^{\prime *} \operatorname{sub}(C)$ or $\operatorname{sub}(C)^{*} Q^{\prime}$ or $\operatorname{sub}(C)^{*} Q$;
if vect=' $P^{\prime}, \operatorname{sub}(C)$ is overwritten by $P^{*} \operatorname{sub}(C)$ or $P^{* *} \operatorname{sub}(C)$ or $\operatorname{sub}(C)^{*} P$ or $\operatorname{sub}(C) * P^{\prime}$.
work(1)
info

On exit work (1) contains the minimum value of 1 work required for optimum performance.
(global) INTEGER. $=0$: the execution is successful.
<0 : if the i-th argument is an array and the j-entry had an illegal value, then info $=-\left(i^{*} 100+j\right)$, if the i-th argument is a scalar and had an illegal value, then info $=-i$.

p?unmbr

Multiplies a general matrix by one of the unitary transformation matrices from a reduction to bidiagonal form determined by p?gebrd.

Syntax

```
call cunmbr (vect, side, trans, m, n, k, a, ia, ja, desca, tau, c, ic,
    jc, descc, work, lwork, info)
call zunmbr (vect, side, trans, m, n, k, a, ia, ja, desca, tau, c, ic,
    jc, descc, work, lwork, info)
```


Description

If vect = ' Q ', the routine overwrites the general complex distributed m-by- n matrix $\operatorname{sub}(C)=$ $C(i c: i c+m-1, j c: j c+n-1)$ with

	side $=$ 'L'	side $=$ 'R'
trans $=$ 'N':	$Q \operatorname{sub}(C)$	$\operatorname{sub}(C) Q$
trans $=$ 'C':	$Q^{H} \operatorname{sub}(C)$	$\operatorname{sub}(C) Q^{H}$

If vect $=$ ' P ', the routine overwrites $\operatorname{sub}(C)$ with

```
    side \(=\) 'L' side \(=\) ' R '
trans = 'n': \(\quad P \operatorname{sub}(C) \quad \operatorname{sub}(C) P\)
trans \(=\) 'c': \(\quad P^{H}\) sub \((C) \quad \operatorname{sub}(C) P^{H}\)
```

Here Q and P^{H} are the unitary distributed matrices determined by p?gebrd when reducing a complex distributed matrix $A\left(\right.$ ia:*, ja:*) to bidiagonal form: $A\left(\right.$ ia: $\left.^{*}, j \mathrm{j}::^{*}\right)=Q B P^{H} . \mathrm{Q}$ and P^{H} are defined as products of elementary reflectors $H(i)$ and $G(i)$ respectively.

Let $n q=m$ if side $=$ ' L ' and $n q=n$ if side $=$ ' R '. Thus $n q$ is the order of the unitary matrix Q or P^{H} that is applied.

If vect = ' Q ', $A\left(\right.$ ia:* $\left.^{*}, j a: *\right)$ is assumed to have been an $n q-b y-k$ matrix:
if $n q \geq k, Q=H(1) H(2) \ldots H(k)$;
if $n q<k, Q=H(1) H(2) \ldots H(n q-1)$.

If vect $=$ ' P ', $A\left(\mathrm{ia}:{ }^{*}, j\right.$ a:* $)$ is assumed to have been a k-by-nq matrix:
if $k<n q, P=G(1) G(2) \ldots G(k)$;
if $k \geq \mathrm{nq}, P=G(1) G(2) \ldots G(n q-1)$.

Input Parameters

vect (global) CHARACTER.
if vect $=$ ' Q ', then Q or Q^{H} is applied.
if vect $=$ ' P^{\prime}, then P or P^{H} is applied.
side
trans
m
n
k
a
(global) CHARACTER. if side ='L', then Q or Q^{H}, P or P^{H} is applied from the left. if side $=$ 'R', then Q or Q^{H}, P or P^{H} is applied from the right.
(global) CHARACTER.
if trans $=1 \mathrm{~N}^{\prime}$, no transpose, Q or P is applied.
if trans $=1 \mathrm{C}$ ', conjugate transpose, Q^{H} or P^{H} is applied.
(global)
INTEGER. The number of rows in the distributed matrix sub (C) $m \geq 0$.
(global) INTEGER. The number of columns in the distributed matrix sub (C) n ≥ 0.
(global) Integer.
If vect $=$ ' Q ', the number of columns in the original distributed matrix reduced by p?gebrd;
If vect $=$ ' P ', the number of rows in the original distributed matrix reduced by p?gebrd.

Constraints: $k \geq 0$.
(local)
COMPLEX for psormbr
DOUBLE COMPLEX for pdormbr.
Pointer into the local memory to an array of dimension (1ld_a,
$\operatorname{LOCc}(j a+\min (n q, k)-1))$ if vect=' Q^{\prime},
and (lld_a, LOCc(ja+nq-1)) if vect = 'P'.
$n q=m$ if side $=$ ' L ', and $n q=n$ otherwise.
The vectors which define the elementary reflectors $H(i)$ and $G(i)$, whose products determine the matrices Q and P, as returned by p?gebrd.
If vect = 'Q', lld_a \geq max $(1, \operatorname{LOCr}(i a+n q-1))$;
if vect $=$ ' P ', $11 \mathrm{~d}_{-} a \geq \max (1, \operatorname{LOCr}(\mathrm{i} a+\min (n q, k)-1))$.

ia,ja	(global) Integer. The row and column indices in the global array a indicating the first row and the first column of the submatrix A, respectively.
desca	(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix A.
tau	(local)
	COMPLEX for pcunmbr
	DOUBLE COMPLEX for pzunmbr.
	Array, DIMENSION $\operatorname{LOCc}(j \operatorname{a}+\min (n q, k)-1)$, if vect $=$ ' Q ', and
	$\operatorname{tau}(i)$ must contain the scalar factor of the elementary reflector $H(i)$ or $G(i)$, which determines Q or P, as returned by p?gebrd in its array argument tauq or taup. tau is tied to the distributed matrix A.
C	(local)
	COMPLEX for pcunmbr
	DOUBLE COMPLEX for pzunmbr.
	Pointer into the local memory to an array of dimension (lld_a, $\operatorname{LOCc}(j c+n-1))$. Contains the local pieces of the distributed matrix sub (C).
ic,jc	(global) INTEGER. The row and column indices in the global array c indicating the first row and the first column of the submatrix C, respectively.
descc	(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix C.
work	(local)
	COMPLEX for pcunmbr
	DOUBLE COMPLEX for pzunmbr.
	Workspace array of dimension lwork.
Iwork	(local or global) INTEGER, dimension of work, must be at least:
	if side = 'L'
	$n \mathrm{q}=\mathrm{m} ;$
	```if((vect = 'Q' and nq\geqk) or (vect is not equal to 'Q' and nq>k)), iaa=ia; jaa=ja; mi=m; ni=n; icc=ic; jcc=jc; else```
	iaa=ia+1; jaa=ja; mi=m-1; ni=n; icc=ic+1; jcc=jc;
	end if
	else if side = 'R', $n q=n$;

$\operatorname{if}(($ vect $=$ ' $Q$ ' and $n q \geq k)$ or (vect is not equal to ' $Q$ ' and $n q>k)$ ), iaa=ia; jaa=ja; mi=m; ni=n; icc=ic; jcc=jc;
else
iaa=ia; jaa=ja+1; mi=m; ni=n-1; icc=ic; jcc=jc+1;
end if
end if
If vect = ' Q ',
If side $=$ 'L', lwork $\geq \max \left(\left(n b \_a *\left(n b \_a-1\right)\right) / 2,(n q c 0+m p c 0) * n b \_a\right)+$ $n b \_a * n b \_a$
else if side = 'R',
lwork $\geq \max \left(\left(n b \_a^{*}\left(n b \_a-1\right)\right) / 2,(n q C 0+\max (n p a 0+\right.$
numroc(numroc(ni+icoffc, nb_a, 0,0 , NPCOL), nb_a, $0,0,1 \mathrm{cmq})$, $\left.m p c 0))^{*} n b_{-} a\right)+n b_{-} a * n b \_a *$ end if
else if vect is not equal to ' $Q$ ', if side = ' $L$ ',
lwork $\geq \max \left(\left(m b \_a^{*}\left(m b \_a-1\right)\right) / 2,(\operatorname{mpc} 0+\max (m q a 0+\right.$
numroc(numroc(mi+iroffc, mb_a, 0,0 , NPROW), mb_a, $0,0,1 \mathrm{cmp}$ ), $\left.n q(0)) * m b \_a\right)+m b \_a * m b \_a$
else if side = 'R',
lwork $\geq \max \left(\left(m b \_a *\left(m b \_a-1\right)\right) / 2,(m p c 0+n q c 0) * m b \_a\right)+m b \_a * m b \_a$
end if
end if
where $1 \mathrm{cmp}=1 \mathrm{~cm} / \mathrm{NPROW}, ~ I \mathrm{cmq}=1 \mathrm{~cm} / \mathrm{NPCOL}$, with $1 \mathrm{~cm}=\mathrm{ilcm}($ NPROW, NPCOL $)$,
iroffa $=\bmod ($ iaa-1, mb_a),
$i c o f f a=\bmod \left(j a a-1, n b \_a\right)$,
iarow $=$ indxg2p (iaa, mb_a, MYROW, rsrc_a, NPROW),
iacol $=$ indxg2p (jaa, nb_a, MYCOL, CSrc_a, NPCOL),
$m q a 0=\operatorname{numroc}\left(m i+i c o f f a, n b \_a\right.$, MYCOL, iacol, NPCOL $)$,
npa0 $=$ numroc(ni+iroffa, mb_a, MYROW, iarow, NPROW),

```
iroffc \(=\bmod \left(i c c-1, m b _c\right)\),
\(i c o f f c=\bmod \left(j c c-1, n b _c\right)\),
icrow \(=\) indxg2p (icc, mb_c, MYROW, rsrc_c, NPROW),
iccol = indxg2p (jcc, nb_c, MYCOL, csrc_c, NPCOL),
mpc0 \(=\) numroc(mi+iroffc, mb_c, MYROW, icrow, NPROW),
nqc0 \(=\) numroc(ni+icoffc, nb_c, MYCOL, iccol, NPCOL),
indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, NPROW
and NPCOL can be determined by calling the subroutine blacs_gridinfo.
```

If 1 work $=-1$, then 1 work is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

## Output Parameters

On exit, if vect=' $Q^{\prime}, \operatorname{sub}(C)$ is overwritten by $Q^{*} \operatorname{sub}(C)$ or $Q^{\prime *} \operatorname{sub}(C)$ or $\operatorname{sub}(C)^{*} Q^{\prime}$ or $\operatorname{sub}(C)^{*} Q$;
if vect $=P^{\prime} \mathrm{P}^{\prime}, \operatorname{sub}(C)$ is overwritten by $P^{*} \operatorname{sub}(C)$ or $P^{*} \operatorname{sub}(C)$ or $\operatorname{sub}(C)^{*} P$ or $\operatorname{sub}(C){ }^{*} P^{\prime}$.
work (1) On exit work (1) contains the minimum value of 1 work required for optimum performance.
info (global) INTEGER. $=0$ : the execution is successful.
$<0$ : if the $i$-th argument is an array and the $j$-entry had an illegal value, then info $=-\left(i^{*} 100+j\right)$, if the $i$-th argument is a scalar and had an illegal value, then info $=-i$.

## Generalized Symmetric-Definite Eigenproblems

This section describes ScaLAPACK routines that allow you to reduce the generalized symmetric-definite eigenvalue problems (see $<>$ ) to standard symmetric eigenvalue problem $C y=\lambda y$, which you can solve by calling ScaLAPACK routines described earlier in this chapter (see page 6-154).

Table 6-7 lists these routines.

## Table 6-7 Computational Routines for Reducing Generalized Eigenproblems to Standard Problems

Operation	Real symmetric   matrices	Complex Hermitian   matrices
Reduce to   standard problems	$\underline{\text { p?sygst }}$	p?hegst

## p?sygst

Reduces a real symmetric-definite generalized eigenvalue problem to the standard form.

## Syntax

```
call pssygst (ibtype, uplo, n, a, ia, ja, desca, b, ib, jb, descb,
 scale, info)
call pdsygst (ibtype, uplo, n, a, ia, ja, desca, b, ib, jb, descb,
 scale, info)
```


## Description

This routine reduces real symmetric-definite generalized eigenproblems to the standard form.
In the following $\operatorname{sub}(A)$ denotes $A(i a: i a+n-1, j a: j a+n-1)$ and $\operatorname{sub}(B)$ denotes $B(i b: i b+n-1, j b: j b+n-1)$.

If ibtype $=1$, the problem is

$$
\operatorname{sub}(A) x=\lambda \operatorname{sub}(B) x,
$$

and $\operatorname{sub}(A)$ is overwritten by $\operatorname{inv}\left(U^{T}\right) \operatorname{sub}(A) \operatorname{inv}(U)$ or $\operatorname{inv}(L) \operatorname{sub}(A) \operatorname{inv}\left(L^{T}\right)$.
If ibtype $=2$ or 3 , the problem is

$$
\operatorname{sub}(A) \operatorname{sub}(B) x=\lambda x \text { or } \operatorname{sub}(B) \operatorname{sub}(A) x=\lambda x,
$$

and $\operatorname{sub}(A)$ is overwritten by $U \operatorname{sub}(A) U^{T}$ or $L^{T} \operatorname{sub}(A) L$.
$\operatorname{sub}(B)$ must have been previously factorized as $U^{T} U$ or $L L^{T}$ by p?potrf.

## Input Parameters

ibtype	(global) INTEGER. Must be 1 or 2 or 3 .
	If itype $=1$, compute $\operatorname{inv}\left(U^{T}\right) \operatorname{sub}(A) \operatorname{inv}(U)$ or $\operatorname{inv}(L) \operatorname{sub}(A) \operatorname{inv}\left(L^{T}\right)$;
	If itype $=2$ or 3 , compute $U \operatorname{sub}(A) U^{T}$ or
	$L^{T} \operatorname{sub}(A) L$.
uplo	(global)
	CHARACTER. Must be 'U' or 'L'.
	If uplo $=' U$ ', the upper triangle of $\operatorname{sub}(A)$ is stored and $\operatorname{sub}(B)$ is factored as $U^{T} U$.
	If uplo = 'L', the lower triangle of sub $(A)$ is stored and $\operatorname{sub}(B)$ is factored as $L L^{T}$.
n	(global) INTEGER. The order of the matrices sub $(A)$ and $\operatorname{sub}(B)(n \geq 0)$.
a	(local)
	REAL for pssygst
	DOUBLE PRECISION for pdsygst.
	Pointer into the local memory to an array of dimension (Ild_a,
	$\operatorname{LOCc}(j a+n-1))$. On entry, the array contains the local pieces of the $n$-by-n symmetric distributed matrix $\operatorname{sub}(A)$. If uplo $=$ ' U ', the leading $n$-by- $n$ upper triangular part of $\operatorname{sub}(A)$ contains the upper triangular part of the matrix, and its strictly lower triangular part is not referenced. If uplo=' L ', the leading $n$-by- $n$ lower triangular part of $\operatorname{sub}(A)$ contains the lower triangular part of the matrix, and its strictly upper triangular part is not referenced.
ia,ja	(global) INTEGER. The row and column indices in the global array a indicating the first row and the first column of the submatrix $A$, respectively.
desca	(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix $A$.
b	(local)
	REAL for pssygst
	DOUBLE PRECISION for pdsygst.
	Pointer into the local memory to an array of dimension (lld_b, $\operatorname{LOCc}(j b+n-1))$. On entry, the array contains the local pieces of the triangular factor from the Cholesky factorization of sub $(B)$ as returned by p?potrf.
ib, jb	(global) INTEGER. The row and column indices in the global array $b$ indicating the first row and the first column of the submatrix $B$, respectively.
descb	(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix $B$.

## Output Parameters

```
a
 On exit, if info = 0, the transformed matrix, stored in the same format as
 sub(A).
scale (global)
 REAL for pssygst
 DOUBLE PRECISION for pdsygst.
Amount by which the eigenvalues should be scaled to compensate for the scaling performed in this routine. At present, scale is always returned as 1.0, it is returned here to allow for future enhancement.
info (global) INTEGER.
If info \(=0\), the execution is successful.
If info \(<0\), if the \(i\)-th argument is an array and the \(j\)-entry had an illegal value, then info \(=-(i 100+j)\), if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).
```


## p?hegst

Reduces a Hermitian-definite generalized eigenvalue problem to the standard form.

## Syntax

```
call pchegst (ibtype, uplo, n, a, ia, ja, desca, b, ib, jb, descb,
 scale, info)
call pzhegst (ibtype, uplo, n, a, ia, ja, desca, b, ib, jb, descb,
 scale, info)
```


## Description

This routine reduces complex Hermitian-definite generalized eigenproblems to the standard form.
In the following $\operatorname{sub}(A)$ denotes $A(i a: i a+n-1, j a: j a+n-1)$ and $\operatorname{sub}(B)$ denotes $B(i b: i b+n-1$, $j b: j b+n-1)$.

If ibtype $=1$, the problem is
$\operatorname{sub}(A) x=\lambda \operatorname{sub}(B) x$,
and $\operatorname{sub}(A)$ is overwritten by $\operatorname{inv}\left(U^{H}\right) \operatorname{sub}(A) \operatorname{inv}(U) \operatorname{or} \operatorname{inv}(L) \operatorname{sub}(A) \operatorname{inv}\left(L^{H}\right)$.

If ibtype $=2$ or 3 , the problem is

$$
\operatorname{sub}(A) \operatorname{sub}(B) x=\lambda x \text { or } \operatorname{sub}(B) \operatorname{sub}(A) x=\lambda x,
$$

and $\operatorname{sub}(A)$ is overwritten by $U \operatorname{sub}(A) U^{H}$ or $L^{H_{\operatorname{sub}}}(A) L$.
$\operatorname{sub}(B)$ must have been previously factorized as $U^{H} U$ or $L L^{H}$ by p?potrf.

## Input Parameters

ibtype	(global) INTEGER. Must be 1 or 2 or
	If itype $=1$, compute $\operatorname{inv}\left(U^{H}\right) \operatorname{sub}(A) \operatorname{inv}(U)$ or $\operatorname{inv}(L) \operatorname{sub}(A) \operatorname{inv}\left(L^{H}\right)$;
	If $i$ type $=2$ or 3, compute $U \operatorname{sub}(A) U^{H}$ or
	$L^{H} \operatorname{sub}(A) L$.
uplo	(global)
	Character. Must be 'U' or 'L'.
	If uplo= ' U ', the upper triangle of $\operatorname{sub}(A)$ is stored and sub $(B)$ is factored as $U^{H} U$.
	If uplo = 'L ', the lower triangle of sub $(A)$ is stored and $\operatorname{sub}(B)$ is factored as $L L^{H}$.
n	(global) INTEGER. The order of the matrices sub ( $A$ ) and sub (B) ( $\mathrm{n} \geq 0$ ).
a	(local)
	COMPLEX for pchegst
	DOUBLE COMPLEX for pzhegst.
	Pointer into the local memory to an array of dimension (1ld_a,
	Hermitian distributed matrix $\operatorname{sub}(A)$. If uplo= ' u ', the leading $n$-by- $n$ upper triangular part of $\operatorname{sub}(A)$ contains the upper triangular part of the matrix, and its strictly lower triangular part is not referenced. If uplo= ' L ', the leading $n$-by- $n$ lower triangular part of $\operatorname{sub}(A)$ contains the lower triangular part of the matrix, and its strictly upper triangular part is not referenced.
ia,ja	(global) INTEGER. The row and column indices in the global array a indicating the first row and the first column of the submatrix $A$, respectively.
desca	(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix $A$.
b	(local)
	COMPLEX for pchegst
	DOUBLE COMPLEX for pzhegst

Pointer into the local memory to an array of dimension (1ld_b, $\operatorname{LOCc}(j b+n-1)$ ). On entry, the array contains the local pieces of the triangular factor from the Cholesky factorization of sub $(B)$ as returned by p?potrf.
$i b, j b \quad$ (global) INTEGER. The row and column indices in the global array $b$ indicating the first row and the first column of the submatrix $B$, respectively.
descb (global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix $B$.

## Output Parameters

On exit, if info $=0$, the transformed matrix, stored in the same format as $\operatorname{sub}(A)$.
(global)
REAL for pchegst
DOUBLE PRECISION for pzhegst.
Amount by which the eigenvalues should be scaled to compensate for the scaling performed in this routine. At present, scale is always returned as 1.0, it is returned here to allow for future enhancement.
(global) INTEGER.
If info $=0$, the execution is successful.
If info $<0$, if the $i$-th argument is an array and the $j$-entry had an illegal value, then info $=-(i 100+j)$, if the $i$-th argument is a scalar and had an illegal value, then info $=-i$.

## Driver Routines

Table 6-8 lists ScaLAPACK driver routines available for solving systems of linear equations, linear least-squares problems, standard eigenvalue and singular value problems, and generalized symmetric definite eigenproblems.

Table 6-8 ScaLAPACK Driver Routines

Type of Problem	Matrix type,   storage scheme	Driver
Linear equations	general   (partial pivoting)   general band   (partial pivoting)   general band   (no pivoting)   general tridiagonal   (no pivoting)   symmetric/Hermitian   positive-definite	$\underline{\underline{p} \text { ?gesv (simple driver) }}$p?gesvx (expert driver)
	symmetric/Hermitian   positive-definite,   band	$\underline{\underline{p} \text { p?posv }}$ (simple driver)

## p?gesv

Computes the solution to the system of linear equations
with a square distributed matrix and multiple
right-hand sides.

## Syntax

```
call psgesv (n, nrhs, a, ia, ja, desca, ipiv, b, ib, jb, descb, info)
call pdgesv (n, nrhs, a, ia, ja, desca, ipiv, b, ib, jb, descb, info)
call pcgesv (n, nrhs, a, ia, ja, desca, ipiv, b, ib, jb, descb, info)
call pzgesv (n, nrhs, a, ia, ja, desca, ipiv, b, ib, jb, descb, info)
```


## Description

The routine p?gesv computes the solution to a real or complex system of linear equations $\operatorname{sub}(A) * X=\operatorname{sub}(B)$, where $\operatorname{sub}(A)=A(i a: i a+n-1, j a: j a+n-1)$ is an $n-b y-n$ distributed matrix and $X$ and $\operatorname{sub}(B)=B(i b: i b+n-1, j b: j b+n r h s-1)$ are $n$-by-nrhs distributed matrices.

The $L U$ decomposition with partial pivoting and row interchanges is used to factor $\operatorname{sub}(A)$ as $\operatorname{sub}(A)=P L U$, where $P$ is a permutation matrix, $L$ is unit lower triangular, and $U$ is upper triangular. $L$ and $U$ are stored in $\operatorname{sub}(A)$. The factored form of $\operatorname{sub}(A)$ is then used to solve the system of equations $\operatorname{sub}(A) * \quad X=\operatorname{sub}(B)$.

## Input Parameters

n
nrhs
$a, b$ (local)
REAL for psgesv
DOUBLE PRECISION for pdgesv
COMPLEX for pcgesv
DOUBLE COMPLEX for pzgesv.
Pointers into the local memory to arrays of local dimension a(lld_a, $\left.L O C_{c}(j a+n-1)\right)$ and $b\left(11 d_{-} b, L O C_{c}(j b+n r h s-1)\right)$, respectively.

On entry, the array a contains the local pieces of the $n$-by- $n$ distributed matrix $\operatorname{sub}(A)$ to be factored.

On entry, the array $b$ contains the right hand side distributed matrix $\operatorname{sub}(B)$.
ia, ja (global) INTEGER. The row and column indices in the global array $A$ indicating the first row and the first column of $\operatorname{sub}(A)$, respectively.
desca (global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix $A$.
$i b, j b \quad$ (global) INTEGER. The row and column indices in the global array $B$ indicating the first row and the first column of $\operatorname{sub}(B)$, respectively.
descb (global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix $B$.

## Output Parameters

a
b

```
ipiv
```

info

Overwritten by the factors $L$ and $U$ from the factorization $\operatorname{sub}(A)=P L U$; the unit diagonal elements of $L$ are not stored .
Overwritten by the solution distributed matrix $X$.
(local) INTEGER array.
The dimension of ipiv is $\left(L O C_{r}\left(m_{-} a\right)+m b \_a\right)$.
This array contains the pivoting information. The (local) row $i$ of the matrix was interchanged with the (global) row ipiv(i).
This array is tied to the distributed matrix $A$.
(global) INTEGER. If info $=0$, the execution is successful.
info<0:
if the $i$ th argument is an array and the $j$ th entry had an illegal value, then info $=-(i * 100+j) ;$ if the $i$ th argument is a scalar and had an illegal value, then $\operatorname{info}=-i$.
info $>0$ :
If info $=k, U(i a+k-1, j a+k-1)$ is exactly zero. The factorization has been completed, but the factor $U$ is exactly singular, so the solution could not be computed.

## p?gesvx

Uses the LU factorization to compute the solution to the system of linear equations with a square matrix $A$ and multiple right-hand sides, and provides error bounds on the solution.

## Syntax

```
call psgesvx (fact, trans, n, nrhs, a, ia, ja, desca, af, iaf, jaf,
 descaf, ipiv, equed, r, c, b, ib, jb, descb, x, ix, jx, descx, rcond,
 ferr, berr, work, lwork, iwork, liwork, info)
call pdgesvx (fact, trans, n, nrhs, a, ia, ja, desca, af, iaf, jaf,
 descaf, ipiv, equed, r, c, b, ib, jb, descb, x, ix, jx, descx, rcond,
 ferr, berr, work, lwork, iwork, liwork, info)
call pcgesvx (fact, trans, n, nrhs, a, ia, ja, desca, af, iaf, jaf,
 descaf, ipiv, equed, r, c, b, ib, jb, descb, x, ix, jx, descx, rcond,
 ferr, berr, work, lwork, rwork, lrwork, info)
call pzgesvx (fact, trans, n, nrhs, a, ia, ja, desca, af, iaf, jaf,
 descaf, ipiv, equed, r, c, b, ib, jb, descb, x, ix, jx, descx, rcond,
 ferr, berr, work, lwork, rwork, lrwork, info)
```


## Description

This routine uses the $L U$ factorization to compute the solution to a real or complex system of linear equations $A X=B$, where $A$ denotes the $n$-by-n submatrix $A(i a: i a+n-1$, ja:ja+n-1), $B$ denotes the $n$-by-nrhs submatrix $B(i b: i b+n-1, j b: j b+n r h s-1)$ and $X$ denotes the $n$-by-nrhs submatrix $X(i x: i x+n-1, j x: j x+n r h s-1)$.

Error bounds on the solution and a condition estimate are also provided.
In the following description, af stands for the subarray $a f(i a f: i a f+n-1, j a f: j a f+n-1)$.
The routine p?gesvx performs the following steps:

1. If fact $=$ ' E ', real scaling factors $R$ and $C$ are computed to equilibrate the system:
```
trans \(={ }^{\prime} \mathrm{N}\) ': \(\quad \operatorname{diag}(R) * A * \operatorname{diag}(C) * \operatorname{diag}(C)^{-1} * X=\operatorname{diag}(R) * B\)
trans \(=\) ' T ': \((\operatorname{diag}(R) * A * \operatorname{diag}(C))^{\mathrm{T}} * \operatorname{diag}(R)^{-1} * X=\operatorname{diag}(C) * B\)
```

trans $=$ 'C': $\quad\left(\operatorname{diag}(R) * A^{*} \operatorname{diag}(C)\right)^{\mathrm{H}} \star \operatorname{diag}(R)^{-1} \star X=\operatorname{diag}(C) * B$
Whether or not the system will be equilibrated depends on the scaling of the matrix $A$, but if equilibration is used, $A$ is overwritten by $\operatorname{diag}(R) * A * \operatorname{diag}(C)$ and $B$ by $\operatorname{diag}(R) * B$ (if trans $={ }^{\prime} N^{\prime}$ ) or $\operatorname{diag}(c) * B$ (if trans $=$ ' T ' or ' $c$ ').
2. If fact = ' N ' or ' E ', the $L U$ decomposition is used to factor the matrix $A$ (after equilibration if fact $=$ ' E ') as $A=P L U$, where $P$ is a permutation matrix, $L$ is a unit lower triangular matrix, and $U$ is upper triangular.
3. The factored form of $A$ is used to estimate the condition number of the matrix $A$. If the reciprocal of the condition number is less than relative machine precision, steps 4-6 are skipped.
4. The system of equations is solved for $X$ using the factored form of $A$.
5. Iterative refinement is applied to improve the computed solution matrix and calculate error bounds and backward error estimates for it.
6. If equilibration was used, the matrix $X$ is premultiplied by $\operatorname{diag}(C)$ (if trans $={ }^{\prime} \mathrm{N}$ ') or $\operatorname{diag}(R)$ (if trans $=$ ' $T$ ' or ' $C$ ') so that it solves the original system before equilibration.

## Input Parameters

fact (global) CHARACTER*1. Must be 'F', 'N', or 'E'.
Specifies whether or not the factored form of the matrix $A$ is supplied on entry, and if not, whether the matrix $A$ should be equilibrated before it is factored.

If fact $=' F$ ' then, on entry, af and ipiv contain the factored form of $A$. If equed is not ' N ', the matrix $A$ has been equilibrated with scaling factors given by $r$ and $c$. Arrays $a, a f$, and ipiv are not modified.

If fact $=$ ' $N$ ', the matrix $A$ will be copied to af and factored.
If fact $=$ ' $E$ ', the matrix $A$ will be equilibrated if necessary, then copied to af and factored.
trans (global) CHARACTER*1. Must be 'N', 'T', or 'C'.
Specifies the form of the system of equations:
If trans $=$ ' $N$ ', the system has the form $A X=B$
(No transpose);
If trans $=$ ' T ', the system has the form $A^{\mathrm{T}} X=B$ (Transpose);
If trans $=$ ' C ', the system has the form $A^{\mathrm{H}} X=B$ (Conjugate transpose);
(global) INTEGER. The number of linear equations; the order of the submatrix $A(n \geq 0)$.

nrhs	(global) INTEGER. The number of right hand sides; the number of columns of the distributed submatrices $B$ and $X$ (nrhs $\geq 0$ ).
$a, a f, b$, work	(local)
	REAL for psgesvx
	DOUBLE PRECISION for pdgesvx
	COMPLEX for pcgesvx
	DOUBLE COMPLEX for pzgesvx.
	Pointers into the local memory to arrays of local dimension a (lld_a,
	$\left.L O C_{c}(j a+n-1)\right), a f\left(l l d \_a f, L O C_{c}(j a+n-1)\right), b\left(l l d \_b\right.$,
	$\left.L O C_{c}(j b+n r h s-1)\right)$, work (lwork), respectively.
	The array a contains the matrix $A$. If fact = ' $F$ ' and equed is not ' $N$ ', then $A$ must have been equilibrated by the scaling factors in $r$ and/or $c$.
	The array $a f$ is an input argument if fact $=' F$ '. In this case it contains on entry the factored form of the matrix $A$, i.e., the factors $L$ and $U$ from the factorization $A=P L U$ as computed by p?getrf. If equed is not ' $N$ ', then af is the factored form of the equilibrated matrix $A$.
	The array $b$ contains on entry the matrix $B$ whose columns are the right-hand sides for the systems of equations.
	work (*) is a workspace array.
	The dimension of work is (lwork).
ia,ja	(global) INTEGER. The row and column indices in the global array $A$ indicating the first row and the first column of the submatrix $A(i a: i a+n-1$, ja:ja+n-1), respectively.
desca	(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix $A$.
iaf,jaf	(global) INTEGER. The row and column indices in the global array af indicating the first row and the first column of the subarray af(iaf:iaf+n-1, jaf:jaf+n-1), respectively.
descaf	(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix $A F$.
ib, jb	(global) Integer. The row and column indices in the global array B indicating the first row and the first column of the submatrix $B(i b: i b+n-1$, $j b: j b+n r h s-1$ ), respectively.
descb	(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix $B$.


ipiv	(local) INTEGER array.
	The dimension of ipiv is $\left(L O C_{r}\left(m_{-} a\right)+m b \_a\right)$. The array ipiv is an input argument if fact =' $F$ '
	On entry, it contains the pivot indices from the factorization $A=P L U$ as computed by p?getrf; (local) row i of the matrix was interchanged with the (global) row ipiv(i).
	This array must be aligned with $A(\mathrm{ia}: \mathrm{ia+n-1}, \mathrm{*)}$.
equed	(global) CHARACTER*1. Must be 'N', 'R', 'C', or 'B'. equed is an input argument if fact $={ }^{\prime} F^{\prime}$. It specifies the form of equilibration that was done:
	If equed $=$ ' $N$ ', no equilibration was done (always true if fact = ' N ');
	If equed = 'R', row equilibration was done, that is, $A$ has been premultiplied by $\operatorname{diag}(x)$;
	If equed $=$ ' C ' , column equilibration was done, that is, $A$ has been postmultiplied by $\operatorname{diag}(c)$;
	If equed = ' B ', both row and column equilibration was done; $A$ has been replaced by $\operatorname{diag}(r) * A * \operatorname{diag}(c)$.
$r, c$	(local) REAL for single precision flavors;
	DOUBLE PRECISION for double precision flavors.
	Arrays, dimension $L O C_{r}\left(\mathrm{~m} \_a\right)$ and $L O C_{C}\left(\mathrm{n}_{-} \mathrm{a}\right)$, respectively.
	The array $r$ contains the row scale factors for $A$, and the array $c$ contains the column scale factors for $A$. These arrays are input arguments if fact $=$ ' $F$ ' only; otherwise they are output arguments.
	If equed $=$ 'R' or ' B ', $A$ is multiplied on the left by diag( $(r)$; if equed $=\mathrm{I}^{\mathrm{N}}$ ' or ' C ', $r$ is not accessed.
	If fact $=$ ' F ' and equed $=$ ' R ' or ' $\mathrm{B}^{\prime}$, each element of $r$ must be positive.
	If equed $=$ ' C ' or ' B ', $A$ is multiplied on the right by $\operatorname{diag}(c)$; if equed $=$ ' N ' or ' $R$ ',$c$ is not accessed.
	If fact $=$ ' $F$ ' and equed $=$ ' C' or ' $B$ ', each element of $c$ must be positive. Array $r$ is replicated in every process column, and is aligned with the distributed matrix $A$.
	Array $c$ is replicated in every process row, and is aligned with the distributed matrix $A$.
ix, jx	(global) INTEGER. The row and column indices in the global array $X$ indicating the first row and the first column of the submatrix $X(i x: i x+n-1$, $j x: j x+n r h s-1)$, respectively.



af	If fact = ' N ' or ' E ', then $a f$ is an output argument and on exit returns the factors $L$ and $U$ from the factorization $A=P L U$ of the original matrix $A$ (if fact $=$ ' N ') or of the equilibrated matrix $A$ (if fact = ' E '). See the description of a for the form of the equilibrated matrix.
b	```Overwritten by diag(R)* B if trans='N' and equed = 'R' or 'B'; overwritten by diag(c)*B if trans = 'T' and equed = 'C' or ' }\mp@subsup{\textrm{B}}{}{\prime}\mathrm{ '; not changed if equed='N'.```
$r, \quad c$	These arrays are output arguments if $f a c t \neq '^{\prime} F^{\prime}$. See the description of $r, c$ in Input Arguments section.
rcond	(global) REAL for single precision flavors.   DOUBLE PRECISION for double precision flavors.   An estimate of the reciprocal condition number of the matrix $A$ after equilibration (if done). The routine sets $r$ cond $=0$ if the estimate underflows; in this case the matrix is singular (to working precision). However, anytime reond is small compared to 1.0 , for the working precision, the matrix may be poorly conditioned or even singular.
ferr, berr	(local) REAL for single precision flavors.   DOUBLE PRECISION for double precision flavors.   Arrays, DIMENSION $L O C_{C}\left(\mathrm{n} \_\mathrm{b}\right)$ each. Contain the component-wise forward and relative backward errors, respectively, for each solution vector.
	Arrays ferr and berr are both replicated in every process row, and are aligned with the matrices $B$ and $X$.
ipiv	If fact $=$ ' N ' or ' E ', then ipiv is an output argument and on exit contains the pivot indices from the factorization $A=P L U$ of the original matrix $A$ (if fact $=$ ' N ') or of the equilibrated matrix $A$ (if fact = ' E ').
equed	If fact $\neq{ }^{\prime} F^{\prime}$, then equed is an output argument. It specifies the form of equilibration that was done (see the description of equed in Input Arguments section).
work(1)	If info $=0$, on exit work (1) returns the minimum value of 1 work required for optimum performance.
iwork(1)	If info $=0$, on exit $i$ work (1) returns the minimum value of liwork required for optimum performance.
rwork(1)	If info $=0$, on exit rwork (1) returns the minimum value of 1 rwork required for optimum performance.

```
info INTEGER. If info=0, the execution is successful.
info<0: if the ith argument is an array and the jth entry had an illegal value,
then info = - (i*100+j); if the ith argument is a scalar and had an illegal
value, then info = -i.
If info = i, and i mn, then U(i,i) is exactly zero. The factorization has been
completed, but the factor U is exactly singular, so the solution and error bounds
could not be computed.
If info = i, and i =n +1, then U is nonsingular, but rcond is less than
machine precision. The factorization has been completed, but the matrix is
singular to working precision and the solution and error bounds have not been
computed.
```


## p?gbsv

Computes the solution to the system of linear equations with a general banded distributed matrix and multiple right-hand sides.

## Syntax

```
call psgbsv (n, bwl, bwu, nrhs, a, ja, desca, ipiv, b, ib, descb, work,
 lwork, info)
call pdgbsv (n, bwl, bwu, nrhs, a, ja, desca, ipiv, b, ib, descb, work,
 lwork, info)
call pcgbsv (n, bwl, bwu, nrhs, a, ja, desca, ipiv, b, ib, descb, work,
 lwork, info)
call pzgbsv (n, bwl, bwu, nrhs, a, ja, desca, ipiv, b, ib, descb, work,
 lwork, info)
```


## Description

The routine p ? gbsv computes the solution to a real or complex system of linear equations $\operatorname{sub}(A) * X=\operatorname{sub}(B)$,
where $\operatorname{sub}(A)=A(1: n, j a: j a+n-1)$ is an $n$-by-n real/complex general banded distributed matrix with bwl subdiagonals and bwu superdiagonals, and $X$ and $\operatorname{sub}(B)=B(i b: i b+n-1,1: n r h s)$ are $n$-by-nrhs distributed matrices.

The $L U$ decomposition with partial pivoting and row interchanges is used to factor $\operatorname{sub}(A)$ as $\operatorname{sub}(A)=P L U Q$, where $P$ and $Q$ are permutation matrices, and $L$ and $U$ are banded lower and upper triangular matrices, respectively. The matrix $Q$ represents reordering of columns for the sake of parallelism, while $P$ represents reordering of rows for numerical stability using classic partial pivoting.

## Input Parameters

$n$
(global) INTEGER. The number of rows and columns to be operated on, that is, the order of the distributed submatrix $\operatorname{sub}(A)(n \geq 0)$.
(global) INTEGER. The number of subdiagonals within the band of $A(0 \leq b w l$ $\leq n-1$ ).
(global) INTEGER. The number of superdiagonals within the band of $A$ ( $0 \leq$ bwu $\leq n-1$ ).
(global) INTEGER. The number of right hand sides; the number of columns of the distributed submatrix $\operatorname{sub}(B)(n r h s \geq 0)$.
(local)
REAL for psgbsv
DOUBLE PRECISION for pdgbsv
COMPLEX for pcgbsv DOUBLE COMPLEX for pzgbsv.

Pointers into the local memory to arrays of local dimension a(lld_a, $\left.L O C_{C}(j a+n-1)\right)$ and $b\left(l l d_{\_} b, L O C_{c}(n r h s)\right)$, respectively.
On entry, the array a contains the local pieces of the global array $A$.
On entry, the array $b$ contains the right hand side distributed matrix $\operatorname{sub}(B)$.

```
descb (global and local) INTEGER array, dimension (dlen_). The array descriptor
 for the distributed matrix }B\mathrm{ .
 If descb(dtype_) = 502, then dlen_ \geq 7;
 else if descb(dtype_) = 1, then dlen_ \geq9.
work
lwork
(local)
REAL for psgbsv
DOUBLE PRECISION for pdgbsv
COMPLEX for pcgbsv
DOUBLE COMPLEX for pzgbsv.
Workspace array of dimension (lwork).
(local or global) INTEGER. The size of the array work, must be at least
lwork \geq (NB+bwu)*(bwl+bwu)+6*(bwl+bwu)*(bwl+2*bwu) +
+ max(nrhs *(NB+2*bwl+4*bwu), 1).
```


## Output Parameters

    The dimension of ipiv must be at least desca(NB).
    This array contains pivot indices for local factorizations. You should not alter the contents between factorization and solve.
    work (1) On exit, work (1) contains the minimum value of 1 work required for optimum performance.
info INTEGER. If info $=0$, the execution is successful. info $<0$ :
if the $i$ th argument is an array and the $j$ th entry had an illegal value, then info $=-(i * 100+j)$; if the $i$ th argument is a scalar and had an illegal value, then info $=-i$.
info>0:
If info $=k \leq$ NPROCS, the submatrix stored on processor info and factored locally was not nonsingular, and the factorization was not completed.

If info $=k>$ NPROCS, the submatrix stored on processor info-NPROCS representing interactions with other processors was not nonsingular, and the factorization was not completed.

## p?dbsv

Solves a general band system of linear equations.

## Syntax

```
call psdbsv (n, bwl, bwu, nrhs, a, ja, desca, b, ib, descb, work, lwork,
 info)
call pddbsv (n, bwl, bwu, nrhs, a, ja, desca, b, ib, descb, work, lwork,
 info)
call pcdbsv (n, bwl, bwu, nrhs, a, ja, desca, b, ib, descb, work, lwork,
 info)
call pzdbsv (n, bwl, bwu, nrhs, a, ja, desca, b, ib, descb, work, lwork,
 info)
```


## Description

This routine solves the system of linear equations
$A(1: n, j a: j a+n-1) * X=B(i b: i b+n-1,1: n r h s)$
where $A(1: n, j a: j a+n-1)$ is an $n$-by- $n$ real/complex banded diagonally dominant-like distributed matrix with bandwidth bwl, bwu.

Gaussian elimination without pivoting is used to factor a reordering of the matrix into $L U$.

## Input Parameters

$n$ (global) INTEGER. The order of the distributed submatrix $A ;(n \geq 0)$.
bwl (global) INTEGER. Number of subdiagonals. $0 \leq \mathrm{bwl} \leq \mathrm{n}-1$.
bwu (global) INTEGER. Number of subdiagonals. $0 \leq b w u \leq n-1$.
nrhs (global) INTEGER. The number of right-hand sides; the number of columns of the distributed submatrix $B$ ( $n r h s \geq 0$ ).
a
(local).
REAL for psdbsv
DOUBLE PRECISION for pddbsv
COMPLEX for pcdbsv
DOUBLE COMPLEX for pzdbsv.
Pointer into the local memory to an array with first dimension $l l d \_a \geq(b w l+b w u+1)$ (stored in desca). On entry, this array contains the local pieces of the distributed matrix.
(global) INTEGER. The index in the global array a that points to the start of the matrix to be operated on (which may be either all of $A$ or a submatrix of $A$ ).
(global and local) INTEGER array of dimension dlen. if $1 d$ type (dtype_a=501 or 502), dlen $\geq 7$; if $2 d$ type (dtype_a $=1$ ), dlen $\geq 9$.
The array descriptor for the distributed matrix $A$. Contains information of mapping of $A$ to memory.
(local)
REAL for psdbsv
DOUBLE PRECISION for pddbsv
COMPLEX for pcdbsv
DOUBLE COMPLEX for pzdbsv.
Pointer into the local memory to an array of local lead dimension $11 d \_b \geq$ NB. On entry, this array contains the local pieces of the right hand sides $B$ (ib:ib+n-1, 1:nrhs).
(global) INTEGER. The row index in the global array $b$ that points to the first row of the matrix to be operated on (which may be either all of $b$ or a submatrix of $B$ ).
desb (global and local) INTEGER array of dimension dlen.
if 1 dype (dtype_b $=502$ ), dlen $\geq 7$;
if $2 d$ type $\left(d t y p e \_b=1\right)$, dlen $\geq 9$.
The array descriptor for the distributed matrix $B$. Contains information of mapping of $B$ to memory.
(local).
REAL for psdbsv
DOUBLE PRECISION for pddbsv
COMPLEX for pcdbsv

DOUBLE COMPLEX for pzdbsv.
Temporary workspace. This space may be overwritten in between calls to routines. work must be the size given in lwork.
lwork (local or global) INTEGER.
Size of user-input workspace work. If 1 work is too small, the minimal acceptable size will be returned in work(1) and an error code is returned.
$l$ work $\geq \mathrm{NB}(b w l+b w u)+6 \max (b w l, b w u) * \max (b w l, b w u)$
$+\max ((\max (b w l, b w u) n r h s), \max (b w l, b w u) \max (b w l, b w u))$

## Output Parameters

On exit, this array contains information containing details of the factorization. Note that permutations are performed on the matrix, so that the factors returned are different from those returned by LAPACK.
b
On exit, this contains the local piece of the solutions distributed matrix $X$.
On exit, work(1) contains the minimal lwork.
(local) INTEGER. If info $=0$, the execution is successful.
$<0$ : If the $i$-th argument is an array and the $j$-entry had an illegal value, then info $=-\left(i^{*} 100+j\right)$, if the $i$-th argument is a scalar and had an illegal value, then info $=-i$.
$>0$ : If info $=k \leq$ NPROCS, the submatrix stored on processor info and factored locally was not positive definite, and the factorization was not completed.
If info $=k>$ NPROCS, the submatrix stored on processor info-NPROCS representing interactions with other processors was not positive definite, and the factorization was not completed.

## p?dtsv

Solves a general tridiagonal system of linear equations.

## Syntax

```
call psdtsv (n, nrhs, dl, d, du, ja, desca, b, ib, descb, work,
 lwork,info
call pddtsv (n, nrhs, dl, d, du, ja, desca, b, ib, descb, work,
 lwork,info
```

```
call pcdtsv (n, nrhs, dl, d, du, ja, desca, b, ib, descb, work,
 lwork,info
call pzdtsv (n, nrhs, dl, d, du, ja, desca, b, ib, descb, work,
 lwork,info
```


## Description

This routine solves a system of linear equations

```
A(1:n, ja:ja+n-1)* X = B(ib:ib+n-1, 1:nrhs)
```

where $A(1: n, j a: j a+n-1)$ is an $n$-by- $n$ complex tridiagonal diagonally dominant-like distributed matrix.

Gaussian elimination without pivoting is used to factor a reordering of the matrix into $L U$.

## Input Parameters

(global) INTEGER. The order of the distributed submatrix $A(n \geq 0)$.
INTEGER. The number of right hand sides; the number of columns of the distributed matrix $B$ (nrhs $\geq 0$ ).
(local).
REAL for psdtsv
DOUBLE PRECISION for pddtsv
COMPLEX for pcdtsv DOUBLE COMPLEX for pzdtsv.

Pointer to local part of global vector storing the lower diagonal of the matrix. Globally, $d l(1)$ is not referenced, and $d l$ must be aligned with $d$. Must be of size $\geq$ desca( $\left.n b_{-}\right)$.
(local).
REAL for psdtsv
DOUBLE PRECISION for pddtsv
COMPLEX for pcdtsv DOUBLE COMPLEX for pzdtsv. Pointer to local part of global vector storing the main diagonal of the matrix. (local).
REAL for psdtsv DOUBLE PRECISION for pddtsv
COMPLEX for pcdtsv

DOUBLE COMPLEX for pzdtsv.
Pointer to local part of global vector storing the upper diagonal of the matrix. Globally, $d u(n)$ is not referenced, and $d u$ must be aligned with $d$.

ja	(global) INTEGER. The index in the global array a that points to the start of the matrix to be operated on (which may be either all of $A$ or a submatrix of $A$ ).
desca	(global and local) INTEGER array of dimension dlen.   if $1 d$ type (dtype_a=501 or 502), dlen $>=7$;   if $2 d$ type (dtype_a=1), dlen $>=9$.   The array descriptor for the distributed matrix $A$. Contains information of mapping of $A$ to memory.
b	(local)
	REAL for psdtsv
	DOUBLE PRECISION for pddtsv
	COMPLEX for pcdtsv
	DOUBLE COMPLEX for pzdtsv.
	Pointer into the local memory to an array of local lead dimension $11 d \_b \geq$ NB. On entry, this array contains the local pieces of the right hand sides $B(i b: i b+n-1,1: n r h s)$.
ib	(global) INTEGER. The row index in the global array $b$ that points to the first row of the matrix to be operated on (which may be either all of $b$ or a submatrix of $B$ ).
desb	(global and local) INTEGER array of dimension dlen.
	if 1 d type ( $d t y p e \_b=502$ ), dlen $\geq 7$;
	if 2 d type ( dtype_b $=1$ ), dlen $\geq 9$.
	The array descriptor for the distributed matrix $B$. Contains information of mapping of $B$ to memory.
work	(local).
	REAL for psdtsv
	DOUBLE PRECISION for pddtsv
	COMPLEX for pcdtsv
	DOUBLE COMPLEX for pzdtsv.
	Temporary workspace. This space may be overwritten in between calls to routines. work must be the size given in lwork.

Iwork (local or global) INTEGER.
Size of user-input workspace work. If 1 work is too small, the minimal acceptable size will be returned in work(1) and an error code is returned. lwork $\geq\left(12 *_{\mathrm{NPCOL}}+3{ }^{*} \mathrm{NB}\right)+\max \left(\left(10+2{ }^{*} \min (100, n r h s)\right){ }^{*} \mathrm{NPCOL}+4{ }^{*}\right.$ nrhs, $8^{*}$ NPCOL).

## Output Parameters

dl On exit, this array contains information containing the * factors of the matrix.
d On exit, this array contains information containing the * factors of the matrix. Must be of size $\geq$ desca( $n b$ _ ).
$d u \quad$ On exit, this array contains information containing the * factors of the matrix. Must be of size $\geq \operatorname{desca}\left(n b \_\right)$.
b On exit, this contains the local piece of the solutions distributed matrix $X$.
work On exit, work( 1 ) contains the minimal lwork.
info (local) INTEGER. If info $=0$, the execution is successful.
$<0$ : If the $i$-th argument is an array and the $j$-entry had an illegal value, then info $=-\left(i^{*} 100+j\right)$, if the $i$-th argument is a scalar and had an illegal value, then info $=-i$.
$>0$ : If info $=k \leq$ NPROCS, the submatrix stored on processor info and factored locally was not positive definite, and the factorization was not completed.
If info $=k>$ NPROCS, the submatrix stored on processor info-NPROCS representing interactions with other processors was not positive definite, and the factorization was not completed.

## p?posv

Solves a symmetric positive definite system of linear equations.

## Syntax

```
call psposv (uplo, n, nrhs, a, ia, ja, desca, b, ib, jb, descb, info)
call pdposv (uplo, n, nrhs, a, ia, ja, desca, b, ib, jb, descb, info)
call pcposv (uplo, n, nrhs, a, ia, ja, desca, b, ib, jb, descb, info)
```

```
call pzposv (uplo, n, nrhs, a, ia, ja, desca, b, ib, jb, descb, info)
```


## Description

This routine computes the solution to a real/complex system of linear equations
$\operatorname{sub}(A) * X=\operatorname{sub}(B)$,
where $\operatorname{sub}(A)$ denotes $A(i a: i a+n-1, j a: j a+n-1)$ and is an $n$-by- $n$ symmetric/Hermitian distributed positive definite matrix and $X$ and $\operatorname{sub}(B)$ denoting $B(i b: i b+n-1, j b: j b+n r h s-1)$ are $n$-by-nrhs distributed matrices. The Cholesky decomposition is used to factor $\operatorname{sub}(A)$ as

$$
\begin{aligned}
& \operatorname{sub}(A)=U^{T} * U, \text { if uplo }=' U^{\prime}, \text { or } \\
& \operatorname{sub}(A)=L^{*} L T, \text { if uplo= 'L', }
\end{aligned}
$$

where $U$ is an upper triangular matrix and $L$ is a lower triangular matrix. The factored form of $\operatorname{sub}(A)$ is then used to solve the system of equations.

## Input Parameters

```
uplo (global).CHARACTER. Must be 'U' or 'L'.
 Indicates whether the upper or lower triangular part of sub(A) is stored.
n
nrhs INTEGER. The number of right-hand sides; the number of columns of the
 distributed submatrix sub(B) (nrhs }\geq0)\mathrm{).
a
(local)
REAL for psposv
DOUBLE PRECISION for pdposv
COMPLEX for pcposv
COMPLEX*16 for pzposv.
Pointer into the local memory to an array of dimension (lld_a,
LOCc(ja+n-1)). On entry, this array contains the local pieces of the n-by-n
symmetric distributed matrix sub (A) to be factored. If upIo = ' U', the leading
n-by-n upper triangular part of sub (A) contains the upper triangular part of the
matrix, and its strictly lower triangular part is not referenced.If uplo = ' }'\mathrm{ ', the
leading n-by-n lower triangular part of sub (A) contains the lower triangular
part of the distributed matrix, and its strictly upper triangular part is not
referenced.
ia,ja (global) INTEGER. The row and column indices in the global array a
indicating the first row and the first column of the submatrix }A\mathrm{ , respectively.
```

desca (global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix $A$.
b
(local)
REAL for psposv
DOUBLE PRECISION for pdposv
COMPLEX for pcposv
COMPLEX*16 for pzposv.
Pointer into the local memory to an array of dimension
(lld_b,LOC(jb+nrhs-1)). On entry, the local pieces of the right hand sides distributed matrix $\operatorname{sub}(B)$.
$i b, j b \quad$ (global) INTEGER. The row and column indices in the global array $b$ indicating the first row and the first column of the submatrix $B$, respectively.
descb (global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix $B$.

## Output Parameters

b
info

On exit, if info $=0$, this array contains the local pieces of the factor $U$ or $L$ from the Cholesky factorization $\operatorname{sub}(A)=U^{H} U$ or $L L^{H}$.

On exit, if info $=0$, sub $(B)$ is overwritten by the solution distributed matrix $X$.
(global) INTEGER.
If info $=0$, the execution is successful.
If info $<0$ : If the $i$-th argument is an array and the $j$-entry had an illegal value, then info $=-\left(i^{*} 100+j\right)$, if the $i$-th argument is a scalar and had an illegal value, then info $=-i$.
If info $>0$ : If info $=k$, the leading minor of order $k$, $A(i a: i a+k-1, j a: j a+k-1)$ is not positive definite, and the factorization could not be completed, and the solution has not been computed.

## p?posvx

Solves a symmetric or Hermitian positive definite system of linear equations.

## Syntax

```
call psposvx (fact, uplo, n, nrhs, a, ia, ja, desca, af, iaf, jaf,
 descaf, equed, sr, sc, b, ib, jb, descb, x, ix, jx, descx, rcond,
 ferr, berr, work, lwork, iwork, liwork, info)
call pdposvx (fact, uplo, n, nrhs, a, ia, ja, desca, af, iaf, jaf,
 descaf, equed, sr, sc, b, ib, jb, descb, x, ix, jx, descx, rcond,
 ferr, berr, work, lwork, iwork, liwork, info)
call pcposvx (fact, uplo, n, nrhs, a, ia, ja, desca, af, iaf, jaf,
 descaf, equed, sr, sc, b, ib, jb, descb, x, ix, jx, descx, rcond,
 ferr, berr, work, lwork, iwork, liwork, info)
call pzposvx (fact, uplo, n, nrhs, a, ia, ja, desca, af, iaf, jaf,
 descaf, equed, sr, sc, b, ib, jb, descb, x, ix, jx, descx, rcond,
 ferr, berr, work, lwork, iwork, liwork, info)
```


## Description

This routine uses the Cholesky factorization $A=U^{T} U$ or $A=L L^{T}$ to compute the solution to a real or complex system of linear equations
$A(i a: i a+n-1, j a: j a+n-1) * X=B(i b: i b+n-1, j b: j b+n r h s-1)$,
where $A(i a: i a+n-1, j a: j a+n-1)$ is a $n-b y-n$ matrix and $X$ and $B(i b: i b+n-1, j b: j b+n r h s-1)$ are $n$-by-nrhs matrices.

Error bounds on the solution and a condition estimate are also provided.
In the following comments $y$ denotes $Y(i y: i y+m-1, j y: j y+k-1)$ a $m$-by-k matrix where $y$ can be $a$, $a f, b$ and $x$.

The routine p?posvx performs the following steps:

1. If fact $=$ ' $E$ ', real scaling factors $s$ are computed to equilibrate the system:
```
\(\operatorname{diag}(s r) * A * \operatorname{diag}(s c) * \operatorname{inv}(\operatorname{diag}(s c)) * X=\operatorname{diag}(s r) * B\)
```

Whether or not the system will be equilibrated depends on the scaling of the matrix $A$, but if equilibration is used, $A$ is overwritten by $\operatorname{diag}(s r) \star A * \operatorname{diag}(s c)$ and $B$ by $\operatorname{diag}(s r) \star B$.
2. If fact = ' $N$ ' or ' E ', the Cholesky decomposition is used to factor the matrix $A$ (after equilibration if fact $=$ ' E ') as
$A=U^{T} U$, if uplo = ' U ', or
$A=L L^{T}$, if uplo $=$ ' L ,'
where $U$ is an upper triangular matrix and $L$ is a lower triangular matrix.
3. The factored form of $A$ is used to estimate the condition number of the matrix $A$. If the reciprocal of the condition number is less than machine precision, steps 4-6 are skipped
4. The system of equations is solved for $X$ using the factored form of $A$.
5. Iterative refinement is applied to improve the computed solution matrix and calculate error bounds and backward error estimates for it.
6. If equilibration was used, the matrix $X$ is premultiplied by $\operatorname{diag}(s r)$ so that it solves the original system before equilibration.

## Input Parameters

```
fact (global) CHARACTER.Must be 'F', 'N', or 'E'.
Specifies whether or not the factored form of the matrix }A\mathrm{ is supplied on entry,
and if not, whether the matrix }A\mathrm{ should be equilibrated before it is factored.
If fact = 'F': on entry, af contains the factored form of A. If equed=' 'Y',
the matrix }A\mathrm{ has been equilibrated with scaling factors given by s.
a and af will not be modified.
If fact = 'N', the matrix }A\mathrm{ will be copied to af and factored.
If fact = ' E', the matrix }A\mathrm{ will be equilibrated if necessary, then copied to af
and factored.
uplo (global)
CHARACTER. Must be 'U' or 'L'.
Indicates whether the upper or lower triangular part of A is stored.
(global) INTEGER. The order of the distributed submatrix \operatorname{sub}(A)(n\geq0).
(global) INTEGER. The number of right-hand sides; the number of columns of
the distributed submatrices B and X.(nrhs \geq0).
(local)
REAL for psposvx
DOUBLE PRECISION for pdposvx
```

ia,ja	(global) Integer. The row and column indices in the global array a indicating the first row and the first column of the submatrix $A$, respectively.
desca	(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix $A$.
af	(local)
	REAL for psposvx
	DOUBLE PRECISION for pdposvx
	COMPLEX for pcposvx
	DOUBLE COMPLEX for pzposvx.
	Pointer into the local memory to an array of local dimension (lld_af, $\operatorname{LOCc}(j a+n-1))$.
	If fact $=$ ' $F$ ', then $a f$ is an input argument and on entry contains the triangular factor $U$ or $L$ from the Cholesky factorization $A=U^{T *} U$ or $A=L^{*} L^{T}$, in the same storage format as $A$. If equed .ne. ' N ', then $a f$ is the factored form of the equilibrated matrix $\operatorname{diag}(s r){ }^{*} A^{*} \operatorname{diag}(s c)$.
iaf,jaf	(global) INTEGER. The row and column indices in the global array af indicating the first row and the first column of the submatrix $A F$, respectively.
descaf	(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix $A F$.
equed	(global).CHARACTER. Must be ' $N$ ' or 'Y'.   equed is an input argument if $f a c t=' F$ ' . It specifies the form of equilibration that was done:
	If equed = ' N ', no equilibration was done (always true if fact $=$ ' N ');
	If equed $=$ ' Y ', equilibration was done and $A$ has been replaced by $\operatorname{diag}(s r) * A * \operatorname{diag}(s c)$.

```
sr
b
ib,jb
descb
x
ix,jx
descx
work
(local)
REAL for psposvx
DOUBLE PRECISION for pdposvx
COMPLEX for pcposvx
DOUBLE COMPLEX for pzposvx.
Array, DIMENSION (lld_a).
The array \(s\) contains the scale factors for \(A\). This array is an input argument if fact = ' \(F\) ' only; otherwise it is an output argument.
If equed \(=\) ' \(N\) ', s is not accessed.
If fact \(=\) ' \(F\) ' and equed \(=1 Y\) ', each element of \(s\) must be positive.
REAL for psposvx
DOUBLE PRECISION for pdposvx
COMPLEX for pcposvx
DOUBLE COMPLEX for pzposvx.
Pointer into the local memory to an array of local dimension (lld_b, \(L O C c(j b+n r h s-1)) . O n\) entry, the \(n\)-by-nrhs right-hand side matrix \(B\).
(global) INTEGER. The row and column indices in the global array \(b\) indicating the first row and the first column of the submatrix \(B\), respectively.
(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(B\).
(local)
REAL for psposvx
DOUBLE PRECISION for pdposvx
COMPLEX for pcposvx
DOUBLE COMPLEX for pzposvx.
Pointer into the local memory to an array of local dimension (\(11 d_{-} x\), \(L O C c(j x+n r h s-1)\)).
(global) INTEGER. The row and column indices in the global array \(x\) indicating the first row and the first column of the submatrix \(X\), respectively.
(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(X\).
(local)
REAL for psposvx
DOUBLE PRECISION for pdposvx
```

COMPLEX for pcposvx
DOUBLE COMPLEX for pzposvx.
Workspace array, DIMENSION (lwork);
Iwork (local or global)
INTEGER.
The dimension of the array work. lwork is local input and must be at least

lwork $=3 * \operatorname{desca}\left(11 d \_\right)$
If 1 work $=-1$, then 1 work is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.
liwork (local or global)
INTEGER.
The dimension of the array iwork. liwork is local input and must be at least liwork $=$ desca( lld_ $)$ liwork $=\operatorname{LOCr}\left(n_{-} a\right)$.
If $1 i w o r k=-1$, then liwork is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

## Output Parameters

On exit, if fact = ' E ' and equed $=$ ' Y ', a is overwritten by $\operatorname{diag}(s r) * a^{*} \operatorname{diag}(s c)$.

If fact $=$ ' N ', then $a f$ is an output argument and on exit returns the triangular factor $U$ or $L$ from the Cholesky factorization $A=U^{T *} U$ or $A=L^{*} L^{T}$ of the original matrix $A$.
If fact $=$ ' E ', then $a f$ is an output argument and on exit returns the triangular factor $U$ or $L$ from the Cholesky factorization $A=U^{T} * U$ or $A=L^{*} L^{T}$ of the equilibrated matrix $A$ (see the description of $A$ for the form of the equilibrated matrix).
If fact $\neq$ ' $F$ ', then equed is an output argument. It specifies the form of equilibration that was done (see the description of equed in Input Arguments section).
This array is an output argument if fact $\neq{ }^{\prime} F^{\prime}$.
See the description of sr in Input Arguments section.

This array is an output argument if fact $\neq$ ' $F$ '. See the description of sc in Input Arguments section.

On exit, if equed = ' N ', b is not modified; if trans $=$ ' $N$ ' and equed $=$ ' $R$ ' or ' $B$ ', $b$ is overwritten by $\operatorname{diag}(r)^{*} b$; if trans = ' T ' or ' C ' and equed $=$ ' $C$ ' or ' B ', $b$ is overwritten by $\operatorname{diag}(c) *$.
(local)
REAL for psposvx
DOUBLE PRECISION for pdposvx
COMPLEX for pcposvx
DOUBLE COMPLEX for pzposvx.
If info $=0$ the $n$-by-nrhs solution matrix $X$ to the original system of equations. Note that $A$ and $B$ are modified on exit if equed .ne. ' N ', and the solution to the equilibrated system is $\operatorname{inv}(\operatorname{diag}(s c))^{*} X$ if $t r a n s=' \mathrm{~N}$ ' and
 'B'.
(global)
REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal condition number of the matrix $A$ after equilibration (if done). If rcond is less than the machine precision (in particular, if reond $=0$ ), the matrix is singular to working precision. This condition is indicated by a return code of info $>0$.
REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least $\max \left(L O C, n_{-} b\right)$. The estimated forward error bounds for each solution vector $X(j)$ (the $j$-th column of the solution matrix $X$ ). If $x$ true is the true solution, $\operatorname{ferr}(j)$ bounds the magnitude of the largest entry in $(X(j)$ - xtrue) divided by the magnitude of the largest entry in $X(j)$. The quality of the error bound depends on the quality of the estimate of $\operatorname{norm}(\operatorname{inv}(A))$ computed in the code; if the estimate of norm $(\operatorname{inv}(A))$ is accurate, the error bound is guaranteed.
(local)
REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
Arrays, DIMENSION at least max (LOC,n_b).
The componentwise relative backward error of each solution vector $X(j)$ (the smallest relative change in any entry of $A$ or $B$ that makes $X(j)$ an exact solution).

```
info (global) INTEGER.
If info=0, the execution is successful.
<0: if info =-i, the i-th argument had an illegal value
> 0 \text { : if info = i, and i is <= n: if info=i, the leading minor of order i of a}
is not positive definite, so the factorization could not be completed, and the
solution and error bounds could not be computed.
= n+1: rcond is less than machine precision. The factorization has been
completed, but the matrix is singular to working precision, and the solution and
error bounds have not been computed.
```


## p?pbsv

## Solves a symmetric/Hermitian positive definite banded system of linear equations.

## Syntax

```
call pspbsv (uplo, n, bw, nrhs, a, ja, desca, b, ib, descb, work, lwork,
 info)
call pdpbsv (uplo, n, bw, nrhs, a, ja, desca, b, ib, descb, work, lwork,
 info)
call pcpbsv (uplo, n, bw, nrhs, a, ja, desca, b, ib, descb, work, lwork,
 info)
call pzpbsv (uplo, n, bw, nrhs, a, ja, desca, b, ib, descb, work, lwork,
 info)
```


## Description

This routine solves a system of linear equations
$A(1: n, j a: j a+n-1) * X=B(i b: i b+n-1,1: n r h s)$
where $A(1: n, j a: j a+n-1)$ is an $n$-by-n real/complex banded symmetric positive definite distributed matrix with bandwidth bw.

Cholesky factorization is used to factor a reordering of the matrix into $L L^{\prime}$.

## Input Parameters

```
uplo (global) CHARACTER. Must be 'U' or 'L'.
 Indicates whether the upper or lower triangular of \(A\) is stored.
```

n

If uplo = 'U', the upper triangular $A$ is stored If uplo = ' L', the lower triangular of $A$ is stored.
(global) INTEGER. The order of the distributed matrix $A(n \geq 0)$.
(global) INTEGER. The number of subdiagonals in $L$ or $U .0 \leq b w \leq n-1$.
(global) INTEGER. The number of right-hand sides; the number of columns in $B$ (nrhs $\geq 0$ ).
(local).
REAL for pspbsv
DOUBLE PRECISION for pdpbsv
COMPLEX for pcpbsv
DOUBLE COMPLEX for pzpbsv.
Pointer into the local memory to an array with first dimension $11 d_{-} a \geq(b w+1)$ (stored in desca).
On entry, this array contains the local pieces of the distributed matrix $\operatorname{sub}(A)$ to be factored.
(global) INTEGER. The index in the global array a that points to the start of the matrix to be operated on (which may be either all of $A$ or a submatrix of $A$ ).
(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix $A$.
(local)
REAL for pspbsv
DOUBLE PRECISION for pdpbsv
COMPLEX for pcpbsv
DOUBLE COMPLEX for pzpbsv.
Pointer into the local memory to an array of local lead dimension lld_b $\geq$ NB. On entry, this array contains the local pieces of the right hand sides $B$ (ib:ib+n-1, 1:nrhs).
(global) INTEGER. The row index in the global array $b$ that points to the first row of the matrix to be operated on (which may be either all of $b$ or a submatrix of $B$ ).
(global and local) INTEGER array of dimension dlen.
if 1D type (dtype_b $=502$ ), dlen $\geq 7$;
if 2D type (dtype_b $=1$ ), dlen $\geq 9$.
The array descriptor for the distributed matrix $B$. Contains information of mapping of $B$ to memory.
(local).

REAL for pspbsv
DOUBLE PRECISION for pdpbsv
COMPLEX for pcpbsv
DOUBLE COMPLEX for pzpbsv.
Temporary workspace. This space may be overwritten in between calls to routines. work must be the size given in lwork.
lwork (local or global) INTEGER.
Size of user-input workspace work. If 1 work is too small, the minimal acceptable size will be returned in work(1) and an error code is returned. lwork $\geq\left(\mathrm{NB}+2^{*} \mathrm{bw}\right)^{*}{ }^{\text {bw }}+\max \left(\left(\mathrm{b} w^{*} n r h s\right), \mathrm{bw}^{*}\right.$ bw $)$

## Output Parameters

On exit, this array contains information containing details of the factorization. Note that permutations are performed on the matrix, so that the factors returned are different from those returned by LAPACK.
b
work
On exit, contains the local piece of the solutions distributed matrix $X$.
On exit, work(1) contains the minimal lwork.
info
(global).
INTEGER. If info $=0$, the execution is successful.
$<0$ : If the $i$-th argument is an array and the $j$-entry had an illegal value, then info $=-\left(i^{*} 100+j\right)$, if the $i$-th argument is a scalar and had an illegal value, then info $=-i$.
$>0$ : If info $=k \leq$ NPROCS, the submatrix stored on processor info and factored locally was not positive definite, and the factorization was not completed.
If info $=k>$ NPROCS, the submatrix stored on processor info-NPROCS representing interactions with other processors was not positive definite, and the factorization was not completed.

## p?ptsv

## Solves a symmetric or Hermitian positive definite

tridiagonal system of linear equations.

## Syntax

```
call psptsv (n, nrhs, d, e, ja, desca, b, ib, descb, work, lwork, info)
call pdptsv (n, nrhs, d, e, ja, desca, b, ib, descb, work, lwork, info)
call pcptsv (n, nrhs, d, e, ja, desca, b, ib, descb, work, lwork, info)
call pzptsv (n, nrhs, d, e, ja, desca, b, ib, descb, work, lwork, info)
```


## Description

This routine solves a system of linear equations
$A(1: n, j a: j a+n-1) * X=B(i b: i b+n-1,1: n r h s)$
where $A(1: n, \quad j a: j a+n-1)$ is an $n-b y-n$ real tridiagonal symmetric positive definite distributed matrix.

Cholesky factorization is used to factor a reordering of the matrix into $L L^{\prime}$.

## Input Parameters

n
nrhs
d
e
(global) INTEGER. The order of matrix $A(n \geq 0)$.
(global) INTEGER. The number of right-hand sides; the number of columns of the distributed submatrix $B$ (nrhs $\geq 0)$.
(local)
REAL for psptsv
DOUBLE PRECISION for pdptsv
COMPLEX for pcptsv
DOUBLE COMPLEX for pzptsv.
Pointer to local part of global vector storing the main diagonal of the matrix. (local)
REAL for psptsv
DOUBLE PRECISION for pdptsv
COMPLEX for pcptsv

DOUBLE COMPLEX for pzptsv.
Pointer to local part of global vector storing the upper diagonal of the matrix. Globally, $d u(\mathrm{n})$ is not referenced, and $d u$ must be aligned with $d$.
(global) INTEGER. The index in the global array $A$ that points to the start of the matrix to be operated on (which may be either all of $A$ or a submatrix of $A$ ).
(global and local) INTEGER array of dimension dlen.
if $1 d$ type (dtype_a=501 or 502), dlen $>=7$;
if $2 d$ type (dtype_a=1), dlen $>=9$.
The array descriptor for the distributed matrix $A$. Contains information of mapping of $A$ to memory.
(local)
REAL for psptsv
DOUBLE PRECISION for pdptsv
COMPLEX for pcptsv
DOUBLE COMPLEX for pzptsv.
Pointer into the local memory to an array of local lead dimension $11 d \_b \geq \mathrm{NB}$. On entry, this array contains the local pieces of the right hand sides $B(i b: i b+n-1,1: n r h s)$.
(global) INTEGER. The row index in the global array $b$ that points to the first row of the matrix to be operated on (which may be either all of $b$ or a submatrix of $B$ ).
(global and local) INTEGER array of dimension dlen.
if $1 d$ type ( $d$ type_b $=502$ ), dlen $\geq 7$;
if $2 d$ type $\left(d t y p e \_b=1\right)$, dlen $\geq 9$.
The array descriptor for the distributed matrix $B$. Contains information of mapping of $B$ to memory.
(local).
REAL for psptsv
DOUBLE PRECISION for pdptsv
COMPLEX for pcptsv
DOUBLE COMPLEX for pzptsv.
Temporary workspace. This space may be overwritten in between calls to routines. work must be the size given in lwork.
(local or global) INTEGER.
Size of user-input workspace work. If lwork is too small, the minimal acceptable size will be returned in work(1) and an error code is returned. l work $\geq\left(12 *_{\mathrm{NPCOL}}+3 *_{\mathrm{NB}}\right)+\max \left(\left(10+2 *_{\min }(100, n r h s)\right)^{*} \mathrm{NPCOL}+4{ }^{*}\right.$ nrhs, $8 *$ NPCOL).

## Output Parameters

d	On exit, this array contains information containing the factors of the matrix. Must be of size $\geq$ desca( nb_).
$e$	On exit, this array contains information containing the factors of the matrix. Must be of size $\geq$ desca ( $n b_{-}$).
b	On exit, this contains the local piece of the solutions distributed matrix $X$.
work	On exit, work(1) contains the minimal lwork.
info	(local) INTEGER. If info $=0$, the execution is successful.
	$<0$ : If the $i$-th argument is an array and the $j$-entry had an illegal value, then info $=-\left(i^{*} 100+j\right)$, if the $i$-th argument is a scalar and had an illegal value, then info $=-i$.
	$>0$ : If info $=k \leq$ NPROCS, the submatrix stored on processor info and factored locally was not positive definite, and the factorization was not completed.
	If info $=k>$ NPROCS, the submatrix stored on processor info-NPROCS representing interactions with other processors was not positive definite, and the factorization was not completed.

## p?gels

Solves overdetermined or underdetermined linear systems involving a matrix of full rank.

## Syntax

```
call psgels (trans, m, n, nrhs, a, ia, ja, desca, b, ib, jb, descb,
 work, lwork, info)
call pdgels (trans, m, n, nrhs, a, ia, ja, desca, b, ib, jb, descb,
 work, lwork, info)
call pcgels (trans, m, n, nrhs, a, ia, ja, desca, b, ib, jb, descb,
 work, lwork, info)
call pzgels (trans, m, n, nrhs, a, ia, ja, desca, b, ib, jb, descb,
 work, lwork, info)
```


## Description

This routine solves overdetermined or underdetermined real/ complex linear systems involving an $m$-by-n matrix $\operatorname{sub}(A)=A(i a: i a+m-1, j a: j a+n-1)$, or its transpose/ conjugate-transpose, using a $Q R$ or $L Q$ factorization of $\operatorname{sub}(A)$. It is assumed that $\operatorname{sub}(A)$ has full rank.

The following options are provided:

1. If $\operatorname{trans}=$ ' $N$ ' and $m \geq n$ : find the least squares solution of an overdetermined system, that is, solve the least squares problem
minimize $\|\operatorname{sub}(B)-\operatorname{sub}(A) X\|$
2. If trans $=$ ' N ' and $m<n$ : find the minimum norm solution of an underdetermined system $\operatorname{sub}(A) X=\operatorname{sub}(B)$.
3. If trans = 'T' and $m \geq n$ : find the minimum norm solution of an undetermined system $\operatorname{sub}(A)^{T} X$ $=\operatorname{sub}(B)$.
4. If $t$ rans $=$ ' $T$ ' and $m<n$ : find the least squares solution of an overdetermined system, that is, solve the least squares problem

$$
\text { minimize }\left\|\operatorname{sub}(B)-\operatorname{sub}(A)^{T} X\right\|
$$

where $\operatorname{sub}(B)$ denotes $B(i b: i b+m-1, j b: j b+n r h s-1)$ when trans $=' \mathrm{~N}$ ' and $B(i b: i b+n-1$, $j$ b:jb+nrhs-1) otherwise. Several right hand side vectors $b$ and solution vectors $x$ can be handled in a single call;
When when trans = ' n ', the solution vectors are stored as the columns of the $n$-by-nrhs right hand side matrix $\operatorname{sub}(B)$ and the $m$-by-nrhs right hand side matrix $\operatorname{sub}(B)$ otherwise.

## Input Parameters

trans	(global) CHARACTER. Must be ' N ', or ' $\mathrm{T}^{\prime}$ '.
	If trans $=$ ' $N$ ', the linear system involves matrix $\operatorname{sub}(A)$;
	If trans $=$ ' T ', the linear system involves the transposed matrix $A^{T}$ (for real flavors only).
m	(global) INTEGER. The number of rows in the distributed submatrix sub $(A)$ ( $m$ $\geq 0$ ).
n	(global) INTEGER. The number of columns in the distributed submatrix sub ( $A$ ) ( $\mathrm{n} \geq 0$ ).
nrhs	(global) INTEGER. The number of right-hand sides; the number of columns in the distributed submatrices $\operatorname{sub}(B)$ and $X$. (nrhs $\geq 0$ ).


a	(local)
	REAL for psgels
	DOUBLE PRECISION for pdgels
	COMPLEX for pcgels
	DOUBLE COMPLEX for pzgels.
	Pointer into the local memory to an array of dimension (lld_a,
	$L O C C(j a+n-1))$. On entry, contains the m-by-n matrix $A$.
ia,ja	(global) INTEGER. The row and column indices in the global array a indicating the first row and the first column of the submatrix $A$, respectively.
desca	(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix $A$.
$b$	(local)
	REAL for psgels
	DOUBLE PRECISION for pdgels
	COMPLEX for pcgels
	DOUBLE COMPLEX for pzgels.
	Pointer into the local memory to an array of local dimension (lld_b, $\operatorname{LOCc}(j b+n r h s-1))$. On entry, this array contains the local pieces of the distributed matrix $B$ of right-hand side vectors, stored columnwise; $\operatorname{sub}(B)$ is $m$-by-nrhs if trans=' N ', and $n$-by-nrhs otherwise.
ib, jb	(global) INTEGER. The row and column indices in the global array $b$ indicating the first row and the first column of the submatrix $B$, respectively.
descb	(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix $B$.
work	(local)
	REAL for psgels
	DOUBLE PRECISION for pdgels
	COMPLEX for pcgels
	DOUBLE COMPLEX for pzgels.
	Workspace array with dimension lwork.
I work	(local or global)
	INTEGER.The dimension of the array work
	1 work is local input and must be at least
	lwork $>=1$ tau $+\max (1 \mathrm{wf}, 1 \mathrm{ws})$ where if $m \geq n$, then
	$\begin{aligned} & \text { ltau }=\text { numroc }\left(j a+\min (m, n)-1, n b \_a, \text { MYCOL, csrc_a, NPCOL }\right), \\ & \text { lwf }=n b \_a *\left(\operatorname{mpa} 0+n q a 0+n b \_a\right) \end{aligned}$

```
lws = max((nb_a*(nb_a-1))/2,(nrhsqb0 + mpb0)*nb_a) + nb_a a nb_a
else
Itau= numroc(ia+min(m,n)-1, mb_a,MYROW, rsrc_a, NPROW),
lwf =mb_a * (mpa0 + nqa0 + mb_a)
lws = max((mb_a*(mb_a-1))/2, (npb0 + max(nqa0 +
numroc(numroc(n+iroffb, mb_a, 0, 0, NPROW), mb_a, 0, 0, lcmp),
nrhsqb0))*mb_a) + mb_a * mb_a
```

End if
where $1 \mathrm{cmp}=1 \mathrm{~cm} /$ NPROW with $1 \mathrm{~cm}=\mathrm{ilcm}(\mathrm{NPROW}$, NPCOL),

```
iroffa=mod(ia-1,mb_a),
icoffa=mod(ja-1, nb_a),
iarow = indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW),
iacol= indxg2p(ja, nb_a, MYROW, rsrc_a,NPROW)
mpa0 = numroc(m+iroffa, mb_a, MYROW, iarow, NPROW),
nqa0 = numroc(n+icoffa, nb_a, MYCOL, iacol, NPCOL),
iroffb = mod(ib-1, mb_b),
icoffb = mod(jb-1, nb_b),
ibrow = indxg2p(ib, mb_b, MYROW, rsrc_b,
NPROW),
ibcol = indxg2p(jb, nb_b, MYCOL, csrc_b, NPCOL),
mpb0 = numroc(m+iroffb, mb_b, MYROW, icrow, NPROW),
nqb0 = numroc(n+icoffb, nb_b, MYCOL, ibcol, NPCOL),
ilcm, indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL,
NPROW and NPCOL can be determined by calling the subroutine
blacs_gridinfo.
```

If 1 work $=-1$, then 1 work is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

## Output Parameters

On exit, If $m \geq n, \operatorname{sub}(A)$ is overwritten by the details of its $Q R$ factorization as returned by p?geqrf; if $m<n, \operatorname{sub}(A)$ is overwritten by details of its $L Q$ factorization as returned by p?gelqf.
b
On exit, $\operatorname{sub}(B)$ is overwritten by the solution vectors, stored columnwise: if trans $=$ ' N ' and $m \geq n$, rows 1 to $n$ of $\operatorname{sub}(B)$ contain the least squares solution vectors; the residual sum of squares for the solution in each column is given by the sum of squares of elements $n+1$ to $m$ in that column;
if trans $=$ ' N ' and $m<n$, rows 1 to $n$ of $\operatorname{sub}(B)$ contain the minimum norm solution vectors;
if trans $=$ ' T ' and $m \geq n$, rows 1 to $m$ of $\operatorname{sub}(B)$ contain the minimum norm solution vectors;
if trans $=$ ' $T$ ' and $m<n$, rows 1 to $m$ of $\operatorname{sub}(B)$ contain the least squares solution vectors; the residual sum of squares for the solution in each column is given by the sum of squares of elements $m+1$ to $n$ in that column.
work (1) On exit work (1) contains the minimum value of lwork required for optimum performance.
info (global) INTEGER.
$=0$ : the execution is successful.
<0: if the $i$-th argument is an array and the $j$-entry had an illegal value, then info $=-\left(i^{*} 100+j\right)$, if the $i$-th argument is a scalar and had an illegal value, then info $=-i$.

## p?syev

Computes selected eigenvalues and eigenvectors of a symmetric matrix.

## Syntax

```
call pssyev (jobz, uplo, n, a, ia, ja, desca, w, z, iz, jz, descz, work,
 lwork, info)
call pdsyev (jobz, uplo, n, a, ia, ja, desca, w, z, iz, jz, descz, work,
 lwork, info)
```


## Description

This routine computes all eigenvalues and, optionally, eigenvectors of a real symmetric matrix $A$ by calling the recommended sequence of ScaLAPACK routines.
In its present form, the routine assumes a homogeneous system and makes no checks for consistency of the eigenvalues or eigenvectors across the different processes. Because of this, it is possible that a heterogeneous system may return incorrect results without any error messages.

## Input Parameters

$n p=$ the number of rows local to a given process.

```
nq= the number of columns local to a given process.
jobz (global).CHARACTER. Must be 'N' or 'V'.
 Specifies if it is necessary to compute the eigenvectors:
 If jobz='N', then only eigenvalues are computed.
 If jobz='V', then eigenvalues and eigenvectors are computed.
uplo (global).CHARACTER. Must be 'U' or 'L'.
 Specifies whether the upper or lower triangular part of the symmetric matrix }
 is stored:
 If uplo='U', a stores the upper triangular part of }A\mathrm{ .
If uplo='L',a stores the lower triangular part of }A\mathrm{ .
(global) INTEGER. The number of rows and columns of the matrix A (}n\geq0)\mathrm{ .
(local)
REAL for pssyev.
DOUBLE PRECISION for pdsyev.
Block cyclic array of global dimension (n,n) and local dimension (lld_a,
LOCc(ja+n-1)). On entry, the symmetric matrix A. If uplo = 'v', only the
upper triangular part of }A\mathrm{ is used to define the elements of the symmetric
matrix. If uplo= 'L', only the lower triangular part of }A\mathrm{ is used to define the
elements of the symmetric matrix.
ia,ja (global) INTEGER. The row and column indices in the global array a
indicating the first row and the first column of the submatrix }A\mathrm{ , respectively.
desca
iz,jz
descz
work
I work
```

desca
$i z, j z$
descz
work

```
(global).CHARACTER. Must be 'N' or 'V'.
Specifies if it is necessary to compute the eigenvectors:
If \(j o b z=' N\) ', then only eigenvalues are computed.
If \(j o b z=' \mathrm{~V}\) ', then eigenvalues and eigenvectors are computed.
uplo (global).CHARACTER. Must be 'U' or 'L'.
Specifies whether the upper or lower triangular part of the symmetric matrix \(A\) is stored:
If uplo='U', a stores the upper triangular part of \(A\).
If uplo='L', a stores the lower triangular part of \(A\).
(global) INTEGER. The number of rows and columns of the matrix \(A(n \geq 0)\).
(local)
REAL for pssyev.
DOUBLE PRECISION for pdsyev.
Block cyclic array of global dimension (\(n, n\)) and local dimension (lld_a, \(\operatorname{LOCc}(j a+n-1)\)). On entry, the symmetric matrix \(A\). If uplo = ' u ', only the upper triangular part of \(A\) is used to define the elements of the symmetric matrix. If uplo = ' L ', only the lower triangular part of \(A\) is used to define the elements of the symmetric matrix.
ia, ja (global) INTEGER. The row and column indices in the global array a indicating the first row and the first column of the submatrix \(A\), respectively.
(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(A\).
(global) INTEGER. The row and column indices in the global array \(z\) indicating the first row and the first column of the submatrix \(Z\), respectively.
(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix \(Z\).
(local)
REAL for pssyev.
DOUBLE PRECISION for pdsyev.
Array, DIMENSION (lwork).
(local)
INTEGER. See below for definitions of variables used to define 1 work. If no eigenvectors are requested (\(j \circ b z=\) ' \(N\) ') then 1 work \(\geq 5{ }^{*} n+\) sizesytrd
+1 where
sizesytrd \(=\) The workspace requirement for p?sytrd and is max(NB * (\(n p\)
```

$+1), 3$ * NB).
If eigenvectors are requested ( $j \circ b z=$ ' $v$ ') then the amount of workspace required to guarantee that all eigenvectors are computed is:
qrmem $=2 * n-2$
$\operatorname{lwmin}=5 * n+n * l d c+\max ($ sizemqrleft, qrmem $)+1$
Variable definitions:

```
NB = desca(mb_) = desca(nb_) = * descz(mb_) = descz(nb_)
nn=max(n, NB, 2)
desca(rsrc_) = desca(rsrc_) = descz(rsrc_) =* descz(csrc_) = 0
np = numroc(nn, NB, 0, 0, NPROW)
nq= numroc(max(n, NB, 2), NB, 0, 0, NPCOL)
nrc = numroc(n, NB, myprowc, 0, NPROCS)
ldc = max(1, nrc)
sizemqrleft = The workspace requirement for p?ormtr when it's side
argument is 'L'.
With myprowc defined when a new context is created as:
call blacs_get(desca(ctxt_),0, contextc) call
blacs_gridinit(contextc, 'R', NPROCS, 1) call
blacs_gridinfo(contextc, nprowc, npcolc, myprowc, mypcolc)
```

If 1 work $=-1$, then 1 work is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

## Output Parameters

Z

On exit, the lower triangle (if uplo='L') or the upper triangle (if uplo='U') of $A$, including the diagonal, is destroyed.
(global).
REAL for pssyev
DOUBLE PRECISION for pdsyev
Array, DIMENSION (n).
On normal exit, the first $m$ entries contain the selected eigenvalues in ascending order.
(local).
REAL for pssyev
DOUBLE PRECISION for pdsyev
Array, global dimension ( $n, n$ ), local dimension (lld_z, LOCc(jz+n-1)).If

	$j 0 b z=$ ' $v$ ', then on normal exit the first $m$ columns of $z$ contain the orthonormal eigenvectors of the matrix corresponding to the selected eigenvalues. If $j 0 b z=$ ' N ', then $z$ is not referenced.
work (1)	On output, work (1) returns the workspace needed to guarantee completion. If the input parameters are incorrect, work (1) may also be incorrect. If jobz = 'n' work ( 1 ) = minimal (optimal) amount of workspace If jobz = 'v' work (1) = minimal workspace required to generate all the eigenvectors.
info	(global)   INTEGER.   If info $=0$, the execution is successful.
	If info $<0$ : If the $i$-th argument is an array and the $j$-entry had an illegal value, then info $=-\left(i^{*} 100+j\right)$,   if the $i$-th argument is a scalar and had an illegal value, then info $=-i$.
	If info $>0$ :   If info $=1$ through $n$, the $i$-th eigenvalue did not converge in ?steqr2 after a total of $30 n$ iterations.   If info $o n+1$, then $p$ ?syev has detected heterogeneity by finding that eigenvalues were not identical across the process grid. In this case, the accuracy of the results from p?syev cannot be guaranteed.

## p?syevx

Computes selected eigenvalues and, optionally, eigenvectors of a symmetric matrix.

## Syntax

```
call pssyevx (jobz, range, uplo, n, a, ia, ja, desca, vl, vu, il, iu,
 abstol, m, nz, w, orfac, z, iz, jz, descz, work, lwork, iwork, liwork,
 ifail, iclustr, gap, info)
call pdsyevx (jobz, range, uplo, n, a, ia, ja, desca, vl, vu, il, iu,
 abstol, m, nz, w, orfac, z, iz, jz, descz, work, lwork, iwork, liwork,
 ifail, iclustr, gap, info)
```


## Description

This routine computes selected eigenvalues and, optionally, eigenvectors of a real symmetric matrix $A$ by calling the recommended sequence of ScaLAPACK routines. Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues.

## Input Parameters

$n p=$ the number of rows local to a given process.
$n q=$ the number of columns local to a given process.

jobz	(global).CHARACTER*1. Must be 'N' or 'V'.
	Specifies if it is necessary to compute the eigenvectors:
	If $j 0 b z=1 N^{\prime}$, then only eigenvalues are computed.
	If jobz $=1 \mathrm{~V}$ ', then eigenvalues and eigenvectors are computed.
range	(global).CHARACTER*1. Must be 'A', 'V', or 'I'.
	If range $=$ ' $\mathrm{A}^{\prime}$, all eigenvalues will be found.
	If range $=$ ' V ', all eigenvalues in the half-open interval [ $\mathrm{vl}, \mathrm{vu}$ ] will be found.

uplo (global).CHARACTER*1. Must be 'U' or 'L'.
Specifies whether the upper or lower triangular part of the symmetric matrix $A$ is stored:
If uplo='U', a stores the upper triangular part of $A$.
If uplo='L', a stores the lower triangular part of $A$.
(global) INTEGER. The number of rows and columns of the matrix $A(n \geq 0)$.
(local).
REAL for pssyevx
DOUBLE PRECISION for pdsyevx.
Block cyclic array of global dimension ( $n, n$ ) and local dimension (lld_a, $\operatorname{LOCc}(j a+n-1))$. On entry, the symmetric matrix $A$. If uplo = ' $\mathrm{u}^{\prime}$, only the upper triangular part of $A$ is used to define the elements of the symmetric matrix. If uplo= 'L', only the lower triangular part of $A$ is used to define the elements of the symmetric matrix.
ia, ja (global) INTEGER. The row and column indices in the global array a indicating the first row and the first column of the submatrix $A$, respectively.
desca (global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix $A$.

vl, vu	(global)
REAL for pssyevx	
DOUBLE PRECISION for pdsyevx.	
If range $='^{\prime} V^{\prime}$, the lower and upper bounds of the interval to be searched for	
eigenvalues; vl $\leq$ vu.	
Not referenced if range $=^{\prime} A^{\prime}$ ' or ' I ' ' .	

can be stored in one process. No reorthogonalization will be done if orfac equals zero. A default value of $10^{3}$ is used if orfac is negative. orfac should be identical on all processes.
$i z, j z \quad$ (global) INTEGER. The row and column indices in the global array $z$ indicating the first row and the first column of the submatrix $Z$, respectively.
descz (global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix $Z . \operatorname{descz}\left(c t x t_{-}\right)$must equal desca( ctxt_ ).
(local)
REAL for pssyevx.
DOUBLE PRECISION for pdsyevx.
Array, DIMENSION (lwork).
lwork
(local) INTEGER. The dimension of the array work.
See below for definitions of variables used to define 1 work.
If no eigenvectors are requested $(j \circ b z=$ ' N ') then 1 work $\geq 5 * n+\max (5 * n n$, NB * $(n p 0+1))$.
If eigenvectors are requested $(j \circ b z=$ ' $v$ ') then the amount of workspace required to guarantee that all eigenvectors are computed is:

```
lwork \(>=5^{*} n+\max \left(5^{*} n n, n p 0 * m q 0+2 * N B * N B\right)+i c e i l(n e i g\),
NPROW*NPCOL)*nn
```

The computed eigenvectors may not be orthogonal if the minimal workspace is supplied and orfac is too small. If you want to guarantee orthogonality (at the cost of potentially poor performance) you should add the following to lwork: (clustersize-1)*n
where clustersize is the number of eigenvalues in the largest cluster, where a cluster is defined as a set of close eigenvalues:

```
{w(k),\ldots,w(k+clustersize-1)|
w(j+1)\leqw(j))+orfac*2*norm(A)}
Variable definitions:
neig \(=\) number of eigenvectors requested
```

```
\(\left.\mathrm{NB}=\operatorname{desca}(\mathrm{mb}]^{\prime}\right)=\operatorname{desca}\left(n b _\right)=\operatorname{descz}\left(m b _\right)=\operatorname{descz}\left(n b _\right)\)
```

$\left.\mathrm{NB}=\operatorname{desca}(\mathrm{mb}]^{\prime}\right)=\operatorname{desca}\left(n b \_\right)=\operatorname{descz}\left(m b \_\right)=\operatorname{descz}\left(n b \_\right)$
$n n=\max (n, N B, 2)$
$n n=\max (n, N B, 2)$
$\operatorname{desca}(\operatorname{rsrc})=\operatorname{desca}\left(n b \_\right)=\operatorname{descz}\left(r s r c \_\right)=\operatorname{descz}(\operatorname{csrc})=0$
$\operatorname{desca}(\operatorname{rsrc})=\operatorname{desca}\left(n b \_\right)=\operatorname{descz}\left(r s r c \_\right)=\operatorname{descz}(\operatorname{csrc})=0$
np0 $=$ numroc (nn, NB, 0,0, NPROW)
np0 $=$ numroc (nn, NB, 0,0, NPROW)
$m q 0=$ numroc(max(neig, NB, 2), NB, $0,0, N P C O L)$ iceil $(x, y)$ is a
$m q 0=$ numroc(max(neig, NB, 2), NB, $0,0, N P C O L)$ iceil $(x, y)$ is a
ScaLAPACK function returning ceiling $(x / y)$

```
ScaLAPACK function returning ceiling \((x / y)\)
```

When 1 work is too small:
If lwork is too small to guarantee orthogonality, p? syevx attempts to maintain orthogonality in the clusters with the smallest spacing between the eigenvalues.
If 1work is too small to compute all the eigenvectors requested, no computation is performed and info=-23 is returned. Note that when range='v', p?syevx does not know how many eigenvectors are requested until the eigenvalues are computed. Therefore, when range='v' and as long as 1work is large enough to allow p? syevx to compute the eigenvalues, p?syevx will compute the eigenvalues and as many eigenvectors as it can.

Relationship between workspace, orthogonality \& performance: Greater performance can be achieved if adequate workspace is provided. On the other hand, in some situations, performance can decrease as the workspace provided increases above the workspace amount shown below:

For optimal performance, greater workspace may be needed, that is, lwork $\geq \max \left(1\right.$ work, $5^{*}{ }^{n}+$ nsytrd_lwopt) Where:
lwork, as defined previously, depends upon the number of eigenvectors requested, and
nsytrd_1wopt $=n+2 *(a n b+1) *(4 * n p s+2)+(n p s+3) * n p s$
anb $=$ pjlaenv (desca(ctxt_), 3, 'p?syttrd', 'L', $0,0,0,0$ )
sqnpc $=\operatorname{int}(\operatorname{sqrt}(d b l e($ NPROW * NPCOL $)))$
$n p s=\max \left(\right.$ numroc $(n, 1,0,0, s q n p c), 2^{*}$ anb $)$
numroc is a ScaLAPACK tool functions;
pjlaenv is a ScaLAPACK environmental inquiry function MYROW, MYCOL, NPROW and NPCOL can be determined by calling the subroutine blacs_gridinfo.

For large $n$, no extra workspace is needed, however the biggest boost in performance comes for small $n$, so it is wise to provide the extra workspace (typically less than a Megabyte per process).
If clustersize $\geq n / \operatorname{sqrt}($ NPROW*NPCOL), then providing enough space to compute all the eigenvectors orthogonally will cause serious degradation in performance. In the limit (that is, clustersize $=n-1$ ) p?stein will perform no better than ?stein on 1 processor.
For clustersize $=n /$ sqrt(NPROW*NPCOL) reorthogonalizing all eigenvectors will increase the total execution time by a factor of 2 or more. For clustersize $>n / \operatorname{sqrt}\left(\mathrm{NPROW}^{*} \mathrm{NPCOL}\right)$ execution time will grow as the
square of the cluster size, all other factors remaining equal and assuming enough workspace. Less workspace means less reorthogonalization but faster execution.

If 1 work $=-1$, then 1 work is global input and a workspace query is assumed; the routine only calculates the size required for optimal performance for all work arrays. Each of these values is returned in the first entry of the corresponding work arrays, and no error message is issued by pxerbla.
iwork (local) INTEGER. Workspace array.
liwork (local) INTEGER, dimension of iwork.
liwork $\geq 6$ * nnp
Where: $n n p=\max \left(n\right.$, NPROW $\left.^{*}{ }_{\text {NPCOL }}+1,4\right)$
If liwork $=-1$, then liwork is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

## Output Parameters

On exit, the lower triangle (if uplo = 'L') or the upper triangle (if uplo= ' U ') of $A$, including the diagonal, is overwritten.
(global) INTEGER. The total number of eigenvalues found; $0 \leq m \leq n$.
(global).
REAL for pssyevx
DOUBLE PRECISION for pdsyevx
Array, DIMENSION (n).
The first $m$ elements contain the selected eigenvalues in ascending order.
z
(local).
REAL for pssyevx
DOUBLE PRECISION for pdsyevx
Array, global dimension ( $n, n$ ),
local dimension (lld_z, LOCc(jz+n-1))
If jobz $=1 \mathrm{~V}$ ', then on normal exit the first $m$ columns of $z$ contain the orthonormal eigenvectors of the matrix corresponding to the selected eigenvalues. If an eigenvector fails to converge, then that column of $z$ contains the latest approximation to the eigenvector, and the index of the eigenvector is returned in ifail.
If $j o b z=$ ' $N$ ', then $z$ is not referenced.

work (1)	On exit, returns workspace adequate workspace to allow optimal performance.
iwork(1)	On return, iwork (1) contains the amount of integer workspace required
ifail	(global) INTEGER.Array, DIMENSION (n).
	If $j o b z=' \mathrm{~V}$ ', then on normal exit, the first $m$ elements of ifail are zero. If (mod(info,2).ne.0) on exit, then ifail contains the indices of the eigenvectors that failed to converge.
	If $j 0 b z=$ ' N ', then ifail is not referenced.
iclustr	(global) Integer.
	Array, DIMENSION (2*NPROW*NPCOL)
	This array contains indices of eigenvectors corresponding to a cluster of eigenvalues that could not be reorthogonalized due to insufficient workspace (see lwork, orfac and info). Eigenvectors corresponding to clusters of eigenvalues indexed iclustr $(2 * i-1)$ to iclustr $(2 * i)$, could not be reorthogonalized due to lack of workspace. Hence the eigenvectors corresponding to these clusters may not be orthogonal. iclustr() is a zero terminated array. (iclustr( $2 * k$ ).ne.0.and. iclustr $(2 * k+1$ ).eq.0) if and only if $k$ is the number of clusters.   iclustr is not referenced if jobz $=$ ' N '
gap	(global)
	REAL for pssyevx
	DOUBLE PRECISION for pdsyevx
	Array, DIMENSION (NPROW*NPCOL)
	This array contains the gap between eigenvalues whose eigenvectors could not be reorthogonalized. The output values in this array correspond to the clusters indicated by the array iclustr. As a result, the dot product between eigenvectors corresponding to the $i^{\text {th }}$ cluster may be as high as $\left(C^{*} n\right) /$ gap(i) where $C$ is a small constant.
info	(global) Integer.
	If info $=0$, the execution is successful.
	If info<0:
	If the $i$-th argument is an array and the $j$-entry had an illegal value, then info $=-\left(i^{*} 100+j\right)$, if the $i$-th argument is a scalar and had an illegal value, then info $=-i$.
	If info $>0$ : if $(\bmod ($ info,2 $) . n e .0)$, then one or more eigenvectors failed to converge. Their indices are stored in ifail. Ensure abstol $=2.0$ *p? lamch('u')
	if $(\bmod (\operatorname{info} / 2,2)$.ne. 0$)$,then eigenvectors corresponding to one or more clusters of eigenvalues could not be reorthogonalized because of insufficient

workspace.The indices of the clusters are stored in the array iclustr. if ( $\bmod ($ info/4,2).ne. 0 ), then space limit prevented $p$ ? syevx from computing all of the eigenvectors between vl and vu . The number of eigenvectors computed is returned in $n z$. if (mod(info/8,2).ne.0), then p?stebz failed to compute eigenvalues. Ensure abstol=2.0*p?lamch('U').

## p?heevx

Computes selected eigenvalues and, optionally, eigenvectors of a Hermitian matrix.

## Syntax

```
call pcheevx (jobz, range, uplo, n, a, ia, ja, desca, vl, vu, il, iu,
 abstol, m, nz, w, orfac, z, iz, jz, descz, work, lwork, rwork, lrwork,
 iwork, liwork, ifail, iclustr, gap, info)
call pzheevx (jobz, range, uplo, n, a, ia, ja, desca, vl, vu, il, iu,
 abstol, m, nz, w, orfac, z, iz, jz, descz, work, lwork, rwork, lrwork,
 iwork, liwork, ifail, iclustr, gap, info)
```


## Description

This routine computes selected eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix $A$ by calling the recommended sequence of ScaLAPACK routines. Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues.

## Input Parameters

$n p=$ the number of rows local to a given process.
$n q=$ the number of columns local to a given process.
jobz (global).CHARACTER*1. Must be 'N' or 'V'.
Specifies if it is necessary to compute the eigenvectors:
If $j o b z=' N$ ', then only eigenvalues are computed.
If $j o b z=' V '$, then eigenvalues and eigenvectors are computed.

range	(global).CHARACTER*1. Must be 'A', 'V', or 'I'.
	If range $=$ ' A ', all eigenvalues will be found.
	If range $=$ ' V ', all eigenvalues in the half-open interval
	[ $\mathrm{vl}, \mathrm{vu}$ ] will be found.
	If range $=$ I $I$, the eigenvalues with indices $i l$ through iu will be found.
uplo	Specifies whether the upper or lower triangular part of the Hermitian matrix $A$ is stored:
	If upIo $=1 \mathrm{U}$ ', a stores the upper triangular part of $A$.
	If uplo = 'L', a stores the lower triangular part of $A$.
n	(global) INTEGER. The number of rows and columns of the matrix $A(n \geq 0)$.
a	(local).
	COMPLEx for pcheevx
	DOUBLE COMPLEX for pzheevx.
	Block cyclic array of global dimension ( $n, n$ ) and local dimension (1ld_a, $\operatorname{LOCc}(j a+n-1))$. On entry, the Hermitian matrix $A$. If uplo $=$ ' u ', only the upper triangular part of $A$ is used to define the elements of the symmetric matrix. If uplo = 'L', only the lower triangular part of $A$ is used to define the elements of the Hermitian matrix.
ia,ja	(global) INTEGER. The row and column indices in the global array a indicating the first row and the first column of the submatrix $A$, respectively.
desca	(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix $A$.If desca( ctxt_ ) is incorrect, p?heevx cannot guarantee correct error reporting
v1, vu	(global)
	REAL for pcheevx
	DOUBLE PRECISION for pzheevx.
	If range $=' \mathrm{~V}$ ', the lower and upper bounds of the interval to be searched for eigenvalues;
	Not referenced if range = 'A' or 'I'.
il, iu	(global)
	INTEGER. If range $=1 I$ ', the indices of the smallest and largest eigenvalues to be returned.
	Constraints:
	il $\geq 1$
	$\min (i l, n) \leq i u \leq n$
	Not referenced if range $=$ ' ${ }^{\text {' }}$ ' ${ }^{\text {r }}$ 'V'.


abstol	(global).
	REAL for pcheevx
	DOUBLE PRECISION for pzheevx.
	If jobz='v', setting abstol to p? lamch(context, 'U') yields the most orthogonal eigenvectors.
	The absolute error tolerance for the eigenvalues. An approximate eigenvalue is accepted as converged when it is determined to lie in an interval $[a, b]$ of width less than or equal to abstol + eps * $\max (\|a\|,\|b\|)$,   where eps is the machine precision. If abstol is less than or equal to zero, then eps*norm $(\mathrm{T})$ will be used in its place, where norm $(\mathrm{T})$ is the 1-norm of the tridiagonal matrix obtained by reducing $A$ to tridiagonal form.
	Eigenvalues will be computed most accurately when abstol is set to twice the underflow threshold $2 *$ p? lamch('S') not zero.If this routine returns with ((mod(info,2).ne.0).or. $(\bmod (i n f o / 8,2) . n e .0))$, indicating that some eigenvalues or eigenvectors did not converge, try setting abstol to 2*p? lamch('S').
orfac	(global).
	REAL for pcheevx
	DOUBLE PRECISION for pzheevx.
	Specifies which eigenvectors should be reorthogonalized. Eigenvectors that correspond to eigenvalues which are within tol=orfac* $\operatorname{norm}(A)$ of each other are to be reorthogonalized. However, if the workspace is insufficient (see lwork), tol may be decreased until all eigenvectors to be reorthogonalized can be stored in one process. No reorthogonalization will be done if orfac equals zero. A default value of $10^{3}$ is used if orfac is negative. orfac should be identical on all processes.
iz,jz	(global) INTEGER. The row and column indices in the global array $z$ indicating the first row and the first column of the submatrix $Z$, respectively.
descz	(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix $Z$. descz( ctxt_ ) must equal desca( ctxt_ ).
work	(local)
	COMPLEX for pcheevx
	DOUBLE COMPLEX for pzheevx.
	Array, DIMENSION (lwork).


lwork	(local).
	INTEGER. The dimension of the array work.
	If only eigenvalues are requested:
	1 work $\geq n+\max (\mathrm{NB} *(n p 0+1), 3)$
	If eigenvectors are requested:
	1 work $\geq n+(n p 0+m q 0+\mathrm{NB}) * \mathrm{NB}$
	with $n q 0=\operatorname{numroc}(\mathrm{nn}, \mathrm{NB}, 0,0, \mathrm{NPCOL})$.
	lwork $>=5 *_{n}+\max \left(5 *_{n n}, n p 0 * m q 0+2 * N B * N B\right)+i c e i l(n e i g$,
	NPROW*NPCOL)*n
	For optimal performance, greater workspace is needed, that is
	lwork $\geq \max$ (lwork, nhetrd_lwork)
	where 1 work is as defined above, and
	$n h e t r d \_l w o r k=n+2 *(a n b+1) *(4 * n p s+2)+(n p s+1) * n p s$
	ictxt $=$ desca(ctxt_)
	$a \mathrm{nb}=\mathrm{pj} \operatorname{laenv}($ ictxt, 3 , 'pchettrd', 'L', $0,0,0,0)$
	$\operatorname{sqnpc}=\operatorname{sqrt}(d \mathrm{lble}(\mathrm{NPROW} *$ NPCOL $)$ )
	$n p s=\max ($ numroc $(n, 1,0,0, s q n p c), 2 * a n b)$
	If 1 work $=-1$, then 1 work is global input and a workspace query is assumed; the routine only calculates the size required for optimal performance for all work arrays. Each of these values is returned in the first entry of the corresponding work arrays, and no error message is issued by pxerbla.
rwork	(local)
	REAL for pcheevx
	DOUBLE PRECISION for pzheevx.
	Workspace array, DIMENSION (lrwork).
Irwork	(local)
	INTEGER. The dimension of the array work.
	See below for definitions of variables used to define 1 work.
	If no eigenvectors are requested ( $\mathrm{jobz}={ }^{\prime} \mathrm{N}$ ') then 1 rwork $\geq 5 * n n+4 * n$
	If eigenvectors are requested ( $j \circ b z=$ ' $v$ ') then the amount of workspace required to guarantee that all eigenvectors are computed is:
	lrwork $\geq 4 *_{n}+\max \left(5 *_{n n}, n p 0 * m q 0+2 * N B * N B\right)+i c e i l(n e i g, ~$
	NPROW*NPCOL)*nn
	The computed eigenvectors may not be orthogonal if the minimal workspace is supplied and orfac is too small. If you want to guarantee orthogonality (at the cost of potentially poor performance) you should add the following to lrwork: (clustersize-1)*n

where clustersize is the number of eigenvalues in the largest cluster, where a cluster is defined as a set of close eigenvalues:

```
{w(k),\ldots,w(k+clustersize-1)|
w(j+1)\leqw(j)+ orfac*2*norm(A)}
```

Variable definitions:
neig $=$ number of eigenvectors requested
$\mathrm{NB}=\operatorname{desca}\left(m b \_\right)=\operatorname{desca}\left(n b \_\right)=\operatorname{descz}\left(m b \_\right)=\operatorname{descz}\left(n b b_{-}\right)$
$n n=\max (n, \mathrm{NB}, 2)$
$\operatorname{desca}\left(r s r c_{-}\right)=\operatorname{desca}\left(n b \_\right)=\operatorname{descz}\left(r s r c_{-}\right)=\operatorname{descz}\left(\operatorname{csrc} C_{-}\right)=0$
np0 $=$ numroc (nn, NB, 0,0 , NPROW)
$m q 0=$ numroc(max(neig, NB, 2$), \mathrm{NB}, 0,0, \operatorname{NPCOL})$ iceil $(x, y)$ is a
ScaLAPACK function returning ceiling $(x / y)$
When 1 rwork is too small:
If 1 work is too small to guarantee orthogonality, p? heevx attempts to maintain orthogonality in the clusters with the smallest spacing between the eigenvalues.
If Iwork is too small to compute all the eigenvectors requested, no computation is performed and info=-23 is returned. Note that when range='v', p?heevx does not know how many eigenvectors are requested until the eigenvalues are computed. Therefore, when range='v' and as long as lwork is large enough to allow p? heevx to compute the eigenvalues, $p$ ?heevx will compute the eigenvalues and as many eigenvectors as it can.

Relationship between workspace, orthogonality \& performance: If clustersize $\geq \mathrm{n} / \operatorname{sqrt}\left(\mathrm{NPROW}^{*}\right.$ NPCOL $)$, then providing enough space to compute all the eigenvectors orthogonally will cause serious degradation in performance. In the limit (that is, clustersize $=n-1$ ) p?stein will perform no better than ?stein on 1 processor.
For clustersize $=n / \operatorname{sqrt}($ NPROW*NPCOL $)$ reorthogonalizing all eigenvectors will increase the total execution time by a factor of 2 or more. For clustersize $>n / \operatorname{sqrt}\left(\right.$ NPROW*NPCOL $\left.^{2}\right)$ execution time will grow as the square of the cluster size, all other factors remaining equal and assuming enough workspace. Less workspace means less reorthogonalization but faster execution.

If 1 work $=-1$, then 1 work is global input and a workspace query is assumed; the routine only calculates the size required for optimal performance for all work arrays. Each of these values is returned in the first entry of the corresponding work arrays, and no error message is issued by pxerbla.
iwork (local) INTEGER. Workspace array.

```
liwork (local) INTEGER, dimension of iwork.
 liwork \(\geq 6\) * nnp
Where: \(n n p=\max \left(n\right.\), NPROW*NPCOL \(^{+1,4)}\)
```

If liwork $=-1$, then liwork is global input and a workspace query is
assumed; the routine only calculates the minimum and optimal size for all
work arrays. Each of these values is returned in the first entry of the
corresponding work array, and no error message is issued by pxerbla.

## Output Parameters

On exit, the lower triangle (if uplo='L') or the upper triangle (if uplo= ' U ') of $A$, including the diagonal, is overwritten.
(global) INTEGER. The total number of eigenvalues found; $0 \leq m \leq n$.
(global) INTEGER.Total number of eigenvectors computed. $0 \leq n z \leq m$. The number of columns of $z$ that are filled. If jobz.ne. 'v', $n z$ is not referenced. If jobz.eq. 'v', $n z=m$ unless the user supplies insufficient space and p ?heevx is not able to detect this before beginning computation. To get all the eigenvectors requested, the user must supply both sufficient space to hold the eigenvectors in $z\left(\operatorname{m.le} . \operatorname{descz}\left(n_{\_}\right)\right)$and sufficient workspace to compute them. (See lwork).p?heevx is always able to detect insufficient space without computation unless range.eq. 'v'.
(global).
REAL for pcheevx
DOUBLE PRECISION for pzheevx
Array, DIMENSION ( $n$ ).
The first $m$ elements contain the selected eigenvalues in ascending order.
(local).
COMPLEX for pcheevx
DOUBLE COMPLEX for pzheevx
Array, global dimension ( $n, n$ ),
local dimension (11d_z, LOCc (jz+n-1))
If $j o b z=' \mathrm{~V} '$, then on normal exit the first $m$ columns of $z$ contain the orthonormal eigenvectors of the matrix corresponding to the selected eigenvalues. If an eigenvector fails to converge, then that column of $z$ contains the latest approximation to the eigenvector, and the index of the eigenvector is returned in ifail.
If $j o b z=$ ' N ', then $z$ is not referenced.

rwork	On exit, returns workspace adequate workspace to allow optimal performance. (local).
	REAL for pcheevx
	DOUBLE PRECISION for pzheevx
	Array, DIMENSION (lrwork).
	On return, rwork (1) contains the optimal amount of workspace required for efficient execution.
	if jobz='n' rwork (1) = optimal amount of workspace required to compute eigenvalues efficiently.
	if jobz $=$ ' $\mathrm{v}^{\prime}$ rwork (I) = optimal amount of workspace required to compute eigenvalues and eigenvectors efficiently with no guarantee on orthogonality. If range $={ }^{\prime} \mathrm{v}^{\prime}$, it is assumed that all eigenvectors may be required.
iwork(1)	(local)
	On return, iwork (1) contains the amount of integer workspace required.
ifail	(global) INTEGER.
	Array, DIMENSION ( $n$ ).
	If jobz $=$ ' V , then on normal exit, the first $m$ elements of ifail are zero. If (mod(info,2).ne.0) on exit, then ifail contains the indices of the eigenvectors that failed to converge.
	If jobz = ' N ', then ifail is not referenced.
iclustr	(global) INTEGER.
	Array, DIMENSION ( 2 * ${ }^{\text {NPROW* }}$ NPCOL $)$
	This array contains indices of eigenvectors corresponding to a cluster of eigenvalues that could not be reorthogonalized due to insufficient workspace (see 1 work, orfac and info).Eigenvectors corresponding to clusters of eigenvalues indexed iclustr $(2 * i-1)$ to iclustr $(2 * i)$, could not be reorthogonalized due to lack of workspace. Hence the eigenvectors corresponding to these clusters may not be orthogonal. iclustr() is a zero terminated array. (iclustr( $2^{*} k$ ).ne.0.and. iclustr $\left(2^{*} k+1\right)$.eq.0) if and only if $k$ is the number of clusters. iclustr is not referenced if jobz $=$ ' N '
gap	(global)
	REAL for pcheevx
	DOUBLE PRECISION for pzheevx
	Array, DIMENSION (NPROW*NPCOL)
	This array contains the gap between eigenvalues whose eigenvectors could not be reorthogonalized. The output values in this array correspond to the clusters

indicated by the array iclustr. As a result, the dot product between eigenvectors corresponding to the $i^{\text {th }}$ cluster may be as high as $\left(C^{*} n\right) /$ gap(i) where $C$ is a small constant.
(global) INTEGER.
If info $=0$, the execution is successful.
If info< 0 :
If the $i$-th argument is an array and the $j$-entry had an illegal value, then info $=-(i * 100+j)$, if the $i$-th argument is a scalar and had an illegal value, then info $=-i$. If info $>0$ :
if ( $\bmod ($ info, 2 ).ne.0), then one or more eigenvectors failed to converge. Their indices are stored in ifail. Ensure abstol=2.0*p?1amch('u') if ( $\bmod ($ info/2,2).ne.0),then eigenvectors corresponding to one or more clusters of eigenvalues could not be reorthogonalized because of insufficient workspace. The indices of the clusters are stored in the array iclustr. if ( $\bmod ($ info/4,2).ne. 0 ), then space limit prevented p? syevx from computing all of the eigenvectors between vl and vu . The number of eigenvectors computed is returned in nz . if (mod(info/8,2).ne.0), then p?stebz failed to compute eigenvalues. Ensure abstol=2.0*p?lamch('U').

## p?gesvd

Computes the singular value decomposition of a general matrix, optionally computing the left and/or right singular vectors.

## Syntax

```
call psgesvd (jobu, jobvt, m, n, a, ia, ja, desca, s, u, iu, ju, descu,
```

    vt, ivt, jvt, descvt, work, lwork, info)
    call pdgesvd ( jobu, jobvt, m, $n, ~ a, ~ i a, ~ j a, ~ d e s c a, ~ s, ~ u, ~ i u, ~ j u, ~ d e s c u, ~$
vt, ivt, jvt, descvt, work, lwork, info)

## Description

This routine computes the singular value decomposition (SVD) of an m-by-n matrix $A$, optionally computing the left and/or right singular vectors. The SVD is written

$$
A=U \Sigma V^{T}
$$

where $\Sigma$ is an $m$-by- $n$ matrix which is zero except for its $\min (m, n)$ diagonal elements, $U$ is an $m$-by- $m$ orthogonal matrix, and $V$ is an $n$-by- $n$ orthogonal matrix. The diagonal elements of $\Sigma$ are the singular values of $A$ and the columns of $U$ and $V$ are the corresponding right and left singular vectors, respectively. The singular values are returned in array $s$ in decreasing order and only the first $\min (m, n)$ columns of $U$ and rows of $v t=V^{T}$ are computed.

## Input Parameters

$m p=$ number of local rows in $A$ and $U$
$\mathrm{nq}=$ number of local columns in $A$ and $V T$
size $=\min (m, n)$
sizeq $=$ number of local columns in $U$
sizep $=$ number of local rows in $V T$
jobu (global).CHARACTER*1.
Specifies options for computing all or part of the matrix $U$.

If jobu $=$ ' V ', the first size columns of $U$ (the left singular vectors) are returned in the array $u$; if jobu $=$ ' $\mathrm{N}^{\prime}$, no columns of $U$ (no left singular vectors) are computed.
jobvt (global) CHARACTER*1.
Specifies options for computing all or part of the matrix $V^{T}$.

If jobvt $=' \mathrm{~V}$ ', the first size rows of $V^{T}$ (the right singular vectors) are returned in the array $v t$; if jobvt $={ }^{\prime} \mathrm{N}$ ', no rows of $V^{T}$ (no right singular vectors) are computed.
(global) INTEGER. The number of rows of the matrix $A(m \geq 0)$.
(global) Integer. The number of columns in $A(n \geq 0)$.
(local).
DOUBLE PRECISION for psgesvd and pdgesvd Block cyclic array, global dimension ( $m, n$ ), local dimension ( $m p, n q$ ). work ( 1 work) is a workspace array.
ia, ja (global) Integer. The row and column indices in the global array a indicating the first row and the first column of the submatrix $A$, respectively.
desca (global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix $A$.

iu,ju	(global) INTEGER. The row and column indices in the global array a indicating the first row and the first column of the submatrix $U$, respectively.
descu	(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix $U$.
ivt,jvt	(global) INTEGER. The row and column indices in the global array $v t$ indicating the first row and the first column of the submatrix $V T$, respectively.
descvt	(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix $V T$.
work	(local)
	DOUBLE PRECISION for psgesvd and pdgesvd
	Workspace array, dimension (lwork)
lwork	(local)
	INTEGER. The dimension of the array work;
	1 work $>2+6 *$ sizeb $+\max ($ watobd, wbdtosvd),

where $\operatorname{sizeb}=\max (m, n)$, and watobd and wbdtosvd refer, respectively, to the workspace required to bidiagonalize the matrix A and to go from the bidiagonal matrix to the singular value decomposition $U S V T$.

For watobd, the following holds:

```
watobd = max(max(wpslange,wpsgebrd),
max(wpslared2d,wpslaredld)),
```

where $w p s l a n g e, w p s l a r e d 1 d, w p s l a r e d 2 d, w p s g e b r d$ are the workspaces required respectively for the subprograms pslange, pslaredid, pslared2d, psgebrd. Using the standard notation
$m p=$ numroc $(m, m b$, MYROW, desca(ctxt_), NPROW),
$n \mathrm{q}=\mathrm{numroc}(\mathrm{n}, \mathrm{NB}, \mathrm{MYCOL}$, desca(lld_), NPCOL$)$,
the workspaces required for the above subprograms are

```
wpslange = mp,
wpslaredld = nq0,
wpslared2d = mp0,
wpsgebrd = NB* (mp + nq+1) +nq,
```

where $n q 0$ and $m p 0$ refer, respectively, to the values obtained at MYCOL $=0$ and MYROW $=0$. In general, the upper limit for the workspace is given by a
workspace required on processor $(0,0)$ :
watobd $\leq \mathrm{NB}^{*}(m p 0+n q 0+1)+n q 0$.

In case of a homogeneous process grid this upper limit can be used as an estimate of the minimum workspace for every processor.

For wbdtosvd, the following holds:

```
wbdtosvd = size*(wantu*nru + wantvt*ncvt) + max(wsbdsqr,
max(wantu*wpsormbrqln, wantvt*wpsormbrprt)),
```

where
1 , if left(right) singular vectors are wanted wantu(wantvt) $=0$,otherwise and wsbdsqr, wpsormbrqln and wpsormbrprt refer respectively to the workspace required for the subprograms sbdsqr, p?ormbr ( $q 1 n$ ), and $p$ ?ormbr (prt), where $q l n$ and prt are the values of the arguments vect, side, and trans in the call to p?ormbr. nru is equal to the local number of rows of the matrix $U$ when distributed 1-dimensional "column" of processes. Analogously, ncvt is equal to the local number of columns of the matrix $V T$ when distributed across 1-dimensional "row" of processes. Calling the LAPACK procedure sbdsqr requires
wsbdsqr $=\max \left(1,2^{*}\right.$ size $+\left(2^{*} \text { size }-4\right)^{*} \max ($ wantu, wantvt $\left.)\right)$
on every processor. Finally,

```
wpsormbrqln = max((NB*(NB-1))/2,
(sizeq+mp)*NB)+NB*NB,
wpsormbrprt = max((mb*(mb-1))/2,
(sizep+nq)*mb)+mb*mb,
```

If 1 work $=-1$, then 1 work is global input and a workspace query is assumed; the routine only calculates the minimum size for the work array. The required workspace is returned as the first element of work and no error message is issued by pxerbla.

## Output Parameters

On exit, the contents of a are destroyed.
(global).
DOUBLE PRECISION for psgesvd and pdgesvd.
Array, DIMENSION (size).
Contains the singular values of $A$ sorted so that $s(i) \geq s(i+1)$.

	(local).
	DOUBLE PRECISION for psgesvd and pdgesvd
	local dimension (mp, sizeq), global dimension (m, size)
	if jobu $=$ ' v ', u contains the first $\min (m, n)$ columns of $U$ If jobu $={ }^{\prime} \mathrm{N}^{\prime}$ or ' $\mathrm{O}^{\prime}$, $u$ is not referenced.
vt	(local)
	DOUBLE PRECISION for psgesvd and pdgesvd
	local dimension (sizep, nq), global dimension (size, n)
	if jobvt = ' v ', $V T$ contains the first size rows of $V^{T}$
	If jobu $=1 \mathrm{~N}$ ', $V T$ is not referenced.
work	On exit, if info $=0$, then work (1) returns the required minimal size of l work.
rwork	On exit (for complex flavors), if info $>0, \operatorname{rwork}(1: \min (m, r)-1)$ contains the unconverged superdiagonal elements of an upper bidiagonal matrix $B$ whose diagonal is in $s$ (not necessarily sorted). $B$ satisfies $A=u * B * v t$, so it has the same singular values as $A$, and singular vectors related by $u$ and $v t$.
info	(global) INTEGER.
	If info $=0$, the execution is successful.
	If info $<0$, If info $=-i$, the $i$ th parameter had an illegal value.
	If info $>0 i$, then if p?bdsqr did not converge,
	If info $=\min (m, n)+1$, then p?gesvd has detected heterogeneity by finding that eigenvalues were not identical across the process grid. In this case, the accuracy of the results from p?gesvd cannot be guaranteed.

## p?sygvx

Computes selected eigenvalues and, optionally, eigenvectors of a real generalized symmetric definite eigenproblem.

## Syntax

call pssygvx(ibtype, jobz, range, uplo, n, a, ia, ja, desca, b, ib, jb, descb, vl, vu, il, iu, abstol, m, nz, w, orfac, z, iz, jz, descz, work, lwork, iwork, liwork, ifail, iclustr, gap, info)
call pdsygvx(ibtype, jobz, range, uplo, $n, ~ a, ~ i a, ~ j a, ~ d e s c a, ~ b, ~ i b, ~ j b, ~$ descb, vl, vu, il, iu, abstol, m, nz, w, orfac, z, iz, jz, descz, work, lwork, iwork, liwork, ifail, iclustr, gap, info)

## Description

This routine computes all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite eigenproblem, of the form

$$
\operatorname{sub}(A) x=\lambda \operatorname{sub}(B) x, \operatorname{sub}(A) \operatorname{sub}(B) x=\lambda x, \text { or } \operatorname{sub}(B) \operatorname{sub}(A) x=\lambda x .
$$

Here $\operatorname{sub}(A)$ denoting $\mathrm{A}(\mathrm{ia}: i a+n-1$, ja:ja+n-1) is assumed to symmetric and $\operatorname{sub}(B)$ denoting $B(i b: i b+n-1, j b: j b+n-1)$ is also positive definite.

## Input Parameters

```
ibtype (global) INTEGER. Must be 1 or 2 or 3.
 Specifies the problem type to be solved:
 if ibtype=1, the problem type is
 \operatorname{sub}(A)x=\lambda\operatorname{sub}(B)x;
 if ibtype =2, the problem type is
 \operatorname{sub}(A)\operatorname{sub}(B)x=\lambdax;
 if ibtype=3, the problem type is
 \operatorname{sub}(B)\operatorname{sub}(A)x=\lambdax.
jobz (global).CHARACTER*1. Must be 'N' or 'V'.
 If jobz='N', then compute eigenvalues only.
 If jobz ='v', then compute eigenvalues and eigenvectors.
range (global).
 CHARACTER* 1. Must be 'A' or 'V' or 'I'.
```

If range $=$ ' A ', the routine computes all eigenvalues.
If range $=$ ' V ', the routine computes eigenvalues in the interval: [ $\mathrm{v} 1, \mathrm{vu}$ ]
If range $=$ ' I', the routine computes eigenvalues with indices il through iu. (global).
CHARACTER*1. Must be 'U' or 'L'.
If uplo = ' U ', arrays $a$ and $b$ store the upper triangles of $\operatorname{sub}(A)$ and $\operatorname{sub}(B)$; If uplo $=$ ' L ', arrays $a$ and $b$ store the lower triangles of $\operatorname{sub}(A)$ and $\operatorname{sub}(B)$.
(global).
integer. The order of the matrices $\operatorname{sub}(A)$ and $\operatorname{sub}(B) n \geq 0$.
(local)
REAL for pssygvx
DOUBLE PRECISION for pdsygvx.
Pointer into the local memory to an array of dimension (1ld_a,
$\operatorname{LOCc}(j a+n-1))$. On entry, this array contains the local pieces of the $n$-by- $n$ symmetric distributed matrix $\operatorname{sub}(A)$. If uplo= ' u ', the leading $n$-by- $n$ upper triangular part of $\operatorname{sub}(A)$ contains the upper triangular part of the matrix.If uplo = 'L', the leading $n$-by- $n$ lower triangular part of $\operatorname{sub}(A)$ contains the lower triangular part of the matrix.
(global) INTEGER. The row and column indices in the global array a indicating the first row and the first column of the submatrix $A$, respectively.
(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix $A$.If desca( ctxt_ ) is incorrect, p?sygvx cannot guarantee correct error reporting.
(local).
REAL for pssygvx
DOUBLE PRECISION for pdsygvx.
Pointer into the local memory to an array of dimension (lld_b,
$\operatorname{LOCc}(j b+n-1))$. On entry, this array contains the local pieces of the $n$-by- $n$ symmetric distributed matrix $\operatorname{sub}(B)$. If uplo $=$ ' U ', the leading $n$-by- $n$ upper triangular part of $\operatorname{sub}(B)$ contains the upper triangular part of the matrix.If uplo = 'L', the leading $n-$ by- $n$ lower triangular part of $\operatorname{sub}(A)$ contains the lower triangular part of the matrix.
(global) INTEGER. The row and column indices in the global array b indicating the first row and the first column of the submatrix $B$, respectively.
(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix $B$. descb( ctxt_ ) must be equal to desca( ctxt_ ).
(global)
REAL for pssygvx
DOUBLE PRECISION for pdsygvx.
If range $=$ ' $V$ ', the lower and upper bounds of the interval to be searched for eigenvalues.

If range $=$ 'A' or 'I', vl and vu are not referenced.
(global)
INTEGER.
If range $=$ ' I ' , the indices in ascending order of the smallest and largest eigenvalues to be returned.
Constraint: $i l \geq 1, \min (i l, n) \leq i u \leq n$
If range $=$ ' $A$ ' or 'V', il and iu are not referenced.
(global)
REAL for pssygvx
DOUBLE PRECISION for pdsygvx.
If jobz='v', setting abstol to p?lamch(context, 'u') yields the most orthogonal eigenvectors.
The absolute error tolerance for the eigenvalues. An approximate eigenvalue is accepted as converged when it is determined to lie in an interval $[a, b]$ of width less than or equal to
abstol $+e p s$ * max $(|a|,|b|)$,
where eps is the machine precision. If abstol is less than or equal to zero, then eps*norm $(T)$ will be used in its place, where norm $(T)$ is the 1-norm of the tridiagonal matrix obtained by reducing $A$ to tridiagonal form.

Eigenvalues will be computed most accurately when abstol is set to twice the underflow threshold $2 *$ p? lamch('S') not zero. If this routine returns with ((mod(info,2).ne.0).or. * $(\bmod (\operatorname{info} / 8,2) . n e .0))$, indicating that some eigenvalues or eigenvectors did not converge, try setting abstol to $2^{*}$ p? lamch('S').
(global).
REAL for pssygvx
DOUBLE PRECISION for pdsygvx.
Specifies which eigenvectors should be reorthogonalized. Eigenvectors that correspond to eigenvalues which are within tol=orfac*norm $(A)$ of each other are to be reorthogonalized. However, if the workspace is insufficient (see lwork), tol may be decreased until all eigenvectors to be reorthogonalized
can be stored in one process. No reorthogonalization will be done if orfac equals zero. A default value of $10^{-3}$ is used if orfac is negative. orfac should be identical on all processes.

$i z, j z$	(global) INTEGER. The row and column indices in the global array $z$   indicating the first row and the first column of the submatrix $Z$, respectively.
descz	(global and local) INTEGER array, dimension (dlen_). The array descriptor   for the distributed matrix Z.descz(ctxt_ ) must equal desca(ctxt_).
work	(local)
	REAL for pssygvx
	DOUBLE PRECISION for pdsygvx.
	Workspace array, dimension of the (lwork)
lwork	(local)

INTEGER.
See below for definitions of variables used to define 1 work.
If no eigenvectors are requested $(j \circ b z=' N$ ') then 1 work $\geq 5 * n+\max (5 * n n$, NB * $(n p 0+1))$.
If eigenvectors are requested ( $j 0 b z=$ ' $v$ ') then the amount of workspace required to guarantee that all eigenvectors are computed is:

```
lwork \(>=5^{*} n+\max \left(5^{*} n n, n p 0\right.\) * \(\left.m q 0+2 * N B * N B\right)+i c e i l(n e i g\),
NPROW*NPCOL)*nn
```

The computed eigenvectors may not be orthogonal if the minimal workspace is supplied and orfac is too small. If you want to guarantee orthogonality (at the cost of potentially poor performance) you should add the following to lwork: (clustersize-1)*n
where clustersize is the number of eigenvalues in the largest cluster, where a cluster is defined as a set of close eigenvalues:

```
{w(k),\ldots,w(k+clustersize-1)|
w(j+1)\leqw(j)+orfac*2*norm(A)}
```


## Variable definitions:

neig $=$ number of eigenvectors requested

```
\(\mathrm{NB}=\operatorname{desca}\left(\mathrm{mb} _\right)=\operatorname{desca}\left(\mathrm{nb} _\right)=\operatorname{descz}\left(m b _\right)=\operatorname{descz}\left(n b _\right)\)
\(n n=\max (n, N B, 2)\)
\(\operatorname{desca}(\operatorname{rsrc})=\operatorname{desca}\left(n b _\right)=\operatorname{descz}\left(r s r c_{-}\right)=\operatorname{descz}(\operatorname{csrc})=0\)
\(n p 0=\operatorname{numroc}(n n, N B, 0,0, N P R O W)\)
\(m q 0=\) numroc(max(neig, NB, 2), NB, \(0,0, N P C O L)\) iceil \((x, y)\) is a
ScaLAPACK function returning ceiling \((x / y)\)
```

When 1 work is too small:
If lwork is too small to guarantee orthogonality, p? syevx attempts to maintain orthogonality in the clusters with the smallest spacing between the eigenvalues.
If 1 work is too small to compute all the eigenvectors requested, no computation is performed and info=-23 is returned. Note that when range $=$ ' $v$ ', p?sygvx does not know how many eigenvectors are requested until the eigenvalues are computed. Therefore, when range='v'and as long as lwork is large enough to allow p?sygvx to compute the eigenvalues, p?sygvx will compute the eigenvalues and as many eigenvectors as it can.

Relationship between workspace, orthogonality \& performance:
Greater performance can be achieved if adequate workspace is provided. On the other hand, in some situations, performance can decrease as the workspace provided increases above the workspace amount shown below:

For optimal performance, greater workspace may be needed, that is, lwork $\geq \max \left(1\right.$ work, $5^{*}$ n + nsytrd_lwopt, nsygst_lwopt) Where:
I work, as defined previously, depends upon the number of eigenvectors requested, and
nsytrd_lwopt $=n+2 *(a n b+1) *(4 * n p s+2)+(n p s+3) * n p s$
nsygst_lwopt $=2{ }^{*} n p 0{ }^{*} \mathrm{NB}+n q 0 * \mathrm{NB}+\mathrm{NB}{ }^{*} \mathrm{NB}$
$a n b=p j l a e n v\left(d e s c a\left(c t x t \_\right), 3, p ? s y t t r d ', ~ ' L ', ~ 0, ~ 0, ~ 0, ~ 0\right) ~$
$\operatorname{sqnpc}=\operatorname{int}(\operatorname{sqrt}(d b l e($ NPROW $*$ NPCOL $)))$
$n p s=\max \left(\operatorname{numroc}(n, 1,0,0, s q n p c), 2^{*} a n b\right)$
NB $=\operatorname{desca}\left(m b \_\right)$
np0 $0=$ numroc ( $n, ~ N B, 0,0, N P R O W)$
$n q 0=\operatorname{numroc}(n, N B, 0,0, N P C O L)$
numroc is a ScaLAPACK tool functions;
pjlaenv is a ScaLAPACK environmental inquiry function
MYROW, MYCOL, NPROW and NPCOL can be determined by calling the subroutine blacs_gridinfo.

For large $n$, no extra workspace is needed, however the biggest boost in performance comes for small $n$, so it is wise to provide the extra workspace (typically less than a Megabyte per process).

If clustersize $\geq n / \operatorname{sqrt}\left(\mathrm{NPROW}^{*}\right.$ NPCOL $)$, then providing enough space to compute all the eigenvectors orthogonally will cause serious degradation in performance. In the limit (that is, clustersize $=n-1$ ) p?stein will
perform no better than ?stein on 1 processor.
For clustersize $=n /$ sqrt(NPROW*NPCOL) reorthogonalizing all eigenvectors will increase the total execution time by a factor of 2 or more.
For clustersize $>n /$ sqrt(NPROW*NPCOL) execution time will grow as the square of the cluster size, all other factors remaining equal and assuming enough workspace. Less workspace means less reorthogonalization but faster execution.

If 1 work $=-1$, then 1 work is global input and a workspace query is assumed; the routine only calculates the size required for optimal performance for all work arrays. Each of these values is returned in the first entry of the corresponding work arrays, and no error message is issued by pxerbla.
iwork (local) INTEGER. Workspace array.
liwork (local) INTEGER, dimension of iwork.
liwork $\geq 6$ * nnp
Where:
nnp $=\max \left(n\right.$, NPROW $^{*}$ NPCOL $\left.+1,4\right)$
If $1 i$ work $=-1$, then liwork is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

## Output Parameters

On exit, if $j \circ b z=$ ' $v$ ', then if $\operatorname{info}=0, \operatorname{sub}(A)$ contains the distributed matrix $Z$ of eigenvectors. The eigenvectors are normalized as follows:
if ibtype $=1$ or 2,
$Z^{T} * \operatorname{sub}(B) * Z=i ;$
if ibtype $=3, Z^{T} *_{\operatorname{inv}}(\operatorname{sub}(B))^{*} Z=i$.
If jobz = ' N ', then on exit the upper triangle (if uplo='u') or the lower triangle (if uplo='L') of $\operatorname{sub}(A)$, including the diagonal, is destroyed.
On exit, if info $\leq n$, the part of $\operatorname{sub}(B)$ containing the matrix is overwritten by the triangular factor $U$ or $L$ from the Cholesky factorization $\operatorname{sub}(B)=U^{\mathrm{T}} U$ or $\operatorname{sub}(B)=L L^{\mathrm{T}}$.
(global)
integer. The total number of eigenvalues found, $0 \leq m \leq n$.
(global)
INTEGER.
Total number of eigenvectors computed. $0 \leq n z \leq m$. The number of columns of $z$ that are filled.
If jobz.ne. 'v', $n z$ is not referenced.
If jobz . eq. ' $v$ ', $n z=m$ unless the user supplies insufficient space and p?sygvx is not able to detect this before beginning computation. To get all the eigenvectors requested, the user must supply both sufficient space to hold the eigenvectors in $z$ (m.le. descz(n_)) and sufficient workspace to compute them. (See lwork below.) p?sygvx is always able to detect insufficient space without computation unless
range.eq. 'v'.
(global)
REAL for pssygvx
DOUBLE PRECISION for pdsygvx.
Array, DIMENSION (n).
On normal exit, the first $m$ entries contain the selected eigenvalues in ascending order.
(local).
REAL for pssygvx
DOUBLE PRECISION for pdsygvx.
global dimension ( $n, n$ ), local dimension (1ld_z, LOCc( $j z+n-1)$ ). If jobz $=$ ' $v$ ', then on normal exit the first $m$ columns of $z$ contain the orthonormal eigenvectors of the matrix corresponding to the selected eigenvalues. If an eigenvector fails to converge, then that column of $z$ contains the latest approximation to the eigenvector, and the index of the eigenvector is returned in ifail.
If jobz = ' N ', then $z$ is not referenced.
work $\quad$ ifjobz $=$ ' $\mathrm{N}^{\prime}$ work (1) $=$ optimal amount of workspace required to compute eigenvalues efficiently
if jobz = 'v' work (1) = optimal amount of workspace required to compute eigenvalues and eigenvectors efficiently with no guarantee on orthogonality. If range $=$ ' $v$ ', it is assumed that all eigenvectors may be required.
(global)
INTEGER.
Array, DIMENSION (n)
ifail provides additional information when info.ne. 0

If (mod(info/16,2).ne.0) then ifail(1) indicates the order of the smallest minor which is not positive definite. If ( $\bmod ($ info,2).ne.0) on exit, then ifail contains the indices of the eigenvectors that failed to converge.

If neither of the above error conditions hold and jobz = 'v', then the first $m$ elements of ifail are set to zero.
iclustr
gap
info
(global)
INTEGER.
Array, DIMENSION ( 2 *NPROW*NPCOL).This array contains indices of eigenvectors corresponding to a cluster of eigenvalues that could not be reorthogonalized due to insufficient workspace (see lwork, orfac and info). Eigenvectors corresponding to clusters of eigenvalues indexed iclustr( $2 * i-1$ ) to iclustr( $2 * i$ ), could not be reorthogonalized due to lack of workspace. Hence the eigenvectors corresponding to these clusters may not be orthogonal. iclustr() is a zero terminated array.
(iclustr $\left(2^{*} k\right.$ ).ne.0.and. iclustr $\left(2^{*} k+1\right)$.eq.0) if and only if $k$ is the number of clusters iclustr is not referenced if jobz = ' N '.
(global)
REAL for pssygvx
DOUBLE PRECISION for pdsygvx.
Array, DIMENSION (NPROW*NPCOL).
This array contains the gap between eigenvalues whose eigenvectors could not be reorthogonalized. The output values in this array correspond to the clusters indicated by the array iclustr. As a result, the dot product between eigenvectors corresponding to the $i^{\text {th }}$ cluster may be as high as $\left(C^{*} n\right)$ / $\operatorname{gap}(i)$ where $C$ is a small constant.
(global)
INTEGER.
If info $=0$, the execution is successful.
If info $<0$ : the $i$ th argument is an array and the $j$-entry had an illegal value, then info $=-\left(i^{*} 100+j\right)$, if the $i$-th argument is a scalar and had an illegal value, then info $=-i$.
If info $>0$ :
if (mod(info,2).ne.0), then one or more eigenvectors failed to converge. Their indices are stored in ifail.
if ( $\bmod ($ info $, 2,2$ ).ne. 0 ),then eigenvectors corresponding to one or more clusters of eigenvalues could not be reorthogonalized because of insufficient workspace. The indices of the clusters are stored in the array iclustr. if (mod(info/4,2).ne.0), then space limit prevented p? sygvx from computing all of the eigenvectors between $v l$ and $v u$. The number of eigenvectors
computed is returned in $n z$.
if $(\bmod ($ info/8,2 $) \cdot n e .0)$, then $p$ ?stebz failed to compute eigenvalues. if (mod(info/16,2).ne.0), then $B$ was not positive definite. ifail (1) indicates the order of the smallest minor which is not positive definite.

## p?hegvx

Computes selected eigenvalues and, optionally, eigenvectors of a complex generalized Hermitian definite eigenproblem.

## Syntax

```
call pchegvx (ibtype, jobz, range, uplo, n, a, ia, ja, desca, b, ib, jb,
 descb, vl, vu, il, iu, abstol, m, nz, w, orfac, z, iz, jz, descz,
 work, lwork, rwork, lrwork, iwork, liwork, ifail, iclustr, gap, info)
call pzhegvx (ibtype, jobz, range, uplo, n, a, ia, ja, desca, b, ib, jb,
 descb, vl, vu, il, iu, abstol, m, nz, w, orfac, z, iz, jz, descz,
 work, lwork, rwork, lrwork, iwork, liwork, ifail, iclustr, gap, info)
```


## Description

This routine computes all the eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian-definite eigenproblem, of the form $\operatorname{sub}(A) x=\lambda \operatorname{sub}(B) x, \quad \operatorname{sub}(A) \operatorname{sub}(B) x=\lambda x, \quad$ or $\operatorname{sub}(B) \operatorname{sub}(A) x=\lambda x$.

Here sub $(A)$ denoting $A(i a: i a+n-1$, ja:ja+n-1) and $\operatorname{sub}(B)$ are assumed to be Hermitian and $\operatorname{sub}(B)$ denoting $B(i b: i b+n-1, j b: j b+n-1)$ is also positive definite.

## Input Parameters

ibtype	(global) INTEGER. Must be 1 or 2 or 3.
Specifies the problem type to be solved:	
if $i b t y p e=1$, the problem type is	
	$\operatorname{sub}(A) x=\lambda \operatorname{sub}(B) x ;$
if $i b t y p e=2$, the problem type is	
	$\operatorname{sub}(A) \operatorname{sub}(B) x=\lambda x ;$
if $i b t y p e=3$, the problem type is	
	$\operatorname{sub}(B) \operatorname{sub}(A) x=\lambda x$.


jobz	(global).CHARACTER*1. Must be 'N' or 'V'.
	If $j 0 b z=1 N$ ', then compute eigenvalues only.
	If $j 0 b z=' \mathrm{~V}$ ', then compute eigenvalues and eigenvectors.
range	(global).
	CHARACTER*1. Must be 'A' or 'V' or 'I'.
	If range $=$ ' A ', the routine computes all eigenvalues.
	If range $=$ ' V ', the routine computes eigenvalues in the interval: [ $\mathrm{v} 1, \mathrm{vu}$ ]
	If range $=$ ' I', the routine computes eigenvalues with indices il through i
uplo	(global).
	CHARACTER*1. Must be 'U' or 'L'.
	If uplo = ' U ', arrays $a$ and $b$ store the upper triangles of $\operatorname{sub}(A)$ and $\operatorname{sub}(B)$;
	If uplo = 'L', arrays $a$ and $b$ store the lower triangles of $\operatorname{sub}(A)$ and $\operatorname{sub}(B)$.
$n$	(global).
	INTEGER. The order of the matrices $\operatorname{sub}(A)$ and $\operatorname{sub}(B)(n \geq 0)$.
a	(local)
	COMPLEx for pchegvx
	DOUBLE COMPLEx for pzhegvx.
	Pointer into the local memory to an array of dimension (lld_a,
	$\operatorname{LOCc}(\mathrm{ja}+\mathrm{n}-1)$ ). On entry, this array contains the local pieces of the $n$-by-n
	Hermitian distributed matrix $\operatorname{sub}(A)$. If uplo $=$ ' u ', the leading $n$-by- $n$ upper triangular part of $\operatorname{sub}(A)$ contains the upper triangular part of the matrix.If uplo = 'L', the leading $n$-by- $n$ lower triangular part of $\operatorname{sub}(A)$ contains the lower triangular part of the matrix.
ia,ja	(global) INTEGER. The row and column indices in the global array a indicating the first row and the first column of the submatrix $A$, respectively.
desca	(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix $A$.If desca( ctxt_ ) is incorrect, p?hegvx cannot guarantee correct error reporting.
b	(local).
	COMPLEx for pchegvx
	DOUbLe COMPLEx for pzhegvx.
	Pointer into the local memory to an array of dimension (lld_b,
	$\operatorname{LOCc}(j b+n-1))$. On entry, this array contains the local pieces of the $n$-by-n Hermitian distributed matrix $\operatorname{sub}(B)$. If uplo $=$ ' $u$ ', the leading $n$-by- $n$ upper
	triangular part of $\operatorname{sub}(B)$ contains the upper triangular part of the matrix.If
	uplo = 'L', the leading $n$-by-n lower triangular part of $\operatorname{sub}(B)$ contains the

ib, jb
descb
(global) INTEGER. The row and column indices in the global array $b$ indicating the first row and the first column of the submatrix $B$, respectively.
(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix $B$. descb ( ctxt_ ) must be equal to desca( ctxt_ ).
(global)
REAL for pchegvx
DOUBLE PRECISION for pzhegvx.
If range $=$ ' $V$ ', the lower and upper bounds of the interval to be searched for eigenvalues.

If range $=$ 'A' or 'I', vl and vu are not referenced.
(global)
INTEGER.
If range $=$ ' I ' , the indices in ascending order of the smallest and largest eigenvalues to be returned.
Constraint: $i l \geq 1, \min (i l, n) \leq i u \leq n$
If range $=$ ' A ' or ' V ', il and iu are not referenced.
(global)
REAL for pchegvx
DOUBLE PRECISION for pzhegvx.
If jobz='v', setting abstol to p? lamch(context, 'U') yields the most orthogonal eigenvectors.
The absolute error tolerance for the eigenvalues. An approximate eigenvalue is accepted as converged when it is determined to lie in an interval $[a, b]$ of width less than or equal to
$a b s t o l+e p s * \max (|a|,|b|)$,
where eps is the machine precision. If abstol is less than or equal to zero, then eps*norm $(\mathrm{T})$ will be used in its place, where norm $(\mathrm{T})$ is the 1 -norm of the tridiagonal matrix obtained by reducing $A$ to tridiagonal form.
Eigenvalues will be computed most accurately when abstol is set to twice the underflow threshold $2^{*}$ p? lamch('S') not zero. If this routine returns with ((mod(info,2).ne.0).or. * $(\bmod ($ info/8,2).ne.0)), indicating that some eigenvalues or eigenvectors did not converge, try setting abstol to $2^{*}$ p? lamch('S').

orfac	(global).
	REAL for pchegvx
	DOUBLE PRECISION for pzhegvx.
	Specifies which eigenvectors should be reorthogonalized. Eigenvectors that correspond to eigenvalues which are within tol=orfac* $\operatorname{norm}(A)$ of each other are to be reorthogonalized. However, if the workspace is insufficient (see
	lwork), tol may be decreased until all eigenvectors to be reorthogonalized can be stored in one process. No reorthogonalization will be done if orfac equals zero. A default value of $10^{-3}$ is used if orfac is negative. orfac should be identical on all processes.
iz,jz	(global) Integer. The row and column indices in the global array $z$ indicating the first row and the first column of the submatrix $Z$, respectively.
descz	(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix $Z$. descz( ctxt_ ) must equal desca( ctxt_ ).
work	(local)
	COMPLEX for pchegvx
	DOUBLE COMPLEX for pzhegvx.
	Workspace array, dimension (1 work)
Iwork	(local).
	INTEGER. The dimension of the array work.
	If only eigenvalues are requested:
	1 work $\geq n+\max (\mathrm{NB} *(n p 0+1), 3)$
	If eigenvectors are requested:
	$\text { lwork } \geq n+(n p 0+m q 0+\mathrm{NB}) * \text { NB }$
	with $n q 0=\operatorname{numroc}(n n, N B, 0,0, N P C O L)$.
	For optimal performance, greater workspace is needed, that is
	lwork $\geq \max (1$ work, $n$, nhetrd_lwopt, nhegst_lwopt) where 1 work is as defined above, and
	$\text { nhetrd_lwork }=2 *(a n b+1) *(4 * n p s+2)+(n p s+1) * n p s$
	$\text { nhegst_lwopt }=2 *_{n p} 0{ }^{*} \mathrm{NB}+\mathrm{nq} 00^{*} \mathrm{NB}+\mathrm{NB}^{*} \mathrm{NB}$
	$\mathrm{NB}=$ desca(mb_)
	$n \mathrm{n} 0=\operatorname{numroc}(n, \mathrm{NB}, 0,0$, NPROW $)$
	$n q 0=\operatorname{numroc}(\mathrm{n}, \mathrm{NB}, 0,0, \mathrm{NPCOL})$
	ictxt $=$ desca(ctxt_)
	anb $=$ pjlaenv(ictxt, 3, 'p?hettrd', 'L', 0, 0, 0, 0)
	$\operatorname{sqnpc}=\operatorname{sqrt}(\mathrm{dble}(\mathrm{NPROW} *$ NPCOL $))$
	$n p s=\max (\operatorname{numroc}(n, 1,0,0, s q n p c), 2 * a n b)$

numroc is a ScaLAPACK tool functions;
pjlaenv is a ScaLAPACK environmental inquiry function MYROW, MYCOL, NPROW and NPCOL can be determined by calling the subroutine blacs_gridinfo.

If 1 work $=-1$, then 1 work is global input and a workspace query is assumed; the routine only calculates the size required for optimal performance for all work arrays. Each of these values is returned in the first entry of the corresponding work arrays, and no error message is issued by pxerbla.
rwork (local)
REAL for pchegvx
DOUBLE PRECISION for pzhegvx.
Workspace array, DIMENSION (lrwork).
lrwork (local)
INTEGER. The dimension of the array rwork.
See below for definitions of variables used to define lrwork.
If no eigenvectors are requested ( $\mathrm{jobz}=$ ' N ') then lrwork $\geq 5$ * nn +4 * $n$ If eigenvectors are requested ( $j \circ b z=$ ' $v$ ') then the amount of workspace required to guarantee that all eigenvectors are computed is:

```
lrwork \geq4*n+max(5*nn, np0 * mq0) +
iceil(neig, NPROW*NPCOL)*nn
```

The computed eigenvectors may not be orthogonal if the minimal workspace is supplied and orfac is too small. If you want to guarantee orthogonality (at the cost of potentially poor performance) you should add the following to lrwork: (clustersize-1)*n
where clustersize is the number of eigenvalues in the largest cluster, where a cluster is defined as a set of close eigenvalues:

```
{w(k),\ldots,w(k+clustersize-1)|
w(j+1)\leqw(j)+orfac*2*norm(A)}
Variable definitions:
neig \(=\) number of eigenvectors requested
\(\mathrm{NB}=\operatorname{desca}\left(m b _\right)=\operatorname{desca}\left(n b _\right)=\operatorname{descz}\left(m b _\right)=\operatorname{descz}\left(n b _\right)\)
\(n n=\max (n, N B, 2)\)
\(\operatorname{desca}(\operatorname{rsrc})=\operatorname{desca}\left(n b _\right)=\operatorname{descz}\left(r s r_{-}\right)=\operatorname{descz}\left(\operatorname{csr} c_{-}\right)=0\)
\(n p 0=\operatorname{numroc}(n n, N B, 0,0, N P R O W)\)
\(m q 0=\operatorname{numroc}(\max (\) neig, NB, 2\()\), NB, 0,0, NPCOL \()\) iceil \((x, y)\) is a
ScaLAPACK function returning ceiling \((x / y)\)
```

When lrwork is too small:
If 1 work is too small to guarantee orthogonality, p? hegvx attempts to maintain orthogonality in the clusters with the smallest spacing between the eigenvalues.
If 1 work is too small to compute all the eigenvectors requested, no computation is performed and info=-25 is returned. Note that when range='v', p?hegvx does not know how many eigenvectors are requested until the eigenvalues are computed. Therefore, when range='v'and as long as lwork is large enough to allow p?hegvx to compute the eigenvalues, p?hegvx will compute the eigenvalues and as many eigenvectors as it can.

Relationship between workspace, orthogonality \& performance:
If clustersize $\geq \mathrm{n} / \operatorname{sqrt}(\mathrm{NPROW}$ *NPCOL), then providing enough space to compute all the eigenvectors orthogonally will cause serious degradation in performance. In the limit (that is, clustersize $=n-1$ ) p?stein will perform no better than ?stein on 1 processor.
For clustersize $=n /$ sqrt(NPROW*NPCOL) reorthogonalizing all eigenvectors will increase the total execution time by a factor of 2 or more. For clustersize > n/sqrt(NPROW*NPCOL) execution time will grow as the square of the cluster size, all other factors remaining equal and assuming enough workspace. Less workspace means less reorthogonalization but faster execution.

If 1 work $=-1$, then 1 rwork is global input and a workspace query is assumed; the routine only calculates the size required for optimal performance for all work arrays. Each of these values is returned in the first entry of the corresponding work arrays, and no error message is issued by pxerbla.
iwork (local) Integer. Workspace array.
liwork (local) INTEGER, dimension of $i$ work.
liwork $\geq 6$ * nnp
Where: $n n p=\max (n$, NPROW*NPCOL $+1,4)$
If 1 iwork $=-1$, then liwork is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

## Output Parameters

On exit, if $j o b z=$ ' $v$ ', then if info $=0, \operatorname{sub}(A)$ contains the distributed matrix $Z$ of eigenvectors.
The eigenvectors are normalized as follows:
if ibtype $=1$ or $2, Z^{H *} \operatorname{sub}(B) * Z=i$;
if ibtype $=3, Z^{H}{ }_{i n v}(\operatorname{sub}(B)) * Z=i$.
If jobz = ' N ', then on exit the upper triangle (if uplo='v') or the lower triangle (if uplo='L') of $\operatorname{sub}(A)$, including the diagonal, is destroyed.

On exit, if info $\leq n$, the part of $\operatorname{sub}(B)$ containing the matrix is overwritten by the triangular factor $U$ or $L$ from the Cholesky factorization $\operatorname{sub}(B)=U^{H} U$ or $\operatorname{sub}(B)=L L^{H}$.
(global)
integer. The total number of eigenvalues found, $0 \leq m \leq n$.
(global)
INTEGER.
Total number of eigenvectors computed. $0 \leq n z \leq m$. The number of columns of $z$ that are filled.
If jobz.ne. ' $v$ ', $n z$ is not referenced.
If jobz.eq. 'v', $n z=m$ unless the user supplies insufficient space and p?hegvx is not able to detect this before beginning computation. To get all the eigenvectors requested, the user must supply both sufficient space to hold the eigenvectors in $z$ (m.le. descz(n_)) and sufficient workspace to compute them. (See lwork below.) p?hegvx is always able to detect insufficient space without computation unless
range.eq. 'v'.
(global)
REAL for pchegvx
DOUBLE PRECISION for pzhegvx.
Array, DIMENSION (n).
On normal exit, the first $m$ entries contain the selected eigenvalues in ascending order.
(local).
COMPLEX for pchegvx
DOUBLE COMPLEX for pzhegvx.
global dimension ( $n, n$ ), local dimension ( $11 d \_z, \operatorname{LOCc}(j z+n-1)$ ). If jobz = ' $v$ ', then on normal exit the first $m$ columns of $z$ contain the orthonormal eigenvectors of the matrix corresponding to the selected eigenvalues. If an eigenvector fails to converge, then that column of $z$ contains the latest approximation to the eigenvector, and the index of the eigenvector is returned in ifail.
If $j o b z=$ ' $N$ ', then $z$ is not referenced.

work	On exit, work (1) returns the optimal amount of workspace.
rwork	On exit, rwork (1) contains the amount of workspace required for optimal efficiency   if jobz $={ }^{\prime} \mathrm{N}^{\prime}$ rwork (I) = optimal amount of workspace required to compute eigenvalues efficiently   if jobz $=^{\prime} \mathrm{v}^{\prime}$ rwork ( 1 ) = optimal amount of workspace required to compute eigenvalues and eigenvectors efficiently with no guarantee on orthogonality. If range $=$ ' $v$ ', it is assumed that all eigenvectors may be required when computing optimal workspace.
ifail	(global)
	INTEGER.
	Array, DIMENSION (n).
	ifail provides additional information when
	If ( $\bmod ($ info 16,2$)$ ne.0) then ifail (1) indicates the order of the smallest minor which is not positive definite. If $(\bmod (\operatorname{info}, 2) \cdot n e .0)$ on exit, then ifail (1) contains the indices of the eigenvectors that failed to converge.
	If neither of the above error conditions hold and jobz $=$ ' $v$ ', then the first $m$ elements of ifail are set to zero.
iclustr	(global)
	INTEGER.
	Array, DIMENSION ( 2 * ${ }^{\text {NPROW }}$ * NPCOL $)$. This array contains indices of eigenvectors corresponding to a cluster of eigenvalues that could not be reorthogonalized due to insufficient workspace (see 1 work, orfac and info). Eigenvectors corresponding to clusters of eigenvalues indexed
	iclustr( $2{ }^{*} i-1$ ) to iclustr( $2 * i$ ), could not be reorthogonalized due to lack of workspace. Hence the eigenvectors corresponding to these clusters may not be orthogonal. iclustr() is a zero terminated array. (iclustr $\left(2^{*} k\right)$.ne.0.and. iclustr $(2 * k+1)$.eq. 0 ) if and only if $k$ is the number of clusters iclustr is not referenced if $j o b z=$ ' N '.
gap	(global)
	REAL for pchegvx
	DOUBLE PRECISION for pzhegvx.
	Array, DIMENSION (NPROW*NPCOL).
	This array contains the gap between eigenvalues whose eigenvectors could not be reorthogonalized. The output values in this array correspond to the clusters

indicated by the array iclustr. As a result, the dot product between eigenvectors corresponding to the $i^{\text {th }}$ cluster may be as high as $\left(C^{*} n\right)$ / $\operatorname{gap}(i)$ where $C$ is a small constant.
If $\operatorname{info}=0$, the execution is successful.
If info $<0$ : the $i$ th argument is an array and the $j$-entry had an illegal value,
then info $=-\left(i^{*} 100+j\right)$, if the $i$-th argument is a scalar and had an illegal
value, then info $=-i$.
If info $>0$ :
if (mod(info,2).ne.0), then one or more eigenvectors failed to converge. Their
indices are stored in ifail.
if (mod(info,2,2).ne.0), then eigenvectors corresponding to one or more
clusters of eigenvalues could not be reorthogonalized because of insufficient
workspace. The indices of the clusters are stored in the array iclustr.
if ( $\bmod ($ infol4,2).ne.0), then space limit prevented p?sygvx from computing
all of the eigenvectors between $v l$ and $v u$. The number of eigenvectors
computed is returned in $n z$.
if $(\bmod ($ infol 8,2$) \cdot n e .0)$, then p ? stebz failed to compute eigenvalues.
if (mod(infol 16,2$). n e .0)$, then $B$ was not positive definite. ifail (1)
indicates the order of the smallest minor which is not positive definite.

## ScaLAPACK Auxiliary and Utility Routines

This chapter describes the Intel ${ }^{\circledR}$ Math Kernel Library implementation of ScaLAPACK Auxiliary Routines and Utility Functions and Routines. The library includes routines for both real and complex data.

NOTE. ScaLAPACK routines are provided with Intel® Cluster MKL product only which is a superset of Intel MKL.

Routine naming conventions, mathematical notation, and matrix storage schemes used for ScaLAPACK auxiliary and utility routines are the same as described in previous chapters. Some routines and functions may have combined character codes, such as sc or dz . For example, the routine pscsum1 uses a complex input array and returns a real value.

## Auxiliary Routines

Table 7-1 ScaLAPACK Auxiliary Routines

Routine Name	Data   Types	Description
$\underline{p ? \text { placgv }}$	$c, z$	Conjugates a complex vector.   $\underline{p ? m a x 1}$
$c, z$	Finds the index of the element whose real part has maximum   absolute value (similar to the Level 1 PBLAS p?amax, but using   the absolute value to the real part).	
$\underline{\text { ?combamax } 1}$	$c, z$	Finds the element with maximum real part absolute value and its   corresponding global index.

Table 7-1 ScaLAPACK Auxiliary Routines (continued)

Routine Name	Data Types	Description
p?sum1	sc, dz	Forms the 1-norm of a complex vector similar to Level 1 PBLAS p? asum, but using the true absolute value.
p?dbtrsv	s,d, c, z	Computes an $L U$ factorization of a general tridiagonal matrix with no pivoting. The routine is called by p?dbtrs.
p?dttrsv	s,d, c, z	Computes an $L U$ factorization of a general band matrix, using partial pivoting with row interchanges. The routine is called by p?dttrs.
p? gebd2	$s, d, c, z$	Reduces a general rectangular matrix to real bidiagonal form by an orthogonal/unitary transformation (unblocked algorithm).
p? gehd2	s,d, c, z	Reduces a general matrix to upper Hessenberg form by an orthogonal/unitary similarity transformation (unblocked algorithm).
p? ${ }^{\text {gelq2 }}$	s, d, c, z	Computes an $L Q$ factorization of a general rectangular matrix (unblocked algorithm).
p? ${ }^{\text {geql2 }}$	s, d, c, z	Computes a $Q L$ factorization of a general rectangular matrix (unblocked algorithm).
p? ${ }^{\text {gegr2 }}$	$s, d, c, z$	Computes a $Q R$ factorization of a general rectangular matrix (unblocked algorithm).
p? ${ }^{\text {gerq2 }}$	s, d, c, z	Computes an $R Q$ factorization of a general rectangular matrix (unblocked algorithm).
p?getf2	$s, d, c, z$	Computes an $L U$ factorization of a general matrix, using partial pivoting with row interchanges (local blocked algorithm).
p?labrd	s, d, c, z	Reduces the first nb rows and columns of a general rectangular matrix A to real bidiagonal form by an orthogonal\|unitary transformation, and returns auxiliary matrices that are needed to apply the transformation to the unreduced part of $A$.
p?lacon	s, d, c, z	Estimates the 1-norm of a square matrix, using the reverse communication for evaluating matrix-vector products.
$\underline{p}$ ? ${ }^{\text {aconsb }}$	s,d	Looks for two consecutive small subdiagonal elements.
p? lacp2	s,d, c, z	Copies all or part of a distributed matrix to another distributed matrix.
p? 1acp3	s,d	Copies from a global parallel array into a local replicated array or vice versa.
p? lacpy	s, d, c, z	Copies all or part of one two-dimensional array to another.
p?laevswp	s,d,c,z	Moves the eigenvectors from where they are computed to ScaLAPACK standard block cyclic array.

Table 7-1 ScaLAPACK Auxiliary Routines (continued)

Routine Name	Data Types	Description
p?lahrd	s, d, c, z	Reduces the first $n b$ columns of a general rectangular matrix $A$ so that elements below the $\mathrm{k}^{\text {th }}$ subdiagonal are zero, by an orthogonal/unitary transformation, and returns auxiliary matrices that are needed to apply the transformation to the unreduced part of A.
p?laiect	s, d, c, z	Exploits IEEE arithmetic to accelerate the computations of eigenvalues. (C interface function).
p? lange	s,d,c,z	Returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element, of a general rectangular matrix.
p?lanhs	s, d, c, z	Returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element, of an upper Hessenberg matrix.
p?lansy,   p?lanhe	$\begin{aligned} & s, d, c, z \\ & / c, z \end{aligned}$	Returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of a real symmetric or complex Hermitian matrix.
p?lantr	s, d, c, z	Returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element, of a triangular matrix.
p?lapiv	s, d, c, z	Applies a permutation matrix to a general distributed matrix, resulting in row or column pivoting.
p?laqge	s, d, c, z	Scales a general rectangular matrix, using row and column scaling factors computed by p?geequ.
p?laqsy	s,d,c,z	Scales a symmetric/Hermitian matrix, using scaling factors computed by p?poequ.
p?laredld	s,d	Redistributes an array assuming that the input array bycol is distributed across rows and that all process columns contain the same copy of bycol.
p?lared2d	s,d	Redistributes an array assuming that the input array byrow is distributed across columns and that all process rows contain the same copy of byrow .
p?larf	s, d, c, z	Applies an elementary reflector to a general rectangular matrix.
p? larfb	s,d,c,z	Applies a block reflector or its transpose/conjugate-transpose to a general rectangular matrix.
p?larfc	c, z	Applies the conjugate transpose of an elementary reflector to a general matrix.

## Table 7-1 ScaLAPACK Auxiliary Routines (continued)

Routine Name	Data   Types	Description
p?larfg	s, d, c, z	Generates an elementary reflector (Householder matrix).
p?larft	s,d,c,z	Forms the triangular vector $T$ of a block reflector $H=I-V T V^{H}$.
p?larz	s,d,c,z	Applies an elementary reflector as returned by p?tzrzf to a general matrix.
p?larzb	s,d, c, z	Applies a block reflector or its transpose/conjugate-transpose as returned by p?tzrzf to a general matrix.
p?larzc	C, z	Applies (multiplies by) the conjugate transpose of an elementary reflector as returned by petzrzf to a general matrix.
p?larzt	s,d,c,z	Forms the triangular factor $T$ of a block reflector $H=I-V T V^{H}$ as returned by p?tzrzf.
p?lascl	s,d,c,z	Multiplies a general rectangular matrix by a real scalar defined as $C_{t d} C_{\text {from }}$.
p?laset	s,d, c, z	Initializes the off-diagonal elements of a matrix to $\alpha$ and the diagonal elements to $\beta$.
p?lasmsub	s,d	Looks for a small subdiagonal element from the bottom of the matrix that it can safely set to zero.
p?lassq	s,d, c, z	Updates a sum of squares represented in scaled form.
p?laswp	s,d, c, z	Performs a series of row interchanges on a general rectangular matrix.
p?latra	s,d, c, z	Computes the trace of a general square distributed matrix.
p?latrd	s,d,c,z	Reduces the first $n b$ rows and columns of a symmetric/Hermitian matrix A to real tridiagonal form by an orthogonal/unitary similarity transformation.
p?latrz	s,d, c, z	Reduces an upper trapezoidal matrix to upper triangular form by means of orthogonal/unitary transformations.
p? lauu2	s,d,c,z	Computes the product $U U^{H}$ or $L^{H} L$, where $U$ and $L$ are upper or lower triangular matrices (local unblocked algorithm).
p?lauum	s,d,c,z	Computes the product $U U^{H}$ or $L^{H} L$, where $U$ and $L$ are upper or lower triangular matrices.
p?lawil	s,d	Forms the Wilkinson transform.
p?org2l/p?ung2l	s,d,c,z	Generates all or part of the orthogonal/unitary matrix $Q$ from a $Q L$ factorization determined by p?geqlf (unblocked algorithm).

Table 7-1 ScaLAPACK Auxiliary Routines (continued)

Routine Name	Data Types	Description
p?org2r/p?ung2r	s, d, c, z	Generates all or part of the orthogonal/unitary matrix $Q$ from a $Q R$ factorization determined by p?geqrf (unblocked algorithm).
p?orgl2/p?ungl2	$s, d, c, z$	Generates all or part of the orthogonal/unitary matrix $Q$ from an $L Q$ factorization determined by p?gelqf (unblocked algorithm).
p?orgr2/p?ungr2	s,d,c,z	Generates all or part of the orthogonal/unitary matrix $Q$ from an $R Q$ factorization determined by p?gerqf (unblocked algorithm).
p?orm2l/p?unm2l	s, d, c, z	Multiplies a general matrix by the orthogonal/unitary matrix from a $Q L$ factorization determined by p?geqlf (unblocked algorithm).
p?orm2r/p?unm2r	s,d,c,z	Multiplies a general matrix by the orthogonal/unitary matrix from a $Q R$ factorization determined by p?geqrf (unblocked algorithm).
p?orml2/p?unml2	s,d,c,z	Multiplies a general matrix by the orthogonal/unitary matrix from an $L Q$ factorization determined by p?gelqf (unblocked algorithm).
p?ormr2/p?unmr2	s,d,c,z	Multiplies a general matrix by the orthogonal/unitary matrix from an $R Q$ factorization determined by p?gerqf (unblocked algorithm).
p?pbtrsv	s, d, c, z	Solves a single triangular linear system via frontsolve or backsolve where the triangular matrix is a factor of a banded matrix computed by p?pbtrf.
p?pttrsv	$s, d, c, z$	Solves a single triangular linear system via frontsolve or backsolve where the triangular matrix is a factor of a tridiagonal matrix computed by p?pttrf.
p?potf2	s, d, c, z	Computes the Cholesky factorization of a symmetric/Hermitian positive definite matrix (local unblocked algorithm).
p?rscl	$\begin{aligned} & \mathrm{s}, \mathrm{~d}, \mathrm{cs}, \\ & \mathrm{zd} \end{aligned}$	Multiplies a vector by the reciprocal of a real scalar.
p?sygs2/p?hegs2	s, d, c, z	Reduces a symmetric/Hermitian definite generalized eigenproblem to standard form, using the factorization results obtained from p?potrf (local unblocked algorithm).
p?sytd2/p?hetd2	s,d,c,z	Reduces a symmetric/Hermitian matrix to real symmetric tridiagonal form by an orthogonal/unitary similarity transformation (local unblocked algorithm).

Table 7-1 ScaLAPACK Auxiliary Routines (continued)

Routine Name	Data   Types	Description
p?trti2	s, d, c, z	Computes the inverse of a triangular matrix (local unblocked algorithm).
?lamsh	s,d	Sends multiple shifts through a small (single node) matrix to maximize the number of bulges that can be sent through.
?laref	s,d	Applies Householder reflectors to matrices on either their rows or columns.
?lasorte	s,d	Sorts eigenpairs by real and complex data types.
?lasrt2	s,d	Sorts numbers in increasing or decreasing order.
?stein2	s,d	Computes the eigenvectors corresponding to specified eigenvalues of a real symmetric tridiagonal matrix, using inverse iteration.
? ${ }^{\text {dbtf2 }}$	s, d, c, z	Computes an $L U$ factorization of a general band matrix with no pivoting (local unblocked algorithm).
? dbtrf	s, d, c, z	Computes an $L U$ factorization of a general band matrix with no pivoting (local blocked algorithm).
? dttrf	s,d,c,z	Computes an LU factorization of a general tridiagonal matrix with no pivoting (local blocked algorithm).
? dttrsv	s, d, c, z	Solves a general tridiagonal system of linear equations using the LU factorization computed by ?dttrf.
?pttrsv	s,d, c, z	Solves a symmetric (Hermitian) positive-definite tridiagonal system of linear equations, using the $L D L^{H}$ factorization computed by ?pttrf.
?steqr2	s,d	Computes all eigenvalues and, optionally, eigenvectors of a symmetric tridiagonal matrix using the implicit $Q L$ or $Q R$ method.

## p?lacgv

Conjugates a complex vector.

## Syntax

```
call pclacgv (n, x, ix, jx, descx, incx)
call pzlacgv (n, x, ix, jx, descx, incx)
```


## Description

The routine conjugates a complex vector of length $n$, $\operatorname{sub}(x)$, where sub $(x)$ denotes $X(i x, j x: j x+n-1)$ if $i n c x=\operatorname{descx}\left(m_{-}\right)$and $X(i x: i x+n-1, j x)$ if incx $=1$.

## Input Parameters

$n$ (global) INTEGER. The length of the distributed vector sub ( $x$ ).
$x \quad$ (local).
COMPLEX for pclacgv
COMPLEX*16 for pzlacgv.
Pointer into the local memory to an array of DIMENSION ( $11 d_{-} x, *$ ). On entry the vector to be conjugated $x(i)=X\left(i x+(j x-1) * m_{-} x+(i-1) * i n c x\right), 1 \leq i \leq n$.
ix (global) INTEGER. The row index in the global array $x$ indicating the first row of $\operatorname{sub}(x)$.
jx (global) INTEGER. The column index in the global array $x$ indicating the first column of $\operatorname{sub}(x)$.
descx (global and local) integer. Array, DIMENSION (dlen_). The array descriptor for the distributed matrix $X$.
incx
(global) integer. The global increment for the elements of $X$. Only two values of incx are supported in this version, namely 1 and $m_{-} x$. incx must not be zero.

## Output Parameters

$x \quad$ (local). On exit the conjugated vector.

## p?max1

Finds the index of the element whose real part has maximum absolute value (similar to the Level 1 PBLAS p? amax, but using the absolute value to the real part).

## Syntax

```
call pcmax1 (n, amax, indx, x, ix, jx, descx, incx)
call pzmax1 (n, amax, indx, x, ix, jx, descx, incx)
```


## Description

This routine computes the global index of the maximum element in absolute value of a distributed vector sub $(x)$. The global index is returned in indx and the value is returned in amax, where sub ( $x$ ) denotes $X(i x: i x+n-1, j x$ ) if incx $=1$,

$$
X(i x, j x: j x+n-1) \text { if } i n c x=m_{-} x .
$$

## Input Parameters

$n$ (global) pointer to INTEGER.
The number of components of the distributed vector sub ( $x$ ). $n \geq 0$.
$x \quad$ (local)
COMPLEX for pcmax1.
COMPLEX*16 for pzmax1
Array containing the local pieces of a distributed matrix of dimension of at least ( $\left.(j x-1) * m_{-} x+i x+(n-1) * a b s(i n c x)\right)$. This array contains the entries of the distributed vector sub ( $x$ ).
ix (global) INTEGER. The row index in the global array $X$ indicating the first row of sub (x).
$j x$ (global) integer. The column index in the global array $X$ indicating the first column of sub ( $x$ )
descx (global and local) INTEGER.
Array, DIMENSION (dlen_). The array descriptor for the distributed matrix $X$.
incx (global) INTEGER. The global increment for the elements of $X$. Only two values of incx are supported in this version, namely 1 and m_x. incx must not be zero.

## Output Parameters

amax (global output) pointer to REAL. The absolute value of the largest entry of the distributed vector sub ( $x$ ) only in the scope of sub ( $x$ ).
indx (global output) pointer to INTEGER. The global index of the element of the distributed vector sub ( $x$ ) whose real part has maximum absolute value.

## ?combamax1

Finds the element with maximum real part absolute value and its corresponding global index.

## Syntax

call ccombamax1 (v1, v2)
call zcombamax1 (v1, v2)

## Description

This routine finds the element having maximum real part absolute value as well as its corresponding global index.

## Input Parameters

v1 (local)
COMPLEX for ccombamax1
COMPLEX*16 for zcombamax1
Array, DIMENSION 2.
The first maximum absolute value element and its global index. $v 1(1)=a \max$, $\mathrm{v} 1(2)=$ indx.
v2 (local)
COMPLEX for ccombamax1
COMPLEX*16 for zcombamax1
Array, DIMENSION 2.
The second maximum absolute value element and its global index. $v 21(1)=a \max$, $\mathrm{v} 2(2)=$ indx.

## Output Parameters

v1 (local). The first maximum absolute value element and its global index. $\mathrm{v} 1(1)=\mathrm{amax}$, $v i(2)=$ indx.

## p?sum1

Forms the 1-norm of a complex vector similar to Level 1 PBLAS p?asum, but using the true absolute value.

## Syntax

```
call pscsum1 (n, asum, x, ix, jx, descx, incx)
```

call pdzsum1 (n, asum, $x, i x, j x$, descx, incx)

## Description

This routine returns the sum of absolute values of a complex distributed vector sub ( $x$ ) in asum, where sub ( $x$ ) denotes $X(i x: i x+n-1, j x: j x)$, if $\operatorname{incx}=1$, $X(i x: i x, j x: j x+n-1)$, if $i n c x=m_{-} x$.

Based on p?asum from the Level 1 PBLAS. The change is to use the 'genuine' absolute value.

## Input Parameters

$n$ (global) pointer to INTEGER .
The number of components of the distributed vector sub ( $x$ ). $n \geq 0$.
$x \quad$ (local)
COMPLEX for pscsum1
COMPLEX*16 for pdzsum1.
Array containing the local pieces of a distributed matrix of dimension of at least $\left((j x-1) * m_{-} x+i x+(n-1) * a b s(i n c x)\right)$. This array contains the entries of the distributed vector sub ( $x$ ).
ix (global) INTEGER. The row index in the global array $X$ indicating the first row of sub ( $x$ ).
$j x$ (global) INTEGER. The column index in the global array $X$ indicating the first column of sub ( $x$ )
descx (global and local) INTEGER.
Array, DIMENSION 8. The array descriptor for the distributed matrix $X$.
incx (global) integer. The global increment for the elements of $X$. Only two values of incx are supported in this version, namely 1 and $m_{-} x$.

## Output Parameters

asum (local) Pointer to REAL .
The sum of absolute values of the distributed vector $\operatorname{sub}(x)$ only in its scope.

## p?dbtrsv

Computes an LU factorization of a general tridiagonal matrix with no pivoting. The routine is called by p?dbtrs.

## Syntax

```
call psdbtrsv (uplo, trans, n, bwl, bwu, nrhs, a, ja, desca, b, ib, descb, af,
 laf, work, lwork, info)
call pddbtrsv (uplo, trans, n, bwl, bwu, nrhs, a, ja, desca, b, ib, descb, af,
 laf, work, lwork, info)
call pcdbtrsv (uplo, trans, n, bwl, bwu, nrhs, a, ja, desca, b, ib, descb, af,
 laf, work, lwork, info)
call pzdbtrsv (uplo, trans, n, bwl, bwu, nrhs, a, ja, desca, b, ib, descb, af,
 laf, work, lwork, info)
```


## Description

This routines solves a banded triangular system of linear equations

$$
\begin{aligned}
& A(1: n, j a: j a+n-1) * X=B(i b: i b+n-1,1: n r h s) \text { or } \\
& A(1: n, j a: j a+n-1)^{T} * X=B(i b: i b+n-1,1: n r h s) \text { (for real flavors); } \\
& A(1: n, j a: j a+n-1)^{H} * X=B(i b: i b+n-1,1: n r h s) \text { (for complex flavors), }
\end{aligned}
$$

where $A(1: n, j a: j a+n-1)$ is a banded triangular matrix factor produced by the Gaussian elimination code PD@ (dom_pre) BTRF and is stored in $A(1: n, j a: j a+n-1)$ and $a f$. The matrix stored in $A(1: n, j a: j a+n-1)$ is either upper or lower triangular according to uplo, and the choice of solving $A(1: n, j a: j a+n-1)$ or $A(1: n, j a: j a+n-1)^{T}$ is dictated by the user by the parameter trans.

Routine p?dbtrf must be called first.

## Input Parameters

```
uplo (global) CHARACTER.
 If uplo= 'U', the upper triangle of }A(1:n,ja:ja+n-1) is stored
 if uplo= 'L', the lower triangle of }A(1:n,ja:ja+n-1) is stored
trans (global) CHARACTER.
 If trans ='N', solve with A(1:n, ja: ja+n-1),
 if trans ='C', solve with conjugate transpose A(1:n, ja:ja+n-1).
n
bwl (global) INTEGER.
 Number of subdiagonals. 0\leqbwl \leqn-1.
bwu (global) INTEGER.
 Number of subdiagonals. 0\leqbwu \leqn-1.
nrhs (global) INTEGER. The number of right-hand sides; the number of columns of the
 distributed submatrix B (nrhs }\geq0)\mathrm{ .
(local).
REAL for psdbtrsv
DOUBLE PRECISION for pddbtrsv
COMPLEX for pcabtrsv
COMPLEX*16 for pzdbtrsv.
Pointer into the local memory to an array with first DIMENSION \(l l d _a \geq(b w l+b w u+1)\) (stored in desca). On entry, this array contains the local pieces of the \(n\)-by-n unsymmetric banded distributed Cholesky factor \(L\) or \(L^{T} A(1: n, j a: j a+n-1)\).
This local portion is stored in the packed banded format used in LAPACK. Please see the Application Notes below and the ScaLAPACK manual for more detail on the format of distributed matrices.
ja (global) INTEGER. The index in the global array a that points to the start of the matrix to be operated on (which may be either all of \(A\) or a submatrix of \(A\)).
desca (global and local) INTEGER array of DIMENSION (dlen_).
if \(1 d\) type (dtype_a \(=501\) or 502), dlen \(\geq 7\);
if \(2 d\) type (dtype_a \(=1\)), dlen \(\geq 9\).
The array descriptor for the distributed matrix \(A\). Contains information of mapping of \(A\) to memory.
```

```
b (local)
 REAL for psdbtrsv
 DOUBLE PRECISION for pddbtrsv
 COMPLEX for pcdbtrsv
 COMPLEX*16 for pzdbtrsv.
 Pointer into the local memory to an array of local lead DIMENSION lld_b \geqnb. On
 entry, this array contains the local pieces of the right hand sides
 B(ib:ib+n-1, 1:nrhs).
ib (global) INTEGER. The row index in the global array b that points to the first row of
 the matrix to be operated on (which may be either all of b or a submatrix of B).
desb (global and local) INTEGER array of DIMENSION (dlen_).
 if 1d type (dtype_b =502), dlen \geq7;
 if 2d type (dtype_b =), dlen \geq9.
 The array descriptor for the distributed matrix }B\mathrm{ . Contains information of mapping }
 to memory.
laf (local) INTEGER. Size of user-input Auxiliary Filling space af.
 laf must be \geqnb*(bwl+bwu)+6*max(bwl, bwu)*\operatorname{max}(bwl, bwu). If laf is not large
 enough, an error code is returned and the minimum acceptable size will be returned
 in af(1).
work (local).
 REAL for psdbtrsv
 DOUBLE PRECISION for pddbtrsv
 COMPLEX for pcdbtrsv
 COMPLEX*16 for pzdbtrsv.
 Temporary workspace. This space may be overwritten in between calls to routines.
 work must be the size given in lwork.
lwork (local or global) INTEGER.
 Size of user-input workspace work. If l work is too small, the minimal acceptable
 size will be returned in work(1) and an error code is returned.
 lwork \geq max(bwl, bwu)*nrhs.
```


## Output Parameters

```
a (local).
This local portion is stored in the packed banded format used in LAPACK. Please see the Application Notes below and the ScaLAPACK manual for more detail on the format of distributed matrices.
b On exit, this contains the local piece of the solutions distributed matrix \(X\).
```

a (local).
REAL for psdbtrsv
DOUBLE PRECISION for pddbtrsv
COMPLEX for pcdbtrsv
COMPLEX*16 for pzdbtrsv.
Auxiliary Filling Space. Filling is created during the factorization routine p?dbtrf and this is stored in af. If a linear system is to be solved using p? dbtrf after the factorization routine, af must not be altered after the factorization.
work On exit, work( 1 ) contains the minimal lwork.
info (local).INTEGER. If info $=0$, the execution is successful.
$<0$ : If the $i$-th argument is an array and the $j$-entry had an illegal value, then info $=-\left(i^{*} 100+j\right)$, if the $i$-th argument is a scalar and had an illegal value, then info $=-i$.

## p?dttrsv

Computes an LU factorization of a general band
matrix, using partial pivoting with row interchanges.
The routine is called by p?dttrs.

## Syntax

call psdttrsv (uplo, trans, $n, ~ n r h s, ~ d l, ~ d, ~ d u, ~ j a, ~ d e s c a, ~ b, ~ i b, ~ d e s c b, ~ a f, ~$
laf, work, lwork, info)
call pddttrsv (uplo, trans, $n, ~ n r h s, d l, d, d u, j a, ~ d e s c a, ~ b, ~ i b, ~ d e s c b, ~ a f$,
laf, work, lwork, info)
call pcdttrsv (uplo, trans, $n, ~ n r h s, d l, d, d u, j a, ~ d e s c a, ~ b, ~ i b, ~ d e s c b, ~ a f, ~$
laf, work, lwork, info)
call pzdttrsv (uplo, trans, $n, ~ n r h s, ~ d l, ~ d, ~ d u, ~ j a, ~ d e s c a, ~ b, ~ i b, ~ d e s c b, ~ a f, ~$
laf, work, lwork, info)

## Description

This routine solves a tridiagonal triangular system of linear equations

$$
A(1: n, j a: j a+n-1) * X=B(i b: i b+n-1,1: n r h s) \text { or }
$$

$A(1: n, j a: j a+n-1)^{T} * X=B(i b: i b+n-1,1: n r h s)$ for real flavors; $A(1: n, j a: j a+n-1)^{H} * X=B(i b: i b+n-1,1: n r h s)$ for complex flavors,
where $A(1: n, j a: j a+n-1)$ is a tridiagonal matrix factor produced by the Gaussian elimination code PS@ (dom_pre) TTRF and is stored in $A(1: n, j a: j a+n-1)$ and $a f$.

The matrix stored in $A(1: n, j a: j a+n-1)$ is either upper or lower triangular according to uplo, and the choice of solving $A(1: n, j a: j a+n-1)$ or $A(1: n, j a: j a+n-1)^{T}$ is dictated by the user by the parameter trans.

Routine p?dttrf must be called first.

## Input Parameters

```
uplo (global) CHARACTER.
 If uplo= 'U', the upper triangle of A(1:n, ja: ja+n-1) is stored,
 if uplo= 'L', the lower triangle of A(1:n, ja:ja+n-1) is stored.
trans (global) CHARACTER.
 If trans ='N', solve with A(1:n, ja: ja+n-1),
 if trans ='C', solve with conjugate transpose A(1:n, ja: ja+n-1).
n
nrhs (global) INTEGER. The number of right-hand sides; the number of columns of the
 distributed submatrix B(ib:ib+n-1, 1:nrhs). (nrhs \geq 0).
dl (local).
 REAL for psdttrsv
 DOUBLE PRECISION for pddttrsv
 COMPLEX for pcdttrsv
 COMPLEX*16 for pzdttrsv.
 Pointer to local part of global vector storing the lower diagonal of the matrix.
 Globally, dl(1) is not referenced, and dl must be aligned with d.
 Must be of size \geqdesca(nb_).
 (local).
 REAL for psdttrsv
 DOUBLE PRECISION for pddttrsv
 COMPLEX for pcdttrsv
 COMPLEX*16 for pzdttrsv.
 Pointer to local part of global vector storing the main diagonal of the matrix.
```

$d u$	(local).
	REAL for psdttrsv
	DOUBLE PRECISION for pddttrsv
	COMPLEX for pcdttrsv
	COMPLEX*16 for pzdttrsv.
	Pointer to local part of global vector storing the upper diagonal of the matrix.
	Globally, $d u(n)$ is not referenced, and $d u$ must be aligned with $d$.
ja	(global) InTEGER. The index in the global array a that points to the start of the matrix to be operated on (which may be either all of $A$ or a submatrix of $A$ ).
desca	(global and local). INTEGER array of DIMENSION (dlen_).
	if 1d type (dtype_a $=501$ or 502), dlen $\geq 7$;
	if 2d type (dtype_a $=1$ ), dlen $\geq 9$.
	The array descriptor for the distributed matrix $A$. Contains information of mapping of $A$ to memory.
b	(local)
	REAL for psdttrsv
	DOUBLE PRECISION for pddttrsv
	COMPLEX for pcdttrsv
	COMPLEX*16 for pzdttrsv.
	Pointer into the local memory to an array of local lead DIMENSION lld_b $\geq n b$. On entry, this array contains the local pieces of the right hand sides $B(i b: i b+n-1$, 1:nrhs).
ib	(global).INTEGER. The row index in the global array $b$ that points to the first row of the matrix to be operated on (which may be either all of $b$ or a submatrix of $B$ ).
desb	(global and local).INTEGER array of DIMENSION (dlen_).
	if $1 d$ type (dtype_b $=502$ ), dlen $\geq 7$;
	if 2d type (dtype_b $=1$ ), dlen $\geq 9$.
	The array descriptor for the distributed matrix $B$. Contains information of mapping $B$ to memory.
laf	(local).INTEGER.Size of user-input Auxiliary Filling space af.
	laf must be $\geq 2^{*}(n b+2)$. If laf is not large enough, an error code is returned and the minimum acceptable size will be returned in $\operatorname{af}(1)$.
work	(local).
	REAL for psdttrsv
	DOUBLE PRECISION for pddttrsv
	COMPLEX for pcdttrsv

COMPLEX*16 for pzdttrsv.
Temporary workspace. This space may be overwritten in between calls to routines. work must be the size given in lwork.
lwork (local or global).INTEGER.
Size of user-input workspace work. If 1 work is too small, the minimal acceptable size will be returned in work(1) and an error code is returned.
lwork $\geq 10^{*}$ npcol+4*nrhs.

## Output Parameters

d On exit, this array contains information containing the factors of the matrix. Must be of size $\geq$ desca ( $n b \_$).
b On exit, this contains the local piece of the solutions distributed matrix X.
af (local).
REAL for psdttrsv
DOUBLE PRECISION for pddttrsv
COMPLEX for pcdttrsv COMPLEX*16 for pzdttrsv.
Auxiliary Filling Space. Filling is created during the factorization routine p?dttrf and this is stored in af. If a linear system is to be solved using p?dttrs after the factorization routine, af must not be altered after the factorization.
work $\quad$ On exit, work(1) contains the minimal lwork.
info (local).INTEGER.
If info $=0$, the execution is successful.
if info< 0 : If the $i$-th argument is an array and the $j$-entry had an illegal value, then info $=-\left(i^{*} 100+j\right)$, if the $i$-th argument is a scalar and had an illegal value, then info $=-i$.

## p?gebd2

## Reduces a general rectangular matrix to real bidiagonal form by an orthogonal/unitary transformation (unblocked algorithm).

## Syntax

```
call psgebd2 (m, n, a, ia, ja, desca, d, e, tauq, taup, work, lwork, info)
call pdgebd2 (m, n, a, ia, ja, desca, d, e, tauq, taup, work, lwork, info)
call pcgebd2 (m, n, a, ia, ja, desca, d, e, tauq, taup, work, lwork, info)
call pzgebd2 (m, n, a, ia, ja, desca, d, e, tauq, taup, work, lwork, info)
```


## Description

This routine reduces a real/complex general $m$-by- $n$ distributed matrix $\operatorname{sub}(A)=A(i a: i a+m-1$, $j a: j a+n-1)$ to upper or lower bidiagonal form $B$ by an orthogonal/unitary transformation:

$$
Q^{\prime} * \operatorname{sub}(A) * P=B .
$$

If $m \geq n, B$ is the upper bidiagonal; if $m<n, B$ is the lower bidiagonal.

## Input Parameters

$m$ (global) Integer.
The number of rows of the distributed submatrix $\operatorname{sub}(A)$. $(m \geq 0)$.
n
(global) INTEGER. The order of the distributed submatrix $\operatorname{sub}(A)$. $(n \geq 0)$.
a (local).
REAL for psgebd2
DOUBLE PRECISION for pdgebd2
COMPLEX for pcgebd2
COMPLEX*16 for pzgebd2.
Pointer into the local memory to an array of $\operatorname{DIMENSION(11d\_ a,LOCc(ja+n-1)).~}$
On entry, this array contains the local pieces of the general distributed matrix $\operatorname{sub}(A)$.
$i a, j a$ (global) INTEGER. The row and column indices in the global array a indicating the first row and the first column of the submatrix $A$, respectively.
desca (global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the distributed matrix $A$.
work (local).
REAL for psgebd2
DOUBLE PRECISION for pdgebd2
COMPLEX for pcgebd2
COMPLEX*16 for pzgebd2.
This is a workspace array of DIMENSION (lwork).
lwork (local or global) INTEGER.
The dimension of the array work.
1 work is local input and must be at least 1 work $\geq \max (\operatorname{mpa0}$, nqa0 $)$, where
$n b=m b \_a=n b \_a$, iroffa $=\bmod (i a-1, n b)$
iarow $=$ indxg2p ( ia, nb, myrow, rsrc_a, nprow ),
iacol = indxg2p (ja, nb, mycol, csrc_a, npcol),
mpa0 = numroc (m+iroffa, nb, myrow, iarow, nprow),
nqa0 $=$ numroc (n+icoffa, nb, mycol, iacol, npcol).
indxg2p and numroc are ScaLAPACK tool functions;
myrow, mycol, nprow, and npcol can be determined by calling the subroutine blacs_gridinfo.

If 1 work $=-1$, then 1 work is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

## Output Parameters

(local).
On exit, if $m \geq n$, the diagonal and the first superdiagonal of $\operatorname{sub}(A)$ are overwritten with the upper bidiagonal matrix $B$; the elements below the diagonal, with the array tauq, represent the orthogonal/unitary matrix $Q$ as a product of elementary reflectors, and the elements above the first superdiagonal, with the array taup, represent the orthogonal matrix $P$ as a product of elementary reflectors. If $m<n$, the diagonal and the first subdiagonal are overwritten with the lower bidiagonal matrix $B$; the elements below the first subdiagonal, with the array tauq, represent the orthogonal/unitary matrix $Q$ as a product of elementary reflectors, and the elements above the diagonal, with the array taup, represent the orthogonal matrix $P$ as a product of elementary reflectors. See Applications Notes below.

```
d
e
tauq
taup
On exit, work(1) returns the minimal and optimal lwork.
```

info (local) INTEGER.
If info $=0$, the execution is successful.
if info $<0$ : If the $i$-th argument is an array and the $j$-entry had an illegal value, then info $=-\left(i^{*} 100+j\right)$, if the $i$-th argument is a scalar and had an illegal value, then info $=-i$.

## Application Notes

The matrices $Q$ and $P$ are represented as products of elementary reflectors:
If $m \geq n$,
$Q=H(1) H(2) \ldots H(n)$ and $P=G(1) G(2) \ldots G(n-1)$
Each $H(i)$ and $G(i)$ has the form:
$H(i)=I-\operatorname{tauq} * v^{*} V^{\prime}$ and $G(i)=I-\operatorname{taup} * u^{*} u^{\prime}$,
where tauq and taup are real/complex scalars, and $v$ and $u$ are real/complex vectors. $v(1: i-1)=0, v(i)=1$, and $v(i+i: m)$ is stored on exit in
$A(i a+i-i a+m-1, j a+i-1)$;
$u(1: i)=0, u(i+1)=1$, and $u(i+2: n)$ is stored on exit in
$A(i a+i-1, j a+i+1: j a+n-1)$;

If $m<n$,
$v(1: i)=0, v(i+1)=1$, and $v(i+2: m)$ is stored on exit in
$A(i a+i+1: i a+m-1, j a+i-1)$;
$u(1: i-1)=0, u(i)=1$, and $u(i+1: n)$ is stored on exit in
$A(i a+i-1, j a+i: j a+n-1)$;
tauq is stored in $\operatorname{TAUQ}(j a+i-1)$ and taup in $\operatorname{TAUP}(i a+i-1)$.

The contents of $\operatorname{sub}(A)$ on exit are illustrated by the following examples:

$$
\begin{aligned}
& m=6 \text { and } n=5(m>n) \text { : } \\
& m=5 \text { and } n=6(m<n): \\
& {\left[\begin{array}{ccccc}
d & e & u 1 & u 1 & u 1 \\
\text { v1 } & d & e & u 2 & u 2 \\
\text { v1 } & \text { v2 } & d & e & u 3 \\
\text { v1 } & \text { v2 } & \text { v3 } & d & e \\
\text { v1 } & \text { v2 } & \text { v3 } & \text { v4 } & d \\
\text { v1 } & \text { v2 } & \text { v3 } & \text { v4 } & \text { v5 }
\end{array}\right]} \\
& {\left[\begin{array}{ccccccc}
d & u 1 & u 1 & u 1 & u 1 & u 1 \\
e & d & u 2 & u 2 & u 2 & u 2 \\
v 1 & e & d & u 3 & u 3 & u 3 \\
v 1 & v 2 & e & d & u 4 & u 4 \\
v 1 & v 2 & v 3 & e & d & u 5
\end{array}\right]}
\end{aligned}
$$

where $d$ and $e$ denote diagonal and off-diagonal elements of $B$, vi denotes an element of the vector defining $H(i)$, and ui an element of the vector defining $G(i)$.

## p?gehd2

Reduces a general matrix to upper Hessenberg form by an orthogonal/unitary similarity transformation (unblocked algorithm).

## Syntax

```
call psgehd2 (n, ilo, ihi, a, ia, ja, desca, tau, work, lwork, info)
call pdgehd2 (n, ilo, ihi, a, ia, ja, desca, tau, work, lwork, info)
call pcgehd2 (n, ilo, ihi, a, ia, ja, desca, tau, work, lwork, info)
call pzgehd2 (n, ilo, ihi, a, ia, ja, desca, tau, work, lwork, info)
```


## Description

This routine reduces a real/complex general distributed matrix $\operatorname{sub}(A)$ to upper Hessenberg form $H$ by an orthogonal/unitary similarity transformation: $Q^{\prime *} \operatorname{sub}(A) * Q=H$, where $\operatorname{sub}(A)=$ $A(i a+n-1: 1 a+n-1, j a+n-1: j a+n-1)$.

## Input Parameters

n
(global) INTEGER. The order of the distributed submatrix $A$. ( $n \geq 0$ ).
ilo, ihi (global) INTEGER. It is assumed that $\operatorname{sub}(A)$ is already upper triangular in rows ia:ia+ilo-2 and ia+ihi:ia+n-1 and columns ja:ja+jlo-2 and ja+jhi:ja+n-1. See Application Notes for further information. If $n>0,1 \leq i l o \leq i h i \leq n ;$ otherwise set ilo $=1$, ihi $=n$.
a
ia, ja (global) INTEGER. The row and column indices in the global array $A$ indicating the first row and the first column of the submatrix $A$, respectively.
desca (global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the distributed matrix $A$.
work (local).
REAL for psgehd2
DOUBLE PRECISION for pdgehd2
COMPLEX for pcgehd2
COMPLEX*16 for pzgehd2.
This is a workspace array of DIMENSION (lwork).
Iwork (local or global). INTEGER.
The dimension of the array work.
1 work is local input and must be at least 1 work $\geq n b+\max (n p a 0, n b)$, where $n b=m b \_a=n b \_a$, iroffa $=\bmod (i a-1, n b)$
iarow $=$ indxg2p ( ia, nb, myrow, rsrc_a, nprow ), npa0 = numroc (ihi+iroffa, nb, myrow, iarow, nprow).
indxg2p and numroc are ScaLAPACK tool functions;
myrow, mycol, nprow, and npcol can be determined by calling the subroutine blacs_gridinfo.
If 1 work $=-1$, then 1 work is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

## Output Parameters

(local).On exit, the upper triangle and the first subdiagonal of $\operatorname{sub}(A)$ are overwritten with the upper Hessenberg matrix $H$, and the elements below the first subdiagonal, with the array tau, represent the orthogonal/unitary matrix $Q$ as a product of elementary reflectors. See Application Notes below.
tau (local).
REAL for psgehd2
DOUBLE PRECISION for pdgehd2
COMPLEX for pcgehd2
COMPLEX*16 for pzgehd2.
Array, DIMENSION $\operatorname{LOCc}(j a+n-2)$ The scalar factors of the elementary reflectors (see Application Notes below). Elements ja: ja+ilo-2 and ja+ihi: ja+n-2 of tau are set to zero. tau is tied to the distributed matrix $A$.
work On exit, work(1) returns the minimal and optimal lwork.
info (local).INTEGER.
If info $=0$, the execution is successful.
if info $<0$ : If the $i$-th argument is an array and the $j$-entry had an illegal value, then info $=-\left(i^{*} 100+j\right)$, if the $i$-th argument is a scalar and had an illegal value, then info $=-i$.

## Application Notes

The matrix $Q$ is represented as a product of (ihi-ilo) elementary reflectors
$Q=H(i l o) H(i l o+1) \ldots H(i h i-1)$.
Each $H(i)$ has the form
$H(i)=I-\operatorname{tau} * v^{*} v^{\prime}$,
where $\operatorname{tau}$ is a real/complex scalar, and $v$ is a real/complex vector with $v(1: i)=0, v(i+1)=1$ and $v(i h i+1: n)=0 ; v(i+2: i h i)$ is stored on exit in $A(i a+i l o+i: i a+i h i-1$, $i a+i l o+i-2)$, and tau in $\operatorname{tau}(j a+i l o+i-2)$.

The contents of $A(i a: i a+n-1, j a: j a+n-1)$ are illustrated by the following example, with $n=7$, ilo $=2$ and ihi $=6$ :
on entry on exit
$\left[\begin{array}{rlllll}\text { a a a a a } & a & a & a \\ a & a & a & a & a & a \\ a & a & a & a & a & a \\ a & a & a & a & a & a \\ a & a & a & a & a & a \\ a & a & a & a & a & a \\ & & a\end{array}\right] \quad\left[\begin{array}{rrrrrr}a & a & h & h & h & h\end{array}\right]$
where a denotes an element of the original matrix $\operatorname{sub}(A), h$ denotes a modified element of the upper Hessenberg matrix $H$, and vi denotes an element of the vector defining $H(j a+i l o+i-2)$.

## p?gelq2

Computes an LQ factorization of a general rectangular matrix (unblocked algorithm).

## Syntax

```
call psgelq2 (m, n, a, ia, ja, desca, tau, work, lwork, info)
call psgelq2 (m, n, a, ia, ja, desca, tau, work, lwork, info)
call psgelq2 (m, n, a, ia, ja, desca, tau, work, lwork, info)
call psgelq2 (m, n, a, ia, ja, desca, tau, work, lwork, info)
```


## Description

This routine computes an $L Q$ factorization of a real/complex distributed $m$-by- $n$ matrix $\operatorname{sub}(A)=A(i a: i a+m-1, j a: j a+n-1)=L * Q$.

## Input Parameters

m
(global) INTEGER.
The number of rows to be operated on, that is, the number of rows of the distributed submatrix $\operatorname{sub}(A) . \quad(m \geq 0)$.
n (global) INTEGER.
The number of columns to be operated on, that is, the number of columns of the distributed submatrix $\operatorname{sub}(A)$. $(n \geq 0)$.
a
(local).
REAL for psgelq2
DOUBLE PRECISION for pdgelq2
COMPLEX for pcgelq2
COMPLEX*16 for pzgelq2.
Pointer into the local memory to an array of DIMENSION (lld_a, LOCc (ja+n-1)). On entry, this array contains the local pieces of the $m-$ by $-n$ distributed matrix $\operatorname{sub}(A)$ which is to be factored.
ia, ja (global) INTEGER. The row and column indices in the global array a indicating the first row and the first column of the submatrix $A$, respectively.
desca (global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the distributed matrix $A$.
work (local).
REAL for psgelq2
DOUBLE PRECISION for pdgelq2
COMPLEX for pcgelq2
COMPLEX*16 for pzgelq2.
This is a workspace array of DIMENSION (l work).
lwork (local or global) INTEGER.
The dimension of the array work.
1 work is local input and must be at least 1 work $\geq \mathrm{nq0} 0+\max (1, \operatorname{mp0})$, where

```
iroff = mod(ia-1, mb_a), icoff=mod(ja-1, nb_a),
iarow = indxg2p(ia, mb_a, myrow, rsrc_a, nprow),
iacol = indxg2p(ja, nb_a, mycol, csrc_a, npcol),
mp0 = numroc(m+iroff, mb_a, myrow, iarow, nprow),
nq0 = numroc(n+icoff, nb_a, mycol, iacol, npcol),
```

indxg2p and numroc are ScaLAPACK tool functions;
myrow, mycol, nprow, and npcol can be determined by calling the subroutine blacs_gridinfo.
If 1 work $=-1$, then 1 work is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

## Output Parameters

```
a (local).
 On exit, the elements on and below the diagonal of \operatorname{sub}(A)\mathrm{ contain the m by min}(m,n)
 lower trapezoidal matrix L (L is lower triangular if m\leqn); the elements above the
 diagonal, with the array tau, represent the orthogonal/unitary matrix Q as a product
 of elementary reflectors (see Application Notes below).
tau (local).
 REAL for psgelq2
 DOUBLE PRECISION for pdgelq2
 COMPLEX for pcgelq2
 COMPLEX*16 for pzgelq2.
 Array, DIMENSION LOCr(ia+min(m,n)-1). This array contains the scalar factors
 of the elementary reflectors. tau is tied to the distributed matrix }A\mathrm{ .
work On exit, work(1) returns the minimal and optimal lwork.
info (local).INTEGER.
 If info = 0, the execution is successful.
 if info < 0: If the i-th argument is an array and the j-entry had an illegal value,
 then info = - (i*100+j), if the i-th argument is a scalar and had an illegal value,
 then info=-i.
```


## Application Notes

The matrix $Q$ is represented as a product of elementary reflectors
$Q=H(i a+k-1) H(i a+k-2) \ldots H(i a)$ for real flavors, $Q=H(i a+k-1)^{\prime} H(i a+k-2)^{\prime} \ldots H(i a)^{\prime}$ for complex flavors,
where $k=\min (m, n)$.
Each $H(i)$ has the form
$H(i)=I-t a u * v^{*}{ }^{\prime}$
where tau is a real/complex scalar, and $v$ is a real/complex vector with $v(1: i-1)=0$ and $v(i)=1$; $v(i+1: n)$ (for real flavors) or conjg(v(i+1:n)) (for complex flavors) is stored on exit in $A(i a+i-1, j a+i: j a+n-1)$, and tau in $T A U(i a+i-1)$.

## p?geql2

Computes a QL factorization of a general rectangular matrix (unblocked algorithm).

## Syntax

```
call psgeql2 (m, n, a, ia, ja, desca, tau, work, lwork, info)
call psgeql2 (m, n, a, ia, ja, desca, tau, work, lwork, info)
call psgeql2 (m, n, a, ia, ja, desca, tau, work, lwork, info)
call psgeql2 (m, n, a, ia, ja, desca, tau, work, lwork, info)
```


## Description

The routine computes a $Q L$ factorization of a real/complex distributed $m-b y-n$ matrix $\operatorname{sub}(A)=A(i a: i a+m-1, j a: j a+n-1)=Q * L$.

## Input Parameters

$m \quad$ (global) INTEGER.
The number of rows to be operated on, that is, the number of rows of the distributed submatrix $\operatorname{sub}(A) .(m \geq 0)$.
(global) INTEGER.
The number of columns to be operated on, that is, the number of columns of the distributed submatrix $\operatorname{sub}(A) .(n \geq 0)$.
a (local).
REAL for psgeq12
DOUBLE PRECISION for pdgeql2
COMPLEX for pcgeql2
COMPLEX*16 for pzgeq12.
Pointer into the local memory to an array of DIMENSION(Ild_a, LOCc (ja+n-1)). On entry, this array contains the local pieces of the $m-b y-n$ distributed matrix $\operatorname{sub}(A)$ which is to be factored.
ia, ja (global) INTEGER. The row and column indices in the global array a indicating the first row and the first column of the submatrix $A$, respectively.
desca (global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the distributed matrix $A$.
work (local).
REAL for psgeql2
DOUBLE PRECISION for pdgeql2
COMPLEX for pcgeql2
COMPLEX*16 for pzgeql2.
This is a workspace array of DIMENSION (lwork).
Iwork (local or global) INTEGER.
The dimension of the array work.
lwork is local input and must be at least 1 work $\geq \operatorname{mpo}+\max (1, n q 0)$, where
iroff $=\bmod \left(i a-1, ~ m b \_a\right), i c o f f=\bmod \left(j a-1, ~ n b \_a\right)$,
iarow $=$ indxg2p (ia, mb_a, myrow, rsrc_a, nprow ),
iacol $=$ indxg2p(ja, nb_a, mycol, csrc_a, npcol ),
mp0 $=$ numroc( m+iroff, mb_a, myrow, iarow, nprow),
nq0 $=$ numroc (n+icoff, nb_a, mycol, iacol, npcol ),
indxg2p and numroc are ScaLAPACK tool functions;
myrow, mycol, nprow, and npcol can be determined by calling the subroutine blacs_gridinfo.

If 1 work $=-1$, then 1 work is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

## Output Parameters

(local).
On exit, if $m \geq n$, the lower triangle of the distributed submatrix
A( ia+m-n:iatm-1, ja:ja+n-1 ) contains the $n$-by- $n$ lower triangular matrix $L$;
if $m \leq n$, the elements on and below the $(n-m)$-th superdiagonal contain the $m$ by $n$
lower trapezoidal matrix $L$; the remaining elements, with the array tau, represent the
orthogonal/ unitary matrix $Q$ as a product of elementary reflectors (see Application
Notes below).
tau (local).
REAL for psgeql2
DOUBLE PRECISION for pdgeql2

COMPLEX for pcgeql2 COMPLEX*16 for pzgeql2.
info (local).INTEGER.
If info $=0$, the execution is successful.
if info <0: If the $i$-th argument is an array and the $j$-entry had an illegal value, then info $=-\left(i^{*} 100+j\right)$,
if the $i$-th argument is a scalar and had an illegal value, then info $=-i$.

## Application Notes

The matrix $Q$ is represented as a product of elementary reflectors
$Q=H(j a+k-1) \ldots H(j a+1) H(j a)$, where $k=\min (m, n)$.
Each $H(i)$ has the form
$H(i)=I-\operatorname{tau} * v^{*} v^{\prime}$
where $t a u$ is a real/complex scalar, and $v$ is a real/complex vector with
$v(m-k+i+1: m)=0$ and $v(m-k+i)=1 ; v(1: m-k+i-1)$ is stored on exit in $A(i a: i a+m-k+i-2$, $j a+n-k+i-1)$, and tau in $T A U(j a+n-k+i-1)$.

## p?geqr2

Computes a QR factorization of a general rectangular matrix (unblocked algorithm).

## Syntax

```
call psgeqr2 (m, n, a, ia, ja, desca, tau, work, lwork, info)
call psgeqr2 (m, n, a, ia, ja, desca, tau, work, lwork, info)
call psgeqr2 (m, n, a, ia, ja, desca, tau, work, lwork, info)
call psgeqr2 (m, n, a, ia, ja, desca, tau, work, lwork, info)
```


## Description

This routine computes a $Q R$ factorization of a real/complex distributed $m$-by- $n$ matrix $\operatorname{sub}(A)=A($ ia:ia+m-1, ja:ja+n-1) $=Q * R$.

## Input Parameters

$m$ (global). INTEGER.
The number of rows to be operated on, that is, the number of rows of the distributed submatrix $\operatorname{sub}(A)$. $(m \geq 0)$.
ia, ja (global) INTEGER. The row and column indices in the global array a indicating the first row and the first column of the submatrix $A$, respectively.
desca (global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the distributed matrix $A$.
work (local).
REAL for psgeqr2
DOUBLE PRECISION for pdgeqr2
COMPLEX for pcgeqr2
COMPLEX*16 for pzgeqr2.
This is a workspace array of DIMENSION (lwork).
lwork (local or global). INTEGER.
The dimension of the array work.
Iwork is local input and must be at least 1 work $\geq m p 0+\max (1, n q 0)$, where
iroff $=\bmod \left(i a-1, ~ m b \_a\right), i c o f f=\bmod \left(j a-1, ~ n b \_a\right)$,
iarow $=$ indxg2p( $\left.i a, ~ m b \_a, ~ m y r o w, ~ r s r c \_a, ~ n p r o w ~\right), ~$
iacol $=$ indxg2p (ja, nb_a, mycol, csrc_a, npcol ),
mp0 $=$ numroc ( m+iroff, mb_a, myrow, iarow, nprow),
nq0 = numroc ( n+icoff, nb_a, mycol, iacol, npcol ),
indxg2p and numroc are ScaLAPACK tool functions;
myrow, mycol, nprow, and npcol can be determined by calling the subroutine blacs_gridinfo.

If lwork $=-1$, then 1 work is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

## Output Parameters

## a (local).

On exit, the elements on and above the diagonal of $\operatorname{sub}(A)$ contain the $\min (m, n)$ by $n$ upper trapezoidal matrix $R$ ( $R$ is upper triangular if $m \geq n$ ); the elements below the diagonal, with the array tau, represent the orthogonal/unitary matrix $Q$ as a product of elementary reflectors (see Application Notes below).
tau (local).
REAL for psgeqr2
DOUBLE PRECISION for pdgeqr2
COMPLEX for pcgeqr2
COMPLEX*16 for pzgeqr2.
Array, DIMENSION $L O C c(j a+\min (m, n)-1)$. This array contains the scalar factors of the elementary reflectors. tau is tied to the distributed matrix $A$.
work On exit, work(1) returns the minimal and optimal lwork.
info (local).INTEGER.
If info $=0$, the execution is successful.
if info $<0$ :
If the $i$-th argument is an array and the $j$-entry had an illegal value, then info $=-\left(i^{*} 100+j\right)$, if the $i$-th argument is a scalar and had an illegal value, then info $=-i$.

## Application Notes

The matrix $Q$ is represented as a product of elementary reflectors
$Q=H(j a) H(j a+1) \ldots H(j a+k-1)$, where $k=\min (m, n)$.
Each $H(i)$ has the form
$H(j)=I-t a u * v^{*} v^{\prime}$,
where $t a u$ is a real/complex scalar, and $v$ is a real/complex vector with $v(1: i-1)=0$ and $v(i)=1 ; v(i+1: m)$ is stored on exit in $A(i a+i: i a+m-1, j a+i-1)$, and tau in $T A U(j a+i-1)$.

## p?gerq2

Computes an RQ factorization of a general rectangular matrix (unblocked algorithm).

## Syntax

```
call psgerq2 (m, n, a, ia, ja, desca, tau, work, lwork, info)
call psgerq2 (m, n, a, ia, ja, desca, tau, work, lwork, info)
call psgerq2 (m, n, a, ia, ja, desca, tau, work, lwork, info)
call psgerq2 (m, n, a, ia, ja, desca, tau, work, lwork, info)
```


## Description

This routine computes an $R Q$ factorization of a real/complex distributed m-by-n matrix $\operatorname{sub}(A)=A($ ia: $i a+m-1, j a: j a+n-1)=R^{*} Q$.

## Input Parameters

$m$ (global). INTEGER.
The number of rows to be operated on, that is, the number of rows of the distributed submatrix $\operatorname{sub}(A) .(m \geq 0)$.
(global).INTEGER.
The number of columns to be operated on, that is, the number of columns of the distributed submatrix $\operatorname{sub}(A) .(n \geq 0)$.
a (local).
REAL for psgerq2
DOUBLE PRECISION for pdgerq2
COMPLEX for pcgerq2
COMPLEX*16 for pzgerq2.
Pointer into the local memory to an array of DIMENSION (lld_a, LOCc (ja+n-1)). On entry, this array contains the local pieces of the $m$-by- $n$ distributed matrix $\operatorname{sub}(A)$ which is to be factored.
ia, ja (global) INTEGER. The row and column indices in the global array a indicating the first row and the first column of the submatrix $A$, respectively.
desca (global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the distributed matrix $A$.
work (local).
REAL for psgerq2
DOUBLE PRECISION for pdgerq2
COMPLEX for pcgerq2
COMPLEX*16 for pzgerq2.
This is a workspace array of DIMENSION (lwork).
lwork (local or global). INTEGER.
The dimension of the array work.
1 work is local input and must be at least 1 work $\geq n q 0+\max (1, m p 0)$, where

```
iroff = mod (ia-1, mb_a),icoff=mod(ja-1, nb_a),
iarow= indxg2p(ia, mb_a, myrow, rsrc_a, nprow),
iacol = indxg2p(ja, nb_a, mycol, csrc_a, npcol),
mp0 = numroc(m+iroff, mb_a, myrow, iarow, nprow),
nq0 = numroc(n+icoff, nb_a, mycol, iacol, npcol),
```

indxg2p and numroc are ScaLAPACK tool functions;
myrow, mycol, nprow, and npcol can be determined by calling the subroutine blacs_gridinfo.
If 1 work $=-1$, then 1 work is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

## Output Parameters

a
tau
(local).
REAL for psgeqr2
DOUBLE PRECISION for pdgeqr2
COMPLEX for pcgeqr2
COMPLEX*16 for pzgeqr2.
Array, DIMENSION $\operatorname{LOCr}(i a+m-1)$. This array contains the scalar factors of the elementary reflectors. tau is tied to the distributed matrix $A$.
work $\quad$ On exit, work(1) returns the minimal and optimal lwork.
info (local).INTEGER.
If info $=0$, the execution is successful.
if info $<0$ : If the $i$-th argument is an array and the j-entry had an illegal value, then info $=-\left(i^{*} 100+j\right)$, if the $i$-th argument is a scalar and had an illegal value, then info $=-i$.

## Application Notes

The matrix $Q$ is represented as a product of elementary reflectors
$Q=H(i a) H(i a+1) \ldots H(i a+k-1)$ for real flavors,
$Q=H(i a)^{\prime} H(i a+1)^{\prime} \ldots H(i a+k-1)^{\prime}$ for complex flavors,
where $k=\min (m, n)$.
Each $H(i)$ has the form
$H(i)=I-t a u *_{v} *^{\prime}{ }^{\prime}$,
where tau is a real/complex scalar, and $v$ is a real/complex vector with $v(n-k+i+1: n)=0$ and $v(n-k+i)=1 ; v(1: n-k+i-1)$ for real flavors or conjg(v(1:n-k+i-1)) for complex flavors is stored on exit in $A(i a+m-k+i-1, j a: j a+n-k+i-2)$, and tau in $T A U(i a+m-k+i-1)$.

## p?getf2

Computes an LU factorization of a general matrix, using partial pivoting with row interchanges (local blocked algorithm).

## Syntax

```
call psgetf2 (m, n, a, ia, ja, desca, ipiv, info)
call pdgetf2 (m, n, a, ia, ja, desca, ipiv, info)
call pcgetf2 (m, n, a, ia, ja, desca, ipiv, info)
call pzgetf2 (m, n, a, ia, ja, desca, ipiv, info)
```


## Description

This routine computes an $L U$ factorization of a general m-by-n distributed matrix $\operatorname{sub}(A)=A(i a: i a+m-1, j a: j a+n-1)$ using partial pivoting with row interchanges.

The factorization has the form $\operatorname{sub}(A)=P * L * U$, where $P$ is a permutation matrix, $L$ is lower triangular with unit diagonal elements (lower trapezoidal if $m>n$ ), and $U$ is upper triangular (upper trapezoidal if $m<n$ ). This is the right-looking Parallel Level 2 BLAS version of the algorithm.

## Input Parameters

$m$ (global). INTEGER.
The number of rows to be operated on, that is, the number of rows of the distributed submatrix $\operatorname{sub}(A)$. $(m \geq 0)$.
$n$ (global).INTEGER.
The number of columns to be operated on, that is, the number of columns of the distributed submatrix $\operatorname{sub}(A)$. $\left(n b \_a-\bmod \left(j a-1, n b \_a\right) \geq n \geq 0\right)$.
a
(local).
REAL for psgetf2
DOUBLE PRECISION for pdgetf2
COMPLEX for pcgetf2
COMPLEX*16 for pzgetf2.
Pointer into the local memory to an array of DIMENSION (Ild_a, LOCc (ja+n-1)). On entry, this array contains the local pieces of the $m$-by- $n$ distributed matrix $\operatorname{sub}(A)$.
ia ja (global) INTEGER. The row and column indices in the global array a indicating the first row and the first column of the submatrix $\operatorname{sub}(A)$, respectively.
desca (global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the distributed matrix $A$.

## Output Parameters

```
ipiv (local).INTEGER.
 Array, DIMENSION (LOCr(m_a) + mb_a). This array contains the pivoting
 information. ipiv(i) -> The global row that local row i was swapped with. This
 array is tied to the distributed matrix }A\mathrm{ .
info (local). INTEGER.
 If info = 0: successful exit.
 If info<0:
 - if the i-th argument is an array and the j-entry had an illegal value, then
 info = - (i*100+j),
 - if the i-th argument is a scalar and had an illegal value, then info = -i.
```

If info >0: If info $=k, u(i a+k-1, j a+k-1)$ is exactly zero. The factorization has been completed, but the factor $u$ is exactly singular, and division by zero will occur if it is used to solve a system of equations.

## p? labrd

Reduces the first nb rows and columns of a general rectangular matrix A to real bidiagonal form by an orthogonal/unitary transformation, and returns auxiliary matrices that are needed to apply the transformation to the unreduced part of $A$.

```
call pslabrd (m, n, nb, a, ia, ja, desca, d, e, tauq, taup, x, ix, jx, descx, y,
 iy, jy, descy, work)
call pdlabrd (m, n, nb, a, ia, ja, desca, d, e, tauq, taup, x, ix, jx, descx, y,
 iy, jy, descy, work)
call pclabrd (m, n, nb, a, ia, ja, desca, d, e, tauq, taup, x, ix, jx, descx, y,
 iy, jy, descy, work)
call pzlabrd (m, n, nb, a, ia, ja, desca, d, e, tauq, taup, x, ix, jx, descx, y,
 iy, jy, descy, work)
```


## Description

This routine reduces the first $n b$ rows and columns of a real/complex general $m$-by- $n$ distributed $\operatorname{matrix} \operatorname{sub}(A)=A($ ia: $i a+m-1, j a: j a+n-1)$ to upper or lower bidiagonal form by an orthogonal/unitary transformation $Q^{\prime *} A * P$, and returns the matrices $X$ and $Y$ necessary to apply the transformation to the unreduced part of $\operatorname{sub}(A)$.

If $m \geq n, \operatorname{sub}(A)$ is reduced to upper bidiagonal form; if $m<n, \operatorname{sub}(A)$ is reduced to lower bidiagonal form.

This is an auxiliary routine called by p?gebrd.

## Input Parameters

$m$ (global). INTEGER.
The number of rows to be operated on, that is, the number of rows of the distributed submatrix $\operatorname{sub}(A) .(m \geq 0)$.

$n$	(global).INTEGER.
	The number of columns to be operated on, that is, the number of columns of the distributed submatrix $\operatorname{sub}(A)$. $(n \geq 0)$.
nb	(global) INTEGER. The number of leading rows and columns of $\operatorname{sub}(A)$ to be reduced.
a	(local).
	REAL for pslabrd
	DOUBLE PRECISION for pdlabrd
	COMPLEX for pclabrd
	COMPLEX*16 for pzlabrd
	Pointer into the local memory to an array of DIMENSION (IId_a, LOCc (ja+n-1)).
	On entry, this array contains the local pieces of the general distributed matrix $\operatorname{sub}(A)$.
ia,ja	(global) INTEGER. The row and column indices in the global array a indicating the first row and the first column of the submatrix $\operatorname{sub}(A)$, respectively.
desca	(global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the distributed matrix $A$.
ix,jx	(global) INTEGER. The row and column indices in the global array $x$ indicating the first row and the first column of the submatrix $\operatorname{sub}(X)$, respectively.
descx	(global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the distributed matrix $X$.
iy,jy	(global) INTEGER. The row and column indices in the global array $y$ indicating the first row and the first column of the submatrix $\operatorname{sub}(Y)$, respectively.
descy	(global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the distributed matrix $Y$.
work	(local).
	REAL for pslabrd
	DOUBLE PRECISION for pdlabrd
	COMPLEX for pclabrd
	COMPLEX*16 for pzlabrd
	Workspace array, DIMENSION (lwork)
	```lwork\geqnb_a + nq, with nq= numroc(n + mod(ia-1, nb_y), nb_y, mycol, iacol, npcol) iacol = indxg2p (ja, nb_a, mycol, Csrc_a, npcol )```

indxg2p and numroc are ScaLAPACK tool functions;
myrow, mycol, nprow, and npcol can be determined by calling the subroutine blacs_gridinfo.

Output Parameters

```
a (local)
    On exit, the first nb rows and columns of the matrix are overwritten; the rest of the
    distributed matrix }\operatorname{sub}(A)\mathrm{ is unchanged.
    If m}\geqn\mathrm{ , elements on and below the diagonal in the first nb columns, with the array
    tauq, represent the orthogonal/unitary matrix Q as a product of elementary
    reflectors; and elements above the diagonal in the first nb rows, with the array taup,
    represent the orthogonal/unitary matrix P as a product of elementary reflectors.
    If m<n, elements below the diagonal in the first nb columns, with the array tauq,
    represent the orthogonal/unitary matrix Q as a product of elementary reflectors, and
    elements on and above the diagonal in the first nb rows, with the array taup,
    represent the orthogonal/unitary matrix }P\mathrm{ as a product of elementary reflectors. See
    Application Notes below.
e
(local).
REAL for pslabrd
DOUBLE PRECISION for pdlabrd
COMPLEX for pclabrd
COMPLEX*16 for pzlabrd
Array, DIMENSION LOCr(ia+min(m,n)-1) if m \geq n; LOCc(ja+min(m,n)-2)
otherwise. The distributed off-diagonal elements of the bidiagonal distributed matrix
B:
if m}\geqn,E(i)=A(ia+i-1,ja+i) for i=1, 2, .., n-1
if m<n, E(i)=A(ia+i,ja+i-1) for i = 1, 2, .., m-1.
E is tied to the distributed matrix }A\mathrm{ .
tauq, taup (local).
REAL for pslabrd
DOUBLE PRECISION for pdlabrd
COMPLEX for pclabrd
COMPLEX*16 for pzlabrd
Array DIMENSION LOCc(ja+min(m,n)-1) for tauq, DIMENSION
LOCr(ia+min}(m,n)-1) for taup. The scalar factors of the elementary reflector
which represent the orthogonal/unitary matrix Q for tauq, P for taup. tauq and
taup are tied to the distributed matrix A. See Application Notes below.
```

```
x
y (local).
REAL for pslabrd
DOUBLE PRECISION for pdlabrd
COMPLEX for pclabrd
COMPLEX*16 for pzlabrd
Pointer into the local memory to an array of DIMENSION (lld_y, nb). On exit, the
local pieces of the distributed n-by-nb matrix Y(iy:iy+n-1, jy:jy+nb-1) required
to update the unreduced part of \operatorname{sub}(A).
```


Application Notes

The matrices Q and P are represented as products of elementary reflectors:

$$
Q=H(1) H(2) \ldots H(n b) \text { and } P=G(1) G(2) \ldots G(n b)
$$

Each $H(i)$ and $G(i)$ has the form:
$H(i)=I-\operatorname{tauq} *_{V} *^{*}{ }^{\prime}$ and $G(i)=I-\operatorname{taup} *_{u} *_{u}{ }^{\prime}$,
where tauq and taup are real/complex scalars, and v and u are real/complex vectors.
If $m \geq n, v(1: i-1)=0, v(i)=1$, and $v(i: m)$ is stored on exit in
$A(i a+i-1: i a+m-1, j a+i-1) ; u(1: i)=0, u(i+1)=1$, and $u(i+1: n)$ is stored on exit in $A(i a+i-1, j a+i: j a+n-1)$; tauq is stored in $\operatorname{TAUQ(ja+i-1)}$ and taup in $\operatorname{TAUP}(i a+i-1)$.

If $m<n, v(1: i)=0, v(i+1)=1$, and $v(i+1: m)$ is stored on exit in
$A(i a+i+1: i a+m-1, j a+i-1) ; u(1: i-1)=0, u(i)=1$, and $u(i: n)$ is stored on exit in $A(i a+i-1, j a+i: j a+n-1)$; tauq is stored in $T A U Q(j a+i-1)$ and taup in $T A U P(i a+i-1)$. The elements of the vectors v and u together form the $m-b y-n b$ matrix V and the $n b-b y-n$ matrix U^{\prime} which are necessary, with X and Y, to apply the transformation to the unreduced part of the matrix, using a block update of the form: $\operatorname{sub}(A):=\operatorname{sub}(A)-V^{*} Y^{\prime}-X^{*} U^{\prime}$. The contents of $\operatorname{sub}(A)$ on exit are illustrated by the following examples with $n b=2$:

$$
\begin{aligned}
& m=6 \text { and } n=5(m>n): \quad m=5 \text { and } n=6(m<n) \text { : } \\
& {\left[\begin{array}{ccccc}
1 & 1 & u 1 & u 1 & u 1 \\
v 1 & 1 & 1 & u 2 & u 2 \\
v 1 & v 2 & a & a & a \\
v 1 & v 2 & a & a & a \\
v 1 & v 2 & a & a & a \\
v 1 & v 2 & a & a & a
\end{array}\right]} \\
& {\left[\begin{array}{cccccc}
1 & \text { ul } & \text { u1 } \\
1 & 1 & \text { u2 } \\
\text { v1 } & 1 & a & a & a & a \\
\text { v1 } & \text { v2 } & a & a & a & a \\
\text { v1 } & \text { v2 } & a & a & a & a
\end{array}\right]}
\end{aligned}
$$

where a denotes an element of the original matrix which is unchanged, vi denotes an element of the vector defining $H(i)$, and ui an element of the vector defining $G(i)$.

p?lacon

Estimates the 1-norm of a square matrix, using the reverse communication for evaluating matrix-vector products.

Syntax

```
call pslacon (n, v, iv, jv, descv, x, ix, jx, descx, isgn, est, kase)
call pdlacon (n, v, iv, jv, descv, x, ix, jx, descx, isgn, est, kase)
call pclacon (n, v, iv, jv, descv, x, ix, jx, descx, isgn, est, kase)
call pzlacon (n, v, iv, jv, descv, x, ix, jx, descx, isgn, est, kase)
```


Description

This routine estimates the 1 -norm of a square, real/unitary distributed matrix A. Reverse communication is used for evaluating matrix-vector products. x and v are aligned with the distributed matrix A, this information is implicitly contained within iv, ix, descv, and descx.

Input Parameters

(global).INTEGER.
The length of the distributed vectors v and $x . n \geq 0$.
v (local).
REAL for pslacon
DOUBLE PRECISION for pdlacon

```
                    COMPLEX for pclacon
                COMPLEX*16 for pzlacon
            Pointer into the local memory to an array of DIMENSION
            LOCr(n+mod(iv-1,mb_v)). On the final return, v = a*w,
                where est = norm(v)/norm(w) (w is not returned).
                    iv,jv (global) INTEGER. The row and column indices in the global array v indicating the
                first row and the first column of the submatrix }V\mathrm{ , respectively.
                    descv (global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the
                        distributed matrix }V\mathrm{ .
x (local).
                REAL for pslacon
                DOUBLE PRECISION for pdlacon
                COMPLEX for pclacon
                COMPLEX*16 for pzlacon
                    Pointer into the local memory to an array of DIMENSION LOCr(n+mod(ix-1,mb_x)).
                    ix,jx (global) INTEGER. The row and column indices in the global array x indicating the
        first row and the first column of the submatrix }X\mathrm{ , respectively.
descx (global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the
        distributed matrix }X\mathrm{ .
isgn (local).INTEGER.
    Array, DIMENSION LOCr(n+mod(ix-1,mb_x)). isgn is aligned with }x\mathrm{ and v.
kase (local).INTEGER.
    On the initial call to p?lacon, kase should be 0.
```


Output Parameters

```
x (local).
```

x (local).
On an intermediate return, X should be overwritten by
On an intermediate return, X should be overwritten by
A*X, if kase=1,
A*X, if kase=1,
A'*X, if kase=2,
A'*X, if kase=2,
p?lacon must be re-called with all the other parameters unchanged.
p?lacon must be re-called with all the other parameters unchanged.
est (global).
est (global).
REAL for single precision flavors
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors

```
    DOUBLE PRECISION for double precision flavors
```

kase (local) INTEGER.
On an intermediate return, kase will be 1 or 2 , indicating whether X should be overwritten by $A^{*} X$ or $A^{\prime *} X$. On the final return from p?lacon, kase will again be 0 .

p?laconsb

Looks for two consecutive small subdiagonal elements.

```
call pslaconsb (a, desca, i, l, m, h44, h33, h43h34, buf, lwork)
call pdlaconsb (a, desca, i, l, m, h44, h33, h43h34, buf, lwork)
```


Description

This routine looks for two consecutive small subdiagonal elements by seeing the effect of starting a double shift $Q R$ iteration given by $h 44, h 33$, and $h 43 h 34$ and see if this would make a subdiagonal negligible.

Input Parameters

a (global).
REAL for pslaconsb
DOUBLE PRECISION for pdlaconsb
Array, DIMENSION (desca (lld_),*). On entry, the Hessenberg matrix whose tridiagonal part is being scanned. Unchanged on exit.
desca (global and local) INTEGER.
Array of DIMENSION (dlen_). The array descriptor for the distributed matrix A.
i (global) INTEGER.
The global location of the bottom of the unreduced submatrix of A. Unchanged on exit.

1 (global) INTEGER.
The global location of the top of the unreduced submatrix of A. Unchanged on exit.
h44,
h33,
h43h34 (global).
REAL for pslaconsb
DOUBLE PRECISION for pdlaconsb These three values are for the double shift $Q R$ iteration.
lwork (global).INTEGER.
This must be at least 7* ceil (ceil((i-l)/hbl)/lcm(nprow, npcol)). Here lcm is least common multiple and nprowxnpcol is the logical grid size.

Output Parameters

m	(global).
On exit, this yields the starting location of the $Q R$ double shift. This will satisfy:	
	$I \leq m \leq i-2$.
buf \quad	(local).
	REAL for pslaconsb
	DOUBLE PRECISION for pdlaconsb
Array of size 1 work.	
Iwork \quad	(global).
	On exit, I work is the size of the work buffer.

p?lacp2

Copies all or part of a distributed matrix to another

distributed matrix.

Syntax

```
call pslacp2 (uplo, m, n, a, ia, ja, desca, b, ib, jb, descb)
call pdlacp2 (uplo, m, n, a, ia, ja, desca, b, ib, jb, descb)
call pclacp2 (uplo, m, n, a, ia, ja, desca, b, ib, jb, descb)
call pzlacp2 (uplo, m, n, a, ia, ja, desca, b, ib, jb, descb)
```


Description

This routine copies all or part of a distributed matrix A to another distributed matrix B. No communication is performed, p ? lacp2 performs a local copy $\operatorname{sub}(A):=\operatorname{sub}(B)$, where $\operatorname{sub}(A)$ denotes $A($ ia:ia+m-1, ja:ja+n-1) and $\operatorname{sub}(B)$ denotes $B(i b: i b+m-1, j b: j b+n-1)$.
p?lacp2 requires that only dimension of the matrix operands is distributed.

Input Parameters

uplo (global) CHARACTER.
Specifies the part of the distributed matrix $\operatorname{sub}(A)$ to be copied:
$=$ ' u ': Upper triangular part is copied; the strictly lower triangular part of $\operatorname{sub}(A)$ is not referenced;
$=$ ' L ': Lower triangular part is copied; the strictly upper triangular part of $\operatorname{sub}(A)$ is not referenced.
Otherwise: all of the matrix $\operatorname{sub}(A)$ is copied.
(global) INTEGER.
The number of rows to be operated on, that is, the number of rows of the distributed submatrix $\operatorname{sub}(A) .(m \geq 0)$.
(global) INTEGER.
The number of columns to be operated on, that is, the number of columns of the distributed submatrix $\operatorname{sub}(A) .(n \geq 0)$.
(local).
REAL for pslacp2
DOUBLE PRECISION for pdlacp2
COMPLEX for pclacp2
COMPLEX*16 for pzlacp2.
Pointer into the local memory to an array of DIMENSION (lld_a, LOCc (ja+n-1)). On entry, this array contains the local pieces of the m-by-n distributed matrix $\operatorname{sub}(A)$.
ia, ja (global) INTEGER. The row and column indices in the global array A indicating the first row and the first column of $\operatorname{sub}(A)$, respectively.
desca (global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the distributed matrix A.
$i b, j b$ (global) INTEGER. The row and column indices in the global array B indicating the first row and the first column of $\operatorname{sub}(B)$, respectively.
descb (global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the distributed matrix B.

Output Parameters

b
(local).
REAL for pslacp2
DOUBLE PRECISION for pdlacp2
COMPLEX for pclacp2
COMPLEX*16 for pzlacp2.
Pointer into the local memory to an array of DIMENSION (lld_b, LOCc (jb+n-1)). This array contains on exit the local pieces of the distributed matrix sub(B) set as follows:

```
if uplo= 'U', B(ib+i-1, jb+j-1) = A(ia+i-1, ja+j-1),
1\leqi\leqj, 1\leqj\leqn;
if uplo ='L', B(ib+i-1, jb+j-1) = A(ia+i-1, ja+j-1),
j\leqi\leqm, 1\leqj\leqn;
otherwise, }B(ib+i-1,jb+j-1)=A(ia+i-1, ja+j-1)
1\leqi\leqm, 1\leqj\leqn.
```


p?lacp3

Copies from a global parallel array into a local replicated array or vice versa.

Syntax

call pslacp3 (m, i, a, desca, b, ldb, ii, jj, rev)
call pdlacp3 (m, i, a, desca, b, ldb, ii, jj, rev)

Description

This is an auxiliary routine that copies from a global parallel array into a local replicated array or vise versa. Note that the entire submatrix that is copied gets placed on one node or more. The receiving node can be specified precisely, or all nodes can receive, or just one row or column of nodes.

Input Parameters

$m \quad$ (global) INTEGER. m is the order of the square submatrix that is copied. $m \geq 0$. Unchanged on exit.
i (global) INTEGER.
$A(i, i)$ is the global location that the copying starts from. Unchanged on exit.
(global).
REAL for pslacp3
DOUBLE PRECISION for pdlacp3
Array, DIMENSION (desca(lld_),*). On entry, the parallel matrix to be copied into or from.
desca (global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the distributed matrix A.
b (local).
REAL for pslacp3
DOUBLE PRECISION for pdlacp3
Array, DIMENSION (ldb, m).
If rev $=0$, this is the global portion of the array $A(i: i+m-1, i: i+m-1)$.
If rev $=1$, this is the unchanged on exit.
Idb (local) INTEGER.
The leading dimension of B.
ii (global) INTEGER
By using rev 0 and 1, data can be sent out and returned again. If rev $=0$, then ii is destination row index for the node(s) receiving the replicated B.
If $i i \geq 0, j j \geq 0$, then node ($i i, j j$) receives the data.
If $i i=-1, j j \geq 0$, then all rows in column $j j$ receive the data.
If $i i \geq 0, j j=-1$, then all cols in row ii receive the data.
$\mathrm{f} i \mathrm{i}=-1, j j=-1$, then all nodes receive the data.
If rev $!=0$, then ii is the source row index for the node(s) sending the replicated B.
jj (global) INTEGER. Similar description as ii above.
rev (global) INTEGER.
Use rev $=0$ to send global A into locally replicated B (on node $(i i, j j)$).
Use rev $!=0$ to send locally replicated B from node ($i i, j j$) to its owner (which changes depending on its location in A) into the global A.

Output Parameters

(global). On exit, if $r e v=1$, the copied data. Unchanged on exit if $r e v=0$.

```
b (local). If rev = 1, this is unchanged on exit.
```


p?lacpy

Copies all or part of one two-dimensional array to another.

Syntax

```
call pslacpy (uplo, m, n, a, ia, ja, desca, b, ib, jb, descb)
call pdlacpy (uplo, m, n, a, ia, ja, desca, b, ib, jb, descb)
call pclacpy (uplo, m, n, a, ia, ja, desca, b, ib, jb, descb)
call pzlacpy (uplo, m, n, a, ia, ja, desca, b, ib, jb, descb)
```


Description

This routine copies all or part of a distributed matrix A to another distributed matrix B. No communication is performed, p?lacpy performs a local copy $\operatorname{sub}(A):=\operatorname{sub}(B)$, where $\operatorname{sub}(A)$ denotes $A(i a: i a+m-1, j a: j a+n-1)$ and $\operatorname{sub}(B)$ denotes $B(i b: i b+m-1, j b: j b+n-1)$.

Input Parameters

uplo (global). CHARACTER.
Specifies the part of the distributed matrix $\operatorname{sub}(A)$ to be copied:
= ' U ': Upper triangular part is copied; the strictly lower triangular part of $\operatorname{sub}(A)$ is not referenced;
= 'L': Lower triangular part is copied; the strictly upper triangular part of $\operatorname{sub}(A)$ is not referenced.
Otherwise: all of the matrix $\operatorname{sub}(A)$ is copied.
m (global) INTEGER.
The number of rows to be operated on, that is, the number of rows of the distributed submatrix $\operatorname{sub}(A)$. $(m \geq 0)$.
n
(global) INTEGER.
The number of columns to be operated on, that is, the number of columns of the distributed submatrix $\operatorname{sub}(A)$. $(n \geq 0)$.
(local).
REAL for pslacpy
DOUBLE PRECISION for pdlacpy
COMPLEX for pclacpy
COMPLEX*16 for pzlacpy.
Pointer into the local memory to an array of DIMENSION (lld_a, LOCc (ja+n-1)). On entry, this array contains the local pieces of the distributed matrix $\operatorname{sub}(A)$.
ia, ja (global) INTEGER. The row and column indices in the global array a indicating the first row and the first column of the submatrix $\operatorname{sub}(A)$, respectively.
desca (global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the distributed matrix A.
$i b, j b$ (global) INTEGER. The row and column indices in the global array B indicating the first row and the first column of $\operatorname{sub}(B)$ respectively.
descb (global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the distributed matrix A.

Output Parameters

b
(local).
REAL for pslacpy
DOUBLE PRECISION for pdlacpy
COMPLEX for pclacpy
COMPLEX*16 for pzlacpy.
Pointer into the local memory to an array of DIMENSION (11d_b, LOCc $(j b+n-1)$). This array contains on exit the local pieces of the distributed matrix sub(B) set as follows:

```
if uplo = 'U', B(ib+i-1, jb+j-1) = A(ia+i-1, ja+j-1),
1\leqi\leqj, 1\leqj\leqn;
if uplo = 'L', B(ib+i-1, jb+j-1) = A(ia+i-1, ja+j-1),
j\leqi\leqm, 1\leqj\leqn;
otherwise, }B(ib+i-1,jb+j-1)=A(ia+i-1,ja+j-1)
1\leqi\leqm, 1\leqj\leqn.
```


p?laevswp

Moves the eigenvectors from where they are computed to ScaLAPACK standard block cyclic array.

Syntax

```
call pslaevswp (n, zin, ldzi, z, iz, jz, descz, nvs, key, rwork,
    lrwork)
call pdlaevswp (n, zin, ldzi, z, iz, jz, descz, nvs, key, rwork,
    lrwork)
call pclaevswp (n, zin, ldzi, z, iz, jz, descz, nvs, key, rwork,
    lrwork)
call pzlaevswp (n, zin, ldzi, z, iz, jz, descz, nvs, key, rwork,
    lrwork)
```


Description

This routine moves the eigenvectors (potentially unsorted) from where they are computed, to a ScaLAPACK standard block cyclic array, sorted so that the corresponding eigenvalues are sorted.

Input Parameters

$n p=$ the number of rows local to a given process.
$n q=$ the number of columns local to a given process.
n (global). INTEGER.
The order of the matrix $A . n \geq 0$.
zin (local).
REAL for pslaevswp
DOUBLE PRECISION for pdlaevswp
COMPLEX for pclaevswp
COMPLEX*16 for pzlaevswp.
Array, DIMENSION (ldzi, nvs(iam)). The eigenvectors on input. Each eigenvector resides entirely in one process. Each process holds a contiguous set of nvs(iam) eigenvectors. The first eigenvector which the process holds is:
sum for $i=[0, i a m-1)$ of nvs(i).
$1 d z i \quad$ (local) INTEGER. The leading dimension of the z in array.

```
\(i z, j z\) (global) INTEGER. The row and column indices in the global array \(Z\) indicating the
    first row and the first column of the submatrix \(Z\), respectively.
descz (global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the
    distributed matrix \(Z\).
nvs (global) INTEGER.
    Array, DIMENSION( nprocs+1 )
    nvs \((i)=\) number of processes number of eigenvectors held by processes [0,i-1)
    \(n v s(1)=\) number of eigen vectors held by \([0,1-1)=0\)
    \(n v s(n p r o c s+1)=\) number of eigen vectors held by \([0\), nprocs \()=\) total number of
    eigenvectors.
key (global) INTEGER.
    Array, DIMENSION (n). Indicates the actual index (after sorting) for each of the
    eigenvectors.
rwork (local).
    REAL for pslaevswp
    DOUBLE PRECISION for pdlaevswp
    COMPLEX for pclaevswp
    COMPLEX*16 for pzlaevswp.
    Array, DIMENSION (lrwork).
lrwork (local) INTEGER.
    Dimension of work.
```


Output Parameters

```
(local).
REAL for pslaevswp
DOUBLE PRECISION for pdlaevswp
COMPLEX for pclaevswp
COMPLEX*16 for pzlaevswp.
Array, global DIMENSION ( \(n, n\) ), local DIMENSION (descz(dlen_), nq). The eigenvectors on output. The eigenvectors are distributed in a block cyclic manner in both dimensions, with a block size of nb.
```


p?lahrd

Reduces the first nb columns of a general rectangular matrix A so that elements below the $k^{\text {th }}$ subdiagonal are zero, by an orthogonal/unitary transformation, and returns auxiliary matrices that are needed to apply the transformation to the unreduced part of A.

Syntax

```
call pslahrd (n, k, nb, a, ia, ja, desca, tau, t, y, iy, jy, descy, work)
call pdlahrd (n, k, nb, a, ia, ja, desca, tau, t, y, iy, jy, descy, work)
call pclahrd (n, k, nb, a, ia, ja, desca, tau, t, y, iy, jy, descy, work)
call pzlahrd (n, k, nb, a, ia, ja, desca, tau, t, y, iy, jy, descy, work)
```


Description

The routines reduces the first $n b$ columns of a real general n-by- $(n-k+1)$ distributed matrix $A(i a: i a+n-1, j a: j a+n-k)$ so that elements below the k-th subdiagonal are zero. The reduction is performed by an orthogonal/unitary similarity transformation $Q^{\prime *} A * Q$. The routine returns the matrices V and T which determine Q as a block reflector $I-V^{*} T^{*} V^{\prime}$, and also the matrix $Y=A * V^{*} T$.

This is an auxiliary routine called by p?gehrd. In the following comments $\operatorname{sub}(A)$ denotes A(ia:ia+n-1, ja:ja+n-1).

Input Parameters

$k \quad$ (global) INTEGER. The offset for the reduction. Elements below the k-th subdiagonal in the first $n b$ columns are reduced to zero.
nb (global) INTEGER. The number of columns to be reduced.
a
(global) INTEGER. The order of the distributed submatrix $\operatorname{sub}(A) . n \geq 0$.
(local).

REAL for pslahrd
DOUBLE PRECISION for pdlahrd
COMPLEX for pclahrd
COMPLEX*16 for pzlahrd.

Pointer into the local memory to an array of DIMENSION (lld_a, LOCc $(j a+n-k)$). On entry, this array contains the the local pieces of the n-by- $(n-k+1)$ general distributed matrix $A(i a: i a+n-1, j a: j a+n-k)$.
ia, ja (global) INTEGER. The row and column indices in the global array A indicating the first row and the first column of the submatrix $\operatorname{sub}(A)$, respectively.
desca (global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the distributed matrix A.
iy, jy (global) INTEGER. The row and column indices in the global array Y indicating the first row and the first column of the submatrix $\operatorname{sub}(Y)$, respectively.
descy (global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the distributed matrix Y.
work (local).
REAL for pslahrd
DOUBLE PRECISION for pdlahrd
COMPLEX for pclahrd
COMPLEX*16 for pzlahrd.
Array, DIMENSION (nb).

Output Parameters

t
(local).
On exit, the elements on and above the k-th subdiagonal in the first nb columns are overwritten with the corresponding elements of the reduced distributed matrix; the elements below the k-th subdiagonal, with the array tau, represent the matrix Q as a product of elementary reflectors. The other columns of $A(i a: i a+n-1, j a: j a+n-k)$ are unchanged. See Application Notes below.
tau (local)
REAL for pslahrd
DOUBLE PRECISION for pdlahrd
COMPLEX for pclahrd
COMPLEX*16 for pzlahrd.
Array, dimension LOCc(ja+n-2).
The scalar factors of the elementary reflectors (see Application Notes below). tau is tied to the distributed matrix A.
t (local)
ReAL for pslahrd
DOUBLE PRECISION for pdlahrd

```
COMPLEX for pclahrd
COMPLEX*16 for pzlahrd.
Array, DIMENSION (nb_a, nb_a)
The upper triangular matrix T.
REAL for pslahrd
DOUBLE PRECISION for pdlahrd
COMPLEX for pclahrd
COMPLEX*16 for pzlahrd.
```

$y \quad$ (local).
Pointer into the local memory to an array of DIMENSION (1ld_y, nb_a). On exit, this
array contains the local pieces of the n-by-nb distributed matrix Y.
lld_y $\geq \operatorname{LOCr}(i a+n-1)$.

Application Notes

The matrix Q is represented as a product of nb elementary reflectors
$Q=H(1) H(2) \ldots H(n b)$.
Each $H(i)$ has the form
$H(i)=i-t a u * v * v^{\prime}$,
where tau is a real/complex scalar, and v is a real/complex vector with $v(1: i+k-1)=0, v(i+k)=$ 1 ; $v(i+k+1: n)$ is stored on exit in $A(i a+i+k: i a+n-1, j a+i-1)$, and tau in $T A U(j a+i-1)$.

The elements of the vectors v together form the $(n-k+1)$-by-nb matrix V which is needed, with T and Y, to apply the transformation to the unreduced part of the matrix, using an update of the form: $A(i a: i a+n-1, j a: j a+n-k):=\left(I-V^{*} T^{*} V^{\prime}\right)^{*}\left(A(i a: i a+n-1, j a: j a+n-k)-Y^{*} V^{\prime}\right)$. The contents of $A(i a: i a+n-1, j a: j a+n-k)$ on exit are illustrated by the following example with $n=7, k=3$, and $n b=2$:
$\left[\begin{array}{ccccc}a & h & a & a & a \\ a & h & a & a & a \\ a & h & a & a & a \\ h & h & a & a & a \\ v 1 & h & a & a & a \\ \text { V1 } & \mathrm{v} 2 & a & a & a \\ \text { V1 } & \mathrm{v} 2 & a & a & a\end{array}\right]$
where a denotes an element of the original matrix $A(i a: i a+n-1, j a: j a+n-k), h$ denotes a modified element of the upper Hessenberg matrix H, and vi denotes an element of the vector defining $H(i)$.

p?laiect

Exploits IEEE arithmetic to accelerate the computations of eigenvalues. (C interface function).

Syntax

```
void pslaiect (float *sigma, int *n, float *d, int *count);
void pdlaiectb (float *sigma, int *n, float *d, int *count);
void pdlaiectl (float *sigma, int *n, float *d, int *count);
```


Description

This routine computes the number of negative eigenvalues of $(A-\sigma I)$. This implementation of the Sturm Sequence loop exploits IEEE arithmetic and has no conditionals in the innermost loop. The signbit for real routine pslaiect is assumed to be bit 32 . Double precision routines pdlaiectb and pdlaiectl differ in the order of the double precision word storage and, consequently, in the signbit location. For pdlaiectb, the double precision word is stored in the big-endian word order and the signbit is assumed to be bit 32 . For pdlaiect 1, the double precision word is stored in the little-endian word order and the signbit is assumed to be bit 64.

Note that all arguments are call-by-reference so that this routine can be directly called from Fortran code.

This is a ScaLAPACK internal subroutine and arguments are not checked for unreasonable values.

Input Parameters

sigma REAL for pslaiect
DOUBLE PRECISION for pdlaiectb/pdlaiectl.
The shift. p?laiect finds the number of eigenvalues less than equal to sigma.
n INTEGER.
The order of the tridiagonal matrix $T . n \geq 1$.
d

```
REAL for pslaiect
DOUBLE PRECISION for pdlaiectb/pdlaiectl.
Array of DIMENSION (2n-1).
```

On entry, this array contains the diagonals and the squares of the off-diagonal elements of the tridiagonal matrix T. These elements are assumed to be interleaved in memory for better cache performance. The diagonal entries of T are in the entries $d(1), d(3), \ldots, d(2 n-1)$, while the squares of the off-diagonal entries are $d(2), d(4), \ldots, d(2 n-2)$. To avoid overflow, the matrix must be scaled so that its largest entry is no greater than overflow ${ }^{(1 / 2)} *$ underflow $^{(1 / 4)}$ in absolute value, and for greatest accuracy, it should not be much smaller than that.

Output Parameters

```
n INTEGER.
    The count of the number of eigenvalues of T less than or equal to sigma.
```


p?lange

Returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element, of a general rectangular matrix.

Syntax

```
val = pslange (norm, m, n, a, ia, ja, desca, work)
val = pdlange (norm, m, n, a, ia, ja, desca, work)
val = pclange (norm, m, n, a, ia, ja, desca, work)
val = pzlange (norm, m, n, a, ia, ja, desca, work)
```


Description

The function returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a distributed matrix $\operatorname{sub}(A)=A($ ia: ia+m-1, ja: ja+n-1).
p ? lange returns the value

```
(max(abs(A(i,j))), norm= 'M' or 'm' with ia\leqi\leq ia+m-1,
( and ja\leqj\leq ja+n-1,
```

(

```
( norm1( sub(A) ), norm = '1', 'o' or 'o'
(
(normI( sub(A) ), norm='I' or 'i'
(
( normF( sub(A) ), norm = 'F', 'f', 'E' or 'e',
```

where norm1 denotes the 1 -norm of a matrix (maximum column sum), norm denotes the infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a matrix (square root of sum of squares). Note that $\max (\operatorname{abs}(A(i, j)))$ is not a matrix norm.

Input Parameters

norm (global) CHARACTER.
Specifies the value to be returned in p?lange as described above.
m (global). INTEGER.
The number of rows to be operated on, that is, the number of rows of the distributed submatrix $\operatorname{sub}(A)$. When $m=0, p$ lange is set to zero. $m \geq 0$.
(global). INTEGER.
The number of columns to be operated on, that is, the number of columns of the distributed submatrix $\operatorname{sub}(A)$. When $n=0$, p ? lange is set to zero. $n \geq 0$.
a (local).
REAL for pslange
DOUBLE PRECISION for pdlange
COMPLEX for pclange
COMPLEX*16 for pzlange.
Pointer into the local memory to an array of DIMENSION (1ld_a, LOCc (ja+n-1)) containing the local pieces of the distributed matrix $\operatorname{sub}(A)$.
ia, ja (global) Integer. The row and column indices in the global array A indicating the first row and the first column of the submatrix $\operatorname{sub}(A)$, respectively.
desca (global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the distributed matrix A.
work (local).
REAL for pslange
DOUBLE PRECISION for pdlange
COMPLEX for pclange
COMPLEX*16 for pzlange.

```
Array dIMENSION (lwork).
lwork \geq 0 if norm = 'M' or 'm' (not referenced),
    nq0 if norm = '1', '0' or 'o',
    mp0 if norm = 'I' or 'i',
        0 if norm = 'F', 'f', 'E' or 'e' (not referenced),
```

where
iroffa $=\bmod \left(i a-1, m b \_a\right)$, icoffa $=\bmod \left(j a-1, n b \_a\right)$,
iarow $=$ indxg2p($\left.i a, ~ m b \_a, ~ m y r o w, ~ r s r c \_a, ~ n p r o w\right), ~$
iacol = indxg2p(ja, nb_a, mycol, csrc_a, npcol),
mpo $=$ numroc (m+iroffa, mb_a, myrow, iarow, nprow $)$,
nq0 $=$ numroc (n+icoffa, nb_a, mycol, iacol, npcol $)$,
indxg2p and numroc are ScaLAPACK tool functions; myrow, mycol, nprow,
and npcol can be determined by calling the subroutine blacs_gridinfo.

Output Parameters

val The value returned by the fuction.

p?lanhs

Returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element, of an upper Hessenberg matrix.

Syntax

```
val = pslanhs (norm, n, a, ia, ja, desca, work)
val = pdlanhs (norm, n, a, ia, ja, desca, work)
val = pclanhs (norm, n, a, ia, ja, desca, work)
val = pzlanhs (norm, n, a, ia, ja, desca, work)
```


Description

The function returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a distributed matrix $\operatorname{sub}(A)=A(i a: i a+m-1, \quad j a: j a+n-1)$.
p ?lanhs returns the value

```
(max(abs(A(i,j))), norm= 'M' or 'm' with ia\leq i \leq ia+m-1,
( and ja\leqj\leq ja+n-1,
(
( norml( sub(A) ), norm = '1', 'o' or 'o'
(
( normI( sub(A) ), norm= 'I' or 'i'
(
( normF( sub(A) ), norm = 'F', 'f', 'E' or 'e',
```

where norm1 denotes the 1-norm of a matrix (maximum column sum), normI denotes the infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a matrix (square root of sum of squares). Note that $\max (\operatorname{abs}(A(i, j)))$ is not a matrix norm.

Input Parameters

```
norm (global) CHARACTER.
    Specifies the value to be returned in p?lange as described above.
n
a
ia,ja (global) INTEGER. The row and column indices in the global array }A\mathrm{ indicating the
        first row and the first column of the submatrix sub (A), respectively.
desca (global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the
        distributed matrix }A\mathrm{ .
work (local).
        REAL for pslanhs
        DOUBLE PRECISION for pdlanhs
        COMPLEX for pclanhs
```

```
COMPLEX*16 for pzlanh.
Array, DIMENSION (lwork).
lwork \geq 0 if norm = 'M' or 'm' (not referenced),
    nq0 if norm = '1', 'o' or 'o',
    mp0 if norm = 'I' or 'i',
        0 if norm = 'F', ' }£\mathrm{ ', ' 'E' or 'e' (not referenced),
where
iroffa=mod(ia-1,mb_a ), icoffa= mod( ja-1, nb_a),
iarow=indxg2p(ia, mb_a, myrow, rsrc_a, nprow),
iacol = indxg2p( ja, nb_a, mycol, csrc_a, npcol),
mpo = numroc( m+iroffa, mb_a, myrow, iarow, nprow),
nq0 = numroc( n+icoffa, nb_a, mycol, iacol, npcol ),
indxg2p and numroc are ScaLAPACK tool functions; myrow, mycol, nprow,
and npcol can be determined by calling the subroutine blacs_gridinfo.
```


Output Parameters

val The value returned by the fuction.

p?lansy, p?lanhe

Returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element, of a real symmetric or a complex Hermitian matrix.

Syntax

```
val = pslansy (norm, uplo, n, a, ia, ja, desca, work)
val = pdlansy (norm, uplo, n, a, ia, ja, desca, work)
val = pclansy (norm, uplo, n, a, ia, ja, desca, work)
val = pzlansy (norm, uplo, n, a, ia, ja, desca, work)
val = pclanhe (norm, uplo, n, a, ia, ja, desca, work)
val = pzlanhe (norm, uplo, n, a, ia, ja, desca, work)
```


Description

The functions return the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a distributed matrix $\operatorname{sub}(A)=A(i a: i a+m-1, j a: j a+n-1)$.

```
p?lansy, p?lanhe return the value
(max(abs(A(i,j))), norm = 'M' or 'm' with ia \leq i \leq ia+m-1,
( and ja\leqj \leq ja+n-1,
(
( norm1( sub(A) ), norm = '1', 'o' or 'o'
(
( normI( sub(A) ), norm = 'I' or 'i'
(
( normF( sub(A) ), norm= 'F', 'f', 'E' or 'e',
```

where norm1 denotes the 1 -norm of a matrix (maximum column sum), normI denotes the infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a matrix (square root of sum of squares). Note that $\max (\operatorname{abs}(A(i, j))$) is not a matrix norm.

Input Parameters

```
norm (global) CHARACTER.
    Specifies the value to be returned in p?lange as described above.
uplo (global) CHARACTER.
    Specifies whether the upper or lower triangular part of the symmetric matrix
    sub(A) is to be referenced.
    = 'U': Upper triangular part of \operatorname{sub}(A) is referenced,
    = 'L':Lower triangular part of \operatorname{sub}(A)\mathrm{ is referenced.}
    (global) INTEGER.
    The number of columns to be operated on i.e the number of columns of the
    distributed submatrix }\operatorname{sub}(A)\mathrm{ . When n=0, p}\mathrm{ ? lansy is set to zero. n}\geq0\mathrm{ .
(local).
REAL for pslansy
DOUBLE PRECISION for pdlansy
COMPLEX for pclansy, pclanhe
```

COMPLEX*16 for pzlansy, pzlanhe.
Pointer into the local memory to an array of DIMENSION (1ld_a, LOCc (ja+n-1)) containing the local pieces of the distributed matrix $\operatorname{sub}(A)$.
If uplo = ' U ', the leading n-by-n upper triangular part of $\operatorname{sub}(A)$ contains the upper triangular matrix which norm is to be computed, and the strictly lower triangular part of this matrix is not referenced.
If uplo = 'L', the leading n-by-n lower triangular part of $\operatorname{sub}(A)$ contains the lower triangular matrix which norm is to be computed, and the strictly upper triangular part of $\operatorname{sub}(A)$ is not referenced.
ia, ja (global) INTEGER. The row and column indices in the global array A indicating the first row and the first column of the submatrix $\operatorname{sub}(A)$, respectively.
desca (global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the distributed matrix A.
work (local).
REAL for pslansy
DOUBLE PRECISION for pdlansy
COMPLEX for pclansy, pclanhe
COMPLEX*16 for pzlansy, pzlanhe.
Array DIMENSION (lwork).
1 work ≥ 0 if norm $=$ ' M ' or ' m ' (not referenced),
$2 * n q 0+n p 0+1 d w$ if norm = ' 1 ', 'o' or 'o', 'I' or 'i',
where $1 d w$ is given by:

```
if( nprow.ne.npcol ) then
                \(l d w=m b _a * \operatorname{ceil}\left(\operatorname{ceil}\left(\mathrm{np} 0 / \mathrm{mb} _a\right) /(1 \mathrm{~cm} / \mathrm{nprow})\right)\)
        else
            \(l d w=0\)
        end if
        0 if norm = ' F ', ' f ', ' E ' or ' e ' (not referenced),
```

where 1 cm is the least common multiple of nprow and npcol $l \mathrm{~cm}=\mathrm{ilcm}($ nprow, $n p c o l)$ and ceil denotes the ceiling operation (iceil).
iroffa $=\bmod \left(i a-1, m b \_a\right)$, icoffa $=\bmod \left(j a-1, n b \_a\right)$,
iarow $=$ indxg2p(ia, mb_a, myrow, rsrc_a, nprow),
iacol $=\operatorname{indxg} 2 p\left(j a, ~ n b \_a, ~ m y c o l, ~ c s r c \_a, ~ n p c o l\right), ~$
mpo $=$ numroc $\left(m+i r o f f a, ~ m b \_a, ~ m y r o w, ~ i a r o w, ~ n p r o w ~\right), ~$
nq0 $=$ numroc (n+icoffa, nb_a, mycol, iacol, npcol $)$,
indxg2p and numroc are ScaLAPACK tool functions; myrow, mycol, nprow,
and npcol can be determined by calling the subroutine blacs_gridinfo.

Output Parameters

val The value returned by the fuction.

p?lantr

Returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element, of a triangular matrix.

Syntax

```
val = pslantr (norm, uplo, diag, m, n, a, ia, ja, desca, work)
val = pdlantr (norm, uplo, diag, m, n, a, ia, ja, desca, work)
val = pclantr (norm, uplo, diag, m, n, a, ia, ja, desca, work)
val = pzlantr (norm, uplo, diag, m, n, a, ia, ja, desca, work)
```


Description

The function returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a trapezoidal or triangular distributed matrix $\operatorname{sub}(A)=A(i a: i a+m-1, j a: j a+n-1)$.
p?lantr returns the value

```
(max(abs(A(i,j))), norm = 'm' or 'm' with ia \leq i \leq ia+m-1,
```

(and $j a \leq j \leq j a+n-1$,
(
($\operatorname{normi}(\operatorname{sub}(A))$, norm = ' 1 ', 'o' or 'o'
(
(normi($\operatorname{sub}(A)$), norm = 'I' or 'i'
(
($\operatorname{normF}(\operatorname{sub}(A))$, norm = ' F^{\prime}, ' f ', ' E ' or 'e',
where norm1 denotes the 1 -norm of a matrix (maximum column sum), norm denotes the infinity norm of a matrix (maximum row sum) and normf denotes the Frobenius norm of a matrix (square root of sum of squares). Note that $\max (\operatorname{abs}(A(i, j))$) is not a matrix norm.

Input Parameters

norm (global) CHARACTER. Specifies the value to be returned in p?lantr as described above.
uplo (global) CHARACTER.
Specifies whether the upper or lower triangular part of the symmetric matrix $\operatorname{sub}(A)$ is to be referenced.
= 'u': Upper trapezoidal,
= 'L': Lower trapezoidal.
Note that $\operatorname{sub}(A)$ is triangular instead of trapezoidal if $m=n$.
diag (global). CHARACTER.
Specifies whether or not the distributed matrix $\operatorname{sub}(A)$ has unit diagonal.
= 'n': Non-unit diagonal.
= ' U ': Unit diagonal.
(global) INTEGER.
The number of rows to be operated on, that is, the number of rows of the distributed submatrix $\operatorname{sub}(A)$. When $m=0, p$? lantr is set to zero. $m \geq 0$.
(global) INTEGER.
The number of columns to be operated on i.e the number of columns of the distributed submatrix $\operatorname{sub}(A)$. When $n=0$, p ? lantr is set to zero. $n \geq 0$.
(local).
REAL for pslantr
DOUBLE PRECISION for pdlantr
COMPLEX for pclantr
COMPLEX*16 for pzlantr.
Pointer into the local memory to an array of DIMENSION (Ild_a, LOCc (ja+n-1)) containing the local pieces of the distributed matrix $\operatorname{sub}(A)$.
ia, ja (global) INTEGER. The row and column indices in the global array a indicating the first row and the first column of the submatrix $\operatorname{sub}(A)$, respectively.
desca (global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the distributed matrix A.

```
work (local).
    REAL for pslantr
DOUBLE PRECISION for pdlantr
COMPLEX for pclantr
COMPLEX*16 for pzlantr.
Array DIMENSION (lwork).
lwork\geq 0 if norm = 'm' or 'm' (not referenced),
    nq0 if norm = '1', '0' or 'o',
    mpo if norm = 'I' or 'i',
        0 if norm= 'F', 'f', 'E' or 'e' (not referenced),
```

where 1 cm is the least common multiple of nprow and npcol
lcm $=i l \mathrm{~cm}($ nprow, npcol) and ceil denotes the ceiling operation (iceil).
iroffa $=\bmod \left(i a-1, m b \_a\right)$, icoffa $=\bmod \left(j a-1, n b \_a\right)$,
iarow $=$ indxg2p (ia, mb_a, myrow, rsrc_a, nprow),
iacol = indxg2p (ja, nb_a, mycol, csrc_a, npcol),
mpo = numroc (m+iroffa, mb_a, myrow, iarow, nprow),
nq0 $=$ numroc (n+icoffa, nb_a, mycol, iacol, npcol),
indxg2p and numroc are ScaLAPACK tool functions; myrow, mycol, nprow,
and npcol can be determined by calling the subroutine blacs_gridinfo.

Output Parameters

val The value returned by the fuction.

p?lapiv

Applies a permutation matrix to a general distributed matrix, resulting in row or column pivoting.

Syntax

```
call pslapiv (direc, rowcol, pivroc, m, n, a, ia, ja, desca, ipiv, ip, jp,
    descip, iwork)
call pdlapiv (direc, rowcol, pivroc, m, n, a, ia, ja, desca, ipiv, ip, jp,
    descip, iwork)
call pclapiv (direc, rowcol, pivroc, m, n, a, ia, ja, desca, ipiv, ip, jp,
    descip, iwork)
```

```
call pzlapiv (direc, rowcol, pivroc, m, n, a, ia, ja, desca, ipiv, ip, jp,
    descip, iwork)
```


Description

This routine applies either P (permutation matrix indicated by ipiv) or inv (P) to a general m-by-n distributed matrix $\operatorname{sub}(A)=A(i a: i a+m-1$, ja: ja+n-1), resulting in row or column pivoting. The pivot vector may be distributed across a process row or a column. The pivot vector should be aligned with the distributed matrix A. This routine will transpose the pivot vector, if necessary.

For example, if the row pivots should be applied to the columns of $\operatorname{sub}(A)$, pass rowcol $=$ ' C^{\prime} and pivroc='c'.

Input Parameters

```
direc (global) CHARACTER*1.
```

Specifies in which order the permutation is applied:
$=$ 'F' (Forward). Applies pivots Forward from top of matrix.
Computes $P^{*} \operatorname{sub}(A)$.
$=$ ' B ' (Backward) Applies pivots Backward from bottom of matrix.
Computes $\operatorname{inv}(P) * \operatorname{sub}(A)$.
rowcol (global) CHARACTER*1.
Specifies if the rows or columns are to be permuted:
= ' R ' Rows will be permuted,
= 'C' Columns will be permuted.
pivroc (global) CHARACTER*1.
Specifies whether ipiv is distributed over a process row or column:
$=$ ' R ' ipiv is distributed over a process row,
= 'C' ipiv is distributed over a process column.
(global) INTEGER.
The number of rows to be operated on, that is, the number of rows of the distributed submatrix $\operatorname{sub}(A)$. When $m=0, p$? lapiv is set to zero. $m \geq 0$.
(global) INTEGER.
The number of columns to be operated on, that is, the number of columns of the distributed submatrix $\operatorname{sub}(A)$. When $n=0, p$ lapiv is set to zero. $n \geq 0$.
a
(local).
REAL for pslapiv
DOUBLE PRECISION for pdlapiv
COMPLEX for pclapiv

COMPLEX*16 for pzlapiv.
Pointer into the local memory to an array of DIMENSION (1ld_a, LOCc (ja+n-1)) containing the local pieces of the distributed matrix $\operatorname{sub}(A)$.
ia, ja (global) INTEGER. The row and column indices in the global array A indicating the first row and the first column of the submatrix $\operatorname{sub}(A)$, respectively.
desca (global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the distributed matrix A.
ipiv (local).INTEGER.
Array, DIMENSION (lipiv) where lipiv is when rowcol='R' or 'r':
$\geq \operatorname{LOCr}(i a+m-1)+m b \_a \quad$ if $p i v r o c=' C^{\prime}$ or ' c ',
$\geq L O C c\left(m+\bmod \left(j p-1, n b \_p\right)\right)$ if pivroc='R' or 'r', and,
when rowcol=' C ' or ' c ':
$\geq \operatorname{LOCr}\left(n+\bmod \left(i p-1, m b \_p\right)\right)$ if $p i v r o c=$ ' C^{\prime} or ' c^{\prime},
$\geq L O C c(j a+n-1)+n b \_a \quad$ if $p i v r o c=' R$ ' or ' r '.
This array contains the pivoting information. ipiv(i) is the global row (column), local row (column) i was swapped with. When rowcol='R' or 'r' and pivroc='C' or 'c', or rowcol='c' or 'c' and pivroc=' R ' or ' r ', the last piece of this array of size mb_a (resp. nb_a) is used as workspace. In those cases, this array is tied to the distributed matrix A.
ip,jp (global) INTEGER. The row and column indices in the global array P indicating the first row and the first column of the submatrix $\operatorname{sub}(P)$, respectively.
descip (global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the distributed vector ipiv.
iwork (local). INTEGER.
Array, DIMENSION ($I d w$), where $I d w$ is equal to the workspace necessary for transposition, and the storage of the tranposed ipiv:
Let 1 cm be the least common multiple of nprow and npcol.

```
If( rowcol.eq.'r' .and.pivroc.eq.'r' ) then
    If( nprow.eq.npcol) then
        ldw = LOCr(n_p + mod(jp-1, nb_p) ) + nb_p
    else
        ldw = LOCr (n_p + mod}(jp-1, nb_p) ) +
            nb_p * ceil(ceil(LOCc(n_p)/nb_p)/(Icm/npcol) )
    end if
else if(rowcol.eq.'c' .and.pivroc.eq.'c' ) then
```

```
                if( nprow.eq.npcol ) then
    ldw = LOCC( m_p + mod(ip-1, mb_p) ) + mb_p
        else
            ldw = LOCC( m_p + mod(ip-1, mb_p) ) +
                mb_p * ceil(ceil(LOCr(m_p)/mb_p) / (lcm/nprow) )
                end if
else
    iwork is not referenced.
end if.
```


Output Parameters

```
a (local).
On exit, the local pieces of the permuted distributed submatrix.
```


p?laqge

Scales a general rectangular matrix, using row and column scaling factors computed by p?geequ .

Syntax

```
call pslaqge (m, n, a, ia, ja, desca, r, c, rowcnd, colcnd, amax, equed)
call pdlaqge (m, n, a, ia, ja, desca, r, c, rowcnd, colcnd, amax, equed)
call pclaqge (m, n, a, ia, ja, desca, r, c, rowcnd, colcnd, amax, equed)
call pzlaqge (m, n, a, ia, ja, desca, r, c, rowcnd, colcnd, amax, equed)
```


Description

This routine equilibrates a general m-by- n distributed matrix $\operatorname{sub}(A)=A($ ia: ia+m-1, ja: ja+n-1) using the row and scaling factors in the vectors r and c computed by p?geequ.

Input Parameters

m
(global). INTEGER.
The number of rows to be operated on, that is, the number of rows of the distributed submatrix $\operatorname{sub}(A) . \quad(m \geq 0)$.
n
(global).INTEGER.
The number of columns to be operated on, that is, the number of columns of the distributed submatrix $\operatorname{sub}(A)$. $(n \geq 0)$.
(local).
REAL for pslaqge
DOUBLE PRECISION for pdlaqge
COMPLEX for pclaqge
COMPLEX*16COMPLEX*16 for pzlaqge.
Pointer into the local memory to an array of DIMENSION (IId_a, LOCc (ja+n-1)). On entry, this array contains the distributed matrix $\operatorname{sub}(A)$.
ia, ja (global) INTEGER. The row and column indices in the global array A indicating the first row and the first column of the submatrix $\operatorname{sub}(A)$, respectively.
(global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the distributed matrix A.
r (local).
REAL for pslaqge
DOUBLE PRECISION for pdlaqge
COMPLEX for pclaqge
COMPLEX*16 for pzlaqge.
Array, DIMENSION $\operatorname{LOCr}\left(m_{-} a\right)$. The row scale factors for $\operatorname{sub}(A)$. r is aligned with the distributed matrix A, and replicated across every process column. r is tied to the distributed matrix A.
(local).
REAL for pslaqge
DOUBLE PRECISION for pdlaqge
COMPLEX for pclaqge
COMPLEX*16 for pzlaqge.
Array, DIMENSION $\operatorname{LOCc}\left(n_{-}\right.$a). The row scale factors for $\operatorname{sub}(A) . c$ is aligned with the distributed matrix A, and replicated across every process column. c is tied to the distributed matrix A.
(local).
REAL for pslaqge
DOUBLE PRECISION for pdlaqge
COMPLEX for pclaqge
COMPLEX*16 for pzlaqge.
The global ratio of the smallest r (i) to the largest $r(i)$, $i a \leq i \leq i a+m-1$.

```
colcnd (local).
    REAL for pslaqge
    DOUBLE PRECISION for pdlaqge
    COMPLEX for pclaqge
    COMPLEX*16 for pzlaqge.
    The global ratio of the smallest c(i) to the largest r(i), ia\leqi\leqia+n-1.
amax (global).
    REAL for pslaqge
    DOUBLE PRECISION for pdlaqge
    COMPLEX for pclaqge
    COMPLEX*16 for pzlaqge.
    Absolute value of largest distributed submatrix entry.
```


Output Parameters

```
a (local).
    On exit, the equilibrated distributed matrix. See equed for the form of the
    equilibrated distributed submatrix.
equed (global) CHARACTER.
    Specifies the form of equilibration that was done.
= ' }\textrm{N}\mathrm{ ': No equilibration
= 'R': Row equilibration, that is, }\operatorname{sub}(A)\mathrm{ has been pre-multiplied by
diag(r(ia:ia+m-1)),
= 'C': Column equilibration, that is, }\operatorname{sub}(A)\mathrm{ has been post-multiplied by
diag(c(ja:ja+n-1)),
= 'B': Both row and column equilibration, that is, }\operatorname{sub}(A)\mathrm{ has been replaced by
diag(r(ia:ia+m-1))* sub(A)* diag(c(ja:ja+n-1)).
```


p?laqsy

Scales a symmetric/Hermitian matrix, using scaling factors computed by p? poequ .

Syntax

```
call pslaqsy (uplo, n, a, ia, ja, desca, sr, sc, scond, amax, equed)
call pdlaqsy (uplo, n, a, ia, ja, desca, sr, sc, scond, amax, equed)
```

```
call pclaqsy (uplo, n, a, ia, ja, desca, sr, sc, scond, amax, equed)
call pzlaqsy (uplo, n, a, ia, ja, desca, sr, sc, scond, amax, equed)
```


Description

This routine equilibrates a symmetric distributed matrix $\operatorname{sub}(A)=A(i a: i a+n-1, j a: j a+n-1)$ using the scaling factors in the vectors $s r$ and $s c$. The scaling factors are computed by p?poequ .

Input Parameters

uplo	(global) CHARACTER.
	Specifies the upper or lower triangular part of the symmetric distributed matrix $\operatorname{sub}(A)$ is to be referenced: = ' u ': Upper triangular part; = 'L': Lower triangular part.
n	(global) INTEGER. The order of the distributed submatrix $\operatorname{sub}(A) . \mathrm{n} \geq 0$.
a	(local).
	ReAL for pslaqsy
	DOUBLE PRECISION for pdlaqsy
	COMPLEX for pclaqsy
	COMPLEX*16 for pzlaqsy.
	Pointer into the local memory to an array of DIMENSION (lld_a,LOCc(ja+n-1)).
	On entry, this array contains the local pieces of the distributed matrix $\operatorname{sub}(A)$. On entry, the local pieces of the distributed symmetric matrix $\operatorname{sub}(A)$.
	If uplo $=$ ' u ', the leading n-by- n upper triangular part of $\operatorname{sub}(A)$ contains the upper triangular part of the matrix, and the strictly lower triangular part of $\operatorname{sub}(A)$ is not referenced.
	If uplo= ' L ', the leading n-by- n lower triangular part of $\operatorname{sub}(A)$ contains the lower triangular part of the matrix, and the strictly upper triangular part of $\operatorname{sub}(A)$ is not referenced.
ia,ja	(global) Integer. The row and column indices in the global array A indicating the first row and the first column of the submatrix $\operatorname{sub}(A)$, respectively.
desca	(global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the distributed matrix A.
sr	(local)
	REAL for pslaqsy
	DOUBLE PRECISION for pdlaqsy
	COMPLEX for pclaqsy

```
                COMPLEX*16 for pzlaqsy.
                Array, DIMENSION LOCr(m_a). The scale factors for A(ia:ia+m-1, ja:ja+n-1).
                sr}\mathrm{ is aligned with the distributed matrix }A\mathrm{ , and replicated across every process
                column. sr is tied to the distributed matrix }A\mathrm{ .
sc (local)
    REAL for pslaqsy
        DOUBLE PRECISION for pdlaqsy
        COMPLEX for pclaqsy
        COMPLEX*16 for pzlaqsy.
        Array, DIMENSION LOCc(m_a). The scale factors for A (ia:ia+m-1, ja:ja+n-1).
        sr}\mathrm{ is aligned with the distributed matrix }A\mathrm{ , and replicated across every process
        column. sr is tied to the distributed matrix }A\mathrm{ .
scond (global).
        REAL for pslaqsy
        DOUBLE PRECISION for pdlaqsy
        COMPLEX for pclaqsy
        COMPLEX*16 for pzlaqsy.
        Ratio of the smallest sr(i) (respectively sc(j)) to the largest sr(i) (respectively
        sc(j)), with ia < i \leq ia+n-1 and ja\leq j \leq ja+n-1.
amax (global).
    REAL for pslaqsy
    DOUBLE PRECISION for pdlaqsy
    COMPLEX for pclaqsy
    COMPLEX*16 for pzlaqsy.
    Absolute value of largest distributed submatrix entry.
```


Output Parameters

```
a On exit, if equed \(=\) ' \(Y\) ', the equilibrated matrix:
\(\operatorname{diag}(s r(i a: i a+n-1)) * \operatorname{sub}(A) * \operatorname{diag}(s c(j a: j a+n-1))\).
equed (global) CHARACTER*1.
Specifies whether or not equilibration was done.
\(=' \mathrm{~N}\) ': No equilibration.
\(=\) ' \(\mathrm{Y}^{\prime}\) : Equilibration was done, that is, \(\operatorname{sub}(A)\) has been replaced by: \(\operatorname{diag}(\operatorname{sr}(i a: i a+n-1)) * \operatorname{sub}(A) * \operatorname{diag}(\operatorname{sc}(j a: j a+n-1))\).
```


p?lared1d

Redistributes an array assuming that the input array, bycol, is distributed across rows and that all process columns contain the same copy of bycol.

Syntax

```
call pslaredld (n, ia, ja, desc, bycol, byall, work, lwork)
```

```
call pdlaredld (n, ia, ja, desc, bycol, byall, work, lwork)
```


Description

This routine redistributes a 1D array. It assumes that the input array bycol is distributed across rows and that all process column contain the same copy of bycol. The output array byall is identical on all processes and contains the entire array.

Input Parameters

$n p=$ Number of local rows in bycol()
n (global). INTEGER. The number of elements to be redistributed. $n \geq 0$.
ia,ja (global) INTEGER. ia, ja must be equal to 1.
desc (global and local) INTEGER array, DIMENSION 8. A 2d array descirptor, which describes bycol.
bycol (local).
REAL for pslared1d
DOUBLE PRECISION for pdlaredid
COMPLEX for pclaredid
COMPLEX*16 for pzlared1d.
Distributed block cyclic array global DIMENSION (n), local DIMENSION np. bycol is distributed across the process rows. All process columns are assumed to contain the same value.
work (local).
REAL for pslared1d
DOUBLE PRECISION for pdlared1d

COMPLEX for pclared1d
COMPLEX*16 for pzlared1d.
DIMENSION (lwork). Used to hold the buffers sent from one process to another.
lwork (local) INTEGER.
The size of the work array. 1 work \geq numroc ($\left.n, \operatorname{desc}\left(n b \_\right), 0,0, n p c o l\right)$.

Output Parameters

byall (global).

REAL for pslared1d
DOUBLE PRECISION for pdlared1d
COMPLEX for pclaredid
COMPLEX*16 for pzlared1d.
Global DIMENSION(n), local DIMENSION (n). byall is exactly duplicated on all processes. It contains the same values as bycol, but it is replicated across all processes rather than being distributed.

p?lared2d

Redistributes an array assuming that the input array
byrow is distributed across columns and that all process rows contain the same copy of byrow.

Syntax

```
call pslared2d (n, ia, ja, desc, byrow, byall, work, lwork)
call pdlared2d (n, ia, ja, desc, byrow, byall, work, lwork)
```


Description

This routine redistributes a 1D array.
It assumes that the input array byrow is distributed across columns and that all process rows contain the same copy of byrow. The output array byall will be identical on all processes and will contain the entire array.

Input Parameters

$n p=$ Number of local rows in byrow()

```
n (global) INTEGER.
    The number of elements to be redistributed. n\geq0.
ia,ja (global) INTEGER. ia, ja must be equal to 1.
desc (global and local) INTEGER array, DIMENSION (dlen_). A 2d array descirptor,
    which describes byrow.
byrow (local).
    REAL for pslared2d
    DOUBLE PRECISION for pdlared2d
    COMPLEX for pclared2d
    COMPLEX*16 for pzlared2d.
    Distributed block cyclic array global DIMENSION (n), local DIMENSION np. bycol is
        distributed across the process columns. All process rows are assumed to contain the
        same value.
work (local).
    REAL for pslared2d
    DOUBLE PRECISION for pdlared2d
    COMPLEX for pclared2d
    COMPLEX*16 for pzlared2d.
    DIMENSION (lwork). Used to hold the buffers sent from one process to another.
lwork (local).INTEGER.
    The size of the work array. lwork \geq numroc(n, desc( nb_ ), 0, 0, npcol).
```


Output Parameters

```
byall (global).
```

byall (global).
REAL for pslared2d
REAL for pslared2d
DOUBLE PRECISION for pdlared2d
DOUBLE PRECISION for pdlared2d
COMPLEX for pclared2d
COMPLEX for pclared2d
COMPLEX*16 for pzlared2d.
COMPLEX*16 for pzlared2d.
Global DIMENSION(n), local DIMENSION (n). byall is exactly duplicated on all
Global DIMENSION(n), local DIMENSION (n). byall is exactly duplicated on all
processes. It contains the same values as bycol, but it is replicated across all
processes. It contains the same values as bycol, but it is replicated across all
processes rather than being distributed.

```
        processes rather than being distributed.
```


p? larf

Applies an elementary reflector to a general rectangular matrix.

Syntax

```
call pslarf (side, m, n, v, iv, jv, descv, incv, tau, c, ic, jc, descc, work)
call pdlarf (side, m, n, v, iv, jv, descv, incv, tau, c, ic, jc, descc, work)
call pclarf (side, m, n, v, iv, jv, descv, incv, tau, c, ic, jc, descc, work)
call pzlarf (side, m, n, v, iv, jv, descv, incv, tau, c, ic, jc, descc, work)
```


Description

This routine applies a real/complex elementary reflector Q (or Q^{T}) to a real/complex m-by-n distributed matrix $\operatorname{sub}(C)=C(i c: i c+m-1$, jc:jc+n-1), from either the left or the right. Q is represented in the form

$$
Q=I-\operatorname{tau} * \mathrm{v}^{*} \mathrm{v}^{\prime},
$$

where $t a u$ is a real/complex scalar and v is a real/complex vector.
If $\operatorname{tau}=0$, then Q is taken to be the unit matrix.

Input Parameters

$$
\begin{array}{ll}
\text { side } & \text { (global). CHARACTER. } \\
& =\text { 'L': form } Q * \operatorname{sub}(C), \\
& =\text { 'R': form } \operatorname{sub}(C) * Q, Q=Q^{T} .
\end{array}
$$

m
n
v (local).
REAL for pslarf
DOUBLE PRECISION for pdlarf
COMPLEX for pclarf

COMPLEX*16 for pzlarf.
Pointer into the local memory to an array of DIMENSION (lld_v,*) containing the local pieces of the distributed vectors V representing the Householder transformation Q,
$v(i v: i v+m-1, j v)$ if side $=$ ' L ' and $i n c v=1$,
$v(i v, j v: j v+m-1)$ if side $=$ ' L ' and incv $=m_{-} v$,
$v(i v: i v+n-1, j v)$ if side $=' R$ ' and $i n c v=1$,
$\mathrm{v}(\mathrm{iv}, j v: j v+n-1)$ if side $=$ ' R ' and incv $=m_{-} v$.
The vector v is the representation of $Q . v$ is not used if $t a u=0$.
$i v, j v$ (global) INTEGER. The row and column indices in the global array V indicating the first row and the first column of the submatrix $\operatorname{sub}(V)$, respectively.
descv (global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the distributed matrix V.
incv (global) INTEGER. The global increment for the elements of v. Only two values of incv are supported in this version, namely 1 and $m_{-} v$.
incv must not be zero.
tau (local).
REAL for pslarf
DOUBLE PRECISION for pdlarf
COMPLEX for pclarf
COMPLEX*16 for pzlarf.
Array, DIMENSION $\operatorname{LOCc}(j v)$ if $i n c v=1$, and $\operatorname{LOCr}(i v)$ otherwise. This array contains the Householder scalars related to the Householder vectors.
tau is tied to the distributed matrix v.
C
ic, jc (global) INTEGER. The row and column indices in the global array c indicating the first row and the first column of the submatrix $\operatorname{sub}(C)$, respectively.
descc (global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the distributed matrix C.
work (local).

```
REAL for pslarf
DOUBLE PRECISION for pdlarf
COMPLEX for pclarf
COMPLEX*16 for pzlarf.
Array, DIMENSION (lwork).
If incv= 1,
    if side= 'L',
        if ivcol=iccol,
                lwork\geq nqc0
            else
                lwork\geqmpc0 + max( 1, nqc0 )
            end if
        else if side='R',
    lwork\geqnqc0+max(max(1,mpc0), numroc(numroc (n+
icoffc,nb_v,0,0,npcol),nb_v,0,0,1cmq) )
    end if
else if incv = m_v,
    if side= 'L',
        lwork\geq mpc0 + max( max( 1, nqc0 ), numroc(
numroc(m+iroffc,mb_v, 0,0,nprow ),mb_v,0,0, lcmp ) )
    else if side='R',
        if ivrow=icrow,
            lwork \geq mpco
        else
            lwork \geq nqc0 + max( 1, mpc0 )
        end if
    end if
end if,
where lcm is the least common multiple of nprow and npcol and lcm = ilcm(
nprow, npcol ), lcmp = lcm / nprow, lcmq = lcm / npcol,
iroffc = mod( ic-1, mb_c ), icoffc = mod( jc-1, nb_c ),
icrow = indxg2p( ic, mb_c, myrow, rsrc_c, nprow ),
iccol = indxg2p( jc, nb_c, mycol, csrc_c, npcol ),
mpc0 = numroc( m+iroffc, mb_c, myrow, icrow, nprow ),
nqc0 = numroc( n+icoffc, nb_c, mycol, iccol, npcol ),
ilcm, indxg2p, and numroc are ScaLAPACK tool functions; myrow, mycol, nprow, and npcol can be determined by calling the subroutine blacs_gridinfo.
```


Output Parameters

```
C (local).
    On exit, }\operatorname{sub}(C)\mathrm{ is overwritten by the Q* sub(C) if side = 'L',
                or sub(C)* Q if side = 'R'.
```


p?larfb

Applies a block reflector or its transpose/conjugate-transpose to a general rectangular
matrix.

Syntax

```
call pslarfb (side, trans, direct, storev, m, n, k, v, iv, jv, descv, t,c, ic,
    jc, descc, work)
call pdlarfb (side, trans, direct, storev, m, n, k, v, iv, jv, descv, t,c, ic,
    jc, descc, work)
call pclarfb (side, trans, direct, storev, m, n, k, v, iv, jv, descv, t,c, ic,
    jc, descc, work)
call pzlarfb (side, trans, direct, storev, m, n, k, v, iv, jv, descv, t,c, ic,
    jc, descc, work)
```


Description

This routine applies a real/complex block reflector Q or its transpose Q^{T} /conjugate transpose Q^{H} to a real/complex distributed m-by- n matrix $\operatorname{sub}(C)=C(i c: i c+m-1, j c: j c+n-1)$ from the left or the right.

Input Parameters

```
side (global).CHARACTER.
    if side = 'L': apply \(Q\) or \(Q^{T}\) for real flavors \(/ Q^{H}\) for complex flavors from the Left;
    if side \(=\) 'R': apply \(Q\) or \(Q^{T}\) for real flavors \(/ Q^{H}\) for complex flavors from the Right.
trans (global).CHARACTER.
    if trans= 'N': No transpose, apply \(Q\);
```

```
            for real flavors, if trans= 'T': Transpose, apply Q Q
            for complex flavors, if trans= 'c': Conjugate transpose, apply Q Q
direct (global) CHARACTER.
                            Indicates how Q is formed from a product of elementary reflectors.
if direct = 'F': Q = H(1)H(2) . . H(k) (Forward)
if direct = 'в': Q = H(k) . . H(2)H(1) (Backward)
storev (global) CHARACTER.
Indicates how the vectors that define the elementary reflectors are stored:
if storev = 'C': Columnwise
if storev= 'R': Rowwise.
(global) INTEGER.
The number of rows to be operated on, that is, the number of rows of the distributed submatrix \(\operatorname{sub}(C) .(m \geq 0)\).
(global) INTEGER.
The number of columns to be operated on, that is, the number of columns of the distributed submatrix \(\operatorname{sub}(C) .(n \geq 0)\).
\(k\)
(global) INTEGER.
The order of the matrix \(T\).
(local).
REAL for pslarfb
DOUBLE PRECISION for pdlarfb
COMPLEX for pclarfb
COMPLEX*16 for pzlarfb.
Pointer into the local memory to an array of DIMENSION ( \(\left.11 d_{-} v, L O C c(j v+k-1)\right)\) if
storev \(=\) 'C', ( lld_v, \(\operatorname{LOCc}(j v+m-1))\) if storev \(=~ ' R\) ' and
side \(=\) 'L', ( lld_v, LOCc \((j v+n-1))\) if storev \(=\) ' \(R\) ' and
side \(=\) ' R '. It contains the local pieces of the distributed vectors \(V\) representing the Householder transformation.
```

```
If storev \(=\) 'C' and side \(=\) 'L', lld_v \(\geq \max (1, L O C r(i v+m-1))\);
```

If storev $=$ 'C' and side $=$ 'L', lld_v $\geq \max (1, L O C r(i v+m-1))$;
if storev $=$ 'C' and side $=$ ' R ', lld_ $v \geq \max (1, \operatorname{LOCr}(i v+n-1))$;
if storev $=$ 'C' and side $=$ ' R ', lld_ $v \geq \max (1, \operatorname{LOCr}(i v+n-1))$;
if storev $=$ ' R ', $I l d_{-} v \geq \operatorname{LOCr}(j v+k-1)$.
if storev $=$ ' R ', $I l d_{-} v \geq \operatorname{LOCr}(j v+k-1)$.
iv, jv (global) INTEGER. The row and column indices in the global array V indicating the first row and the first column of the submatrix $\operatorname{sub}(V)$, respectively.

```
```

descv (global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the distributed matrix V.
(local).
REAL for pslarfb
DOUBLE PRECISION for pdlarfb
COMPLEX for pclarfb
COMPLEX*16 for pzlarfb.
Pointer into the local memory to an array of DIMENSION (1ld_c, LOCc (jc+n-1)),
containing the local pieces of $\operatorname{sub}(C)$.
ic, jc (global) INTEGER. The row and column indices in the global array C indicating the
first row and the first column of the submatrix $\operatorname{sub}(C)$, respectively.
descc (global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the
distributed matrix C.
work (local).
REAL for pslarfb
DOUBLE PRECISION for pdlarfb
COMPLEX for pclarfb
COMPLEX*16 for pzlarfb.
Workspace array, DIMENSION (lwork).

```
```

If storev= 'C',

```
If storev= 'C',
    if side= 'L',
    if side= 'L',
        lwork \geq(nqc0 + mpc0 )*k
        lwork \geq(nqc0 + mpc0 )*k
    else if side='R',
    else if side='R',
        lwork\geq(nqc0 + max(npv0 + numroc(numroc(n + icoffc,
        lwork\geq(nqc0 + max(npv0 + numroc(numroc(n + icoffc,
                nb_v, 0, 0, npcol), nb_v, 0, 0, lcmq),
                nb_v, 0, 0, npcol), nb_v, 0, 0, lcmq),
                        mpc0 ) ) * k
                        mpc0 ) ) * k
    end if
    end if
else if storev='R',
else if storev='R',
    if side= 'L',
    if side= 'L',
        lwork\geq( mpc0 + max(mqv0 + numroc( numroc(m+iroffc,
        lwork\geq( mpc0 + max(mqv0 + numroc( numroc(m+iroffc,
                                    mb_v, 0, 0, nprow), mb_v, 0, 0, lcmp),
                                    mb_v, 0, 0, nprow), mb_v, 0, 0, lcmp),
                                    nqc0 ) ) * k
                                    nqc0 ) ) * k
        else if side='R',
        else if side='R',
        lwork \geq( mpc0 + nqc0 ) * k
        lwork \geq( mpc0 + nqc0 ) * k
        end if
        end if
    end if,
    end if,
where lcmq = lcm/ npcol with lcm=iclm( nprow, npcol ),
```

where lcmq = lcm/ npcol with lcm=iclm(nprow, npcol),

```
```

iroffv=mod(iv-1, mb_v), icoffv=mod(jv-1, nb_v),
ivrow=indxg2p(iv, mb_v, myrow, rsrc_v, nprow),
ivcol = indxg2p(jv, nb_v, mycol, csrc_v, npcol),
MqVO= numroc(m+icoffv, nb_v, mycol, ivcol, npcol),
NpVO= numroc(n+iroffv, mb_v, myrow, ivrow, nprow),
iroffc=mod(ic-1, mb_c),icoffc=mod(jc-1, nb_c),
icrow=indxg2p(ic, mb_c, myrow, rsrc_c, nprow),
iccol = indxg2p(jc, nb_c, mycol, csrc_c, npcol),
MpCO= numroc(m+iroffc, mb_c, myrow, icrow, nprow),
NpCO= numroc(n+icoffc, mb_c, myrow, icrow, nprow),
NqCO= numroc(n+icoffc, nb_c, mycol, iccol, npcol),
ilcm, indxg2p, and numroc are ScaLAPACK tool functions;
myrow, mycol, nprow, and npcol can be determined by calling the subroutine
blacs_gridinfo.

```

\section*{Output Parameters}
```

C
(local). On exit, $\operatorname{sub}(C)$ is overwritten by the $Q^{*} \operatorname{sub}(C)$, or $Q^{\prime *} \operatorname{sub}(C)$ or $\operatorname{sub}(C) * Q$ or $\operatorname{sub}(C)^{*} Q^{\prime}$.

```

\section*{p?larfc}

Applies the conjugate transpose of an elementary reflector to a general matrix.

\section*{Syntax}
call pclarfc (side, m, \(n, ~ v, ~ i v, ~ j v, ~ d e s c v, ~ i n c v, ~ t a u, ~ c, ~ i c, ~ j c, ~ d e s c c, ~ w o r k) ~\)
call pzlarfc (side, m, \(n, ~ v, i v, j v, ~ d e s c v, ~ i n c v, ~ t a u, ~ c, i c, j c, ~ d e s c c, ~ w o r k)\)

\section*{Description}

This routine applies a complex elementary reflector \(Q^{H}\) to a complex \(m\)-by- \(n\) distributed matrix \(\operatorname{sub}(C)=C(i c: i c+m-1, j c: j c+n-1)\), from either the left or the right. \(Q\) is represented in the form
\(Q=i-t a u * v^{*} v^{\prime}\),
where \(t a u\) is a complex scalar and \(v\) is a complex vector.
If \(\operatorname{tau}=0\), then \(Q\) is taken to be the unit matrix.

\section*{Input Parameters}
side (global).CHARACTER.
if side \(=\) 'L': form \(Q^{H *} \operatorname{sub}(C)\);
if side \(=\) ' R ': form \(\operatorname{sub}(C) * Q^{H}\).
m (global) INTEGER .
The number of rows to be operated on, that is, the number of rows of the distributed submatrix \(\operatorname{sub}(C) .(m \geq 0)\).
n
\(V \quad\) (local).
(global) INTEGER.
The number of columns to be operated on, that is, the number of columns of the distributed submatrix \(\operatorname{sub}(C)\). \((n \geq 0)\).

COMPLEX for pclarfc
COMPLEX*16 for pzlarfc.
Pointer into the local memory to an array of DIMENSION ( \(11 d _v, *\) ) containing the local pieces of the distributed vectors \(v\) representing the Householder transformation Q,
\[
\begin{aligned}
& v(i v: i v+m-1, j v) \text { if side }=' L ' \text { and } i n c v=1, \\
& v(i v, j v: j v+m-1) \text { if side } \quad \mathrm{L} \text { ' and incv }=m-v, \\
& v(i v: i v+n-1, j v) \text { if side }=' R \text { ' and incv }=1, \\
& v(i v, j v: j v+n-1) \text { if } s i d e=' R \text { ' and } i n c v=m _v .
\end{aligned}
\]

The vector \(v\) is the representation of \(Q . v\) is not used if \(\operatorname{tau}=0\).
\(i v, j v \quad\) (global) INTEGER. The row and column indices in the global array \(V\) indicating the first row and the first column of the submatrix sub( \(V\) ), respectively.
descv (global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the distributed matrix \(V\).
incv (global) INTEGER.
The global increment for the elements of \(v\). Only two values of incv are supported in this version, namely 1 and \(m_{-} v\). incv must not be zero.
```

 else
 lwork\geqnqc0 + max(1, mpc0)
 end if
 end if
 end if,

```
where 1 cm is the least common multiple of nprow and npcol and lcm = ilcm (nprow, npcol), lcmp = lcm/nprow, \(1 \mathrm{cmq}=1 \mathrm{~cm} / \mathrm{npcol}\),
iroffc \(=\bmod \left(i c-1, m b _c\right), i c o f f C=\bmod \left(j c-1, n b _c\right)\),
icrow \(=\) indxg2p(ic, mb_c, myrow, rsrc_c, nprow),
iccol = indxg2p( jc, nb_c, mycol, csrc_c, npcol),
mpco = numroc ( m+iroffc, mb_c, myrow, icrow, nprow ),
nqco = numroc ( n+icoffc, nb_c, mycol, iccol, npcol ),
ilcm, indxg2p, and numroc are ScaLAPACK tool functions; myrow, mycol, nprow, and npcol can be determined by calling the subroutine blacs_gridinfo.

\section*{Output Parameters}
c (local). On exit, \(\operatorname{sub}(C)\) is overwritten by the \(Q^{H} * \operatorname{sub}(C)\) if side = ' L ', or \(\operatorname{sub}(C) * Q^{H}\) if side \(=\) ' R .

\section*{p?larfg}

Generates an elementary reflector (Householder
matrix).

\section*{Syntax}
```

call pslarfg (n, alpha, iax, jax, x, ix, jx, descx, incx, tau)
call pdlarfg (n, alpha, iax, jax, x, ix, jx, descx, incx, tau)
call pclarfg (n, alpha, iax, jax, x, ix, jx, descx, incx, tau)
call pzlarfg (n, alpha, iax, jax, x, ix, jx, descx, incx, tau)

```

\section*{Description}

This routine generates a real/complex elementary reflector \(H\) of order \(n\), such that
\[
H^{*} \operatorname{sub}(X)=H^{*}\left(\begin{array}{c}
x(i a x, j a x)) \\
\left(\begin{array}{c}
\text { ( }
\end{array}\right)\binom{\text { alpha }),}{(0)}
\end{array}\right.
\]
where alpha is a scalar (a real scalar - for complex flavors), and \(\operatorname{sub}(X)\) is an \((n-1)\)-element real/complex distributed vector \(X(i x: i x+n-2, j x)\) if \(i n c x=1\) and \(X(i x, j x: j x+n-2)\) if \(i n c x=\) \(\operatorname{descx}\left(m_{-}\right) . H\) is represented in the form
```

$H=I-\operatorname{tau} *(1) *\left(1 \mathrm{v}^{\prime}\right)$,
(v)

```
where \(t a u\) is a real/complex scalar and \(v\) is a real/complex ( \(n-1\) )-element vector. Note that \(H\) is not Hermitian.

If the elements of \(\operatorname{sub}(X)\) are all zero (and \(X(i a x, j a x)\) is real for complex flavors), then \(\operatorname{tau}=0\) and \(H\) is taken to be the unit matrix.

Otherwise \(1 \leq \operatorname{real}(\operatorname{tau}) \leq 2\) and \(\operatorname{abs}(t a u-1) \leq 1\).

\section*{Input Arguments}
```

n (global) INTEGER.
The global order of the elementary reflector. n\geq0.
iax, jax (global) INTEGER.
The global row and column indices in x of X(iax, jax).
x (local).
REAL for pslarfg
DOUBLE PRECISION for pdlarfg
COMPLEX for pclarfg
COMPLEX*16 for pzlarfg.

```

Pointer into the local memory to an array of DIMENSION (1ld_x, *). This array contains the local pieces of the distributed vector \(\operatorname{sub}(X)\). Before entry, the incremented array \(\operatorname{sub}(X)\) must contain vector x .
ix,jx (global) INTEGER.
The row and column indices in the global array \(X\) indicating the first row and the first column of \(\operatorname{sub}(X)\), respectively.
descx (global and local) INTEGER.
Array of DIMENSION (dlen_). The array descriptor for the distributed matrix \(X\).
incx (global) INTEGER.

The global increment for the elements of \(x\). Only two values of incx are supported in this version, namely 1 and \(m_{-} x\). incx must not be zero.

\section*{Output Arguments}
```

alpha (local)
REAL for pslafg
DOUBLE PRECISION for pdlafg
COMPLEX for pclafg
COMPLEX*16 for pzlafg.

```
On exit, alpha is computed in the process scope having the vector \(\operatorname{sub}(X)\).
\(x\)
(local).
On exit, it is overwritten with the vector v .
tau (local).
ReAL for pslarfg
DOUBLE PRECISION for pdlarfg
COMPLEX for pclarfg
COMPLEX*16 for pzlarfg.

Array, dimension \(\operatorname{LOCc}(\mathrm{jx})\) if incx \(=1\), and \(\operatorname{LOCr}(\mathrm{ix})\) otherwise. This array contains the Householder scalars related to the Householder vectors. tau is tied to the distributed matrix \(X\).

\section*{p?larft}

Forms the triangular vector \(T\) of a block reflector \(H=I-V T V^{H}\).

\section*{Syntax}
```

call pslarft (direct, storev, n, k, v, iv, jv, descv, tau, t, work)
call pdlarft (direct, storev, n, k, v, iv, jv, descv, tau, t, work)
call pclarft (direct, storev, n, k, v, iv, jv, descv, tau, t, work)
call pzlarft (direct, storev, n, k, v, iv, jv, descv, tau, t, work)

```

\section*{Description}

This routine forms the triangular factor \(T\) of a real/complex block reflector \(H\) of order \(n\), which is defined as a product of \(k\) elementary reflectors.

If direct \(=\) ' F ', \(H=H(1) H(2) \ldots H(k)\) and \(T\) is upper triangular; If direct \(=\) ' B ', \(H=H(\mathrm{k}) \ldots H(2) H(1)\) and \(T\) is lower triangular.

If storev = 'c', the vector which defines the elementary reflector \(H(i)\) is stored in the \(i\)-th column of the distributed matrix \(V\), and
\(H=I-V^{*} T^{*} V^{\prime}\)
If storev = 'R', the vector which defines the elementary reflector \(H(i)\) is stored in the \(i\)-th row of the distributed matrix \(V\), and
\(H=I-V^{\prime} * T^{*} V\).

\section*{Input Arguments}
```

direct (global) CHARACTER*1.
Specifies the order in which the elementary reflectors are multiplied to form the block
reflector:
if direct = 'F': H=H(1)H(2) . . H(k) (Forward)
if direct = 'в': H= H(k) . . H(2)H(1) (Backward).
storev (global) CHARACTER*1.
Specifies how the vectors that define the elementary reflectors are stored (See
Application Notes below):
if storev = 'c': columnwise;
if storev = 'R': rowwise.
n (global) INTEGER.
The order of the block reflector H. n\geq0.
(global) INTEGER.
The order of the triangular factor T(= the number of elementary reflectors).
1\leqk\leqmb_v(= nb_v).
REAL for pslarft
DOUBLE PRECISION for pdlarft
COMPLEX for pclarft

```

COMPLEX*16 for pzlarft.
Pointer into the local memory to an array of local DIMENSION ( \(\operatorname{LOCr}(i v+n-1)\), \(\operatorname{LOCc}(j \mathrm{v}+\mathrm{k}-1))\)
if storev \(=\) 'C', and \((\operatorname{LOCr}(i v+k-1), \operatorname{LOCc}(j v+n-1))\)
if storev = 'R'. The distributed matrix \(V\) contains the Householder vectors. (See Application Notes below).
\(i v, j v \quad\) (global) INTEGER. The row and column indices in the global array \(v\) indicating the first row and the first column of the submatrix \(\operatorname{sub}(V)\), respectively.
descv (global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the distributed matrix \(V\).
tau (local)
REAL for pslarft
DOUBLE PRECISION for pdlarft
COMPLEX for pclarft
COMPLEX*16 for pzlarft.
Array, DIMENSION \(L O C r(i v+k-1)\) if \(i n C v=m_{-} v\), and \(L O C c(j v+k-1)\) otherwise. This array contains the Householder scalars related to the Householder vectors.
tau is tied to the distributed matrix \(V\).
work (local).
REAL for pslarft
DOUBLE PRECISION for pdlarft
COMPLEX for pclarft
COMPLEX*16 for pzlarft.
Workspace array, DIMENSION \((k *(k-1) / 2)\).

\section*{Output Arguments}

REAL for pslarft
DOUBLE PRECISION for pdlarft
COMPLEX for pclarft
COMPLEX*16 for pzlarft.
t
(local)
REAL for pslarft
DOUBLE PRECISION for pdlarft
COMPLEX for pclarft
COMPLEX*16 for pzlarft.

contains the \(k\)-by- \(k\) triangular factor of the block reflector associated with \(v\). If direct \(={ }^{\prime} F^{\prime}, t\) is upper triangular; if direct \(=\) ' B ', \(t\) is lower triangular.

\section*{Application Notes}

The shape of the matrix \(V\) and the storage of the vectors that define the \(H(i)\) is best illustrated by the following example with \(n=5\) and \(k=3\). The elements equal to 1 are not stored; the corresponding array elements are modified but restored on exit. The rest of the array is not used.
direct \(=\) ' F ' and storev \(=\) ' C ': direct \(=\) ' F ' and storev \(=\) ' R ':
\[
\left.\begin{array}{l}
V(i v: i v+n-1, \\
j v: j v+k-1)=\left[\begin{array}{ccc}
1 & & \\
v 1 & 1 & \\
v 1 & v 2 & 1 \\
v 1 & v 2 & v 3 \\
v 1 & v 2 & v 3
\end{array}\right]
\end{array} \quad \begin{array}{c}
\text { V(iv:iv+k-1, } \\
j v: j v+n-1)
\end{array}\right]\left[\begin{array}{cccc}
1 & v 1 & v 1 & v 1 \\
1 & v 1 & v 2 & v 2 \\
1 & v 3 & v 3
\end{array}\right]
\]
\(\begin{array}{r}V(i v: i v+n-1, \\ j v: j v+k-1)\end{array}=\left[\begin{array}{ccc}v 1 & v 2 & v 3 \\ v 1 & v 2 & v 3 \\ 1 & v 2 & v 3 \\ & 1 & v 3 \\ & & 1\end{array}\right] \quad V(i v: i v+k-1, \quad j v: j v+n-1)=\left[\begin{array}{cccc}v 1 & v 1 & 1 & \\ v 2 & v 2 & v 2 & 1 \\ v 3 & v 3 & v 3 & v 3 \\ \hline\end{array}\right]\)

\section*{p?larz}

\section*{Applies an elementary reflector as returned by} p?tzrzf to a general matrix.

\section*{Syntax}
```

call pslarz (side, m, n, l, v, iv, jv, descv, incv, tau, c, ic, jc, descc,
work)
call pdlarz (side, m, n, l, v, iv, jv, descv, incv, tau, c, ic, jc, descc,
work)

```
```

call pclarz (side, m, n, l, v, iv, jv, descv, incv, tau, c, ic, jc, descc,
work)
call pzlarz (side, m, n, l, v, iv, jv, descv, incv, tau, c, ic, jc, descc,
work)

```

\section*{Description}

This routine applies a real/complex elementary reflector \(Q\) (or \(Q^{T}\) ) to a real/complex m-by-n distributed matrix \(\operatorname{sub}(C)=C(i c: i c+m-1, j c: j c+n-1)\), from either the left or the right. \(Q\) is represented in the form
\(Q=\mathrm{I}-\mathrm{tau} * \mathrm{v}^{*} \mathrm{v}^{\prime}\),
where \(t a u\) is a real/complex scalar and \(v\) is a real/complex vector.
If \(\operatorname{tau}=0\), then \(Q\) is taken to be the unit matrix.
\(Q\) is a product of \(k\) elementary reflectors as returned by p?tzrzf.

\section*{Input Arguments}
```

side (global) CHARACTER.

```
if side = 'L': form \(Q^{*} \operatorname{sub}(C)\),
if side \(=\) ' R ': form \(\operatorname{sub}(C) * Q, Q=Q^{T}\) (for real flavors).
(global) INTEGER.
The number of rows to be operated on, that is, the number of rows of the distributed submatrix \(\operatorname{sub}(C)\). \((m \geq 0)\).
n (global) INTEGER.
The number of columns to be operated on, that is, the number of columns of the distributed submatrix \(\operatorname{sub}(C) .(n \geq 0)\).

1 (global). INTEGER.
The columns of the distributed submatrix \(\operatorname{sub}(A)\) containing the meaningful part of the Householder reflectors. If side \(=\) 'L', \(m \geq 1 \geq 0\), if side \(=\) ' \(R\) ', \(n \geq 1 \geq 0\).
v
(local).
REAL for pslarz
DOUBLE PRECISION for pdlarz
COMPLEX for pclarz
COMPLEX*16 for pzlarz.

Pointer into the local memory to an array of DIMENSION ( \(11 d _v, *\) ) containing the local pieces of the distributed vectors \(v\) representing the Householder transformation Q,
```

v(iv:iv+l-1, jv) if side = 'L' and incv = 1,
v(iv, jv: jv+l-1) if side = 'L' and incv= m_v,
v(iv:iv+l-1,jv) if side = 'R' and incv=1,
v(iv, jv:jv+l-1) if side= 'R' and incv= m_v.

```

The vector \(v\) in the representation of \(Q . v\) is not used if \(t a u=0\).
\(i v, j v\) (global) Integer. The row and column indices in the global array \(V\) indicating the first row and the first column of the submatrix \(\operatorname{sub}(V)\), respectively.
descv (global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the distributed matrix \(V\).
incv (global) INTEGER.
The global increment for the elements of \(v\). Only two values of incv are supported in this version, namely 1 and \(m_{-} v\).
incv must not be zero.
tau (local)
REAL for pslarz
DOUBLE PRECISION for pdlarz
COMPLEX for pclarz
COMPLEX*16 for pzlarz.
Array, DIMENSION LOCc(jv) if incv \(=1\), and \(\operatorname{LOCr}(\mathrm{iv})\) otherwise. This array contains the Householder scalars related to the Householder vectors.
tau is tied to the distributed matrix \(V\).
c
(local).
REAL for pslarz
DOUBLE PRECISION for pdlarz
COMPLEX for pclarz
COMPLEX*16 for pzlarz.
Pointer into the local memory to an array of DIMENSION ( \(11 d_{_} c, \operatorname{LOCc}(j c+n-1)\) ), containing the local pieces of \(\operatorname{sub}(C)\).
ic, jc (global) INTEGER. The row and column indices in the global array \(C\) indicating the first row and the first column of the submatrix \(\operatorname{sub}(C)\), respectively.
descc (global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the distributed matrix \(C\).
work (local).
```

REAL for pslarz
DOUBLE PRECISION for pdlarz
COMPLEX for pclarz
COMPLEX*16 for pzlarz.
Array, DIMENSION (lwork)
If incv=1,
if side= 'L',
if ivcol=iccol,
lwork}\geqNqC
else
lwork\geqMpCO + max(1,NqC0)
end if
else if side='R',
lwork\geqNqCO + max(max(1, MpCO), numroc(numroc(
n+icoffc,nb_v,0,0,npcol),nb_v,0,0,1cmq))
end if
else if incv=m_v,
if side= 'L',
lwork\geqMpCO + max(max(1, NqCO), numroc(numroc(
m+iroffc,mb_v,0,0,nprow),mb_v,0,0,lcmp))
else if side='R',
if ivrow= icrow,
lwork\geqMpC0
else
lwork\geqNqCO + max(1, MpCO)
end if
end if
end if,
where lcm is the least common multiple of nprow and npcol and
lcm = ilcm(nprow, npcol), lcmp = lcm / nprow,
lcmq = lcm / npcol,
iroffc = mod(ic-1, mb_c), icoffc = mod(jc-1, nb_c),
icrow = indxg2p(ic, mb_c, myrow, rsrc_c, nprow),
iccol = indxg2p(jc, nb_c, mycol, csrc_c, npcol),
mpcO = numroc(m+iroffc, mb_c, myrow, icrow, nprow),
nqcO = numroc(n+icoffc, nb_c, mycol, iccol, npcol),

```
ilcm, indxg2p, and numroc are ScaLAPACK tool functions; myrow, mycol, nprow, and npcol can be determined by calling the subroutine blacs_gridinfo.

\section*{Output Arguments}

C (local). On exit, \(\operatorname{sub}(C)\) is overwritten by the \(Q * \operatorname{sub}(C)\) if \(\operatorname{side}=\) ' L ', or \(\operatorname{sub}(C) * Q\) if side = 'R'.

\section*{p?larzb}

Applies a block reflector or its transpose/conjugate-transpose as returned by p?tzrzf to a general matrix.

\section*{Syntax}
```

call pslarzb (side, trans, direct, storev, m, n, k, l, v, iv, jv, descv, t, c,

```
    ic, jc, descc, work)
call pdlarzb (side, trans, direct, storev, m, \(n, k, l, v, i v, j v, d e s c v, t, C\),
    ic, jc, descc, work)
call pclarzb (side, trans, direct, storev, \(m, n, k, l, v, i v, j v, ~ d e s c v, ~ t, ~ C\),
    ic, jc, descc, work)
call pzlarzb (side, trans, direct, storev, \(m, n, k, l, v, i v, j v, ~ d e s c v, ~ t, ~ c\),
    ic, jc, descc, work)

\section*{Description}

This routine applies a real/complex block reflector \(Q\) or its transpose \(Q^{T}\) (conjugate transpose \(Q^{H}\) for complex flavors) to a real/complex distributed \(m\)-by-n matrix \(\operatorname{sub}(C)=C(i c: i c+m-1, j c: j c+n-1)\) from the left or the right.
\(Q\) is a product of \(k\) elementary reflectors as returned by p?tzrzf.
Currently, only storev = ' R ' and direct = ' B ' are supported.

\section*{Input Arguments}
\(\begin{array}{ll}\text { side } & \text { (global) CHARACTER. } \\ & \text { if side }=\text { 'L': apply } Q \text { or } Q^{T}\left(Q^{H} \text { for complex flavors) from the Left; }\right.\end{array}\)
if side = 'R': apply \(Q\) or \(Q^{T}\) ( \(Q^{H}\) for complex flavors) from the Right.
trans
(global) CHARACTER.
if \(\operatorname{trans}=\) ' N ': No transpose, apply \(Q\);
if trans= 'T': Transpose, apply \(Q^{T}\) (real flavors);
if trans= 'C': Conjugate transpose, apply \(Q^{H}\) (complex flavors).
direct (global) CHARACTER.
Indicates how \(H\) is formed from a product of elementary reflectors.
if direct = ' F ': \(H=H(1) H(2) \ldots H(k)\) (Forward, not supported yet)
if direct = 'в': \(H=H(k) \ldots H(2) H(1)\) (Backward)
(global) CHARACTER.
Indicates how the vectors that define the elementary reflectors are stored:
if storev = ' C ': Columnwise (not supported yet).
if storev = 'R': Rowwise.
(global) INTEGER.
The number of rows to be operated on, that is, the number of rows of the distributed submatrix \(\operatorname{sub}(C) .(m \geq 0)\).
(global) INTEGER.
The number of columns to be operated on, that is, the number of columns of the distributed submatrix \(\operatorname{sub}(C)\). \((n \geq 0)\).
(global) INTEGER.
The order of the matrix \(T\). (= the number of elementary reflectors whose product defines the block reflector).
(global) INTEGER.
The columns of the distributed submatrix \(\operatorname{sub}(A)\) containing the meaningful part of the Householder reflectors.

If side \(=\) 'L', \(m \geq 1 \geq 0\), if side \(=\) ' \(R\) ', \(n \geq I \geq 0\).
(local).
REAL for pslarzb
DOUBLE PRECISION for pdlarzb
COMPLEX for pclarzb
COMPLEX*16 for pzlarzb.
Pointer into the local memory to an array of DIMENSION ( Ild_v, LOCc \((j v+m-1)\) ) if side \(=\) ' L ',
```

(lld_v, LOCc(jv+m-1)) if side = 'R'.
It contains the local pieces of the distributed vectors }V\mathrm{ representing the Householder
transformation as returned by p?tzrzf.
lld_v\geqLOCr(iv+k-1).
iv, jv (global) INTEGER. The row and column indices in the global array V indicating the
first row and the first column of the submatrix sub(V), respectively.
descv (global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the
distributed matrix }V\mathrm{ .
t (local)
REAL for pslarzb
DOUBLE PRECISION for pdlarzb
COMPLEX for pclarzb
COMPLEX*16 for pzlarzb.
Array, DIMENSION mb_v by mb_v.
The lower triangular matrix T in the representation of the block reflector.
C
ic,jc (global) INTEGER. The row and column indices in the global array c indicating the
first row and the first column of the submatrix sub(C), respectively.
descc (global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the
distributed matrix C
work (local).
REAL for pslarzb
DOUBLE PRECISION for pdlarzb
COMPLEX for pclarzb
COMPLEX*16 for pzlarzb.
Array, DIMENSION (lwork).

```
```

If storev= 'C',
if side = 'L',
lwork $\geq(N q C O+M p C O)$ * k
else if side='R',
lwork $\geq(N q C 0+\max (N p V 0+n u m r o c(n u m r o c(n+i c o f f c$,
nb_v, 0, 0, npcol), nb_v, 0, 0, lcmq), mpco)) * k
end if
else if storev='R',
if side='L',
lwork $\geq(\operatorname{mpc} 0+\max (m q v 0+n u m r o c(n u m r o c(m+i r o f f c$,
mb_v, 0, 0, nprow), mb_v, 0, 0, lcmp),
$n q c 0$)) * k
else if side = 'R',
lwork $\geq(M p C 0+N q C O)$ * k
end if
end if,
where $\operatorname{lcmq}=1 \mathrm{~cm} /$ npcol with $\operatorname{lcm}=$ iclm(nprow, npcol),
iroffv $=\bmod \left(i v-1, m b \_v\right), i c o f f v=\bmod \left(j v-1, n b \_v\right)$,
ivrow = indxg2p(iv, mb_v, myrow, rsrc_v, nprow),
ivcol = indxg2p(jv, nb_v, mycol, csrc_v, npcol),
MqVO = numroc(m+icoffv, nb_v, mycol, ivcol, npcol),
NpVO = numroc(n+iroffv, mb_v, myrow, ivrow, nprow),
iroffc $=\bmod (i c-1, \operatorname{mb} c), i c o f f c=\bmod \left(j c-1, n b \_c\right)$,
icrow = indxg2p(ic, mb_c, myrow, rsrc_c, nprow),
iccol $=$ indxg2p(jc, nb_c, mycol, csrc_c, npcol),
MpCO = numroc (m+iroffc, mb_c, myrow, icrow, nprow),
NpCO = numroc (n+icoffc, mb_c, myrow, icrow, nprow),
$N q C O=$ numroc (n+icoffc, nb_c, mycol, iccol, npcol),
ilcm, indxg2p, and numroc are ScaLAPACK tool functions; myrow, mycol, nprow, and npcol can be determined by calling the subroutine blacs_gridinfo.

```

\section*{p?larzc}

\section*{Applies (multiplies by) the conjugate transpose of an elementary reflector as returned by p?tzrzf to a general matrix.}

\section*{Syntax}
```

call pclarzc (side, m, n, l, v, iv, jv, descv, incv, tau, c, ic, jc,
descc, work)
call pzlarzc (side, m, n, l, v, iv, jv, descv, incv, tau, c, ic, jc,
descc, work)

```

\section*{Description}

This routine applies a complex elementary reflector \(Q^{H}\) to a complex \(m\)-by-n distributed matrix \(\operatorname{sub}(C)=C(i c: i c+m-1, j c: j c+n-1)\), from either the left or the right. \(Q\) is represented in the form
\(Q=i-t a u * v * v^{\prime}\),
where \(t a u\) is a complex scalar and \(v\) is a complex vector.
If \(t a u=0\), then \(Q\) is taken to be the unit matrix.
\(Q\) is a product of \(k\) elementary reflectors as returned by p?tzrzf.

\section*{Input Arguments}
side (global) CHARACTER.
if side \(=\) ' L ': form \(Q^{H}\) *sub (C);
if side \(=\) ' R ': form \(\operatorname{sub}(C) * Q^{H}\).
(global) Integer.
The number of rows to be operated on, that is, the number of rows of the distributed submatrix \(\operatorname{sub}(C) .(m \geq 0)\).
(global) INTEGER.
The number of columns to be operated on, that is, the number of columns of the distributed submatrix \(\operatorname{sub}(C) .(n \geq 0)\).
(global) INTEGER.

The columns of the distributed submatrix \(\operatorname{sub}(A)\) containing the meaningful part of the Householder reflectors.

If side = 'L', \(m \geq 1 \geq 0\), if side \(=\) ' \(R\) ', \(n \geq 1 \geq 0\).
(local).
COMPLEX for pclarzc
COMPLEX*16 for pzlarzc.
Pointer into the local memory to an array of DIMENSION (lld_v,*) containing the local pieces of the distributed vectors v representing the Householder transformation \(Q\),
\(v(i v: i v+l-1, j v)\) if side \(=\) 'L' and incv \(=1\),
\(v(i v, j v: j v+l-1)\) if side \(=\) 'L' and \(i n c v=m_{-} v\),
\(v(i v: i v+1-1, j v)\) if side \(=' R\) ' and incv \(=1\),
\(v(i v, j v: j v+l-1)\) if side \(=\) ' \(R\) ' and \(i n c v=m_{-} v\).
The vector v in the representation of \(Q . v\) is not used if \(t a u=0\).
\(i v, j v\) (global) INTEGER. The row and column indices in the global array \(V\) indicating the first row and the first column of the submatrix sub \((V)\), respectively.
descv (global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the distributed matrix \(V\).
incv (global). INTEGER.
The global increment for the elements of \(v\). Only two values of incv are supported in this version, namely 1 and \(m_{-}\)v.
incv must not be zero.
tau (local)
COMPLEX for pclarzc
COMPLEX*16 for pzlarzc.
Array, dimension \(\operatorname{LOCc}(j v)\) if incv \(=1\), and \(\operatorname{LOCr}(\mathrm{iv})\) otherwise. This array contains the Householder scalars related to the Householder vectors.
tau is tied to the distributed matrix \(V\).
c
(local).
COMPLEX for pclarzc
COMPLEX*16 for pzlarzc.
Pointer into the local memory to an array of dimension (11d_c, LOCc (jc+n-1)), containing the local pieces of \(\operatorname{sub}(C)\).
```

ic,jc (global) INTEGER. The row and column indices in the global array C indicating the
first row and the first column of the submatrix sub(C), respectively.
descc (global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the
distributed matrix C.
work (local).
If incv=1,
if side= 'L',
if ivcol=iccol,
lwork \geqNqC0
else
lwork\geqMpCO + max(1, NqCO)
end if
else if side='R',
lwork\geqnqc0 + max(max(1, mpc0), numroc(numroc(
n+icoffc,nb_v,0,0,npcol),nb_v,0,0,lcmq))
end if
else if incv=m_v,
if side= 'L',
lwork \geq mpc0 + max(max(1, nqc0), numroc(numroc(
m+iroffc,mb_v,0,0,nprow),mb_v,0,0,Icmp))
else if side = 'R',
if ivrow = icrow,
lwork \geq mpco
else
lwork \geq nqc0 + max(1, mpc0)
end if
end if
end if,
where 1 cm is the least common multiple of nprow and npcol and
lcm $=$ ilcm(nprow, npcol $), 1 \mathrm{cmp}=1 \mathrm{~cm} / \mathrm{nprow}$, lcmq $=1 \mathrm{~cm} / \mathrm{npcol}$,
iroffc = mod(ic-1, mb_c), icoffc = mod(jc-1, nb_c),
icrow = indxg2p(ic, mb_c, myrow, rsrc_c, nprow),
iccol = indxg2p(jc, nb_c, mycol, csrc_c, npcol),
MpCO = numroc(m+iroffc, mb_c, myrow, icrow, nprow),
NqCO= numroc(n+icoffc, nb_c, mycol, iccol, npcol),
ilcm, indxg2p, and numroc are ScaLAPACK tool functions;

```
myrow, mycol, nprow, and npcol can be determined by calling the subroutine blacs_gridinfo.

\section*{p?larzt}

Forms the triangular factor \(T\) of a block reflector
\(H=I-V T V^{H}\) as returned by p?tzrzf.

\section*{Syntax}
```

call pslarzt (direct, storev, n, k, v, iv, jv, descv, tau, t, work)

```
call pdlarzt (direct, storev, \(n, k, v, i v, j v, ~ d e s c v, ~ t a u, ~ t, ~ w o r k) ~\)
call pclarzt (direct, storev, \(n, k, v, i v, j v, ~ d e s c v, ~ t a u, ~ t, ~ w o r k) ~\)
call pzlarzt (direct, storev, \(n, k, v, i v, j v, ~ d e s c v, ~ t a u, ~ t, ~ w o r k) ~\)

\section*{Description}

This routine forms the triangular factor \(T\) of a real/complex block reflector \(H\) of order \(>\mathrm{n}\), which is defined as a product of \(k\) elementary reflectors as returned by p?tzrzf.

If direct \(=\) ' F ', \(H=H(1) H(2) \ldots H(k)\) and \(T\) is upper triangular;
If direct = 'в', \(H=H(k) \ldots H(2) H(1)\) and \(T\) is lower triangular.
If storev = ' C ', the vector which defines the elementary reflector \(H(i)\) is stored in the \(i\)-th column of the array \(v\), and
\(H=i-v * t * v^{\prime}\)
If storev \(=\) ' \(R\) ', the vector which defines the elementary reflector \(H(i)\) is stored in the \(i\)-th row of the array \(v\), and
\(H=i-v^{\prime} * t * v\)
Currently, only storev = ' R ' and direct = ' B ' are supported.

\section*{Input Arguments}
```

direct (global) CHARACTER.
Specifies the order in which the elementary reflectors are multiplied to form the block
reflector:

```
\begin{tabular}{|c|c|}
\hline & if direct = ' F ': \(H=H(1) H(2) \ldots H(k)\) (Forward, not supported yet) if direct = ' B ': \(H=H(k) \ldots H(2) H(1)\) (Backward). \\
\hline \multirow[t]{3}{*}{storev} & (global) CHARACTER. \\
\hline & Specifies how the vectors which define the elementary reflectors are stored: \\
\hline & if storev = 'C': columnwise (not supported yet); if storev = 'R': rowwise. \\
\hline \multirow[t]{2}{*}{\(n\)} & (global). INTEGER. \\
\hline & The order of the block reflector \(H . n \geq 0\). \\
\hline \multirow[t]{3}{*}{k} & (global). INTEGER. \\
\hline & The order of the triangular factor \(T\) ( = the number of elementary reflectors). \\
\hline & \(1 \leq k \leq m b _v\left(=n b _v\right)\). \\
\hline \multirow[t]{7}{*}{v} & REAL for pslarzt \\
\hline & DOUBLE PRECISION for pdlarzt \\
\hline & COMPLEX for pclarzt \\
\hline & COMPLEX*16 for pzlarzt. \\
\hline & Pointer into the local memory to an array of local DIMENSION \\
\hline & \[
(\operatorname{LOCr}(i v+k-1), \operatorname{LOCc}(j v+n-1)) .
\] \\
\hline & The distributed matrix \(V\) contains the Householder vectors. See Application Notes below. \\
\hline iv,jv & (global) INTEGER. The row and column indices in the global array \(V\) indicating the first row and the first column of the submatrix \(\operatorname{sub}(V)\), respectively. \\
\hline descv & (global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the distributed matrix \(V\). \\
\hline \multirow[t]{8}{*}{tau} & (local) \\
\hline & REAL for pslarzt \\
\hline & DOUBLE PRECISION for pdlarzt \\
\hline & COMPLEX for pclarzt \\
\hline & COMPLEX*16 for pzlarzt. \\
\hline & Array, DIMENSION \(L O C r(i v+k-1)\) if \(i n C v=m_{-} v\), and \(L O C c(j v+k-1)\) otherwise. \\
\hline & This array contains the Householder scalars related to the Householder vectors. \\
\hline & tau is tied to the distributed matrix \(V\). \\
\hline work & (local). \\
\hline
\end{tabular}
```

REAL for pslarzt
DOUBLE PRECISION for pdlarzt
COMPLEX for pclarzt
COMPLEX*16 for pzlarzt.
Workspace array, DIMENSION (k*(k-1)/2).

```

\section*{Output Arguments}
\(v \quad\) REAL for pslarzt
DOUBLE PRECISION for pdlarzt
COMPLEX for pclarzt
COMPLEX*16 for pzlarzt.
\(t\) (local)
REAL for pslarzt
DOUBLE PRECISION for pdlarzt
COMPLEX for pclarzt
COMPLEX*16 for pzlarzt.
Array, DIMENSION (mb_v, mb_v). It contains the \(k\)-by- \(k\) triangular factor of the block reflector associated with \(v . t\) is lower triangular.

\section*{Application Notes}

The shape of the matrix \(V\) and the storage of the vectors which define the \(H(i)\) is best illustrated by the following example with \(n=5\) and \(k=3\). The elements equal to 1 are not stored; the corresponding array elements are modified but restored on exit. The rest of the array is not used.
```

direct = 'F' and storev = 'C':
[v1 v2 v3
v =
I
1.
I

```
```

direct = 'F' and storev = 'R':

```

\section*{V}
\(\left[\begin{array}{lllllll}\text { vi } & v 1 & v 1 & v 1 & v 1 & \ldots & 1 \\ v 2 & v 2 & v 2 & v 2 & v 2 & . & 1 \\ v 3 & v 3 & v 3 & v 3 & v 3 & \ldots & 1\end{array}\right]\)
direct \(=\) ' B ' and store v \(=\) ' C ':
1
1
. . 1
\(\mathrm{v}=\) •••
\(\left[\begin{array}{ccc}\mathrm{v} 1 & \mathrm{v} 2 & \mathrm{v} 3 \\ \mathrm{v} 1 & \mathrm{v} 2 & \mathrm{v} 3 \\ \mathrm{v} 1 & \mathrm{v} 2 & \mathrm{v} 3 \\ \mathrm{v} 1 & \mathrm{v} 2 & \mathrm{v} 3 \\ \mathrm{v} 1 & \mathrm{v} 2 & \mathrm{v} 3\end{array}\right]\)
direct \(=\) ' B ' and store \(=\) ' \(R\) ':


\section*{p?lascl}

\section*{Multiplies a general rectangular matrix by a real scalar}
defined as \(C_{t d} C_{\text {from }}\).

\section*{Syntax}
```

call pslascl (type, cfrom, cto, m, n, a, ia, ja, desca, info)
call pdlascl (type, cfrom, cto, m, n, a, ia, ja, desca, info)
call pclascl (type, cfrom, cto, m, n, a, ia, ja, desca, info)
call pzlascl (type, cfrom, cto, m, n, a, ia, ja, desca, info)

```

\section*{Description}

This routine multiplies the \(m-\) by \(-n\) real/complex distributed matrix \(\operatorname{sub}(A)\) denoting \(A(i a: i a+m-1, j a: j a+n-1)\) by the real/complex scalar cto/cfrom. This is done without over/underflow as long as the final result cto \(* A(i, j) /\) cfrom does not over/underflow. type specifies that \(\operatorname{sub}(A)\) may be full, upper triangular, lower triangular or upper Hessenberg.

\section*{Input Arguments}
```

type (global) CHARACTER.
type indices of the storage type of the input distributed matrix.
if type = 'G': sub (A) is a full matrix,
if type = 'L': sub (A) is a lower triangular matrix,
if type = 'U': sub (A) is an upper triangular matrix,
if type = 'H': sub (A) is an upper Hessenberg matrix.
cfrom,cto (global)
REAL for pslascl/pclascl
DOUBLE PRECISION for pdlascl/pzlascl.
The distributed matrix $\operatorname{sub}(A)$ is multiplied by cto/cfrom.$A(i, j)$ is computed without over/underflow if the final result cto $*(i, j) /$ cfrom can be represented without over/underflow. cfrom must be nonzero.
(global) INTEGER.
The number of rows to be operated on, that is, the number of rows of the distributed submatrix $\operatorname{sub}(A) .(m \geq 0)$.

```
\(n\) (global) INTEGER.
The number of columns to be operated on, that is, the number of columns of the distributed submatrix \(\operatorname{sub}(A) .(n \geq 0)\).
(local input/local output)
REAL for pslascl
DOUBLE PRECISION for pdlascl
COMPLEX for pclascl
COMPLEX*16 for pzlascl.
Pointer into the local memory to an array of DIMENSION (lld_a, LOCc (ja+n-1)).
This array contains the local pieces of the distributed matrix \(\operatorname{sub}(A)\).
(global) INTEGER.
The column and row indices in the global array \(A\) indicating the first row and column of the submatrix \(\operatorname{sub}(A)\), respectively.
desca (global and local) INTEGER.
Array of DIMENSION (dlen_).The array descriptor for the distributed matrix \(A\).

\section*{Output Arguments}
```

a
(local). On exit, this array contains the local pieces of the distributed matrix multiplied by cto/cfrom.
info (local) INTEGER.
if info $=0$: the execution is successful.
if info <0 : If the i-th argument is an array and the j-entry had an illegal value, then info $=-\left(i^{*} 100+j\right)$,
if the i-th argument is a scalar and had an illegal value, then info $=-i$.

```

\section*{p?laset}

Initializes the off-diagonal elements of a matrix to \(\alpha\) and the diagonal elements to \(\beta\).

\section*{Syntax}
```

call pslaset (uplo, m, n, alpha, beta, a, ia, ja, desca)
call pdlaset (uplo, m, n, alpha, beta, a, ia, ja, desca)
call pclaset (uplo, m, n, alpha, beta, a, ia, ja, desca)

```
```

call pzlaset (uplo, m, n, alpha, beta, a, ia, ja, desca)

```
```

call pzlaset (uplo, m, n, alpha, beta, a, ia, ja, desca)

```

\section*{Description}

This routine initializes an \(m\)-by-n distributed matrix \(\operatorname{sub}(A)\) denoting \(A(i a: i a+m-1, j a: j a+n-1)\) to beta on the diagonal and alpha on the offdiagonals.

\section*{Input Arguments}
uplo (global) CHARACTER.
Specifies the part of the distributed matrix \(\operatorname{sub}(A)\) to be set:
if uplo = ' u ': upper triangular part is set; the strictly lower triangular part of \(\operatorname{sub}(A)\) is not changed;
if uplo = ' L ': lower triangular part is set; the strictly upper triangular part of \(\operatorname{sub}(A)\) is not changed.
Otherwise: all of the matrix \(\operatorname{sub}(A)\) is set.
m (global) INTEGER.
The number of rows to be operated on, that is, the number of rows of the distributed submatrix \(\operatorname{sub}(A) .(m \geq 0)\).
\(n \quad\) (global) INTEGER.
The number of columns to be operated on, that is, the number of columns of the distributed submatrix \(\operatorname{sub}(A) .(n \geq 0)\).
alpha (global).
```

REAL for pslaset
DOUBLE PRECISION for pdlaset
COMPLEX for pclaset
COMPLEX*16 for pzlaset.

```

The constant to which the offdiagonal elements are to be set.
beta (global).
REAL for pslaset
DOUBLE PRECISION for pdlaset
COMPLEX for pclaset
COMPLEX*16 for pzlaset.
The constant to which the diagonal elements are to be set.

\section*{Output Parameters}
a
(local).
REAL for pslaset
DOUBLE PRECISION for pdlaset
COMPLEX for pclaset
COMPLEX*16 for pzlaset.
Pointer into the local memory to an array of DIMENSION (IId_a, LOCc (ja+n-1)). This array contains the local pieces of the distributed matrix \(\operatorname{sub}(A)\) to be set. On exit, the leading \(m-b y-n\) submatrix \(\operatorname{sub}(A)\) is set as follows:
if uplo \(=\) 'U', \(A(\) ia+i-1, ja+j-1) \(=\) alpha, \(1<i \leq j-1,1 \leq j \leq n\), if uplo \(=\) 'L', \(A(i a+i-1, j a+j-1)=a l p h a, j+1 \leq i \leq m, 1 \leq j \leq n\), otherwise, \(A(i a+i-1, j a+j-1)=a l p h a, 1 \leq i \leq m, 1 \leq j \leq n\), ia+i.ne.ja+j, and, for all uplo, \(A(i a+i-1, j a+i-1)=\) beta, \(1 \leq i \leq \min (m, n)\).
ia, ja (global) INTEGER.
The column and row indices in the global array \(A\) indicating the first row and column of the submatrix \(\operatorname{sub}(A)\), respectively.
desca (global and local) INTEGER.
Array of DIMENSION (dlen_). The array descriptor for the distributed matrix \(A\).

\section*{p?lasmsub}

\section*{Looks for a small subdiagonal element from the bottom of the matrix that it can safely set to zero.}

\section*{Syntax}
```

call pslasmsub (a, desca, i, l, k, smlnum, buf, lwork)

```
```

call pdlasmsub (a, desca, i, l, k, smlnum, buf, lwork)

```

\section*{Description}

This routine looks for a small subdiagonal element from the bottom of the matrix that it can safely set to zero. This routine does a global maximum and must be called by all processes.

\section*{Input Arguments}
```

a (global)

```

REAL for pslasmsub
DOUBLE PRECISION for pdlasmsub
Array, DIMENSION (desca(lld_),*).
On entry, the Hessenberg matrix whose tridiagonal part is being scanned. Unchanged on exit.
desca (global and local) INTEGER.
Array of DIMENSION (dlen_).
The array descriptor for the distributed matrix \(A\).
i (global) INTEGER. The global location of the bottom of the unreduced submatrix of \(A\). Unchanged on exit.
1 (global) INTEGER. The global location of the top of the unreduced submatrix of \(A\). Unchanged on exit.
smlnum (global)
REAL for pslasmsub
DOUBLE PRECISION for pdlasmsub
On entry, a "small number" for the given matrix. Unchanged on exit.
lwork (global) INTEGER.
On exit, Iwork is the size of the work buffer.
This must be at least 2 *ceil(ceil( (i-l)/hbl )/lcm(nprow, npcol)). Here 1 cm is least common multiple, and nprow x npcol is the logical grid size.

\section*{Output Parameters}
```

k (global) INTEGER.
On exit, this yields the bottom portion of the unreduced submatrix. This will satisfy:
l\leqm\leqi-1.
buf (local).
REAL for pslasmsub
DOUBLE PRECISION for pdlasmsub
Array of size lwork.

```

\section*{p?lassq}

Updates a sum of squares represented in scaled form.

\section*{Syntax}
```

call pslassq (n, x, ix, jx, descx, incx, scale, sumsq)
call pdlassq (n, x, ix, jx, descx, incx, scale, sumsq)
call pclassq (n, x, ix, jx, descx, incx, scale, sumsq)
call pzlassq (n, x, ix, jx, descx, incx, scale, sumsq)

```

\section*{Description}

This routine returns the values scl and smsq such that
\[
s c l^{2} * s m s q=x(1)^{2}+\ldots+x(n)^{2}+\text { scale }^{2} * \text { sums } q,
\]
where \(x(i)=\operatorname{sub}(x)=x\left(\right.\) ix \(+(j x-1) * \operatorname{descx}\left(m_{-}\right)+(i-1) *\) incx \()\) for pslassq/pdlassq and \(x(i)=\operatorname{sub}(x)=\operatorname{abs}\left(x\left(i x+(j x-1) * d e s c x\left(m_{_}\right)+(i-1) * i n c x\right)\right.\) for pclassq/pzlassq.
For real routines pslassq/pdlassq the value of sumsq is assumed to be non-negative and \(s c l\) returns the value
\(s c l=\max (\operatorname{scale}, \operatorname{abs}(x(i)))\).

For complex routines pclassq/pzlassq the value of sumsq is assumed to be at least unity and the value of \(s s q\) will then satisfy
\(1.0 \leq s s q \leq s u m s q+2 n\)
Value scale is assumed to be non-negative and \(s c l\) returns the value
\(\operatorname{scl}=\max _{i}(\operatorname{scale}, \operatorname{abs}(\operatorname{real}(x(i))), \quad\) abs \((\operatorname{aimag}(x(i))))\).
For all routines p?lassq values scale and sumsq must be supplied in scale and sumsq respectively, and scale and sumsq are overwritten by scl and ssq respectively.

All routines \(p\) ?lassq make only one pass through the vector \(\operatorname{sub}(x)\).

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline n & (global) integer. The length of the distributed vector sub(x). \\
\hline \(x\) & \begin{tabular}{l}
REAL for pslassq \\
DOUBLE PRECISION for pdlassq \\
COMPLEX for pclassq \\
COMPLEX*16 for pzlassq. \\
The vector for which a scaled sum of squares is computed:
\[
x\left(i x+(j x-1) * m_{-} x+(i-1) * i n c x\right), 1 \leq i \leq n
\]
\end{tabular} \\
\hline ix & \begin{tabular}{l}
(global) INTEGER. \\
The row index in the global array \(X\) indicating the first row of \(\operatorname{sub}(X)\).
\end{tabular} \\
\hline jx & \begin{tabular}{l}
(global) INTEGER. \\
The column index in the global array \(X\) indicating the first column of \(\operatorname{sub}(X)\).
\end{tabular} \\
\hline descx & \begin{tabular}{l}
(global and local) INTEGER array of DIMENSION (dlen_). \\
The array descriptor for the distributed matrix \(X\).
\end{tabular} \\
\hline incx & \begin{tabular}{l}
(global) INTEGER. \\
The global increment for the elements of \(X\). Only two values of incx are supported in this version, namely 1 and \(m_{-} x\). The argument incx must not equal zero.
\end{tabular} \\
\hline scale & \begin{tabular}{l}
(local). \\
REAL for pslassq/pclassq \\
DOUBLE PRECISION for pdlassq/pzlassq. On entry, the value scale in the equation above.
\end{tabular} \\
\hline sumsq & (local) ReAL for pslassq/pclassq DOUBLE PRECISION for pdlassq/pzlassq. On entry, the value sumsq in the equation above. \\
\hline
\end{tabular}

\section*{Output Parameters}
```

scale (local). On exit, scale is overwritten with scl, the scaling factor for the sum
of squares.
sumsq (local).
On exit, sumsq is overwritten with the value smsq, the basic sum of squares
from which scl has been factored out.

```

\section*{p?laswp}

Performs a series of row interchanges on a general rectangular matrix.

\section*{Syntax}
```

call pslaswp (direc, rowcol, n, a, ia, ja, desca, kl, k2, ipiv)
call pdlaswp (direc, rowcol, n, a, ia, ja, desca, k1, k2, ipiv)
call pclaswp (direc, rowcol, n, a, ia, ja, desca, k1, k2, ipiv)
call pzlaswp (direc, rowcol, n, a, ia, ja, desca, k1, k2, ipiv)

```

\section*{Description}

This routine performs a series of row or column interchanges on the distributed matrix \(\operatorname{sub}(A)=A(i a: i a+n-1, j a: j a+n-1)\). One interchange is initiated for each of rows or columns \(k 1\) through \(k 2\) of \(\operatorname{sub}(A)\). This routine assumes that the pivoting information has already been broadcast along the process row or column. Also note that this routine will only work for \(\mathrm{kl}-\mathrm{k} 2\) being in the same \(m b\) (or \(n b\) ) block. If you want to pivot a full matrix, use p?lapiv.

\section*{Input Parameters}
```

direc (global) CHARACTER.

```

Specifies in which order the permutation is applied:
\(=\) ' \(\mathrm{F}^{\prime}\) (Forward)
\(=\) ' B ' (Backward).
rowcol (global) CHARACTER .
Specifies if the rows or columns are permuted:
\[
\begin{aligned}
& =' R \text { ' (Rows) } \\
& =\text { ' 'C' (Columns). }
\end{aligned}
\]
\(k 1\) (global) INTEGER. The first element of ipiv for which a row or column interchange will be done.
k2 (global) INTEGER. The last element of ipiv for which a row or column interchange will be done.
ipiv (local) INTEGER.
Array, DIMENSION \(L O C r\left(m_{-} a\right)+m b _a\) for row pivoting and \(L O C r\left(n _a\right)+n b _a\) for column pivoting. This array is tied to the matrix \(A\), ipiv(k)=1 implies rows (or columns) \(k\) and \(l\) are to be interchanged.

\section*{Output Parameters}
a
n
ix (global) INTEGER.
The row index in the global array \(A\) indicating the first row of \(\operatorname{sub}(A)\).
(global) INTEGER.
If rowcol='R', the length of the rows of the distributed matrix \(A(*, j a: j a+n-1)\) to be permuted;
If rowcol='c', the length of the columns of the distributed matrix \(A(\) ia:ia+n-1, *) to be permuted;
(local) REAL for pslaswp
DOUBLE PRECISION for pdlaswp
COMPLEX for pclaswp
COMPLEX*16 for pzlaswp.
Pointer into the local memory to an array of DIMENSION (lld_a, *).
On entry, this array contains the local pieces of the distributed matrix to which the row/columns interchanges will be applied.
(global) INTEGER.
The column index in the global array \(A\) indicating the first column of \(\operatorname{sub}(A)\).
(global and local) INTEGER array of DIMENSION (dlen_).
The array descriptor for the distributed matrix \(A\).
(local) REAL for pslaswp

DOUBLE PRECISION for pdlaswp
COMPLEX for pclaswp
COMPLEX*16 for pzlaswp.
On exit, the permuted distributed matrix.

\section*{p?latra}

Computes the trace of a general square distributed matrix.

\section*{Syntax}
```

val = pslatra (n, a, ia, ja, desca)
val = pdlatra (n, a, ia, ja, desca)
val = pclatra (n, a, ia, ja, desca)
val = pzlatra (n, a, ia, ja, desca)

```

\section*{Description}

This function computes the trace of an \(n-b y-n\) distributed matrix \(\operatorname{sub}(A)\) denoting \(A(i a: i a+n-1, j a: j a+n-1)\). The result is left on every process of the grid.

\section*{Input Parameters}
\(n\) (global) INTEGER.
The number of rows and columns to be operated on, that is, the order of the distributed submatrix \(\operatorname{sub}(A) . n \geq 0\).
a (local).
REAL for pslatra
DOUBLE PRECISION for pdlatra
COMPLEX for pclatra
COMPLEX*16 for pzlatra.
Pointer into the local memory to an array of DIMENSION (Ild_a, LOCc (ja+n-1)) containing the local pieces of the distributed matrix, the trace of which is to be computed.
ia, ja (global) INTEGER. The row and column indices respectively in the global array \(A\) indicating the first row and the first column of the submatrix \(\operatorname{sub}(A)\), respectively.
desca (global and local) INTEGER array of DIMENSION (dlen_). The array descriptor for the distributed matrix \(A\).

\section*{Output Parameters}
val The value returned by the fuction.

\section*{p?latrd}

> Reduces the first nb rows and columns of a symmetric/Hermitian matrix A to real tridiagonal form by an orthogonal/unitary similarity transformation.

\section*{Syntax}
```

call pslatrd (uplo, n, nb, a, ia, ja, desca, d, e, tau, w, iw, jw, descw,
work)
call pdlatrd (uplo, n, nb, a, ia, ja, desca, d, e, tau, w, iw, jw, descw,
work)
call pclatrd (uplo, n, nb, a, ia, ja, desca, d, e, tau, w, iw, jw, descw,
work)
call pzlatrd (uplo, n, nb, a, ia, ja, desca, d, e, tau, w, iw, jw, descw,
work)

```

\section*{Description}

This routine reduces nb rows and columns of a real symmetric or complex Hermitian matrix \(\operatorname{sub}(A)=A(i a: i a+n-1, j a: j a+n-1)\) to symmetric/complex tridiagonal form by an orthogonal/unitary similarity transformation \(Q^{\prime *} \operatorname{sub}(A)^{*} Q\), and returns the matrices \(V\) and \(W\), which are needed to apply the transformation to the unreduced part of \(\operatorname{sub}(A)\).
If uplo = ' U ', p? latrd reduces the last nb rows and columns of a matrix, of which the upper triangle is supplied;
if uplo = ' L ', p? latrd reduces the first nb rows and columns of a matrix, of which the lower triangle is supplied.

This is an auxiliary routine called by p?sytrd/p?hetrd.

\section*{Input Parameters}
uplo (global) CHARACTER.
Specifies whether the upper or lower triangular part of the symmetric/Hermitian matrix \(\operatorname{sub}(A)\) is stored:
= 'U': Upper triangular
= 'L': Lower triangular.
n (global) INTEGER.
The number of rows and columns to be operated on, that is, the order of the distributed submatrix \(\operatorname{sub}(A) . n \geq 0\).
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{nb} & (global) INTEGER. \\
\hline & The number of rows and columns to be reduced. \\
\hline \multirow[t]{8}{*}{a} & REAL for pslatrd \\
\hline & DOUBLE PRECISION for pdlatrd \\
\hline & COMPLEX for pclatrd \\
\hline & COMPLEX*16 for pzlatrd. \\
\hline & Pointer into the local memory to an array of DIMENSION (IId_a, LOCc (ja+n-1)). \\
\hline & On entry, this array contains the local pieces of the symmetric/Hermitian distributed matrix \(\operatorname{sub}(A)\). \\
\hline & If uplo = ' U ', the leading \(n\)-by- \(n\) upper triangular part of \(\operatorname{sub}(A)\) contains the upper triangular part of the matrix, and its strictly lower triangular part is not referenced. \\
\hline & If uplo = 'L', the leading \(n\)-by- \(n\) lower triangular part of \(\operatorname{sub}(A)\) contains the lower triangular part of the matrix, and its strictly upper triangular part is not referenced. \\
\hline \multirow[t]{2}{*}{ia} & (global) INTEGER. \\
\hline & The row index in the global array \(A\) indicating the first row of \(\operatorname{sub}(A)\). \\
\hline \multirow[t]{2}{*}{ja} & (global) INTEGER. \\
\hline & The column index in the global array \(A\) indicating the first column of \(\operatorname{sub}(A)\). \\
\hline desca & (global and local) INTEGER array of DIMENSION (dlen_). The array descriptor for the distributed matrix \(A\). \\
\hline \multirow[t]{2}{*}{iw} & (global) INTEGER. \\
\hline & The row index in the global array \(W\) indicating the first row of \(\operatorname{sub}(W)\). \\
\hline \multirow[t]{2}{*}{\(j w\)} & (global) INTEGER. \\
\hline & The column index in the global array \(W\) indicating the first column of \(\operatorname{sub}(W)\). \\
\hline descw & (global and local) INTEGER array of DIMENSION (dlen_). The array descriptor for the distributed matrix \(W\). \\
\hline \multirow[t]{6}{*}{work} & (local) \\
\hline & REAL for pslatrd \\
\hline & DOUBLE PRECISION for pdlatrd \\
\hline & COMPLEX for pclatrd \\
\hline & COMPLEX*16 for pzlatrd. \\
\hline & Workspace array of DIMENSION (nb_a). \\
\hline \multicolumn{2}{|l|}{Output Parameters} \\
\hline a & (local) On exit, if uplo = ' U ', the last \(n b\) columns have been reduced to tridiagonal form, with the diagonal elements overwriting the diagonal elements of \(\operatorname{sub}(A)\); the elements above the diagonal with the array tau represent the orthogonal/unitary \\
\hline
\end{tabular}
matrix \(Q\) as a product of elementary reflectors; if uplo = 'L', the first nb columns have been reduced to tridiagonal form, with the diagonal elements overwriting the diagonal elements of \(\operatorname{sub}(A)\); the elements below the diagonal with the array tau represent the orthogonal/unitary matrix \(Q\) as a product of elementary reflectors.
(local) REAL for pslatrd/pclatrd DOUBLE PRECISION for pdlatrd/pzlatrd. Array, DIMENSION \(\operatorname{LOCc}(j a+n-1)\).
The diagonal elements of the tridiagonal matrix \(T: d(\mathrm{i})=a(\mathrm{i}, \mathrm{i}) . d\) is tied the distributed matrix \(A\).
(local) REAL for pslatrd/pclatrd DOUBLE PRECISION for pdlatrd/pzlatrd. Array, DIMENSION \(L O C c(j a+n-1)\) if uplo = 'U', \(L O C c(j a+n-2)\) otherwise. The off-diagonal elements of the tridiagonal matrix \(T\) :
\(e(i)=a(i, i+1)\) if uplo = ' U ',
\(e(i)=a(i+1, i)\) if uplo = 'L'.
\(e\) is tied to the distributed matrix \(A\).
(local) REAL for pslatrd
DOUBLE PRECISION for pdlatrd
COMPLEX for pclatrd
COMPLEX*16 for pzlatrd.
Array, DIMENSION LOCc (ja+n-1).
This array contains the scalar factors \(t a u\) of the elementary reflectors. \(t a u\) is tied to the distributed matrix \(A\).
(local) REAL for pslatrd
DOUBLE PRECISION for pdlatrd
COMPLEX for pclatrd
COMPLEX*16 for pzlatrd.
Pointer into the local memory to an array of DIMENSION (lld_w, nb_w).
This array contains the local pieces of the \(n\)-by-nb_w matrix \(\bar{W}\) required to update the unreduced part of \(\operatorname{sub}(A)\).

\section*{Application Notes}

If uplo = ' u ', the matrix \(Q\) is represented as a product of elementary reflectors
\[
Q=H(n) H(n-1) \ldots H(n-n b+1)
\]

Each \(H(\mathrm{i})\) has the form
\[
H(\mathrm{i})=I-\operatorname{ta} u^{*} v^{*} v^{\prime}
\]
where tau is a real/complex scalar, and \(v\) is a real/complex vector with \(v(i: n)=0\) and \(v(i-1)=1 ; v(1: i-1)\) is stored on exit in \(A(i a: i a+i-1, j a+i)\), and tau in tau(ja+i-1).

If uplo = 'L', the matrix \(Q\) is represented as a product of elementary reflectors
\[
Q=H(1) H(2) \ldots H(n b)
\]

Each \(H(i)\) has the form
\[
H(\mathrm{i})=I-t a u^{\star} v^{\star} v^{\prime},
\]
where tau is a real/complex scalar, and \(v\) is a real/complex vector with \(v(1: i)=0\) and \(v(i+1)=\) 1 ; \(v(i+2: n)\) is stored on exit in \(A(i a+i+1: i a+n-1, j a+i-1)\), and tau in \(\operatorname{tau}(j a+i-1)\).

The elements of the vectors \(v\) together form the \(n\)-by- \(n b\) matrix \(V\) which is needed, with \(W\), to apply the transformation to the unreduced part of the matrix, using a symmetric/Hermitian rank-2k update of the form:
\(\operatorname{sub}(A):=\operatorname{sub}(A)-v w^{\prime}-w v^{\prime}\).
The contents of a on exit are illustrated by the following examples with \(n=5\) and \(n b=2\) :
```

if uplo = 'U': if uplo = 'L':

```
\[
\left[\begin{array}{rrrr}
a & a & a & v_{4} \\
& v_{5} \\
& a & a & v_{4} \\
& v_{5} \\
& a & 1 & v_{5} \\
& & d & 1 \\
& & & d
\end{array}\right] \quad\left[\begin{array}{cccc}
d & & & \\
1 & d & & \\
v_{1} & 1 & a & \\
v_{1} & v_{2} & a & a \\
v_{1} & v_{2} & a & a
\end{array}\right]
\]
where \(d\) denotes a diagonal element of the reduced matrix, a denotes an element of the original matrix that is unchanged, and \(v_{i}\) denotes an element of the vector defining \(H(\mathrm{i})\).

\section*{p?latrs}

\section*{Solves a triangular system of equations with the scale} factor set to prevent overflow.

\section*{Syntax}
```

call pslatrs (uplo, trans, diag, normin, n, a, ia, ja, desca, x, ix, jx, descx,
scale, cnorm, work)
call pdlatrs (uplo, trans, diag, normin, n, a, ia, ja, desca, x, ix, jx, descx,
scale, cnorm, work)
call pclatrs (uplo, trans, diag, normin, n, a, ia, ja, desca, x, ix, jx, descx,
scale, cnorm, work)
call pzlatrs (uplo, trans, diag, normin, n, a, ia, ja, desca, x, ix, jx, descx,
scale, cnorm, work)

```

\section*{Description}

This routine solves a triangular system of equations \(A x=\sigma b, A^{T} x=\sigma b\), or \(A^{H} x=\sigma b\), where \(\sigma\) is a scale factor set to prevent overflow. The description of the routine will be extended in the future releases.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{uplo} & CHARACTER*1. \\
\hline & \begin{tabular}{l}
Specifies whether the matrix \(A\) is upper or lower triangular. \\
= 'U': Upper triangular \\
= 'L': Lower triangular
\end{tabular} \\
\hline \multirow[t]{5}{*}{trans} & CHARACTER*1. \\
\hline & Specifies the operation applied to \(A\). \\
\hline & \(=\) 'N': Solve \(A x=\sigma b\) (no transpose) \\
\hline & \(=\) 'т': Solve \(A^{T} x=\sigma b\) (transpose) \\
\hline & \(={ }^{\prime} \mathrm{c}^{\prime}\) : Solve \(A^{H} x=\sigma b\) (conjugate transpose) \\
\hline \multirow[t]{4}{*}{diag} & CHARACTER*1. \\
\hline & Specifies whether or not the matrix \(A\) is unit triangular. \\
\hline & \(=\) ' N ': Non-unit triangular \\
\hline & = 'U': Unit triangular \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline normi & \begin{tabular}{l}
CHARACTER*1. \\
Specifies whether cnorm has been set or not. \\
\(=\) ' \(Y^{\prime}\) : cnorm contains the column norms on entry; \\
\(=\) ' \(N\) ': cnorm is not set on entry. On exit, the norms will be computed and stored in cnorm.
\end{tabular} \\
\hline n & \begin{tabular}{l}
INTEGER. \\
The order of the matrix \(A . n \geq 0\)
\end{tabular} \\
\hline a & \begin{tabular}{l}
REAL for pslatrs/pclatrs \\
DOUBLE PRECISION for pdlatrs/pzlatrs \\
Array, DIMENSION ( \(1 d a, n\) ). Contains the triangular matrix \(A\). If uplo \(=\) ' u ', the leading \(n\)-by- \(n\) upper triangular part of the array a contains the upper triangular matrix, and the strictly lower triangular part of \(a\) is not referenced. If uplo \(=\) ' \(L\) ', the leading \(n\)-by- \(n\) lower triangular part of the array a contains the lower triangular matrix, and the strictly upper triangular part of \(a\) is not referenced. If diag \(=\) ' \(u\) ', the diagonal elements of a are also not referenced and are assumed to be 1 .
\end{tabular} \\
\hline ia,ja & (global) INTEGER. The row and column indices in the global array a indicating the first row and the first column of the submatrix \(A\), respectively. \\
\hline desca & (global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the distributed matrix \(A\). \\
\hline \(x\) & \begin{tabular}{l}
REAL for pslatrs/pclatrs \\
DOUBLE PRECISION for pdlatrs/pzlatrs \\
Array, DIMENSION ( \(n\) ). On entry, the right hand side \(b\) of the triangular system.
\end{tabular} \\
\hline ix & (global) INTEGER. The row index in the global array \(x\) indicating the first row of \(\operatorname{sub}(x)\). \\
\hline jx & (global) INTEGER. The column index in the global array \(x\) indicating the first column of \(\operatorname{sub}(x)\). \\
\hline descx & \begin{tabular}{l}
(global and local) INTEGER. \\
Array, DIMENSION (dlen_). The array descriptor for the distributed matrix \(X\).
\end{tabular} \\
\hline cnorm & \begin{tabular}{l}
REAL for pslatrs/pclatrs \\
DOUBLE PRECISION for pdlatrs/pzlatrs. \\
Array, DIMENSION (n). If normin = ' Y ', cnorm is an input argument and cnorm ( \(j\) ) contains the norm of the off-diagonal part of the \(j\)-th column of \(A\). If \(\operatorname{trans}=' \mathrm{~N}\) ', cnorm ( \(j\) ) must be greater than or equal to the infinity-norm, and if trans \(=\) ' \(T\) ' or ' C ', cnorm( \(j\) ) must be greater than or equal to the 1 -norm.
\end{tabular} \\
\hline work & (local). \\
\hline
\end{tabular}

REAL for pslatrs
DOUBLE PRECISION for pdlatrs
COMPLEX for pclatrs
COMPLEX*16 for pzlatrs.
Temporary workspace.

\section*{Output Parameters}
On exit, \(x\) is overwritten by the solution vector \(x\).
scale REAL for pslatrs/pclatrs DOUBLE PRECISION for pdlatrs/pzlatrs.
Array, DIMENSION (lda, n). The scaling factor \(s\) for the triangular system as described above.
If scale \(=0\), the matrix \(A\) is singular or badly scaled, and the vector \(x\) is an exact or approximate solution to \(A x=0\).
cnorm If normin = ' N ', cnorm is an output argument and cnorm( \(j\) ) returns the 1-norm of the off-diagonal part of the \(j\)-th column of \(A\).
```


p?latrz

Reduces an upper trapezoidal matrix to upper triangular form by means of orthogonal/unitary transformations.

Syntax

```
call pslatrz (m, n, l, a, ia, ja, desca, tau, work)
call pdlatrz (m, n, l, a, ia, ja, desca, tau, work)
call pclatrz (m, n, l, a, ia, ja, desca, tau, work)
call pzlatrz (m, n, l, a, ia, ja, desca, tau, work)
```


Description

This routine reduces the $m-b y-n(m \leq n)$ real/complex upper trapezoidal matrix $\operatorname{sub}(A)=[A(i a: i a+m-1, j a: j a+m-1) A(i a: i a+m-1, j a+n-1: j a+n-1)]$ to upper triangular form by means of orthogonal/unitary transformations.

The upper trapezoidal matrix $\operatorname{sub}(A)$ is factored as
$\operatorname{sub}(A)=\left(\begin{array}{ll}R & 0\end{array}\right) * Z$,
where Z is an n-by- n orthogonal/unitary matrix and R is an m-by- m upper triangular matrix.

Input Parameters

$m \quad$ (global) INTEGER.
The number of rows to be operated on, that is, the number of rows of the distributed submatrix $\operatorname{sub}(A) . m \geq 0$.
n (global) INTEGER.
The number of columns to be operated on, that is, the number of columns of the distributed submatrix $\operatorname{sub}(A) . n \geq 0$.
(global) INTEGER.
The number of columns of the distributed submatrix $\operatorname{sub}(A)$ containing the meaningful part of the Householder reflectors. $1>0$.
(local)
REAL for pslatrz
DOUBLE PRECISION for pdlatrz
COMPLEX for pclatrz
COMPLEX*16 for pzlatrz.
Pointer into the local memory to an array
of DIMENSION (1ld_a, LOCc (ja+n-1)).
On entry, the local pieces of the $m-b y-n$ distributed matrix $\operatorname{sub}(A)$, which is to be factored.
ia (global) INTEGER.
The row index in the global array A indicating the first row of $\operatorname{sub}(A)$.
ja (global) INTEGER.
The column index in the global array A indicating the first column of $\operatorname{sub}(A)$.
desca (global and local) INTEGER array of DIMENSION (dlen_).
The array descriptor for the distributed matrix A.
work (local)
REAL for pslatrz
DOUBLE PRECISION for pdlatrz
COMPLEX for pclatrz
COMPLEX*16 for pzlatrz.
Workspace array, DIMENSION (lwork).
lwork \geq nq0 $+\max (1, m p 0)$, where

```
iroff = mod(ia-1, mb_a ), icoff=mod( ja-1, nb_a),
iarow=indxg2p( ia, mb_a, myrow, rsrc_a, nprow ),
iacol = indxg2p( ja, nb_a, mycol, csrc_a, npcol ),
mp0 = numroc(m+iroff, mb_a, myrow, iarow, nprow ),
nq0 = numroc(n+icoff, nb_a, mycol, iacol, npcol ),
```

numroc, indxg2p, and numroc are ScaLAPACK tool functions;
myrow, mycol, nprow, and npcol can be determined by calling the subroutine blacs_gridinfo.

Output Parameters

a
On exit, the leading m-by- m upper triangular part of $\operatorname{sub}(A)$ contains the upper triangular matrix R, and elements $n-l+1$ to n of the first m rows of $\operatorname{sub}(A)$, with the array tau, represent the orthogonal/unitary matrix Z as a product of m elementary reflectors.
tau (local) REAL for pslatrz
DOUBLE PRECISION for pdlatrz
COMPLEX for pclatrz
COMPLEX*16 for pzlatrz.
Array, DIMENSION $(\operatorname{LOCr}(j a+m-1))$. This array contains the scalar factors of the elementary reflectors. tau is tied to the distributed matrix A.

Application Notes

The factorization is obtained by Householder's method. The k-th transformation matrix, $Z(k)$, which is used (or, in case of complex routines, whose conjugate transpose is used) to introduce zeros into the $(m-k+1)$-th row of $\operatorname{sub}(A)$, is given in the form

$$
Z(k)=\left[\begin{array}{cc}
I & 0 \\
0 & T(k)
\end{array}\right]
$$

where

$$
T(k)=I-t a u^{*} u(k)^{*} u(k)^{\prime}, \quad u(k)=\left[\begin{array}{c}
1 \\
0 \\
z(k)
\end{array}\right]
$$

tau is a scalar and $z(k)$ is an $(n-m)$-element vector. tau and $z(k)$ are chosen to annihilate the elements of the k-th $\operatorname{row} \operatorname{of} \operatorname{sub}(A)$. The scalar tau is returned in the k-th element of tau and the vector $u(k)$ in the k-th row of $\operatorname{sub}(A)$, such that the elements of $z(k)$ are in $a(k, m+1), \ldots, a(k, n)$. The elements of R are returned in the upper triangular part of $\operatorname{sub}(A)$.
Z is given by

$$
Z=Z(1) Z(2) \ldots Z(\mathrm{~m}) .
$$

p?lauu2

Computes the product $U U^{H}$ or $L^{H} L$, where U and L are
upper or lower triangular matrices (local unblocked
algorithm).

Syntax

```
call pslauu2 (uplo, n, a, ia, ja, desca)
call pdlauu2 (uplo, n, a, ia, ja, desca)
call pclauu2 (uplo, n, a, ia, ja, desca)
call pzlauu2 (uplo, n, a, ia, ja, desca)
```


Description

This routine computes the product $U U^{\prime}$ or $L^{\prime} L$, where the triangular factor U or L is stored in the upper or lower triangular part of the distributed matrix
$\operatorname{sub}(A)=A(i a: i a+n-1, j a: j a+n-1)$.
If uplo = ' U ' or ' u ', then the upper triangle of the result is stored, overwriting the factor U in $\operatorname{sub}(A)$.
If uplo = ' L ' or ' 1 ', then the lower triangle of the result is stored, overwriting the factor L in $\operatorname{sub}(A)$.

This is the unblocked form of the algorithm, calling BLAS Level 2 Routines. No communication is performed by this routine, the matrix to operate on should be strictly local to one process.

Input Parameters

```
uplo (global) CHARACTER*1.
    Specifies whether the triangular factor stored in the matrix }\operatorname{sub}(A)\mathrm{ is upper or
    lower triangular:
    = 'v': Upper triangular
    = 'L':Lower triangular.
    (global) INTEGER.
    The number of rows and columns to be operated on, that is, the order of the
    triangular factor U or L. n \geq0.
    (local) REAL for pslauu2
    DOUBLE PRECISION for pdlauu2
    COMPLEX for pclauu2
    COMPLEX*16 for pzlauu2.
    Pointer into the local memory to an array of DIMENSION
    (lld_a,LOCc(ja+n-1). On entry, the local pieces of the triangular factor U or
    L.
ia (global) INTEGER.
    The row index in the global array }A\mathrm{ indicating the first row of sub(A).
ja (global) INTEGER.
    The column index in the global array }A\mathrm{ indicating the first column of sub (A).
desca (global and local) INTEGER array of DIMENSION (dlen_).
    The array descriptor for the distributed matrix }A\mathrm{ .
```


Output Parameters

(local) On exit, if uplo = 'u', the upper triangle of the distributed matrix $\operatorname{sub}(A)$ is overwritten with the upper triangle of the product $U U$ '; if uplo = ' L ', the lower triangle of $\operatorname{sub}(A)$ is overwritten with the lower triangle of the product $L^{\prime} L$.

p?lauum

Computes the product $U U^{H}$ or $L^{H} L$, where U and L are upper or lower triangular matrices.

Syntax

```
call pslauum (uplo, n, a, ia, ja, desca)
call pdlauum (uplo, n, a, ia, ja, desca)
call pclauum (uplo, n, a, ia, ja, desca)
call pzlauum (uplo, n, a, ia, ja, desca)
```


Description

This routine computes the product $U U^{\prime}$ or $L^{\prime} L$, where the triangular factor U or L is stored in the upper or lower triangular part of the matrix $\operatorname{sub}(A)=A(i a: i a+n-1, j a: j a+n-1)$.

If uplo = 'v' or 'u', then the upper triangle of the result is stored, overwriting the factor U in $\operatorname{sub}(A)$.
If uplo = 'L' or ' 1 ', then the lower triangle of the result is stored, overwriting the factor L in $\operatorname{sub}(A)$.

This is the blocked form of the algorithm, calling Level 3 PBLAS.

Input Parameters

uplo (global) CHARACTER*1.
Specifies whether the triangular factor stored in the matrix $\operatorname{sub}(A)$ is upper or lower triangular:
= ' u ': Upper triangular
= 'L': Lower triangular.
n (global) INTEGER.
The number of rows and columns to be operated on, that is, the order of the triangular factor U or L. $n \geq 0$.
a
(local) REAL for pslauum
DOUBLE PRECISION for pdlaum
COMPLEX for pclauum
COMPLEX*16 for pzlauum.

Pointer into the local memory to an array of DIMENSION
(lld_a, $\operatorname{LOCc}(j a+n-1)$. On entry, the local pieces of the triangular factor U or L.
(global) INTEGER.
The row index in the global array A indicating the first row of $\operatorname{sub}(A)$.
(global) INTEGER.
The column index in the global array A indicating the first column of $\operatorname{sub}(A)$.
desca (global and local) INTEGER array of DIMENSION (dlen_).
The array descriptor for the distributed matrix A.

Output Parameters

a
(local) On exit, if uplo = ' U ', the upper triangle of the distributed matrix $\operatorname{sub}(A)$ is overwritten with the upper triangle of the product $U U$ '; if uplo = ' L ', the lower triangle of $\operatorname{sub}(A)$ is overwritten with the lower triangle of the product $L^{\prime} L$.

p?lawil

Forms the Wilkinson transform.

Syntax

```
call pslawil (ii, jj, m, a, desca, h44, h33, h43h34, v)
```

call pdlawil (ii, jj, m, a, desca, h44, h33, h43h34, v)

Description

This routine gets the transform given by $h 44, h 33$, and $h 43 h 34$ into v starting at row m.

Input Parameters

ii (global) INTEGER.
Row owner of $h(m+2, m+2)$.
jj (global) INTEGER.
Column owner of $h(m+2, m+2)$.
(global) INTEGER.
On entry, the location from where the transform starts (row m). Unchanged on exit.

```
a
    (global)
        REAL for pslawil
        DOUBLE PRECISION for pdlawil
        Array, DIMENSION (desca(lld_),*). On entry, the Hessenberg matrix. Unchanged
        on exit.
desca (global and local) INTEGER
        Array of DIMENSION (dlen_). The array descriptor for the distributed matrix }A\mathrm{ .
        Unchanged on exit.
h44,
h33,
h43h34 (global)
    REAL for pslawil
    DOUBLE PRECISION for pdlawil
    These three values are for the double shift }QR\mathrm{ iteration. Unchanged on exit.
```


Output Parameters

```
v (global)
```

v (global)
REAL for pslawil
REAL for pslawil
DOUBLE PRECISION for pdlawil
DOUBLE PRECISION for pdlawil
Array of size 3 that contains the transform on output.

```
    Array of size 3 that contains the transform on output.
```


p?org21/p?ung21

Generates all or part of the orthogonal/unitary matrix

Q from a QL factorization determined by p?geqlf (unblocked algorithm).

Syntax

```
call psorg2l (m, n, k, a, ia, ja, desca, tau, work, lwork, info)
call pdorg2l (m, n, k, a, ia, ja, desca, tau, work, lwork, info)
call pcung2l (m, n, k, a, ia, ja, desca, tau, work, lwork, info)
call pzung2l (m, n, k, a, ia, ja, desca, tau, work, lwork, info)
```


Description

The routine p?org2l/p?ung2l generates an m-by-n real/complex distributed matrix Q denoting $A(i a: i a+m-1, j a: j a+n-1)$ with orthonormal columns, which is defined as the last n columns of a product of k elementary reflectors of order m :
$Q=H(k) \ldots H(2) H(1)$ as returned by p?geqle.

Input Parameters

m (global) INTEGER.
The number of rows to be operated on, that is, the number of rows of the distributed submatrix $Q . m \geq 0$.
(global) INTEGER.
The number of columns to be operated on, that is, the number of columns of the distributed submatrix $Q . m \geq n \geq 0$.
(global) INTEGER.
The number of elementary reflectors whose product defines the matrix Q. $n \geq k \geq 0$.

REAL for psorg2l
DOUBLE PRECISION for pdorg2l
COMPLEX for pcung2l
COMPLEX*16 for pzung2l.
Pointer into the local memory to an array, DIMENSION (lld_a, LOCc(ja+n-1).
On entry, the j-th column must contain the vector that defines the elementary reflector $H(j), j a+n-k \leq j \leq j a+n-k$, as returned by p?geqle in the k columns of its distributed matrix argument $A(i a: *, j a+n-k: j a+n-1)$.
ia (global) INTEGER. The row index in the global array A indicating the first row of $\operatorname{sub}(A)$.
(global) INTEGER.
The column index in the global array A indicating the first column of $\operatorname{sub}(A)$.
desca (global and local) INTEGER array of DIMENSION (dlen_).
The array descriptor for the distributed matrix A.
tau
(local)
REAL for psorg2l
DOUBLE PRECISION for pdorg21
COMPLEX for pcung2l

COMPLEX*16 for pzung2l.
Array, DIMENSION LOCc (ja+n-1).
This array contains the scalar factor $\operatorname{tau}(j)$ of the elementary reflector $H(j)$, as returned by p?geqlf.
work (local)
REAL for psorg2l
DOUBLE PRECISION for pdorg2l
COMPLEX for pcung2l
COMPLEX*16 for pzung2l.
Workspace array, DIMENSION (1 work).
lwork (local or global) INTEGER.
The dimension of the array work.
1 work is local input and must be at least 1 work \geq mpa0 $+\max (1$, nqa0 $)$,
where iroffa $=\bmod \left(i a-1, m b \_a\right)$, icoffa $=\bmod \left(j a-1, n b \_a\right)$,
iarow $=$ indxg2p(ia, mb_a, myrow, rsrc_a, nprow),
iacol = indxg2p(ja, nb_a, mycol, csrc_a, npcol),
mpa0 $=$ numroc (m+iroffa, mb_a, myrow, iarow, nprow),
nqa0 $=$ numroc (n+icoffa, nb_a, mycol, iacol, npcol).
indxg2p and numroc are ScaLAPACK tool functions;
myrow, mycol, nprow, and npcol can be determined by calling the subroutine blacs_gridinfo.

If 1 work $=-1$, then 1 work is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

Output Parameters

a
work
info

On exit, this array contains the local pieces of the $m-b y-n$ distributed matrix Q.
On exit, work(1) returns the minimal and optimal lwork.
(local) INTEGER.
$=0$: successful exit
<0 : if the i-th argument is an array and the j-entry had an illegal value, then info $=-(i * 100+j)$,
if the i-th argument is a scalar and had an illegal value, then info $=-i$.

p?org2r/p?ung2r

Generates all or part of the orthogonal/unitary matrix Q from a QR factorization determined by p?geqrf (unblocked algorithm).

Syntax

```
call psorg2r (m, n, k, a, ia, ja, desca, tau, work, lwork, info)
call pdorg2r (m, n, k, a, ia, ja, desca, tau, work, lwork, info)
call pcung2r (m, n, k, a, ia, ja, desca, tau, work, lwork, info)
call pzung2r (m, n, k, a, ia, ja, desca, tau, work, lwork, info)
```


Description

The routine p ?org $2 \mathrm{r} / \mathrm{p}$?ung 2 r generates an m-by- n real/complex matrix Q denoting $A(i a: i a+m-1, j a: j a+n-1)$ with orthonormal columns, which is defined as the first n columns of a product of k elementary reflectors of order m

$$
Q=H(1) H(2) \ldots H(k)
$$

as returned by p?geqre.

Input Parameters

$m \quad$ (global) INTEGER.
The number of rows to be operated on, that is, the number of rows of the distributed submatrix Q. $m \geq 0$.
n
k (global) INTEGER.
The number of elementary reflectors whose product defines the matrix Q. $n \geq k \geq 0$.
a
REAL for psorg2r
DOUBLE PRECISION for pdorg2r
COMPLEX for pcung2r
COMPLEX*16 for pzung2r.
Pointer into the local memory to an array,

DIMENSION (1ld_a, $\operatorname{LOCc}(j a+n-1)$.
On entry, the j-th column must contain the vector that defines the elementary reflector $H(j)$, ja $\leq j \leq j a+k-1$, as returned by p? geqrf in the k columns of its distributed matrix argument $A(i a: *, j a: j a+k-1)$.

ia	(global) INTEGER.
	The row index in the global array A indicating the first row of $\operatorname{sub}(A)$.
ja	(global) INTEGER.
	The column index in the global array A indicating the first column of $\operatorname{sub}(A)$.
desca	(global and local) INTEGER array of DIMENSION (dlen_).
	The array descriptor for the distributed matrix A.
tau	(local)
	REAL for psorg2r
	DOUBLE PRECISION for pdorg2r
	COMPLEX for pcung2r
	COMPLEX*16 for pzung2r.
	Array, DIMENSION $\operatorname{LOCc}(j a+k-1)$.
	This array contains the scalar factor $t a u(j)$ of the elementary reflector $H(j)$, as returned by p?geqrf. This array is tied to the distributed matrix A.
work	(local)
	REAL for psorg2r
	DOUBLE PRECISION for pdorg2r
	COMPLEX for pcung2r
	COMPLEX*16 for pzung2r.
	Workspace array, DIMENSION (1work).
Iwork	(local or global) INTEGER.
	The dimension of the array work.
	```lwork is local input and must be at least lwork\geqmpa0 + max ( 1, nqa0 ), where iroffa= mod(ia-1, mb_a),icoffa= mod( ja-1, nb_a), iarow=indxg2p(ia, mb_a, myrow, rsrc_a, nprow), iacol=indxg2p(ja, nb_a, mycol, csrc_a, npcol), mpa0 = numroc(m+iroffa, mb_a, myrow, iarow, nprow), nqa0 = numroc(n+icoffa, nb_a, mycol, iacol, npcol).```
	indxg2p and numroc are ScaLAPACK tool functions; myrow, mycol, nprow, and npcol can be determined by calling the subroutine blacs gridinfo.

If 1 work $=-1$, then 1 work is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

## Output Parameters

work
info

On exit, this array contains the local pieces of the $m$-by-n distributed matrix $Q$.
On exit, work(1) returns the minimal and optimal lwork.
(local) INTEGER.
= 0: successful exit
$<0$ : if the $i$-th argument is an array and the $j$-entry had an illegal value, then info $=-(i * 100+j)$, if the $i$-th argument is a scalar and had an illegal value, then info $=-i$.

## p?orgl2/p?ungl2

Generates all or part of the orthogonal/unitary matrix
$Q$ from an LQ factorization determined by p?gelqf (unblocked algorithm).

## Syntax

```
call psorgl2 (m, n, k, a, ia, ja, desca, tau, work, lwork, info)
call pdorgl2 (m, n, k, a, ia, ja, desca, tau, work, lwork, info)
call pcungl2 (m, n, k, a, ia, ja, desca, tau, work, lwork, info)
call pzungl2 (m, n, k, a, ia, ja, desca, tau, work, lwork, info)
```


## Description

The routine p?orgl2/p?ungl2 generates a $m$-by-n real/complex matrix $Q$ denoting $A(i a: i a+m-1, j a: j a+n-1)$ with orthonormal rows, which is defined as the first $m$ rows of a product of $k$ elementary reflectors of order $n$
$Q=H(k) \ldots H(2) H(1)$ (for real flavors),
$Q=H(k) ' \ldots H(2) ' H(1) '$ (for complex flavors)
as returned by p?gelqf.

## Input Parameters

```
m
(global) Integer.
 The number of rows to be operated on, that is, the number of rows of the
 distributed submatrix Q.m\geq0.
n
(global) INTEGER.
The number of columns to be operated on, that is, the number of columns of the distributed submatrix \(Q . n \geq m \geq 0\).
(global) INTEGER.
The number of elementary reflectors whose product defines the matrix \(Q\).
\(m \geq k \geq 0\).
REAL for psorgl2
DOUBLE PRECISION for pdorgl2
COMPLEX for pcungl2
COMPLEX*16 for pzungl2.
Pointer into the local memory to an array,
DIMENSION (lld_a, LOCc(ja+n-1).
On entry, the \(i\)-th row must contain the vector that defines the elementary reflector \(H(i)\), ia \(\leq i \leq i a+k-1\), as returned by p?gelqf in the \(k\) rows of its distributed matrix argument \(A(i a: i a+k-1, j a: *)\).
(global) Integer.
The row index in the global array \(A\) indicating the first row of \(\operatorname{sub}(A)\).
(global) INTEGER.
The column index in the global array \(A\) indicating the first column of \(\operatorname{sub}(A)\).
(global and local) INTEGER array of DIMENSION (dlen_).
The array descriptor for the distributed matrix \(A\).
(local)
REAL for psorgl2
DOUBLE PRECISION for pdorgl2
COMPLEX for pcungl2
COMPLEX*16 for pzungl2.
Array, DIMENSION \(\operatorname{LOCr}(j a+k-1)\).
This array contains the scalar factors \(\operatorname{tau}(i)\) of the elementary reflectors \(H(i)\), as returned by p?gelqf. This array is tied to the distributed matrix \(A\).
(local)
REAL for psorgl2
DOUBLE PRECISION for pdorgl2
```

COMPLEX for pcungl2
COMPLEX*16 for pzungl2.
Workspace array, DIMENSION (lwork).
I work (local or global) INTEGER.
The dimension of the array work.
lwork is local input and must be at least 1 work $\geq$ nqa0 $0+\max (1, m p a 0)$,
where iroffa $=\bmod \left(i a-1, m b \_a\right)$, icoffa $=\bmod \left(j a-1, n b \_a\right)$,
iarow $=$ indxg2p (ia, mb_a, myrow, rsrc_a, nprow),
iacol = indxg2p( ja, nb_a, mycol, csrc_a, npcol),
mpa0 $=$ numroc (m+iroffa, mb_a, myrow, iarow, nprow),
nqa0 $=$ numroc (n+icoffa, nb_a, mycol, iacol, npcol).
indxg2p and numroc are ScaLAPACK tool functions;
myrow, mycol, nprow and npcol can be determined by calling the subroutine blacs_gridinfo.

If 1 work $=-1$, then 1 work is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

## Output Parameters

a
work
info (local) INTEGER.
= 0: successful exit
$<0$ : if the $i$-th argument is an array and the $j$-entry had an illegal value, then info $=-(i * 100+j)$,
if the $i$-th argument is a scalar and had an illegal value, then info $=-i$.

## p?orgr2/p?ungr2

Generates all or part of the orthogonal/unitary matrix $Q$ from an RQ factorization determined by p?gerqf (unblocked algorithm).

## Syntax

```
call psorgr2 (m, n, k, a, ia, ja, desca, tau, work, lwork, info)
call pdorgr2 (m, n, k, a, ia, ja, desca, tau, work, lwork, info)
call pcungr2 (m, n, k, a, ia, ja, desca, tau, work, lwork, info)
call pzungr2 (m, n, k, a, ia, ja, desca, tau, work, lwork, info)
```


## Description

The routine p?orgr2/p?ungr2 generates an $m$-by- $n$ real/complex matrix $Q$ denoting $A(i a: i a+m-1, j a: j a+n-1)$ with orthonormal rows, which is defined as the last $m$ rows of a product of $k$ elementary reflectors of order $n$
$Q=H(1) H(2) \ldots H(k)$ (for real flavors)
$Q=H(1) ' H(2) ' \ldots H(k) '$ (for complex flavors)
as returned by p?gerqf.

## Input Parameters

m
n
k
a
(global) Integer.
The number of rows to be operated on, that is, the number of rows of the distributed submatrix $Q$. $m \geq 0$.
(global) INTEGER.
The number of columns to be operated on, that is, the number of columns of the distributed submatrix $Q . n \geq m \geq 0$.
(global) INTEGER.
The number of elementary reflectors whose product defines the matrix $Q$. $m \geq k \geq 0$.

REAL for psorgr2
DOUBLE PRECISION for pdorgr2
COMPLEX for pcungr2
COMPLEX*16 for pzungr2.

ia	(global) INTEGER.
	The row index in the global array $A$ indicating the first row of $\operatorname{sub}(A)$.
ja	(global) INTEGER.
	The column index in the global array $A$ indicating the first column of $\operatorname{sub}(A)$.
desca	(global and local) INTEGER array of DIMENSION (dlen_).
	The array descriptor for the distributed matrix $A$.
tau	(local)
	REAL for psorgl2
	DOUBLE PRECISION for pdorgl2
	COMPLEX for pcungl2
	COMPLEX*16 for pzungl2.
	Array, DIMENSION $L O C r(j a+m-1)$.
	This array contains the scalar factors $\operatorname{tau}(i)$ of the elementary reflectors $H(i)$, as returned by p?gerqf. This array is tied to the distributed matrix $A$.
work	(local)
	REAL for psorgr2
	DOUBLE PRECISION for pdorgr2
	COMPLEX for pcungr2
	COMPLEX*16 for pzungr2.
	Workspace array, DIMENSION (lwork).
Iwork	(local or global) INTEGER.
	The dimension of the array work.
	```Iwork is local input and must be at least lwork \geqnqa0 + max( 1, mpa0 ), where iroffa = mod( ia-1, mb_a), icoffa= mod(ja-1, nb_a), iarow=indxg2p(ia, mb_a, myrow, rsrc_a, nprow), iacol = indxg2p( ja, nb_a, mycol, csrc_a, npcol), mpa0 = numroc(m+iroffa, mb_a, myrow, iarow, nprow), nqa0 = numroc(n+icoffa, nb_a, mycol, iacol, npcol).```
	indxg2p and numroc are ScaLAPACK tool functions; myrow, mycol, nprow and npcol can be determined by calling the subroutine blacs gridinfo.

If 1 work $=-1$, then 1 work is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

Output Parameters

On exit, this array contains the local pieces of the m-by-n distributed matrix Q.
work
On exit, work(1) returns the minimal and optimal lwork.
info
(local) INTEGER.
$=0$: successful exit
<0 : if the i-th argument is an array and the j-entry had an illegal value, then info $=-(i * 100+j)$,
if the i-th argument is a scalar and had an illegal value, then info $=-i$.

p?orm21/p?unm2|

Multiplies a general matrix by the orthogonal/unitary matrix from a QL factorization determined by p?geqlf (unblocked algorithm).

Syntax

```
call psorm2l (side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc,
```

 work, lwork, info)
 call pdorm2l (side, trans, m, $n, k, a, i a, j a, ~ d e s c a, ~ t a u, ~ c, i c, j c, ~ d e s c c$,
work, lwork, info)
call pcunm2l (side, trans, $m, n, k, a, i a, j a, ~ d e s c a, ~ t a u, ~ c, i c, j c, ~ d e s c c$,
work, lwork, info)
call pzunm2l (side, trans, $m, n, k, a, i a, j a, ~ d e s c a, ~ t a u, ~ c, i c, j c, ~ d e s c c$,
work, lwork, info)

Description

The routine p?orm2l/p?unm2l overwrites the general real/complex m-by-n distributed matrix $\operatorname{sub}(C)=C(i c: i c+m-1, j c: j c+n-1)$ with

	side $=$ ' $\mathrm{L} '$	side $=$ ' R^{\prime}
trans $=$ ' N '	$Q^{*} \operatorname{sub}(C)$	$\operatorname{sub}(C)^{*} Q$
trans $=$ ' T ' (for real flavors)	$Q^{T} * \operatorname{sub}(C)$	$\operatorname{sub}(C)^{*} Q^{T}$
trans $=$ 'C' (for complex flavors)	$Q^{H} \operatorname{sub}(C)$	$\operatorname{sub}(C)^{*} Q^{H}$

where Q is a real orthogonal or complex unitary matrix defined as the product of k elementary reflectors

$$
Q=H(k) \ldots H(2) H(1)
$$

as returned by \underline{p} ?geqle $\cdot Q$ is of order m if $s i d e=$ 'L' and of order n if side $=$ 'R'.

Input Parameters

side (global) CHARACTER.
$=$ 'L': apply Q or Q^{T} (for real flavors) $/ Q^{H}$ (for complex flavors) from the left,
$=$ 'R': apply Q or Q^{T} (for real flavors) $/ Q^{H}$ (for complex flavors) from the right.
trans (global) CHARACTER.
= 'N': apply Q (No transpose)
$=$ ' T ': apply Q^{T} (Transpose, for real flavors)
= 'c': apply Q^{H} (Conjugate transpose, for complex flavors)
m
n
k
a
(global) INTEGER.
The number of rows to be operated on, that is, the number of rows of the distributed submatrix $\operatorname{sub}(C) . m \geq 0$.
(global) INTEGER.
The number of columns to be operated on, that is, the number of columns of the distributed submatrix $\operatorname{sub}(C) . n \geq 0$.
k (global) INTEGER.
The number of elementary reflectors whose product defines the matrix Q.
If side $=$ 'L', $m \geq k \geq 0$;
if side $=$ ' R ', $n \geq k \geq 0$.
(local)
REAL for psorm2l
DOUBLE PRECISION for pdorm2l

```
        COMPLEX for pcunm2l
        COMPLEX*16 for pzunm2l.
        Pointer into the local memory to an array, DIMENSION (lld_a, LOCc(ja+k-1).
        On entry, the j-th row must contain the vector that defines the elementary reflector
        H(j), ja }\leqj\leqja+k-1, as returned by p?geqlf in the k columns of it
        distributed matrix argument }A(ia:*,ja:ja+k-1). The argument
        A(ia:*, ja:ja+k-1) is modified by the routine but restored on exit.
        If side = 'L', lld_a \geq max(1, LOCr(ia+m-1)),
        If side = 'R', lld_a \geq max(1,LOCr(ia+n-1)).
    ia (global) INTEGER.
        The row index in the global array }A\mathrm{ indicating the first row of }\operatorname{sub}(A)\mathrm{ .
        ja (global) INTEGER.
        The column index in the global array }A\mathrm{ indicating the first column of sub(A).
    desca (global and local) INTEGER array of DIMENSION (dlen_).
        The array descriptor for the distributed matrix }A\mathrm{ .
    tau (local)
        REAL for psorm2l
        DOUBLE PRECISION for pdorm2l
        COMPLEX for pcunm2l
        COMPLEX*16 for pzunm2l.
        Array, DIMENSION LOCc(ja+n-1). This array contains the scalar factor tau(j) of
        the elementary reflector }H(j)\mathrm{ , as returned by p?geqlf. This array is tied to the
        distributed matrix }A\mathrm{ .
    C (local)
        REAL for psorm2l
        DOUBLE PRECISION for pdorm2l
        COMPLEX for pcunm2l
        COMPLEX*16 for pzunm2l.
        Pointer into the local memory to an array, DIMENSION (lld_c, LOCc(jc+n-1)).On
        entry, the local pieces of the distributed matrix sub (C).
    ic (global) INTEGER.
    The row index in the global array C indicating the first row of sub(C).
    (global) INTEGER.
    The column index in the global array C indicating the first column of sub(C).
    descc (global and local) INTEGER array of DIMENSION (dlen_).
            The array descriptor for the distributed matrix C.
```

work (local)
REAL for psorm2l
DOUBLE PRECISION for pdorm2l
COMPLEX for pcunm21
COMPLEX*16 for pzunm2l.
Workspace array, DIMENSION (lwork).
On exit, work(1) returns the minimal and optimal lwork.
lwork (local or global) INTEGER.
The dimension of the array work.
l work is local input and must be at least

```
if side='L', lwork \geq mpc0 + max( 1, nqc0 ),
if side= 'R', lwork \geq nqc0 + max( max( 1, mpc0 ), numroc
(numroc(n+icoffc, nb_a, 0, 0, npcol), nb_a, 0, 0, lcmq)),
```

where $1 \mathrm{cmq}=1 \mathrm{~cm} / \mathrm{npcol}$ with $\operatorname{lcm}=\mathrm{iclm}($ nprow, npcol $)$,
iroffc $=\bmod (i c-1, \operatorname{mb} c), i c o f f c=\bmod \left(j c-1, n b \_c\right)$,
icrow $=$ indxg2p(ic, mb_c, myrow, rsrc_c, nprow),
iccol $=$ indxg2p(jc, nb_c, mycol, csrc_c, npcol),
MqCO = numroc (m+icoffc, nb_c, mycol, icrow, nprow),
NpcO = numroc (n+iroffc, mb_c, myrow, iccol, npcol),
ilcm, indxg2p and numroc are ScaLAPACK tool functions;
myrow, mycol, nprow, and npcol can be determined by calling the subroutine blacs_gridinfo.

If 1 work $=-1$, then 1 work is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

Output Parameters

c On exit, $\operatorname{sub}(C)$ is overwritten by $Q^{*} \operatorname{sub}(C)$ or $Q^{\prime} * \operatorname{sub}(C)$ or $\operatorname{sub}(C) * Q^{\prime}$ or $\operatorname{sub}(C) * Q$.
work On exit, work(1) returns the minimal and optimal lwork.
info (local) INTEGER.
$=0$: successful exit
<0 : if the i-th argument is an array and the j-entry had an illegal value, then info $=-(i * 100+j)$,
if the i-th argument is a scalar and had an illegal value, then info $=-i$.

NOTE. The distributed submatrices $A(i a: *, j a: *)$ and $C\left(i_{c}: i_{c+m-1, j c: j c+n-1)}\right.$ must verify some alignment properties, namely the following expressions should be true:
If side = 'L', (mb_a.eq.mb_c .AND. iroffa.eq.iroffc .AND. iarow.eq.icrow) If side = 'R', (mb_a.eq.nb_c .AND. iroffa.eq.iroffc).

p?orm2r/p?unm2r

Multiplies a general matrix by the orthogonal/unitary matrix from a $Q R$ factorization determined by p?geqr f (unblocked algorithm).

Syntax

```
call psorm2r (side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc,
```

 work, lwork, info)
 call pdorm2r (side, trans, m, $n, k, a, i a, j a, ~ d e s c a, ~ t a u, ~ c, i c, j c, ~ d e s c c$,
work, lwork, info)
call pcunm2r (side, trans, $m, n, k, a, i a, j a, ~ d e s c a, ~ t a u, ~ c, i c, j c, ~ d e s c c$,
work, lwork, info)
call pzunm2r (side, trans, $m, n, k, a, i a, j a, ~ d e s c a, ~ t a u, ~ c, i c, j c, ~ d e s c c$,
work, lwork, info)

Description

The routine p?orm $2 r / p$?unm $2 r$ overwrites the general real/complex m-by- n distributed matrix $\operatorname{sub}(C)=C(i c: i c+m-1, j c: j c+n-1)$ with

	side = 'L'	side $=$ ' R '
trans $=$ ' N '	$Q^{*} \mathrm{sub}(C)$	$\operatorname{sub}(C) * Q$
trans $=$ ' T ' (for real flavors)	$Q^{T *} \operatorname{sub}(C)$	$\operatorname{sub}(C) * Q^{T}$
trans $=$ 'C' (for complex flavors)	$Q^{H} * \operatorname{sub}(C)$	$\operatorname{sub}(C) * Q^{H}$

where Q is a real orthogonal or complex unitary matrix defined as the product of k elementary reflectors

$$
Q=H(k) \ldots H(2) H(1)
$$

as returned by p?geqre . Q is of order m if side $=$ 'L' and of order n if side = 'R'.

Input Parameters

side (global) CHARACTER.
$=$ 'L': apply Q or Q^{T} (for real flavors) $/ Q^{H}$ (for complex flavors) from the left,
$=$ 'R': apply Q or Q^{T} (for real flavors) $/ Q^{H}$ (for complex flavors) from the right.
trans (global) CHARACTER.
= 'N': apply Q (No transpose)
$=$ ' T ': apply Q^{T} (Transpose, for real flavors)
$=$ 'c': apply Q^{H} (Conjugate transpose, for complex flavors)
(global) INTEGER.
The number of rows to be operated on, that is, the number of rows of the distributed submatrix $\operatorname{sub}(C) . m \geq 0$.
(global) INTEGER.
The number of columns to be operated on, that is, the number of columns of the distributed submatrix $\operatorname{sub}(C) . n \geq 0$.
(global) INTEGER.
The number of elementary reflectors whose product defines the matrix Q.
If side $=$ 'L', $m \geq k \geq 0$;
if side $=$ ' R ', $n \geq k \geq 0$.
(local)
REAL for psorm2r
DOUBLE PRECISION for pdorm2r
COMPLEX for pcunm2r
COMPLEX*16 for pzunm2r.
Pointer into the local memory to an array, DIMENSION (IId_a, LOCc $(j a+k-1)$.
On entry, the j-th column must contain the vector that defines the elementary reflector $H(j)$, ja $\leq j \leq j a+k-1$, as returned by p?geqrf in the k columns of its distributed matrix argument $A(i a: *, j a: j a+k-1)$. The argument $A(i a: *, j a: j a+k-1)$ is modified by the routine but restored on exit.
If side $=$ 'L', Ild_a $\geq \max (1, \operatorname{LOCr}(i a+m-1))$,
If side $=$ 'R', Ild_a $\geq \max (1, L O C r(i a+n-1))$.

ia	(global) INTEGER.
	The row index in the global array A indicating the first row of $\operatorname{sub}(A)$.
ja	(global) INTEGER.
	The column index in the global array A indicating the first column of $\operatorname{sub}(A)$.
desca	(global and local) INTEGER array of DIMENSION (dlen_).
	The array descriptor for the distributed matrix A.
tau	(local)
	REAL for psorm2r
	DOUBLE PRECISION for pdorm2r
	COMPLEX for pcunm2r
	COMPLEX*16 for pzunm2r.
	Array, DIMENSION $\operatorname{LOCc}(j a+k-1)$. This array contains the scalar factors $\operatorname{tau}(j)$ of the elementary reflector $H(j)$, as returned by p?geqrf. This array is tied to the distributed matrix A.
C	(local)
	REAL for psorm2r
	DOUBLE PRECISION for pdorm2r
	COMPLEX for pcunm2r
	COMPLEX*16 for pzunm2r.
	Pointer into the local memory to an array, DIMENSION (1ld_c, LOCc(jc+n-1)). On entry, the local pieces of the distributed matrix sub (C).
ic	(global) INTEGER.
	The row index in the global array C indicating the first row of $\operatorname{sub}(C)$.
jc	(global) INTEGER.
	The column index in the global array C indicating the first column of $\operatorname{sub}(C)$.
descc	(global and local) INTEGER array of DIMENSION (dlen_).
	The array descriptor for the distributed matrix C.
work	(local)
	REAL for psorm2r
	DOUBLE PRECISION for pdorm2r
	COMPLEX for pcunm2r
	COMPLEX*16 for pzunm2r.
	Workspace array, DIMENSION (lwork).
Iwork	(local or global) INTEGER.
	The dimension of the array work.
	l work is local input and must be at least

```
if side='L', lwork \geq mpc0 + max( 1, nqc0 ),
if side='R', lwork \geq nqc0 + max( max( 1, mpc0 ), numroc
(numroc(n+icoffc, nb_a, 0, 0, npcol), nb_a, 0, 0, lcmq)),
```

where $1 \mathrm{cmq}=1 \mathrm{~cm} / \mathrm{npcol}$ with $1 \mathrm{~cm}=\mathrm{iclm}($ nprow, npcol),
iroffc $=\bmod \left(i c-1, m b \_c\right), i c o f f_{C}=\bmod \left(j c-1, n b \_c\right)$,
icrow $=$ indxg2p (ic, mb_c, myrow, rsrc_c, nprow),
iccol = indxg2p(jc, nb_c, mycol, csrc_c, npcol),
MqCO = numroc (m+icoffc, nb_c, mycol, icrow, nprow),
NpcO = numroc (n+iroffc, mb_c, myrow, iccol, npcol),
ilcm, indxg2p and numroc are ScaLAPACK tool functions;
myrow, mycol, nprow, and npcol can be determined by calling the subroutine
blacs_gridinfo.

If 1 work $=-1$, then 1 work is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

Output Parameters

c \quad On exit, $\operatorname{sub}(C)$ is overwritten by $Q * \operatorname{sub}(C)$ or $Q^{\prime} * \operatorname{sub}(C)$ or $\operatorname{sub}(C) * Q^{\prime}$ or $\operatorname{sub}(C) * Q$.
work On exit, work(1) returns the minimal and optimal lwork.
info (local) INTEGER.
$=0$: successful exit
<0 : if the i-th argument is an array and the j-entry had an illegal value,
then info $=-(i * 100+j)$,
if the i-th argument is a scalar and had an illegal value, then info $=-i$.

NOTE. The distributed submatrices $A(i a: *, j a: *)$ and C (ic: $i_{c+m-1, j c: j c+n-1)}$ must verify some alignment properties, namely the following expressions should be true:
If side = 'L', (mb_a.eq.mb_c .AND. iroffa.eq.iroffc .AND.
iarow.eq.icrow)
If side = 'R', (mb_a.eq.nb_c .AND. iroffa.eq.iroffc).

p?orml2/p?unml2

Multiplies a general matrix by the orthogonal/unitary

 matrix from an LQ factorization determined by p?gelqf (unblocked algorithm).
Syntax

```
call psorml2 (side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc,
    work, lwork, info)
call pdorml2 (side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc,
    work, Iwork, info)
call pcunml2 (side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc,
    work, lwork, info)
call pzunml2 (side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc,
    work, lwork, info)
```


Description

The routine p ?orml2/p? unml2 overwrites the general real/complex m-by- n distributed matrix sub $(C)=C(i c: i c+m-1, j c: j c+n-1)$ with

	side $=$ 'L'	side $=$ ' $\mathrm{R} '$
trans $=$ ' N '	$Q^{*} \operatorname{sub}(C)$	$\operatorname{sub}(C)^{*} Q$
trans $=$ ' T ' (for real flavors)	$Q^{T} * \operatorname{sub}(C)$	$\operatorname{sub}(C)^{*} Q^{T}$
trans $=$ 'C' (for complex flavors)	$Q^{H * \operatorname{sub}(C)}$	$\operatorname{sub}(C)^{*} Q^{H}$

where Q is a real orthogonal or complex unitary distributed matrix defined as the product of k elementary reflectors

$$
\begin{aligned}
& Q=H(k) \ldots H(2) H(1) \text { (for real flavors) } \\
& \left.Q=H(k)^{\prime} \ldots H(2)\right)^{\prime} H(1)^{\prime} \text { (for complex flavors) }
\end{aligned}
$$

as returned by p?gelqf. Q is of order m if side $=$ ' L ' and of order n if side $=$ ' R '.

Input Parameters

side (global) CHARACTER.
$=$ 'L': apply Q or Q^{T} (for real flavors) $/ Q^{H}$ (for complex flavors) from the left, $=$ 'R': apply Q or Q^{T} (for real flavors) $/ Q^{H}$ (for complex flavors) from the right.
trans (global) CHARACTER.
= 'N': apply Q_{T} (No transpose)
$=$ 'T': apply Q^{T} (Transpose, for real flavors)
= 'c': apply Q^{H} (Conjugate transpose, for complex flavors)
(global) INTEGER.
The number of rows to be operated on, that is, the number of rows of the distributed submatrix $\operatorname{sub}(C) . m \geq 0$.
(global) INTEGER.
The number of columns to be operated on, that is, the number of columns of the distributed submatrix $\operatorname{sub}(C) . n \geq 0$.
(global) INTEGER.
The number of elementary reflectors whose product defines the matrix Q.
If side $=$ 'L', $m \geq k \geq 0$;
if side $=$ ' R ', $n \geq k \geq 0$.
(local)
REAL for psorml2
DOUBLE PRECISION for pdorml2
COMPLEX for pcunml2
COMPLEX*16 for pzunml2.
Pointer into the local memory to an array, DIMENSION
(lld_a, LOCc(ja+m-1) if side='L',
(lld_a, LOCc(ja+n-1) if side='R',
where lld_a $\geq \max (1, \operatorname{LOCr}(i a+k-1))$.
On entry, the i-th row must contain the vector that defines the elementary reflector $H(i)$, ia $\leq i \leq i a+k-1$, as returned by p?gelqf in the k rows of its distributed matrix argument $A(i a: i a+k-1, j a: *)$. The $\operatorname{argument} A(i a: i a+k-1, j a: *)$ is modified by the routine but restored on exit.
ia (global) INTEGER.
The row index in the global array A indicating the first row of $\operatorname{sub}(A)$.
(global) INTEGER.
The column index in the global array A indicating the first column of $\operatorname{sub}(A)$.
desca (global and local) INTEGER array of DIMENSION (dlen_).
The array descriptor for the distributed matrix A.
tau (local)
REAL for psorml2
DOUBLE PRECISION for pdorml2
COMPLEX for pcunml2

COMPLEX*16 for pzunml2.

Array, DIMENSION $\operatorname{LOCc}(i a+k-1)$. This array contains the scalar factors $\operatorname{tau}(i)$ of the elementary reflector $H(i)$, as returned by p?gelqf. This array is tied to the distributed matrix A.

C
(local)
REAL for psorml2
DOUBLE PRECISION for pdorml2
COMPLEX for pcunml2
COMPLEX*16 for pzunml2.
Pointer into the local memory to an array, DIMENSION (1ld_c, LOCc(jc+n-1)). On entry, the local pieces of the distributed matrix sub (C).
ic (global) INTEGER.
The row index in the global array C indicating the first row of $\operatorname{sub}(C)$.
jc (global) INTEGER.
The column index in the global array C indicating the first column of $\operatorname{sub}(C)$.
descc (global and local) INTEGER array of DIMENSION (dlen_).
The array descriptor for the distributed matrix C.
work (local)
REAL for psorml2
DOUBLE PRECISION for pdorml2
COMPLEX for pcunml2
COMPLEX*16 for pzunml2.
Workspace array, DIMENSION (Iwork).
lwork (local or global) INTEGER.
The dimension of the array work.
I work is local input and must be at least
if side $=$ ' L ', 1 work $\geq \operatorname{mqco}+\max (\max (1, n p c 0)$, numroc
(numroc (m+icoffc, mb_a, 0, 0, nprow), mb_a, 0, 0, lcmp)),
if side $=$ ' R ', lwork $\geq n p c 0+\max (1, m q c 0)$,
where $1 \mathrm{cmp}=1 \mathrm{~cm} /$ nprow with $1 \mathrm{~cm}=i c l m($ nprow, npcol $)$,

```
iroffc=mod(ic-1, mb_c),icoffc=mod( jc-1, nb_c ),
icrow = indxg2p( ic, mb_c, myrow, rsrc_c, nprow ),
iccol=indxg2p( jc, nb_c, mycol, csrc_c, npcol ),
MpcO= numroc( m+icoffc, mb_c, mycol, icrow, nprow ),
NqcO= numroc( n+iroffc, nb_c, myrow, iccol, npcol ),
```

ilcm, indxg2p and numroc are ScaLAPACK tool functions;
myrow, mycol, nprow, and npcol can be determined by calling the subroutine blacs_gridinfo.

If 1 work $=-1$, then 1 work is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

Output Parameters

c On exit, $\operatorname{sub}(C)$ is overwritten by $Q * \operatorname{sub}(C)$ or $Q^{\prime} * \operatorname{sub}(C)$ or $\operatorname{sub}(C) * Q^{\prime}$ or $\operatorname{sub}(C) * Q$.
work On exit, work(1) returns the minimal and optimal lwork.
info (local) Integer.
$=0$: successful exit
<0 : if the i-th argument is an array and the j-entry had an illegal value, then info $=-(i * 100+j)$, if the i-th argument is a scalar and had an illegal value, then info $=-i$.

NOTE. The distributed submatrices $A(i a: *, j a: *)$ and C (ic: $i c+m-1, j c: j c+n-1$) must verify some alignment properties, namely the following expressions should be true:

```
Ifside='L',(nb_a.eq.mb_c.AND.icoffa.eq.iroffc)
If side= 'R',( nb_a.eq.nb_c .AND. icoffa.eq.icoffc .AND.
iacol.eq.iccol ).
```


p?ormr2/p?unmr2

Multiplies a general matrix by the orthogonal/unitary

 matrix from an RQ factorization determined by p?gerqf (unblocked algorithm).
Syntax

```
call psormr2 (side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc,
    work, lwork, info)
call pdormr2 (side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc,
    work, lwork, info)
call pcunmr2 (side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc,
    work, lwork, info)
call pzunmr2 (side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc,
    work, lwork, info)
```


Description

The routine p ?ormr2/p? unmr2 overwrites the general real/complex m-by- n distributed matrix sub $(C)=C(i c: i c+m-1, j c: j c+n-1)$ with

	side $=$ 'L'	side $=$ ' $\mathrm{R} '$
trans $=$ ' N '	$Q^{*} \operatorname{sub}(C)$	$\operatorname{sub}(C)^{*} Q$
trans $=$ ' T ' (for real flavors)	$Q^{T} * \operatorname{sub}(C)$	$\operatorname{sub}(C)^{*} Q^{T}$
trans $=$ 'C' (for complex flavors)	$Q^{H * \operatorname{sub}(C)}$	$\operatorname{sub}(C)^{*} Q^{H}$

where Q is a real orthogonal or complex unitary distributed matrix defined as the product of k elementary reflectors

$$
\begin{aligned}
& Q=H(1) H(2) \ldots H(k) \text { (for real flavors) } \\
& Q=H(1)^{\prime} H(2)^{\prime} \ldots H(k)^{\prime} \text { (for complex flavors) }
\end{aligned}
$$

as returned by p?gerqf. Q is of order m if side $=$ 'L' and of order n if side $=$ ' R '.

Input Parameters

side (global) CHARACTER.
$=$ 'L': apply Q or Q^{T} (for real flavors) $/ Q^{H}$ (for complex flavors) from the left, $=$ 'R': apply Q or Q^{T} (for real flavors) $/ Q^{H}$ (for complex flavors) from the right.
trans (global) CHARACTER.
= 'N': apply Q_{T} (No transpose)
$=$ 'T': apply Q^{T} (Transpose, for real flavors)
= 'c': apply Q^{H} (Conjugate transpose, for complex flavors)
(global) INTEGER.
The number of rows to be operated on, that is, the number of rows of the distributed submatrix $\operatorname{sub}(C) . m \geq 0$.
(global) INTEGER.
The number of columns to be operated on, that is, the number of columns of the distributed submatrix $\operatorname{sub}(C) . n \geq 0$.
(global) INTEGER.
The number of elementary reflectors whose product defines the matrix Q.
If side $=$ 'L', $m \geq k \geq 0$;
if side $=$ ' R ', $n \geq k \geq 0$.
(local)
REAL for psormr2
DOUBLE PRECISION for pdormr2
COMPLEX for pcunmr2
COMPLEX*16 for pzunmr2.
Pointer into the local memory to an array, DIMENSION
(lld_a, LOCc(ja+m-1) if side='L',
(lld_a, LOCc(ja+n-1) if side='R',
where lld_a $\geq \max (1, \operatorname{LOCr}(i a+k-1))$.
On entry, the i-th row must contain the vector that defines the elementary reflector $H(i)$, ia $\leq i \leq i a+k-1$, as returned by p?gerqf in the k rows of its distributed matrix argument $A(i a: i a+k-1, j a: *)$. The $\operatorname{argument} A(i a: i a+k-1, j a: *)$ is modified by the routine but restored on exit.
ia (global) INTEGER.
The row index in the global array A indicating the first row of $\operatorname{sub}(A)$.
(global) INTEGER.
The column index in the global array A indicating the first column of $\operatorname{sub}(A)$.
desca (global and local) INTEGER array of DIMENSION (dlen_).
The array descriptor for the distributed matrix A.
tau (local)
REAL for psormr2
DOUBLE PRECISION for pdormr2
COMPLEX for pcunmr2

COMPLEX*16 for pzunmr2.

Array, DIMENSION $\operatorname{LOCc}(i a+k-1)$. This array contains the scalar factors $\operatorname{tau}(i)$ of the elementary reflector $H(i)$, as returned by p?gerqf. This array is tied to the distributed matrix A.

C
(local)
REAL for psormr2
DOUBLE PRECISION for pdormr2
COMPLEX for pcunmr2
COMPLEX*16 for pzunmr2.
Pointer into the local memory to an array, DIMENSION (1ld_c, LOCc(jc+n-1)). On entry, the local pieces of the distributed matrix sub (C).
ic (global) INTEGER.
The row index in the global array C indicating the first row of $\operatorname{sub}(C)$.
jc (global) INTEGER.
The column index in the global array C indicating the first column of $\operatorname{sub}(C)$.
descc (global and local) INTEGER array of DIMENSION (dlen_).
The array descriptor for the distributed matrix C.
work (local)
REAL for psormr2
DOUBLE PRECISION for pdormr2
COMPLEX for pcunmr2
COMPLEX*16 for pzunmr2.
Workspace array, DIMENSION (Iwork).
lwork (local or global) INTEGER.
The dimension of the array work.
I work is local input and must be at least
if side $=$ ' L ', Iwork $\geq \operatorname{mpco}+\max (\max (1, n q c 0)$, numroc (numroc (m+iroffc, mb_a, 0, 0, nprow), mb_a, 0, 0, lcmp)), if side $=$ ' R ', lwork $\geq n q c 0+\max (1, \operatorname{mpc} 0)$,
where $1 \mathrm{cmp}=1 \mathrm{~cm} /$ nprow with $1 \mathrm{~cm}=i c l m($ nprow, npcol $)$,

```
iroffc=mod(ic-1, mb_c),icoffc=mod( jc-1, nb_c ),
icrow = indxg2p( ic, mb_c, myrow, rsrc_c, nprow ),
iccol=indxg2p( jc, nb_c, mycol, csrc_c, npcol ),
MpcO= numroc( m+iroffc, mb_c, myrow, icrow, nprow ),
NqcO= numroc( n+icoffc, nb_c, mycol, iccol, npcol ),
```

ilcm, indxg2p and numroc are ScaLAPACK tool functions;
myrow, mycol, nprow, and npcol can be determined by calling the subroutine blacs_gridinfo.

If 1 work $=-1$, then 1 work is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

Output Parameters

c On exit, $\operatorname{sub}(C)$ is overwritten by $Q * \operatorname{sub}(C)$ or $Q^{\prime} * \operatorname{sub}(C)$ or $\operatorname{sub}(C) * Q^{\prime}$ or $\operatorname{sub}(C) * Q$.
work On exit, work(1) returns the minimal and optimal lwork.
info (local) INTEGER.
$=0$: successful exit
<0 : if the i-th argument is an array and the j-entry had an illegal value, then info $=-(i * 100+j)$, if the i-th argument is a scalar and had an illegal value, then info $=-i$.

NOTE. The distributed submatrices $A(i a: *, j a: *)$ and C (ic: $i c+m-1, j c: j c+n-1$) must verify some alignment properties, namely the following expressions should be true:

```
Ifside='L',(nb_a.eq.mb_c.AND.icoffa.eq.iroffc)
If side= 'R',( nb_a.eq.nb_c .AND. icoffa.eq.icoffc .AND.
iacol.eq.iccol ).
```


p?pbtrsv

Solves a single triangular linear system via frontsolve

 or backsolve where the triangular matrix is a factor of a banded matrix computed by p?pbtrf.
Syntax

```
call pspbtrsv (uplo, trans, n, bw, nrhs, a, ja, desca, b, ib, descb, af,
    laf, work, lwork, info)
call pdpbtrsv (uplo, trans, n, bw, nrhs, a, ja, desca, b, ib, descb, af,
    laf, work, lwork, info)
call pcpbtrsv (uplo, trans, n, bw, nrhs, a, ja, desca, b, ib, descb, af,
    laf, work, lwork, info)
call pzpbtrsv (uplo, trans, n, bw, nrhs, a, ja, desca, b, ib, descb, af,
    laf, work, lwork, info)
```


Description

The routine p?pbtrsv solves a banded triangular system of linear equations

$$
\begin{aligned}
& \left.A(1: n, j a: j a+n-1)^{*}\right)^{\prime}=B(j b: j b+n-1,1: n r h s) \\
& \text { or } \\
& A(1: n, j a: j a+n-1)^{T} * X=B(j b: j b+n-1,1: n r h s) \text { for real flavors, } \\
& A(1: n, j a: j a+n-1)^{H} * X=B(j b: j b+n-1,1: n r h s) \text { for complex flavors, }
\end{aligned}
$$

where $A(1: n, j a: j a+n-1)$ is a banded triangular matrix factor produced by the Cholesky factorization code p?pbtrf and is stored in $A(1: n, j a: j a+n-1)$ and $a f$. The matrix stored in $A(1: n, j a: j a+n-1)$ is either upper or lower triangular according to uplo, and the choice of solving $A(1: n, j a: j a+n-1)$ or $A(1: n, j a: j a+n-1)^{T}$ for real flavors and $A(1: n, j a: j a+n-1)^{H}$ for complex flavors respectively is dictated by the user by the parameter trans.

Routine p?pbtrf must be called first.

Input Parameters

uplo	(global) ChARACTER. Must be 'U' or 'L'.
	If uplo = 'U', upper triangle of $A(1: n, j a: j a+n-1)$ is stored If uplo = 'L', lower triangle of $A(1: n, j a: j a+n-1)$ is stored.
s	al) CHARACTER. Must be 'N' or 'T'

If trans $=$ ' N ', solve with $A(1: n, j a: j a+n-1)$;
If trans $=$ ' T ' or 'C' for real flavors, solve with $A(1: n, j a: j a+n-1)^{T}$.
If trans = ' C' for complex flavors, solve with
conjugate_transpose ($A(1: n$, ja: ja+n-1)).
(global) INTEGER. The number of rows and columns to be operated on, that is, the order of the distributed submatrix $A(1: n, j a: j a+n-1) . \quad n \geq 0$.
(global) INTEGER. The number of subdiagonals in 'L' or 'U', $0 \leq \mathrm{bw} \leq$ $n-1$.
(global) INTEGER. The number of right hand sides; the number of columns of the distributed submatrix $B(j b: j b+n-1,1: n r h s) ; n r h s \geq 0$.
(local)
REAL for pspbtrsv
DOUBLE PRECISION for pdpbtrsv
COMPLEX for pcpbtrsv
COMPLEX*16 for pzpbtrsv.
Pointer into the local memory to an array with the first DIMENSION
$11 d \_a \geq$ (bw+1), stored in desca.
On entry, this array contains the local pieces of the n-by- n symmetric banded distributed Cholesky factor L or $L^{T} A(1: n, j a: j a+n-1)$.
This local portion is stored in the packed banded format used in LAPACK. Please see the Application Notes below and the ScaLAPACK manual for more detail on the format of distributed matrices.
(global) Integer. The index in the global array A that points to the start of the matrix to be operated on (which may be either all of A or a submatrix of A).
(global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the distributed matrix A.
If 1D type (dtype_a $=501$), then $d l e n \geq 7$; If 2D type (dtype_a $=1$), then dlen ≥ 9.
Contains information on mapping of A to memory. Please, see ScaLAPACK manual for full description and options.
(local)
REAL for pspbtrsv
DOUBLE PRECISION for pdpbtrsv
COMPLEX for pcpbtrsv

COMPLEX*16 for pzpbtrsv.
Pointer into the local memory to an array of local lead DIMENSION lld_b $\geq n b$.
On entry, this array contains the local pieces of the right hand sides $B(j b: j b+n-1,1: n r h s)$.
ib (global) INTEGER. The row index in the global array B that points to the first row of the matrix to be operated on (which may be either all of B or a submatrix of B).
descb (global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the distributed matrix B.

If 1D type (dtype_b $=502$), then dlen ≥ 7; If 2D type (dtype_b $=1$), then dlen ≥ 9.
Contains information on mapping of B to memory. Please, see ScaLAPACK manual for full description and options.
laf (local) INTEGER. The size of user-input auxiliary Fillin space af.
Must be laf $\geq(n b+2 * b w) * b w$.
If laf is not large enough, an error code will be returned and the minimum acceptable size will be returned in $a f(1)$.
work (local)
REAL for pspbtrsv
DOUBLE PRECISION for pdpbtrsv
COMPLEX for pcpbtrsv
COMPLEX*16 for pzpbtrsv.
The array work is a temporary workspace array of DIMENSION lwork. This space may be overwritten in between calls to routines.
lwork (local or global) INTEGER. The size of the user-input workspace work, must be at least 1 work $\geq b^{*}$ nrhs. If 1 work is too small, the minimal acceptable size will be returned in work (1) and an error code is returned.

Output Parameters

af | (local) |
| :--- |
| REAL for pspbtrsv |
| DOUBLE PRECISION for pdpbtrsv |
| COMPLEX for pcpbtrsv |
| COMPLEX*16 for pzpbtrsv. |
| The array af is of DIMENSION laf. It contains auxiliary Fillin space. Fillin is |

created during the factorization routine p?pbtrf and this is stored in af. If a linear system is to be solved using p?pbtrs after the factorization routine, af must not be altered after the factorization.

On exit, this array contains the local piece of the solutions distributed matrix X.
work (1) On exit, work(1) contains the minimum value of lwork.
info (local) INTEGER.
$=0$: successful exit
<0 : if the i-th argument is an array and the j-entry had an illegal value, then info $=-(i * 100+j)$,
if the i-th argument is a scalar and had an illegal value, then info $=-i$.

Application Notes

If the factorization routine and the solve routine are to be called separately to solve various sets of right-hand sides using the same coefficient matrix, the auxiliary space af must not be altered between calls to the factorization routine and the solve routine.

The best algorithm for solving banded and tridiagonal linear systems depends on a variety of parameters, especially the bandwidth. Currently, only algorithms designed for the case $\mathrm{N} / \mathrm{P} \gg$ bw are implemented. These algorithms go by many names, including Divide and Conquer, Partitioning, domain decomposition-type, etc.

Algorithm description: Divide and Conquer. *

The Divide and Conquer algorithm assumes the matrix is narrowly banded compared with the number of equations. In this situation, it is best to distribute the input matrix A one-dimensionally, with columns atomic and rows divided amongst the processes. The basic algorithm divides the banded matrix up into P pieces with one stored on each processor, and then proceeds in 2 phases for the factorization or 3 for the solution of a linear system.
5. Local Phase: The individual pieces are factored independently and in parallel. These factors are applied to the matrix creating fill-in, which is stored in a non-inspectable way in auxiliary space af. Mathematically, this is equivalent to reordering the matrix A as $P A P^{T}$ and then factoring the principal leading submatrix of size equal to the sum of the sizes of the matrices factored on each processor. The factors of these submatrices overwrite the corresponding parts of A in memory.
6. Reduced System Phase: A small (bw* $(P-1))$ system is formed representing interaction of the larger blocks and is stored (as are its factors) in the space af. A parallel Block Cyclic Reduction algorithm is used. For a linear system, a parallel front solve followed by an analogous backsolve, both using the structure of the factored matrix, are performed.
7. Backsubsitution Phase: For a linear system, a local backsubstitution is performed on each processor in parallel.

p?pttrsv

Solves a single triangular linear system via frontsolve or backsolve where the triangular matrix is a factor of a tridiagonal matrix computed by p?pttrf.

Syntax

```
call pspttrsv (uplo, n, nrhs, d, e, ja, desca, b, ib, descb, af, laf,
    work, lwork, info)
call pdpttrsv (uplo, n, nrhs, d, e, ja, desca, b, ib, descb, af, laf,
    work, lwork, info)
call pcpttrsv (uplo, trans, n, nrhs, d, e, ja, desca, b, ib, descb, af,
    laf, work, lwork, info)
call pzpttrsv (uplo, trans, n, nrhs, d, e, ja, desca, b, ib, descb, af,
    laf, work, lwork, info)
```


Description

This routine solves a tridiagonal triangular system of linear equations

$$
\begin{aligned}
& A(1: n, j a: j a+n-1)^{*} X=B(j b: j b+n-1,1: n r h s) \\
& \text { or } \\
& A(1: n, j a: j a+n-1)^{T} * X=B(j b: j b+n-1,1: n r h s) \text { for real flavors, } \\
& A(1: n, j a: j a+n-1)^{H} * X=B(j b: j b+n-1,1: n r h s) \text { for complex flavors, }
\end{aligned}
$$

where $A(1: n, j a: j a+n-1)$ is a tridiagonal triangular matrix factor produced by the Cholesky factorization code p?pttrf and is stored in $A(1: n, j a: j a+n-1)$ and $a f$. The matrix stored in $A(1: n, j a: j a+n-1)$ is either upper or lower triangular according to uplo, and the choice of solving $A\left(1: n\right.$, ja: ja+n-1) or $A(1: n \text {, ja: ja+n-1 })^{T}$ for real flavors and $A(1: n, j a: j a+n-1)^{H}$ for complex flavors respectively is dictated by the user by the parameter trans.

Routine p?pttrf must be called first.

Input Parameters

```
uplo (global) CHARACTER. Must be 'U' or 'L'.
    If uplo= 'U', upper triangle of A(1:n, ja:ja+n-1) is stored;
If uplo= 'L', lower triangle of A(1:n, ja:ja+n-1) is stored.
trans (global) CHARACTER. Must be 'N' or 'C'.
If trans='N', solve with A(1:n, ja:ja+n-1);
If trans=' C' (for complex flavors), solve with
conjugate_transpose ( }A(1:n, ja:ja+n-1))
```

n
nrhs (global) INTEGER. The number of right hand sides; the number of columns of the distributed submatrix $B(j b: j b+n-1,1: n r h s) ; n r h s \geq 0$.
d
e
ja
(local)
REAL for pspttrsv
DOUBLE PRECISION for pdpttrsv
COMPLEX for pcpttrsv COMPLEX*16 for pzpttrsv.
Pointer to the local part of the global vector storing the main diagonal of the matrix; must be of size \geq desca ($n b_{-}$).
(local)
ReAL for pspttrsv
DOUBLE PRECISION for pdpttrsv
COMPLEX for pcpttrsv
COMPLEX*16 for pzpttrsv.
Pointer to the local part of the global vector storing the upper diagonal of the matrix; must be of size \geq desca ($n b_{-}$). Globally, $d u(n)$ is not referenced, and $d u$ must be aligned with d.
(global) Integer. The index in the global array A that points to the start of the matrix to be operated on (which may be either all of A or a submatrix of A).

desca	(global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the distributed matrix A.
	If 1D type (dtype_a $=501$ or 502), then dlen ≥ 7;
	If 2D type (dtype_a $=1$), then dlen ≥ 9.
	Contains information on mapping of A to memory. Please, see ScaLAPACK manual for full description and options.
$b^{\text {b }}$	(local)
	REAL for pspttrsv
	DOUBLE PRECISION for pdpttrsv
	COMPLEX for pcpttrsv
	COMPLEX*16 for pzpttrsv.
	Pointer into the local memory to an array of local lead Dimension
	$11 d \_b \geq n b$.
	On entry, this array contains the local pieces of the right hand sides
	$B(j b: j b+n-1,1: n r h s)$.
ib	(global) INTEGER. The row index in the global array B that points to the first row of the matrix to be operated on (which may be either all of B or a submatrix of B).
descb	(global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the distributed matrix B.
	If 1D type (dtype_b $=502$), then $d 1 e n \geq 7$;
	If 2D type (dtype_b $=1$), then dlen ≥ 9.
	Contains information on mapping of B to memory. Please, see ScaLAPACK manual for full description and options.
laf	(local) INTEGER. The size of user-input auxiliary Fillin space af.
	Must be laf $\geq(n b+2 * b w) *$ bw .
	If $l a f$ is not large enough, an error code will be returned and the minimum acceptable size will be returned in $a f(1)$.
work	(local)
	REAL for pspttrsv
	DOUBLE PRECISION for pdpttrsv
	COMPLEx for pcpttrsv
	COMPLEX*16 for pzpttrsv.
	The array work is a temporary workspace array of DIMENSION 1 work. This space may be overwritten in between calls to routines.

lwork
(local or global) INTEGER. The size of the user-input workspace work, must be at least 1 work $\geq(10+2 * \min (100$, nrhs $)){ }^{\text {n npcol }+4 * \text { nrhs. If } 1 \text { work is }}$ too small, the minimal acceptable size will be returned in work(1) and an error code is returned.

Output Parameters

```
d,e (local).
    REAL for pspttrsv
    DOUBLE PRECISION for pdpttrsv
    COMPLEX for pcpttrsv
    COMPLEX*16 for pzpttrsv.
    On exit, these arrays contain information containing the factors of the matrix.
af (local)
    REAL for pspttrsv
    DOUBLE PRECISION for pdpttrsv
    COMPLEX for pcpttrsv
    COMPLEX*16 for pzpttrsv.
    The array af is of DIMENSION laf. It contains auxiliary Fillin space. Fillin is
    created during the factorization routine p?pbtrf and this is stored in af. If a
    linear system is to be solved using p?pttrs after the factorization routine, af
    must not be altered after the factorization.
b
work(1) On exit, work(1) contains the minimum value of lwork.
info (local) INTEGER.
    = 0: successful exit
    <0: if the i-th argument is an array and the j-entry had an illegal value,
    then info = - (i*100+j),
    if the i-th argument is a scalar and had an illegal value,
    then info=-i.
```


p?potf2

Computes the Cholesky factorization of a symmetric/Hermitian positive definite matrix (local unblocked algorithm).

Syntax

```
call pspotf2 (uplo, n, a, ia, ja, desca, info)
call pdpotf2 (uplo, n, a, ia, ja, desca, info)
call pcpotf2 (uplo, n, a, ia, ja, desca, info)
call pzpotf2 (uplo, n, a, ia, ja, desca, info)
```


Description

This routine computes the Cholesky factorization of a real symmetric or complex Hermitian positive definite distributed matrix sub $(A)=A(i a: i a+n-1, j a: j a+n-1)$.

The factorization has the form
$\operatorname{sub}(A)=U$ ' U, if uplo = ' ' ', or
$\operatorname{sub}(A)=L L ', \quad$ if uplo = 'L',
where U is an upper triangular matrix and L is lower triangular.

Input Parameters

uplo (global) CHARACTER.
Specifies whether the upper or lower triangular part of the symmetric/Hermitian matrix A is stored.
$=$ ' u ': Upper triangle of sub (A) is stored;
= 'L': Lower triangle of sub (A) is stored.
n
a
(global) Integer. The number of rows and columns to be operated on, that is, the order of the distributed submatrix sub $(A) . n \geq 0$.
(local)
REAL for pspotf2
DOUBLE PRECISION or pdpotf2
COMPLEX for pcpotf2
COMPLEX*16 for pzpotf2.
Pointer into the local memory to an array of DIMENSION (Ild_a, LOCc (ja+n-1)) containing the local pieces of the n-by- n symmetric distributed matrix $\operatorname{sub}(A)$ to be
factored.
If uplo= ' u ', the leading n-by- n upper triangular part of $\operatorname{sub}(A)$ contains the upper triangular matrix and the strictly lower triangular part of this matrix is not referenced. If uplo= ' L ', the leading n-by- n lower triangular part of $\operatorname{sub}(A)$ contains the lower triangular matrix and the strictly upper triangular part of $\operatorname{sub}(A)$ is not referenced.
ia, ja (global) INTEGER. The row and column indices in the global array A indicating the first row and the first column of the $\operatorname{sub}(A)$, respectively.
desca (global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the distributed matrix A.

Output Parameters

```
a (local) On exit,
        if uplo= 'U', the upper triangular part of the distributed matrix contains the Cholesky
        factor U;
        if uplo= 'L', the lower triangular part of the distributed matrix contains the Cholesky
        factor L.
info (local) INTEGER.
        = 0: successful exit
        <0: if the i-th argument is an array and the j-entry had an illegal value,
        then info = - (i*100+j),
        if the i-th argument is a scalar and had an illegal value,
        then info=-i.
        >0}\mathrm{ : if info = k, the leading minor of order k is not positive definite, and the
        factorization could not be completed.
```


p?rscl

Multiplies a vector by the reciprocal of a real scalar.

Syntax

```
call psrscl (n, sa, sx, ix, jx, descx, incx)
call pdrscl (n, sa, sx, ix, jx, descx, incx)
call pcsrscl (n, sa, sx, ix, jx, descx, incx)
call pzdrscl (n, sa, sx, ix, jx, descx, incx)
```


Description

This routine multiplies an n-element real/complex vector $\operatorname{sub}(x)$ by the real scalar $1 / a$. This is done without overflow or underflow as long as the final result $\operatorname{sub}(x) / a$ does not overflow or underflow.

```
\(\operatorname{sub}(x)\) denotes \(x(i x: i x+n-1, j x: j x)\), if incx \(^{\prime}=1\),
    and \(x(i x: i x, j x: j x+n-1)\), if incx \(=m_{-} x\).
```


Input Parameters

n (global) INTEGER.
The number of components of the distributed vector $\operatorname{sub}(x) . n \geq 0$.
REAL for psrscl/pcsrscl
DOUBLE PRECISION for pdrscl/pzdrscl.
The scalar a that is used to divide each component of the vector x. This argument must be ≥ 0, or the subroutine will divide by zero.
sx ReAL for psrscl
DOUBLE PRECISION for pdrscl
COMPLEX for pesrscl
COMPLEX*16 for pzdrscl.
Array containing the local pieces of a distributed matrix of DIMENSION of at least $\left((j x-1) *\right.$ m_ $_{-}+i x+(n-1) * \operatorname{abs}($ incx $\left.)\right)$.
This array contains the entries of the distributed vector $\operatorname{sub}(x)$.
ix (global) INTEGER. The row index of the submatrix of the distributed matrix X to operate on.
jx (global) INTEGER. The column index of the submatrix of the distributed matrix X to operate on.
descx (global and local). INTEGER.
Array of DIMENSION 8. The array descriptor for the distributed matrix X.
incx (global) INTEGER.
The increment for the elements of X. This version supports only two values of incx, namely 1 and $m_{-} x$.

Output Parameters

$s x \quad$ On exit, the result x / a.

p?sygs2/p?hegs2

Reduces a symmetric/Hermitian definite generalized

 eigenproblem to standard form, using the factorization results obtained from p?potrf (local unblocked algorithm).
Syntax

```
call pssygs2 (ibtype, uplo, n, a, ia, ja, desca, b, ib, jb, descb, info)
call pdsygs2 (ibtype, uplo, n, a, ia, ja, desca, b, ib, jb, descb, info)
call pchegs2 (ibtype, uplo, n, a, ia, ja, desca, b, ib, jb, descb, info)
call pzhegs2 (ibtype, uplo, n, a, ia, ja, desca, b, ib, jb, descb, info)
```


Description

The routine p?sygs $2 / \mathrm{p}$?hegs 2 reduces a real symmetric-definite or a complex Hermitian-definite generalized eigenproblem to standard form.
$\operatorname{sub}(A)$ denotes $A(i a: i a+n-1, j a: j a+n-1)$ and $\operatorname{sub}(B)$ denotes $B(i b: i b+n-1, j b: j b+n-1)$.
If ibtype $=1$, the problem is
$\operatorname{sub}(A) x=\lambda \operatorname{sub}(B) x$,
and $\operatorname{sub}(A)$ is overwritten by
$\operatorname{inv}\left(U^{T}\right) * \operatorname{sub}(A) * \operatorname{inv}(U)$ or $\operatorname{inv}(L) * \operatorname{sub}(A) * \operatorname{inv}\left(L^{T}\right)$ for real flavors and $\operatorname{inv}\left(U^{H}\right) * \operatorname{sub}(A) * \operatorname{inv}(U) \operatorname{or} \operatorname{inv}(L) * \operatorname{sub}(A) * \operatorname{inv}\left(L^{H}\right)$ for complex flavors.

If ibtype $=2$ or 3 , the problem is
$\operatorname{sub}(A) \operatorname{sub}(B) x=\lambda x$ or $\operatorname{sub}(B) \operatorname{sub}(A) x=\lambda x$,
and $\operatorname{sub}(A)$ is overwritten
by $U * \operatorname{sub}(A) \star U^{T}$ or $L * * T * \operatorname{sub}(A) \star L$ for real flavors and by $U * \operatorname{sub}(A) * U^{H}$ or $L * * H * \operatorname{sub}(A) \star L$ for complex flavors.
$\operatorname{sub}(B)$ must have been previously factorized as $U^{T} U$ or $L L^{T}$ (for real flavors) or as $U^{H} U$ or $L L^{H}$ (for complex flavors) by p?potrf.

Input Parameters

ibtype	(global) INTEGER. $=1$: compute $\operatorname{inv}\left(U^{T}\right) * \operatorname{sub}(A) * \operatorname{inv}(U)$ or $\operatorname{inv}(L) * \operatorname{sub}(A) * \operatorname{inv}\left(L^{T}\right)$ for real subroutines and $\operatorname{inv}\left(U^{H}\right) * \operatorname{sub}(A) * \operatorname{inv}(U)$ or $\operatorname{inv}(L) * \operatorname{sub}(A) * \operatorname{inv}\left(L^{H}\right)$ for complex subroutines; $=2$ or 3: compute $U * \operatorname{sub}(A) * U^{T}$ or $L^{T} * \operatorname{sub}(A) \star L$ for real subroutines and by $U * \operatorname{sub}(A) * U^{H}$ or $L^{H_{*}} \operatorname{sub}(A) \star L$ for complex subroutines.
uplo	(global) CHARACTER
	Specifies whether the upper or lower triangular part of the symmetric/Hermitian matrix $\operatorname{sub}(A)$ is stored, and how $\operatorname{sub}(B)$ is factorized. = ' U ': Upper triangular of $\operatorname{sub}(A)$ is stored and $\operatorname{sub}(B)$ is factorized as $U^{T} U$ (for real subroutines) or as $U^{H} U$ (for complex subroutines). $=$ ' L ': Lower triangular of $\operatorname{sub}(A)$ is stored and $\operatorname{sub}(B)$ is factorized as $L L^{T}$ (for real subroutines) or as $L L^{H}$ (for complex subroutines)
n	(global) INTEGER.
	The order of the matrices $\operatorname{sub}(A)$ and $\operatorname{sub}(B) . \mathrm{n} \geq 0$.
a	(local)
	REAL for pssygs2
	DOUBLE PRECISION for pdsygs2
	COMPLEX for pchegs2
	COMPLEX*16 for pzhegs2.
	Pointer into the local memory to an array, DIMENSION (1ld_a, LOCc (ja+n-1)).
	On entry, this array contains the local pieces of the n-by- n symmetric/Hermitian distributed matrix $\operatorname{sub}(A)$.
	If uplo = ' U ', the leading n-by- n upper triangular part of $\operatorname{sub}(A)$ contains the upper triangular part of the matrix, and the strictly lower triangular part of $\operatorname{sub}(A)$ is not referenced. If uplo $=$ ' L ', the leading n-by- n lower triangular part of $\operatorname{sub}(A)$ contains the lower triangular part of the matrix, and the strictly upper triangular part of $\operatorname{sub}(A)$ is not referenced.
ia,ja	(global) INTEGER. The row and column indices in the global array A indicating the first row and the first column of the $\operatorname{sub}(A)$, respectively.
desca	(global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the distributed matrix A.
b	(local)
	REAL for pssygs2
	DOUBLE PRECISION for pdsygs2
	COMPLEX for pchegs2

COMPLEX*16 for pzhegs2.
Pointer into the local memory to an array, DIMENSION (lld_b, LOCc $(j b+n-1)$).
On entry, this array contains the local pieces of the triangular factor from the Cholesky factorization of $\operatorname{sub}(B)$ as returned by p?potrf.
$i b, j b \quad$ (global) INTEGER. The row and column indices in the global array B indicating the first row and the first column of the $\operatorname{sub}(B)$, respectively.
descb (global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the distributed matrix B.

Output Parameters

a
(local) On exit, if info $=0$, the transformed matrix is stored in the same format as $\operatorname{sub}(A)$.
info
INTEGER.
$=0$: successful exit.
<0 : if the $i-t h$ argument is an array and the j-entry had an illegal value, then info $=-(i * 100)$, if the i-th argument is a scalar and had an illegal value, then info $=-i$.

p?sytd2/p?hetd2

Reduces a symmetric/Hermitian matrix to real symmetric tridiagonal form by an orthogonal/unitary similarity transformation (local unblocked algorithm).

Syntax

```
call pssytd2 (uplo, n, a, ia, ja, desca, d, e, tau, work, lwork, info)
call pdsytd2 (uplo, n, a, ia, ja, desca, d, e, tau, work, lwork, info)
call pchetd2 (uplo, n, a, ia, ja, desca, d, e, tau, work, lwork, info)
call pzhetd2 (uplo, n, a, ia, ja, desca, d, e, tau, work, lwork, info)
```


Description

The routine p?sytd2/p?hetd2 reduces a real symmetric/complex Hermitian matrix sub (A) to symmetric/Hermitian tridiagonal form T by an orthogonal/unitary similarity transformation: $Q^{\prime} \operatorname{sub}(A) Q=T$, where $\operatorname{sub}(A)=A(i a: i a+n-1, j a: j a+n-1)$.

Input Parameters

```
uplo (global) CHARACTER.
    Specifies whether the upper or lower triangular part of the symmetric/Hermitian
    matrix sub(A) is stored:
    = 'U': Upper triangular
    = 'L': Lower triangular
    (global) INTEGER.
    The number of rows and columns to be operated on, that is, the order of the
    distributed submatrix sub(A). n \geq0
    (local)
        REAL for pssytd2
        DOUBLE PRECISION for pdsytd2
        COMPLEX for pchetd2
        COMPLEX*16 for pzhetd2.
        Pointer into the local memory to
        an array, DIMENSION (lld_a, LOCc(ja+n-1)).
        On entry, this array contains the local pieces of the n-by-n symmetric/Hermitian
        distributed matrix sub(A).
        If uplo = 'v', the leading n-by-n upper triangular part of sub (A) contains the upper
        triangular part of the matrix, and the strictly lower triangular part of \operatorname{sub}(A)\mathrm{ is not}
        referenced. If uplo = 'L', the leading n-by-n lower triangular part of sub (A) contains
        the lower triangular part of the matrix, and the strictly upper triangular part of sub(A)
        is not referenced.
ia,ja (global) INTEGER. The row and column indices in the global array }A\mathrm{ indicating the
        first row and the first column of the sub(A), respectively.
desca (global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the
        distributed matrix }A\mathrm{ .
work (local)
        REAL for pssytd2
        DOUBLE PRECISION for pdsytd2
```

COMPLEX for pchetd2
COMPLEX*16 for pzhetd2.
The array work is a temporary workspace array of DIMENSION 1 work.

Output Parameters

On exit, if uplo = ' U ', the diagonal and first superdiagonal of $\operatorname{sub}(A)$ are overwritten by the corresponding elements of the tridiagonal matrix T, and the elements above the first superdiagonal, with the array tau, represent the orthogonal/unitary matrix Q as a product of elementary reflectors; if uplo = ' L ', the diagonal and first subdiagonal of a are overwritten by the corresponding elements of the tridiagonal matrix T, and the elements below the first subdiagonal, with the array tau, represent the orthogonal/unitary matrix Q as a product of elementary reflectors. See the Application Notes below.
(local)
REAL for pssytd2/pchetd2
DOUBLE PRECISION for pdsytd2/pzhetd2.
Array, DIMENSION (LOCc (ja+n-1)).
The diagonal elements of the tridiagonal matrix T :
$d(i)=a(i, i) ; d$ is tied to the distributed matrix A.
e
(local)
REAL for pssytd2/pchetd2
DOUBLE PRECISION for pdsytd2/pzhetd2.
Array, DIMENSION (LOCc (ja+n-1)), if uplo = 'U', LOCc (ja+n-2) otherwise.
The off-diagonal elements of the tridiagonal matrix T :
$e(\mathbf{i})=a(\mathrm{i}, \mathrm{i}+1)$ if uplo = 'u',
$e(i)=a(i+1, i)$ if uplo = 'L'.
e is tied to the distributed matrix A.
tau (local)
REAL for pssytd2
DOUBLE PRECISION for pdsytd2
COMPLEX for pchetd2
COMPLEX*16 for pzhetd2.
Array, DIMENSION (LOCc (ja+n-1)).
The scalar factors of the elementary reflectors. tau is tied to the distributed matrix A.
work(1) On exit, work(1) returns the minimal and optimal value of 1 work.
lwork (local or global) INTEGER.
The dimension of the workspace array work.
1 work is local input and must be at least 1 work $\geq 3 n$.
If 1 work $=-1$, then 1 work is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.
info (local) INTEGER.
$=0$: successful exit
<0 : if the i-th argument is an array and the j-entry had an illegal value, then info $=-(i * 100)$, if the i-th argument is a scalar and had an illegal value, then info $=-i$.

Application Notes

If uplo = ' U ', the matrix Q is represented as a product of elementary reflectors

$$
Q=H(n-1) \ldots H(2) H(1)
$$

Each $H(\mathrm{i})$ has the form

$$
H(\mathrm{i})=I-\operatorname{tau^{*}} \mathrm{v}^{*} \mathrm{v}^{\prime},
$$

where tau is a real/complex scalar, and v is a real/complex vector with $v(i+1: n)=0$ and $v(i)=1 ; v(1: i-1)$ is stored on exit in $A(i a: i a+i-2, j a+i)$, and $t a u$ in $T A U(j a+i-1)$.
If uplo = 'L', the matrix Q is represented as a product of elementary reflectors

$$
Q=H(1) H(2) \ldots H(n-1) .
$$

Each $H(\mathrm{i})$ has the form

$$
H(\mathrm{i})=I-t a u^{*} v^{*} v^{\prime},
$$

where tau is a real/complex scalar, and v is a real/complex vector with $v(1: i)=0$ and $v(i+1)=1 ; v(i+2: n)$ is stored on exit in $A(i a+i+1: i a+n-1, j a+i-1)$, and $t a u$ in $T A U(j a+i-1)$.

The contents of sub (A) on exit are illustrated by the following examples with $n=5$:

$$
\begin{array}{ll}
\text { if uplo= 'U': } & \text { if uplo= 'L': } \\
{\left[\begin{array}{rrrr}
d & e & v_{2} & v_{3} \\
d & v_{4} \\
d & e & v_{3} & v_{4} \\
d & e & v_{4} \\
& d & e \\
& & & d
\end{array}\right]} & {\left[\begin{array}{llll}
d & & & \\
e & d & & \\
v_{1} & e & d \\
v_{1} & v_{2} & e & d \\
v_{1} & v_{2} & v_{3} & e \\
\hline
\end{array}\right]}
\end{array}
$$

where d and e denotes diagonal and off-diagonal elements of T, and v_{i} denotes an element of the vector defining $H(\mathrm{i})$.

NOTE. The distributed submatrix sub (A) must verify some alignment properties, namely the following expression should be true:
(mb_a.eq.nb_a. AND. iroffa.eq.icoffa) with iroffa $=\bmod \left(i a-1, m b \_a\right)$ and icoffa $=\bmod \left(j a-1, n b \_a\right)$.

p?trti2

Computes the inverse of a triangular matrix (local unblocked algorithm).

Syntax

```
call pstrti2 (uplo, diag, n, a, ia, ja, desca, info)
call pdtrti2 (uplo, diag, n, a, ia, ja, desca, info)
call pctrti2 (uplo, diag, n, a, ia, ja, desca, info)
call pztrti2 (uplo, diag, n, a, ia, ja, desca, info)
```


Description

This routine computes the inverse of a real/complex upper or lower triangular block matrix sub (A) $=A(i a: i a+n-1, j a: j a+n-1)$.

This matrix should be contained in one and only one process memory space (local operation).

Input Parameters

```
uplo (global) CHARACTER*1.
```

 Specifies whether the matrix sub \((A)\) is upper or lower triangular.
 \(=\) ' u ': sub \((A)\) is upper triangular
 \(=\) ' L ': sub \((A)\) is lower triangular.
 diag (global) CHARACTER*1.
Specifies whether or not the matrix A is unit triangular.
$=$ ' N ': $\operatorname{sub}(A)$ is non-unit triangular
$=$ ' U ': sub (A) is unit triangular.
n (global) INTEGER.
The number of rows and columns to be operated on, i.e., the order of the distributed
submatrix $\operatorname{sub}(A) . n \geq 0$.
(local)
REAL for pstrti2
DOUBLE PRECISION for pdtrti2
COMPLEX for pctrti2
COMPLEX*16 for pztrti2.
Pointer into the local memory to an array, DIMENSION (1Id_a, LOCc(ja+n-1)).
On entry, this array contains the local pieces of the triangular matrix $\operatorname{sub}(A)$. If uplo $=$ ' U ', the leading n-by- n upper triangular part of the matrix $\operatorname{sub}(A)$ contains the upper triangular part of the matrix, and the strictly lower triangular part of $\operatorname{sub}(A)$ is not referenced.
If uplo = ' L ', the leading n-by- n lower triangular part of the matrix $\operatorname{sub}(A)$ contains the lower triangular part of the matrix, and the strictly upper triangular part of $\operatorname{sub}(A)$ is not referenced.
If diag = 'U', the diagonal elements of $\operatorname{sub}(A)$ are not referenced either and are assumed to be 1 .
ia, ja (global) INTEGER. The row and column indices in the global array A indicating the first row and the first column of the $\operatorname{sub}(A)$, respectively.
desca (global and local) INTEGER array, DIMENSION (dlen_). The array descriptor for the distributed matrix A.

Output Parameters

a On exit, the (triangular) inverse of the original matrix, in the same storage format.
info INTEGER.
= 0: successful exit
<0 : if the i-th argument is an array and the j-entry had an illegal value, then info $=-(i * 100)$, if the i-th argument is a scalar and had an illegal value, then info $=-i$.

?lamsh

Sends multiple shifts through a small (single node) matrix to maximize the number of bulges that can be sent through.

Syntax

```
call slamsh (s, lds, nbulge, jblk, h, ldh, n, ulp)
call dlamsh (s, lds, nbulge, jblk, h, ldh, n, ulp)
```


Description

This routine sends multiple shifts through a small (single node) matrix to see how small consecutive subdiagonal elements are modified by subsequent shifts in an effort to maximize the number of bulges that can be sent through. The subroutine should only be called when there are multiple shifts/bulges (nbulge >1) and the first shift is starting in the middle of an unreduced Hessenberg matrix because of two or more small consecutive subdiagonal elements.

Input Parameters

```
s
(local) INTEGER.
REAL for slamsh
DOUBLE PRECISION for dlamsh
```

Array, DIMENSION (lds,*).
On entry, the matrix of shifts. Only the 2×2 diagonal of s is referenced. It is assumed that s has jblk double shifts (size 2).

1ds
(local) INTEGER.
On entry, the leading dimension of S; unchanged on exit.
$1<$ nbulge $\leq j b l k \leq l d s / 2$.
(local) INTEGER.
On entry, the number of bulges to send through $h(>1)$.
nbulge should be less than the maximum determined ($j b 1 \mathrm{k}$).
$1<$ nbulge $\leq j b l k \leq l d s / 2$.
(local) INTEGER.
On entry, the leading dimension of S; unchanged on exit.
(local) INTEGER.
REAL for slamsh
DOUBLE PRECISION for dlamsh
Array, DIMENSION (lds, n).
On entry, the local matrix to apply the shifts on.
h should be aligned so that the starting row is 2 .
ldh
n
(local) INTEGER.
On entry, the leading dimension of H; unchanged on exit.
(local) INTEGER.
On entry, the size of H. If all the bulges are expected to go through, n should be at least $4 n b u l g e+2$. Otherwise, nbulge may be reduced by this routine.
ulp (local)
REAL for slamsh
DOUBLE PRECISION for dlamsh
On entry, machine precision. Unchanged on exit.

Output Parameters

s

nbulge
h

On exit, the data is rearranged in the best order for applying.
On exit, the maximum number of bulges that can be sent through.
On exit, the data is destroyed.

?laref

Applies Householder reflectors to matrices on either their rows or columns.

Syntax

```
call slaref (type, a, lda, wantz, z, ldz, block, irowl, icoll, istart, istop,
    itmp1, itm2, liloz, lihiz, vecs, v2, v3, t1, t2, t3)
call dlaref (type, a, lda, wantz, z, ldz, block, irowl, icoll, istart, istop,
    itmp1, itm2, liloz, lihiz, vecs, v2, v3, t1, t2, t3)
```


Description

This routine applies one or several Householder reflectors of size 3 to one or two matrices (if column is specified) on either their rows or columns.

Input Parameters

type	(global) CHRACTER*1.
	If type $=$ 'R', apply reflectors to the rows of the matrix (apply from left).
	Otherwise, apply reflectors to the columns of the matrix. Unchanged on exit.
a	(global)
	REAL for slaref
	DOUBLE PRECISION for dlaref
	Array, DIMENSION (Ida, *). On entry, the matrix to receive the reflections.
Ida	(local) INTEGER.
	On entry, the leading dimension of A; unchanged on exit.
wantz	(global) LOGICAL.
	If wantz =. TRUE., apply any column reflections to Z as well.
	If wantz =. FALSE., do no additional work on Z.
z	(global)
	REAL for slaref
	DOUBLE PRECISION for dlaref
	Array, DIMENSION (ldz, *). On enrty, the second matrix to receive column reflections.
$1 d z$	(local) INTEGER.
	On entry, the leading dimension of Z; unchanged on exit.

block	(global). LOGICAL. $=$. TRUE. : apply several reflectors at once and read their data from the vecs array; $=$.FALSE.: apply the single reflector given by $v 2, v 3, t 1, t 2$, and $t 3$.
ipow1	(local) INTEGER. On entry, the local row element of the matrix A.
icoll	(local) INTEGER. On entry, the local column element of the matrix A.
istart	(global) INTEGER. Specifies the "number" of the first reflector. istart is used as an index into vecs if block is set. istart is ignored if block is . FALSE..
istop	(global) INTEGER. Specifies the "number" of the last reflector. istop is used as an index into vecs if block is set. istop is ignored if block is . FALSE..
itmp1	(local) INTEGER. Starting range into A. For rows, this is the local first column. For columns, this is the local first row.
itmp2	(local) INTEGER . Ending range into A. For rows, this is the local last column. For columns, this is the local last row.
liloz, lihiz	(local). INTEGER. Serve the same purpose as itmp1, itmp2 but for Z when want z is set.
vecs	(global) REAL for slaref DOUBLE PRECISION for dlaref. Array of size $3 *_{n}$ (matrix size). This array holds the size 3 reflectors one after another and is only accessed when block is . TRUE.
$\mathrm{v} 2, \mathrm{v} 3, \mathrm{t} 1, \mathrm{t} 2, \mathrm{t} 3$	(global). INTEGER. REAL for slaref DOUBLE PRECISION for dlaref. These parameters hold information on a single size 3 Householder reflector and are read when block is .FALSE., and overwritten when block is . TRUE . .

Output Parameters

a	On exit, the updated matrix.
z	Changed only if wantz is set. If want z is .FALSE., z is not referenced.
ipow1	Undefined.
icoll	Undefined.
$\mathrm{v} 2, \mathrm{~V} 3, t 1, t 2, t 3$	These parameters are read when block is .FALSE., and overwritten when block is . TRUE..

?lasorte

Sorts eigenpairs by real and complex data types.

Syntax

```
call slasorte (s, lds, j, out, info)
```

call dlasorte (s, lds, j, out, info)

Description

This routine sorts eigenpairs so that real eigenpairs are together and complex eigenpairs are together. This helps to employ 2×2 shifts easily since every $2^{\text {nd }}$ subdiagonal is guaranteed to be zero. This routine does no parallel work and makes no calls.

Input Parameters

s
j (local) INTEGER.
On entry, the order of the matrix S; unchanged on exit.

```
out (local) INTEGER.
    REAL for slasorte
    DOUBLE PRECISION for dlasorte
    Array, DIMENSION (jx2).
    The work buffer required by the routine.
info (local) INTEGER.
    Set, if the input matrix had an odd number of real eigenvalues and things could
    not be paired or if the input matrix S was not originally in Schur form.
    0 indicates successful completion.
```


Output Parameters

On exit, the diagonal blocks of S have been rewritten to pair the eigenvalues. The resulting matrix is no longer similar to the input.
out Work buffer.

```

\section*{?last2}

Sorts numbers in increasing or decreasing order.

\section*{Syntax}
```

call slasrt2 (id, n, d, key, info)

```
call dlasrt2 (id, \(n, d, k e y, ~ i n f o)\)

\section*{Description}

This routine is modified LAPACK routine ?lasrt, which sorts the numbers in \(d\) in increasing order (if id='I') or in decreasing order (if id= 'D' ). It uses Quick Sort, reverting to Insertion Sort on arrays of size \(\leq 20\). Dimension of stack limits \(n\) to about \(2^{32}\).

\section*{Input Parameters}

\footnotetext{
id
}
n
```

CHARACTER*1.
$=$ ' I ': sort d in increasing order;
$=$ ' D ': sort d in decreasing order.

```

INTEGER. The length of the array \(d\).
d

REAL for slasrt2
DOUBLE PRECISION for dlasrt2.
Array, DIMENSION (n).
On entry, the array to be sorted.
INTEGER.
Array, DIMENSION (n).
On entry, key contains a key to each of the entries in \(d()\).
Typically, \(\operatorname{key}(i)=i\) for all \(i\).

\section*{Output Parameters}
\begin{tabular}{ll}
\(d\) & On exit, \(d\) has been sorted into increasing order \\
\((d(1) \leq \ldots \leq d(n))\) or into decreasing order \\
& \((d(1) \geq \ldots \geq d(n))\), depending on \(i d\). \\
info \(\quad\) & INTEGER. \\
& \(=0:\) successful exit \\
& \(<0:\) if info \(=-i\), the \(i\)-th argument had an illegal value.
\end{tabular}
key On exit, key is permuted in exactly the same manner as \(d()\) was permuted from input to output. Therefore, if \(k e y(i)=i\) for all \(i\) upon input, then \(* d _\)out \((i)=\) d_in(key(i)).

\section*{?stein2}

Computes the eigenvectors corresponding to specified eigenvalues of a real symmetric tridiagonal matrix, using inverse iteration.

\section*{Syntax}
```

call sstein2 (n, d, e, m, w, iblock, isplit, orfac, z, ldz,
work, iwork, ifail, info)
call dstein2 (n, d, e, m, w, iblock, isplit, orfac, z, ldz,
work, iwork, ifail, info)

```

\section*{Description}

This routine is a modified LAPACK routine ?stein. It computes the eigenvectors of a real symmetric tridiagonal matrix \(T\) corresponding to specified eigenvalues, using inverse iteration.

The maximum number of iterations allowed for each eigenvector is specified by an internal parameter maxits (currently set to 5 ).

\section*{Input Parameters}
n
m
d, e, w
isplit

INTEGER. The order of the matrix \(T(n \geq 0)\).
INTEGER. The number of eigenvectors to be found ( \(0 \leq m \leq n\) ).
REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
Arrays:
\(d(*)\), DIMENSION (n).
The \(n\) diagonal elements of the tridiagonal matrix \(T\).
\(e(*)\), DIMENSION ( \(n\) ).
The ( \(n-1\) ) subdiagonal elements of the tridiagonal matrix \(T\), in elements 1 to \(n-1\). e(n) need not be set.
\(w(*)\), DIMENSION (n).
The first \(m\) elements of \(w\) contain the eigenvalues for which eigenvectors are to be computed. The eigenvalues should be grouped by split-off block and ordered from smallest to largest within the block. (The output array \(w\) from ?stebz with ORDER = 'B' is expected here).
The dimension of \(w\) must be at least \(\max (1, n)\).
INTEGER.
Array, DIMENSION (n).
The submatrix indices associated with the corresponding eigenvalues in \(w\); iblock \((i)=1\), if eigenvalue \(w(i)\) belongs to the first submatrix from the top, iblock(i) \(=2\), if eigenvalue \(w(i)\) belongs to the second submatrix, etc. (The output array iblock from ?stebz is expected here).

INTEGER.
Array, DIMENSION ( \(n\) ).
The splitting points, at which \(T\) breaks up into submatrices. The first submatrix consists of rows/columns 1 to isplit(1), the second submatrix consists of rows/columns isplit(1)+1 through isplit( 2 ), etc. (The output array isplit from ?stebz is expected here).


\section*{?dbtf2}

\section*{Computes an LU factorization of a general band matrix} with no pivoting (local unblocked algorithm).

\section*{Syntax}
```

call sdbtf2 (m, n, kl, ku, ab, ldab, info)
call ddbtf2 (m, n, kl, ku, ab, ldab, info)
call cdbtf2 (m, n, kl, ku, ab, ldab, info)
call zdbtf2 (m, n, kl, ku, ab, ldab, info)

```

\section*{Description}

This routine computes an \(L U\) factorization of a general real/complex m-by-n band matrix \(A\) without using partial pivoting with row interchanges.

This is the unblocked version of the algorithm, calling BLAS Level 2 Routines.

\section*{Input Parameters}
\(m \quad\) INTEGER. The number of rows of the matrix \(A(m \geq 0)\).
\(n \quad\) INTEGER. The number of columns in \(A(n \geq 0)\).
\(k l\) INTEGER. The number of sub-diagonals within the band of \(A(k l \geq 0)\).
ku Integer. The number of super-diagonals within the band of \(A(k u \geq 0)\).
ab REAL for sdbtf2
DOUBLE PRECISION for ddbtf2
COMPLEX for cdbtf2
COMPLEX*16 for zdbtf2.
Array, dimension (ldab, n).
The matrix \(A\) in band storage, in rows \(k l+1\) to \(2 k l+k u+1\); rows 1 to \(k l\) of the array need not be set. The \(j\)-th column of \(A\) is stored in the \(j\)-th column of the array ab as follows: \(a b(k l+k u+1+i-j, j)=A(i, j)\) for \(\max (1, j-k u) \leq i \leq \min (m, j+k l)\).
Idab INTEGER. The leading dimension of the array \(a b\).
( \(1 \mathrm{dab} \geq 2 \mathrm{kl}+\mathrm{ku}+1\) )

\section*{Output Parameters}
```

ab On exit, details of the factorization: U is stored as an upper triangular band matrix with $k l+k u$ superdiagonals in rows 1 to $k l+k u+1$, and the multipliers used during the factorization are stored in rows $k l+k u+2$ to $2 * k l+k u+1$. See the Application Notes below for further details.

```
```

info

```
info
INTEGER.
        = 0: successful exit
        <0: if info =-i, the i-th argument had an illegal value,
        >0: if info =+i,u(i,i) is 0. The factorization has been completed, but the factor U
        is exactly singular. Division by 0 will occur if you use the factor }U\mathrm{ for solving a
        system of linear equations.
```


Application Notes

The band storage scheme is illustrated by the following example, when $m=n=6, k l=2$, $k u=1$:
on entry
on exit
$\left[\begin{array}{cccccc}* & \text { a } 12 & \text { a } 23 & \text { a } 34 & \text { a } 45 & \text { a } 56 \\ \text { a11 } & \text { a } 22 & \text { a } 33 & \text { a } 44 & \text { a55 } & \text { a66 } \\ \text { a21 } & \text { a } 32 & \text { a43 } & \text { a54 } & \text { a65 } & * \\ \text { a31 } & \text { a } 42 & \text { a53 } & \text { a } 64 & * & *\end{array}\right]$
$\left[\begin{array}{cccccc}* & u 12 & \text { u } 23 & \text { u3 } 4 & \text { u45 } & \text { u56 } \\ \text { u11 } & \text { u22 } & \text { u33 } & \text { u44 } & \text { u55 } & \text { u66 } \\ \text { m21 } & \text { m32 } & \text { m43 } & \text { m54 } & \text { m65 } & * \\ \text { m31 } & \text { m42 } & \text { m53 } & \text { m64 } & * & *\end{array}\right]$

The routine does not use array elements marked *; elements marked + need not be set on entry, but the routine requires them to store elements of U, because of fill-in resulting from the row interchanges.

?dbtrf

```
Computes an LU factorization
of a general band matrix with no pivoting (local
blocked algorithm).
```


Syntax

```
call sdbtrf (m, n, kl, ku, ab, ldab, info)
call ddbtrf (m, n, kl, ku, ab, ldab, info)
call cdbtrf (m, n, kl, ku, ab, ldab, info)
call zdbtrf (m, n, kl, ku, ab, ldab, info)
```


Description

This routine computes an LU factorization of a real m-by- n band matrix A without using partial pivoting or row interchanges.

This is the blocked version of the algorithm, calling BLAS Level 3 Routines.

Input Parameters

$m \quad$ INTEGER. The number of rows of the matrix $A(m \geq 0)$.
$n \quad$ INTEGER. The number of columns in $A(n \geq 0)$.
$k l$ INTEGER. The number of sub-diagonals within the band of $A(k l \geq 0)$.
ku INTEGER. The number of super-diagonals within the band of $A(k u \geq 0)$.
ab REAL for sdbtrf
DOUBLE PRECISION for ddbtrf
COMPLEX for cdbtrf
COMPLEX*16 for zdbtrf.
Array, DIMENSION ($1 \mathrm{dab}, \mathrm{n}$).
The matrix A in band storage, in rows $k l+1$ to $2 k l+k u+1$; rows 1 to $k l$ of the array need not be set. The j-th column of A is stored in the j-th column of the array ab as follows: $a b(k l+k u+1+i-j, j)=A(i, j)$ for $\max (1, j-k u) \leq i \leq \min (m, j+k l)$.
Idab INTEGER. The leading dimension of the array $a b$.
(ldab $\geq 2 k l+k u+1$)

Output Parameters

$a b \quad$ On exit, details of the factorization: U is stored as an upper triangular band matrix with $k l+k u$ superdiagonals in rows 1 to $k l+k u+1$, and the multipliers used during the factorization are stored in rows $k l+k u+2$ to $2 * k l+k u+1$. See the Application Notes below for further details.
info INTEGER. $=0$: successful exit <0 : if info $=-i$, the i-th argument had an illegal value, >0 : if info $=+i, u(i, i)$ is 0 . The factorization has been completed, but the factor U is exactly singular. Division by 0 will occur if you use the factor U for solving a system of linear equations.

Application Notes

The band storage scheme is illustrated by the following example, when $m=n=6, k l=2$, $k u=1$:

```
        on entry on exit
```


$\left[\begin{array}{cccccc}* & \text { ul2 } & \text { u23 } & \text { u } 34 & \text { u4 } 4 & \text { u56 } \\ \text { u11 } & \text { u22 } & \text { u33 } & \text { u44 } & \text { u55 } & \text { u66 } \\ \text { m21 } & \text { m32 } & \text { m43 } & \text { m54 } & \text { m65 } & * \\ \text { m31 } & \text { m42 } & \text { m53 } & \text { m64 } & * & *\end{array}\right]$

The routine does not use array elements marked *.

?dttrf

Computes an LU factorization of a general tridiagonal matrix with no pivoting (local blocked algorithm).

Syntax

```
call sdttrf (n, dl, d, du, info)
call ddttrf (n, dl, d, du, info)
call cdttrf (n, dl, d, du, info)
call zdttrf (n, dl, d, du, info)
```


Description

This routine computes an $L U$ factorization of a real or complex tridiagonal matrix A using elimination without partial pivoting.

The factorization has the form $A=L U$, where L is a product of unit lower bidiagonal matrices and U is upper triangular with nonzeros only in the main diagonal and first superdiagonal.

Input Parameters
$n \quad$ INTEGER. The order of the matrix $A(n \geq 0)$.
$d l, d, d u \quad$ REAL for sdttrf
DOUBLE PRECISION for ddttrf
COMPLEX for cdttrf
COMPLEX*16 for zdttrf.
Arrays containing elements of A.
The array dl of DIMENSION $(n-1)$ contains the sub-diagonal elements of A.
The array d of DIMENSION n contains the diagonal elements of A.
The array du of DIMENSION (n-1) contains the super-diagonal elements of A.

Output Parameters

dl \quad Overwritten by the $(n-1)$ multipliers that define the matrix L from the $L U$ factorization of A.
d Overwritten by the n diagonal elements of the upper triangular matrix U from the $L U$ factorization of A.
$d u \quad$ Overwritten by the $(n-1)$ elements of the first super-diagonal of U.
info INTEGER.
$=0$: successful exit
<0 : if info $=-i$, the i-th argument had an illegal value,
>0 : if info $=i, u(i, i)$ is exactly 0 . The factorization has been completed, but the factor U is exactly singular. Division by 0 will occur if you use the factor U for solving a system of linear equations.

?dttrsv

Solves a general tridiagonal system of linear equations using the LU factorization computed by ?dttrf.

Syntax

```
call sdttrsv (uplo, trans, n, nrhs, dl, d, du, b, ldb, info)
call ddttrsv (uplo, trans, n, nrhs, dl, d, du, b, ldb, info)
call cdttrsv (uplo, trans, n, nrhs, dl, d, du, b, ldb, info)
call zdttrsv (uplo, trans, n, nrhs, dl, d, du, b, ldb, info)
```


Description

This routine solves one of the following systems of linear equations:

$L X=B$,	$L^{T} X=B$,	or	$L^{H} X=B$,
$U X=B$,	$U^{T} X=B$,	or	$U^{H} X=B$

with factors of the tridiagonal matrix A from the $L U$ factorization computed by ?dttrf.

Input Parameters

```
uplo CHARACTER*1.
    Specifies whether to solve with L or U
trans CHARACTER. Must be 'N' or 'T' or 'C'.
    Indicates the form of the equations:
    If trans='N', then AX=B is solved for X (no transpose).
    If trans=' 'T', then }\mp@subsup{A}{}{T}X=B\mathrm{ is solved for X (transpose).
    If trans=' ' '', then A}\mp@subsup{A}{}{H}X=B is solved for X (conjugate transpose).
n INTEGER. The order of the matrix A(n\geq0).
nrhs INTEGER. The number of right-hand sides, i.e., the number of columns in the
    matrix B (nrhs \geq0).
dl,d,du,b REAL for sdttrsv
    DOUBLE PRECISION for ddttrsv
    COMPLEX for cdttrsv
    COMPLEX*16 for zdttrsv.
    Arrays of DIMENSIONs: dl(n-1),d(n),du(n-1),b(ldb,nrhs).
```

The array $d l$ contains the ($n-1$) multipliers that define the matrix L from the $L U$ factorization of A.
The array d contains n diagonal elements of the upper triangular matrix U from the $L U$ factorization of A.
The array $d u$ contains the ($n-1$) elements of the first super-diagonal of U. On entry, the array b contains the right-hand side matrix B.
$1 d b$ INTEGER. The leading dimension of the array $b ; 1 d b \geq \max (1, n)$.

Output Parameters

b	Overwritten by the solution matrix X.
info	INTEGER. If info $=0$, the execution is successful.
	If info $=-i$, the i-th parameter had an illegal value.

?pttrsv

Solves a symmetric (Hermitian) positive-definite tridiagonal system of linear equations, using the $L D L^{H}$ factorization computed by ?pttrf.

Syntax

```
call spttrsv (trans, n, nrhs, d, e, b, ldb, info)
call dpttrsv (trans, n, nrhs, d, e, b, ldb, info)
call cpttrsv (uplo, trans, n, nrhs, d, e, b, ldb, info)
call zpttrsv (uplo, trans, n, nrhs, d, e, b, ldb, info)
```


Description

This routine solves one of the triangular systems:

$$
\begin{aligned}
& L^{T} X=B, \text { or } L X=B \quad \text { for real flavors, } \\
& \text { or } \\
& L X=B, \text { or } L^{H} X=B, \\
& U X=B, \text { or } U^{H} X=B \quad \text { for complex flavors, }
\end{aligned}
$$

where L (or U for complex flavors) is the Cholesky factor of a Hermitian positive-definite tridiagonal matrix A such that

```
\(A=L D L^{H}\) (computed by spttrf \(/\) dpttrf)
```

or
$A=U^{H} D U$ or $A=L D L^{H}$ (computed by cpttrf $/$ zpttrf) .

Input Parameters

uplo CHARACTER*1. Must be 'U' or 'L'.
Specifies whether the superdiagonal or the subdiagonal of the tridiagonal matrix A is stored and the form of the factorization:

If uplo $=$ ' U ', e is the superdiagonal of U, and $A=U^{\prime} D U$; If uplo = ' L ', e is the subdiagonal of L, and $A=L D L$ '.

The two forms are equivalent, if A is real.
trans CHARACTER.
Specifies the form of the system of equations:
for real flavors:
if trans $={ }^{\prime} \mathrm{N}$ ': $L X=B$ (no transpose)
if trans $=$ ' T ': $L^{T} X=B$ (transpose)
for complex flavors:
if trans $=' \mathrm{~N}$ ': $L X=B$ (no transpose)
if trans = 'N': $L X=B$ (no transpose)
if trans $=$ ' $\mathrm{C}^{\prime}: U^{H} X=B$ (conjugate transpose)
if trans $=' \mathrm{C}^{\prime}: L^{H} X=B$ (conjugate transpose)
INTEGER. The order of the tridiagonal matrix $A . n \geq 0$.
nrhs
d
e
b
integer. The number of right hand sides, that is, the number of columns of the matrix B. nrhs ≥ 0.

REAL array, DIMENSION (n). The n diagonal elements of the diagonal matrix D from the factorization computed by ?pttrf.

COMPLEX array, DIMENSION ($n-1$). The ($n-1$) off-diagonal elements of the unit bidiagonal factor U or L from the factorization computed by ?pttrf. See uplo.

COMPLEX array, DIMENSION (Idb, nrhs). On entry, the right hand side matrix B.

1 db	INTEGER. The leading dimension of the array b. $1 d b \geq \max (1, n)$.
Output Parameters	
b	On exit, the solution matrix X.
info	INTEGER. $=0$: successful exit <0 : if info $=-i$, the i-th argument had an illegal value

?steqr2

Computes all eigenvalues and, optionally, eigenvectors of a symmetric tridiagonal matrix using the implicit $Q L$ or QR method.

Syntax

```
call ssteqr2 (compz, n, d, e, z, ldz, nr, work, info)
call dsteqr2 (compz, n, d, e, z, ldz, nr, work, info)
```


Description

This routine is a modified version of LAPACK routine ?steqr. The routine ?steqr2 computes all eigenvalues and, optionally, eigenvectors of a symmetric tridiagonal matrix using the implicit QL or QR method. ?steqr2 is modified from ?steqr to allow each ScaLAPACK process running ?steqr2 to perform updates on a distributed matrix Q . Proper usage of ?steqr2 can be gleaned from examination of ScaLAPACK routine p?syev.

Input Parameters

compz CHARACTER*1. Must be 'N' or 'I'.
If $c o m p z=' N$ ', the routine computes eigenvalues only.
If compz = ' I', the routine computes the eigenvalues and eigenvectors of the tridiagonal matrix T.
z must be initialized to the identity matrix by p? laset or ?laset prior to entering this subroutine.
n
d,e,work
REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
Arrays:
d contains the diagonal elements of T.
The dimension of d must be at least $\max (1, n)$.
e contains the ($n-1$) subdiagonal elements of T.
The dimension of e must be at least $\max (1, n-1)$.
work is a workspace array.
The dimension of work is $\max \left(1,2 *_{n}-2\right)$.
If compz $=$ ' N ', then work is not referenced.
z
(local)
REAL for ssteqr2
DOUBLE PRECISION for dsteqr2
Array, global DIMENSION (n, n), local DIMENSION (ldz, nr).
If compz $=^{\prime} V^{\prime}$, then z contains the orthogonal matrix used in the reduction to tridiagonal form.
ldz INTEGER. The leading dimension of the array z. Constrains:
$l d z \geq 1$,
$l d z \geq \max (1, n)$, if eigenvectors are desired.
nr INTEGER. $n r=\max (1, \operatorname{numroc}(n, n b$, myprow, 0, nprocs $)$). If compz $=$ ' N ', then $n r$ is not referenced.

Output Parameters

REAL array, DIMENSION (n), for ssteqr2. DOUBLE PRECISION array, DIMENSION (n), for dsteqr2. On exit, the eigenvalues in ascending order, if info $=0$. See also info.

REAL array, DIMENSION ($n-1$), for ssteqr2. DOUBLE PRECISION array, DIMENSION ($n-1$), for dsteqr2. On exit, e has been destroyed.
(local)

REAL for ssteqr2
DOUBLE PRECISION for dsteqr2
Array, global DIMENSION (n, n), local DIMENSION ($1 d z, n r$).
On exit, if info $=0$, then, if $c o m p z=' V ', z$ contains the orthonormal eigenvectors
of the original symmetric matrix, and if $c o m p z=$ 'I', z contains the orthonormal eigenvectors of the symmetric tridiagonal matrix. If compz $=$ ' N ', then z is not referenced.
info
INTEGER.
info $=0$, the exit is successful.
info <0 : if info $=-i$, the i-th had an illegal value.
info >0 : the algorithm has failed to find all the eigenvalues in a total of $30 n$ iterations; if info $=i$, then i elements of e have not converged to zero; on exit, d and e contain the elements of a symmetric tridiagonal matrix, which is orthogonally similar to the original matrix.

Utility Functions and Routines

This section describes ScaLAPACK utility functions and routines. Summary information about these routines is given in the following table:

Table 7-2 ScaLAPACK Utility Functions and Routines

Routine Name	Data Types	Description
p?labad	s,d	Returns the square root of the underflow and overflow thresholds if the exponent-range is very large.
p?lachkieee	s,d	Performs a simple check for the features of the IEEE standard. (C interface function).
p? lamch	s,d	Determines machine parameters for floating-point arithmetic.
p?lasnbt	s,d	Computes the position of the sign bit of a floating-point number. (C interface function).
pxerbla		Error handling routine called by ScaLAPACK routines.

p?labad

Returns the square root of the underflow and overflow
thresholds if the exponent-range is very large.

Syntax

call pslabad (ictxt, small, large)
call pdlabad (ictxt, small, large)

Description

This routine takes as input the values computed by p? lamch for underflow and overflow, and returns the square root of each of these values if the log of large is sufficiently large. This subroutine is intended to identify machines with a large exponent range, such as the Crays, and redefine the underflow and overflow limits to be the square roots of the values computed by p? lamch. This subroutine is needed because p? lamch does not compensate for poor arithmetic in the upper half of the exponent range, as is found on a Cray.

In addition, this routine performs a global minimization and maximization on these values, to support heterogeneous computing networks.

Input Parameters

```
ictxt (global) INTEGER.
    The BLACS context handle in which the computation takes place.
small (local).
    REAL PRECISION for pslabad.
    DOUBLE PRECISION for pdlabad.
    On entry, the underflow threshold as computed by p?lamch.
large (local).
    REAL PRECISION for pslabad.
    DOUBLE PRECISION for pdlabad.
    On entry, the overflow threshold as computed by p?lamch.
```


Output Parameters

```
small (local).
```

small (local).
On exit, if log10 (large) is sufficiently large, the square root of small, otherwise
On exit, if log10 (large) is sufficiently large, the square root of small, otherwise
unchanged.

```
    unchanged.
```

On exit, if log10 (large) is sufficiently large, the square root of large, otherwise unchanged.

p?lachkieee

Performs a simple check for the features of the IEEE
standard. (C interface function).

Syntax

```
void pslachkieee (int *isieee, float *rmax, float *rmin);
```

void pdlachkieee (int *isieee, float *rmax, float *rmin);

Description

This routine performs a simple check to make sure that the features of the IEEE standard are implemented. In some implementations, p? lachkieee may not return.

Note that all arguments are call-by-reference so that this routine can be directly called from Fortran code.

This is a ScaLAPACK internal subroutine and arguments are not checked for unreasonable values.

Input Parameters

```
rmax (local).
    REAL for pslachkieee
    DOUBLE PRECISION for pdlachkieee
    The overflow threshold (= ?lamch ('O')).
rmin (local).
    REAL for pslachkieee
    DOUBLE PRECISION for pdlachkieee
    The underflow threshold (= ?lamch('U')).
```


Output Parameters

isieee (local).INTEGER.
On exit, isieee = 1 implies that all the features of the IEEE standard that we rely on are implemented.
On exit, isieee $=0$ implies that some the features of the IEEE standard that we rely on are missing.

p?lamch

Determines machine parameters for floating-point arithmetic.

Syntax

```
val = pslamch (ictxt, cmach)
val = pdlamch (ictxt, cmach)
```


Description

This function determines single precision machine parameters.

Input Parameters.

ictxt (global). INTEGER.The BLACS context handle in which the computation takes place.
cmach (global) CHARACTER*1.
Specifies the value to be returned by p?lamch:
= 'E' or 'e', p?lamch:=eps
= 's' or 's, p?lamch:= sfmin
= 'B' or 'b', p?lamch := base
$=$ ' p ' or ' p ', p ? lamch $:=$ eps*base
$=$ ' N ' or ' n ', p?lamch $:=\mathrm{t}$
$=$ 'R' or 'r', p?lamch := rnd
$=$ ' M ' or ' m ', p?lamch $:=$ emin
$=$ 'u' or 'u', p?lamch := rmin
$=$ 'L' or 'I', p?lamch := emax
= 'o' or 'o', p?lamch := rmax
where

```
eps = relative machine precision
sfmin = safe minimum, such that 1/sfmin does not overflow
base = base of the machine
prec =eps*base
t = number of (base) digits in the mantissa
rnd }=1.0\mathrm{ when rounding occurs in addition, 0.0 otherwise
emin = minimum exponent before (gradual) underflow
rmin = underflow threshold - base (emin-1)
emax = largest exponent before overflow
rmax = overflow threshold - (base emax ) * (1-eps)
```


Output Parameter

val the value returned by the fuction.

p?lasnbt

Computes the position of the sign bit of a floating-point number. (C interface function).

Syntax

```
void pslasnbt (int *ieflag);
void pdlasnbt (int *ieflag);
```


Description

This routine finds the position of the signbit of a single/double precision floating point number. This routine assumes IEEE arithmetic, and hence, tests only the $32^{\text {nd }}$ bit (for single precision) or $32^{\text {nd }}$ and $64^{\text {th }}$ bits (for double precision) as a possibility for the signbit. sizeof (int) is assumed equal to 4 bytes.

If a compile time flag (NO_IEEE) indicates that the machine does not have IEEE arithmetic, ieflag $=0$ is returned.

Output Parameters

ieflag INTEGER.
This flag indicates the position of the signbit of any single/double precision floating point number.
ieflag $=0$, if the compile time flag NO_IEEE indicates that the machine does not have IEEE arithmetic, or if sizeof (int) is different from 4 bytes. ieflag $=1$ indicates that the signbit is the $32^{\text {nd }}$ bit for a single precision routine.
In the case of a double precision routine:
ieflag $=1$ indicates that the signbit is the $32^{\text {nd }}$ bit (Big Endian).
ieflag $=2$ indicates that the signbit is the $64^{\text {th }}$ bit (Little Endian).

pxerbla

Error handling routine called by ScaLAPACK routines.

Syntax

call pxerbla (ictxt, srname, info)

Description

This routine is an error handler for the ScaLAPACK routines. It is called by a ScaLAPACK routine if an input parameter has an invalid value.
A message is printed. Program execution is not terminated. For the ScaLAPACK driver and computational routines, a RETURN statement is issued following the call to pxerbla. Control returns to the higher-level calling routine, and it is left to the user to determine how the program should proceed. However, in the specialized low-level ScaLAPACK routines (auxiliary routines that are Level 2 equivalents of computational routines), the call to pxerbla() is immediately followed by a call to BLACS_ABORT () to terminate program execution since recovery from an error at this level in the computation is not possible.

It is always good practice to check for a nonzero value of info on return from a ScaLAPACK routine.
Installers may consider modifying this routine in order to call system-specific exception-handling facilities.

Input Parameters

```
ictxt (global) INTEGER
    The BLACS context handle, indicating the global context of the operation. The
    context itself is global.
srname (global) CHARACTER*6
    The name of the routine which called pxerbla.
```

info (global) INTEGER.
The position of the invalid parameter in the parameter list of the calling routine.

Sparse Solver Routines

Intel ${ }^{\circledR}$ Math Kernel Library (Intel ${ }^{\circledR}$ MKL) provides a user-callable direct sparse solver software to solve symmetric and symmetrically-structured matrices with real or complex coefficients. For sparse symmetric matrices, this solver can solve both positive definite and indefinite systems.

The terms and concepts required to understand the use of the Intel MKL direct sparse solver subroutines are discussed in the Linear Solvers Basics appendix. If you are familiar with direct sparse solvers and sparse matrix storage schemes, you can omit reading these sections and go directly to the interface descriptions. The direct sparse solver PARDISO* is described in the section that follows. After that, an alternative interface (referred to here as DSS interface) that consists of several Intel MKL routines implementing the step-by-step solution process is described.

PARDISO - Parallel Direct Sparse Solver Interface

This section describes the interface to the shared-memory multiprocessing parallel direct sparse solver known as PARDISO. The interface is Fortran, but can be called from C programs by observing Fortran parameter passing and naming conventions used by the supported compilers and operating systems. A discussion of the algorithms used in PARDISO and more information on the solver can be found at http://www.computational.unibas.ch/cs/scicomp.

The PARDISO package is a high-performance, robust, memory efficient and easy to use software for solving large sparse symmetric and unsymmetric linear systems of equations on shared memory multiprocessors. The solver uses a combination of left- and right-looking Level-3 BLAS supernode techniques [10]. In order to improve sequential and parallel sparse numerical factorization performance, the algorithms are based on a Level-3 BLAS update and pipelining parallelism is exploited with a combination of left- and right-looking supernode techniques $[6,7$, 8,9]. The parallel pivoting methods allow complete supernode pivoting in order to compromise numerical stability and scalability during the factorization process. For sufficiently large problem
sizes, numerical experiments demonstrate that the scalability of the parallel algorithm is nearly independent of the shared-memory multiprocessing architecture and a speedup of up to seven using eight processors has been observed.

PARDISO supports, as illustrated in Figure 1, a wide range of sparse matrix types and computes the solution of real or complex, symmetric, structurally symmetric or unsymmetric, positive definite, indefinite or Hermitian sparse linear system of equations on shared-memory multiprocessing architectures.

Figure 8-1 \quad Sparse Matrices That Can be Solved With PARDISO

You can find example code that uses PARDISO interface routine to solve systems of linear equations in PARDISO Code Examples section in the appendix.

pardiso

Calculates the solution of a set of sparse linear equations with multiple right-hand sides.

Syntax

Fortran:

```
call pardiso(pt, maxfct, mnum, mtype, phase, n, a, ia, ja,
    perm, nrhs, iparm, msglvl, b, x, error)
C:
pardiso(pt, &maxfct, &mnum, &mtype, &phase, &n, a, ia, ja, perm, &nrhs,
    iparm, &msglvl, b, x, &error);
```

(An underscore may or may not be required after "pardiso" depending on the OS and compiler conventions for that OS).

Interface:

```
SUBROUTINE pardiso(pt, maxfct, mnum, mtype, phase, n, a, ia, ja,
    perm, nrhs, iparm, msglvl, b, x, error)
INTEGER*4 pt(64)
INTEGER*4 maxfct, mnum, mtype, phase, n, nrhs, error,
        ia(*), ja(*), perm(*), iparm(*)
REAL*8 a(*), b(n,nrhs), x(n,nrhs)
```

Note that the above interface is given for the 32-bit architectures. For 64-bit architectures, the argument pt (64) must be defined as INTEGER*8 type.

Description

PARDISO calculates the solution of a set of sparse linear equations

$$
A X=B
$$

with multiple right-hand sides, using a parallel $L U, L D L$ or $L L^{T}$ factorization, where A is an n-by-n matrix and X and B are n-by-nrhs matrices. PARDISO performs the following analysis steps depending on the structure of the input matrix A.

Symmetric Matrices: The solver first computes a symmetric fill-in reducing permutation P based on either the minimum degree algorithm [5] or the nested dissection algorithm from the METIS package [2] (included with Intel MKL), followed by the parallel left-right looking numerical Cholesky factorization [10] of $P A P^{T}=L L^{T}$ for symmetric positive-definite matrices or $P A P^{T}=L D L^{T}$ for symmetric, indefinite matrices. The solver uses no pivoting in these steps and an approximation of X is found by forward and backward substitution and iterative refinements.

Structurally Symmetric Matrices: The solver first computes a symmetric fill-in reducing permutation P followed by the parallel numerical factorization of $P A P^{T}=Q L U^{T}$. The solver uses partial pivoting in the supernodes and an approximation of X is found by forward and backward substitution and iterative refinements.

Unsymmetric Matrices: The solver first computes a non-symmetric permutation $P_{M P S}$ and scaling matrices D_{r} and D_{c} with the aim to place large entries on the diagonal which enhances greatly the reliability of the numerical factorization process [1]. In the next step the solver computes a fill-in reducing permutation P based on the matrix $P_{M P S} A+\left(P_{M P S} A\right)^{T}$ followed by the parallel numerical factorization

$$
Q L U R=P P_{M P S} D_{r} A D_{c} P
$$

with supernode pivoting matrices Q and R. When the factorization algorithm reaches a point where it cannot factorize the supernodes with this pivoting strategy, it uses a pivoting perturbation strategy similar to [4]. The magnitude of the potential pivot is tested against a constant threshold of $\varepsilon=\alpha \cdot\left\|A_{2}\right\|_{\infty}$, where ε is the machine precision $A_{2}=P P_{M P S} D_{r} A D_{c}$, and $\left\|A_{2}\right\|_{\infty}$ is the infinity norm of the scaled and permuted matrix A. Therefore any tiny pivots encountered during elimination are set to the $\operatorname{sign}\left(l_{i i}\right) \cdot \varepsilon \cdot\left\|A_{2}\right\|_{\infty}$ - this trades off some numerical stability for the ability to keep pivots from getting too small. Although many failures could render the factorization well-defined but essentially useless, in practice it is observed that the diagonal elements are rarely modified for a large class of matrices. The result of this pivoting approach is that the factorization is, in general, not exact and iterative refinement may be needed.

Direct-Iterative Preconditioning for Unsymmetric Linear Systems. The solver also allows a combination of direct and iterative methods [11] in order to accelerate the linear solution process for transient simulation. A majority of applications of sparse solvers require solutions of systems with gradually changing values of the nonzero coefficient matrix, but the same identical sparsity pattern. In these applications, the analysis phase of the solvers has to be performed only once and the numerical factorizations are the important time-consuming steps during the simulation. PARDISO uses a numerical factorization $A=L U$ for the first system and applies these exact factors L and U for the next steps in a preconditioned Krylow-Subspace iteration. If the iteration does not converge, the solver will automatically switch back to the numerical factorization. This method can be applied for unsymmetric matrices in PARDISO and the user can select the method using only one input parameter. For further details see the parameter description (iparm (4), iparm(20)).

The sparse data storage in PARDISO follows the scheme described in Sparse Matrix Storage Format section with ja standing for columns, ia for rowIndex, and a for values.
The algorithms in PARDISO require column indices $j a$ to be increasingly ordered per row and the presence of the diagonal element per row for any symmetric or structurally symmetric matrix. The unsymmetric matrices need no diagonal elements in the PARDISO solver.

There are four tasks that PARDISO is capable of performing, namely analysis and symbolic factorization, numerical factorization, forward and backward substitution including iterative refinement and finally the termination to release all internal solver memory. When an input data structure is not accessed in a call, a NULL pointer or any valid address can be passed as a place holder for that argument.

Input Parameters

pt INTEGER*4 for 32-bit operating systems INTEGER* 8 for 64-bit operating systems. Array, DIMENSION (64).
On entry, this is the solver internal data address pointer. Theses addresses are passed to the solver and all related internal memory management is organized through this pointer.

NOTE. pt is an integer array with 64 entries. It is very important that the pointer is initialized with zero at the first call of PARDISO. After that first call you should never modify the pointer, as a serious memory leak can occur. The integer length should be 4-byte on 32-bit operating systems and 8-byte on 64-bit operating systems.

INTEGER.
Maximal number of factors with identical nonzero sparsity structure that the user would like to keep at the same time in memory. It is possible to store several different factorizations with the same nonzero structure at the same time in the internal data management of the solver. In most of the applications this value is equal to 1 . Note that PARDISO can process several matrices with identical matrix sparsity pattern and is able to store the factors of these matrices at the same time. Matrices with different sparsity structure can be kept in memory with different memory address pointers $p t$.

```
mnum INTEGER.
Actual matrix for the solution phase. With this scalar you can define the matrix that
you would like to factorize. The value must be: 1\leq mnum\leq maxfct.
In most of the applications this value is equal to 1.
mtype INTEGER.
This scalar value defines the matrix type. The solver PARDISO supports the
following matrices:
```

```
mtype = 1 real and structurally symmetric matrix
```

mtype = 1 real and structurally symmetric matrix
=2 real and symmetric positive definite matrix
=2 real and symmetric positive definite matrix
=-2 real and symmetric indefinite matrix
=-2 real and symmetric indefinite matrix
= 3 complex and structurally symmetric matrix
= 3 complex and structurally symmetric matrix
=4 complex and Hermitian positive definite matrix
=4 complex and Hermitian positive definite matrix
= -4 complex and Hermitian indefinite matrix
= -4 complex and Hermitian indefinite matrix
= 6 complex and symmetric matrix
= 6 complex and symmetric matrix
= 11 real and unsymmetric matrix
= 11 real and unsymmetric matrix
= 13 complex and unsymmetric matrix

```
    = 13 complex and unsymmetric matrix
```

Note that this parameter influences the pivoting method.
INTEGER.
Controls the execution of the solver. It is a two-digit integer $i j(10 i+j, 1 \leq i \leq 3$, $i<j \leq 3$ for normal execution modes). The i digit indicates the starting phase of execution, and j indicates the ending phase. PARDISO has the following phases of execution:

- Phase 1: Fill-reduction analysis and symbolic factorization
- Phase 2: Numerical factorization
- Phase 3: Forward and Backward solve including iterative refinements
- Termination and Memory Release Phase (phase ≤ 0)

If a previous call to the routine has computed information from previous phases, execution may start at any phase. The phase parameter can have the following values:

phase	Solver Execution Steps
11	Analysis, symbolic factorization
12	Analysis, symbolic factorization, numerical factorization
13	Analysis, symbolic factorization, numerical factorization, solve
22	Numerical factorization
23	Numerical factorization, solve

phase	Solver Execution Steps
33	Solve
0	Release internal memory for L and U matrix number mnum
-1	Release all internal memory for all matrices

INTEGER.
Number of equations. This is the number of equations in the sparse linear systems of equations $A X=B$. Constraint: $n>0$.

NOTE. The nonzeros of each row of the matrix A must be stored in increasing order. For symmetric or structural symmetric matrices it is also important that the diagonal elements are also available and stored in the matrix. If the matrix is symmetric, then the array a is only accessed in the factorization phase, in the triangular solution and iterative refinement phase. Unsymmetric matrices are accessed in all phases of the solution process.

INTEGER.
Array, dimension $(n+1)$. For $i \leq n$, $i a(i)$ points to the first column index of row i in the array ja in compressed sparse row format. That is, $i a(i)$ gives the index of the element in array a that contains the first non-zero element from row i of A. The last element $i a(n+1)$ is taken to be equal to the number of non-zeros in A, plus one. Refer to rowIndex array description in Sparse Matrix Storage Format for more details. The array ia is also accessed in all phases of the solution process. Note that the row and columns numbers start from 1.

INTEGER
Array. $j a(*)$ contains column indices of the sparse matrix A stored in compressed sparse row format. The indices in each row must be sorted in increasing order. The array ja is also accessed in all phases of the solution process. For symmetric and structurally symmetric matrices it is assumed that zero diagonal elements are also stored in the list of nonzeros in a and ja. For symmetric matrices, the solver needs only the upper triangular part of the system as is shown for columns array in Sparse Matrix Storage Format.

```
perm INTEGER
    Array, dimension (n). Holds the permutation vector of size n.
    The array perm is defined as follows. Let A be the original matrix and B=PAP}\mp@subsup{}{}{T}\mathrm{ be
    the permuted matrix. Row (column) i of }A\mathrm{ is the perm(i) row (column) of B. The
    numbering of the array must start by 1 and it must describe a permutation.
    On entry, you can apply your own fill-in reducing ordering to the solver. The
    permutation vector perm is only accessed if iparm(5)=1.
nrhs INTEGER.
    Number of right-hand sides that need to be solved for.
iparm INTEGER
    Array, dimension (64). This array is used to pass various parameters to PARDISO
    and to return some useful information after the execution of the solver.
    If iparm(1) = 0, then PARDISO fills iparm(2), and iparm(4) through iparm(64)
    with default values and uses them. Note that there is no default values for iparm(3)
    and this value must always be supplied by the user, whether iparm(1) is 0 or 1.
    Individual components of the iparm array are described below (some of them in the
    Output Parameters section).
iparm(1)
If iparm(1) = 0 on entry, then iparm(2) and iparm(4) through iparm(64) are filled
with default values, otherwise the user has to supply all values in iparm from
iparm(2) to iparm(64).
iparm(2)
iparm(2) controls the fill-in reducing ordering for the input matrix. If iparm(2) is 0,
then the minimum degree algorithm is applied [5], if iparm(2) is 2, the solver uses
the nested dissection algorithm from the METIS package [2].
The default value of iparm(2) is 2.
iparm(3)
iparm(3) must contain the number of processors that are available for the parallel
execution. The number must be equal to the OpenMP environment variable
```

```
OMP_NUM_THREADS.
```

CAUTION. If the user has not explicitly set OMP_NUM_THREADS, then this value can be set by the operating system to the maximal numbers of processors on the system. It is therefore always recommended to control the parallel execution of the solver by explicitly setting OMP_NUM_THREADS. If less processors are available than specified, the execution may slow down instead of speeding up.

There is no default value for iparm(3).

```
iparm(4)
```

This parameter controls preconditioned CGS [11] for unsymmetric or structural symmetric matrices and Conjugate-Gradients for symmetric matrices. iparm(4) has the form

$$
\operatorname{iparm}(4)=10^{*} L+K
$$

The values K and L have the following meaning
Value K :

Value of K	Description
0	The factorization is always computed as required by phase
1	CGS iteration replaces the computation of $L U$. The preconditioner is $L U$ that was computed at a previous step (the first step or last step with a failure) in a sequence of solutions needed for identical sparsity patterns.
2	CG iteration for symmetric matrices replaces the computation of $L U$. The preconditioner is $L U$ that was computed at a previous step (the first step or last step with a failure) in a sequence of solutions needed for identical sparsity patterns.

Value L :
The value L controls the stopping criterion of the Krylow-Subspace iteration:
$\varepsilon_{\text {CGS }}=10^{-L}$ is used in the stopping criterion

$$
\left\|d x_{i}\right\| /\left\|d x_{1}\right\|<\varepsilon_{\mathrm{CGS}}
$$

with $\left\|d x_{i}\right\|=\left\|(L U)^{-1} r_{i}\right\|$ and r_{i} is the residuum at iteration i of the preconditioned Krylow-Subspace iteration.
Strategy: A maximum number of 150 iterations is fixed by expecting that the iteration
will converge before consuming half the factorization time. Intermediate convergence rates and residuum excursions are checked and can terminate the iteration process. If phase $=23$, then the factorization for a given A is automatically recomputed in these cases where the Krylow-Subspace iteration failed, and the corresponding direct solution is returned. Otherwise the solution from the preconditioned Krylow-Subspace iteration is returned. Using phase $=33$ results in an error message (error $=4$) if the stopping criteria for the Krylow-Subspace iteration can not be reached. More information on the failure can be obtained from iparm(20).

The default is $\operatorname{iparm}(4)=0$, and other values are only recommended for an advanced user. iparm(4) must be greater or equal to zero.

Examples:

iparm(4)	Description
31	LU-preconditioned CGS iteration with a stopping criterion of 10^{-3} for unsymmetric matrices
61	LU-preconditioned CGS iteration with a stopping criterion of 10^{-6} for unsymmetric matrices
62	LU-preconditioned CGS iteration with a stopping criterion of 10^{-6} for symmetric matrices

iparm(5)

In iparm(5), the user can apply his own fill reducing permutation instead of the integrated multiple-minimum degree or nested dissection algorithms.
This option may be useful for testing reordering algorithms or adapting the code to special applications problems (for instance, to move zero diagonal elements to the end $P A P^{T}$). For definition of the permutation, see description of the perm parameter. The default value of iparm(5) is 0 .
iparm(6)
On entry, if iparm(6) is 0 (which is the default), then the array x contains the solution and the value of b is not changed. If $\operatorname{iparm}(6)$ is 1 , then the solver will store the solution on the right hand side b.

Note that the array x is always used. The default value of iparm(6) is 0 .

```
iparm(7)
```

This value is not referenced. Reserved for future use.

iparm(8)

On input to the iterative refinement step, iparm(8) should be set to the maximum number of iterative refinement steps that the solver will perform. Iterative refinement will stop if a satisfactory level of accuracy of the solution in terms of backward error has been achieved. The solver will not perform more than the absolute value of iparm(8) steps of iterative refinement and will stop the process if a satisfactory level of accuracy of the solution in terms of backward error has been achieved.
The default value for $\operatorname{iparm}(8)$ is 0 .
Note that if iparm $(8)<0$, the accumulation of the residuum is using enhanced precision real and complex data types. Perturbed pivots result in iterative refinement (independent of $\operatorname{iparm}(8)=0$) and the iteration number executed is reported on iparm(20).
iparm (9)
This value is reserved for future use. Value must be set to 0 .

iparm(10)

On entry, iparm(10) instructs PARDISO how to handle small pivots or zero pivots for unsymmetric matrices (m type $=11$ or mtype $=13$). For these matrices the solver uses a complete supernode pivoting approach. When the factorization algorithm reaches a point where it cannot factorize the supernodes with this pivoting strategy, it uses a pivoting perturbation strategy similar to [4]. The magnitude of the potential pivot is tested against a constant threshold of

$$
\varepsilon=\alpha \cdot\left\|A_{2}\right\|_{\infty},
$$

where $\varepsilon=10^{-i \operatorname{parm}(10)}$ and $\left\|P P_{M P S} D_{r} A D_{c} P\right\|_{\infty}$ is the infinity norm of the scaled and permuted matrix A. Any tiny pivots encountered during elimination are set to the $\operatorname{sign}\left(l_{i i}\right) \cdot \varepsilon \cdot\left\|A_{2}\right\|_{\infty}-$ this trades off some numerical stability for the ability to keep pivots from getting too small. Small pivots are therefore perturbed with $\varepsilon=10^{-\mathrm{iparm}(10)}$.
The default value of $\operatorname{iparm}(10)$ is 13 and therefore $\varepsilon=10^{-13}$.

iparm(11)

PARDISO uses a maximum weight matching algorithm to permute large elements on the diagonal and to scale the matrix so that the diagonal elements are equal to 1 and the absolute value of the off-diagonal entries are less or equal to 1 . This method is only applied to unsymmetric matrices (m type $=11$ or $m t y p e=13$) and, by default, indicated with $\operatorname{iparm}(11)=1$, this option is always turned on. Otherwise, the scalings are omitted.
The default value of iparm(11) is 1 .

iparm(12)

This value is reserved for future use. Value must be set to 0 .

```
iparm(13)
```

This value is reserved for future use. Value must be set to 0 .
iparm(18)
The solver will report the numbers of nonzeros on the factors if iparm(18) <0 on entry.

The default value of iparm(18) is 0 .
iparm(19)
If iparm(19)<0 on entry, the solver will report MFlop $\left(10^{6}\right)$ that are necessary to factor the matrix A. This will increase the reordering time.
The default value of iparm(19) is 0 .
msglvl INTEGER.
Message level information. If $m s g l v l=0$ then PARDISO generates no output, if $m s g l v l=1$ the solver prints statistical information in the file pardiso.stat.\#nproc.
b REAL/COMPLEX
Array, dimension ($n, n r h s$). On entry, contains the right hand side vector/matrix B. Note that b is only accessed in the solution phase.

Output Parameters

pt On exit, contains internal address pointers.
iparm On output, some iparm values will contain useful information, for example, numbers of nonzeros in the factors, and so on.
iparm(14)
After factorization, iparm(14) contains the number of perturbed pivots during the elimination process for $m t y p e=11$ or $m t y p e=13$.
iparm(15)
On output, iparm(15) provides the user with the total peak memory in KBytes that the solver needed during the analysis and symbolic factorization phase. This value is only computed in phase 1 .
iparm(16)
On output, iparm(16) provides the user with the permanent memory in KBytes that the solver needed from the analysis and symbolic factorization phase in the
factorization and solve phases. This value is only computed in phase 1.
iparm(17)
On output, iparm(17) provides the user with the total double precision memory consumption (KBytes) of the solver for the factorization and solve phases. This value is only computed in phase 2.
Note that the total peak memory solver consumption is $\max ($ iparm(15), iparm(16)+iparm(17)).

iparm(18)

On output, the numbers of nonzeros on the factors are returned to the user.

iparm(19)

Number of operations in MFlop (10^{6} operations) that are necessary to factor the matrix A are returned to the user.

iparm(20)

The value is used to give CG/CGS diagnostics (for example, the number of iterations and cause of failure):
If iparm $(20)>0$, CGS succeeded, and the number of iterations executed are reported in iparm(20).
If iparm $(20)<0$, iterations executed, but CG/CGS failed. The error report details in iparm(20) are of the form:
$\operatorname{iparm}(20)=-\mathrm{it} \mathrm{\_cgs*} 10-$ cgs_error.
If phase was 23 , then the factors L, U have been recomputed for the matrix A and the error flag error should be zero in case of a successful factorization. If phase was 33 , then error $=-4$ will signal the failure.
Description of cgs_error is given in the below table:

cgs_error	Description		
1	too large fluctuations of the residuum		
2	$\\| d x_{\text {max_it_cgs/2 } \\| \text { too large (slow convergence) }}$		
3	stopping criterion not reached at max_it_cgs		
4	perturbed pivots caused iterative refinement		
5	factorization is too fast for this matrix. It is better to use the factorization method with $\operatorname{iparm}(4)=0$		

iparm(21) to iparm(64)

These values are reserved for future use. Value must be set to 0 .
b
x
error

On output, the array is replaced with the solution if $\operatorname{iparm}(6)=1$.
REAL/ COMPLEX
Array, dimension ($n, n r h s$). On output, contains solution if $\operatorname{iparm}(6)=0$.
Note that x is only accessed in the solution phase.
INTEGER.
The error indicator according to the below table:

error	Information
0	no error
-1	input inconsistent
-2	not enough memory
-3	reordering problem
-4	zero pivot, numerical factorization problem
-5	unclassified (internal) error
-6	preordering failed (matrix types 11, 13 only)
-7	diagonal matrix problem

Direct Sparse Solver (DSS) Interface Routines

The Intel MKL supports an alternative to PARDISO interface for the direct sparse solver referred to here as DSS interface. The DSS interface implements a group of user-callable routines that are used in the step-by-step solving process and exploits the general scheme described in Linear Solvers Basics for solving sparse systems of linear equations. This interface also includes one routine for gathering statistics related to the solving process and an auxiliary routine for passing character strings from Fortran routines to C routines.

The solving process is conceptually divided into six phases, as shown in Table 8-1 which lists the names of the routines, grouped by phase, and describes their general use.

Table 8-1 DSS Interface Routines

Routine	Description dss_create
Initializes the solver and creates the basic data structures necessary for the solver. This routine must be called before any other DSS routine.	
$\underline{\text { dss define structure }}$	Used to inform the solver of the locations of the non-zero elements of the array.
$\underline{\text { dss_factor_real, }}$	Based on the non-zero structure of the matrix, this routine computes a permutation vector to reduce fill-in during the factoring process.
$\underline{\text { dss_factor_complex }}$	Computes the $L U, L D T^{t}$ or $L L^{T}$ factorization of a real or complex matrix.
$\underline{\text { dss_solve_real }}$	Computes the solution vector for a system of equations based on the factorization computed by the previous phase.
$\underline{\text { dss delete }}$	Deletes all of the data structures created during the solutions process.
$\underline{\text { dss_statistics }}$	Returns statistics about various phases of the solving process. Used to gather statistics in the following areas: time taken to do reordering, time taken to do factorization, problem solving duration, determinant of a matrix, inertia of a matrix, and number of floating point operations taken during factorization. Can be invoked at any phase of the solving process after the "reorder" phase, but before the
"delete" phase. Note that appropriate argument(s) must be supplied	
to this routine to correspond to phase at which it is invoked.	

To find a single solution vector for a single system of equations with a single right hand side, the Intel MKL DSS interface routines are invoked in the order in which they are listed in Table 8-1, with the exception of dss_statistics, which is invoked as described in the table.

However, in certain applications it is necessary to produce solution vectors for multiple right-hand sides for a given factorization and/or factor several matrices with the same non-zero structure. Consequently, it is necessary to be able to invoke the Intel MKL sparse routines in an order other than listed in the table. The following diagram in Figure 8-2 indicates the typical order(s) in which the DSS interface routines can be invoked.

Figure 8-2 Typical order for invoking DSS interface routines

You can find example code that uses DSS interface routines to solve systems of linear equations in Direct Sparse Solver Examples section in the appendix.

Interface Description

As noted in Memory Allocation and Handles section, each DSS routine either reads or writes an opaque data object called a handle. Because the declaration of a handle varies from language to language, it is declared as being of type MKL_DSS_HANDLE in this documentation. You can refer to Memory Allocation and Handles to determine the correct method for declaring a handle argument.

All other types in this documentation refer to the standard Fortran types, INTEGER, REAL, COMPLEX, DOUBLE PRECISION, and DOUBLE COMPLEX.

C and C++ programmers should refer to Calling Direct Sparse Solver Routines From C/C++ for information on mapping Fortran types to $\mathrm{C} / \mathrm{C}++$ types.

Routine Options

All of the DSS routines have an integer argument (below referred to as opt) for passing various options to the routines. The permissible values for opt should be specified using only the symbol constants defined in the language-specific header files (see Implementation Details). All of the routines accept options for setting the message and termination level as described in Table 8-2. Additionally, all routines accept the option MKL_DSS_DEFAULTS, which establishes the documented default options for each DSS routine.

Table 8-2 Symbolic Names for the Message and Termination Level Options

Message Level	Termination Level
MKL_DSS_MSG_LVL_SUCCESS	MKL_DSS_TERM_LVL_SUCCESS
$M K L \_D S S \_M S G \_L V L \_I N F O ~$	MKL_DSS_TERM_LVL_INFO
$M K L \_D S S \_M S G \_L V L \_W A R N I N G ~$	$M K L \_D S S \_T E R M \_L V L \_W A R N I N G ~$
$M K L \_D S S \_M S G \_L V L \_E R R O R ~$	$M K L \_D S S \_T E R M \_L V L \_E R R O R ~$
$M K L \_D S S \_M S G \_L V L \_F A T A L ~$	$M K L \_D S S \_T E R M \_L V L \_F A T A L ~$

The settings for message and termination level can be set on any call to a DSS routine. However, once set to a particular level, they remain at that level until they are changed in another call to a DSS routine.

Users can specify multiple options to a DSS routine by adding the options together. For example, to set the message level to debug and the termination level to error for all DSS routines, use the call:

CALL dss_create(handle, MKL_DSS_MSG_LVL_INFO + MKL_DSS_TERM_LVL_ERROR)

User Data Arrays

Many of the DSS routines take arrays of user data as input. For example, user arrays are passed to the routine dss_define_structure to describe the location of the non-zero entries in the matrix. In order to minimize storage requirements and improve overall run-time efficiency, the Intel MKL DSS routines do not make copies of the user input arrays.

WARNING. Users cannot modify the contents of these arrays after they are passed to one of the solver routines.

dss_create

Initializes the solver.

```
Syntax
dss_create (handle, opt)
```

Input Arguments

```
opt
    INTEGER. Options passing argument. The default value is
    MKL_DSS_MSG_LVL_WARNING + MKL_DSS_TERM_LVL_ERROR .
```


Output Arguments

handle
Data object of MKL_DSS_HANDLE type (see Interface Description).

Description

The routine dss_create is called to initialize the solver. After the call to dss_create, all subsequent invocations of Intel MKL DSS routines should use the value of handle returned by dss_create.

WARNING. Do not write the value of handle directly.

Return Values

```
MKL_DSS_SUCCESS
MKL_DSS_INVALID_OPTION
MKL_DSS_OUT_OF_MEMORY
```


dss_define_structure

Communicates to the solver locations of non-zero elements in the matrix.

Syntax

```
dss_define_structure (handle, opt, rowIndex, nRows, nCols, columns,
```

 nNonZeros) ;

Input Arguments

opt INTEGER. Option passing argument. The default option for the matrix structure is MKL_DSS_SYMMETRIC.
rowIndex INTEGER. Array of size min (nRows, nCols) +1. Defines the location of non-zero entries in the matrix.
nRows INTEGER. Number of rows in the matrix.
nCols INTEGER. Number of columns in the matrix.
columns
nNonZeros INTEGER. Number of non-zero elements in the matrix.

Output Arguments

handle Data object of MKL_DSS_HANDLE type (see Interface Description).

Description

The routine dss_define_structure communicates to the solver the locations of the nNonZeros number of non-zero elements in a matrix of size nRows by nCols.
Note that currently Intel MKL DSS software only operates on square matrices, so nRows must be equal to nCols.

To communicate the locations of non-zeros in the matrix, do the following:

1. Define the general non-zero structure of the matrix by specifying one of the following values for the options argument opt:
```
MKL_DSS_SYMMETRIC_STRUCTURE
MKL_DSS_SYMMETRIC
MKL_DSS_NON_SYMMETRIC
```

2. Provide the actual locations of the non-zeros by means of the arrays rowIndex and columns (see Sparse Matrix Storage Format).

NOTE. Currently, DSS software in Intel MKL does not directly support non-symmetric matrices. Instead, when the MKL_DSS_NON_SYMMETRIC option is specified, the solver will convert non-symmetric matrices into symmetrically structured matrices by adding zeros in the appropriate place.

Return Values

```
MKL_DSS_SUCCESS
MKL_DSS_STATE_ERR
MKL_DSS_INVALID_OPTION
MKL_DSS_COL_ERR
MKL_DSS_NOT_SQUARE
MKL_DSS_TOO_FEW_VALUES
MKL_DSS_TOO_MANY_VALUES
```


dss_reorder

Computes permutation vector that minimizes the fill-in during the factorization phase.

```
Syntax
dss_reorder (handle, opt, perm)
```


Input Arguments

opt
perm INTEGER. Array of length nRows. Contains a user-defined permutation vector (accessed only if opt contains MKL_DSS_MY_ORDER) .

Output Arguments

handle
Data object of MKL_DSS_HANDLE type (see Interface Description).

Description

If opt contains the options MKL_DSS_AUTO_ORDER, then dss_reorder computes a permutation vector that minimizes the fill-in during the factorization phase. For this option, the perm array is never accessed.

If opt contains the option MKL_DSS_MY_ORDER, then the array perm is considered to be a permutation vector supplied by the user. In this case, the array perm is of length nRows, where nRows is the number of rows in the matrix as defined by the previous call to dss_define_structure.

Return Values

```
MKL_DSS_SUCCESS
MKL_DSS_STATE_ERR
MKL_DSS_INVALID_OPTION
MKL_DSS_OUT_OF_MEMORY
```


dss_factor_real, dss_factor_complex

Compute the factorization of the matrix with previously specified location.

```
Syntax
dss_factor_real (handle, opt, rValues)
dss_factor_complex (handle, opt, cValues)
```

Input Arguments
\(\left.$$
\begin{array}{ll}\text { handle } & \begin{array}{l}\text { Data object of MKL_DSS_HANDLE type (see Interface Description). } \\
\text { opt }\end{array}
$$

INTEGER. Option passing argument. The default option for the matrix

type is MKL_DSS_POSITIVE_DEFINITE.\end{array}\right\}\)| DOUBLE PRECISION. Array of size nNonZeros. Contains real |
| :--- |
| non-zero elements of the matrix. |

Description

These routines compute the factorization of the matrix whose non-zero locations were previously specified by a call to dss_define_structure and whose non-zero values are given in the array rValues or cValues. The arrays rValues and cValues are assumed to be of length nNonZeros as defined in a previous call to dss_define_structure.

The opt argument should contain one of the following options:

```
MKL_DSS_POSITIVE_DEFINITE,
MKL_DSS_INDEFINITE,
MKL_DSS_HERMITIAN_POSITIVE_DEFINITE,
MKL_DSS_HERMITIAN_INDEFINITE,
```

depending on whether the non-zero values in rvalues and cValues describe a positive definite, indefinite, or Hermitian matrix.

Return Values

```
MKL_DSS_SUCCESS
MKL_DSS_STATE_ERR
MKL_DSS_INVALID_OPTION
MKL_DSS_OPTION_CONFLICT
MKL_DSS_OUT_OF_MEMORY
MKL_DSS_ZERO_PIVOT
```


dss_solve_real, dss_solve_complex

Compute the corresponding solutions vector and place it in the output array.

Syntax

```
dss_solve_real (handle, opt, rRhsValues, nRhs, rSolValues)
dss_solve_complex (handle, opt, cRhsValues, nRhs, cSolValues)
```


Input Arguments

handle	Data object of MKL_DSS_HANDLE type (see Interface Description).
opt	INTEGER. Option passing argument.
nRhs	INTEGER. Number of the right-hand sides in the linear equation.
rRhsValues	DOUBLE PRECISION. Array of size $n R o w s ~ b y ~ n R h s . ~ C o n t a i n s ~ r e a l ~$ right-hand side vectors.
$C R h s V a l u e s ~$	DOUBLE COMPLEX. Array of size $n R o w s ~ b y ~ n R h s . ~ C o n t a i n s ~ c o m p l e x ~$ right-hand side vectors.

Output Arguments

rSolvalues	DOUBLE PRECISION. Array of size $n C o l s$ by $n R h s$. Contains real solution vectors.
cSolvalues	DOUBLE COMPLEX. Array of size $n C o l s$ by $n R h s$. Contains complex solution vectors.

Description

For each right hand side column vector defined in ?RhsValues (where ? is one of r or c), these routines compute the corresponding solutions vector and place it in the array ?SolValues.

The lengths of the right-hand side and solution vectors, nCols and nRows respectively, are assumed to have been defined in a previous call to dss define structure.

Return Values

```
MKL_DSS_SUCCESS
```

```
MKL_DSS_STATE_ERR
MKL DSS INVALID OPTION
MKL_DSS_OUT_OF_MEMORY
```


dss delete

Deletes all of data structures created during the solutions process.

Syntax

dss_delete (handle, opt)

Input Arguments

```
opt INTEGER. Options passing argument. The default value is
    MKL_DSS_MSG_LVL_WARNING + MKL_DSS_TERM_LVL_ERROR.
```


Output Arguments

handle Data object of MKL_DSS_HANDLE type (see Interface Description).

Description

The routine dss_delete is called to delete all of the data structures created during the solutions process.

Return Values

```
MKL_DSS_SUCCESS
MKL_DSS_INVALID_OPTION
MKL_DSS_OUT_OF_MEMORY
```


dss_statistics

Returns statistics about various phases of the solving process.

Syntax

```
dss_statistics (handle, opt, statArr, retValues)
```

Input Arguments

handle	Data object of MKL_DSS_HANDLE type (see Interface Description).
opt	INTEGER. Options passing argument.
statarr	STRING. Input string that defines the type of the returned statistics. Can include one or more of the following string constants (case of the input string has no effect):

ReorderTimeAmount of time taken to do the reordering.
FactorTime Amount of time taken to do the factorization.
SolveTime Amount of time taken to solve the problem after factorization.

DeterminantDeterminant of the matrix A. For real matrices, determinant is returned as det_pow, det_base in two consecutive return array locations, where:
$1.0 \leq a b s\left(d e t \_b a s e\right)<10.0$ and
determinant $=$ det_base $\cdot 10^{\text {det_pow }}$.
For complex matrices, determinant is returned as det_pow, det_re, det_im in three consecutive return array locations, where:
$1.0 \leq a b s\left(d e t \_r e\right)+a b s\left(d e t \_i m\right)<10.0$ and
determinant $=\left(\right.$ det_re, det_im) $\cdot 10^{\text {det_pow }}$.
Inertia Inertia of a real symmetric matrix is defined to be a triplet of nonnegative integers (p, n, z) where p is a number of positive eigenvalues, n is number of negative eigenvalues, and z is number of zero eigenvalues.

Inertia will be returned as three consecutive return array locations as p, n, z.

Computing Inertia is only recommended for stable matrices. Unstable matrices can lead to incorrect results.

Inertia of a $k x k$ real symmetric positive definite matrix is always $(k, 0,0)$. Therefore Inertia is returned only in cases of real symmetric indefinite matrices. For all other matrix types, an error message is returned.

Flops \quad Number of floating point operations performed during factorization.

NOTE. To avoid problems in passing strings from Fortran to C, Fortran users must call the mkl_cvt_to_null_terminated_str routine before calling dss_statistics. Refer to the description of mkl_cvt_to_null_terminated_str for details.

Output Arguments

retValues
DOUBLE PRECISION. Value of the statistics returned.

Description

The dss_statistics routine returns statistics about various phases of the solving process. Use this routine to gather statistics in the following areas:

- time taken to do reordering,
- time taken to do factorization,
- problem solving duration,
- determinant of a matrix,
- inertia of a matrix,
- number of floating point operations taken during factorization.

Statistics are returned corresponding to the specified input string. The value of the statistics is returned in double precision in a return array allocated by user.

For multiple statistics, string constants separated by commas can be used as input. Return values are put into the return array in the same order as specified in the input string.

Statistics should only be requested at appropriate stages of the solving process. For example, inquiring about FactorTime before a matrix is factored will lead to errors.

The following table shows the point at which each statistic can be called:

Table 8-3 Statistics Calling Sequences

Type of

Statistics	When to Call
ReorderTime	After dss_reorder is completed successfully.

FactorTime Afterdss_factor_real or dss_factor_complex is completed successfully.
SolveTime After dss_solve_real or dss_solve_complex is completed successfully.
Determinant After dss_factor_real or dss_factor_complex is completed successfully.
Inertia After dss_factor_real is completed successfully and matrix is real, symmetric, and indefinite.

Flops After dss_factor_real or dss_factor_complex is completed successfully.

The example below illustrates the use of the dss_statistics routine.

Example 8-1 Finding "time used to reorder" and "inertia" of a matrix.

To find these values, call
dss_statistics(handle, opt, statArr, retValues), where statArr is "ReorderTime, Inertia"

In this example, retValues will have the following values:

```
retValue [0] Time to reorder.
retValue [1] Positive Eigenvalues.
retValue [2] Negative Eigenvalues.
retValue[3] Zero Eigenvalues.
```

Return Values
MKL_DSS_SUCCESS
MKL_DSS_STATISTICS_INVALID_MATRIX

```
MKL_DSS_STATISTICS_INVALID_STATE
MKL_DSS_STATISTICS_INVALID_STRING
```


mkl_cvt_to_null_terminated_str

Passes character strings from Fortran routines to C routines.

Syntax

mkl_cvt_to_null_terminated_str (destStr, destLen, srcStr)
Input Arguments

```
destLen INTEGER. Length of the output array destStr.
srcStr STRING. Input string.
```


Output Arguments

destStr INTEGER. One-dimensional array of integer.

Description

The routine mkl_cvt_to_null_terminated_str is used to pass character strings from Fortran routines to C routines. The strings are converted into integer arrays before being passed to C . Using this routine avoids the problems that can occur on some platforms when passing strings from Fortran to C. The use of this routine is highly recommended.

Implementation Details

Several aspects of the Intel MKL DSS interface are platform-specific and language-specific. In order to promote portability across platforms and ease of use across different languages, users are encouraged to include one of the Intel MKL DSS language-specific header files. Currently, there are three language specific header files:

- mkl_dss.f77 for F77 programs
- mkl_dss.f90 for F90 programs
- mkl_dss.h for C programs

These language-specific header files define symbolic constants for error returns, function options, certain defined data types, and function prototypes.

NOTE. It is strongly recommended that you refer to the constants for options, error returns, and message severities only by the symbolic names that are defined in the header files. Use of the Intel MKL DSS software without including one of the above header files is not supported.

Memory Allocation and Handles

In order to make the Intel MKL DSS routines as easy to use as possible, the routines do not require the user to allocate any temporary working storage. Any storage required by the solver (that is not a user input) is allocated by the solver itself. In order to allow multiple users to access the solver simultaneously, the solver keeps track of the storage allocated for a particular application by using an opaque data object called a handle.

Each of the Intel MKL DSS routines either creates, uses or deletes a handle. Consequently, user programs must be able to allocate storage for a handle. The exact syntax for allocating storage for a handle varies from language to language. To help standardize the handle declarations, the language-specific header files declare constants and defined data types that should be used when declaring a handle object in user code.

Fortran 90 programmers should declare a handle as:
INCLUDE "mkl_dss.f90"
TYPE (MKL_DSS_HANDLE) handle

C and $\mathrm{C}++$ programmers should declare a handle as:

```
#include "mkl_dss.h"
_MKL_DSS_HANDLE_t handle;
```

Fortran 77 programmers using compilers that support eight byte integers, should declare a handle as:

INCLUDE "mkl_dss.f77"
INTEGER*8 handle
Otherwise they should replace INTEGER*8 with DOUBLE PRECISION.
In addition to the necessary definition for the correct declaration of a handle, the include file also defines the following:

- function prototypes for languages that support prototypes
- symbolic constants that are used for the error returns
- user options for the solver routines
- message severity

Calling Direct Sparse Solver Routines From C/C++

The calling interface for all of the Intel MKL DSS routines is designed to be used easily from Fortran 77 or Fortran 90 . However, any of the DSS routines can be invoked directly from C or C++ if users are familiar with the inter-language calling conventions of their platforms. These conventions include, but are not limited to, the argument passing mechanisms for the language, the data type mappings from Fortran to $\mathrm{C} / \mathrm{C}++$ and how Fortran external names are decorated on the platform.

In order to promote portability and to avoid having most users deal with these issues, the C header file mkl_dss.h provides a set of macros and type definitions that are intended to hide the inter-language calling conventions and provide an interface to the DSS that appears natural for C/C++.

For example, consider a hypothetical library routine, foo, that takes real vector of length n, and returns an integer status. Fortran users would access such a function as:

```
INTEGER n, status, foo
REAL x(*)
status = foo(x, n)
```

As noted above, for C users to invoke foo, they would need to know what C data types correspond to Fortran types INTEGER and REAL; what argument passing mechanism the Fortran compiler uses; and what, if any, name decoration the is performed by the Fortran compiler when generating the external symbol foo.

However, by using the C specific header file mkl _dss. h , the invocation of foo, within a C program would look like:

```
#include "mkl_dss.h"
_INTEGER_t i, status;
_REAL_t x[];
status = foo( x, i );
```

Note that in the above example, the header file mkl_dss.h provides definitions for the types _INTEGER_t and _REAL_t that correspond to the Fortran types INTEGER and REAL.

In order to ease the use of DSS routines from C and $\mathrm{C}++$, the general approach of providing C definitions of Fortran types is used throughout the library. Specifically, if an argument or result from a direct sparse solver is documented as having the Fortran language specific type xxx , then the C and $\mathrm{C}++$ header files provide an appropriate C language type definitions for the name _XXX_t.

Caveat for C Users

One of the key differences between $\mathrm{C} / \mathrm{C}++$ and Fortran is the argument passing mechanisms for the languages: Fortran programs use pass-by-reference semantics and $\mathrm{C} / \mathrm{C}++$ programs use pass-by-value semantics. In the example in the previous section, the header file, mkl_dss.h, attempts to hide this difference, by defining a macro, foo that takes the address of the appropriate arguments. For example, on Tru64 UNIX, mkl_dss.h would define the macro as:

```
#define foo(a,b) foo_((a), &(b))
```

An important point to note when using the macro form of $f \circ o$ is how it deals with constants. If we write $f \circ \circ(x, 10)$, this is translated into $f o_{-}(x, \& 10)$. In a strictly ANSI compliant C compiler, it is not permissible to take the address of a constant, so a strictly conforming program would look like:

```
_INTEGER_t iTen = 10;
_REAL_t * x;
status = foo( x, iTen );
```

However, some C compilers in a non-ANSI standard mode allow taking the address of a constant for ease of use with Fortran programs. Thus, the form shown as $f \circ 0(x, 10)$ is acceptable for these compilers.

Vector Mathematical Functions

This chapter describes Vector Mathematical Functions Library (VML), which is designed to compute elementary functions on vector arguments. VML is an integral part of the Intel ${ }^{\circledR}$ MKL Kernel Library and the VML terminology is used here for simplicity in discussing this group of functions.

VML includes a set of highly optimized implementations of certain computationally expensive core mathematical functions (power, trigonometric, exponential, hyperbolic etc.) that operate on vectors.

Application programs that might significantly improve performance with VML include nonlinear programming software, integrals computation, and many others.

VML functions are divided into the following groups according to the operations they perform:

- "VML Mathematical Functions" compute values of elementary functions (such as sine, cosine, exponential, logarithm and so on) on vectors with unit increment indexing.
-"VML Pack/Unpack Functions" convert to and from vectors with positive increment indexing, vector indexing and mask indexing (see Appendix B for details on vector indexing methods).
- "VML Service Functions" allow the user to set / get the accuracy mode, and set/get the error code.

VML mathematical functions take an input vector as argument, compute values of the respective elementary function element-wise, and return the results in an output vector.

Data Types and Accuracy Modes

Mathematical and pack/unpack vector functions in VML have been implemented for vector arguments of single and double precision real data. Both Fortran- and C-interfaces to all functions, including VML service functions, are provided in the library. The differences in naming and calling the functions for Fortran- and C-interfaces are detailed in the "Function Naming Conventions" section below.

Each vector function from VML (for each data format) can work in two modes: High Accuracy (HA) and Low Accuracy (LA). For many functions, using the LA version will improve performance at the cost of accuracy.
For some cases, the advantage of relaxing the accuracy improves performance very little so the same function is employed for both versions. Error behavior depends not only on whether the HA or LA version is chosen, but also depends on the processor on which the software runs. In addition, special value behavior may differ between the HA and LA versions of the functions. Any information on accuracy behavior can be found in the Intel MKL Release Notes.

Switching between the two modes (HA and LA) is accomplished by using vmlSetMode (mode) (see Table 9-11). The function vmlGetMode () will return the currently used mode. The High Accuracy mode is used by default.

Function Naming Conventions

Full names of all VML functions include only lowercase letters for Fortran-interface, whereas for C-interface names the lowercase letters are mixed with uppercase.

VML mathematical and pack/unpack function full names have the following structure:

```
v <p> <name> <mod>
```

The initial letter v is a prefix indicating that a function belongs to VML. The < $p>$ field is a precision prefix that indicates the data type:

$$
\begin{array}{ll}
\text { s } & \text { REAL for Fortran-interface, or } f \text { loat for } \mathrm{C} \text {-interface } \\
\text { d } & \text { DOUBLE } \\
\text { PRECISION for Fortran-interface, or double for C-interface. }
\end{array}
$$

The <name> field indicates the function short name, with some of its letters in uppercase for C-interface (see for example Table 9-2 or Table 9-10).

The <mod> field (written in uppercase for C-interface) is present in pack/unpack functions only; it indicates the indexing method used:

i	indexing with positive increment
v	indexing with index vector
m	indexing with mask vector.

VML service function full names have the following structure:

```
vml <name>
```

where vml is a prefix indicating that a function belongs to VML, and <name> is the function short name, which includes some uppercase letters for C-interface (see Table 9-10).
To call VML functions from an application program, use conventional function calls. For example, the VML exponential function for single precision data can be called as

```
call vsexp ( n, a, y ) for Fortran-interface, or
vsExp ( n, a, y ); for C-interface.
```


Functions Interface

The interface to VML functions includes function full names and the arguments list. The Fortranand C-interface descriptions for different groups of VML functions are given below. Note that some functions (Div, Pow, and Atan2) have two input vectors a and b as their arguments, while Sincos function has two output vectors y and z.

VML Mathematical Functions

Fortran:

```
call v<p><name>( n, a, y )
call v<p><name>( n, a, b, y )
call v<p><name>( n, a, y, z )
```

C:

```
v<p><name>( n, a, y);
v<p><name>( n, a, b, y );
v<p><name>( n, a, y, z );
```


Pack Functions

Fortran:

```
call v<p>packi( n, a, inca, y )
call v<p>packv( n, a, ia, y )
call v<p>packm( n, a, ma, y )
```

C:

```
v<p>PackI( n, a, inca, y );
v<p>PackV( n, a, ia, y );
v<p>PackM( n, a, ma, y );
```


Unpack Functions

Fortran:

```
    call v<p>unpacki( n, a, y, incy )
```

 call \(\mathrm{v}<\mathrm{p}>\) unpackv \((n, a, y, i y)\)
 call \(v<p>u n p a c k m(n, a, y, m y)\)
 C:

```
v<p>UnpackI( n, a, y, incy );
v<p>UnpackV( n, a, y, iy );
v<p>UnpackM( n, a, y, my );
```


Service Functions

Fortran:

```
oldmode = vmlsetmode( mode )
mode = vmlgetmode( )
olderr = vmlseterrstatus ( err )
err = vmlgeterrstatus( )
olderr = vmlclearerrstatus( )
oldcallback = vmlseterrorcallback( callback )
callback = vmlgeterrorcallback( )
oldcallback = vmlclearerrorcallback( )
```

C:

```
oldmode = vmlSetMode( mode );
mode = vmlGetMode( void);
olderr = vmlSetErrStatus ( err );
err = vmlGetErrStatus(void);
olderr = vmlClearErrStatus(void);
oldcallback = vmlSetErrorCallBack(callback );
callback = vmlGetErrorCallBack( void );
oldcallback = vmlClearErrorCallBack(void );
```


Input Parameters

n	number of elements to be calculated
a	first input vector
b	second input vector
inca	vector increment for the input vector a
ia	index vector for the input vector a
ma	mask vector for the input vector a
incy	vector increment for the output vector y
iy	index vector for the output vector y
my	mask vector for the output vector y
err	error code
mode	VML mode
callback	address of the callback function

Output Parameters

y	first output vector
z	second output vector
err	error code
mode	VML mode
olderr	former error code

```
oldmode former VML mode
oldcallback address of the former callback function
```

The data types of the parameters used in each function are specified in the respective function description section. All VML mathematical functions can perform in-place operations, which means that the same vector can be used as both input and output parameter. This holds true for functions with two input vectors as well, in which case one of them may be overwritten with the output vector. For functions with two output vectors, one of them may coincide with the input vector.

Vector Indexing Methods

Current VML mathematical functions work only with unit increment. Arrays with other increments, or more complicated indexing, can be accommodated by gathering the elements into a contiguous vector and then scattering them after the computation is complete. Three following indexing methods are used to gather/scatter the vector elements in VML:

```
- positive increment
- index vector
- mask vector.
```

The indexing method used in a particular function is indicated by the indexing modifier (see the description of the <mod> field in "Function Naming Conventions"). For more information on indexing methods see Vector Arguments in VML in Appendix B.

Error Diagnostics

The VML library has its own error handler. The only difference for C - and Fortran- interfaces is that the Intel MKL error reporting routine XERBLA can be called after the Fortran- interface VML function encounters an error, and this routine gets information on VML_STATUS_BADSIZE and VML_STATUS_BADMEM input errors (see Table 9-13).

The VML error handler has the following properties:

1. The Error Status (vmlErrStatus) global variable is set after each VML function call. The possible values of this variable are shown in the Table 9-13.
2. Depending on the VML mode, the error handler function invokes:

- errno variable setting. The possible values are shown in the Table 9-1.
- writing error text information to the stderr stream
- raising the appropriate exception on error, if necessary
- calling the additional error handler callback function.

Table 9-1 Set Values of the errno Variable

Value of errno	Description
0	No errors are detected.
EINVAL	The array dimension is not positive.
EACCES	NULL pointer is passed.
EDOM	At least one of array values is out of a range of definition.
ERANGE	At least one of array values caused a singularity, overflow or underflow.

VML Mathematical Functions

This section describes VML functions which compute values of elementary mathematical functions on real vector arguments with unit increment. Each function group is introduced by its short name, a brief description of its purpose, and the calling sequence for each type of data both for Fortran- and C-interfaces, as well as a description of the input/output arguments.

For all VML mathematical functions, the input range of parameters is equal to the mathematical range of definition in the set of defined values for the respective data type. Several VML functions, specifically Div, Exp, Sinh, Cosh, and Pow, can result in an overflow. For these functions, the respective input threshold values that mark off the precision overflow are specified in the function description section. Note that in these specifications, FLT_MAX denotes the maximum number representable in single precision data type, while DBL_MAX denotes the maximum number representable in double precision data type.

Table 9-2 lists available mathematical functions and data types associated with them.
Table 9-2 VML Mathematical Functions

Type of Distribution	Data Types	Description
Power and Root Functions		
$\underline{\text { Inv }}$	s, d	Inversion of the vector elements
$\underline{\text { Div }}$	s, d	Divide elements of one vector by elements of second vector

Table 9-2 VML Mathematical Functions (continued)

Type of Distribution	Data Types	Description
$\underline{\text { Sqret }}$	s, d	Square root of vector elements
$\underline{\text { InvSqrt }}$	s, d	Inverse square root of vector elements
$\underline{\text { Cbrt }}$	s, d	Cube root of vector elements
$\underline{\text { InvCbrt }}$	s, d	Inverse cube root of vector elements
$\underline{\text { Pow }}$	s, d	Each vector element raised to the specified power
$\underline{\text { Powx }}$	s, d	Each vector element raised to the constant power
Exponential and Logarithmic Functions		

Exp	s, d	Exponential of vector elements
Ln	s, d	Natural logarithm of vector elements
Log10	s, d	Denary logarithm of vector elements

Trigonometric Functions

$\underline{\text { Cos }}$	s, d	Cosine of vector elements
$\underline{\text { Sin }}$	s, d	Sine of vector elements
$\underline{\text { SinCos }}$	s, d	Sine and cosine of vector elements
$\underline{\text { Tan }}$	s, d	Tangent of vector elements
$\underline{A \operatorname{Acos}}$	s, d	Inverse cosine of vector elements
$\underline{\text { Asin }}$	s, d	Inverse sine of vector elements
$\underline{\text { Atan }}$	s, d	Inverse tangent of vector elements
$\underline{\text { Atan } 2}$	s, d	Four-quadrant inverse tangent of elements of two vectors

Hyperbolic Functions

Cosh	s, d	Hyperbolic cosine of vector elements
Sinh	s, d	Hyperbolic sine of vector elements
Tanh	s, d	Hyperbolic tangent of vector elements
Acosh	s, d	Inverse hyperbolic cosine (nonnegative) of vector elements
Asinh	s, d	Inverse hyperbolic sine of vector elements
Atanh	s, d	Computes inverse hyperbolic tangent of vector elements.
Special Functions		
Erf	s, d	Error function value of vector elements

Table 9-2 VML Mathematical Functions (continued)

Type of Distribution	Data Types	Description
$\underline{\text { Erfc }}$	s, d	Complementary error function value of vector elements

Inv

Performs element by element inversion of the vector.

Syntax

Fortran:

```
call vsinv( n, a, y )
call vdinv( n, a, y )
```

C:
vsInv($n, a, y)$;
vdInv($n, a, y)$;

Input Parameters

Fortran:
$n \quad$ int. Specifies the number of elements to be calculated.
n
a

C:
a

INTEGER, INTENT (IN). Specifies the number of elements to be calculated.
REAL, INTENT(IN) for vsinv DOUBLE PRECISION, INTENT(IN) for vdinv Array, specifies the input vector a.
const float* for vsInv
const double* for vdinv

Pointer to an array that contains the input vector a.

Output Parameters

Fortran:

$y \quad$| REAL for vsinv |
| :--- |
| DOUBLE PRECISION for vdinv |
| Array, specifies the output vector y |

C:
y float* for vsInv
double* for vdInv
Pointer to an array that contains the output vector y .

Div

Performs element by element division of vector a by vector b.

Syntax

Fortran:

```
call vsdiv( n, a, b, y )
call vddiv( n, a, b, Y )
```

C:

```
vsDiv( n, a, b, y );
```

vdDiv($n, a, b, y)$;

Input Parameters

Fortran:
n
a, b

INTEGER, INTENT (IN). Specifies the number of elements to be calculated.
REAL, INTENT (IN) for vsdiv DOUBLE PRECISION, INTENT(IN) for vddiv Arrays, specify the input vectors a and b.

C:	int. Specifies the number of elements to be calculated.
n	const float* for vsDiv const double* for vdDiv Pointers to arrays that contain the input vectors a and b.

Table 9-3 Precision Overflow Thresholds for Div Function

Data Type	Threshold Limitations on Input Parameters
single precision	$\mathrm{abs}(a[i])<\operatorname{abs}(b[i])$ * FLT_MAX
double precision	$\mathrm{abs}(a[i])<\operatorname{abs}(b[i])$ * DBL_MAX

Output Parameters

Fortran:
y REAL for vsdiv
DOUBLE PRECISION for vddiv
Array, specifies the output vector y .
C:
y float* for vsDiv
double* for vdDiv
Pointer to an array that contains the output vector y.

Sqrt

Computes a square root of vector elements.

Syntax

Fortran:

```
call vssqrt( n, a, y )
call vdsqrt( n, a, y )
```

C:
vsSqrt(n, a, y);

```
vdSqrt( n, a, y );
```


Input Parameters

Fortran:
n INTEGER, INTENT (IN). Specifies the number of elements to be calculated.
a REAL, INTENT(IN) for vssqrt DOUBLE PRECISION, INTENT(IN) for vdsqre Array, specifies the input vector a.

C:
n
int. Specifies the number of elements to be calculated.
a const float* for vsSqrt
const double* for vdSqrt Pointer to an array that contains the input vector a.

Output Parameters

Fortran:

```
y REAL for vssqrt
    DOUBLE PRECISION for vdsqrt
    Array, specifies the output vector y.
C:
y float* for vsSqre
double* forvdSqrt
Pointer to an array that contains the output vector y.
```


InvSqrt

Computes an inverse square root of vector elements.

Syntax

Fortran:

call vsinvsqrt(n, a, y)

```
call vdinvsqrt( n, a, y )
```

C:
vsInvSqrt (n, a, y);
vdInvSqrt($n, a, y)$;

Input Parameters

Fortran:
n INTEGER, INTENT (IN). Specifies the number of elements to be calculated.
a REAL, INTENT(IN) for vsinvsqrt DOUBLE PRECISION, INTENT(IN) for vdinvsqrt Array, specifies the input vector a.

C:
$n \quad$ int. Specifies the number of elements to be calculated.
a
const float* forvsInvSqrt
const double* for vdInvSqrt
Pointer to an array that contains the input vector a.

Output Parameters

Fortran:

```
y REAL for vsinvsqrt
    DOUBLE PRECISION for vdinvsqrt
    Array, specifies the output vector y.
C:
Y float* forvsInvSqrt
double* for vdInvSqrt
Pointer to an array that contains the output vector y.
```


Cbrt

Computes a cube root
of vector elements.

Syntax

Fortran:

```
call vscbrt( n, a, y )
call vdcbrt( n, a, y )
```

C:
vsCbrt (n, a, y);
vdCbrt (n, a, y);

Input Parameters

Fortran:

n INTEGER, INTENT (IN). Specifies the number of elements to be calculated.
a
REAL, INTENT (IN) for vscbrt DOUBLE PRECISION, INTENT(IN) for vdcbrt Array, specifies the input vector a.

C:
n
a int. Specifies the number of elements to be calculated.
const float* for vsCbrt const double* for vdCbrt Pointer to an array that contains the input vector a.

Output Parameters

Fortran:
y
REAL for vscbrt DOUBLE PRECISION for vdcbrt Array, specifies the output vector y.

```
C:
y float* for vsCbrt
double* forvdCbrt
Pointer to an array that contains the output vector y.
```


InvCbrt

Computes an inverse cube root
of vector elements.

Syntax

Fortran:

call vsinvcbrt(n, a, y)
call vdinvcbrt($n, a, y)$
C:
vsInvCbrt($n, ~ a, ~ y) ;$
vdInvCbrt($n, a, y) ;$

Input Parameters

Fortran:
n INTEGER, INTENT (IN). Specifies the number of elements to be calculated.

REAL, INTENT(IN) for vsinvcbrt double precision, INTENT(IN) for vdinvcbrt Array, specifies the input vector a.

C:
$n \quad$ int. Specifies the number of elements to be calculated.
a const float* for vsInvCbrt
const double* for vdInvCbrt
Pointer to an array that contains the input vector a.

Output Parameters

Fortran:

```
y REAL for vsinvcbrt
    DOUBLE PRECISION for vdinvcbrt
    Array, specifies the output vector y.
```

```
C:
y float* forvsInvCbrt
double* for vdInvCbrt
Pointer to an array that contains the output vector y.
```


Pow

Computes a to the power b
for elements of two vectors.

Syntax

Fortran:

```
call vspow( n, a, b, Y )
call vdpow( n, a, b, y )
```

C:
$\operatorname{vsPow}(n, a, b, y) ;$
vdPow (n, a, b, y);
Input Parameters
Fortran:
n INTEGER, INTENT (IN). Specifies the number of elements to be calculated.
a, b
REAL, INTENT(IN) for vspow DOUBLE PRECISION, INTENT(IN) for vdpow Arrays, specify the input vectors a and b.

C:	int. Specifies the number of elements to be calculated.
n	const float* for vsPow const double* for vdPow Pointers to arrays that contain the input vectors a and b.

Table 9-4 Precision Overflow Thresholds for Pow Function

Data Type	Threshold Limitations on Input Parameters
single precision	$\mathrm{abs}(\mathrm{a}[\mathrm{i}])$ < (FLT_MAX $)^{1 / b[i]}$
double precision	abs (a[i]) < (DBL MAX) 1/b

Output Parameters

Fortran:
y REAL for vspow
DOUBLE PRECISION for vdpow
Array, specifies the output vector y .
C:
y float* for vsPow
double* for vdPow
Pointer to an array that contains the output vector y.

Description

The function Pow has certain limitations on the input range of a and b parameters. Specifically, if a [i] is positive, then b [i] may be arbitrary. For negative or zero a [i], the value of b [i] must be integer (either positive or negative).

Powx

Raises each element of a vector
to the constant power.

Syntax

Fortran:

```
call vspowx( n, a, b, y )
call vdpowx( n, a, b, y )
```

C:
vsPowx (n, a, b, y);
vdPowx ($n, a, b, y)$;

Input Parameters

Fortran:

n
a, b

C:
b

INTEGER, INTENT (IN). Specifies the number of elements to be calculated.

REAL, INTENT(IN) for vspowx DOUBLE PRECISION, INTENT(IN) for vdpowx Array a specifies the input vector; scalar value b is the constant power.
int. Specifies the number of elements to be calculated.
const float* for vsPowx
const double* for vdPowx Pointer to an array that contains the input vector a.

Table 9-5 Precision Overflow Thresholds for Powx Function

Data Type	Threshold Limitations on Input Parameters
single precision	$\mathrm{abs}(\mathrm{a}[\mathrm{i}])<(\text { FLT_MAX })^{1 / b}$
double precision	$\mathrm{abs}(\mathrm{a}[\mathrm{i}])<(\text { DBL_MAX })^{1 / b}$

Output Parameters

Fortran:

$y \quad$| REAL for vspowx |
| :--- |
| DOUBLE PRECISION for vdpowx |
| Array, specifies the output vector y. |

C:
y float* for vsPowx
double* for vdPowx
Pointer to an array that contains the output vector y.

Description

The function Powx has certain limitations on the input range of a and b parameters. Specifically, if a [i] is positive, then b may be arbitrary. For negative or zero a [i], the value of b must be integer (either positive or negative).

Exp

Computes an exponential
of vector elements.

Syntax

Fortran:

call vsexp (n, a, y)
call vdexp (n, a, y)
C:
vsExp ($n, a, y)$;
vdExp (n, a, y);

Input Parameters

Fortran:
n INTEGER, INTENT (IN). Specifies the number of elements to be calculated.
a REAL, INTENT (IN) for vsexp DOUBLE PRECISION, INTENT(IN) for vdexp Array, specifies the input vector a.

C:
n
int. Specifies the number of elements to be calculated.
const float* for vsExp
const double* for vdExp
Pointer to an array that contains the input vector a.

Table 9-6 Precision Overflow Thresholds for Exp Function

Data Type	Threshold Limitations on Input Parameters
single precision	$a[i]<\operatorname{Ln}($ FLT_MAX)
double precision	$a[i]<\operatorname{Ln}($ DBL_MAX $)$

Output Parameters

Fortran:
y
REAL for vsexp
DOUBLE PRECISION for vdexp
Array, specifies the output vector y .
C:
y float* for vsExp
double* for vdExp
Pointer to an array that contains the output vector y.

Ln

Computes natural logarithm
 of vector elements.

Syntax

Fortran:

```
call vsln( n, a, y )
call vdln( n, a, y )
```

C:

```
vsLn( n, a, y );
```

$\operatorname{vdLn}(n, a, y)$;

Input Parameters

Fortran:
n INTEGER, INTENT (IN). Specifies the number of elements to be calculated.

REAL, INTENT (IN) for vsln
DOUBLE PRECISION, INTENT(IN) for vdln
Array, specifies the input vector a.
C:
$n \quad$ int. Specifies the number of elements to be calculated.
a
const float* for vsLn
const double* for vdLn
Pointer to an array that contains the input vector a.

Output Parameters

Fortran:

```
y REAL for vsln
    DOUBLE PRECISION forvdln
    Array, specifies the output vector y.
```

C:

```
y
float* for vsLn
double* for vdLn
Pointer to an array that contains the output vector y.
```


Log10

Computes denary logarithm
of vector elements.

Syntax

Fortran:

```
call vslog10( n, a, y )
```

call vdlog10(n, a, y)

C:

```
vsLog10( n, a, y );
```

vdLog10 (n, a, y);

Input Parameters

Fortran:
n INTEGER, INTENT (IN). Specifies the number of elements to be calculated.

REAL, INTENT(IN) for vslog10 DOUBLE PRECISION, INTENT(IN) forvdlog10 Array, specifies the input vector a.

C:
$n \quad$ int. Specifies the number of elements to be calculated.
a const float* for vsLog10
const double* for vdLog10
Pointer to an array that contains the input vector a.

Output Parameters

Fortran:

$y \quad$| REAL for vslog10 |
| :--- |
| DOUBLE PRECISION for vdlog10 |
| Array, specifies the output vector y. |

C:
y float* for vsLog10
double* for vdLog10
Pointer to an array that contains the output vector y .

Cos

Computes cosine of vector elements.

Syntax

Fortran:

```
call vscos( n, a, y )
call vdcos( n, a, y )
```

C:

```
vsCos( n, a, y );
```

vdCos(n, a, y);

Input Parameters

Fortran:
n INTEGER, INTENT (IN). Specifies the number of elements to be calculated.
a REAL, INTENT(IN) for vscos
DOUBLE PRECISION, INTENT(IN) for vdcos
Array, specifies the input vector a.

C:
$n \quad$ int. Specifies the number of elements to be calculated.
a
const float* for vsCos
const double* for vdCos
Pointer to an array that contains the input vector a.

Output Parameters

Fortran:
y REAL for vscos
DOUBLE PRECISION for vdcos
Array, specifies the output vector y.
C:
y float* for vsCos
double* for vdCos
Pointer to an array that contains the output vector y

Sin

Computes sine of vector elements.

Syntax

Fortran:

```
call vssin( n, a, y )
call vdsin( n, a, y )
```

C:
vsSin($n, a, y)$;
vdSin($n, a, y) ;$

Input Parameters

Fortran:
n INTEGER, INTENT (IN). Specifies the number of elements to be calculated.
a REAL, INTENT(IN) for vssin double precision, Intent(in) for vdsin Array, specifies the input vector a.

C:
n
int. Specifies the number of elements to be calculated.
const float* for vsSin
const double* for vdSin
Pointer to an array that contains the input vector a.

Output Parameters

Fortran:

$y \quad$| REAL for vssin |
| :--- |
| DOUBLE PRECISION for vdsin |
| Array, specifies the output vector y. |

C:
y float* forvsSin
double* for vdSin
Pointer to an array that contains the output vector y .

SinCos

Computes sine and cosine
of vector elements.

Syntax

Fortran:

```
call vssincos( n, a, y, z )
call vdsincos( n, a, y, z )
```

```
C:
vsSinCos( n, a, y, z );
vdSinCos( n, a, y, z );
```


Input Parameters

Fortran:
n INTEGER, INTENT (IN). Specifies the number of elements to be calculated.

REAL, INTENT(IN) for vssincos DOUBLE PRECISION, INTENT(IN) for vdsincos Array, specifies the input vector a.

C:
$n \quad$ int. Specifies the number of elements to be calculated.
a
const float* for vsSinCos
const double* for vdSinCos
Pointer to an array that contains the input vector a.

Output Parameters

Fortran:

```
y,z REAL for vssincos
    DUBLE PRECISION for vdsincos
    Arrays, specify the output vectors y (for sine values) and z (for cosine values).
C:
y, z
float* forvsSinCos
double* forvdSinCos
Pointers to arrays that contain the output vectors y (for sine
values) and z (for cosine values).
```


Tan

Computes tangent of vector elements.

Syntax

Fortran:

```
call vstan( n, a, Y )
call vdtan( n, a, Y )
```

C:
vsTan (n, a, y) ;
vdTan (n, a, y) ;

Input Parameters

Fortran:
$n \quad$ INTEGER, INTENT (IN). Specifies the number of elements to be calculated.

REAL, INTENT (IN) for vstan DOUBLE PRECISION, INTENT(IN) for vdtan Array, specifies the input vector a.

C:
n
int. Specifies the number of elements to be calculated.
a const float* for vsTan
const double* for vdTan
Pointer to an array that contains the input vector a.

Output Parameters

Fortran:

```
y
REAL for vstan DOUBLE PRECISION for vdtan Array, specifies the output vector \(y\).
```

```
C:
y float* forvsTan
    double* for vdTan
    Pointer to an array that contains the output vector y.
```


Acos

Computes inverse cosine
of vector elements.

Syntax

Fortran:

```
call vsacos( n, a, y )
call vdacos( n, a,y )
```

C:

```
vsAcos( n, a,y );
```

vdAcos($n, a, y)$;

Input Parameters

Fortran:
n
integer, intent (In). Specifies the number of elements to be calculated.

REAL, INTENT(IN) for vsacos DOUBLE PRECISION, INTENT(IN) for vdacos Array, specifies the input vector a.

C:
$n \quad$ int. Specifies the number of elements to be calculated.
a
const float* for vsAcos
const double* for vdAcos
Pointer to an array that contains the input vector a.

Output Parameters

Fortran:

```
y REAL for vsacos
    DOUBLE PRECISION for vdacos
    Array, specifies the output vector y.
C:
y float* for vsAcos
    double* for vdAcos
    Pointer to an array that contains the output vector y.
```


Asin

Computes inverse sine of vector elements.

Syntax

Fortran:

```
call vsasin( n, a,y )
```

call vdasin($n, a, y)$

C:
vsAsin($n, a, y)$;
vdAsin($n, a, y)$;

Input Parameters

Fortran:
n
INTEGER, INTENT (IN). Specifies the number of elements to be calculated.
a
REAL, INTENT(IN) for vsasin DOUBLE PRECISION, INTENT(IN) for vdasin Array, specifies the input vector a.

C:

```
n
int. Specifies the number of elements to be calculated.
a
const float* for vsAsin
const double* for vdAsin
Pointer to an array that contains the input vector a.
```


Output Parameters

Fortran:

```
y REAL for vsasin
    DOUBLE PRECISION forvdasin
    Array, specifies the output vector y.
C:
y float* for vsAsin
        double* forvdAsin
    Pointer to an array that contains the output vector y.
```

```
Atan
Computes inverse tangent
of vector elements.
```


Syntax

Fortran:

```
call vsatan( n, a, y )
```

call vsatan(n, a, y)
call vdatan (n, a, y)
C:
vsAtan($n, a, y)$;
vdAtan($n, a, y)$;

```

\section*{Input Parameters}
```

Fortran:
n
INTEGER, INTENT(IN). Specifies the number of elements to be calculated.

```
```

a REAL, INTENT(IN) for vsatan
DOUBLE PRECISION, INTENT(IN) for vdatan
Array, specifies the input vector a.

```
C:
    int. Specifies the number of elements to be calculated.
    const float* for vsAtan
    const double* for vdAsin
    Pointer to an array that contains the input vector a.

\section*{Output Parameters}

Fortran:
```

y REAL for vsatan
DOUBLE PRECISION for vdatan
Array, specifies the output vector y.
C:
y float* for vsAtan
double* for vdAtan
Pointer to an array that contains the output vector y.

```

\section*{Atan2}

Computes four-quadrant inverse tangent of elements of two vectors.

\section*{Syntax}

\section*{Fortran:}
```

call vsatan2(n, a,b, y)

```
call vdatan2 ( \(n, a, b, y\) )

C:
\(\operatorname{vsAtan} 2(n, a, b, y)\);
vdAtan2 ( \(n, a, b, y)\);

\section*{Input Parameters}

Fortran:
\(n\) INTEGER, INTENT (IN). Specifies the number of elements to be calculated.
\(a, b\) REAL, INTENT (IN) for vsatan2 DOUBLE PRECISION, INTENT(IN) for vdatan2 Arrays, specify the input vectors a and b.

C:
n
\(a, b\)
int. Specifies the number of elements to be calculated.
const float* for vsAtan2
const double* for vdAtan2
Pointers to arrays that contain the input vectors \(a\) and \(b\).

\section*{Output Parameters}

Fortran:
y REAL for vsatan2
DOUBLE PRECISION for vdatan2
Array, specifies the output vector \(y\).
C:
\(y\) float* for vsAtan2
double* for vdAtan2
Pointer to an array that contains the output vector \(y\).
The elements of the output vector \(y\) are computed as the four-quadrant arctangent of a[i] / b[i].

\section*{Cosh}

Computes hyperbolic cosine
of vector elements.

\section*{Syntax}

\section*{Fortran:}
```

call vscosh(n, a, y)

```
call vdcosh ( \(n, a, y\) )

C:
vsCosh ( \(n, ~ a, ~ y)\);
vdCosh ( \(n, ~ a, ~ y)\);

\section*{Input Parameters}

Fortran:
\(n\) INTEGER, INTENT (IN). Specifies the number of elements to be calculated.

REAL, INTENT(IN) for vscosh
DOUBLE PRECISION, INTENT(IN) forvdcosh Array, specifies the input vector a.

C:
n
int. Specifies the number of elements to be calculated.
a const float* for vsCosh
const double* for vdCosh
Pointer to an array that contains the input vector a.

\section*{Table 9-7 Precision Overflow Thresholds for Cosh Function}
\begin{tabular}{ll} 
Data Type & Threshold Limitations on Input Parameters \\
\hline single precision & \(-\operatorname{Ln}\left(F L T _M A X\right)-\operatorname{Ln} 2<a[i]<\operatorname{Ln}\left(F L T _M A X\right)+\operatorname{Ln} 2\) \\
double precision & \(-\operatorname{Ln}\left(D B L _M A X\right)-\operatorname{Ln} 2<a[i]<\operatorname{Ln}\left(D B L _M A X\right)+L n 2\) \\
\hline
\end{tabular}

\section*{Output Parameters}

Fortran:
y \begin{tabular}{l} 
REAL for vscosh \\
DOUBLE PRECISION for vdcosh \\
Array, specifies the output vector \(y\).
\end{tabular}

C:
\(y\) float* for vsCosh
double* for vdCosh
Pointer to an array that contains the output vector y .

\section*{Sinh}

Computes hyperbolic sine
of vector elements.

\section*{Syntax}

\section*{Fortran:}
```

call vssinh(n, a, y)

```
call vdsinh ( \(n, a, y\) )

C:
vsSinh ( \(n, a, y\) );
\(\operatorname{vdSinh}(n, a, y)\);

\section*{Input Parameters}

Fortran:
\(n\)
INTEGER, INTENT (IN). Specifies the number of elements to be calculated.
a REAL, INTENT(IN) for vssinh
DOUBLE PRECISION, INTENT(IN) for vdsinh
Array, specifies the input vector a.
C:
int. Specifies the number of elements to be calculated.
const float* for vsSinh
const double* for vdSinh
Pointer to an array that contains the input vector a.

Table 9-8 Precision Overflow Thresholds for Sinh Function
\begin{tabular}{ll}
\hline Data Type & Threshold Limitations on Input Parameters \\
\hline single precision & \(-\operatorname{Ln}\left(F L T _M A X\right)-\operatorname{Ln} 2<a[i]<\operatorname{Ln}\left(F L T _M A X\right)+L n 2\) \\
double precision & \(-\operatorname{Ln}\left(D B L _M A X\right)-\operatorname{Ln} 2<a[i]<\operatorname{Ln}\left(D B L _M A X\right)+L n 2\) \\
\hline
\end{tabular}

\section*{Output Parameters}

Fortran:
\(y\) REAL for vssinh
DOUBLE PRECISION for vdsinh
Array, specifies the output vector \(y\).
C:
\(y\) float* for vsSinh
double* for vdSinh
Pointer to an array that contains the output vector \(y\).

\section*{Tanh}

\section*{Computes hyperbolic tangent}
of vector elements.

\section*{Syntax}

\section*{Fortran:}
```

call vstanh(n, a, y)
call vdtanh(n, a, y)

```

C:
vsTanh ( \(n, a, y\) );
vdTanh ( \(n, a, y)\);

\section*{Input Parameters}

Fortran:
\(n\) INTEGER, INTENT (IN). Specifies the number of elements to be calculated.

REAL, INTENT(IN) for vstanh
DOUBLE PRECISION, INTENT(IN) forvdtanh
Array, specifies the input vector a.
C:
\(n \quad\) int. Specifies the number of elements to be calculated.
a const float* for vsTanh
const double* for vdTanh
Pointer to an array that contains the input vector a.

\section*{Output Parameters}

Fortran:
\(y \quad\)\begin{tabular}{l} 
REAL for vstanh \\
DOUBLE PRECISION for vdtanh \\
Array, specifies the output vector \(y\).
\end{tabular}
```

C:
y float* for vsTanh
double* forvdTanh
Pointer to an array that contains the output vector y.

```

\section*{Acosh}

Computes inverse hyperbolic cosine (nonnegative) of vector elements.

\section*{Syntax}

\section*{Fortran:}
```

call vsacosh(n, a, y)

```
call vdacosh( \(n, a, y\) )

C:
```

vsAcosh(n, a, y);

```
vdAcosh ( \(n, a, y)\);

\section*{Input Parameters}

Fortran:
\(n\) INTEGER, INTENT (IN). Specifies the number of elements to be calculated.
a
REAL, INTENT (IN) for vsacosh DOUBLE PRECISION, INTENT(IN) for vdacosh Array, specifies the input vector a.

C:
\(n \quad\) int. Specifies the number of elements to be calculated.
a const float* for vsAcosh
const double* for vdAcosh
Pointer to an array that contains the input vector a.

\section*{Output Parameters}

Fortran:
```

Y REAL forvsacosh
DOUBLE PRECISION for vdacosh
Array, specifies the output vector y.
C:
y float* for vsAcosh
double* for vdAcosh
Pointer to an array that contains the output vector y.

```

\section*{Asinh}

Computes inverse hyperbolic sine of vector elements.

\section*{Syntax}

\section*{Fortran:}
```

call vsasinh(n, a,y)

```
call vdasinh ( \(n, a, y\) )

C:
```

vsAsinh(n, a,y);

```
vdAsinh ( \(n, a, y\) );

\section*{Input Parameters}

Fortran:
n
INTEGER, INTENT (IN). Specifies the number of elements to be calculated.
a
REAL, INTENT(IN) for vsasinh
DOUBLE PRECISION, INTENT(IN) for vdasinh Array, specifies the input vector a.

C:
\(n \quad\) int. Specifies the number of elements to be calculated.
a const float* for vsAsinh
const double* for vdAsinh
Pointer to an array that contains the input vector a.

\section*{Output Parameters}

Fortran:
\(y\) REAL for vsasinh
DOUBLE PRECISION for vdasinh
Array, specifies the output vector y .
C:
\(y\) float* for vsAsinh
double* for vdAsinh
Pointer to an array that contains the output vector y .

\section*{Atanh}

Computes inverse hyperbolic tangent of vector elements.

\section*{Syntax}

\section*{Fortran:}
```

call vsatanh(n, a,y)
call vdatanh(n, a,y)

```

C:
vsAtanh ( \(n, a, y)\);
vdAtanh ( \(n, a, y\) );

\section*{Input Parameters}

Fortran:
\(n\) INTEGER, INTENT (IN). Specifies the number of elements to be calculated.

REAL, INTENT (IN) for vsatanh DOUBLE PRECISION, INTENT(IN) for vdatanh Array, specifies the input vector a.

C:
\(n \quad\) int. Specifies the number of elements to be calculated.
a
const float* for vsAtanh const double* for vdAtanh Pointer to an array that contains the input vector a.

\section*{Output Parameters}

Fortran:
```

y REAL for vsatanh
DOUBLE PRECISION for vdatanh
Array, specifies the output vector y.
C:
y float* for vsAtanh
double* for vdAtanh
Pointer to an array that contains the output vector y.

```

\section*{Erf}

Computes the error function value
of vector elements.

\section*{Syntax}

\section*{Fortran:}
```

call vserf(n, a, Y)
call vderf(n, a, Y)

```

C:
```

vsErf(n, a, y);

```
vdErf( \(n, a, y)\);

\section*{Input Parameters}

Fortran:
\(n\) INTEGER, INTENT (IN). Specifies the number of elements to be calculated.

REAL, INTENT(IN) for vserf
DOUBLE PRECISION, INTENT(IN) for vderf
Array, specifies the input vector a.
C:
\(n \quad\) int. Specifies the number of elements to be calculated.
a const float* for vsErf
const double* for vdErf
Pointer to an array that contains the input vector a.

\section*{Output Parameters}

Fortran:
\(y\) REAL for vserf DOUBLE PRECISION for vderf Array, specifies the output vector \(y\).

C:
\(y\) float* for vsErf
double* for vdErf
Pointer to an array that contains the output vector \(y\).

\section*{Description}

The function Erf computes the error function values for elements of the input vector a and writes them to the output vector \(y\).

The error function is defined as given by:
\[
\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} d t
\]

\section*{Erfc}

Computes the complementary error function value of vector elements.

\section*{Syntax}

\section*{Fortran:}
```

call vserfc(n, a, Y)
call vderfc(n, a, Y)

```

C:
vsErfc ( \(n, a, Y\) ) ;
vdErfc ( \(n, a, y\) ) ;

\section*{Input Parameters}

Fortran:
\(n\) INTEGER, INTENT (IN). Specifies the number of elements to be calculated.

REAL, INTENT(IN) for vserfc
DOUBLE PRECISION, INTENT(IN) forvderfc Array, specifies the input vector a.

C:
n
int. Specifies the number of elements to be calculated.
a
const float* for vsErfc
const double* for vdErfc
Pointer to an array that contains the input vector a.

\section*{Output Parameters}

Fortran:
```

y REAL for vserfc
DOUBLE PRECISION for vderfc
Array, specifies the output vector y.
C:
y float* forvsErfc
double* for vdErfc
Pointer to an array that contains the output vector y.

```

\section*{Description}

The function Erfc computes the error function values for elements of the input vector \(a\) and writes them to the output vector \(y\).

The error function is defined as given by:
\(\operatorname{erfc}(x)=1-\operatorname{erf}(x)\)
or, in other words,
\[
\operatorname{erfc}(x)=\frac{2}{\sqrt{\pi}} \int_{x}^{\infty} e^{-t^{2}} d t
\]

\section*{VML Pack/Unpack Functions}

This section describes VML functions which convert vectors with unit increment to and from vectors with positive increment indexing, vector indexing and mask indexing (see Appendix B for details on vector indexing methods).

Table 9-9 lists available VML Pack/Unpack functions, together with data types and indexing methods associated with them.

Table 9-9 VML Pack/Unpack Functions
\begin{tabular}{llll}
\begin{tabular}{l} 
Function Short \\
Name
\end{tabular} & \begin{tabular}{l} 
Data \\
Types
\end{tabular} & \begin{tabular}{l} 
Indexing \\
Methods
\end{tabular} & Description \\
\hline\(\underline{\text { Pack }}\) & s, d & I, V,M & \begin{tabular}{l} 
Gathers elements of arrays, indexed by different \\
methods.
\end{tabular} \\
\(\underline{\text { Unpack }}\) & s, d & I,V,M & \begin{tabular}{l} 
Scatters vector elements to arrays with different \\
indexing.
\end{tabular} \\
\hline
\end{tabular}

\section*{Pack}

Copies elements of an array
with specified indexing to
a vector with unit increment.

\section*{Syntax}

\section*{Fortran:}
```

call vspacki(n, a, inca, y)
call vspackv(n, a, ia, y)
call vspackm(n, a, ma, y)
call vdpacki(n, a, inca, y)
call vdpackv(n, a, ia, y)
call vdpackm(n, a, ma, y)

```

C:
```

vsPackI(n, a, inca, y);
vsPackV(n, a, ia, y);
vsPackM(n, a, ma, y);
vdPackI(n, a, inca, y);
vdPackV(n, a, ia, y);
vdPackM(n, a, ma, y);

```

\section*{Input Parameters}

Fortran:
n INTEGER, INTENT (IN). Specifies the number of elements to be calculated.

REAL, INTENT(IN) for vspacki, vspackv, vspackm DOUBLE PRECISION, INTENT(IN) for vdpacki, vdpackv, vdpackm Array, DIMENSION at least ( \(1+(n-1) * i n c a)\) for vspacki, at least \(\max (n, \max (i a[j])), j=0, \ldots, n-1\), for vspackv, at least \(n\) for vspackm Specifies the input vector a.
inca INTEGER, INTENT(IN) for vspacki, vdpacki. Specifies the increment for the elements of a.
ia INTEGER, INTENT(IN) for vspackv, vdpackv. Array, DIMENSION at least \(n\) Specifies the index vector for the elements of \(a\).

INTEGER, INTENT(IN) for vspackm, vdpackm. Array, DIMENSION at least \(n\) Specifies the mask vector for the elements of a.

C:
int. Specifies the number of elements to be calculated
const float* for vsPackI, vsPackV, vsPackM
const double* for vdPackI, vdPackV, vdPackM
Specifies the pointer to an array that contains the input vector a. Size of the array must be:
at least ( \(1+(n-1) *\) inca) for vsPackI, at least max ( \(n, \max (i a[j])), j=0, \ldots, n-1\), for vsPackv, at least \(n\) for vsPackM.
int for vsPackI, vdPackI.
Specifies the increment for the elements of a.
const int* for vsPackV, vdPackv. Specifies the pointer to an array of size at least \(n\) that contains the index vector for the elements of \(a\).
const int* for vsPackM, vdPackM. Specifies the pointer to an array of size at least \(n\) that contains the mask vector for the elements of \(a\).

\section*{Output Parameters}

Fortran:
```

Y REAL for vspacki, vspackv, vspackm
DOUBLE PRECISION for vdpacki, vdpackv, vdpackm
Array, DIMENSION at least n, specifies the output vector y.
C:
Y float* for vsPackI, vsPackV, vsPackM
double* for vdPackI, vdPackV, vdPackM
Specifies the pointer to an array of size at least }n\mathrm{ that contains
the output vector y.

```

\section*{Unpack}

Copies elements of a vector with unit increment to an array with specified indexing.

\section*{Syntax}

\section*{Fortran:}
```

call vsunpacki(n, a, y, incy)
call vsunpackv(n, a, y, iy)
call vsunpackm(n, a, y, my)
call vdunpacki(n, a, y, incy)
call vdunpackv(n, a, y, iy)
call vdunpackm(n, a, y, my)

```

C:
```

vsUnpackI(n, a, y, incy);
vsUnpackV(n, a, y, iy);
vsUnpackM(n, a, y, my);
vdUnpackI(n, a, y, incy);
vdUnpackV(n, a, y, iy);
vdUnpackM(n, a, y, my);

```

\section*{Input Parameters}

Fortran:
incy int for vsUnpackI, vdUnpackI.
n
a
incy
iy
my

C:
n
a
iY
my


INTEGER, INTENT (IN). Specifies the number of elements to be calculated.
REAL, INTENT(IN) for vsunpacki, vsunpackv, vsunpackm DOUBLE PRECISION, INTENT(IN) for vdunpacki, vdunpackv, vdunpackm. Array, DIMENSION at least \(n\), specifies the input vector a. INTEGER, INTENT(IN) for vsunpacki, vdunpacki. Specifies the increment for the elements of \(y\).

INTEGER, INTENT(IN) for vsunpackv, vdunpackv. Array, DIMENSION at least \(n\), specifies the index vector for the elements of \(y\).

INTEGER, INTENT(IN) for vsunpackm, vdunpackm. Array, DIMENSION at least \(n\), specifies the mask vector for the elements of \(y\).
\(n\) int. Specifies the number of elements to be calculated.
const float* for vsUnpackI, vsUnpackV, vsUnpackM
const double* for vdUnpackI, vdUnpackV, vdUnpackM
Specifies the pointer to an array of size at least \(n\) that contains the input vector a.

Specifies the increment for the elements of \(y\).
const int* for vsUnpackV, vdUnpackV. Specifies the pointer to an array of size at least \(n\) that contains the index vector for the elements of \(a\).
const int* for vsUnpackM, vdUnpackM. Specifies the pointer to an array of size at least \(n\) that contains the mask vector for the elements of \(a\).

\section*{Output Parameters}

Fortran:
```

y REAL for vsunpacki, vsunpackv, vsunpackm
DOUBLE PRECISION for vdunpacki,vdunpackv,
vdunpackm.
Array, DIMENSION
at least (1 + (n-1)*incy) for vsunpacki,
at least max(n,max(iy[j])), j=0,···,n-1, for vsunpackv,
at least n for vsunpackm
Specifies the output vector y.
C:
y float* for vsUnpackI, vsUnpackV, vsUnpackm
double* for vdUnpackI, vdUnpackV, vdUnpackM
Specifies the pointer to an array that contains the output vector y.
Size of the array must be:
at least (1 + (n-1)*incy) for vsUnPackI,
at least max(n,max(ia[j])), j=0,···,n-1, for vsUnPackV,
at least n for vsUnPackm.

```

\section*{VML Service Functions}

This section describes VML functions which allow the user to set/get the accuracy mode, and set/get the error code. All these functions are available both in Fortran- and C- interfaces. Table 9-10 lists available VML Service functions and their short description.

Table 9-10 VML Service Functions
\begin{tabular}{ll} 
Function Short Name & Description \\
\hline SetMode & Sets the VML mode \\
\hline GetMode & Gets the VML mode \\
\hline SetErrStatus & Sets the VML error status \\
GetErrStatus & Gets the VML error status \\
ClearErrStatus & \begin{tabular}{l} 
Clears the VML error status \\
SetErrorCallBack
\end{tabular} \\
\begin{tabular}{l} 
Sets the additional error handler callback \\
function
\end{tabular} \\
\(\underline{\text { GetErrorCallBack }}\) & \begin{tabular}{l} 
Gets the additional error handler callback \\
function
\end{tabular}
\end{tabular}

Table 9-10 VML Service Functions (continued)
\begin{tabular}{ll} 
Function Short Name & Description \\
\hline ClearErrorCallBack & \begin{tabular}{l} 
Deletes the additional error handler callback \\
function
\end{tabular}
\end{tabular}

\section*{SetMode}

Sets a new mode for VML functions according to mode parameter and stores the previous VML mode to oldmode.

\section*{Syntax}

\section*{Fortran:}
oldmode = vmlsetmode( mode )
C:
oldmode = vmlSetMode( mode );

\section*{Input Parameters}

Fortran:
mode INTEGER, INTENT(IN). Specifies the VML mode to be set.
C:
mode int. Specifies the VML mode to be set.

\section*{Output Parameters}

Fortran:
Oldmode INTEGER. Specifies the former VML mode.
C:
oldmode int. Specifies the former VML mode.

\section*{Description}

The mode parameter is designed to control accuracy, FPU and error handling options. Table 9-11 lists values of the mode parameter. All other possible values of the mode parameter may be obtained from these values by using bitwise \(\mathrm{OR}(\mid)\) operation to combine one value for accuracy, one for FPU, and one for error control options. The default value of the mode parameter is VML_HA | VML_ERRMODE_DEFAULT. Thus, the current FPU control word (FPU precision and the rounding method) is used by default.

If any VML mathematical function requires different FPU precision, or rounding method, it changes these options automatically and then restores the former values. The mode parameter enables you to minimize switching the internal FPU mode inside each VML mathematical function that works with similar precision and accuracy settings. To accomplish this, set the mode parameter to VML_FLOAT_CONSISTENT for single precision functions, or to vML_DOUBLE_CONSISTENT for double precision functions. These values of the mode parameter are the optimal choice for the respective function groups, as they are required for most of the VML mathematical functions. After the execution is over, set the mode to VML_RESTORE if you need to restore the previous FPU mode.

Table 9-11 Values of the mode Parameter
\(\left.\begin{array}{ll}\text { Value of mode } & \text { Description } \\
\text { Accuracy Control } & \begin{array}{l}\text { High accuracy versions of VML functions will be } \\
\text { used }\end{array} \\
\text { VML_HA } & \begin{array}{l}\text { Low accuracy versions of VML functions will be } \\
\text { used }\end{array} \\
\text { VML_LA } & \begin{array}{l}\text { Additional FPU Mode Control }\end{array} \\
\text { The optimal FPU mode (control word) for single } \\
\text { precision functions is set, and the previous FPU } \\
\text { mode is saved }\end{array}\right]\)\begin{tabular}{l} 
The optimal FPU mode (control word) for double \\
precision functions is set, and the previous FPU \\
mode is saved
\end{tabular}

\section*{Table 9-11 Values of the mode Parameter (continued)}
\begin{tabular}{ll} 
Value of mode & Description \\
\hline VML_ERRMODE_EXCEPT & On error, an exception is raised \\
VML_ERRMODE_CALLBACK & \begin{tabular}{l} 
On error, an additional error handler function is \\
called
\end{tabular} \\
VML_ERRMODE_DEFAULT & \begin{tabular}{l} 
On error, the errno variable is set, an \\
exception is raised, and an additional error \\
handler function is called
\end{tabular} \\
\hline
\end{tabular}

\section*{Examples}

Several examples of calling the function vmlSetMode () with different values of the mode parameter are given below:

\section*{Fortran:}
```

oldmode = vmlsetmode(VML_LA)
call vmlsetmode(IOR(VML_LA, IOR(VML_FLOAT_CONSISTENT,
VML_ERRMODE_IGNORE)))
call vmlsetmode(VML_RESTORE)
vmlSetMode(VML_LA);
vmlSetMode(VML_LA | VML_FLOAT_CONSISTENT | VML_ERRMODE_IGNORE);
vmlSetMode(VML_RESTORE);

```
C:

\section*{GetMode}

Gets the VML mode.

\section*{Syntax}

Fortran:
mod \(=\) vmlgetmode()

C:
mod \(=\) vmlGetMode( void );

\section*{Output Parameters}

Fortran:
```

mod INTEGER. Specifies the packed mode parameter.

```

C:
mod int. Specifies the packed mode parameter.

\section*{Description}

The function vmlGetMode () returns the VML mode parameter which controls accuracy, FPU and error handling options. The mod variable value is some combination of the values listed in the Table 9-11. You can obtain some of these values using the respective mask from the Table 9-12, for example:

Fortran:
```

mod = vmlgetmode()
accm = IAND (mod, VML_ACCURACY_MASK)
fpum = IAND(mod, VML_FPUMODE_MASK)
errm = IAND(mOd, VML_ERRMODE_MASK)
C:
accm = vmlGetMode(void) \& VML_ACCURACY_MASK;
fpum = vmlGetMode(void)\& VML_FPUMODE _MASK;
errm = vmlGetMode(void)\& VML_ERRMODE _MASK;

```

Table 9-12 Values of Mask for the mode Parameter
\begin{tabular}{ll} 
Value of mask & Description \\
\hline VML_ACCURACY_MASK & Specifies mask for accuracy mode selection. \\
VML_FPUMODE_MASK & Specifies mask for FPU mode selection. \\
VML_ERRMODE_MASK & Specifies mask for error mode selection. \\
\hline
\end{tabular}

\section*{SetErrStatus}

Sets the new VML error status according to err and stores the previous VML error status to olderr.

\section*{Syntax}

\section*{Fortran:}
```

olderr = vmlseterrstatus(err)

```

C:
olderr = vmlSetErrStatus ( err );

\section*{Input Parameters}

Fortran:
err INTEGER, INTENT (IN). Specifies the VML error status to be set.

C:
err int. Specifies the VML error status to be set.

\section*{Output Parameters}

Fortran:
olderr INTEGER. Specifies the former VML error status.
C:
olderr int. Specifies the former VML error status.
Table 9-13 lists possible values of the err parameter.

\section*{Table 9-13 Values of the VML Error Status}
\begin{tabular}{ll}
\hline Error Status & Description \\
\hline VML_STATUS_OK & The execution was completed successfully. \\
VML_STATUS_BADSIZE & The array dimension is not positive. \\
VML_STATUS_BADMEM & NULL pointer is passed. \\
VML_STATUS_ERRDOM & \begin{tabular}{l} 
At least one of array values is out of a range \\
of definition.
\end{tabular} \\
VML_STATUS_SING & \begin{tabular}{l} 
At least one of array values caused a \\
singularity.
\end{tabular} \\
VML_STATUS_OVERFLOW & \begin{tabular}{l} 
An overflow has happened during the \\
calculation process.
\end{tabular} \\
VML_STATUS_UNDERFLOW & \begin{tabular}{l} 
An underflow has happened during the \\
calculation process.
\end{tabular} \\
\hline
\end{tabular}

\section*{Examples:}
```

vmlSetErrStatus(VML_STATUS_OK);
vmlSetErrStatus(VML_STATUS_ERRDOM);
vmlSetErrStatus(VML_STATUS_UNDERFLOW);

```

\section*{GetErrStatus}

Gets the VML error status.

\section*{Syntax}

\section*{Fortran:}
```

err = vmlgeterrstatus()

```

C:
err = vmlGetErrStatus( void );

\section*{Output Parameters}

Fortran:

\footnotetext{
err
INTEGER. Specifies the VML error status.
}
```

C:
err
int. Specifies the VML error status.

```

\section*{ClearErrStatus}

Sets the VML error status to vML_STATUS_OK and stores the previous VML error status to olderr.

\section*{Syntax}

\section*{Fortran:}
```

olderr = vmlclearerrstatus()

```

C:
olderr = vmlClearErrStatus( void );

\section*{Output Parameters}

Fortran:
olderr INTEGER. Specifies the former VML error status.
C:
olderr int. Specifies the former VML error status.

\section*{SetErrorCallBack}

Sets the additional error handler callback function and gets the old callback function.

\section*{Syntax}

\section*{Fortran:}
oldcallback = vmlseterrorcallback( callback )

C:
```

oldcallback = vmlSetErrorCallBack(callback);

```

\section*{Input Parameters}

Fortran:
callback
Address of the callback function.
The callback function has the following format:
```

INTEGER FUNCTION ERRFUNC(par)
TYPE (ERROR_STRUCTURE) par
! ...
! user error processing
! ...
ERRFUNC = 0
! if ERRFUNC = 0 - standard VML error handler
! is called after the callback
! if ERRFUNC != 0 - standard VML error handler
! is not called

```
END

The passed error structure is defined as follows:
```

TYPE ERROR_STRUCTURE
SEQUENCE

```
        INTEGER*4 ICODE
        INTEGER*4 IINDEX
        REAL*8 DBA1
        REAL*8 DBA2
        REAL*8 DBR1
        REAL*8 DBR2
        CHARACTER (64) CFUNCNAME
        INTEGER*4 IFUNCNAMELEN
        END TYPE ERROR_STRUCTURE
C:
callback Pointer to the callback function.
The callback function has the following format:
```

static int __stdcall MyHandler(DefVmlErrorContext*
pContext)

```
```

{
/* Handler body */
};

```

The passed error structure is defined as follows:
```

typedef struct _DefVmlErrorContext
{
int iCode; /* Error status value */
int iIndex; /* Index for bad array
element, or bad array
dimension, or bad
array pointer */
double dbA1; * Error argument 1 */
double dbA2; /* Error argument 2 */
double dbR1; /* Error result 1 */
double dbR2; /* Error result 2 */
char cFuncName[64]; /* Function name */
int iFuncNameLen; /* Length of function name*/
} DefVmlErrorContext;

```

\section*{Output Parameters}

Fortran:
oldcallback Address of the former callback function.
C:
oldcallback Pointer to the former callback function.

\section*{Description}

The callback function is called on each VML mathematical function error if VML_ERRMODE_CALLBACK error mode is set (see Table 9-11).

Use the vmlSetErrorCallBack () function if you need to define your own callback function instead of default empty callback function.

The input structure for a callback function contains the following information about the encountered error:
- the input value which caused an error
- location (array index) of this value
- the computed result value
- error code
- name of the function in which the error occurred.

You can insert your own error processing into the callback function. This may include correcting the passed result values in order to pass them back and resume computation. The standard error handler is called after the callback function only if it returns 0 .

\section*{GetErrorCallBack}

Gets the additional error handler
callback function.

\section*{Syntax}

\section*{Fortran:}
```

fun = vmlgeterrorcallback()

```

C:
fun \(=\) vmlGetErrorCallBack( void );

\section*{Output Parameters}

Fortran:
\begin{tabular}{ll} 
fun & Address of the callback function. \\
C: & \\
fun & Pointer to the callback function.
\end{tabular}

\section*{ClearErrorCallBack}

Deletes the additional error handler callback function and retrieves the former callback function.

Syntax

\section*{Fortran:}
oldcallback = vmlclearerrorcallback( )
C:
oldcallback = vmlClearErrorCallBack( void );

\section*{Output Parameters}

Fortran:
oldcallback INTEGER. Address of the former callback function.
C:
oldcallback int. Pointer to the former callback function.

\section*{Vector Generators of Statistical Distributions}

This chapter describes the part of Intel \({ }^{\circledR}\) MKL that is known as Vector Statistical Library (VSL) and is designed for the purpose of generating vectors of pseudorandom and quasi-random numbers.

VSL provides a set of subroutines implementing commonly used pseudo- or quasi-random number generators with continuous and discrete distribution. To speed up performance, all these subroutines were developed using the calls to the highly optimized Basic Random Number Generators (BRNGs) and the library of vector mathematical functions (VML, see Chapter 9, "Vector Mathematical Functions").

All VSL subroutines can be classified into three major categories:
- Transformation subroutines for different types of statistical distributions, for example, uniform, normal (Gaussian), binomial, etc. These subroutines indirectly call basic random number generators, which are either pseudorandom number generators or quasi-random number generators. Detailed description of the generators can be found in "Distribution Generators" section.
- Service subroutines to handle random number streams: create, initialize, delete, copy, get the index of a basic generator. The description of these subroutines can be found in "Service Subroutines" section.
- Registration subroutines for basic pseudorandom generators and subroutines that obtain properties of the registered generators (see "Advanced Service Subroutines" section).

The last two categories will be referred to as service subroutines.

\section*{Conventions}

In this chapter no specific differentiation is made between random, pseudorandom, and quasi-random numbers, as well as between random, pseudorandom, and quasi-random number generators unless the context requires otherwise. For details, refer to 'Random Numbers' section in VSL Notes document provided with Intel MKL.

All generators of nonuniform distributions, both discrete and continuous, are built on the basis of the uniform distribution generators, called Basic Random Number Generators (BRNGs). The pseudorandom numbers with nonuniform distribution are obtained through an appropriate transformation of the uniformly distributed pseudorandom numbers. Such transformations are referrred to as generation methods. For a given distribution, several generation methods can be used. See VSL Notes for the description of methods available for each generator.

The stream descriptor specifies which BRNG should be used in a given transformation method. See 'Random Streams and RNGs in Parallel Computation' secton of VSL Notes.

The term computational node means a logical or physical unit that can process data in parallel.

\section*{Mathematical Notation}

The following notation is used throughout the text:
\begin{tabular}{ll}
\(N\) & The set of natural numbers \(N=\{1,2,3 \ldots\}\). \\
\(Z\) & The set of integers \(Z=\{\ldots-3,-2,-1,0,1,2,3 \ldots\}\). \\
\(R\) & The set of real numbers. \\
\(\lfloor a\rfloor\) & The floor of a (the largest integer less than or equal to a). \\
\(C_{\alpha}^{k}\) or \(\binom{\alpha}{k}\) & \begin{tabular}{l} 
Bitwise exclusive OR.
\end{tabular} \\
\begin{tabular}{l} 
Binomial coefficient or combination \((\alpha \in R, \alpha \geq 0 ;\) \\
\(k \in N \cup\{0\}) . C_{\alpha}^{0}=1\). For \(\alpha \geq k\) binomial coefficient is \\
defined as
\end{tabular} \\
& \(C_{\alpha}^{k}=\frac{\alpha(\alpha-1) \ldots(\alpha-k+1)}{k!}\). If \(\alpha<k\), then \(C_{\alpha}^{k}=0\).
\end{tabular}
```

$\Phi(x) \quad$ Cumulative Gaussian distribution function
$\Phi(x)=\int_{-\infty}^{x} \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{y^{2}}{2}\right) d y$, defined over
$-\infty<x<+\infty$.
$\Phi(-\infty)=0, \Phi(+\infty)=1$.

```
\(\operatorname{LCG}(a, c, m) \quad\) Linear Congruential Generator \(x_{n+1}=\left(a x_{n}+c\right) \bmod m\), where \(a\) is called the multiplier, \(c\) is called the increment and \(m\) is called the modulus of the generator.
\(\operatorname{MCG}(a, m) \quad\) Multiplicative Congruential Generator \(x_{n+1}=\left(a x_{n}\right) \bmod m\) is a special case of Linear Congruential Generator, where the increment \(c\) is taken to be 0 .
\(\operatorname{GFSR}(p, q) \quad\) Generalized Feedback Shift Register Generator \(x_{n}=x_{n-p} \oplus x_{n-q}\).

\section*{Naming Conventions}

The names of all VSL functions in FORTRAN are lowercase; names in C may contain both lowercase and uppercase letters.

The names of generator subroutines have the following structure:
```

v<type of result>rng<distribution> for FORTRAN-interface
v<type of result>Rng<distribution> for C-interface,

```
where v is the prefix of a VSL vector function, and the field <type of result> is either s, d, or \(i\) and specifies one of the following types:
s REAL for FORTRAN-interface
float for C-interface
d
DOUBLE PRECISION for FORTRAN-interface
double for C-interface
i
INTEGER for FORTRAN-interface
int for C-interface
Prefixes s and d apply to continuous distributions only, prefix i applies only to discrete case. The prefix rng indicates that the subroutine is a random generator, and the <distribution> field specifies the type of statistical distribution.

Names of service subroutines follow the template below:
```

vsl<name> ,

```
where vsl is the prefix of a VSL service function. The field <name> contains a short function name. For a more detailed description of service subroutines refer to "Service Subroutines" and "Advanced Service Subroutines" sections.

Prototype of each generator subroutine corresponding to a given probability distribution fits the following structure:
```

<function name>(method, stream, n, r, [<distribution parameters>]),

``` where
- method is the number specifying the method of generation. A detailed description of this parameter can be found in "Distribution Generators" section. See the next page for method name structure definition and "Parameter Definitions" for the specific predefined values.
- stream defines the random stream descriptor and must have a nonzero value. Random streams and their usage are discussed further in "Random Streams" and "Service Subroutines".
- \(n\) defines the number of random values to be generated. If \(n\) is less than or equal to zero, no values are generated. Furthermore, if \(n\) is negative, an error condition is set.
- \(r\) defines the destination array for the generated numbers. The dimension of the array must be large enough to store at least \(n\) random numbers.

Additional parameters included into <distribution parameters> field are individual for each generator subroutine and are described in detail in "Distribution Generators" section.

To invoke a distribution generator, use a call to the respective VSL subroutine. For example, to obtain a vector \(r\), composed of \(n\) independent and identically distributed random numbers with normal (Gaussian) distribution, that have the mean value a and standard deviation sigma, write the following:
for FORTRAN-interface
```

call vsrnggaussian(method, stream, n, r, a, sigma)

```
for C-interface
vsRngGaussian( method, stream, \(n, r, a, ~ s i g m a ~) ~\)
The name of a method parameter has the following structure:
VSL_METHOD_<precision><distribution>_<method>,
where
\begin{tabular}{ll} 
<precision> & S for single precision continuous distribution \\
& D for double precision continuous distribution \\
& I for discrete distribution \\
<distribution> & probability distribution \\
<method> & method name.
\end{tabular}

Method name VSL_METHOD_<precision><distribution>_<method> should be used with vsl<precision>Rng<distribution> function only, where
<precision> s for single precision continuous distribution
d for double precision continuous distribution
i for discrete distribution
<distribution> probability distribution.

\section*{Basic Generators}

VSL provides the following BRNGs, which differ in speed and other properties:
- the 32-bit multiplicative congruential pseudorandom number generator MCG(1132489760, \(2^{31}-1\) ) [L'Ecuyer99],
- the 32-bit generalized feedback shift register pseudorandom number generator \(\operatorname{GFSR}(250,103)\) [Kirkpatrick81],
- the combined multiple recursive pseudorandom number generator \(M R G-32 \mathrm{k} 3 a\) [ 'Ecuyer99a],
- the 59 -bit multiplicative congruential pseudorandom number generator \(M C G\left(13^{13}, 2^{59}\right)\) from NAG Numerical Libraries [NAG],
- Wichmann-Hill pseudorandom number generator (a set of 273 basic generators) from NAG Numerical Libraries [NAG].

Besides these pseudorandom number generators, VSL provides two basic quasi-random number generators:
- Sobol quasi-number generator [Sobol76], [Bratley88], which works in dimensions from 1 up to 40 ,
- Niederreiter quasi-random number generator [Bratley92], which works in dimensions from 1 up to 318 .

Comparative performance analysis of the generators and some testing results can be found in VSL Notes.

VSL provides means of registration of such user-designed generators through the steps described in "Advanced Service Subroutines" section.
For some basic generators, VSL provides two methods of creating independent random streams in multiprocessor computations, which are the leapfrog method and the block-splitting method. Nevertheless, these sequence splitting methods are also useful in sequential Monte Carlo. In addition, Wichmann-Hill basic generator is a set of 273 pseudorandom number generators designed to create up to 273 independent random sequences, which might be used in parallel. The properties of the generators designed for parallel computations are discussed in detail in [Coddington94].
For a more detailed description of the generator properties and testing results refer to VSL Notes.

\section*{Random Streams}

Random stream (or stream) is an abstract source of pseudo- and quasi-random sequences of uniform distribution. Users have no direct access to these sequences and operate with stream state descriptors only. A stream state descriptor, which holds state descriptive information for a particular BRNG, is a neccesary parameter in each subroutine of a distribution generator. Only subroutines of the distribution generator operate with random streams directly. See VSL Notes for details.

User can create unlimited number of random streams by VSL Service Subroutines like NewStream and utilize them in any distribution generator to get the sequence of numbers of given probability distribution. When they are no longer needed, the streams should be deleted calling service subroutine DeleteStream.

\section*{Data Types}

FORTRAN:
TYPE VSL_STREAM_STATE
```

 INTEGER*4 descriptor1
 INTEGER*4 descriptor2
 END TYPE VSL_STREAM_STATE
C:
typedef (void*) vSLStreamStatePtr;

```

See "Advanced Service Subroutines" for the format of the stream state structure for user-designed generators.

\section*{Parameter Definitions}

Predefined values for the brng input parameter are as follows:

\section*{Table 10-1 Values of brng parameter}
\begin{tabular}{|c|c|}
\hline Value & Short Description \\
\hline VSL_BRNG_MCG31 & A 31-bit multiplicative congruential generator. \\
\hline VSL_BRNG_R250 & A generalized feedback shift register generator. \\
\hline VSL_BRNG_MRG32K3A & A combined multiple recursive generator with two components of order 3. \\
\hline VSL_BRNG_MCG59 & A 59-bit multiplicative congruential generator. \\
\hline VSL_BRNG_WH & A set of 273 Wichmann-Hill combined multiplicative congruential generators. \\
\hline VSL_BRNG_SOBOL & A 32-bit Gray code-based generator producing low-discrepancy sequences for dimensions \(1 \leq s \leq 40\). \\
\hline VSL_BRNG_NIEDERR & A 32-bit Gray code-based generator producing low-discrepancy sequences for dimensions \(1 \leq s \leq 318\). \\
\hline
\end{tabular}

See VSL Notes for detailed description.

The VSL functions use the following values of the method input parameter:
Table 10-2 Values of method parameter
\begin{tabular}{|c|c|c|}
\hline Function & Method & Method Description \\
\hline Uniform (continuous) (discrete) & VSL_METHOD_SUNIFORM_STD VSL_METHOD_DUNIFORM_STD VSL_METHOD_IUNIFORM_STD & Standard method. Currently there is only one method for this distribution generator. \\
\hline UniformBits & VSL_METHOD_IUNIFORMBITS_STD & Standard method. Currently there is only one method for this distribution generator. \\
\hline Gaussian & VSL_METHOD_SGAUSSIAN_BOXMULLER VSL_METHOD_SGAUSSIAN_BOXMULLER2 VSL_METHOD_DGAUSSIAN_BOXMULLER VSL_METHOD_DGAUSSIAN_BOXMULLER2 & \begin{tabular}{l}
BOXMULLER generates normally distributed random number \(x\) thru the pair of uniformly distributed numbers \(u_{1}\) and \(u_{2}\) according to the formula: \(x=\sqrt{-2 \ln } u_{1} \sin 2 \pi u_{2}\) \\
BOXMULLER2 generates normally distributed random numbers \(x_{1}\) and \(x_{2}\) thru the pair of uniformly distributed numbers \(u_{1}\) and \(u_{2}\) according to the formulas:
\[
\begin{aligned}
& x_{1}=\sqrt{-2 \ln } u_{1} \sin 2 \pi u_{2} \\
& x_{2}=\sqrt{-2 \ln } u_{1} \cos 2 \pi u_{2}
\end{aligned}
\]
\end{tabular} \\
\hline GaussianMV & VSL_METHOD_SGAUSSIANMV_BOXMULLER VSL_METHOD_SGAUSSIANMV_BOXMULLER2 VSL_METHOD_DGAUSSIANMV_BOXMULLER VSL_METHOD_DGAUSSIANMV_BOXMULLER2 & \begin{tabular}{l}
BOXMULLER generates normally distributed random number \(x\) thru the pair of uniformly distributed numbers \(u_{1}\) and \(u_{2}\) according to the formula: \(x=\sqrt{-2 \ln } u_{1} \sin 2 \pi u_{2}\) \\
BOXMULLER2 generates normally distributed random numbers \(x_{1}\) and \(x_{2}\) thru the pair of uniformly distributed numbers \(u_{1}\) and \(u_{2}\) according to the formulas:
\[
\begin{aligned}
& x_{1}=\sqrt{-2 \ln } u_{1} \sin 2 \pi u_{2} \\
& x_{2}=\sqrt{-2 \ln } u_{1} \cos 2 \pi u_{2}
\end{aligned}
\]
\end{tabular} \\
\hline Exponential & VSL_METHOD_SEXPONENTIAL_ICDF VSL_METHOD_DEXPONENTIAL_ICDF & Inverse cumulative distribution function method. \\
\hline
\end{tabular}

Table 10-2 Values of method parameter (continued)
\begin{tabular}{|c|c|c|}
\hline Function & Method & Method Description \\
\hline Laplace & VSL_METHOD_SLAPLACE_ICDF VSL_METHOD_DLAPLACE_ICDF & Inverse cumulative distribution function method. \\
\hline Weibull & VSL_METHOD_SWEIBULL_ICDF VSL_METHOD_DWEIBULL_ICDF & Inverse cumulative distribution function method. \\
\hline Cauchy & ```
VSL_METHOD_SCAUCHY_ICDF
VSL_METHOD_DCAUCHY_ICDF
``` & Inverse cumulative distribution function method. \\
\hline Rayleigh & VSL_METHOD_SRAYLEIGH_ICDF VSL_METHOD_DRAYLEIGH_ICDF & Inverse cumulative distribution function method. \\
\hline Lognormal & VSL_METHOD_SLOGNORMAL_ICDF VSL_METHOD_DLOGNORMAL_ICDF & Inverse cumulative distribution function method. \\
\hline Gumbel & VSL_METHOD_SGUMBEL_ICDF VSL_METHOD_DGUMBEL_ICDF & Inverse cumulative distribution function method. \\
\hline Bernoulli & VSL_METHOD_IBERNOULLI_ICDF & Inverse cumulative distribution function method. \\
\hline Geometric & VSL_METHOD_IGEOMETRIC_ICDF & Inverse cumulative distribution function method. \\
\hline Binomial & VSL_METHOD_IBINOMIAL_BTPE & \begin{tabular}{l}
Acceptance/rejection method for ntrial \(\cdot \min (p, 1-p) \geq 30\) with decomposition into 4 regions: \\
- 2 parallelograms \\
- triangle \\
- left exponential tail \\
- right exponential tail
\end{tabular} \\
\hline Hypergeometric & VSL_METHOD_IHYPERGEOMETRIC_H2PE & \begin{tabular}{l}
Acceptance/rejection method for large mode of distribution with decomposition into 3 regions: \\
- rectangular \\
- left exponential tail \\
- right exponential tail
\end{tabular} \\
\hline
\end{tabular}

Table 10-2 Values of method parameter (continued)
\begin{tabular}{|c|c|c|}
\hline Function & Method & Method Description \\
\hline Poisson & VSL_METHOD_IPOISSON_PTPE VSL_METHOD_IPOISSON_POISNORM & \begin{tabular}{l}
PTPE - Acceptance/rejection method for \(\lambda \geq 27\) with decomposition into 4 regions: \\
- 2 parallelograms \\
- triangle \\
- left exponential tail \\
- right exponential tail; otherwise, table lookup method is used. \\
POINORM - for \(\lambda \geq 1\), method based on Poisson inverse CDF approximation by Gaussian inverse CDF; for \(\lambda<1\), table lookup method is used.
\end{tabular} \\
\hline PoissonV & VSL_METHOD_IPOISSONV_POISNORM & POINORM - for \(\lambda \geq 1\), method based on Poisson inverse CDF approximation by Gaussian inverse CDF; for \(\lambda<1\), table lookup method is used. \\
\hline NegBinomial & VSL_METHOD_INEGBINOMIAL_NBAR & \begin{tabular}{l}
Acceptance/rejection method for \(\frac{(a-1) \cdot(1-p)}{p} \geq 100\) with decomposition into \\
5 regions: \\
- rectangular \\
- 2 trapezoid \\
- left exponential tail \\
- right exponential tail. \\
For \(\frac{(a-1) \cdot(1-p)}{p}<100\), \\
table lookup method is used.
\end{tabular} \\
\hline
\end{tabular}

See VSL Notes for detailed description.

\section*{Service Subroutines}

Stream handling comprises subroutines for creating, deleting, or copying the streams and getting the index of a basic generator.

Table 10-3 lists all available service subroutines

\section*{Table 10-3 Service Subroutines}
\begin{tabular}{ll}
Subroutine & Short Description \\
\hline NewStream & \begin{tabular}{l}
Creates and initializes a random stream. \\
Creates and initializes a random stream for the \\
generators with multiple initial conditions.
\end{tabular} \\
\(\underline{\text { DeleteStream }}\) & \begin{tabular}{l}
Deletes previously created stream. \\
Copies a stream to another stream.
\end{tabular} \\
\(\underline{\text { CopyStream }}\) & \begin{tabular}{l}
Creates a copy of a random stream state.
\end{tabular} \\
\(\underline{\text { LeapfrogStream }}\) & \begin{tabular}{l}
Initializes the stream by the leapfrog method to \\
generate a subsequnce of the original sequence.
\end{tabular} \\
\(\underline{\text { SkipAheadStream }}\) & \begin{tabular}{l}
Initializes the stream by the skip-ahead method. \\
GetStreamStateBrng
\end{tabular} \\
\begin{tabular}{l}
Obtains the index of the basic generator \\
responsible for the generation of a given random \\
stream. \\
Obtains the number of currently registered basic \\
generators.
\end{tabular} \\
\hline
\end{tabular}

NOTE. In the above table, the vsl prefix in the function names is omitted. In the function reference this prefix is always used in function prototypes and code examples.

Most of the generator-based work comprises three basic steps:
1. Creating and initializing a stream (NewStream, NewStreamEx, CopyStream, CopyStreamState, LeapfrogStream, SkipAheadStream).
2. Generating random numbers with given distribution, see "Distribution Generators".
3. Deleting the stream (DeleteStream).

Note that you can concurrently create multiple streams and obtain random data from one or several generators by using the stream state. You must use the DeleteStream function to delete all the streams afterwards.

\section*{NewStream}

Creates and initializes a random stream.

\section*{Syntax}

Fortran: c
all vslnewstream(stream, brng, seed)

C:
vslNewStream(stream, brng, seed)

\section*{Description}

For a basic generator with number brng, this function creates a new stream and initializes it with a 32-bit seed. The seed is an initial value used to select a particular sequence generated by the basic generator brng. The function is also applicable for generators with multiple initial conditions. See VSL Notes for a more detailed description of stream initialization for different basic generators.

\section*{Input Parameters}

FORTRAN:
brng INTEGER, INTENT (IN). Index of the basic generator to initialize the stream. See Table 10-1 for specific value.
seed
INTEGER, INTENT (IN). Initial condition of the stream. In the case of a quasi-random number generator seed parameter is used to set the dimension. If the dimension is greater than the dimension that brng can support or is less than 1 , then the dimension is assumed to be equal to 1 .

C:
brng
seed
int. Index of the basic generator to initialize the stream. See Table 10-1 for specific value. unsigned int. Initial condition of the stream.

\section*{Output Parameters}

\section*{FORTRAN:}
```

stream TYPE(VSL_STREAM_STATE), INTENT(OUT).
Stream state descriptor.
C:
stream VSLStreamStatePtr*. Pointer to the stream state
structure.

```

\section*{NewStreamEx}

Creates and initializes a random stream for generators with multiple initial conditions.

\section*{Syntax}

\section*{Fortran:}
```

call vslnewstreamex( stream, brng, n, params )

```
C:
vslNewStreamEx (stream, brng, n, params)

\section*{Description}

This function provides an advanced tool to set the initial conditions for a basic generator if its input arguments imply several initialization parameters. Initial values are used to select a particular sequence generated by the basic generator brng. Whenever possible, use NewStream, which is analogous to vslNewStreamEx except that it takes only one 32 -bit initial condition. In particular, vslNewStreamEx may be used to initialize the state table in Generalized Feedback Shift Register Generators (GFSRs). A more detailed description of this issue can be found in VSL Notes.

Input Parameters
FORTRAN:
brng INTEGER, INTENT (IN). Index of the basic generator to initialize the stream. See Table 10-1 for specific value.
INTEGER, INTENT (IN). Number of initial conditions contained in params.
params
INTEGER, INTENT (IN). Array of initial conditions necessary for the basic generator brng to initialize the stream. In the case of a quasi-random number generator only the first element in params parameter is used to set the dimension. If the dimension is greater than the dimension that brng can support or is less than 1 , then the dimension is assumed to be equal to 1 .

C:
brng
n
params
int. Index of the basic generator to initialize the stream. See Table 10-1 for specific value.
int. Number of initial conditions contained in params.
const unsigned int []. Array of initial conditions necessary for the basic generator brng to initialize the stream.

\section*{Output Parameters}

FORTRAN:
stream TYPE (VSL_STREAM_STATE), INTENT (OUT). Stream state descriptor.

C:
stream
VSLStreamStatePtr*. Pointer to the stream state structure.

\section*{DeleteStream}

Deletes a random stream.

\section*{Syntax}

\section*{Fortran:}
```

call vsldeletestream( stream )

```

C:
vslDeleteStream(stream)

\section*{Description}

This function deletes the random stream created by one of the initialization functions.

\section*{Input/Output Parameters}

FORTRAN:
\begin{tabular}{ll}
stream & \begin{tabular}{l}
TYPE (VSL_STREAM_STATE), \\
Descriptor of the stream to be deleted; must have \\
non-zero value.
\end{tabular} \\
C: & \begin{tabular}{l}
vSLStreamStatePtr*. Pointer to the stream state \\
structure; must have non-zero value. After the stream \\
is successfully deleted, the stream pointer is set to
\end{tabular} \\
stream & NULL.
\end{tabular}

\section*{CopyStream}

Creates a copy of a random stream.

\section*{Syntax}

\section*{Fortran:}
```

call vslcopystream( newstream, srcstream )

```

C:
vslCopyStream(newstream, srcstream)

\section*{Description}

The function creates an exact copy of srcstream and stores its descriptor to newstream.

\section*{Input Parameters}

FORTRAN:
scrstream TYPE(VSL_STREAM_STATE), INTENT(IN). Descriptor of the stream to be copied.

C:
srcstream
vSLStreamStatePtr. Pointer to the stream state structure to be copied.

\section*{Output Parameters}

FORTRAN:
newstream TYPE(VSL_STREAM_STATE), INTENT (OUT). Descriptor of the stream copy.

C:
newstream
VSLStreamStatePtr*. Pointer to the copy of the stream state structure.

\section*{CopyStreamState}

Creates a copy of a random stream state.

\section*{Syntax}

\section*{Fortran:}
```

call vslcopystreamstate( deststream, srcstream )

```

C:
vslCopyStreamState(deststream, srcstream)

\section*{Description}

The function copies a stream state from srcstream to the existing deststream stream. Both the streams should be generated by the same basic generator. En error message is generated when the index of the BRNG that produced deststream stream differs from the index of the BRNG that generated srcstream stream.

Unlike CopyStream function, which creates a new stream and copies both the stream state and other data from srcstream, the function CopyStreamState copies only srcstream stream state data to the generated deststream stream.

Input Parameters
FORTRAN:
\begin{tabular}{ll}
scrstream & \begin{tabular}{l}
TYPE(VSL_STREAM_STATE), INTENT (IN). \\
Descriptor of the stream with the state to be copied.
\end{tabular} \\
\(\mathrm{C}:\) & \\
srcstream & \begin{tabular}{l}
VSLStreamStatePtr. Pointer to the stream state \\
structure, from which the stream state is copied.
\end{tabular}
\end{tabular}

\section*{Output Parameters}

FORTRAN:
deststream TYPE(VSL_STREAM_STATE), INTENT(IN). Descriptor \(\overline{\text { of }}\) the destination stream where the state of scrstream stream is copied.

C:
deststream VSLStreamStatePtr. Pointer to the stream state structure where the stream state is copied.

\section*{LeapfrogStream}

Initializes a stream using the leapfrog method.
```

Syntax
Fortran:
call vslleapfrogstream( stream, k, nstreams )
C:
vslLeapfrogStream( stream, k, nstreams )

```

\section*{Description}

The function allows generating random numbers in a random stream with non-unit stride. This feature is particularly useful in distributing random numbers from original stream across nstreams buffers without generating the original random sequence with subsequent manual distribution. One of the important applications of the leapfrog method is slitting the original sequence into non-overlapping subsequences across nstreams computational nodes. The
function initializes the original random stream (see Figure 10-1) to generate random numbers for the computational node \(k, 0 \leq k<\) nstreams, where nstreams is the largest number of computational nodes used.

Figure 10-1 Leapfrog Method

The leapfrog method is supported only for those basic generators that allow splitting elements by the leapfrog method, which is more efficient than simply generating them by a generator with subsequent manual distribution across computational nodes. See VSL Notes for details.

For quasi-random basic generators the leapfrog method allows generating individual components of quasi-random vectors instead of whole quasi-random vectors. In this case nstreams parameter should be equal to the dimension of the quasi-random vector while \(k\) parameter should be the index of a component to be generated (\(0 \leq k<n s t r e a m s\)). Other parameters values are not allowed.

The following code examples illustrate the initialization of three independent streams using the leapfrog method:

\section*{Example 10-1 FORTRAN Code for Leapfrog Method}
```

..
type(VSL_STREAM_STATE) stream1
type(VSL-STREAM_STATE) stream2
type(VSL_STREAM_STATE) stream3
! Creating 3 identical streams
call vslnewstream(stream1, VSL BRNG MCG31, 174)
call vslcopystream(stream2, st\overline{ream1)}
call vslcopystream(stream3, stream1)

```

Example 10-1 FORTRAN Code for Leapfrog Method (continued)
```

! Leapfrogging the streams
call vslleapfrogstream(stream1, 0, 3)
call vslleapfrogstream(stream2, 1, 3)
call vslleapfrogstream(stream3, 2, 3)
! Generating random numbers
! Deleting the streams
call vsldeletestream(stream1)
call vsldeletestream(stream2)
call vsldeletestream(stream3)

```
\(\ldots\)

\section*{Example 10-2 C Code for Leapfrog Method}
```

...
VSLStreamStatePtr stream1;
VSLStreamStatePtr stream2;
VSLStreamStatePtr stream3;
/* Creating 3 identical streams */
vslNewStream(\&stream1, VSL_BRNG_MCG31, 174);
vslCopyStream(\&stream2, st\overline{ream1);}
vslCopyStream(\&stream3, stream1);
/* Leapfrogging the streams */
vslLeapfrogStream(stream1, 0, 3);
vslLeapfrogStream(stream2, 1, 3);
vslLeapfrogStream(stream3, 2, 3);
/* Generating random numbers */
/* Deleting the streams */
vslDeleteStream(\&stream1);
vslDeleteStream(\&stream2);
vslDeleteStream(\&stream3);
...

```

\section*{Input Parameters}

\section*{FORTRAN:}
stream TYPE(VSL_STREAM_STATE), INTENT(IN). Descriptor of the stream to which the leapfrog method is applied.
\begin{tabular}{ll}
\(k\) & \begin{tabular}{l}
INTEGER, INTENT (IN). Index of the \\
computational node, or stream number.
\end{tabular} \\
nstreams & \begin{tabular}{l}
INTEGER, INTENT (IN). Largest number of \\
computational nodes, or stride.
\end{tabular} \\
C: & \begin{tabular}{l}
VSLStreamStatePtr. Pointer to the stream state \\
structure to which the leapfrog method is applied.
\end{tabular} \\
stream & \begin{tabular}{l}
int. Index of the computational node, or stream \\
number.
\end{tabular} \\
nstreams & \begin{tabular}{l}
int. Largest number of computational nodes, or \\
stride.
\end{tabular}
\end{tabular}

\section*{SkipAheadStream}

Initializes a stream using the block-splitting method.

\section*{Syntax}

\section*{Fortran:}
```

call vslskipaheadstream( stream, nskip )

```

C:
vslSkipAheadStream(stream, nskip)

\section*{Description}

This function skips a given number of elements in a random stream. This feature is particularly useful in distributing random numbers from original random stream across different computational nodes. If the largest number of random numbers used by a computational node is nskip, then the original random sequence may be split by SkipAheadStream into non-overlapping blocks of
nskip size so that each block corresponds to the respective computational node. The number of computational nodes is unlimited. This method is known as the block-splitting method or as the skip-ahead method. (see Figure 10-2).

Figure 10-2 Block-Splitting Method

The skip-ahead method is supported only for those basic generators that allow skipping elements by the skip-ahead method, which is more efficient than simply generating them by generator with subsequent manual skipping. See VSL Notes for details.

Please note that for quasi-random basic generators the skip-ahead method works with components of quasi-random vectors rather than with whole quasi-random vectors. Thus to skip NS quasi-random vectors, set nskip parameter equal to the NS*DIMEN, where DIMEN is the dimension of quasi-random vector.

The following code examples illustrate how to initialize three independent streams using SkipAheadStream function:

\section*{Example 10-3 FORTRAN Code for Block-Splitting Method}
```

...
TYPE(VSL_STREAM_STATE) stream1
TYPE (VSL_STREAM-STATE) stream2
TYPE (VSL__STREAM_STATE) stream3
! Creating the 1st stream
call vslnewstream(stream1, VSL_BRNG_MCG31, 174)
! Skipping ahead by }7\mathrm{ elements the 2nd stream
call vslcopystream(stream2, stream1);

```

\section*{Example 10-3 FORTRAN Code for Block-Splitting Method (continued)}
```

call vslskipaheadstream(stream2, 7);
! Skipping ahead by 7 elements the 3rd stream
call vslcopystream(stream3, stream2);
call vslskipaheadstream(stream3, 7);
! Generating random numbers
! Deleting the streams
call vsldeletestream(stream1)
call vsldeletestream(stream2)
call vsldeletestream(stream3)

```
\(\ldots\)

\section*{Example 10-4 C Code for Block-Splitting Method}
```

VSLStreamStatePtr stream1;
VSLStreamStatePtr stream2;
VSLStreamStatePtr stream3;
/* Creating the 1st stream */
vslNewStream(\&stream1, VSL_BRNG_MCG31, 174);
/* Skipping ahead by 7 elements the 2nd stream */
vslCopyStream(\&stream2, stream1);
vslSkipAheadStream(stream2, 7);
/* Skipping ahead by 7 elements the 3rd stream */
vslCopyStream(\&stream3, stream2);
vslSkipAheadStream(stream3, 7) ;
/* Generating random numbers */
/* Deleting the streams */
vslDeleteStream(\&streaml);
vslDeleteStream(\&stream2);
vslDeleteStream(\&stream3);

```
...

\section*{Input Parameters}

FORTRAN:
stream TYPE(VSL_STREAM_STATE), INTENT(IN). Descriptor of the stream to which the block-splitting method is applied.
```

nskip INTEGER, INTENT(IN).Number of skipped
elements.
C:
stream
nskip
VSLStreamStatePtr. Pointer to the stream state
structure to which the block-splitting method is
applied.
int. Number of skipped elements.

```

\section*{GetStreamStateBrng}

Returns index of a basic generator used for generation of a given random stream.

\section*{Syntax}

\section*{Fortran:}
```

brng = vslgetstreamstatebrng( stream )

```

C:
```

brng = vslGetStreamStateBrng( stream )

```

\section*{Description}

This function retrieves the index of a basic generator used for generation of a given random stream.

\section*{Input Parameters}

FORTRAN:
stream TYPE(VSL_STREAM_STATE), INTENT (IN). Descriptor of the stream state.

C:
stream
VSLStreamStatePtr. Pointer to the stream state structure.

\section*{Output Parameters}

\section*{FORTRAN:}
```

brng INTEGER. Index of the basic generator assigned for
the generation of stream ; negative in case of an
error.
C:
brng int. Index of the basic generator assigned for the
generation of stream; negative in case of an error.

```

\section*{GetNumRegBrng}

Obtains the number of currently registered basic generators.

\section*{Syntax}

\section*{Fortran:}
```

nregbrng = vslgetnumregbrngs( )

```

C:
```

nregbrng = vslGetNumRegBrngs( void )

```

\section*{Description}

This function obtains the number of currently registered basic generators. Whenever user registers a user-designed basic generator the number of registered basic generators is incremented. The maximum number of basic generators that can be registered is determined by VSL_MAX_REG_BRNGS parameter.

\section*{Output Parameters}

FORTRAN:
nregbrngs \(\quad\) INTEGER. The number of basic generators registered
at the moment of the function call.

C:
nregbrngs
int. The number of basic generators registered at the moment of the function call.

\section*{Distribution Generators}

This section contains description of VSL subroutines for generating random numbers with different types of distribution. Each function group is introduced by the type of underlying distribution and contains a short description of its functionality, as well as specifications of the call sequence for both FORTRAN and C-interface and the explanation of input and output parameters. Table 10-4 and Table 10-5 list the random number generator subroutines, together with used data types and output distributions.

Table 10-4 Continuous Distribution Generators
\begin{tabular}{|c|c|c|}
\hline Type of Distribution & Data Types & Description \\
\hline Uniform & s, d & Uniform continuous distribution on the interval \([a, b]\). \\
\hline Gaussian & s, d & Normal (Gaussian) distribution. \\
\hline GaussianMV & s, d & Multivariate normal (Gaussian) distribution. \\
\hline Exponential & s, d & Exponential distribution. \\
\hline Laplace & s, d & Laplace distribution (double exponential distribution). \\
\hline Weibull & s, d & Weibull distribution. \\
\hline Cauchy & s, d & Cauchy distribution. \\
\hline Rayleigh & s, d & Rayleigh distribution. \\
\hline Lognormal & s, d & Lognormal distribution. \\
\hline Gumbel & s, d & Gumbel (extreme value) distribution. \\
\hline
\end{tabular}

Table 10-5 Discrete Distribution Generators
\begin{tabular}{lll}
\hline Type of Distribution & \begin{tabular}{l}
Data \\
Types
\end{tabular} & Description \\
\hline Uniform & i & Uniform discrete distribution on the interval \([a, b)\). \\
\(\underline{\text { UniformBits }}\) & i & \begin{tabular}{l}
Generator of integer random values with uniform bit \\
distribution.
\end{tabular} \\
\(\underline{\text { Bernoulli }}\) & i & Bernoulli distribution. \\
Geometric & i & Geometric distribution. \\
\hline
\end{tabular}

Table 10-5 Discrete Distribution Generators (continued)
\begin{tabular}{lll}
Type of Distribution & \begin{tabular}{l}
Data \\
Types
\end{tabular} & Description \\
\hline Binomial & i & Binomial distribution. \\
Hypergeometric & i & Hypergeometric distribution. \\
Poisson & i & Poisson distribution. \\
PoissonV & i & Poisson distribution with varying mean. \\
NegBinomial & i & Negative binomial distribution, or Pascal distribution. \\
\hline
\end{tabular}

\section*{Continuous Distributions}

This section describes routines for generating random numbers with continuous distribution.

\section*{Uniform}

Generates random numbers with uniform distribution.

\section*{Syntax}

\section*{Fortran:}
```

call vsrnguniform( method, stream, n, r, a, b )
call vdrnguniform( method, stream, n, r, a, b )

```

C:
vsRngUniform(method, stream, \(n, r, a, b\))
vdRngUniform(method, stream, \(n, r, a, b\))

\section*{Description}

This function generates random numbers uniformly distributed over the interval \([a, b]\), where \(a, b\) are the left and right bounds of the interval, respectively, and \(a, b \in R ; a<b\).

The probability density function is given by:
\(f_{a, b}(x)=\left\{\begin{array}{cc}\frac{1}{b-a}, & x \in[a, b] \\ 0, & x \notin[a, b]\end{array},-\infty<x<+\infty\right.\).

The cumulative distribution function is as follows:
\[
F_{a, b}(x)=\left\{\begin{aligned}
0, & x<a \\
\frac{x-a}{b-a}, & a \leq x<b,-\infty<x<+\infty \\
1, & x \geq b
\end{aligned}\right.
\]

\section*{Input Parameters}

FORTRAN:
\begin{tabular}{|c|c|}
\hline method & INTEGER, INTENT (IN). Generation method; dummy and set to 0 in case of uniform distribution. See Table 10-2 for specific value. \\
\hline stream & TYPE (VSL_STREAM_STATE), INTENT(IN). Descriptor of the stream state structure. \\
\hline \(n\) & INTEGER, INTENT (IN) . Number of random values to be generated. \\
\hline \multirow[t]{3}{*}{a} & REAL, INTENT (IN) for vsrnguniform. \\
\hline & DOUBLE PRECISION, INTENT(IN) for vdrnguniform. \\
\hline & Left bound a. \\
\hline \multirow[t]{3}{*}{b} & REAL, INTENT (IN) for vsrnguniform. \\
\hline & DOUBLE PRECISION, INTENT(IN) for vdrnguniform. \\
\hline & Right bound b. \\
\hline \multicolumn{2}{|l|}{C:} \\
\hline method & int. Generation method; dummy and set to 0 in case of uniform distribution. See Table 10-2 for specific value. \\
\hline stream & vSLStreamStatePtr. Pointer to the stream state structure. \\
\hline n & int. Number of random values to be generated. \\
\hline
\end{tabular}
float for vsRngUniform.
double for vdRngUniform.
Left bound a.
b
float for vsRngUniform.
double for vdRngUniform.
Right bound \(b\).

\section*{Output Parameters}

\section*{FORTRAN:}
\(r\)
REAL, INTENT (OUT) for vsrnguniform.
DOUBLE PRECISION, INTENT(OUT) for vdrnguniform.

Vector of \(n\) random numbers uniformly distributed over the interval \([a, b]\).

C:
r
```

float* for vsRngUniform.
double* for vdRngUniform.

```

Vector of \(n\) random numbers uniformly distributed over the interval \([a, b]\).

\section*{Gaussian}

Generates normally distributed random numbers.

\section*{Syntax}

\section*{Fortran:}
```

call vsrnggaussian( method, stream, n, r, a, sigma )

```
call vdrnggaussian(method, stream, \(n, r, a, ~ s i g m a)\)

C:
```

vsRngGaussian( method, stream, n, r, a, sigma )

```
vdRngGaussian(method, stream, \(n, r, a, ~ s i g m a ~) ~\)

\section*{Description}

This function generates random numbers with normal (Gaussian) distribution with mean value \(a\) and standard deviation \(\sigma\), where
\[
a, \sigma \in R ; \sigma>0 .
\]

The probability density function is given by:
\[
f_{a, \sigma}(x)=\frac{1}{\sqrt{2 \pi \sigma}} \exp \left(-\frac{(x-a)^{2}}{2 \sigma^{2}}\right),-\infty<x<+\infty .
\]

The cumulative distribution function is as follows:
\[
F_{a, \sigma}(x)=\int_{-\infty}^{x} \frac{1}{\sqrt{2 \pi \sigma}} \exp \left(-\frac{(y-a)^{2}}{2 \sigma^{2}}\right) d y,-\infty<x<+\infty .
\]

The cumulative distribution function \(F_{a, \sigma}(x)\) can be expressed in terms of standard normal distribution \(\Phi(x)\) as
\[
F_{a, \sigma}(x)=\Phi((x-a) / \sigma) .
\]

\section*{Input Parameters}

FORTRAN:
\begin{tabular}{ll}
method & \begin{tabular}{l}
INTEGER, INTENT (IN). Generation method. See \\
Table 10-2 for specific value.
\end{tabular} \\
stream & \begin{tabular}{l}
TYPE (VSL_STREAM_STATE), INTENT (IN) . \\
Descriptor of the stream state structure.
\end{tabular} \\
\(n\) & \begin{tabular}{l}
INTEGER, INTENT (IN) . Number of random \\
values to be generated.
\end{tabular}
\end{tabular}
a
sigma
REAL, INTENT (IN) for vsrnggaussian.

DOUBLE PRECISION, INTENT(IN) for vdrnggaussian.

Mean value a.
REAL, INTENT (IN) for vsrnggaussian.
DOUBLE PRECISION, INTENT (IN) for vdrnggaussian.

Standard deviation \(\sigma\).

C:
method
stream
n
a
sigma
int. Generation method. See Table 10-2 for specific value.
VSLStreamStatePtr. Pointer to the stream state structure.
int. Number of random values to be generated.
float for vsRngGaussian.
double for vdRngGaussian.
Mean value a.
float for vsRngGaussian.
double for vdRngGaussian.
Standard deviation \(\sigma\).

\section*{Output Parameters}

FORTRAN:
\(r\)
REAL, INTENT (OUT) for vsrnggaussian.
DOUBLE PRECISION, INTENT (OUT) for
vdrnggaussian.
Vector of \(n\) normally distributed random numbers.
```

C:
r

```
```

float* for vsRngGaussian.

```
float* for vsRngGaussian.
double* for vdRngGaussian.
```

double* for vdRngGaussian.

```

Vector of \(n\) normally distributed random numbers.

\section*{GaussianMV}

Generates random numbers from multivariate normal
distribution.

\section*{Syntax}

\section*{Fortran:}
```

call vsrnggaussianmv( method, stream, n, r, dimen, mstorage, a, t )

```
call vdrnggaussianmv(method, stream, \(n, r, d i m e n, m s t o r a g e, ~ a, ~ t)\)
C:
vsRngGaussianMV (method, stream, \(n, r, d i m e n, ~ m s t o r a g e, ~ a, ~ T ~) ~\)
vdRngGaussianMV(method, stream, \(n, r\) dimen, mstorage, \(a, T\))

\section*{Description}

This function generates random numbers with \(d\)-variate normal (Gaussian) distribution with mean value \(a\) and variance-covariance matrix \(C\), where \(a \in R^{d} ; C\) is a \(d \times d\) symmetric positive-definite matrix.

The probability density function is given by:
\[
f_{a, c}(x)=\frac{1}{\sqrt{\operatorname{det}(2 \pi C)}} \exp \left(-1 / 2(x-a)^{T} C^{-1}(x-a)\right) \text {, where } x \in R^{d}
\]

Matrix \(C\) can be represented as \(C=T T^{T}\), where \(T\) is a lower triangular matrix - Cholesky factor of \(C\).

Instead of variance-covariance matrix \(C\) the generation subroutines require Cholesky factor of \(C\) in input. To compute Cholesky factor of the matrix \(C\), a user may call MKL LAPACK routines for matrix factorization: ?potrf or ? pptrf for v?RngGaussianMV/v?rnggaussianmv subroutines (? means either s or d for single and double precision respectively). See Application Notes below for more details.

\section*{Input Parameters}

FORTRAN:
\begin{tabular}{|c|c|}
\hline method & INTEGER, INTENT(IN). Generation method. See Table 10-2 for specific value. \\
\hline stream & TYPE (VSL_STREAM_STATE), INTENT(IN). Descriptor of the stream state structure. \\
\hline n & INTEGER, INTENT (IN) . Number of \(d\)-dimensional random vectors to be generated in a call. \\
\hline dimen & INTEGER, INTENT (IN). Dimension \(d(d \geq 1)\) of output random vectors. \\
\hline \multirow[t]{4}{*}{mstorage} & integer, intent (in). Matrix storage scheme for upper triangular matrix \(T^{T}\). Subroutine supports three matrix storage schemes: \\
\hline & VSL_MATRIX_STORAGE_FULL - all \(d \times d\) elements of the matrix \(T^{T}\) are passed, however, only the upper triangle part is actually used in the subroutine. \\
\hline & VSL_MATRIX_STORAGE_PACKED - upper triangle elements of \(T^{T}\) are packed by rows into a one-dimensional array. \\
\hline & VSL_MATRIX_STORAGE_DIAGONAL - only diagonal elements of \(T^{T}\) are passed. \\
\hline \multirow[t]{3}{*}{a} & REAL, INTENT (IN) for vsrnggaussianmv. \\
\hline & DOUBLE PRECISION, INTENT(IN) for vdrnggaussianvm. \\
\hline & Mean vector a of dimension \(d\). \\
\hline
\end{tabular}
t

C:
method
stream
n
dimen
mstorage
a
sigma

REAL, INTENT (IN) for vsrnggaussianmv.
DOUBLE PRECISION, INTENT(IN) for vdrnggaussianmv.

Elements of the upper triangular matrix \(T^{T}\) passed according to the matrix storage scheme mstorage.
int. Generation method. See Table 10-2 for specific value.
VSLStreamStatePtr. Pointer to the stream state structure.
int. Number of random values to be generated.
int. Dimension \(d(d \geq 1)\) of output random vectors.
int. Matrix storage scheme for lower triangular matrix \(T\). Subroutine supports three matrix storage schemes:

VSL_MATRIX_STORAGE_FULL - all \(d \times d\) elements of the matrix \(T\) are passed, however, only the lower triangle part is actually used in the subroutine.
VSL_MATRIX_STORAGE_PACKED - lower triangle elements of \(T\) are packed by columns into a one-dimensional array.
VSL_MATRIX_STORAGE_DIAGONAL - only diagonal elements of \(T\) are passed.
float* for vsRngGaussianMV.
double* for vdRngGaussianMV.
Mean vector a of dimension \(d\).
float* for vsRngGaussianMV.
double* for vdRngGaussianMV.
Elements of the lower triangular matrix \(T\) passed according to the matrix storage scheme mstorage.

\section*{Output Parameters}

\section*{FORTRAN:}
\(r\) REAL, INTENT (OUT) for vsrnggaussianmv.
DOUBLE PRECISION, INTENT (OUT) for vdrnggaussianmv.

Array of \(n\) random vectors of dimension dimen.
C:
\(r\)
float* for vsRngGaussianMV.
double* for vdRngGaussianMV.
Array of \(n\) random vectors of dimension dimen.

\section*{Application Notes}

Since matrices are stored in Fortran by columns, while in C they are stored by rows, the usage of MKL factorization subroutines (assuming Fortran matrices storage) in combination with multivariate normal RNG (assuming C matrix storage) is slightly different in C and Fortran. The following tables help in using these subroutines in C and Fortran. For further information please refer to the appropriate VSL example file.

Table 10-6 Using Cholesky Factorization Subroutines in Fortran
\begin{tabular}{|c|c|c|c|c|}
\hline Matrix Storage Scheme & Variance-Covariance Matrix Argument & Factorization Subroutine & \begin{tabular}{l}
UPLO \\
Parameter in Factorization Subroutine
\end{tabular} & Result of Factorization as Input Argumentfor RNG \\
\hline VSL_MATRIX_STORAGE_FULL & \(C\) in Fortran two-dimentional array & \begin{tabular}{l}
spotrf for vsrnggaussianmv \\
dpotrf for vdrnggaussianmv
\end{tabular} & 'U' & Uppertriangle of \(T^{T}\). Lower triangle is not used. \\
\hline VSL_MATRIX_STORAGE_PACKED & Lower triangle of \(C\) packed by columns into one-dimensional array & \begin{tabular}{l}
spptrf for vsrnggaussianmv \\
dpptrf for vdrnggaussianmv
\end{tabular} & 'L' & \begin{tabular}{l}
Uppertriangle of \(T^{T}\) packed by rows into one- \\
dimentional array.
\end{tabular} \\
\hline
\end{tabular}

Table 10-7 Using Cholesky Factorization Subroutines in C
\begin{tabular}{lllll}
\hline Matrix Storage Scheme & \begin{tabular}{l}
Variance-Covariance \\
Matrix Argument
\end{tabular} & \begin{tabular}{l}
Factorization \\
Subroutine
\end{tabular} & \begin{tabular}{l}
UPLO \\
Parameter in \\
Factorization \\
Subroutine
\end{tabular} & \begin{tabular}{l}
Result of \\
Factorization \\
as Input \\
Argument for \\
RNG
\end{tabular} \\
\hline VSL_MATRIX_STORAGE_FULL & \begin{tabular}{lll}
C in C two-dimentional \\
array
\end{tabular} & \begin{tabular}{l}
spotrf for \\
vsRngGaussianMV
\end{tabular} & 'U' & \begin{tabular}{l}
Upper triangle \\
of \(T^{T}\). Lower \\
triangle is not
\end{tabular} \\
used.
\end{tabular}

\section*{Exponential}

Generates exponentially distributed random numbers.

\section*{Syntax}

\section*{Fortran:}
```

call vsrngexponential( method, stream, n, r, a, beta )
call vdrngexponential( method, stream, n, r, a, beta )

```

C:
vsRngExponential (method, stream, \(n, r, a\), beta)
vdRngExponential (method, stream, \(n, r, a, b e t a)\)

\section*{Description}

This function generates random numbers with exponential distribution that has the displacement \(a\) and scalefactor \(\beta\), where \(a, \beta \in R ; \beta>0\).

The probability density function is given by:
\[
f_{a, \beta}(x)=\left\{\begin{array}{ll}
\frac{1}{\beta} \exp ((-(x-a)) / \beta), & x \geq a \\
0, & x<a
\end{array},-\infty<x<+\infty .\right.
\]

The cumulative distribution function is as follows:
\[
F_{a, \beta}(x)=\left\{\begin{array}{ll}
1-\exp ((-(x-a)) / \beta), & x \geq a \\
0, & x<a
\end{array},-\infty<x<+\infty\right.
\]

\section*{Input Parameters}

FORTRAN:
method INTEGER, INTENT (IN). Generation method. See Table 10-2 for specific value.
stream TYPE (VSL_STREAM_STATE), INTENT(IN). Descriptor of the stream state structure.
\(n\)
INTEGER, INTENT(IN). Number of random values to be generated.
REAL, INTENT(IN) for vsrngexponential.
DOUBLE PRECISION, INTENT(IN) for vdrngexponential.

Displacement a.
beta REAL, INTENT(IN) for vsrngexponential.
DOUBLE PRECISION, INTENT(IN) for vdrngexponential.

Scalefactor \(\beta\).

C:
method
int. Generation method. See Table 10-2 for specific value.
```

stream VSLStreamStatePtr. Pointer to the stream state structure.
int. Number of random values to be generated.
float for vsRngExponential.
double forvdRngExponential.
Displacement a.
beta float for vsRngExponential.
double for vdRngExponential.
Scalefactor }\beta\mathrm{ .

```

\section*{Output Parameters}

\section*{FORTRAN:}
\(r\)
REAL, INTENT (OUT) for vsrngexponential.
DOUBLE PRECISION, INTENT (OUT) for vdrngexponential.

Vector of \(n\) exponentially distributed random numbers.

C:
\(r\)
float* for vsRngExponential.
double* for vdRngExponential.
Vector of \(n\) exponentially distributed random numbers.

\section*{Laplace}

Generates random numbers with Laplace distribution.

\section*{Syntax}

\section*{Fortran:}
```

call vsrnglaplace( method, stream, n, r, a, beta )
call vdrnglaplace( method, stream, n, r, a, beta )

```

C:
vsRngLaplace(method, stream, \(n, r, a\), beta)
```

vdRngLaplace( method, stream, n, r, a, beta )

```

\section*{Description}

This function generates random numbers with Laplace distribution with mean value (or average) \(a\) and scalefactor \(\beta\), where
a, \(\beta \in R ; \beta>0\). The scalefactor value determines the standard deviation as
\(\sigma=\beta \sqrt{2}\).
The probability density function is given by:
\[
f_{a, \beta}(x)=\frac{1}{\sqrt{2 \beta}} \exp \left(-\frac{|x-a|}{\beta}\right),-\infty<x<+\infty .
\]

The cumulative distribution function is as follows:
\[
F_{a, \beta}(x)=\left\{\begin{array}{ll}
\frac{1}{2} \exp \left(-\frac{|x-a|}{\beta}\right), & x<a \\
1-\frac{1}{2} \exp \left(-\frac{|x-a|}{\beta}\right), & x \geq a
\end{array},-\infty<x<+\infty .\right.
\]

\section*{Input Parameters}

\section*{FORTRAN:}
method INTEGER, INTENT(IN). Generation method. See Table 10-2 for specific value.
stream TYPE (VSL_STREAM_STATE), INTENT(IN). Descriptor of the stream state structure. INTEGER, INTENT (IN). Number of random values to be generated.
REAL, INTENT(IN) for vsrnglaplace.
DOUBLE PRECISION, INTENT(IN) for vdrnglaplace.

Mean value a.
REAL, INTENT(IN) for vsrnglaplace.
DOUBLE PRECISION, INTENT(IN) for vdrnglaplace.

Scalefactor \(\beta\).
C:
method
stream
n
a
beta
int. Generation method. See Table 10-2 for specific value.

VSLStreamStatePtr. Pointer to the stream state descriptor.
int. Number of random values to be generated.
float for vsRngLaplace.
double for vdRngLaplace.
Mean value a.
float for vsRngLaplace.
double for vdRngLaplace.
Scalefactor \(\beta\).

\section*{Output Parameters}

\section*{FORTRAN:}
\(r\)
REAL, INTENT (OUT) for vsrnglaplace.

DOUBLE PRECISION, INTENT (OUT) for vdrnglaplace.

Vector of \(n\) Laplace distributed random numbers.
C:
\(r\)
float* for vsRngLaplace.
double* for vdRngLaplace.
Vector of \(n\) Laplace distributed random numbers.

\section*{Weibull}

Generates Weibull distributed random numbers.

\section*{Syntax}

\section*{Fortran:}
```

call vsrngweibull( method, stream, n, r, alpha, a, beta )

```
call vdrngweibull(method, stream, \(n, r, a l p h a, ~ a, ~ b e t a)\)

C:
vsRngWeibull (method, stream, n, r, alpha, a, beta)
vdRngWeibull(method, stream, \(n, r, a l p h a, ~ a, ~ b e t a)\)

\section*{Description}

This function generates Weibull distributed random numbers with displacement a, scalefactor \(\beta\), and shape \(\alpha\), where \(\alpha, \beta, a \in R ; \alpha>0 ; \beta>0\).

The probability density function is given by:
\[
f_{a, \alpha, \beta}(x)= \begin{cases}\frac{\alpha}{\beta^{\alpha}(x-a)^{\alpha-1} \exp \left(-\left(\frac{x-a}{\beta}\right)^{\alpha}\right),} & x \geq a \\ 0, & x<a\end{cases}
\]

The cumulative distribution function is as follows:
\[
F_{a, \alpha, \beta}(x)=\left\{\begin{array}{cc}
1-\exp \left(-\left(\frac{x-a}{\beta}\right)^{\alpha}\right), & x \geq a \\
0, & x<a
\end{array},-\infty<x<+\infty .\right.
\]

\section*{Input Parameters}

FORTRAN:
\begin{tabular}{|c|c|}
\hline method & INTEGER, INTENT(IN). Generation method. See Table 10-2 for specific value. \\
\hline stream & TYPE (VSL_STREAM_STATE), INTENT(IN). Descriptor of the stream state structure. \\
\hline n & INTEGER, INTENT (IN) . Number of random values to be generated. \\
\hline alpha & REAL, INTENT (IN) for vsrngweibull. \\
\hline & DOUBLE PRECISION, INTENT(IN) for vdrngweibull. \\
\hline & Shape \(\alpha\). \\
\hline a & REAL, INTENT (IN) for vsrngweibull. \\
\hline & DOUBLE PRECISION, INTENT(IN) for vdrngweibull. \\
\hline & Displacement a. \\
\hline
\end{tabular}

\section*{beta}

REAL, INTENT (IN) for vsrngweibull.
DOUBLE PRECISION, INTENT(IN) for vdrngweibull.

\section*{Scalefactor \(\beta\).}

C:
method
stream
n
alpha
a
beta
int. Generation method. See Table 10-2 for specific value.
VSLStreamStatePtr. Pointer to the stream state structure.
int. Number of random values to be generated.
float for vsRngWeibull.
double for vdRngWeibull.
Shape \(\alpha\).
float for vsRngWeibull.
double for vdRngWeibull.
Displacement a.
float for vsRngWeibull.
double for vdRngWeibull.
Scalefactor \(\beta\).

\section*{Output Parameters}

FORTRAN:
r
REAL, INTENT (OUT) for vsrngweibull.
DOUBLE PRECISION, INTENT (OUT) for vdrngweibull.

Vector of \(n\) Weibull distributed random numbers.

C:
r
```

float* for vsRngWeibull.
double* for vdRngWeibull.

```

Vector of \(n\) Weibull distributed random numbers.

\section*{Cauchy}

Generates Cauchy distributed random values.

\section*{Syntax}

\section*{Fortran:}
```

call vsrngcauchy( method, stream, n, r, a, beta )

```
call vdrngcauchy(method, stream, \(n, r, a, b e t a)\)

C:
vsRngCauchy (method, stream, \(n, r, a, b e t a)\)
vdRngCauchy (method, stream, \(n, r, a\), beta)

\section*{Description}

This function generates Cauchy distributed random numbers with displacement \(a\) and scalefactor \(\beta\), where \(a, \beta \in R ; \beta>0\).

The probability density function is given by:
\[
f_{a, \beta}(x)=\frac{1}{\pi \beta\left(1+\left(\frac{x-a}{\beta}\right)^{2}\right)},-\infty<x<+\infty
\]

The cumulative distribution function is as follows:
\[
F_{a, \beta}(x)=\frac{1}{2}+\frac{1}{\pi} \arctan \left(\frac{x-a}{\beta}\right),-\infty<x<+\infty .
\]

\section*{Input Parameters}

\section*{FORTRAN:}
\begin{tabular}{ll}
method & \begin{tabular}{l}
INTEGER, INTENT (IN). Generation method. See \\
Table 10-2 for specific value.
\end{tabular} \\
stream & \begin{tabular}{l}
TYPE (VSL_STREAM_STATE), INTENT (IN) . \\
Descriptor of the stream state structure.
\end{tabular} \\
\(n\) & \begin{tabular}{l}
INTEGER, INTENT (IN) . Number of random \\
values to be generated.
\end{tabular} \\
& REAL, INTENT (IN) for vSrngcauchy. \\
& \begin{tabular}{l}
DOUBLE PRECISION, INTENT (IN) for \\
vdrngcauchy.
\end{tabular}
\end{tabular}

Displacement a.
beta REAL, INTENT(IN)for vsrngcauchy.
DOUBLE PRECISION, INTENT(IN) for vdrngcauchy.

Scalefactor \(\beta\).
C:
method int. Generation method. See Table 10-2 for specific value.
stream VSLStreamStatePtr. Pointer to the stream state structure.
\(n\)
a
int. Number of random values to be generated.
float for vsRngCauchy.
double for vdRngCauchy.
Displacement a.
beta float for vsRngCauchy.
double for vdRngCauchy.
Scalefactor \(\beta\).

\section*{Output Parameters}

FORTRAN:
\(r\)
REAL, INTENT (OUT) for vsrngcauchy.
DOUBLE PRECISION, INTENT (OUT) for vdrngcauchy.

Vector of \(n\) Cauchy distributed random numbers.

C:
\(r\)
```

float* for vsRngCauchy.
double* for vdRngCauchy.

```

Vector of \(n\) Cauchy distributed random numbers.

\section*{Rayleigh}

Generates Rayleigh distributed random values.

\section*{Syntax}

\section*{Fortran:}
```

call vsrngrayleigh( method, stream, n, r, a, beta )

```
call vdrngrayleigh(method, stream, \(n, r, a, b e t a)\)

C:
vsRngRayleigh(method, stream, \(n, r, a\), beta)
vdRngRayleigh(method, stream, \(n, r, a\), beta)

\section*{Description}

This function generates Rayleigh distributed random numbers with displacement \(a\) and scalefactor \(\beta\), where \(a, \beta \in R ; \beta>0\).

Rayleigh distribution is a special case of Weibull distribution, where the shape parameter \(\alpha=2\).
The probability density function is given by:
\[
f_{a, \beta}(x)=\left\{\begin{array}{lc}
\frac{2(x-a)}{\beta^{2}} \exp \left(-\frac{(x-a)^{2}}{\beta^{2}}\right), & x \geq a \\
0, & x<a
\end{array},-\infty<x<+\infty .\right.
\]

The cumulative distribution function is as follows:
\[
F_{a, \beta}(x)=\left\{\begin{array}{lc}
1-\exp \left(-\frac{(x-a)^{2}}{\beta^{2}}\right), & x \geq a \\
0, & x<a
\end{array},-\infty<x<+\infty .\right.
\]

\section*{Input Parameters}

FORTRAN:
\begin{tabular}{ll}
method & \begin{tabular}{l}
INTEGER, INTENT (IN). Generation method. See \\
Table 10-2 for specific value.
\end{tabular} \\
stream & \begin{tabular}{l}
TYPE (VSL_STREAM_STATE), INTENT (IN) . \\
Descriptor of the stream state structure.
\end{tabular} \\
n & \begin{tabular}{l}
INTEGER, INTENT (IN) . Number of random \\
values to be generated.
\end{tabular} \\
& REAL, INTENT (IN) for vSrngrayleigh. \\
& \begin{tabular}{l}
DOUBLE PRECISION, INTENT (IN) for \\
vdrngrayleigh.
\end{tabular}
\end{tabular}

Displacement a.
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{beta} & REAL, INTENT (IN) for vsrngrayleigh. \\
\hline & DOUBLE PRECISION, INTENT(IN) for vdrngrayleigh. \\
\hline & Scalefactor \(\beta\). \\
\hline \multicolumn{2}{|l|}{C:} \\
\hline method & int. Generation method. See Table 10-2 for specific value. \\
\hline stream & VSLStreamStatePtr. Pointer to the stream state structure. \\
\hline \(n\) & int. Number of random values to be generated. \\
\hline \multirow[t]{3}{*}{a} & float for vsRngRayleigh. \\
\hline & double for vdRngRayleigh. \\
\hline & Displacement a. \\
\hline \multirow[t]{3}{*}{beta} & float for vsRngRayleigh. \\
\hline & double forvdRngRayleigh. \\
\hline & Scalefactor \(\beta\). \\
\hline
\end{tabular}

\section*{Output Parameters}

FORTRAN:
r
REAL, INTENT (OUT) for vsrngrayleigh.
DOUBLE PRECISION, INTENT (OUT) for vdrngrayleigh.

Vector of \(n\) Rayleigh distributed random numbers.
C:
\(r\) float* for vsRngRayleigh.
double* for vdRngRayleigh.
Vector of \(n\) Rayleigh distributed random numbers.

\section*{Lognormal}

\section*{Generates lognormally distributed random numbers.}

\section*{Syntax}

\section*{Fortran:}
```

call vsrnglognormal( method, stream, n, r, a, sigma, b, beta )
call vdrnglognormal( method, stream, n, r, a, sigma, b, beta )

```

C:
vsRngLognormal (method, stream, \(n, r, a, ~ s i g m a, ~ b, ~ b e t a) ~\)
vdRngLognormal (method, stream, \(n, r, a, ~ s i g m a, ~ b, ~ b e t a ~) ~\)

\section*{Discussion}

This function generates lognormally distributed random numbers with average of distribution a and standard deviation \(\sigma\) of subject normal distribution, displacement \(b\), and scalefactor \(\beta\), where
\[
a, \sigma, b, \beta \in R ; \sigma>0 ; \beta>0 .
\]

The probability density function is given by:
\[
f_{a, \sigma, b, \beta}(x)= \begin{cases}\frac{1}{\sigma(x-b) \sqrt{2 \pi}} \exp \left(-\frac{[\ln ((x-b) / \beta)-a]^{2}}{2 \sigma^{2}}\right), & x>b \\ 0, & x \leq b\end{cases}
\]

The cumulative distribution function is as follows:
\[
F_{a, \sigma, b, \beta}(x)= \begin{cases}\Phi((\ln ((x-b) / \beta)-a) / \sigma), & x>b \\ 0, & x \leq b\end{cases}
\]

\section*{Input Parameters}

FORTRAN:
method INTEGER, INTENT (IN). Generation method. See Table 10-2 for specific value.
stream TYPE (VSL_STREAM_STATE), INTENT(IN). Descriptor of the stream state structure. INTEGER, INTENT (IN). Number of random values to be generated. REAL, INTENT(IN) for vsrnglognormal. DOUBLE PRECISION, INTENT(IN) for vdrnglognormal.

Average a of the subject normal distribution.
sigma REAL, INTENT(IN)for vsrnglognormal.
DOUBLE PRECISION, INTENT(IN) for vdrnglognormal.

Standard deviation \(\sigma\) of the subject normal distribution.

REAL, INTENT(IN) for vsrnglognormal.
DOUBLE PRECISION, INTENT(IN) for vdrnglognormal.

Displacement b.
REAL, INTENT(IN) for vsrnglognormal.
DOUBLE PRECISION, INTENT(IN) for vdrnglognormal.

Scalefactor value \(\beta\).
C:
method
stream
n
a
double for vdRngLognormal.
Average a of the subject normal distribution.
sigma
b
beta
Displacement b.
float for vsRngLognormal.
double for vdRngLognormal.
Scalefactor value \(\beta\).

\section*{Output Parameters}

\section*{FORTRAN:}
r
REAL, INTENT (OUT) for vsrnglognormal.
DOUBLE PRECISION, INTENT (OUT) for vdrnglognormal.

Vector of \(n\) lognormally distributed random numbers.
C:
r
float* for vsRngLognormal.
double* for vdRngLognormal.
Vector of \(n\) lognormally distributed random numbers.

\section*{Gumbel}

Generates Gumbel distributed random values.

\section*{Syntax}

\section*{Fortran:}
```

call vsrnggumbel(method, stream, n, r, a, beta)
call vdrnggumbel(method, stream, n, r, a, beta)

```

C:
vsRngGumbel(method, stream, \(n, ~ r, ~ a, ~ b e t a) ~\)
vdRngGumbel(method, stream, \(n, r, a, b e t a)\)

\section*{Description}

This function generates Gumbel distributed random numbers with displacement a and scalefactor \(\beta\), where \(a, \beta \in R ; \beta>0\).

The probability density function is given by:
\[
f_{a, \beta}(x)=\frac{1}{\beta} \exp \left(\frac{x-a}{\beta}\right) \exp (-\exp ((x-a) / \beta)),-\infty<x<+\infty .
\]

The cumulative distribution function is as follows:
\[
F_{a, \beta}(x)=1-\exp (-\exp ((x-a) / \beta)),-\infty<x<+\infty .
\]

\section*{Input Parameters}

\section*{FORTRAN:}
\begin{tabular}{ll}
method & \begin{tabular}{l}
INTEGER, INTENT (IN) . Generation method. See \\
Table 10-2 for specific value.
\end{tabular} \\
stream & \begin{tabular}{l}
TYPE (VSL_STREAM_STATE), INTENT (IN) . \\
Descriptor of the stream state structure.
\end{tabular} \\
\(n\) & \begin{tabular}{l}
INTEGER, INTENT (IN) . Number of random \\
values to be generated.
\end{tabular}
\end{tabular}
a
beta
REAL, INTENT (IN) for vsrnggumbel.
DOUBLE PRECISION, INTENT (IN) for vdrnggumbel. Scalefactor \(\beta\).

C:
method
stream
n
a
beta
REAL, INTENT (IN) for vsrnggumbel.
DOUBLE PRECISION, INTENT (IN) for vdrnggumbel.

Displacement a.
int. Generation method. See Table 10-2 for specific value.
VSLStreamstatePtr. Pointer to the stream state structure.
int. Number of random values to be generated.
float for vsRngGumbel.
double for vdRngGumbel.
Displacement \(a\).
float for vsRngGumbel.
double for vdRngGumbel.
Scalefactor \(\beta\).

\section*{Output Parameters}

FORTRAN:
\(r\)

REAL, INTENT (OUT) for vsrnggumbel. DOUBLE PRECISION, INTENT (OUT) for vdrnggumbel.

Vector of \(n\) random values with Gumbel distribution.

C:
\(r\)
```

float* for vsRngGumbel.
double* for vdRngGumbel.

```

Vector of \(n\) random values with Gumbel distribution.

\section*{Discrete Distributions}

This section describes routines for generating random numbers with discrete distribution.

\section*{Uniform}

Generates random numbers uniformly distributed over the interval \([a, b)\).

\section*{Syntax}

\section*{Fortran:}
call virnguniform(method, stream, \(n, r, a, b\))
C:
viRngUniform(method, stream, \(n, r, a, b\))

\section*{Description}

This function generates random numbers uniformly distributed over the interval \([a, b)\), where \(a, b\) are the left and right bounds of the interval, respectively, and \(a, b \in Z ; a<b\).

The probability distribution is given by:
\[
P(X=k)=\frac{1}{b-a}, k \in\{a, a+1, \ldots, b-1\} .
\]

The cumulative distribution function is as follows:
\[
F_{a, b}(x)=\left\{\begin{array}{c}
0, \quad x<a \\
\frac{\lfloor x-a+1\rfloor}{b-a}, a \leq x<b, x \in R . \\
1, \quad x \geq b
\end{array}\right.
\]

\section*{Input Parameters}

\section*{FORTRAN:}
\begin{tabular}{ll}
method & \begin{tabular}{l}
INTEGER, INTENT (IN) . Generation method. See \\
Table 10-2 for specific value.
\end{tabular} \\
stream & \begin{tabular}{l}
TYPE (VSL_STREAM_STATE), INTENT (IN) . \\
Descriptor of the stream state structure.
\end{tabular} \\
n & \begin{tabular}{l}
INTEGER, INTENT (IN) . Number of random \\
values to be generated.
\end{tabular} \\
b & \begin{tabular}{l}
INTEGER, INTENT (IN) . Left interval bound a. \\
INTEGER, INTENT (IN) . Right interval bound b.
\end{tabular} \\
method & \begin{tabular}{l}
int. Generation method. See Table 10-2 for specific \\
value.
\end{tabular} \\
stream & \begin{tabular}{l}
VSLStreamStatePtr. Pointer to the stream state \\
structure.
\end{tabular} \\
n & \begin{tabular}{l}
int. Number of random values to be generated.
\end{tabular} \\
int. Left interval bound \(a\).
\end{tabular}

\section*{Output Parameters}

\section*{FORTRAN:}
\(r\)
INTEGER, INTENT (OUT). Vector of \(n\) random values uniformly distributed over the interval \([a, b)\).

C:
\(r\)
int*. Vector of \(n\) random values uniformly distributed over the interval \([a, b)\).

\section*{UniformBits}

Generates integer random values with uniform bit distribution.

\section*{Syntax}

\section*{Fortran:}
call virnguniformbits(method, stream, n, r)
C:
viRngUniformBits(method, stream, n, r)

\section*{Description}

This function generates integer random values with uniform bit distribution.The generators of uniformly distributed numbers can be represented as recurrence relations over integer values in modular arithmetic. Apparently, each integer can be treated as a vector of several bits. In a truly random generator, these bits are random, while in pseudorandom generators this randomness can be violated. For example, a well known drawback of linear congruential generators is that lower bits are less random than higher bits (for example, see [Knuth81]). For this reason, care should be taken when using this function. Typically, in a 32 -bit \(L C G\) only 24 higher bits of an integer value can be considered random. See VSL Notes for details.

\section*{Input Parameters}

FORTRAN:
\begin{tabular}{ll}
method & \begin{tabular}{l}
INTEGER, INTENT (IN). Generation method. A \\
dummy argument in virnguniformbits. Should \\
be zero. See Table 10-2 for specific value.
\end{tabular} \\
stream & \begin{tabular}{l}
TYPE (VSL_STREAM_STATE), INTENT (IN). \\
Descriptor of the stream state structure.
\end{tabular} \\
\(n\) & \begin{tabular}{l}
INTEGER, INTENT (IN) . Number of random \\
values to be generated.
\end{tabular}
\end{tabular}
```

C:
method int. Generation method. A dummy argument in
viRngUniformBits. Should be zero. See
Table 10-2 for specific value.
stream VSLStreamStatePtr. Pointer to the stream state
structure.
n
int. Number of random values to be generated.

```

\section*{Output Parameters}

\section*{FORTRAN:}
\(r\)
INTEGER, INTENT (OUT). Vector of \(n\) random integer numbers. If the stream was generated by a 64 or a 128-bit generator, each integer value is represented by two or four elements of \(r\) respectively. The number of bytes occupied by each integer is contained in the field wordsize of the structure VSL_BRNG_PROPERTIES. The total number of bits that are actually used to store the value are contained in the field nbits of the same structure. See "Advanced Service Subroutines" for a more detailed discussion of VSL_BRNG_PROPERTIES.

C:
\(r\)
unsigned int*. Vector of \(n\) random integer numbers. If the stream was generated by a 64 or a 128 -bit generator, each integer value is represented by two or four elements of \(r\) respectively. The number of bytes occupied by each integer is contained in the field WordSize of the structure VSLBrngProperties. The total number of bits that are actually used to store the value are contained in the field NBits of the same structure. See "Advanced Service Subroutines" for a more detailed discussion of VSLBrngProperties.

\section*{Bernoulli}

\section*{Generates Bernoulli distributed random values.}

\section*{Syntax}

\section*{Fortran:}
call virngbernoulli(method, stream, \(n, r, p\))
C:
viRngBernoulli(method, stream, \(n, r, p\))

\section*{Description}

This function generates Bernoulli distributed random numbers with probability \(p\) of a single trial success, where
```

p\in R;0\leqp\leq1.

```

A variate is called Bernoulli distributed, if after a trial it is equal to 1 with probability of success \(p\), and to 0 with probability \(1-p\).

The probability distribution is given by:
\[
\begin{aligned}
& P(X=1)=p, \\
& P(X=0)=1-p .
\end{aligned}
\]

The cumulative distribution function is as follows:
\[
F_{p}(x)=\left\{\begin{array}{c}
0, \quad x<0 \\
1-p, \quad 0 \leq x<1, x \in R \\
1, \quad x \geq 1
\end{array}\right.
\]

\section*{Input Parameters}

\section*{FORTRAN:}
\(\begin{array}{ll}\text { method } & \text { INTEGER, INTENT(IN). Generation method. See } \\ & \text { Table 10-2 for specific value. }\end{array}\)
\(\left.\left.\begin{array}{ll}\text { stream } & \text { TYPE (VSL_STREAM_STATE), INTENT (IN). } \\
\text { Descriptor of the stream state structure. }\end{array}\right\} \begin{array}{l}\text { INTEGER, INTENT (IN). Number of random } \\
\text { values to be generated. }\end{array}\right]\)\begin{tabular}{l}
DOUBLE PRECISION, INTENT (IN). Success \\
probability p of a trial.
\end{tabular}

C:
method
stream
n
\(p\)
int. Generation method. See Table 10-2 for specific value.

VSLStreamStatePtr. Pointer to the stream state structure.
int. Number of random values to be generated. double. Success probability \(p\) of a trial.

\section*{Output Parameters}

FORTRAN:
\(r\)
INTEGER, INTENT (OUT). Vector of \(n\) Bernoulli distributed random values.

C:
\(r\)
int*. Vector of \(n\) Bernoulli distributed random values.

\section*{Geometric}

Generates geometrically distributed random values.

Syntax

\section*{Fortran:}
```

call virnggeometric( method, stream, n, r, p )

```

C:
```

viRngGeometric( method, stream, n, r, p )

```

\section*{Description}

This function generates geometrically distributed random numbers with probability \(p\) of a single trial success, where \(p \in R ; 0<p<1\).

A geometrically distributed variate represents the number of independent Bernoulli trials preceding the first success. The probability of a single Bernoulli trial success is \(p\).

The probability distribution is given by:
\[
P(X=k)=p \cdot(1-p)^{k}, k \in\{0,1,2, \ldots \quad\} .
\]

The cumulative distribution function is as follows:
\[
F_{p}(x)=\left\{\begin{array}{ll}
0, & x<0 \\
1-(1-p)^{\lfloor x+1\rfloor}, & x \geq 0
\end{array} \quad, x \in R .\right.
\]

\section*{Input Parameters}

FORTRAN:
\begin{tabular}{ll}
method & \begin{tabular}{l}
INTEGER, INTENT (IN) . Generation method. See \\
Table 10-2 for specific value.
\end{tabular} \\
stream & \begin{tabular}{l}
TYPE (VSL_STREAM_STATE), INTENT (IN) . \\
Descriptor of the stream state structure.
\end{tabular} \\
\(n\) & \begin{tabular}{l}
INTEGER, INTENT (IN) . Number of random \\
values to be generated. \\
DOUBLE PRECISION, INTENT (IN) . Success \\
probability p of a trial.
\end{tabular} \\
C: & \begin{tabular}{l}
int. Generation method. See Table 10-2 for specific \\
value.
\end{tabular} \\
method & \begin{tabular}{l}
VSLStreamStatePtr. Pointer to the stream state \\
structure.
\end{tabular} \\
stream & \begin{tabular}{l}
int. Number of random values to be generated.
\end{tabular}
\end{tabular}

\section*{Output Parameters}

\section*{FORTRAN:}
\(r\)
INTEGER, INTENT (OUT). Vector of \(n\) geometrically distributed random values.

C:
r
int*. Vector of \(n\) geometrically distributed random values.

\section*{Binomial}

Generates binomially distributed random numbers.

\section*{Syntax}

\section*{Fortran:}
```

call virngbinomial( method, stream, n, r, ntrial, p )

```

C:
viRngBinomial(method, stream, \(n, r, n t r i a l, ~ p)\)

\section*{Discussion}

This function generates binomially distributed random numbers with number of independent Bernoulli trials \(m\), and with probability \(p\) of a single trial success, where \(p \in R ; 0 \leq p \leq 1\), \(m \in N\).

A binomially distributed variate represents the number of successes in mindependent Bernoulli trials with probability of a single trial success \(p\).

The probability distribution is given by:
\(P(X=k)=C_{m}^{k} p^{k}(1-p)^{m-k}, k \in\{0,1, \ldots, m\}\).
The cumulative distribution function is as follows:

\section*{Input Parameters}

FORTRAN:
\begin{tabular}{ll}
method & \begin{tabular}{l}
INTEGER, INTENT (IN). Generation method. See \\
Table 10-2 for specific value.
\end{tabular} \\
stream & \begin{tabular}{l}
TYPE (VSL_STREAM_STATE), INTENT (IN) . \\
Descriptor of the stream state structure.
\end{tabular} \\
ntrial & \begin{tabular}{l}
INTEGER, INTENT (IN) . Number of random \\
values to be generated.
\end{tabular} \\
\(p\) & \begin{tabular}{l}
INTEGER, INTENT (IN) . Number of independent \\
trials \(m\).
\end{tabular} \\
& \begin{tabular}{l}
DOUBLE PRECISION, INTENT (IN). Success \\
probability p of a single trial.
\end{tabular}
\end{tabular}

C:
\begin{tabular}{ll}
method & \begin{tabular}{l}
int. Generation method. See Table 10-2 for specific \\
value.
\end{tabular} \\
stream & \begin{tabular}{l}
VSLStreamStatePtr. Pointer to the stream state \\
structure.
\end{tabular} \\
\(n\) & int. Number of random values to be generated. \\
\(n t r i a l\) & int. Number of independent trials \(m\). \\
\(p\) & double. Success probability \(p\) of a single trial.
\end{tabular}

\section*{Output Parameters}

FORTRAN:
r
INTEGER, INTENT (OUT). Vector of \(n\) binomially distributed random values.

C:
\(r\)
int*. Vector of \(n\) binomially distributed random values.

\section*{Hypergeometric}

Generates hypergeometrically distributed random values.

\section*{Syntax}

\section*{Fortran:}
call virnghypergeometric(method, stream, n, r, l, s, m)
C:
viRngHypergeometric(method, stream, \(n, r, 1, s, m)\)

\section*{Description}

This function generates hypergeometrically distributed random values with lot size \(l\), size of sampling \(s\), and number of marked elements in the lot \(m\), where \(l, m, s \in N \cup\{0\}\); \(1 \geq \max (s, m)\).

Consider a lot of 1 elements comprising \(m\) "marked" and \(1-m\) "unmarked" elements. A trial sampling without replacement of exactly \(s\) elements from this lot helps to define the hypergeometric distribution, which is the probability that the group of \(s\) elements contains exactly \(k\) marked elements.

The probability distribution is given by:
\[
P(X=k)=\frac{C_{m}^{k} C_{1-m}^{s-k}}{C_{1}^{S}}, k \in\{\max (0, s+m-1), \ldots \quad, \min (s, m)\} .
\]

The cumulative distribution function is as follows:
\[
F_{1, s, m}(x)=\left\{\begin{array}{cl}
0, & x<\max (0, s+m-1) \\
\sum_{k=\max (0, s+m-1)} \frac{C_{m}^{k} C_{l-m}^{s-k}}{C_{1}^{s}}, & \max (0, s+m-1) \leq x \leq \min (s, m) \\
1, & x>\min (s, m)
\end{array}\right.
\]

\section*{Input Parameters}

FORTRAN:
\begin{tabular}{|c|c|}
\hline method & Integer, intent (in). Generation method. See Table 10-2 for specific value. \\
\hline stream & TYPE (VSL_STREAM_STATE), INTENT (IN). Descriptor of the stream state structure. \\
\hline \(n\) & INTEGER, INTENT (IN). Number of random values to be generated. \\
\hline 1 & INTEGER, INTENT (IN) . Lot size 1. \\
\hline S & INTEGER, INTENT(IN). Size of sampling without replacement \(s\). \\
\hline m & INTEGER, INTENT(IN). Number of marked elements \(m\). \\
\hline \multicolumn{2}{|l|}{C:} \\
\hline method & int. Generation method. See Table 10-2 for specific value. \\
\hline stream & vSLStreamStatePtr. Pointer to the stream state structure. \\
\hline \(n\) & int. Number of random values to be generated. \\
\hline 1 & int. Lot size 1. \\
\hline \(s\) & int. Size of sampling without replacement \(s\). \\
\hline m & int. Number of marked elements \(m\). \\
\hline
\end{tabular}

\section*{Output Parameters}

\section*{FORTRAN:}
\(r\)
INTEGER, INTENT (OUT). Vector of \(n\) hypergeometrically distributed random values.

C:
\(r\)
int*. Vector of \(n\) hypergeometrically distributed random values.

\section*{Poisson}

Generates Poisson distributed random values.

\section*{Syntax}

\section*{Fortran:}
call virngpoisson(method, stream, n, r, lambda)
C:
viRngPoisson(method, stream, n, r, lambda)

\section*{Description}

This function generates Poisson distributed random numbers with distribution parameter \(\lambda\), where \(\lambda \in R ; \lambda>0\).

The probability distribution is given by:
\(P(X=k)=\frac{\lambda^{k} e^{-\lambda}}{k!}, k \in\{0,1,2, \ldots\}\).

The cumulative distribution function is as follows:
\[
F_{\lambda}(x)=\left\{\begin{array}{cc}
\sum_{k=0}^{\lfloor x\rfloor} \frac{\lambda^{k} e^{-\lambda}}{k!}, & x \geq 0 \\
0, & x<0
\end{array}, x \in R .\right.
\]

\section*{Input Parameters}

FORTRAN:
\begin{tabular}{ll}
method & \begin{tabular}{l}
INTEGER, INTENT (IN) . Generation method. See \\
Table 10-2 for specific value.
\end{tabular} \\
stream & \begin{tabular}{l}
TYPE (VSL_STREAM_STATE), INTENT (IN) . \\
Descriptor of the stream state structure. \\
INTEGER, INTENT (IN) . Number of random \\
values to be generated.
\end{tabular} \\
Iambda & \begin{tabular}{l}
DOUBLE PRECISION, INTENT (IN) . Distribution \\
parameter \(\lambda\).
\end{tabular} \\
C: & \begin{tabular}{l}
int. Generation method. See Table 10-2 for specific \\
value.
\end{tabular} \\
method & \begin{tabular}{l}
VSLStreamStatePtr. Pointer to the stream state \\
structure.
\end{tabular} \\
\(n\) & \begin{tabular}{l}
int. Number of random values to be generated. \\
dambda
\end{tabular} \\
double. Distribution parameter \(\lambda\).
\end{tabular}

\section*{Output Parameters}

FORTRAN:
\(r\)
integer, intent (out). Vector of \(n\) Poisson distributed random values.

C:
\(r\)
int*. Vector of \(n\) Poisson distributed values.

\section*{PoissonV}

Generates Poisson distributed random values with varying mean.

\section*{Syntax}

\section*{Fortran:}
call virngpoissonv(method, stream, n, r, lambda)
C:
viRngPoissonV(method, stream, n, r, lambda)

\section*{Description}

This function generates \(n\) Poisson distributed random numbers \(X_{i}(i=1, \ldots, n)\) with distribution parameter \(\lambda_{i}\), where \(\lambda_{i} \in R ; \lambda_{i}>0\).

The probability distribution is given by:
\[
P\left(X_{i}=k\right)=\frac{\lambda_{i}^{k} \exp \left(-\lambda_{i}\right)}{k!}, k \in\{0,1,2, \ldots\}
\]

The cumulative distribution function is as follows:
\[
F_{\lambda_{i}}(x)=\left\{\begin{array}{cc}
\sum_{k=0}^{\lfloor x\rfloor} \frac{\lambda_{i}^{k} e^{-\lambda_{i}}}{k!}, & x \geq 0 \\
0, & x<0
\end{array}, x \in R\right.
\]

\section*{Input Parameters}

\section*{FORTRAN:}

\footnotetext{
method INTEGER, INTENT(IN). Generation method. See Table 10-2 for specific value.
}
\begin{tabular}{|c|c|}
\hline stream & TYPE (VSL_STREAM_STATE), INTENT (IN). Descriptor of the stream state structure. \\
\hline \(n\) & INTEGER, INTENT (IN) . Number of random values to be generated. \\
\hline lambda & DOUBLE PRECISION, INTENT(IN). Array of \(n\) distribution parameters \(\lambda_{i}\). \\
\hline \multicolumn{2}{|l|}{C:} \\
\hline method & int. Generation method. See Table 10-2 for specific value. \\
\hline stream & VSLStreamStatePtr. Pointer to the stream state structure. \\
\hline \(n\) & int. Number of random values to be generated. \\
\hline lambda & double*. Array of \(n\) distribution parameters \(\lambda_{i}\). \\
\hline \multicolumn{2}{|l|}{Output Parameters} \\
\hline \multicolumn{2}{|l|}{FORTRAN:} \\
\hline \(r\) & INTEGER, INTENT (OUT). Vector of \(n\) Poisson distributed random values. \\
\hline \multicolumn{2}{|l|}{C:} \\
\hline \(r\) & int*. Vector of \(n\) Poisson distributed random values. \\
\hline
\end{tabular}

\section*{NegBinomial}

Generates random numbers with negative binomial distribution.

\section*{Syntax}

\section*{Fortran:}
```

call virngnegbinomial( method, stream, n, r, a, p )

```

C:
viRngNegBinomial(method, stream, \(n, r, a, p\))

\section*{Description}

This function generates random numbers with negative binomial distribution and distribution parameters \(a\) and \(p\)., where \(p, a \in R ; 0<p<1 ; a>0\).

If the first distribution parameter \(a \in N\), this distribution is the same as Pascal distribution. If \(a \in N\), the distribution can be interpreted as the expected time of \(a\)-th success in a sequence of Bernoulli trials, when the probability of success is \(p\).

The probability distribution is given by:
\[
P(X=k)=C_{a+k-1}^{k} p^{a}(1-p)^{k}, k \in\{0,1,2, \ldots\} .
\]

The cumulative distribution function is as follows:
\[
F_{a, p}(x)=\left\{\begin{array}{ll}
\sum_{k=0}^{\lfloor x\rfloor} C_{a+k-1}^{k} p^{a}(1-p)^{k}, & x \geq 0 \\
0, & x<0
\end{array}, x \in R .\right.
\]

\section*{Input Parameters}

FORTRAN:
\begin{tabular}{ll}
method & \begin{tabular}{l}
INTEGER, INTENT (IN). Generation method. See \\
Table 10-2 for specific value.
\end{tabular} \\
stream & \begin{tabular}{l}
TYPE (VSL_STREAM_STATE), INTENT (IN) . \\
Descriptor of the stream state structure.
\end{tabular} \\
\(n\) & \begin{tabular}{l}
INTEGER, INTENT (IN) . Number of random \\
values to be generated.
\end{tabular} \\
\(p\) & \begin{tabular}{l}
DOUBLE PRECISION, INTENT (IN). The first \\
distribution parameter \(a\).
\end{tabular} \\
DOUBLE PRECISION, INTENT (IN). The second \\
distribution parameter \(p\).
\end{tabular}

C:
\begin{tabular}{ll}
method & \begin{tabular}{l}
int. Generation method. See Table 10-2 for specific \\
value.
\end{tabular} \\
stream & \begin{tabular}{l}
vSLStreamStatePtr. Pointer to the stream state \\
structure.
\end{tabular} \\
\(n\) & \begin{tabular}{l}
int. Number of random values to be generated.
\end{tabular} \\
\(a\) & double. The first distribution parameter a. \\
\(p\) & double. The second distribution parameter \(p\).
\end{tabular}

\section*{Output Parameters}

FORTRAN:
r
INTEGER, INTENT (OUT). Vector of \(n\) random values with negative binomial distribution.

C:
\(r\)
int*. Vector of \(n\) random values with negative binomial distribution.

\section*{Advanced Service Subroutines}

This section describes service subroutines for registering a user-designed basic generator (RegisterBrng) and for obtaining properties of the previously registered basic generators (GetBrngProperties). See VSL Notes ("Basic Generators" section of VSL Structure chapter) for substantiation of the need for several basic generators including user-defined BRNGs.

\section*{Data types}

The subroutines of this section refer to a structure defining the properties of the basic generator. This structure is described in Fortran as follows:
```

TYPE VSL_BRNG_PROPERTIES
INTEGER streamstatesize
INTEGER nseeds
INTEGER includeszero
INTEGER wordsize

```
```

    INTEGER nbits
    INTEGER initstream
    INTEGER sbrng
    INTEGER dbrng
    INTEGER ibrng
    END TYPE VSL_BRNG_PROPERTIES

```

The C version is as follows:
```

typedef struct _VSLBRngProperties {
int StreamStateSize;
int NSeeds;
int IncludesZero;
int WordSize;
int NBits;
InitStreamPtr InitStream;
sBRngPtr sBRng;
dBRngPtr dBRng;
iBRngPtr iBRng;
VSLBRngProperties;

```

The following table provides brief descriptions of the fields engaged in the above structure:
\begin{tabular}{ll}
Table 10-8 Field Descriptions & \\
\hline Field & Short Description \\
\hline FORTRAN: streamstatesize & The size, in bytes, of the stream state structure for a given \\
C: StreamStateSize & basic generator. \\
\hline FORTRAN: nseeds & The number of 32-bit initial conditions (seeds) necessary to \\
C: NSeeds & initialize the stream state structure for a given basic generator. \\
\hline FORTRAN: includeszero & Flag value indicating whether the generator can produce a \\
C: IncludesZero & random \(0^{1}\).
\end{tabular}

Table 10-8 Field Descriptions (continued)
\begin{tabular}{ll}
\hline Field & Short Description \\
\hline FORTRAN: nbits & \begin{tabular}{l}
The number of bits required to represent a random value in \\
integer arithmetic. Note that, for instance, 48-bit random values \\
are stored to 64-bit (8 byte) memory locations. In this case, \\
WordSize is equal to 8 (number of bytes used to store the \\
random value), while NBits contains the actual number of bits \\
occupied by the value (in this example, 48).
\end{tabular} \\
\hline FORTRAN: initstream & \begin{tabular}{l}
Contains the pointer to the initialization subroutine of a given \\
basic generator.
\end{tabular} \\
C: InitStream & \begin{tabular}{l}
Contains the pointer to the basic generator of single precision \\
real numbers uniformly distributed over the interval (a,b) \\
(REAL in FORTRAN and float in C).
\end{tabular} \\
C: sBRng & \begin{tabular}{l}
Contains the pointer to the basic generator of double precision \\
real numbers uniformly distributed over the interval (a,b) \\
(DOUBLE PRECISION in FORTRAN and double in C).
\end{tabular} \\
\hline FORTRAN: dbrng & \begin{tabular}{l}
Contains the pointer to the basic generator of integer numbers \\
C: dBRng
\end{tabular} \\
\hline with uniform bit distribution \\
FORTRAN: ibrng (INTEGER in FORTRAN and \\
C: iBRng &
\end{tabular}
1. Certain types of generators, for example, generalized feedback shift registers can potentially generate a random 0 . On the other hand, generators like multiplicative congruential generators never generate such a number. In most cases this information is irrelevant because the chance of generating a zero value is small. However, in certain non-uniform distribution generators the possibility for a basic generator to produce a random zero may lead to generation of an infinitely large number (overflow). Even though the software handles overflows correctly, so that they may be interpreted as \(+\infty\) and \(-\infty\), the user has to be careful and verify the final results. If an infinitely large number may affect the computation, the user should either remove such numbers from the generated vector, or use safe generators, which do not produce random 0.
2. A specific generator that permits operations over single bits and bit groups of random numbers.

\section*{RegisterBrng}

Registers user-defined basic generator.
```

Syntax
Fortran:
brng = vslregisterbrng( properties )
C:
brng = vslRegisterBrng( properties )

```

\section*{Description}

An example of a registration procedure can be found in the respective directory of VSL examples.

\section*{Input Parameters}

FORTRAN:
```

properties TYPE (VSL_BRNG_PROPERTIES),
INTENT (IN). Structure containing properties of
the basic generator to be registered.

```

C:
properties VSLBrngProperties*. Structure containing properties of the basic generator to be registered.

\section*{Output Parameters}

FORTRAN:
\begin{tabular}{ll}
brng & \begin{tabular}{l}
INTEGER. The number (index) of the registered \\
basic generator; used for identification. Negative \\
values indicate the registration error.
\end{tabular} \\
C: & \begin{tabular}{l}
int. The number (index) of the registered basic \\
generator; used for identification. Negative values \\
indicate the registration error.
\end{tabular}
\end{tabular}

\section*{GetBrngProperties}

Returns structure with properties of a given basic generator.

\section*{Syntax}

\section*{Fortran:}
call vslgetbrngproperties(brng, properties)

C:
```

call vslGetBrngProperties( brng, properties )

```

Input Parameters
FORTRAN:
brng INTEGER, INTENT (IN). Number (index) of the registered basic generator. See Table 10-1 for specific value.

C:
brng
int. Number (index) of the registered basic generator. See Table 10-1 for specific value.

\section*{Output Parameters}

FORTRAN:
properties TYPE (VSL_BRNG_PROPERTIES), INTENT (OUT) . Structure containing properties of the generator with number brng.

C:
properties VSLBrngProperties*. Structure containing properties of the generator with number brng.

\section*{Formats for User-Designed Generators}

To register a user-designed basic generator using RegisterBrng function, you need to pass the pointer iBrng to the integer-value implementation of the generator; the pointers sBrng and \(d B r n g\) to the generator implementations for single and double precision values, respectively; and pass the pointer InitStream to the stream initialization subroutine. This section contains recommendations on defining such functions with input and output arguments. An example of the registration procedure for a user-designed generator can be found in the respective directory of VSL examples.

The respective pointers are defined as follows:
```

typedef int (*InitStreamPtr)( int method, void * stream, int n,
const unsigned int params[] );

```
```

typedef void (*sBRngPtr)( void * stream, int n, float r[],
float a, float b );
typedef void (*dBRngPtr)( void * stream, int n, double r[],
double a, double b );
typedef void (*iBRngPtr)( void * stream, int n,
unsigned int r[] );

```

\section*{InitStream}

FORTRAN:
```

INTEGER FUNCTION mybrnginitstream( method, stream, n, params )
INTEGER, INTENT (IN) :: method
TYPE(MYSTREAM_STATE), INTENT (INOUT):: stream
INTEGER, INTENT (IN) :: n
INTEGER, INTENT (IN) :: params
! Initialize the stream
END SUBROUTINE mybrnginitstream
C:
int MyBrngInitStream( int method, vSLStreamStatePtr stream,
int n, const unsigned int params[] )
{
/* Initialize the stream */
...
} /* MyBrngInitStream */

```

\section*{Description}

The initialization subroutine of a user-designed generator must initialize stream according to the specified initialization method, initial conditions params and the argument \(n\). The value of method determines the initialization method to be used.
- If method is equal to 0 , the initialization is by the standard generation method, which must be supported by all basic generators. In this case the function assumes that the stream structure was not previously initialized. The value of \(n\) is used as the actual number of 32 -bit values passed as initial conditions through params. Note, that the situation when the actual number of initial conditions passed to the function is not sufficient to initialize the generator is not an error. Whenever it occurs, the basic generator must initialize the missing conditions using default settings.
- If method is equal to 1 , the generation is by the leapfrog method, where \(n\) specifies the number of computational nodes (independent streams). Here the function assumes that the stream was previously initialized by the standard generation method. In this case params contains only one element, which identifies the computational node. If the generator does not support the leapfrog method, the function must return the error code VSL_ERROR_LEAPFROG_UNSUPPORTED.
- If method is equal to 2 , the generation is by the block-splitting method. Same as above, the stream is assumed to be previously initialized by the standard generation method; params is not used, \(n\) identifies the number of skipped elements. If the generator does not support the block-splitting method, the function must return the error code
```

VSL_ERROR_SKIPAHEAD_UNSUPPORTED.

```

For a more detailed description of the leapfrog and the block-splitting methods, refer to the description of LeapfrogStream and SkipAheadStream, respectively.

Stream state structure is individual for every generator. However, each structure has a number of fields that are the same for all the generators:
```

FORTRAN:
type (mystream_state)
INTEGER*4 reserved1
INTEGER*4 reserved2
INTEGER*4 reserved3
INTEGER*4 reserved4
[ fields specific for the given generator ]
end type mystream_state
C:
typedef struct
{
uint64Reservedl;

```
```

    uint64Reserved2;
    [ fields specific for the given generator ]
    } MyStreamState

```

The fields Reserved1 and Reserved 2 are reserved for private needs only, and must not be modified by the user. When including specific fields into the structure, follow the rules below:
- The fields must fully describe the current state of the generator. For example, the state of a linear congruential generator can be identified by only one initial condition;
- If the generator can use both the leapfrog and the block-splitting methods, additional fields should be introduced to identify the independent streams. For example, in \(L C G(a, c, m)\), apart from the initial conditions, two more fields should be specified: the value of the multiplier \(a^{k}\) and the value of the increment \(\left(a^{k}-1\right) c /(a-1)\).

For a more detailed discussion, refer to [Knuth81], and [Gentle98]. An example of the registration procedure can be found in the respective directory of VSL examples.
```

    iBRng
    FORTRAN:
    SUBROUTINE imybrng( stream, n, r )
TYPE(MYSTREAM_STATE), INTENT(INOUT):: stream
INTEGER, INTENT(IN) :: n
INTEGER, DIMENSION(*), INTENT(OUT) :: r
! Generating integer random numbers
! Pay attention to word size needed to
! store one random number
DO i = 1, n
R(I) = ...
END DO
! Update stream state
END SUBROUTINE imybrng
C:
void iMyBrng( vSLStreamStatePtr stream, int n,
unsigned int r[] )

```
```

{
int i; /* Loop variable */
/* Generating integer random numbers */
/* Pay attention to word size needed to
store only random number */
for( i = 0; i < n; i++ )
{
r[i] = ...
}
/* Update stream state */
...
} /* iMyBrng */

```


NOTE. When using 64 and 128-bit generators, consider digit capacity to store the numbers to the random vector \(r\) correctly. For example, storing one 64-bit value requires two elements of \(r\), the first to store the lower 32 bits and the second to store the higher 32 bits. Similarly, use 4 elements of \(r\) to store a 128-bit value.

\section*{sBRng}

FORTRAN:
```

SUBROUTINE smybrng( stream, n, r, a, b )
TYPE(MYSTREAM_STATE), INTENT(INOUT):: stream
INTEGER, INTENT(IN) :: n
REAL, DIMENSION(n), INTENT(OUT) :: r
REAL, INTENT(IN) :: a
REAL, INTENT(IN) :: b
! Generating real (a,b) random numbers
DO i = 1, n
R(I) = ...
END DO

```
```

! Update stream state
END SUBROUTINE smybrng
C:
void sMyBrng( vSLStreamStatePtr stream, int n, float r[],
float a, float b )
{
int i; /* Loop variable */
/* Generating float (a,b) random numbers */
for ( i = 0; i < n; i++ )
{
r[i] = ...
}
/* Update stream state */
...
} /* sMyBrng */

```

\section*{dBRng}

\section*{FORTRAN:}
```

SUBROUTINE dmybrng( stream, n, r, a, b )

```
SUBROUTINE dmybrng(stream, n, r, a, b)
 TYPE(MYSTREAM_STATE), INTENT(INOUT) :: stream
 INTEGER, INTENT(IN) :: n
 DOUBLE PRECISION, DIMENSION(n), INTENT(OUT) :: r
 REAL, INTENT(IN) :: a
 REAL, INTENT(IN) :: b
! Generating double precision (a,b) random numbers
 DO i = 1, n
 R(I) = ...
 END DO
! Update stream state
END SUBROUTINE dmybrng
 C:
```

```
void dMyBrng(VSLStreamStatePtr stream, int n, double r[],
 double a, double b)
{
 int i; /* Loop variable */
 /* Generating double (a,b) random numbers */
 for (i = 0; i < n; i++)
 {
 r[i] = ...
 }
 /* Update stream state */
 ...
} /* dMyBrng */
```


## Discrete Fourier Transform Functions

This chapter describes the set of Discrete Fourier transform (DFT) functions implemented in Intel MKL, which present a uniform and easy-to-use Applications Programmer Interface providing fast computation of DFT via the Fast Fourier Transform (FFT) algorithm.

The Discrete Fourier Transform function library of Intel MKL provides one-dimensional, two-dimensional, and multi-dimensional (up to the order of 7) routines and both Fortran- and C-interfaces for all transform functions.

For compatibility with previous versions, Intel MKL still supports the older FFT interface described in chapter 12 of this manual, but users of this code are encouraged to migrate to the new advanced DFT functions in their application programs for both performance and flexibility. Unlike the older FFT routines, the DFT functions support transform lengths of other than powers of 2 mixed radix.

The full list of DFT functions implemented in Intel MKL is given in the table below:

## Table 11-1 DFT Functions in Intel MKL

## Function Name Operation

Descriptor Manipulation Functions
DftiCreateDescriptor Allocates memory for the descriptor data structure and instantiates it with default configuration settings.
DftiCommitDescriptor Performs all initialization that facilitates the actual DFT computation.
DftiCopyDescriptor Copies an existing descriptor.
DftiFreeDescriptor Frees memory allocated for a descriptor.

## DFT Computation Functions

DftiComputeForward Computes the forward DFT.
DftiComputeBackward Computes the backward DFT.

## Table 11-1 DFT Functions in Intel MKL (continued)

Function Name   Descriptor Configuration Functions   DftisetValue   DftiGetValue	Sets one particular configuration parameter with the   specified configuration value.
Gets the configuration value of one particular configuration   parameter.	
DftiErrorClass   DftiErrorMessage	Checks if the status reflects an error of a predefined class.   Generates an error message.

Description of DFT functions is followed by discussion of configuration settings (see Configuration Settings) and various configuration parameters used.

## Computing DFT

DFT functions described later in this chapter are implemented in Fortran and C interface. Fortran stands for Fortran 95. DFT interface relies critically on many modern features offered in Fortran 95 that have no counterpart in Fortran 77
NOTE. Following the explicit function interface in Fortran, data array
must be defined as one-dimensional for any transformation type.

The materials presented in this chapter assume the availability of native complex types in C as they are specified in C9X.

You can find example code that uses DFT interface functions to compute transform results in "DFT Code Examples" section in the appendix.

For most common situations, we expect a DFT computation can be effected by four function calls. The approach adopted in Intel MKL for DFT computation uses one single data structure, the descriptor, to record flexible configuration whose parameters can be changed independently. This results in enhanced functionality and ease of use.

The record of type DFTI_DESCRIPTOR, when created, contains information about the length and domain of the DFT to be computed, as well as the setting of a rather large number of configuration parameters. The default settings for all of these parameters include, for example, the following:

- the DFT to be computed does not have a scale factor;
- there is only one set of data to be transformed;
- the data is stored contiguously in memory;
- the forward transform is defined to be the formula using $e^{-i 2 \pi j k / n}$ rather than

$$
e^{+i 2 \pi j k / n}
$$

- complex data is stored in the native complex data type;
- the computed result overwrites (in place) the input data; etc.

Should any one of these many default settings be inappropriate, they can be changed one-at-a-time through the function DftiSetValue as illustrated in the Example C-17 and Example C-18.

## DFT Interface

To use the DFT functions, you need to access the module MKL_DFTI through the "use" statement in Fortran; or access the header file mkl_dfti.h through "include" in C.

The Fortran interface provides a derived type DFTI_DESCRIPTOR; a number of named constants representing various names of configuration parameters and their possible values; and a number of overloaded functions through the generic functionality of Fortran 95.

The C interface provides a structure type DFTI_DESCRIPTOR, a macro definition \#define DFTI_DESCRIPTOR_HANDLE DFTI_DESCRIPTOR *;
a number of named constants of two enumeration types DFTI_CONFIG_PARAM and DFTI_CONFIG_VALUE;
and a number of functions, some of which accept different number of input arguments.

NOTE. Some of the functions and/or functionality described in the subsequent sections of this chapter may not be supported by the currently available implementation of the library. You can find the complete list of the implementation-specific exceptions in the release notes to your version of the library.

There are four main categories of DFT functions in Intel MKL:

1. Descriptor Manipulation. There are four functions in this category. The first one, DftiCreateDescriptor, creates a DFT descriptor whose storage is allocated dynamically by the routine. This function configures the descriptor with default settings corresponding to a few input values supplied by the user.
The second, DftiCommitDescriptor, "commits" the descriptor to all its setting. In practice, this usually means that all the necessary precomputation will be performed. This may include factorization of the input length and computation of all the required twiddle factors. The third function, DftiCopyDescriptor, makes an extra copy of a descriptor, and the fourth function, DftiFreeDescriptor, frees up all the memory allocated for the descriptor information.
2. DFT Computation. There are two functions in this category. The first, DftiComputeForward, effects a forward DFT computation, and the second function, DftiComputeBackward, performs a backward DFT computation.
3. Descriptor configuration. There are two functions in this category. One function, DftiSetValue, sets one specific value to one of the many configuration parameters that are changeable (a few are not); the other, DftiGetValue, gets the current value of any one of these configuration parameters (all are readable). These parameters, though many, are handled one-at-a-time.
4. Status Checking. The functions described in the three categories above return an integer value denoting the status of the operation.
In particular, a non-zero return value always indicates a problem of some sort. Envisioned to be further enhanced in later releases of Intel MKL, DFT interface at present provides for one logical status class function, DftiErrorclass, and a simple status message generation function, DftiErrorMessage.

## Status Checking Functions

All of the descriptor manipulation, DFT computation, and descriptor configuration functions return an integer value denoting the status of the operation. Two functions serve to check the status. The first function is a logical function that checks if the status reflects an error of a predefined class, and the second is an error message function that returns a character string.

## ErrorClass

Checks if the status reflects an error of a predefined class.

## Syntax

```
! Fortran
Predicate = DftiErrorClass(Status, Error_Class)
/* C */
predicate = DftiErrorClass(status, error_class);
```


## Description

DFT interface in Intel MKL provides a set of predefined error class listed in Table 11-2. These are named constants and have the type INTEGER in Fortran and long in C.

## Table 11-2 Predefined Error Class

Named Constants	Comments
DFTI_NO_ERROR	No error
DFTI_MEMORY_ERROR	Usually associated with memory allocation
DFTI_INVALID_CONFIGURATION	Invalid settings of one or more configuration parameters
DFTI_INCONSISTENT_CONFIGURATION	Inconsistent configuration or input parameters
DFTI_NUMBER_OF_THREADS_ERROR	Number of OMP threads in the computation function is   not equal to the number of OMP threads in the   initialization stage (commit function)
DFTI_MULTITHREADED_ERROR	Usually associated with OMP routine's error return   value
DFTI_BAD_DESCRIPTOR	Descriptor is unusable for computation
DFTI_UNIMPLEMENTED	Unimplemented legitimate settings; implementation   dependent
DFTI_MKL_INTERNAL_ERROR	Internal library error

Note that the correct usage is to check if the status returns . TRUE. or . FALSE. through the use of DFTI_ERROR_CLASS with a specific error class. Direct comparison of a status with the predefined class is an incorrect usage. See Example C-19 on a correct use of the status checking functions.

## Interface and prototype

```
//Fortran interface
INTERFACE DftiErrorClass
```

//Note that the body provided here is to illustrate the different
//argument list and types of dummy arguments. The interface
//does not guarantee what the actual function names are.
//Users can only rely on the function name following the
//keyword INTERFACE
FUNCTION some_actual_function_8( Status, Error_Class )
LOGICAL some_actual_function_8
INTEGER, INTENT(IN) :: Status, Error_Class
END FUNCTION some_actual_function_8
END INTERFACE DftiErrorClass
/* C prototype */
long DftiErrorClass( long , long );

## ErrorMessage

Generates an error message.

## Syntax

! Fortran
ERROR_MESSAGE = DftiErrorMessage ( Status )
/* C */
error_message = DftiErrorMessage( status );

## Description

The error message function generates an error message character string. The maximum length of the string in Fortran is given by the named constant DFTI_MAX_MESSAGE_LENGTH. The actual error message is implementation dependent. In Fortran, the user needs to use a character string of length DFTI_MAX_MESSAGE_LENGTH as the target. In C, the function returns a pointer to a character string, that is, a character array with the delimiter ' 0 '.

Example C-19 shows how this function can be implemented.

## Interface and prototype

```
//Fortran interface
INTERFACE DftiErrorMessage
```

//Note that the body provided here is to illustrate the different
//argument list and types of dummy arguments. The interface
//does not guarantee what the actual function names are.
//Users can only rely on the function name following the
//keyword INTERFACE
FUNCTION some_actual_function_9( Status, Error_Class )
CHARACTER (LEN=DFTI_MAX_MESSAGE_LENGTH) some_actual_function_9 ( Status )
INTEGER, INTENT(IN) :: Status
END FUNCTION some_actual_function_9
END INTERFACE DftiErrorMessage
/* C prototype */
char *DftiErrorMessage ( long );

## Descriptor Manipulation

There are four functions in this category: create a descriptor, commit a descriptor, copy a descriptor, and free a descriptor.

## CreateDescriptor

Allocates memory for the descriptor data structure and instantiates it with default configuration settings.

## Syntax

! Fortran

Status $=$ DftiCreateDescriptor	Desc_Handle,	$\&$
	Precision,	$\&$
	Forward_Domain,	$\&$
	Dimension,	$\&$
	Length $)$	

```
/* C */
 status = DftiCreateDescriptor(&desc_handle,
 precision,
 forward_domain,
 dimension,
 length);
```


## Description

This function allocates memory for the descriptor data structure and instantiates it with all the default configuration settings with respect to the precision, domain, dimension, and length of the desired transform. The domain is understood to be the domain of the forward transform. Since memory is allocated dynamically, the result is actually a pointer to the created descriptor. This function is slightly different from the "initialization" routine in more traditional software packages or libraries used for computing DFT. In all likelihood, this function will not perform any significant computation work such as twiddle factors computation, as the default configuration settings can still be changed upon user's request through the value setting function DftisetValue.

The precision and (forward) domain are specified through named constants provided in DFT interface for the configuration values. The choices for precision are DFTI_SINGLE and DFTI_DOUBLE; and the choices for (forward) domain are DFTI_COMPLEX, DFTI_REAL, and DFTI_CONJUGATE_EVEN. See Table 11-5 for the complete table of named constants for configuration values.

Dimension is a simple positive integer indicating the dimension of the transform. Length is either a simple positive integer for one-dimensional transform, or an integer array (pointer in C) containing the positive integers corresponding to the lengths dimensions for multi-dimensional transform.

The function returns DFTI_NO_ERROR when completes successfully. See
Status Checking Functions for more information on returned status.

## Interface and prototype

```
!Fortran interface.
INTERFACE DftiCreateDescriptor
```

```
!Note that the body provided here is to illustrate the different
!argument list and types of dummy arguments. The interface
!does not guarantee what the actual function names are.
!Users can only rely on the function name following the keyword INTERFACE
FUNCTION some_actual_function_1D(Desc_Handle, Prec, Dom, Dim, Length)
 INTEGER :: some_actual_function_1D
 TYPE(DFTI_DESCRIPTOR), POINTER :: Desc_Handle
 INTEGER, INTENT(IN) :: Prec, Dom
 INTEGER, INTENT(IN) :: Dim, Length
END FUNCTION some_actual_function_1D
FUNCTION some_actual_function_HIGHD(Desc_Handle, Prec, Dom, Dim, Length)
 INTEGER :: some_actual_function_HIGHD
 TYPE(DFTI_DESCRIPTOR), POINTER : : Desc_Handle
 INTEGER, INTENT(IN) :: Prec, Dom
 INTEGER, INTENT(IN) :: Dim, Length(*)
END FUNCTION some_actual_function_HIGHD
END INTERFACE DftiCreateDescriptor
Note that the function is overloaded as the actual argument for Length can be a scalar or a a rank-one array.
```

```
/* C prototype */
```

/* C prototype */
long DftiCreateDescriptor( DFTI_DESCRIPTOR_HANDLE *,
long DftiCreateDescriptor( DFTI_DESCRIPTOR_HANDLE *,
DFTI_CONFIG_PARAM ,
DFTI_CONFIG_PARAM ,
DFTI_CONFIG_PARAM ,
DFTI_CONFIG_PARAM ,
long ,
long ,
... ) ;

```
...) ;
```

The variable arguments facility is used to cope with the argument for lengths that can be a scalar (long), or an array (long *).

## CommitDescriptor

## Performs all initialization that facilitates the actual DFT computation.

## Syntax

```
! Fortran
```

```
Status = DftiCommitDescriptor(Desc_Handle)
```

/* C */

```
status = DftiCommitDescriptor(desc_handle);
```


## Description

The interface requires a function that commits a previously created descriptor be invoked before the descriptor can be used for DFT computations. Typically, this committal performs all initialization that facilitates the actual DFT computation. For a modern implementation, it may involve exploring many different factorizations of the input length to search for highly efficient computation method.

Any changes of configuration parameters of a committed descriptor via the set value function (see Descriptor Configuration) requires a re-committal of the descriptor before a computation function can be invoked. Typically, this committal function call is immediately followed by a computation function call (see DFT Computation).

The function returns DFTI_NO_ERROR when completes successfully. See
Status Checking Functions for more information on returned status.

## Interface and prototype

```
! Fortran interface
INTERFACE DftiCommitDescriptor
!Note that the body provided here is to illustrate the different
!argument list and types of dummy arguments. The interface
!does not guarantee what the actual function names are.
!Users can only rely on the function name following the
!keyword INTERFACE
FUNCTION some_actual function_1 (Desc_Handle)
 INTEGER :: some_actual function_1
```

```
 TYPE(DFTI_DESCRIPTOR), POINTER :: Desc_Handle
 END FUNCTION some_actual function_1
END INTERFACE DftiCommitDescriptor
/* C prototype */
long DftiCommitDescriptor(DFTI_DESCRIPTOR_HANDLE);
```


## CopyDescriptor

Copies an existing descriptor.

## Syntax

```
! Fortran
```

```
Status = DftiCopyDescriptor(Desc_Handle_Original,
```

    Desc_Handle_Copy )
    /* C */
status = DftiCopyDescriptor( desc_handle_original,
\&desc_handle_copy );

## Description

This function makes a copy of an existing descriptor and provides a pointer to it. The purpose is that all information of the original descriptor will be maintained even if the original is destroyed via the free descriptor function DftiFreeDescriptor.

The function returns DFTI_NO_ERROR when completes successfully. See Status Checking Functions for more information on returned status.

## Interface and prototype

```
! Fortran interface
INTERFACE DftiCopyDescriptor
! Note that the body provided here is to illustrate the different
!argument list and types of dummy arguments. The interface
!does not guarantee what the actual function names are.
!Users can only rely on the function name following the
!keyword INTERFACE
```

```
FUNCTION some_actual_function_2(Desc_Handle_Original,
 Desc_Handle_Copy)
 INTEGER :: some_actual_function_2
 TYPE(DFTI_DESCRIPTOR), POINTER :: Desc_Handle_Original, Desc_Handle_Copy
END FUNCTION some_actual_function_2
END INTERFACE DftiCopyDescriptor
/* C prototype */
long DftiCopyDescriptor(DFTI_DESCRIPTOR_HANLDE, DFTI_DESCRIPTOR_HANDLE *);
```


## FreeDescriptor

## Frees memory allocated for a descriptor.

## Syntax

! Fortran
Status = DftiFreeDescriptor ( Desc_Handle )
/* C */
status = DftiFreeDescriptor( \&desc_handle );

## Description

This function frees up all memory space allocated for a descriptor.
The function returns DFTI_NO_ERROR when completes successfully. See Status Checking Functions for more information on returned status.

## Interface and prototype

! Fortran interface
INTERFACE DftiFreeDescriptor
//Note that the body provided here is to illustrate the different //argument list and types of dummy arguments. The interface //does not guarantee what the actual function names are. //Users can only rely on the function name following the //keyword INTERFACE

```
FUNCTION some_actual_function_3(Desc_Handle)
 INTEGER :: some_actual_function_3
 TYPE(DFTI_DESCRIPTOR), POINTER :: Desc_Handle
END FUNCTION some_actual_function_3
END INTERFACE DftiFreeDescriptor
/* C prototype */
long DftiFreeDescriptor(DFTI_DESCRIPTOR_HANDLE *);
```


## DFT Computation

There are two functions in this category: compute the forward transform, and compute the backward transform.

## ComputeForward

Computes the forward DFT.

## Syntax

! Fortran
Status = DftiComputeForward( Desc_Handle, X_inout )
Status = DftiComputeForward ( Desc_Handle, X_in, X_out )
Status = DftiComputeForward( Desc_Handle, X_inout, Y_inout )
Status = DftiComputeForward( Desc_Handle, X_in, Y_in, X_out, Y_out )
/* C */
status = DftiComputeForward( desc_handle, x_inout );
status = DftiComputeForward( desc_handle, x_in, x_out );
status = DftiComputeForward( desc_handle, x_inout, y_inout );
status = DftiComputeForward( desc_handle, x_in, y_in, x_out, y_out );

## Description

As soon as a descriptor is configured and committed successfully, actual computation of DFT can be performed. The DftiComputeForward function computes the forward DFT. By default, this is the transform using the factor $e^{-i 2 \pi / n}$ (instead of the one with a positive sign). Because of the flexibility in configuration, input data can be represented in various ways as well as output result can be placed differently. Consequently, the number of input parameters as well as their type vary. This variation is accommodated by the generic function facility of Fortran 95 . Data and result parameters are all declared as assumed-size rank-1 array DIMENSION ( $0: *$ ).

The function returns DFTI_NO_ERROR when completes successfully. See
Status Checking Functions for more information on returned status.

## Interface and prototype

//Fortran interface.
INTERFACE DftiComputeFoward
//Note that the body provided here is to illustrate the different
//argument list and types of dummy arguments. The interface
//does not guarantee what the actual function names are.
//Users can only rely on the function name following the
//keyword INTERFACE
// One argument single precision complex
FUNCTION some_actual_function_4_C( Desc_Handle, x )
INTEGER :: some_actual_function_4_C
TYPE(DFTI_DESCRIPTOR), POINTER :: Desc_Handle
COMPLEX, INTENT(INOUT) :: X(*)
END FUNCTION some_actual_function_4_C
// One argument double precision complex
FUNCTION some_actual_function_4_Z( Desc_Handle, X )
INTEGER :: some_actual_function_4_Z TYPE (DFTI_DESCRIPTOR), POINTER :: Desc_Handle COMPLEX (Kind((ODO,ODO))), INTENT(INOUT) :: X(*)
END FUNCTION some_actual_function_4_Z
// One argument single precision real
FUNCTION some_actual_function_4_R( Desc_Handle, X )

```
 INTEGER :: some_actual_function_4_R
 TYPE(DFTI_DESCRIPTOR), POINTER :: Desc_Handle
 REAL, INTENT(INOUT) : : X(*)
END FUNCTION some_actual_function_4_R
// One argument double precision real
// Two argument single precision complex
...
// Four argument double precision real
FUNCTION some_actual_function_4_DDDD(Desc_Handle, X1_In, X2_In,
 Y1_Out, Y2_Out)
 INTEGER : : some_actual_function_4_DDDD
 TYPE(DFTI_DESCRIPTOR), POINTER :: Desc_Handle
 REAL (Kind(ODO)), INTENT(IN) : : X1_In(*), X2_In(*)
 REAL (Kind(ODO)), INTENT(OUT) : : Y1_Out (*), Y2_Out(*)
END FUNCTION some_actual_function_4_DDDD
END INTERFACE DftiComputeFoward
/* C prototype */
long DftiComputeForward(DFTI_DESCRIPTOR_HANDLE,
void *,
...) ;
```

The implementations of DFT interface expect the data be treated as data stored linearly in memory with a regular "stride" pattern (discussed more fully in Strides, see also [피]). The function expects the starting address of the first element. Hence we use the assume-size declaration in Fortran.

The descriptor by itself contains sufficient information to determine exactly how many arguments and of what type should be present. The implementation could use this information to check against possible input inconsistency.

## ComputeBackward

Computes the backward DFT.

## Syntax

```
! Fortran
```

Status = DftiComputeBackward( Desc_Handle, X_inout )
Status = DftiComputeBackward ( Desc_Handle, X_in, X_out )
Status = DftiComputeBackward ( Desc_Handle, X_inout, Y_inout )
Status = DftiComputeBackward ( Desc_Handle, X_in, Y_in, X_out, Y_out )
/* C */
status = DftiComputeBackward ( desc_handle, x_inout );
status $=$ DftiComputeBackward ( desc_handle, x_in, x_out ) ;
status = DftiComputeBackward( desc_handle, x_inout, y_inout ) ;
status = DftiComputeBackward ( desc_handle, x_in, y_in, x_out, y_out ) ;

## Description

As soon as a descriptor is configured and committed successfully, actual computation of DFT can be performed. The DftiComputeBackward function computes the backward DFT.

By default, this is the transform using the factor $e^{i 2 \pi / n}$ (instead of the one with a negative sign). Because of the flexibility in configuration, input data can be represented in various ways as well as output result can be placed differently. Consequently, the number of input parameters as well as their type vary. This variation is accommodated by the generic function facility of Fortran 95. Data and result parameters are all declared as assumed-size rank-1 array DIMENSION ( 0 : *). The function returns DFTI_NO_ERROR when completes successfully. See Status Checking Functions for more information on returned status.

## Interface and prototype

//Fortran interface.
INTERFACE DftiComputeBackward
//Note that the body provided here is to illustrate the different
//argument list and types of dummy arguments. The interface
//does not guarantee what the actual function names are.
//Users can only rely on the function name following the

```
//keyword INTERFACE
// One argument single precision complex
FUNCTION some_actual_function_5_C(Desc_Handle, X)
 INTEGER :: some_actual_function_5_C
 TYPE(DFTI_DESCRIPTOR), POINTER :: Desc_Handle
 COMPLEX, INTENT(INOUT) :: X(*)
END FUNCTION some_actual_function_5_C
// One argument double precision complex
FUNCTION some_actual_function_5_Z(Desc_Handle, X)
 INTEGER :: some_actual_function_5_Z
 TYPE(DFTI_DESCRIPTOR), POINTER :: Desc_Handle
 COMPLEX (Kind((ODO,ODO))), INTENT(INOUT) :: X(*)
END FUNCTION some_actual_function_5_Z
// One argument single precision real
FUNCTION some_actual_function_5_R(Desc_Handle, X)
 INTEGER :: some_actual_function_5_R
 TYPE(DFTI_DESCRIPTOR), POINTER :: Desc_Handle
 REAL, INTENT(INOUT) :: X(*)
END FUNCTION some_actual_function_5_R
// One argument double precision real
// Two argument single precision complex
// Four argument double precision real
FUNCTION some_actual_function_5_DDDD(Desc_Handle, X1_In, X2_In,
 Y1_Out, Y2_Out)
 INTEGER :: some_actual_function_5_DDDD
 TYPE(DFTI_DESCRIPTOR), POINTER :: Desc_Handle
 REAL (Kind(ODO)), INTENT(IN) :: X1_In(*), X2_In(*)
 REAL (Kind(ODO)), INTENT(OUT) :: Y1_Out(*), Y2_Out(*)
END FUNCTION some_actual_function_5_DDDD
```

```
/* C prototype */
long DftiComputeBackward(DFTI_DESCRIPTOR_HANDLE,
 void *,
 ...);
```

The implementations of DFT interface expect the data be treated as data stored linearly in memory with a regular "stride" pattern (discussed more fully in Strides, see also [3]). The function expects the starting address of the first element. Hence we use the assume-size declaration in Fortran.

The descriptor by itself contains sufficient information to determine exactly how many arguments and of what type should be present. The implementation could use this information to check against possible input inconsistency.

## Descriptor Configuration

There are two functions in this category: the value setting function DftisetValue sets one particular configuration parameter to an appropriate value, and the value getting function DftiGetValue reads the values of one particular configuration parameter. While all configuration parameters are readable, a few of them cannot be set by user. Some of these contain fixed information of a particular implementation such as version number, or dynamic information, but nevertheless are derived by the implementation during execution of one of the functions. See Configuration Settings for details.

## SetValue

Sets one particular configuration parameter with the specified configuration value.

## Syntax

! Fortran
Status = DftiSetValue( Desc_Handle, \& Config_Param, \& Config_Val )

```
/* C */
```

```
status = DftiSetValue(desc_handle,
config_param,
 config_val);
```


## Description

This function sets one particular configuration parameter with the specified configuration value. The configuration parameter is one of the named constants listed in Table 11-3, and the configuration value is the corresponding appropriate type, which can be a named constant or a native type. See Configuration Settings for details of the meaning of the setting.

The function returns DFTI_NO_ERROR when completes successfully. See Status Checking Functions for more information on returned status.

## Interface and prototype

```
! Fortran interface
INTERFACE DftiSetValue
//Note that the body provided here is to illustrate the different
//argument list and types of dummy arguments. The interface
//does not guarantee what the actual function names are.
//Users can only rely on the function name following the
//keyword INTERFACE
 FUNCTION some_actual_function_6_INTVAL(Desc_Handle, Config_Param, INTVAL)
 INTEGER :: some_actual_function_6_INTVAL
 Type(DFTI_DESCRIPTOR), POINTER :: Desc_Handle
 INTEGER, INTENT(IN) :: Config_Param
 INTEGER, INTENT(IN) :: INTVAL
END FUNCTION some_actual_function_6_INTVAL
FUNCTION some_actual_function_6_SGLVAL(Desc_Handle, Config_Param, SGLVAL)
 INTEGER :: some_actual_function_6_SGLVAL
 Type(DFTI_DESCRIPTOR), POINTER :: Desc_Handle
 INTEGER, INTENT(IN) :: Config_Param
 REAL, INTENT(IN) :: SGLVAL
END FUNCTION some_actual_function_6_SGLVAL
```

```
FUNCTION some_actual_function_6_DBLVAL(Desc_Handle, Config_Param, DBLVAL)
 INTEGER :: some_actual_function_6_DBLVAL
 Type(DFTI_DESCRIPTOR), POINTER :: Desc_Handle
 INTEGER, INTENT(IN) :: Config_Param
 REAL (KIND(ODO)), INTENT(IN) :: DBLVAL
END FUNCTION some_actual_function_6_DBLVAL
FUNCTION some_actual_function_6_INTVEC(Desc_Handle, Config_Param, INTVEC)
 INTEGER :: some_actual_function_6_INTVEC
 Type(DFTI_DESCRIPTOR), POINTER :: Desc_Handle
 INTEGER, INTENT(IN) :: Config_Param
 INTEGER, INTENT(IN) :: INTVEC(*)
END FUNCTION some_actual_function_6_INTVEC
FUNCTION some_actual_function_6_CHARS(Desc_Handle, Config_Param, CHARS)
 INTEGER :: some_actual_function_6_CHARS
 Type(DFTI_DESCRIPTOR), POINTER :: Desc_Handle
 INTEGER, INTENT(IN) :: Config_Param
 CHARCTER(*), INTENT(IN) :: CHARS
END FUNCTION some_actual_function_6_CHARS
END INTERFACE DftiSetValue
/* C prototype */
long DftiSetValue(DFTI_DESCRIPTOR_HANDLE,
 DFTI_CONFIG_PARAM ,
 ...);
```


## GetValue

Gets the configuration value of one particular configuration parameter.

## Syntax

```
! Fortran
 Status = DftiGetValue(Desc_Handle, &
 Config_Param, &
 Config_Val)
/* C */
 status = DftiGetValue(desc_handle,
 config_param,
 &config_val);
```


## Description

This function gets the configuration value of one particular configuration parameter. The configuration parameter is one of the named constants listed in Table 11-3 and Table 11-4, and the configuration value is the corresponding appropriate type, which can be a named constant or a native type.

The function returns DFTI_NO_ERROR when completes successfully. See Status Checking Functions for more information on returned status.

## Interface and prototype

```
! Fortran interface
INTERFACE DftiGetValue
//Note that the body provided here is to illustrate the different
//argument list and types of dummy arguments. The interface
//does not guarantee what the actual function names are.
//Users can only rely on the function name following the
//keyword INTERFACE
FUNCTION some_actual_function_7_INTVAL(Desc_Handle, Config_Param, INTVAL)
 INTEGER :: some_actual_function_7_INTVAL
 Type(DFTI_DESCRIPTOR), POINTER :: Desc_Handle
 INTEGER, INTENT(IN) :: Config_Param
```

```
 INTEGER, INTENT(OUT) :: INTVAL
END FUNCTION DFTI_GET_VALUE_INTVAL
FUNCTION some_actual_function_7_SGLVAL(Desc_Handle, Config_Param, SGLVAL)
 INTEGER :: some_actual_function_7_SGLVAL
 Type(DFTI_DESCRIPTOR), POINTER :: Desc_Handle
 INTEGER, INTENT(IN) :: Config_Param
 REAL, INTENT(OUT) :: SGLVAL
END FUNCTION some_actual_function_7_SGLVAL
FUNCTION some_actual_function_7_DBLVAL(Desc_Handle, Config_Param, DBLVAL)
 INTEGER :: some_actual_function_7_DBLVAL
 Type(DFTI_DESCRIPTOR), POINTER :: Desc_Handle
 INTEGER, INTENT(IN) :: Config_Param
 REAL (KIND(ODO)), INTENT (OUT) :: DBLVAL
END FUNCTION some_actual_function_7_DBLVAL
FUNCTION some_actual_function_7_INTVEC(Desc_Handle, Config_Param, INTVEC)
 INTEGER :: some_actual_function_7_INTVEC
 Type(DFTI_DESCRIPTOR), POINTER :: Desc_Handle
 INTEGER, INTENT(IN) :: Config_Param
 INTEGER, INTENT(OUT) :: INTVEC(*)
END FUNCTION some actual function 7 INTVEC
FUNCTION some_actual_function_7_INTPNT(Desc_Handle, Config_Param, INTPNT)
 INTEGER :: some_actual_function_7_INTPNT
 Type(DFTI_DESCRIPTOR), POINTER :: Desc_Handle
 INTEGER, INTENT(IN) :: Config_Param
 INTEGER, DIMENSION(*), POINTER :: INTPNT
END FUNCTION some_actual_function_7_INTPNT
FUNCTION some_actual_function_7_CHARS(Desc_Handle, Config_Param, CHARS)
 INTEGER :: some_actual_function_7_CHARS
 Type(DFTI_DESCRIPTOR), POINTER :: Desc_Handle
```

```
 INTEGER, INTENT(IN) :: Config_Param
 CHARCTER(*), INTENT (OUT):: CHARS
END FUNCTION some_actual_function_7_CHARS
END INTERFACE DftiGetValue
/* C prototype */
long DftiGetValue(DFTI_DESCRIPTOR_HANDLE,
 DFTI_CONFIG_PARAM ,
 ...);
```


## Configuration Settings

Each of the configuration parameters is identified by a named constant in the MKL_DFTI module. In C, these named constants have the enumeration type DFTI_CONFIG_PARAM. The list of configuration parameters whose values can be set by user is given in Table 11-3; the list of configuration parameters that are read-only is given in Table 11-4. All parameters are readable. Most of these parameters are self-explanatory, while some others are discussed more fully in the description of the relevant functions

## Table 11-3 Settable Configuration Parameters

Named Constants	Value Type	Comments
Most common configurations, no default, must be set explicitly		
DFTI_PRECISION	Named constant	Precision of computation
DFTI_FORWARD_DOMAIN	Named constant	Domain for the forward transform
DFTI_DIMENSION	Integer scalar	Dimension of the transform
DFTI_LENGTHS	Integer scalar/array	Lengths of each dimension

Common configurations including multiple transform and data representation

DFTI_NUMBER_OF_TRANSFORMS	Integer scalar	For multiple number of transforms
DFTI_FORWARD_SIGN	Named constant	The definition for forward transform
DFTI_FORWARD_SCALE	Floating-point   scalar	Scale factor for forward transform
DFTI_BACKWARD_SCALE	Floating-point   scalar   Named constant	Scale factor for backward   transform
DFTI_PLACEMENT	Placement of the computation   result	
DFTI_COMPLEX_STORAGE	Named constant	Storage method, complex domain   data
DFTI_REAL_STORAGE	Named constant	Storage method, real domain data   DFTI_CONJUGATE_EVEN_STORAGE
Named constant	Storage method, conjugate even   domain data	
DFTI_DESCRIPTOR_NAME	Character string	No longer than   DFTI_MAX_NAME_LENGTH
DFTI_PACKED_FORMAT	Named constant	Packed format, real domain data   DFTI_NUMBER_OF_USER_THREADS
Integer scalar	Number of user threads employing   the same descriptor for DFT   computation	

## Table 11-3 Settable Configuration Parameters (continued)

Named Constants	Value Type	Comments		
Configurations regarding stride of data				
DFTI_INPUT_DISTANCE	Integer scalar	Multiple transforms, distance of   first elements		
DFTI_OUTPUT_DISTANCE	Integer scalar	Multiple transforms, distance of   first elements		
DFTI_INPUT_STRIDES	Integer array	Stride information of input data   Stride information of output data		
DFTI_OUTPUT_STRIDES	Integer array	Named constant		Dynamic search for computation
:---				
Advanced configuration				

## Table 11-4 Read-Only Configuration Parameters

Named Constants	Value Type	Comments
DFTI_COMMIT_STATUS	Name constant	Whether descriptor has been committed
DFTI_VERSION	String	Intel MKL library version number
DFTI_FORWARD_ORDERING	Integer pointer	Pointer to an integer array (see Ordering)
DFTI_BACKWARD_ORDERING	Integer pointer	Pointer to an integer array (see Ordering)

The configuration parameters are set by various values. Some of these values are specified by native data types such as an integer value (for example, number of simultaneous transforms requested), or a single-precision number (for example, the scale factor one would like to apply on a forward transform).

Other configuration values are discrete in nature (for example, the domain of the forward transform) and are thus provided in the DFTI module as named constants. In C, these named constants have the enumeration type DFTI_CONFIG_VALUE. The complete list of named constants used for this kind of configuration values is given in Table 11-5.

Table 11-5 Named Constant Configuration Values

Named Constant	Comments
DFTI_SINGLE	Single precision
DFTI_DOUBLE	Double precision
DFTI_COMPLEX	Complex domain
DFTI_REAL	Real domain
DFTI_CONJUGATE_EVEN	Conjugate even domain
DFTI_NEGATIVE	Sign used to define the forward transform
DFTI_POSITIVE	Sign used to define the forward transform
DFTI_INPLACE	Output overwrites input
DFTI_NOT_INPLACE	Output does not overwrite input
DFTI_COMPLEX_COMPLEX	Storage method (see Storage schemes)
DFTI_REAL_REAL	Storage method (see Storage schemes)
DFTI_COMPLEX_REAL	Storage method (see Storage schemes)
DFTI_REAL_COMPLEX	Storage method (see Storage schemes)
DFTI_HIGH	A high setting, related to initialization effort
DFTI_MEDIUM	A medium setting, related to initialization effort
DFTI_LOW	A low setting, related to initialization effort
DFTI_COMMITTED	Committal status of a descriptor
DFTI_UNCOMMITTED	Committal status of a descriptor
DFTI_ORDERED	Data ordered in both forward and backward domains
DFTI_BACKWARD_SCRAMBLED	Data scrambled in backward domain (by forward transform)
DFTI_FORWARD_SCRAMBLED	Data scrambled in forward domain (by backward transform)
DFTI_ALLOW	Allow certain request or usage if useful
DFTI_AVOID	Avoid certain request or usage if practical
DFTI_NONE	Used to specify no transposition
DFTI_CCS_FORMAT	Packed format, real data (see "Packed formats")
DFTI_PACK_FORMAT	Packed format, real data (see "Packed formats")
DFTI_PERM_FORMAT	Packed format, real data (see "Packed formats")

Table 11-5 Named Constant Configuration Values (continued)

Named Constant	Comments
DFTI_VERSION_LENGTH	Number of characters for library version length
DFTI_MAX_NAME_LENGTH	Maximum descriptor name length
DFTI_MAX_MESSAGE_LENGTH	Maximum status message length

Table 11-6 lists the possible values for those configuration parameters that are discrete in nature.
Table 11-6 Settings for Discrete Configuration Parameters

Named Constant	Possible Values
DFTI_PRECISION	DFTI_SINGLE, or
DFTI_FORWARD_DOMAIN	DFTI_DOUBLE (no default)
	DFTI_COMPLEX, or
	DFTI_REAL, or
	DFTI_CONUUGATE_EVEN (no default)
DFTI_FORWARD_SIGN	DFTI_NEGATIVE (default), or
	DFTI_POSITIVE
DFTI_PLACEMENT	DFTI_INPLACE (default), or
	DFTI_NOT_INPLACE
	DFTI_COMPLEX_COMPLEX (default), or
	DFTI_COMPLEX REAL, or
	DFTI_REAL_REAL
DFTI_REAL_STORAGE	DFTI_REAL_REAL (default), or
	DFTI_REAL_COMPLEX
DFTI_CONJUGATE_EVEN_STORAGE	DFTI_COMPLEX_COMPLEX, or
	DFTI_COMPLEX_REAL (default), or
	DFTI_REAL_REAL (1-D transform only)
	DFTI_CCS_FORMAT (default) or,
	DFTI_PACK_FORMAT or,
	DFTI_PERM_FORMAT

Table 11-7 lists the default values of the settable configuration parameters.

Table 11-7 Default Configuration Values of Settable Parameters

Named Constants	Default Value
DFTI_NUMBER_OF_TRANSFORMS	1
DFTI_NUMBER_OF_USER_THREADS	1
DFTI_FORWARD_SIGN	DFTI_NEGATIVE
DFTI_FORWARD_SCALE	1.0
DFTI_BACKWARD_SCALE	1.0
DFTI_PLACEMENT	DFTI_INPLACE
DFTI_COMPLEX_STORAGE	DFTI_COMPLEX_COMPLEX
DFTI_REAL_STORAGE	DFTI_REAL_REAL
DFTI_CONJUGATE_EVEN_STORAGE	DFTI_COMPLEX_REAL
DFTI_PACKED_FORMAT	DFTI_CCS_FORMAT
DFTI_DESCRIPTOR_NAME	no name, string of zero length
DFTI_INPUT_DISTANCE	0
DFTI_OUTPUT_DISTANCE	0
DFTI_INPUT_STRIDES	Tightly packed according to dimension, lengths, and storage
DFTI_OUTPUT_STRIDES	Same as above. See Strides for details
DFTI_INITIALIZATION_EFFORT	DFTI_MEDIUM
DFTI_ORDERING	DFTI_ORDERED
DFTI_WORKSPACE	DFTI_ALLOW
DFTI_TRANSPOSE	DFTI_NONE

## Precision of transform

The configuration parameter DFTI_PRECISION denotes the floating-point precision in which the transform is to be carried out. A setting of DFTI_SINGLE stands for single precision, and a setting of DFTI_DOUBLE stands for double precision. The data is meant to be presented in this precision; the computation will be carried out in this precision; and the result will be delivered in this precision. This is one of the four settable configuration parameters that do not have default values. The user must set them explicitly, most conveniently at the call to descriptor creation function DftiCreateDescriptor.

## Forward domain of transform

The general form of the discrete Fourier transform is

$$
\begin{equation*}
z_{k_{1}, k_{2}, \ldots, k_{d}}=\sigma \times \sum_{j_{d}=0}^{n_{d}-1} \cdots \sum_{j_{2}=0}^{n_{2}-1} \sum_{j_{1}=0}^{n_{1}-1} w_{j_{1}}, j_{2}, \ldots, j_{d} \exp \left(\delta i 2 \pi \sum_{l=1}^{d} j_{1} k_{1} / n_{l}\right) \tag{7.1}
\end{equation*}
$$

for $k_{1}=0, \pm 1, \pm 2, \ldots$, where $\sigma$ is an arbitrary real-valued scale factor and $\delta= \pm 1$. By default, the forward transform is defined by $\sigma=1$ and $\delta=-1$. In most common situations, the domain of the forward transform, that is, the set where the input (periodic) sequence $\left\{w_{j_{1}}, j_{2}, \ldots, j_{d}\right\}$
belongs, can be either the set of complex-valued sequences, real-valued sequences, and complex-valued conjugate even sequences. The configuration parameter DFTI_FORWARD_DOMAIN indicates the domain for the forward transform. Note that this implicitly specifies the domain for the backward transform because of mathematical property of the DFT. See Table 11-8 for details.

Table 11-8 Correspondence of Forward and Backward Domain

Forward Domain	Implied Backward Domain	
Complex	$\left(D F T I_{2}\right.$ COMPLEX)	Complex
Real	$\left(D F T I_{-} R E A L\right)$	Conjugate Even
Conjugate Even	(DFTI_CONJUGATE_EVEN)	Real

On transforms in the real domain, some software packages only offer one "real-to-complex" transform. This in essence omits the conjugate even domain for the forward transform. The forward domain configuration parameter DFTI_FORWARD_DOMAIN is the second of four configuration parameters without default value.

## Transform dimension and lengths

The dimension of the transform is a positive integer value represented in an integer scalar of type Integer. For one-dimensional transform, the transform length is specified by a positive integer value represented in an integer scalar of type Integer. For multi-dimensional $(\geq 2)$ transform, the lengths of each of the dimension is supplied in an integer array. DFTI_DIMENSION and DFTI_LENGTHS are the remaining two of four configuration parameters without default.

As mentioned, these four configuration parameters do not have default value. They are most conveniently set at the descriptor creation function. For dimension and length configuration, they can only be set in the descriptor creation function, and not by the function DftisetValue.

The other two configuration values can be changed through the function DftisetValue, although this is not deemed common.


CAUTION. Changing the dimension and length would likely render the stride value inappropriate. Unless certain of otherwise, the user is advised to reconfigure the stride (see Strides).

## Number of transforms

In some situations, the user may need to perform a number of DFT transforms of the same dimension and lengths. The most common situation would be to transform a number of one-dimensional data of the same length. This parameter has the default value of 1 , and can be set to positive integer value by an Integer data type in Fortran and long data type in C. Data sets have no common elements. The distance parameter is obligatory if multiple number is more than one.

## Sign and scale

The general form of the discrete Fourier transform is given by (7.1), for $k_{1}=0, \pm 1, \pm 2, \ldots$, where $\sigma$ is an arbitrary real-valued scale factor and $\delta= \pm 1$. By default, the forward transform is defined by $\sigma=1$ and $\delta=-1$, and the backward transform is defined by $\sigma=1$ and $\delta=1$. The user can change the definition of forward transform via setting the sign $\delta$ to be DFTI_NEGATIVE (default) or DFTI_POSITIVE. The sign of the backward transform is implicitly defined to be the negative of the sign for the forward transform.

The forward transform and backward transform are each associated with a scale factor $\sigma$ of its own with default value of 1 . The user can set one or both of them via the two configuration parameters DFTI_FORWARD_SCALE and DFTI_BACKWARD_SCALE. For example, for a one-dimensional transform of length $n$, one can use the default scale of 1 for the forward transform while setting the scale factor for backward transform to be $1 / n$, making the backward transform the inverse of the forward transform.

The scale factor configuration parameter should be set by a real floating-point data type of the same precision as the value for DFTI_PRECISION.


NOTE. The sign configuration is not supported. The forward transform is defined as $\delta=-1$.

## Placement of result

By default, the computational functions overwrite the input data with the output result. That is, the default setting of the configuration parameter DFTI_PLACEMENT is DFTI_INPLACE. The user can change that by setting it to DFTI_NOT_INPLACE. Data sets have no common elements.

## Packed formats

The result of the forward transform (i.e. in the frequency-domain) of real data is represented in several possible packed formats: Pack, Perm, or CCS. The data can be packed due to the symmetry property of the DFT transform of a real data.

The CCS format stores the values of the first half of the output complex signal resulted from the forward DFT. Note that the signal stored in CCS format is one complex element longer. In CCS format, the output samples of the DFT are arranged as shown in Table 11-9 for one-dimensional DFT and in Table 11-10 for two-dimensional DFT.

The Pack format is a compact representation of a complex conjugate-symmetric sequence. The disadvantage of this format is that it is not the natural format used by the real DFT algorithms ("natural" in the sense that array is natural for complex DFTs). In Pack format, the output samples of the DFT are arranged as shown in Table 11-9 for one-dimensional DFT and in Table 11-11 for two-dimensional DFT.

The Perm format is an arbitrary permutation of the Pack format for even lengths and one is the same as the Pack format for odd lengths. In Perm format, the output samples of the DFT are arranged as shown in Table 11-9 for one-dimensional DFT and in Table 11-12 for two-dimensional DFT.

## Table 11-9 Packed Format Output Samples

For ( $\mathrm{n}=\mathrm{s}^{*} \mathbf{2}$ )											
DFT Real	0	1	2	3	...	n-2		n -1	n	$\mathrm{n}+1$	
CCS	$\mathrm{R}_{0}$	0	$\mathrm{R}_{1}$	$\mathrm{I}_{1}$	...	$\mathrm{R}_{\mathrm{n} / 2-1}$		$\mathrm{In}_{\mathrm{n} / 2-1}$	$\mathrm{R}_{\mathrm{n} / 2}$	0	
Pack	$\mathrm{R}_{0}$	$\mathrm{R}_{1}$	$\mathrm{I}_{1}$	$\mathrm{R}_{2}$	...	$\mathrm{In}_{\mathrm{n} / 2-1}$		$\mathrm{R}_{\mathrm{n} / 2}$			
Perm	$\mathrm{R}_{0}$	$\mathrm{R}_{\mathrm{n} / 2}$	$\mathrm{R}_{1}$	$\mathrm{I}_{1}$	...	$\mathrm{R}_{\mathrm{n} / 2-1}$		$\mathrm{I}_{\mathrm{n} / 2-1}$			
For ( $\mathrm{n}=\mathrm{s}^{*} \mathbf{2 + 1}$ )											
DFT Real	0	1	2	3	...	$\mathrm{n}-4$	n-3	n-2	n -1	n	n+1
CCS	$\mathrm{R}_{0}$	0	$\mathrm{R}_{1}$	$\mathrm{I}_{1}$	...	$\mathrm{I}_{\mathrm{s}-2}$	$\mathrm{R}_{\mathrm{s}-1}$	$\mathrm{I}_{\mathrm{s}-1}$	$\mathrm{R}_{\text {s }}$	$\mathrm{I}_{\text {s }}$	
Pack	$\mathrm{R}_{0}$	$\mathrm{R}_{1}$	$\mathrm{I}_{1}$	$\mathrm{R}_{2}$	...	$\mathrm{R}_{\mathrm{s}-1}$	$\mathrm{I}_{\mathrm{s}-1}$	$\mathrm{R}_{\mathrm{s}-1}$	$\mathrm{I}_{\mathrm{s}}$		
Perm	$\mathrm{R}_{0}$	$\mathrm{R}_{1}$	$\mathrm{I}_{1}$	$\mathrm{R}_{2}$	...	$\mathrm{R}_{\mathrm{s}-1}$	$\mathrm{I}_{\mathrm{s}-1}$	$\mathrm{R}_{\mathrm{s}-1}$	$\mathrm{I}_{\text {s }}$		

Note that Table 11-9 uses the following notation for complex data entries:
$R_{j}=\operatorname{Re} z_{j}$
$I_{j}=\operatorname{Im} z_{j}$
See also Table 11-13 and Table 11-14.
Table 11-10 CCS Format Output Samples (Two-Dimensional Matrix ( $m+2$ )-by-( $n+2$ ))

For ( $m=s * 2$ )								
$z(1,1)$	0	$\operatorname{RE} z(1,2)$	$\operatorname{IMz}(1,2)$	$\ldots$	$\mathrm{RE} z(1, k)$	$\operatorname{IM} Z(1, k)$	$z(1, k+1)$	0
0	0	0	0	$\ldots$	0	0	0	0
$\operatorname{RE} z(2,1)$	$\operatorname{RE} z(2,2)$	$\operatorname{RE} z(2,3)$	$\operatorname{RE} z(2,4)$	$\ldots$	$\operatorname{RE} z(2, n-1)$	$\operatorname{RE} z(2, n)$	$\mathrm{n} / \mathrm{u}$	$\mathrm{n} / \mathrm{u}$
$\operatorname{IM} z(2,1)$	$\operatorname{IM} z(2,2)$	$\operatorname{IM} z(2,3)$	$\operatorname{IM} z(2,4)$	..	$\operatorname{IM} z(2, n-1)$	$\operatorname{IM} Z(2, n)$	$\mathrm{n} / \mathrm{u}$	$\mathrm{n} / \mathrm{u}$
$\ldots$	...	$\ldots$	...	$\ldots$	...	$\ldots$	$\mathrm{n} / \mathrm{u}$	$\mathrm{n} / \mathrm{u}$
$\operatorname{RE} z(m / 2,1)$	$\operatorname{RE} z(m / 2,2)$	$\operatorname{RE} z(m / 2,3)$	$\operatorname{RE} z(m / 2,4)$	$\ldots$	$\operatorname{RE} z(m / 2, n-1)$	$\operatorname{RE} z(m / 2, n)$	$\mathrm{n} / \mathrm{u}$	$\mathrm{n} / \mathrm{u}$
$\operatorname{IM} z(m / 2,1)$	$\operatorname{IM} z(m / 2,2)$	$\operatorname{IM} z(m / 2,3)$	$\operatorname{IMz}(m / 2,4)$	$\ldots$	$\operatorname{IM} Z(m / 2, n-1)$	$\operatorname{IMz}(m / 2, n)$	$\mathrm{n} / \mathrm{u}$	$\mathrm{n} / \mathrm{u}$
$z(m / 2+1,1)$	0	$\operatorname{RE} z(m / 2+1,2)$	$\operatorname{IM} z(m / 2+1,2)$	$\ldots$	$\operatorname{RE} z(m / 2+1, k)$	$\operatorname{IMz}(m / 2+1, k)$	$z(m / 2+1, k+1)$	0
0	0	0	0	$\ldots$	0	0	$\mathrm{n} / \mathrm{u}$	$\mathrm{n} / \mathrm{u}$
For ( $m=s * 2+1$ )								
$z(1,1)$	0	$\operatorname{RE} z(1,2)$	$\operatorname{IM} z(1,2)$	$\ldots$	$\operatorname{RE} z(1, k)$	$\operatorname{IM} z(1, k)$	$z(1, k+1)$	0
0	0	0	0	$\ldots$	0	0	0	0
$\operatorname{RE} z(2,1)$	$\operatorname{RE} z(2,2)$	$\operatorname{RE} z(2,3)$	$\operatorname{RE} z(2,4)$	...	$\operatorname{RE} z(2, n-1)$	$\operatorname{RE} \boldsymbol{z}(2, n)$	$\mathrm{n} / \mathrm{u}$	$\mathrm{n} / \mathrm{u}$
$\operatorname{IM} z(2,1)$	$\operatorname{IM} z(2,2)$	$\operatorname{IM} Z(2,3)$	$\operatorname{IM} Z(2,4)$	$\cdots$	$\operatorname{IM} z(2, n-1)$	$\operatorname{IM} Z(2, n)$	$\mathrm{n} / \mathrm{u}$	$\mathrm{n} / \mathrm{u}$
$\ldots$	$\ldots$	$\ldots$	$\ldots$	$\ldots$	$\cdots$	...	$\mathrm{n} / \mathrm{u}$	$\mathrm{n} / \mathrm{u}$
$\operatorname{RE} z(s, 1)$	$\operatorname{RE} z(s, 2)$	$\operatorname{RE} z(s, 3)$	$\operatorname{RE} z(s, 4)$	$\ldots$	$\operatorname{RE} z(s, n-1)$	$\operatorname{RE} z(s, n)$	$\mathrm{n} / \mathrm{u}$	$\mathrm{n} / \mathrm{u}$
$\operatorname{IM} z(s, 1)$	$\operatorname{IM} z(s, 2)$	$\operatorname{IM} z(s, 3)$	$\operatorname{IM} z(s, 4)$	...	$\operatorname{IM} z(s, n-1)$	$\operatorname{IM} z(s, n)$	$\mathrm{n} / \mathrm{u}$	$\mathrm{n} / \mathrm{u}$

* $\mathrm{n} / \mathrm{u}$ - not used

Note that in the Table 11-10 $(n+2)$ columns are used for even $n=k * 2$, while $n$ columns are used for odd $n=k * 2+1$. In the latter case the first row is

$$
z(1,1) \quad 0 \quad \operatorname{REz}(1,2) \quad \operatorname{IMz}(1,2) \quad \ldots \quad \operatorname{REz}(1, k) \quad \operatorname{IMz}(1, k)
$$

If $m$ is even, the $(m+1)$-th row is
$z(m / 2+1,1) \quad 0 \quad \operatorname{REz}(m / 2+1,2) \quad \operatorname{IMz}(m / 2+1,2) \quad \ldots \operatorname{REz}(m / 2+1, k) \quad \operatorname{lMz}(m / 2+1, k)$

Table 11-11 Pack Format Output Samples (Two-Dimensional Matrix m-by-n)

For ( $\boldsymbol{m}=\mathrm{s}^{*}$ )						
$z(1,1)$	$\operatorname{REz}(1,2)$	$\operatorname{IMz(1,2)}$	$\operatorname{RE}$ ( 1,3 )	$\ldots$	$\operatorname{IMz}(1, k)$	$z(1, k+1)$
$\operatorname{RE} \boldsymbol{z}(2,1)$	$\operatorname{RE} \boldsymbol{z}(2,2)$	$\operatorname{RE} z(2,3)$	$\operatorname{RE} \boldsymbol{z}(2,4)$	...	$\operatorname{RE} z(2, n-1)$	$\operatorname{RE} z(2, n)$
$\operatorname{IMz}(2,1)$	$\operatorname{IMz}(2,2)$	$\operatorname{IMz}(2,3)$	$\operatorname{IMz}(2,4)$	...	$\operatorname{IMz}(2, n-1)$	$\operatorname{IMz}(2, n)$
...	...	$\ldots$	$\ldots$	...	$\ldots$	...
$\operatorname{RE} z(m / 2,1)$	$\operatorname{RE} z(m / 2,2)$	$\operatorname{RE} z(m / 2,3)$	$\operatorname{RE} \boldsymbol{z}(\mathrm{m} / 2,4)$	...	$\operatorname{REz}(m / 2, n-1)$	$\operatorname{RE} z(m / 2, n)$
$\operatorname{IM} z(m / 2,1)$	$\operatorname{IMz}(m / 2,2)$	$\operatorname{IMz}(m / 2,3)$	$\operatorname{IMz}(m / 2,4)$	...	$\operatorname{IMz}(m / 2, n-1)$	$\operatorname{IMz}(m / 2, n)$
$z(m / 2+1,1)$	$\operatorname{RE} z(m / 2+1,2)$	$\operatorname{IMz}(\mathrm{m} / 2+1,2)$	$\operatorname{RE} z(m / 2+1,3)$	...	$\operatorname{IMz}(\mathrm{m} / 2+1, k)$	$z(m / 2+1, k+1)$
For ( $\boldsymbol{m}=\mathrm{s}^{*} \mathbf{2 + 1}$ )						
$z(1,1)$	$\operatorname{RE}$ ( 1,2 )	$\operatorname{IMz}(1,2)$	$\operatorname{RE} \boldsymbol{z}(1,3)$	$\ldots$	$\operatorname{IMz}(1, k)$	$z(1, n / 2+1)$
$\operatorname{RE} \boldsymbol{z}(2,1)$	$\operatorname{RE} z(2,2)$	$\operatorname{RE} \boldsymbol{z}(2,3)$	$\operatorname{RE} \boldsymbol{z}(2,4)$	...	$\operatorname{RE} z(2, n-1)$	$\operatorname{RE} z(2, n)$
$\operatorname{IM} z(2,1)$	$\operatorname{IMz}(2,2)$	$\operatorname{IM} z(2,3)$	$\operatorname{IMz}(2,4)$	...	$\operatorname{IMz}(2, n-1)$	$\operatorname{IM} z(2, n)$
	...	$\ldots$	$\ldots$	...	...	$\ldots$
RE $z(s, 1)$	$\operatorname{RE} z(s, 2)$	$\operatorname{RE} z(s, 3)$	RE $z(s, 4)$	...	$\operatorname{RE} z(s, n-1)$	$\operatorname{RE} z(s, n)$
$\operatorname{IMz}(s, 1)$	$\operatorname{IMz}(s, 2)$	$\operatorname{IMz}(\mathrm{s}, 3)$	$\operatorname{IMz}(s, 4)$	...	$\operatorname{IMz}(s, n-1)$	$\operatorname{IMz}(\mathrm{s}, \mathrm{n})$

Table 11-12 Perm Format Output Samples (Two-Dimensional Matrix m-by-n)

For ( $\boldsymbol{m}=\mathbf{s}$ * $\mathbf{)}$						
$z(1,1)$	$z(1, k+1)$	$\operatorname{RE} \boldsymbol{z}(1,2)$	$\operatorname{IMz}(1,2)$	...	$\operatorname{RE} z(1, k)$	$\operatorname{IMz}(1, k)$
$z(m / 2+1,1)$	$z(m / 2+1, k+1)$	$\operatorname{RE} z(m / 2+1,2)$	$\operatorname{IMz}(\mathrm{m} / 2+1,2)$	...	$\operatorname{RE} z(m / 2+1, k)$	$\operatorname{IMz}(m / 2+1, k)$
$\operatorname{RE} z(2,1)$	$\operatorname{RE} z(2,2)$	$\operatorname{RE} z(2,3)$	$\operatorname{RE} z(2,4)$	...	$\operatorname{RE} z(2, n-1)$	$\operatorname{RE} z(2, n)$
$\operatorname{IM} z(2,1)$	$\operatorname{IMz}(2,2)$	$\operatorname{IMz}(2,3)$	$\operatorname{IMz}(2,4)$	...	$\operatorname{IMz}(2, n-1)$	$\operatorname{IMz}(2, n)$
...	...	...	...	...	...	$\ldots$
$\operatorname{RE} z(m / 2,1)$	$\operatorname{RE} z(m / 2,2)$	$\operatorname{RE} z(m / 2,3)$	$\operatorname{RE} z(m / 2,4)$	...	$\operatorname{RE} z(m / 2, n-1)$	$\operatorname{RE} z(m / 2, n)$
$\operatorname{IM} z(m / 2,1)$	$\operatorname{IMz}(\mathrm{m} / 2,2)$	$\operatorname{IM} z(m / 2,3)$	$\operatorname{IMz}(\mathrm{m} / 2,4)$	...	$\operatorname{IMz}(\mathrm{m} / 2, n-1)$	$\operatorname{IMz}(m / 2, n)$
For ( $\boldsymbol{m}=\mathrm{s}^{*} \mathbf{2 + 1}$ )						
$z(1,1)$	$z(1, k+1)$	$\operatorname{RE} \boldsymbol{z}(1,2)$	$\operatorname{IMz}(1,2)$	...	$\operatorname{RE} \boldsymbol{z}(1, k)$	$\operatorname{IM} z(1, k)$
$\operatorname{RE} z(2,1)$	$\operatorname{RE} z(2,2)$	$\operatorname{RE} \boldsymbol{z}(2,3)$	$\operatorname{RE} z(2,4)$	...	$\operatorname{RE} z(2, n-1)$	$\operatorname{RE} z(2, n)$
$\operatorname{IM} z(2,1)$	$\operatorname{IMz}(2,2)$	$\operatorname{IM} z(2,3)$	$\operatorname{IMz}(2,4)$	...	$\operatorname{IM} z(2, n-1)$	$\operatorname{IMz}(2, n)$
$\ldots$	$\ldots$	...	...	...	...	$\ldots$
$\operatorname{RE} z(s, 1)$	$\operatorname{RE} \boldsymbol{z}(\mathrm{s}, 2)$	$\operatorname{RE} z(s, 3)$	$\mathrm{RE} z(s, 4)$	...	$\operatorname{RE} z(s, n-1)$	$\operatorname{RE} z(s, n)$
$\operatorname{IM} z(s, 1)$	$\operatorname{IMz}(\mathrm{s}, 2)$	$\operatorname{IM} z(s, 3)$	$\operatorname{IMz}(\mathrm{s}, 4)$	$\ldots$	$\operatorname{IM} z(s, n-1)$	$\operatorname{IMz}(\mathrm{s}, \mathrm{n})$

Note that in the Table 11-11 and Table 11-12 for even number of columns $n=k * 2$, while for odd number of columns $n=k * 2+1$ and the first row is

```
z(1,1) REz(1,2) IMz(1,2) ... REz(1,k) IMz(1,k)
```

If $m$ is even, the last row in Pack format and the second row in Perm format is $z(\mathrm{~m} / 2+1,1) \operatorname{REz}(\mathrm{m} / 2+1,2) \mathrm{IMz}(\mathrm{m} / 2+1,2) \quad . . \mathrm{REz}(\mathrm{m} / 2+1, \mathrm{k}) \quad \mathrm{IMz}(\mathrm{m} / 2+1, \mathrm{k})$

The tables for two-dimensional DFT use Fortran-interface conventions. For C-interface specifics in storing packed fata, see Storage schemes section below.
See also Table 11-15 and Table 11-16 for examples of Fortran-interface and C-interface formats.

## Storage schemes

For each of the three domains DFTI_COMPLEX, DFTI_REAL, and DFTI_CONJUGATE_EVEN (for the forward as well as the backward operator), a subset of the four storage schemes DFTI_COMPLEX_COMPLEX, DFTI_COMPLEX_REAL, DFTI_REAL_COMPLEX, and DFTI_REAL_REAL. Specific examples are presented here to illustrate the storage schemes. See the document [3] for the rationale behind this definition of the storage schemes.


NOTE. The data is stored in the Fortran style only, that is, the real and imaginary parts are stored side by side.

Storage scheme for complex domain. This setting is recorded in the configuration parameter DFTI_COMPLEX_STORAGE. The three values that can be set are DFTI_COMPLEX_COMPLEX, DFTI_COMPLEX_REAL, and DFTI_REAL_REAL. Consider a one-dimensional $n$-length transform of the form

$$
z_{k}=\sum_{j=0}^{n-1} w_{j} e^{-i 2 \pi j k / n}, \quad w_{j}, z_{k} \in \quad C
$$

Assume the stride has default value (unit stride) and DFTI_PLACEMENT has the default in-place setting.

1. DFTI_COMPLEX_COMPLEX storage scheme (by default). A typical usage will be as follows.

COMPLEX :: $\mathrm{X}(0: \mathrm{n}-1)$
...some other code...
Status = DftiComputeForward( Desc_Handle, X )
On input,
$X(j)=w_{j}, j=0,1, \ldots, n-1$.
On output,
$\mathrm{X}(k)=z_{k}, k=0,1, \ldots, \mathrm{n}-1$.
2. DFTI_COMPLEX_REAL storage scheme. A typical usage will be as follows.

REAL : : X (0:2*n-1)
...some other code...
Status = DftiComputeForward( Desc_Handle, X )
On input,
$x(2 * j)=\operatorname{Re}\left(w_{j}\right), x(2 * j+1)=\operatorname{Im}\left(w_{j}\right), j=0,1, \ldots, n-1$.
On output,
$\mathrm{x}(2 * k)=\operatorname{Re}\left(z_{k}\right), \mathrm{x}(2 * k+1)=\operatorname{Im}\left(z_{k}\right), k=0,1, \ldots, \mathrm{n}-1$.
The notations $\operatorname{Re}\left(w_{j}\right)$ and $\operatorname{Im}\left(w_{j}\right)$ are the real and imaginary parts of the complex number $w_{j}$.
3. DFTI_REAL_REAL storage scheme. A typical usage will be as follows.

REAL :: X(0:n-1), Y(0:n-1)
...some other code...
Status = DftiComputeForward( Desc_Handle, X, Y )
On input,
$X(j)=\operatorname{Re}\left(w_{j}\right), Y(j)=\operatorname{Im}\left(w_{j}\right), j=0,1, \ldots, n-1$.
On output,
$\mathrm{X}(k)=\operatorname{Re}\left(z_{k}\right), \mathrm{Y}(k)=\operatorname{Im}\left(z_{k}\right), k=0,1, \ldots, n-1$.
Storage scheme for the real and conjugate even domains. This setting for the storage schemes for these domains is recorded in the configuration parameters DFTI_REAL_STORAGE and DFTI_CONJUGATE_EVEN_STORAGE. Since a forward real domain corresponds to a conjugate even backward domain, they are considered together. The example uses one- and two-dimensional real to conjugate even transforms. In-place computation is assumed whenever possible (that is, when the input data type matches with the output data type).

Consider a one-dimensional $n$-length transform of the form

$$
z_{k}=\sum_{j=0} w_{j} e^{-i 2 \pi j k / n}, \quad w_{j} \in R, \quad z_{k} \in C
$$

There is a symmetry:
For even $\mathrm{n}: \mathrm{z}(\mathrm{n} / 2+\mathrm{i})=\operatorname{conjg}(\mathrm{z}(\mathrm{n} / 2-\mathrm{i})), 1 \leq i \leq \mathrm{n} / 2-1$, and moreover $\mathrm{z}(0)$ and $\mathrm{z}(\mathrm{n} / 2)$ are real values.

For odd $n: z(m+i)=\operatorname{conjg}(z(m-i+1)), \quad 1 \leq i \leq m$, and moreover $z(0)$ is real value. $m=$ floor $(n / 2)$.

Table 11-13 Comparison of the Storage Effects of Complex-to-Complex and Real-to-Complex DFTs for Forward Transform

$\mathrm{N}=8$							
Input Vectors			Output Vectors				
Complex DFT		$\begin{gathered} \text { Real } \\ \text { DFT } \end{gathered}$	complex DFT		real DFT		
Complex Data		Real Data	Complex Data		Real Data		
Real	Imaginary		Real	Imaginary	Ccs	Pack	Perm
wo	0.000000	wo	z0	0.000000	z0	z0	z0
w1	0.000000	w1	$\operatorname{Re}(z 1)$	Im(z1)	0.000000	$\operatorname{Re}(z 1)$	z4
w2	0.000000	w2	$\mathrm{Re}(\mathrm{z} 2)$	$1 \mathrm{~m}(\mathrm{z} 2)$	$\operatorname{Re}(\mathrm{z} 1)$	$\operatorname{lm}(z 1)$	$\operatorname{Re}(\mathrm{z} 1)$
w3	0.000000	w3	$\mathrm{Re}(z 3)$	Im(z3)	Im(z1)	$\operatorname{Re}(z 2)$	$1 m(z 1)$
w4	0.000000	w4	z4	0.000000	$\operatorname{Re}(\mathrm{z} 2)$	Im(z2)	$\operatorname{Re}(z 2)$
w5	0.000000	w5	$\mathrm{Re}(z 3)$	-Im(z3)	Im(z2)	$\operatorname{Re}(z 3)$	$1 \mathrm{~m}(\mathrm{z} 2)$
w6	0.000000	w6	$\operatorname{Re}(z 2)$	-Im(z2)	$\mathrm{Re}(\mathrm{z} 3)$	Im(z3)	$\mathrm{Re}(\mathrm{z} 3)$
w7	0.000000	w7	$\operatorname{Re}(z 1)$	$-\operatorname{lm}(z 1)$	Im(z3)	z4	Im(z3)
					z4		
					0.000000		



## Table 11-14 Comparison of the Storage Effects of Complex-to-Complex and Complex-to-Real DFTs for Backward Transform

$\mathrm{N}=8$									
Output Vectors			Input Vectors						
Complex DFT		Real   DFT	complex DFT						
		Real   Data	Complex Data			Pack	Perm		
Complex Data									
Real	Imaginary		Real	Imaginary	CCS				
w0	0.000000	w0	z0	0.000000	z0	z0	z0		
w1	0.000000	w1	$\operatorname{Re}(z 1)$	$\operatorname{lm}(\mathrm{z1})$	0.000000	$\operatorname{Re}(z 1)$	z4		
w2	0.000000	w2	$\operatorname{Re}(z 2)$	$\operatorname{lm}(z 2)$	$\mathrm{Re}(\mathrm{z} 1)$	$\operatorname{lm}(z 1)$	$\operatorname{Re}(\mathrm{z} 1)$		
w3	0.000000	w3	$\operatorname{Re}(\mathrm{z} 3)$	$\operatorname{lm}(\mathrm{z} 3)$	$\operatorname{lm}(z 1)$	$\operatorname{Re}(z 2)$	$\operatorname{lm}(\mathrm{z1})$		
w4	0.000000	w4	z4		$\mathrm{Re}(\mathrm{z} 2)$	$\operatorname{lm}(z 2)$	$\operatorname{Re}(\mathrm{z} 2)$		
w5	0.000000	w5	$\operatorname{Re}(\mathrm{z} 3)$	-Im(z3)	$\operatorname{lm}(z 2)$	$\mathrm{Re}(\mathrm{z} 3)$	$\operatorname{lm}(\mathrm{z} 2)$		
w6	0.000000	w6	$\operatorname{Re}(z 2)$	-Im(z2)	$\mathrm{Re}(\mathrm{z} 3)$	$\operatorname{lm}(\mathrm{z} 3)$	$\operatorname{Re}(\mathrm{z} 3)$		
w7	0.00000	w7	$\operatorname{Re}(z 1)$	-Im(z1)	$\operatorname{lm}(\mathrm{z} 3)$	z4	$\operatorname{lm}(\mathrm{z} 3)$		
					z4				
					0.000000				
$\mathrm{N}=7$									
Output Vectors			Input Vectors						
Complex DFT		Real	complex DFT		real DFT				
		DFT							
Complex Data		Real Data	Complex Data		Real Data				
Real	Imaginary		Real	Imaginary	CCS	Pack	Perm		
w0	0.000000	w0	z0	0.000000	z0	z0	z0		
w1	0.000000	w1	$\operatorname{Re}(z 1)$	$\operatorname{lm}(z 1)$	0.000000	$\operatorname{Re}(z 1)$	$\operatorname{Re}(z 1)$		
w2	0.000000	w2	$\operatorname{Re}(z 2)$	$\operatorname{Im}(z 2)$	$\operatorname{Re}(z 1)$	$\operatorname{lm}(z 1)$	$\operatorname{Im}(z 1)$		
w3	0.000000	w3	$\operatorname{Re}(z 3)$	$\operatorname{Im}(\mathrm{z} 3)$	Im(z1)	$\operatorname{Re}(z 2)$	$\operatorname{Re}(z 2)$		
w4	0.000000	w4	$\operatorname{Re}(\mathrm{z} 3)$	-Im(z3)	$\operatorname{Re}(\mathrm{z} 2)$	$\operatorname{lm}(z 2)$	$\operatorname{lm}(\mathrm{z} 2)$		
w5	0.000000	w5	$\operatorname{Re}(z 2)$	-Im(z2)	$\operatorname{Im}(\mathrm{z} 2)$	$\mathrm{Re}(\mathrm{z} 3)$	$\operatorname{Re}(\mathrm{z} 3)$		
w6	0.000000	w6	$\operatorname{Re}(\mathrm{z} 1)$	$-\operatorname{lm}(\mathrm{z} 1)$	$\operatorname{Re}(\mathrm{z} 3)$	$\operatorname{Im}(\mathrm{z} 3)$	$\operatorname{lm}(\mathrm{z} 3)$		
					$\operatorname{lm}(\mathrm{z} 3)$				

Assume that the stride has the default value (unit stride).
This complex conjugate-symmetric vector can be stored in the complex array of size $m+1$ or in the real array of size $2 \mathrm{~m}+2$ or 2 m depending on packed format.

Each of the real-to-complex routines computes the forward DFT of a two-dimensional real matrix according to the mathematical equation
$z_{i, j}=\sum_{k=0}^{m-1} \sum_{l=0}^{n-1} t_{k, l} * w_{m}^{-i} *{ }^{k} * w_{n}^{-j} * l, \quad 0 \leq i \leq m-1,0 \leq j \leq n-1$
$t_{k, 1}=\operatorname{cmplx}\left(r_{k, 1}, 0\right)$, where $r_{k, 1}$ is a real input matrix, $0 \leq k \leq m-1,0 \leq 1 \leq n-1$.
The mathematical result $z_{i, j}, 0 \leq i \leq m-1,0 \leq j \leq n-1$, is the complex matrix of size $(m, n)$. Each column is the complex conjugate-symmetric vector as follows:

For even m:
for $0 \leq \mathrm{j} \leq \mathrm{n}-1$,

```
z(m/2+i,j) = conjg(z(m/2-i,j)), 1\leqi\leqm/2-1.
```

Moreover, $z(0, j)$ and $z(m / 2, j)$ are real values for $j=0$ and $j=n / 2$.
For odd m:
for $0 \leq j \leq n-1$,
$z(s+i, j)=\operatorname{conjg}(z(s-i, j)), 1 \leq i \leq s-1$,
where $\mathrm{s}=\mathrm{floor}(\mathrm{m} / 2)$.
Moreover, $z(0, j)$ are real values for $j=0$ and $j=n / 2$.
This mathematical result can be stored in the real two-dimensional array of size $(m+2, n+2)$ or $(m, n)$, or in the complex two-dimensional array of size $(m / 2+1, n+1)$ for Fortran-interface and in the complex two-dimensional array of size ( $m+1, n / 2+1$ ) for C-interface.

Since the multidimensional array data are arranged differently in Fortran and C (see Strides), the output array that holds the computational result contains complex conjugate-symmetric columns (for Fortran) or complex conjugate-symmetric rows (for C).

The following tables give examples of output data layout in Pack format for a forward two-dimensional real-to-complex DFT of a 6-by-4 real matrix. Note that the same layout is used for the input data of the corresponding backward complex-to-real DFT.

Table 11-15 Fortran-interface Data Layout for a 6-by-4 Matrix

$z(1,1)$	$\operatorname{Re} z(1,2)$	$\operatorname{Im} z(1,2)$	$z(1,3)$
$\operatorname{Re} z(2,1)$	$\operatorname{Re} z(2,2)$	$\operatorname{Re} z(2,3)$	$\operatorname{Re} z(2,4)$
$\operatorname{Im} z(2,1)$	$\operatorname{Im} z(2,2)$	$\operatorname{Im} z(2,3)$	$\operatorname{Im} z(2,4)$
$\operatorname{Re} z(3,1)$	$\operatorname{Re} z(3,2)$	$\operatorname{Re} z(3,3)$	$\operatorname{Re} z(3,4)$
$\operatorname{Im} z(3,1)$	$\operatorname{Im} z(3,2)$	$\operatorname{Im} z(3,3)$	$\operatorname{Im} z(3,4)$
$z(4,1)$	$\operatorname{Re} z(4,2)$	$\operatorname{Im} z(4,2)$	$z(4,3)$

For the above example, the stride array is taken to be $(0,1,6)$.

## Table 11-16 C-interface Data Layout for a 6-by-4 Matrix

$z(1,1)$	$\operatorname{Re} z(1,2)$	$\operatorname{Im} z(1,2)$	$z(1,3)$
$\operatorname{Re} z(2,1)$	$\operatorname{Re} z(2,2)$	$\operatorname{Im} z(2,2)$	$\operatorname{Re} z(2,3)$
$\operatorname{lm} z(2,1)$	$\operatorname{Re} z(3,2)$	$\operatorname{Im} z(3,2)$	$\operatorname{Im} z(2,3)$
$\operatorname{Re} z(3,1)$	$\operatorname{Re} z(4,2)$	$\operatorname{Im} z(4,2)$	$\operatorname{Re} z(3,3)$
$\operatorname{lm} z(3,1)$	$\operatorname{Re} z(5,2)$	$\operatorname{Im} z(5,2)$	$\operatorname{Im} z(3,3)$
$z(4,1)$	$\operatorname{Re} z(6,2)$	$\operatorname{Im} z(6,2)$	$z(4,3)$

For the second example, the stride array is taken to be $/ 0,4,1 /$.
See also Packed formats.

1. DFTI_REAL_REAL for real domain, DFTI_COMPLEX_REAL for conjugate even domain (by default). A typical usage will be as follows.
```
// m = floor(n/2)
REAL :: X(0:2*m+1)
...some other code...
...assuming inplace...
Status = DftiComputeForward(Desc_Handle, X)
```

On input,
$X(j)=w_{j}, j=0,1, \ldots, n-1$.

On output,

Output data stored in one of formats: Pack, Perm or CCS (see Packed formats).
CCS format: $x(2 * k)=\operatorname{Re}\left(z_{k}\right), x(2 * k+1)=\operatorname{Im}\left(z_{k}\right), k=0,1, \ldots, m$.
Pack format: even $\mathrm{n}: \mathrm{x}(0)=\operatorname{Re}\left(\mathrm{z}_{0}\right), \mathrm{x}(2 * \mathrm{k}-1)=\operatorname{Re}\left(\mathrm{z}_{\mathrm{k}}\right), \mathrm{x}(2 * \mathrm{k})=\operatorname{Im}\left(\mathrm{z}_{\mathrm{k}}\right)$, $\mathrm{k}=1, \ldots, \mathrm{~m}-1$, and $\mathrm{x}(\mathrm{n}-1)=\operatorname{Re}\left(\mathrm{z}_{\mathrm{m}}\right)$
odd $\mathrm{n}: \mathrm{x}(0)=\operatorname{Re}\left(\mathrm{z}_{0}\right), \mathrm{x}(2 * \mathrm{k}-1)=\operatorname{Re}\left(\mathrm{z}_{\mathrm{k}}\right), \mathrm{x}(2 * \mathrm{k})=\operatorname{Im}\left(\mathrm{z}_{\mathrm{k}}\right), \mathrm{k}=1, \ldots, \mathrm{~m}$
Perm format: even $\mathrm{n}: \mathrm{x}(0)=\operatorname{Re}\left(\mathrm{z}_{0}\right), \mathrm{x}(1)=\operatorname{Re}\left(\mathrm{z}_{\mathrm{m}}\right), \mathrm{x}(2 * \mathrm{k})=\operatorname{Re}\left(\mathrm{z}_{\mathrm{k}}\right), \mathrm{x}(2 * \mathrm{k}+1)=\operatorname{Im}\left(\mathrm{z}_{\mathrm{k}}\right), \mathrm{k}=$ $1, \ldots, \mathrm{~m}-1$,
odd $\mathrm{n}: \mathrm{x}(0)=\operatorname{Re}\left(\mathrm{z}_{0}\right), \mathrm{x}\left(2^{*} \mathrm{k}-1\right)=\operatorname{Re}\left(\mathrm{z}_{\mathrm{k}}\right), \mathrm{x}(2 * \mathrm{k})=\operatorname{Im}\left(\mathrm{z}_{\mathrm{k}}\right), \mathrm{k}=1, \ldots, \mathrm{~m}$.

## 2. DFTI_REAL_REAL for real domain, DFTI_COMPLEX_REAL for conjugate even domain (by

 default). A typical usage will be as follows.```
// m = floor( n/2 )
REAL :: X(0:n-1)
REAL :: Y(0:2*m+1)
...some other code...
...assuming out-of-place...
Status = DftiComputeForward( Desc_Handle, X, Y )
```

On input,

```
x(j) = wj , j = 0,1,\ldots.,n-1 .
```

On output,
Output data stored in one of formats: Pack, Perm or CCS (see Packed formats).
CCS format: $\mathrm{Y}(2 * k)=\operatorname{Re}\left(z_{k}\right), \mathrm{Y}(2 * \mathrm{k}+1)=\operatorname{Im}(\mathrm{zk}), \mathrm{k}=0,1, \ldots, \mathrm{~m}$.
Pack format: even $\mathrm{n}: \mathrm{y}(0)=\operatorname{Re}\left(\mathrm{z}_{0}\right), \mathrm{y}(2 * \mathrm{k}-1)=\operatorname{Re}\left(\mathrm{z}_{\mathrm{k}}\right), \mathrm{y}\left(2^{*} \mathrm{k}\right)=\operatorname{Im}\left(\mathrm{z}_{\mathrm{k}}\right)$,
$\mathrm{k}=1, \ldots, \mathrm{~m}-1$, and $\mathrm{Y}(\mathrm{n}-1)=\operatorname{Re}\left(\mathrm{z}_{\mathrm{m}}\right)$
odd $\mathrm{n}: \mathrm{Y}(0)=\operatorname{Re}\left(\mathrm{z}_{0}\right), \mathrm{Y}(2 * \mathrm{k}-1)=\operatorname{Re}\left(\mathrm{z}_{\mathrm{k}}\right), \mathrm{Y}(2 * \mathrm{k})=\operatorname{Im}\left(\mathrm{z}_{\mathrm{k}}\right), \mathrm{k}=1, \ldots, \mathrm{~m}$
Perm format: even $\mathrm{n}: ~ \mathrm{y}(0)=\operatorname{Re}\left(\mathrm{z}_{0}\right), \mathrm{y}(1)=\operatorname{Re}\left(\mathrm{z}_{\mathrm{m}}\right), \mathrm{y}(2 * \mathrm{k})=\operatorname{Re}\left(\mathrm{z}_{\mathrm{k}}\right)$,
$\mathrm{Y}\left(2^{*} \mathrm{k}+1\right)=\operatorname{Im}\left(\mathrm{z}_{\mathrm{k}}\right), \mathrm{k}=1, \ldots, \mathrm{~m}-1$,
odd $\mathrm{n}: ~ \mathrm{Y}(0)=\operatorname{Re}\left(\mathrm{z}_{0}\right), \mathrm{Y}(2 * \mathrm{k}-1)=\operatorname{Re}\left(\mathrm{z}_{\mathrm{k}}\right), \mathrm{Y}(2 * \mathrm{k})=\operatorname{Im}\left(\mathrm{z}_{\mathrm{k}}\right), \mathrm{k}=1, \ldots, \mathrm{~m}$.
Notice that if the stride of the output array is not set to the default value unit stride, the real and imaginary parts of one complex element will be placed with this stride.

For example:
CCS format: $\mathrm{Y}\left(2 * k^{*} s\right)=\operatorname{Re}\left(z_{k}\right), \mathrm{Y}(2 * \mathrm{k}+1 * s)=\operatorname{Im}(\mathrm{zk}), \mathrm{k}=0,1, \ldots, \mathrm{~m}, \mathrm{~s}-$ stride.
3. DFTI_REAL_REAL for real domain, DFTI_COMPLEX_COMPLEX for conjugate even domain. A typical usage will be as follows.

```
// m = floor( n/2 )
```

REAL :: X(0:n-1)
COMPLEX :: Y(0:m)
...some other code...
...out of place transform...
Status = DftiComputeForward(Desc_Handle, X, Y)

On input,
$x(j)=w_{j}, j=0,1, \ldots, n-1$.
On output,
$\mathrm{Y}(k)=z_{k}, k=0,1, \ldots, \mathrm{~m}$.
4. DFTI_REAL_REAL for real domain, DFTI_REAL_REAL for conjugate even domain. This storage scheme for conjugate even domain is applicable for one-dimensional transform only. A typical usage will be as follows.

```
// m = floor( n/2 )
REAL :: X(0:n-1)
...some other code...
...assuming inplace...
Status = DftiComputeForward( Desc_Handle, X )
```

On input,
$\mathrm{x}(\mathrm{j})=w_{j}, j=0,1, \ldots, \mathrm{n}-1$.
On output,
$\mathrm{x}(\mathrm{k})=\operatorname{Re}\left(z_{k}\right), k=0,1, \ldots, \mathrm{~m}$.
and
$\mathrm{x}(\mathrm{n}-\mathrm{k})=\operatorname{Im}\left(z_{k}\right), k=1,2, \ldots, \mathrm{~m}-1$.
5. DFTI_REAL_COMPLEX for real domain, DFTI_COMPLEX_COMPLEX for conjugate even domain. A typical usage will be as follows.

```
// m = floor( n/2 )
COMPLEX :: X(0:n-1)
...some other code...
...inplace transform...
Status = DftiComputeForward( Desc_Handle, X )
On input,
\(x(j)=w_{j}, j=0,1, \ldots, n-1\).
```

That is, the imaginary parts of $x(j)$ are zero. On output,
$\mathrm{Y}(k)=z_{k}, k=0,1, \ldots, \mathrm{~m}$.
where m is $\lfloor n / 2\rfloor$.
6. DFTI_REAL_COMPLEX for real domain, DFTI_COMPLEX_REAL for conjugate even domain. A typical usage will be as follows.
// m = floor ($\mathrm{n} / 2$)
COMPLEX : : $\mathrm{X}(0: \mathrm{n}-1)$
REAL : : Y $0: 2 * m+1$)
...some other code...
...not inplace...
Status = DftiComputeForward(Desc_Handle, X, Y)
On input,
$\mathrm{X}(j)=w_{j}, j=0,1, \ldots, \mathrm{n}-1$.
On output,
Output data stored in one of formats: Pack, Perm or CCS (see Packed formats).
CCS format: $Y(2 * k)=\operatorname{Re}\left(z_{k}\right), Y(2 * k+1)=\operatorname{Im}\left(z_{k}\right), k=0,1, \ldots, m$.
Pack format: even $\mathrm{n}: \mathrm{Y}(0)=\operatorname{Re}\left(\mathrm{z}_{0}\right), \mathrm{Y}(2 * \mathrm{k}-1)=\operatorname{Re}\left(\mathrm{z}_{\mathrm{k}}\right), \mathrm{Y}(2 * \mathrm{k})=\operatorname{Im}\left(\mathrm{z}_{\mathrm{k}}\right)$,
$\mathrm{k}=1, \ldots, \mathrm{~m}-1$, and $\mathrm{Y}(\mathrm{n}-1)=\operatorname{Re}\left(\mathrm{z}_{\mathrm{m}}\right)$
odd $\mathrm{n}: \mathrm{Y}(0)=\operatorname{Re}\left(\mathrm{Z}_{0}\right), \mathrm{Y}\left(2^{*} \mathrm{k}-1\right)=\operatorname{Re}\left(\mathrm{z}_{\mathrm{k}}\right), \mathrm{Y}\left(2^{*} \mathrm{k}\right)=\operatorname{Im}\left(\mathrm{z}_{\mathrm{k}}\right), \mathrm{k}=1, \ldots, \mathrm{~m}$

Perm format: even $\mathrm{n}: \mathrm{y}(0)=\operatorname{Re}\left(\mathrm{z}_{0}\right), \mathrm{y}(1)=\operatorname{Re}\left(\mathrm{z}_{\mathrm{m}}\right), \mathrm{y}(2 * \mathrm{k})=\operatorname{Re}\left(\mathrm{z}_{\mathrm{k}}\right), \mathrm{y}(2 * \mathrm{k}+1)=\operatorname{Im}\left(\mathrm{z}_{\mathrm{k}}\right), \mathrm{k}=$ $1, \ldots, \mathrm{~m}-1$,
odd $\mathrm{n}: \mathrm{Y}(0)=\operatorname{Re}\left(\mathrm{z}_{0}\right), \mathrm{y}\left(2^{*} \mathrm{k}-1\right)=\operatorname{Re}\left(\mathrm{z}_{\mathrm{k}}\right), \mathrm{y}(2 * \mathrm{k})=\operatorname{Im}\left(\mathrm{z}_{\mathrm{k}}\right), \mathrm{k}=1, \ldots, \mathrm{~m}$.
6. DFTI_REAL_COMPLEX for real domain, DFTI_REAL_REAL for conjugate even domain. This storage scheme for conjugate even domain is applicable for one-dimensional transform only. A typical usage will be as follows.

```
// m = floor( n/2 )
COMPLEX :: X(0:n-1)
REAL :: Y(0:n-1)
...some other code...
...not inplace...
Status = DftiComputeForward( Desc_Handle, X, Y )
On input,
```

$\mathrm{x}(\mathrm{j})=w_{j}, j=0,1, \ldots, \mathrm{n}-1$.
On output,
$\mathrm{Y}(\mathrm{k})=\operatorname{Re}\left(z_{k}\right), k=0,1, \ldots, \mathrm{~m}$.
and
$\mathrm{Y}(\mathrm{n}-\mathrm{k})=\operatorname{Im}\left(z_{k}\right), k=1,2, \ldots, \mathrm{~m}-1$.

Number of user threads

Customer application can be parallelized by using the following techniques:

1. You do not create threads in your application but specify the parallel mode within the DFT module of Intel MKL. See Intel MKL Technical User Notes document for more information on how to do this.
2. You create threads in application yourself and have each thread perform all stages of DFT implementation including descriptor initialization, DFT computation, and descriptor deallocation. In this case each descriptor is used only within its corresponding thread.
3. You create threads after initializing the DFT descriptor. This implies that threading is employed for parallel DFT computation only, and the descriptor is freed after return from the parallel region. In this case each thread uses the same descriptor.

For the first and second cases listed above, set the parameter DFTI_NUMBER_OF_USER_THREADS to 1 (its default value), since each particular descriptor instance is used only in a single thread.

In case 3, you must use the DftiSetvalue () function to set the DFTI_NUMBER_OF_USER_THREADS to the actual number of DFT computation threads, because multiple threads will be using the same descriptor. If this setting is not done, your program will work incorrectly or fail, since the descriptor contains individual data for each thread.

A

WARNING.

1. It is not recommended to simultaneously parallelize your program and employ the Intel MKL internal threading because this will slow down performance. Note that in case 3 above, DFT computation is automatically initiated in a single threading mode.
2. The number of threads must not be changed after DFT initialization by the DftiCommitDescriptor () function is done. For example, do not use the OMP function omp_set_max_threads () for this purpose.

See Example C-21, Example C-22, and Example C-23 in Appendix C.

Input and output distances

DFT interface in Intel MKL allows the computation of multiple number of transforms.
Consequently, the user needs to be able to specify the data distribution of these multiple sets of data. This is accomplished by the distance between the first data element of the consecutive data sets. This parameter is obligatory if multiple number is more than one. Data sets don't have any common elements.The following example illustrates the specification. Consider computing the forward DFT on three 32-length complex sequences stored in $\mathrm{x}(0: 31,1), \mathrm{x}(0: 31,2)$, and $X(0: 31,3)$. Suppose the results are to be stored in the locations $Y(0: 31, k), k=1,2,3$, of the array $\mathrm{Y}(0: 63,3)$. Thus the input distance is 32 , while the output distance is 64 . Notice that the data and result parameters in computation functions are all declared as assumed-size rank-1 array DIMENSION ($0: *$). Therefore two-dimensional array must be transformed to one-dimensional array by EQUIVALENCE statement or other facilities of Fortran. Here is the code fragment:

```
Complex :: X_2D(0:31,3), Y_2D(0:63, 3)
Complex :: X(96), Y(192)
Equivalence (X_2D, X)
Equivalence (Y_2D, Y)
```

```
Status = DftiCreateDescriptor(Desc_Handle, DFTI_SINGLE,
    DFTI_COMPLEX, 1, 32)
Status = DftiSetValue(Desc_Handle, DFTI_NUMBER_OF_TRANSFORMS, 3)
Status = DftiSetValue(Desc_Handle, DFTI_INPUT_DISTANCE, 32)
Status = DftiSetValue(Desc_Handle, DFTI_OUTPUT_DISTANCE, 64)
Status = DftiSetValue(Desc_Handle, DFTI_PLACEMENT, DFTI_NOT_INPLACE)
Status = DftiCommitDescriptor(Desc_Handle)
Status = DftiComputeForward(Desc_Handle, X, Y)
Status = DftiFreeDescriptor(Desc_Handle)
```


Strides

In addition to supporting transforms of multiple number of datasets, DFT interface supports non-unit stride distribution of data within each data set. Consider the following situation where a 32-length DFT is to be computed on the sequence $x_{j}, 0 \leq j<32$. The actual location of these values are in $\mathrm{X}(5), \mathrm{x}(7), \ldots, \mathrm{X}(67)$ of an array $\mathrm{x}(1: 68)$. The stride accommodated by DFT interface consists of a displacement from the first element of the data array L_{0}, (4 in this case), and a constant distance of consecutive elements L_{l} (2 in this case). Thus for the Fortran array x
$x_{j}=\mathrm{x}\left(1+L_{0}+L_{1} * j\right)=\mathrm{x}\left(5+L_{1} * j\right)$.
This stride vector $(4,2)$ is provided by a length-2 rank-1 integer array:

```
COMPLEX :: X(68)
INTEGER :: Stride(2)
Status = DftiCreateDescriptor(Desc_Handle, DFTI_SINGLE,
    DFTI_COMPLEX, 1, 32)
Stride = (/ 4, 2 /)
Status = DftiSetValue(Desc_Handle, DFTI_INPUT_STRIDES, Stride)
Status = DftiSetValue(Desc_Handle, DFTI_OUTPUT_STRIDES, Stride)
Status = DftiCommitDescriptor(Desc_Handle)
Status = DftiComputeForward(Desc_Handle, X)
Status = DftiFreeDescriptor(Desc_Handle)
```

In general, for a d-dimensional transform, the stride is provided by a $d+1$-length integer vector ($L_{0}, L_{1}, L_{2}, \ldots, L_{d}$) with the meaning:
$L_{0}=$ displacement from the first array element
$L_{1}=$ distance between consecutive data elements in the first dimension
$L_{2}=$ distance between consecutive data elements in the second dimension
... = ...
$L_{d}=$ distance between consecutive data elements in the d-th dimension.
A d-dimensional data sequence

$$
x_{j_{1}, j_{2}}, \ldots, j_{d}, \quad 0 \leq j_{i}<J_{i}, \quad 1 \leq i \leq d
$$

will be stored in the rank- 1 array x by the mapping

$$
x_{j_{1}, j_{2}, \ldots, j_{d}}=x\left(\text { first index }+L_{0}+j_{1} L_{1}+j_{2} L_{2}+\ldots+j_{d} L_{d}\right) .
$$

For multiple transforms, the value L_{0} applies to the first data sequence, and $L_{j}, j=1,2, \ldots, d$ apply to all the data sequences.

In the case of a single one-dimensional sequence, L_{l} is simply the usual stride. The default setting of strides in the general multi-dimensional situation corresponds to the case where the sequences are distributed tightly into the array:
$L_{1}=1, L_{2}=J_{l}, \mathrm{~L}_{3}=J_{l} J_{2}, \ldots, L_{d}=\prod_{i=1}^{d-1} J_{i}$
Both the input data and output data have a stride associated with it. The default is set in accordance with the data to be stored contiguously in memory in a way that is natural to the language.
See Example C-20 as an illustration on how to use the configuration parameters discussed above.

Initialization Effort

In modern approaches to constructing fast algorithms (FFT) for DFT computations, one often has a flexibility of spending more effort in initializing (preparing for) an FFT algorithm to buy higher efficiency in the computation on actual data to follow. Advanced DFT functions in Intel MKL accommodate this situation through the configuration parameter DFTI_INITIALIZATION_EFFORT. The three configuration values are DFTI_LOW, DFTI_MEDIUM (default), and DFTI_HIGH. Note that specific implementations of DFT interface may or may not make use of this setting (see MKL Release Notes for implementation details).

Ordering

It is well known that a number of FFT algorithms apply an explicit permutation stage that is time consuming [4]. The exclusion of this step is similar to applying DFT to input data whose order is scrambled, or allowing a scrambled order of the DFT results. In applications such as convolution and power spectrum calculation, the order of result or data is unimportant and thus permission of scrambled order is attractive if it leads to higher performance. Three following options are available in Intel MKL:

1. DFTI_ORDERED: Forward transform data ordered, backward transform data ordered (default option).
2. DFTI_BACKWARD_SCRAMBLED: Forward transform data ordered, backward transform data scrambled.
3. DFTI_FORWARD_SCRAMBLED: Forward transform data scrambled, backward transform data ordered.

Table 11-17 tabulates the effect on this configuration setting.

Table 11-17 Scrambled Order Transform

| | DftiComputeForward | DftiComputeBackward |
| :--- | :--- | :--- |
| DFTI_ORDERING | Input \rightarrow Output | Input \rightarrow Output |
| DFTI_ORDERED | ordered \rightarrow ordered | ordered \rightarrow ordered |
| DFTI_BACKWARD_SCRAMBLED | ordered \rightarrow scrambled | scrambled \rightarrow ordered |
| DFTI_FORWARD_SCRAMBLED | scrambled \rightarrow ordered | ordered \rightarrow scrambled |

Note that meaning of the latter two options are "allow scrambled order if practical." There are situations where in fact allowing out of order data gives no performance advantage, and thus an implementation may choose to ignore the suggestion. Strictly speaking, the normal order is also a scrambled order, the trivial one.

When the ordering setting is other than the default DFTI_ORDERED, the user may need to know the actual ordering of the input and output data. The ordering of the data in the forward domain is obtained through reading (getting) the configuration parameter DFTI_FORWARD_ORDERING; and the ordering of the data in the reverse domain is obtained through reading (getting) the configuration parameter DFTI_BACKWARD_ORDERING. The configuration values are integer vectors, thus provided by pointer to any integer array. We now describe how these integer values specify the actual scrambling of data.

All scramblings involved are digit reversal along one single dimension. Precisely, a length J is factored into K ordered factors $D_{1}, D_{2}, \ldots, D_{K}$. Any index $i, 0 \leq i<n$, can be expressed uniquely as K digits $i_{l}, i_{2}, \ldots, i_{K}$ where
$0 \leq i_{l}<D_{l}$ and
$i=i_{1}+i_{2} D_{1}+i_{3} D_{1} D_{2}+\ldots+i_{K} D_{1} D_{2} \ldots D_{K-1}$.
A digit reversal permutation $\operatorname{scram}(i)$ is given by

$$
\operatorname{scram}(i)=i_{K}+i_{K-1} D_{K}+i_{K-2} D_{K} D_{K-1}+\ldots+i_{1} D_{K} D_{K-1} \ldots D_{2}
$$

Factoring J into one factor J leads to no scrambling at all, that is, $\operatorname{scram}(i)=i$. Note that the factoring does not need to correspond exactly to the number of "butterfly" stages to be carried out. In fact, the computation routine in its initialization stage determines if a scrambled order in some or all of the dimensions can result in performance gain. The digits of the digit reversal are recorded and stored in the descriptor. These digits can be obtained by calling a corresponding inquiry routine that returns a pointer to an integer array. The first element is $K^{(1)}$, which is the number of digits for the first dimension, followed by $K^{(1)}$ values of the corresponding digits. If the dimension is higher than one, the next integer value is $K^{(2)}$, etc.

Simple permutation such as mod- p sort [4] is a special case of digit reversal. Hence this option could be useful for high-performance implementation of one-dimensional DFT via a "six-step" or "four-step" framework [4].

The user can check the scrambling setting on the forward data and reverse data. This information is returned as an integer vector containing a number of sequence ($K, D_{l}, D_{2}, \ldots, D_{K}$), one for each dimension. Thus the first element indicates how many D 's will follow. The inquiry routine allocates memory, fills it will this information, and returns a pointer to the memory location.

Workspace

Some FFT algorithms do not require a scratch space for permutation purposes. The user can choose between the setting of DFTI_ALLOW (default) and DFTI_AVOID for the option DFTI_WORKSPACE. Note that the setting DFTI_AVOID is meant to be "avoid if practical," hence allowing the implementation the flexibility to use workspace regardless of the setting.

Transposition

This is an option that allows for the result of a high-dimensional transform to be presented in a transposed manner. The default setting is DFTI_NONE and can be set to DFTI_ALLOW. Similar to that of scrambled order, sometimes in higher dimension transform, performance can be gained if the result is delivered in a transposed manner. DFT interface offers an option for the output be
returned in a transposed form if performance gain is possible. Since the generic stride specification is naturally suited for representation of transposition, this option allows the strides for the output to be possibly different from those originally specified by the user. Consider an example where a two-dimensional result
$y_{j_{1}, j_{2}}, 0 \leq j_{i}<n_{i}$,
is expected. Originally the user specified that the result be distributed in the (flat) array Y in with generic strides $L_{1}=1$ and $L_{2}=n_{1}$. With the transposition option, the computation may actually return the result into Y with stride $L_{1}=n_{2}$ and $L_{2}=1$. These strides can be obtained from an appropriate inquiry function. Note also that in dimension 3 and above, transposition means an arbitrary permutation of the dimension.

Fast Fourier Transforms

This chapter describes the one- and two-dimensional fast Fourier transform (FFT) routines implemented in Intel ${ }^{\mathbb{}}$ MKL. The FFT routines work with transforms of a power of 2 length and are supported to provide compatibility with previous versions of the library.

For a more general set of Discrete Fourier Transform functions in Intel MKL, refer to Discrete Fourier Transform Functions in this manual.

Although Intel MKL still supports the FFT interface described later in this chapter, users are encouraged to migrate to the newer DFT functions in their application programs. Unlike the FFT routines, the DFT routines support transforms of up to the dimension of seven, and transform lengths of other than powers of 2 mixed radix.

This chapter contains the following major sections:

- One-dimensional FFTs
- Two-dimensional FFTs

Each of the major sections contains the description of three groups of the FFTs.

One-dimensional FFTs

The one-dimensional FFTs include the following groups:

- Complex-to-Complex Transforms
- Real-to-Complex Transforms
- Complex-to-Real Transforms.

All one-dimensional FFTs are in-place. The transform length must be a power of 2 . The complex-to-complex transform routines perform both forward and inverse transforms of a complex vector. The real-to-complex transform routines perform forward transforms of a real vector. The complex-to-real transform routines perform inverse transforms of a complex conjugate-symmetric vector, which is packed in a real array.

Data Storage Types

Each FFT group contains two sets of FFTs having the similar functionality: one set is used for the Fortran-interface and the other for the C-interface. The former set stores the complex data as a Fortran complex data type, while the latter stores the complex data as float arrays of real and imaginary parts separately. These sets are distinguished by naming the FFTs within each set. The names of the FFTs used for the C-interface have the letter "c" added to the end of the FFTs' Fortran names. For example, the names of the cfftid/zfftid FFTs for the corresponding C-interface routines are cfftidc/zfftidc. All names of the C-type data items are lower case.

Table 12-1 lists the one-dimensional FFT routine groups and the data types associated with them.
Table 12-1 One-dimensional FFTs: Names and Data Types

| Group | | Stored as C Real Data | Data Types | Description |
| :---: | :---: | :---: | :---: | :---: |
| Complex-to
 - Complex | $\frac{\text { cfftid/ }}{\text { zfftid }}$ | $\frac{\text { cfftldc/ }}{\underline{\text { zfftldc }}}$ | c, z | Transform complex data to complex data. |
| Real-toComplex | $\frac{\text { scfftid/ }}{\text { dzfft1d }}$ | $\frac{\text { scfftidc/ }}{\text { dzfftidc }}$ | sc, dz | Transform forward real-to-complex data. Complement csfftid/zdfftid and csfftldc/zdfft1dc FFTs. |
| Complex-to-Real | $\frac{\text { csfftid/ }}{\text { zdfft1d }}$ | $\frac{\text { csfftidc/ }}{\underline{\text { zdfftidc }}}$ | cs, zd | Transform inverse complex-to-real data. Complement scfftid/dzfft1d and scfft1dc/dzfft1dc FFTs. |

Data Structure Requirements

For C-interface, storage of the complex-to-complex transform routines data requires separate float arrays for the real and imaginary parts. The real-to-complex and complex-to-real pairs require a single float input/output array.

The C-interface requires scalar values to be passed by value.

All transforms require additional memory to store the transform coefficients. When performing multiple FFTs of the same dimension, the table of coefficients should be created only once and then used on all the FFTs afterwards. Using the same table rather than creating it repeatedly for each FFT produces an obvious performance gain.

Complex-to-Complex One-dimensional FFTs

Each of the complex-to-complex routines computes a forward or inverse FFT of a complex vector. The forward FFT is computed according to the mathematical equation

$$
z_{j}=\sum_{k=0}^{n-1} r_{k} * w^{-j * k}, \quad 0 \leq j \leq n-1
$$

The inverse FFT is computed according to the mathematical equation

$$
r_{j}=\frac{1}{n} \sum_{k=0}^{n-1} z_{k} * w^{j * k}, \quad 0 \leq j \leq n-1
$$

where $\mathrm{w}=\exp \left[\frac{2 \pi \mathrm{i}}{\mathrm{n}}\right], i$ being the imaginary unit.
The operation performed by the complex-to-complex routines is determined by the value of the isign parameter used by each of these routines.

If isign $=-1$, perform the forward FFT where input and output are in normal order.
If isign $=+1$, perform the inverse FFT where input and output are in normal order.
If isign $=-2$, perform the forward FFT where input is in normal order and output is in bit-reversed order.

If isign $=+2$, perform the inverse FFT where input is in bit-reversed order and output is in normal order.

If isign $=0$, initialize FFT coefficients for both the forward and inverse FFTs.
The above equations apply to all FFTs with all data types indicated
in Table 12-1.
To compute a forward or inverse FFT of a given length, first initialize the coefficients by calling the function with isign $=0$. Thereafter, any number of transforms of the same length can be computed by calling the function with isign $=+1,-1,+2,-2$.

cfft1d/zfft1d

Fortran-interface routines. Compute the forward

 or inverse FFT of a complex vector (in-place)
Syntax

```
call cfftld ( r, n, isign, wsave )
call zfftld ( r, n, isign, wsave )
```


Description

The operation performed by the $\mathrm{Cfft1d/zfft1d}$ routines is determined by the value of isign. See the equations of the operations for the Complex-to-Complex One-dimensional FFTs above.

Input Parameters

| r | COMPLEX for cfftld |
| :---: | :---: |
| | DOUBLE COMPLEX for zfftid |
| | Array, DIMENSION at least (n). Contains the complex vector on which the transform is to be performed. Not referenced if isign $=0$. |
| n | INTEGER. Transform length; n must be a power of 2 . |
| isign | INTEGER. Flag indicating the type of operation to be performed: if isign $=0$, initialize the coefficients wsave; |
| | if isign $=-1$, perform the forward FFT where input and output are in normal order; |
| | if isign $=+1$, perform the inverse FFT where input and output are in normal order; |
| | if isign $=-2$, perform the forward FFT where input is in normal order and output is in bit-reversed order; |
| | if isign $=+2$, perform the inverse FFT where input is in bit-reversed order and output is in normal order. |
| wsave | COMPLEX for cfftid |
| | DOUBLE COMPLEX for zfftid |
| | Array, DIMENSION at least $((3 * n) / 2)$. If isign $=0$, then wsave is an output parameter. Otherwise, wsave contains the FFT coefficients initialized on a previous call with isign $=0$. |

Output Parameters

$r \quad$ Contains the complex result of the transform depending on isign. Does not change if isign $=0$.
wsave If isign $=0$, wsave contains the initialized FFT coefficients. Otherwise, wsave does not change.

cfft1dc/zfft1dc

C-interface routines. Compute the forward or inverse FFT of a complex vector (in-place).

Syntax

```
void cfftldc (float* r, float* i, int n, int isign, float* wsave)
void zfftldc (double* r, double* i, int n, int isign, double* wsave)
```


Description

The operation performed by the $c f f t 1 d c / z f f t 1 d c$ routines is determined by the value of isign. See the equations of the operations for the Complex-to-Complex One-dimensional FFTs.

Input Parameters

r
i
n
isign
float* for cfftidc double* for zfftldc
Pointer to an array of size at least (n). Contains the real parts of complex vector to be transformed. Not referenced if isign $=0$.

```
float* for cfftldc
```

double* for $z f f t 1 d c$

Pointer to an array of size at least (n). Contains the imaginary parts of complex vector to be transformed.

Not referenced if isign $=0$.
int. Transform length; n must be a power of 2 .
int. Flag indicating the type of operation to be performed:
if isign $=0$, initialize the coefficients wsave;
if isign $=-1$, perform the forward FFT where input and output are in normal
order;
if isign $=+1$, perform the inverse FFT where input and output are in normal order;
if isign = -2, perform the forward FFT where input is in normal order and output is in bit-reversed order;
if isign $=+2$, perform the inverse FFT where input is in bit-reversed order and output is in normal order.
float* for cfftldc
double* for zfftidc
Pointer to an array of size at least $\left(3 *_{n}\right)$. If isign $=0$, then wsave is an output parameter. Otherwise, wsave contains the FFT coefficients initialized on a previous call with isign $=0$.

Output Parameters

$r \quad$ Contains the real part of the transform depending on isign. Does not change if isign $=0$.
i
Contains the imaginary part of the transform depending on isign.. Does not change if isign $=0$.
wsave If isign = 0, wsave contains the initialized FFT coefficients. Otherwise, wsave does not change.

Real-to-Complex One-dimensional FFTs

Each of the real-to-complex routines computes forward FFT of a real input vector according to the mathematical equation
$z_{j}=\sum_{k=0}^{n-1} t_{k} * w^{-j * k}, \quad 0 \leq j \leq n-1$
for $t_{k}=\operatorname{cmplx}\left(r_{k}, 0\right)$, where r_{k} is the real input vector, $0 \leq k \leq n-1$.
The mathematical result $z_{j}, 0 \leq j \leq n-1$, is the complex conjugate-symmetric vector, where $\mathrm{z}(\mathrm{n} / 2+\mathrm{i})=\operatorname{conjg}(\mathrm{z}(\mathrm{n} / 2-\mathrm{i})), 1 \leq i \leq n / 2-1$, and moreover $\mathrm{z}(0)$ and $\mathrm{z}(\mathrm{n} / 2)$ are real values.

This complex conjugate-symmetric (CCS) vector can be stored in the complex array of size $(n / 2+1)$ or in the real array of size $(n+2)$. The data storage of the CCS format is defined later for Fortran-interface and C-interface routines separately.

Table 12-2 shows a comparison of the effects of performing the cfftid/ zfftid complex-to-complex FFT on a vector of length $\mathrm{n}=8$ in which all the imaginary elements are zeros, with the real-to-complex scfft1d/zdfft1d FFT applied to the same vector. The advantage of the latter approach is that only half of the input data storage is required and there is no need to zero the imaginary part. The last two columns are stored in the real array of size $(\mathrm{n}+2)$ containing the complex conjugate-symmetric vector in CCS format.

To compute a forward FFT of a given length, first initialize the coefficients by calling the routine you are going to use with isign $=0$. Thereafter, any number of real-to-complex and complex-to-real transforms of the same length can be computed by calling that routine with the isign value other than 0 .

Table 12-2 Comparison of the Storage Effects of Complex-to-Complex and Real-to-Complex FFTs

| Input Vectors | | | Output Vectors | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| cfft1d | scfft1d | cfft1d | | scfft1d | | |
| Complex Data | Real Data | Complex Data | Real Data | | | |
| Real | Imaginary | | Real | Imaginary | (Real) | (Imaginary) |
| 0.841471 | 0.000000 | 0.841471 | 1.543091 | 0.000000 | 1.543091 | 0.000000 |
| 0.909297 | 0.00000 | 0.909297 | 3.875664 | 0.910042 | 3.875664 | 0.910042 |
| 0.141120 | 0.00000 | 0.141120 | -0.915560 | -0.397326 | -0.915560 | -0.397326 |
| -0.756802 | 0.000000 | -0.756802 | -0.274874 | -0.121691 | -0.274874 | -0.121691 |
| -0.958924 | 0.000000 | -0.958924 | -0.181784 | 0.000000 | -0.181784 | 0.000000 |
| -0.279415 | 0.000000 | -0.279415 | -0.274874 | 0.121691 | | |
| 0.656987 | 0.000000 | 0.656987 | -0.915560 | 0.397326 | | |
| 0.989358 | 0.000000 | 0.989358 | 3.875664 | -0.910042 | | |

scfft1d/dzfft1d

Fortran-interface routines. Compute forward FFT of a real vector and represent the complex conjugate-symmetric result in CCS format (in-place).

Syntax

```
call scfftld ( r, n, isign, wsave )
```

```
call dzfftld ( r, n, isign, wsave )
```


Description

The operation performed by the scfftid/dzfftid routines is determined by the value of isign. See the equations of the operations for Real-to-Complex One-dimensional FFTs above. These routines are complementary to the complex-to-real transform routines $\operatorname{csfftld/zdfft1d.~}$

Input Parameters

```
r
    REAL for scfftld
    DOUBLE PRECISION for dzfft1d
```

Array, DIMENSION at least $(n+2)$. First n elements contain the input vector to be transformed. The elements $r(n+1)$ and $r(n+2)$ are used on output. The array r is not referenced if isign $=0$. integer. Transform length; n must be a power of 2 .

INTEGER. Flag indicating the type of operation to be performed: if i sign is 0 , initialize the coefficients wsave; if i sign is not 0 , perform the forward FFT.
wsave REAL for scfftld DOUBLE PRECISION for dzfft1d

Array, DIMENSION at least $(2 * n+4)$. If isign $=0$, then wsave contains output data. Otherwise, wsave contains coefficients required to perform the FFT that has been initialized on a previous call to this routine or the complementary complex-to-real FFT routine.

Output Parameters

If isign $=0, r$ does not change. If isign is not 0 , the output real-valued array $r(1: n+2)$ contains the complex conjugate-symmetric vector $z(1: n)$ packed in CCS format for Fortran interface.
The table below shows the relationship between them.

| $r(1)$ | $r(2)$ | $r(3)$ | $r(4)$ | \ldots | $r(n-1)$ | $r(n)$ | $r(n+1)$ | $r(n+2)$ |
| :---: | :---: | :--- | :--- | :--- | :--- | :--- | :--- | :---: |
| $z(1)$ | 0 | $\operatorname{RE} z(2)$ | $\operatorname{IM} z(2)$ | \ldots | $\operatorname{RE} z(n / 2)$ | $\operatorname{IM} z(n / 2)$ | $z(n / 2+1)$ | 0 |

The full complex vector $z(1: n)$ is defined by

```
z(i) = cmplx(r(2*i-1), r(2*i)),
1 \leq i \leq n/2+1,
```

```
z(n/2+i) = conjg(z(n/2+2-i)),
2 \leq i s n/2.
```

Then, $z(1: n)$ is the forward FFT of a real input vector $r(1: n)$.
If isign $=0$, wsave contains the coefficients required by the called routine. Otherwise wsave does not change.

scfft1dc/dzfft1dc

C-interface routines. Compute forward FFT of a real vector and represent the complex conjugatesymmetric result in CCS format (in-place).

Syntax

```
void scfftldc ( float* r, int n, int isign, float* wsave );
void dzfftldc ( double* r, int n, int isign, double* wsave );
```


Description

The operation performed by the scfftidc/dzfft1dc routines is determined by the value of isign. See the equations of the operations for the Real-to-Complex One-dimensional FFTs above.
These routines are complementary to the complex-to-real transform routines csfftldc/zdfft1dc.

Input Parameters

```
r
    float* for scfftldc
    double* for dzfft1dc
    Pointer to an array of size at least (n+2). First n elements contain the input
    vector to be transformed. The array r is not referenced if isign =0.
n
isign
    int. Transform length; n must be a power of 2.
    int. Flag indicating the type of operation to be performed:
    if isign is 0, initialize the coefficients wsave;
    if isign is not 0, perform the forward FFT.
```


float* for scfftldc

double* for dzfftidc
Pointer to an array of size at least $(2 * n+4)$.
If isign $=0$, then wsave contains output data. Otherwise, wsave contains coefficients required to perform the FFT that has been initialized on a previous call to this routine or the complementary complex-to-real FFT routine.

Output Parameters

r
If isign $=0, r$ does not change. If isign is not 0 , the output real-valued array $r(0: n+1)$ contains the complex conjugate-symmetric vector $z(0: n-1)$ packed in CCS format for C-interface.
The table below shows the relationship between them.

| $r(0)$ | $r(1)$ | $r(2)$ | \ldots | $r(n / 2)$ | $r(n / 2+1)$ | $r(n / 2+2)$ | \ldots | $r(n)$ | $r(n+1)$ |
| :---: | :--- | :--- | :--- | :--- | :---: | :--- | :--- | :--- | :---: |
| $z(0)$ | $\operatorname{RE} z(1)$ | $\operatorname{RE} z(2)$ | \ldots | $z(n / 2)$ | 0 | $\operatorname{IM} z(1)$ | \ldots | $\operatorname{IM} z(n / 2-1)$ | 0 |

The full complex vector $z(0: n-1)$ is defined by

```
z(i) = cmplx(r(i),r(n/2+1+i)), 0\leqi\leqn/2,
z(n/2+i) = conjg(z(n/2-i)), 1\leqi\leqn/2-1.
Then, z(0:n-1) is the forward FFT of the real input vector of length n.
```

wsave If isign = 0, wsave contains the coefficients required by the called routine. Otherwise wsave does not change.

Complex-to-Real One-dimensional FFTs

Each of the complex-to-real routines computes a one-dimensional inverse FFT according to the mathematical equation
$t_{j}=\frac{1}{n} \sum_{k=0}^{n-1} z_{k} * w^{j * k}, \quad 0 \leq j \leq n-1$

The mathematical input is the complex conjugate-symmetric vector $z_{j}, 0 \leq j \leq n-1$, where $z(n / 2+i)=$ conjg $(z(n / 2-i)), 1 \leq i \leq n / 2-1$, and moreover $z(0)$ and $z(n / 2)$ are real values.

The mathematical result is $t_{j}=\operatorname{cmplx}\left(r_{j}, 0\right)$, where r_{j} is a real vector, $0 \leq j \leq n-1$.

Input to the complex-to-real transform routines is a real array of size $(n+2)$, which contains the complex conjugate-symmetric vector $z(0: n-1)$ in CCS format (see Real-to-Complex One-dimensional FFTs above).

Output of the complex-to-real routines is a real vector of size n.
Table 12-3 is identical to Table 12-2, except for reversing the input and output vectors. In the complex-to-real routines the last two columns are stored in the input real array of size $(n+2)$ containing the complex conjugate-symmetric vector in CCS format.

To compute an inverse FFT of a given length, first initialize the coefficients by calling the routine you are going to use with isign $=0$. Thereafter, any number of real-to-complex and complex-to-real transforms of the same length can be computed by calling the appropriate routine with the isign value other than 0 .

Table 12-3 Comparison of the Storage Effects of Complex-to-Real and Complex-to-Complex FFTs

| Output Vectors | | | Input Vectors | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| cfftld | | csfft1d | cfftld | | csfftld | |
| Complex Data | | Real Data | Complex Data | | Real Data | |
| Real | Imaginary | | Real | Imaginary | (Real) | (Imaginary) |
| 0.841471 | 0.000000 | 0.841471 | 1.543091 | 0.000000 | 1.543091 | 0.000000 |
| 0.909297 | 0.000000 | 0.909297 | 3.875664 | 0.910042 | 3.875664 | 0.910042 |
| 0.141120 | 0.000000 | 0.141120 | -0.915560 | -0.397326 | -0.915560 | -0.397326 |
| -0.756802 | 0.000000 | -0.756802 | -0.274874 | -0.121691 | -0.274874 | -0.121691 |
| -0.958924 | 0.000000 | -0.958924 | -0.181784 | 0.000000 | -0.181784 | 0.000000 |
| -0.279415 | 0.000000 | -0.279415 | -0.274874 | 0.121691 | | |
| 0.656987 | 0.000000 | 0.656987 | -0.915560 | 0.397326 | | |
| 0.989358 | 0.000000 | 0.989358 | 3.875664 | -0.910042 | | |

csfft1d/zdfft1d

Fortran-interface routines. Compute inverse FFT of a complex conjugate-symmetric vector packed in CCS format (in-place).

Syntax

```
call csfftld ( r, n, isign, wsave )
```

call zdfftld ($r, n, i s i g n, ~ w s a v e ~) ~$

Description

The operation performed by the csfftid/zdfft1d routines is determined by the value of isign. See the equations of the operations for the Complex-to-Real One-dimensional FFTs above.

These routines are complementary to the real-to-complex transform routines scfftid/dzfftid.

Input Parameters

r
REAL for csfftld
DOUBLE PRECISION for $z d f f t 1 d$
Array, DIMENSION at least ($n+2$).
Not referenced if isign $=0$.
If isign is not 0 , then $r(1: n+2)$ contains the complex conjugate-symmetric vector packed in CCS format for Fortran-interface.
The table below shows the relationship between them.

| $r(1)$ | $r(2)$ | $r(3)$ | $r(4)$ | \cdots | $r(n-1)$ | $r(n)$ | $r(n+1)$ | $r(n+2)$ |
| :---: | :---: | :--- | :--- | :--- | :--- | :--- | :--- | :---: |
| $z(1)$ | 0 | $\operatorname{RE} z(2)$ | $\operatorname{IM} z(2)$ | \cdots | $\operatorname{RE} z(n / 2)$ | $\operatorname{IM} z(n / 2)$ | $z(n / 2+1)$ | 0 |

The full complex vector $z(1: n)$ is defined by

```
z(i) = cmplx(r(2*i-1), r(2*i)),
1 \leq i \leq n/2+1,
z(n/2+i) = conjg(z(n/2+2-i)),
2 \leq i \leq n/2.
```

n
isign
wsave

After the transform, $r(1: n)$ contains the inverse FFT of the complex conjugate-symmetric vector $z(1: n)$.

INTEGER. Transform length; n must be a power of 2 .
INTEGER. Flag indicating the type of operation to be performed: if isign is 0 , initialize the coefficients wsave; if isign is not 0 , perform the inverse FFT.

REAL for csfftld
DOUBLE PRECISION for $z d f f t 1 d$
Array, DIMENSION at least $(2 * n+4)$. If isign $=0$, then wsave contains output data. Otherwise, wsave contains coefficients required to perform the FFT that has been initialized on a previous call to this routine or the complementary real-to-complex FFT routine.

Output Parameters

If isign is not 0 , then $r(1: n)$ is the real result of the inverse FFT of the complex conjugate-symmetric vector $z(1: n)$. Does not change if isign $=0$.
wsave If isign $=0$, wsave contains the coefficients required by the called routine. Otherwise wsave does not change.

csfft1dc/zdfft1dc

C-interface routines. Compute inverse FFT
of a complex conjugate-symmetric vector
packed in CCS format (in-place).

Syntax

```
void csfftldc ( float* r, int n, int isign, float* wsave )
void zdfftldc ( double* r, int n, int isign, double* wsave )
```


Description

The operation performed by the csfftidc/zdfftidc routines is determined by the value of isign. See the equations of the operations for the Complex-to-Real One-dimensional FFTs above.

These routines are complementary to the real-to-complex transform routines scfft1dc/dzfft1dc.

Input Parameters

r

float* for csfftldc

 double* for $z d f f t 1 d c$Pointer to an array of size at least $(n+2)$. Not referenced if isign $=0$.
If isign is not 0 , then $r(0: n+1)$ contains the complex conjugate-symmetric vector packed in CCS format for C -interface.
The table below shows the relationship between them.

| $r(0)$ | $r(1)$ | $r(2)$ | \ldots | $r(n / 2)$ | $r(n / 2+1)$ | $r(n / 2+2)$ | \ldots | $r(n)$ | $r(n+1)$ |
| :---: | :--- | :--- | :--- | :--- | :---: | :---: | :---: | :--- | :---: |
| $z(0)$ | $\operatorname{RE} z(1)$ | $\operatorname{RE} z(2)$ | \ldots | $z(n / 2)$ | 0 | $\operatorname{IM} z(1)$ | \ldots | $\operatorname{IM} z(n / 2-1)$ | 0 |

The full complex vector $z(0: n-1)$ is defined by

$$
\begin{aligned}
& z(i)=\operatorname{cmplx}(r(i), r(n / 2+1+i)), 0 \leq i \leq n / 2, \\
& z(n / 2+i)=\operatorname{conjg}(z(n / 2-i)), 1 \leq i \leq n / 2-1
\end{aligned}
$$

After the transform, $r(0: n-1)$ is the inverse FFT of the complex conjugate-symmetric vector $z(0: n-1)$.
int. Transform length; n must be a power of 2 .
int. Flag indicating the type of operation to be performed:
if isign $=0$, initialize the coefficients wsave;
if isign is not 0 , perform the inverse FFT.
wsave
float* for csfftidc
double* for $z d f f t 1 d c$
Pointer to an array of size at least $(2 * n+4)$.
If isign $=0$, then wsave contains output data. Otherwise, wsave contains coefficients required to perform the FFT that has been initialized on a previous call to this routine or the complementary real-to-complex FFT routine.

Output Parameters

| r | If isign is not 0 , then $r(0: n-1)$ is the real result of the inverse FFT of the |
| :--- | :--- |
| complex conjugate-symmetric vector $z(0: n-1)$. Does not change if i isign $=$ | |
| 0 . | |

Two-dimensional FFTs

The two-dimensional FFTs are functionally the same as one-dimensional FFTs. They contain the following groups:

- Complex-to-Complex Transforms
- Real-to-Complex Transforms
- Complex-to-Real Transforms.

All two-dimensional FFTs are in-place. Transform lengths must be a power of 2. The complex-to-complex transform routines perform both forward and inverse transforms of a complex matrix. The real-to-complex transform routines perform forward transforms of a real matrix. The complex-to-real transform routines perform inverse transforms of a complex conjugate-symmetric matrix, which is packed in a real array.

The naming conventions are also the same as those for one-dimensional FFTs, with " 2 d " replacing " 1 d " in all cases. Table 12-4 lists the two-dimensional FFT routine groups and the data types associated with them.

Table 12-4 Two-dimensional FFTs: Names and Data Types

| Group | Stored as
 FORTRAN
 Complex
 Data | Stored as C
 Real Data | Data Types | Description |
| :---: | :---: | :---: | :---: | :---: |
| Complex-toComplex | $\frac{\text { cffte } 2 \mathrm{~d} /}{\text { zfft2d }}$ | $\frac{\mathrm{cfft} 2 \mathrm{dc} /}{\mathrm{zfft} 2 \mathrm{dc}}$ | C, z | Transform complex data to complex data. |
| Real-toComplex | $\frac{\text { scfft2d/ }}{\mathrm{dzfft2d}}$ | $\frac{\text { scfft } 2 \mathrm{dc} /}{\mathrm{dzfft} 2 \mathrm{dc}}$ | sc, dz | Transform forward real-to-complex data. Complement csfft2d/zdfft2d and csfft2dc/zdfft2dc FFTs. |
| Complex-to-Real | $\frac{\operatorname{csfft2d/}}{\text { zdfft2d }}$ | $\frac{\text { csfft } 2 \mathrm{dc} /}{\text { zdfft2dc }}$ | cs, zd | Transform inverse complex-to-real data. Complement scfft2d/dzfft2d and scfft2dc/dzfft2dc FFTs. |

The C-interface requires scalar values to be passed by value. The major difference between the one-dimensional and two-dimensional FFTs is that your application does not need to provide storage for transform coefficients.

The data storage types and data structure requirements are the same as for one-dimensional FFTs. For more information, see the Data Storage Types and Data Structure Requirements sections at the beginning of this chapter.

Complex-to-Complex Two-dimensional FFTs

Each of the complex-to-complex routines computes a forward or inverse FFT of a complex matrix in-place.

The forward FFT is computed according to the mathematical equation

$$
z_{i, j}=\sum_{k=0}^{m-1} \sum_{l=0}^{n-1} r_{k, l} * w_{m}^{-i} * k w_{n}^{-j} * l, \quad 0 \leq i \leq m-1,0 \leq j \leq n-1
$$

The inverse FFT is computed according to the mathematical equation

$$
r_{i, j}=\frac{1}{m * n} \sum_{k=0}^{m-1} \sum_{l=0}^{n-1} z_{k, 1} * w_{m}^{i} * k w_{n}^{j} * l, \quad 0 \leq i \leq m-1,0 \leq j \leq n-1
$$

where $w_{m}=\exp \left[\frac{2 \pi i}{m}\right], w_{n}=\exp \left[\frac{2 \pi i}{n}\right], i$ being the imaginary unit.
The operation performed by the complex-to-complex routines is determined by the value of the isign parameter.

If isign $=-1$, perform the forward FFT where input and output are in normal order. If isign $=+1$, perform the inverse FFT where input and output are in normal order. If isign $=-2$, perform the forward FFT where input is in normal order and output is in bit-reversed order.
If isign $=+2$, perform the inverse FFT where input is in bit-reversed order and output is in normal order.

The above equations apply to all FFTs with all data types indicated in Table 12-4.

cfft2d/zfft2d

Fortran-interface routines. Compute the forward or inverse FFT of a complex matrix (in-place).

Syntax

call cfft2d ($r, m, n, i s i g n)$
call zfft2d ($r, m, n, i s i g n)$

Description

The operation performed by the $\mathrm{cfft2d} / \mathrm{zfft2d}$ routines is determined by the value of isign. See the equations of the operations for Complex-to-Complex Two-dimensional FFTs.

Input Parameters

$r \quad$ COMPLEX for $c f f t 2 d$ DOUBLE COMPLEX for $z f f t 2 d$
Array, DIMENSION at least (m, n), with its leading dimension equal to m. This array contains the complex matrix to be transformed.
$m \quad$ INTEGER. Column transform length (number of rows); m must be a power of 2 .
n
INTEGER. Row transform length (number of columns); n must be a power of 2 .
isign INTEGER. Flag indicating the type of operation to be performed:
if isign $=-1$, perform the forward FFT where input and output are in normal order;
if isign $=+1$, perform the inverse FFT where input and output are in normal order;
if isign $=-2$, perform the forward FFT where input is in normal order and output is in bit-reversed order;
if isign $=+2$, perform the inverse FFT where input is in bit-reversed order and output is in normal order.

Output Parameters

[^5]
cfft2dc/zfft2dc

C-interface routines. Compute the forward or inverse
FFT of a complex matrix (in-place).

Syntax

```
void cfft2dc ( float* r, float* i, int m, int n, int isign )
```

void zfft2dc (double* r, double* i, int m, int n, int isign)

Description

The operation performed by the $\mathrm{cfft} 2 \mathrm{dc} / \mathrm{zfft} 2 \mathrm{dc}$ routines is determined by the value of isign. See the equations of the operations for the Complex-to-Complex Two-dimensional FFTs above.

Input Parameters

r
m
n
isign
float* for cfft2dc
double* for $z f f t 2 d c$
Pointer to a two-dimensional array of size at least (m, n), with its leading dimension equal to n. The array contains the real parts of a complex matrix to be transformed.
float* for cfft2dc
double* for $z f f t 2 d c$
Pointer to a two-dimensional array of size at least (m, n), with its leading dimension equal to n. The array contains the imaginary parts of a complex matrix to be transformed.
int. Column transform length (number of rows); m must be a power of 2 .
int. Row transform length (number of columns); n must be a power of 2 .
int. Flag indicating the type of operation to be performed:
if isign $=-1$, perform the forward FFT where input and output are in normal order;
if isign $=+1$, perform the inverse FFT where input and output are in normal order;
if isign $=-2$, perform the forward FFT where input is in normal order and
output is in bit-reversed order; if isign $=+2$, perform the inverse FFT where input is in bit-reversed order and output is in normal order.

Output Parameters

$r \quad$ Contains the real parts of the complex result depending on isign.
i Contains the imaginary parts of the complex depending on isign.

Real-to-Complex Two-dimensional FFTs

Each of the real-to-complex routines computes the forward FFT of a real matrix according to the mathematical equation
$z_{i, j}=\sum_{k=0}^{m-1} \sum_{l=0}^{n-1} t_{k, l} * w_{m}^{-i} * k{ }_{n} w_{n}^{-j} * l, \quad 0 \leq i \leq m-1,0 \leq j \leq n-1$
$t_{k, 1}=\operatorname{cmplx}\left(r_{k, 1}, 0\right)$, where $r_{k, 1}$ is a real input matrix, $0 \leq k \leq m-1,0 \leq 1 \leq n-1$. The mathematical result $z_{i, j}, 0 \leq i \leq m-1,0 \leq j \leq n-1$, is the complex matrix of size (m, n). Each column is the complex conjugate-symmetric vector as follows:
for $0 \leq j \leq n-1$,
$z(m / 2+i, j)=\operatorname{conjg}(z(m / 2-i, j)), 1 \leq i \leq m / 2-1$.
Moreover, $z(0, j)$ and $z(m / 2, j)$ are real values for $j=0$ and $j=n / 2$.
This mathematical result can be stored in the real two-dimensional array of size $(m+2, n+2)$ or in the complex two-dimensional array of size $(m / 2+1, n+1)$ for Fortran-interface and in the complex two-dimensional array of size $(m+1, n / 2+1)$ for C-interface. The data storage of CCS format is defined later for Fortran-interface and C-interface routines separately.

scfft2d/dzfft2d

Fortran-interface routines. Compute forward FFT of a real matrix and represent the complex conjugate-symmetric result in CCS format (in-place).

Syntax

```
call scfft2d ( r, m, n )
call dzfft2d ( r, m, n )
```


Description

See the equations of the operations for the Real-to-Complex Two-dimensional FFTs above.
These routines are complementary to the complex-to-real transform routines $\underline{\operatorname{csfft} 2 d / z d f f t 2 d .}$

Input Parameters

| r | REAL for scffted |
| :--- | :--- |
| DOUBLE PRECISION for $d z f f t 2 d$ | |
| Array, DIMENSION at least $(m+2, n+2)$, with its leading dimension equal to | |
| $(m+2)$. The first m rows and n columns of this array contain the real matrix to | |
| be transformed. Table 12-5 presents the input data layout. | |

Table 12-5 Fortran-interface Real Data Storage for the Real-to-Complex and Complex-to-Real Two-dimensional FFTs

| $r(1,1)$ | $r(1,2)$ | \cdots | $r(1, n-1)$ | $r(1, n)$ | n / u | n / u |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $r(2,1)$ | $r(2,2)$ | \ldots | $r(2, n-1)$ | $r(2, n)$ | n / u | n / u |
| $r(3,1)$ | $r(3,2)$ | \ldots | $r(3, n-1)$ | $r(3, n)$ | n / u | n / u |
| $r(4,1)$ | $r(4,2)$ | \cdots | $r(4, n-1)$ | $r(4, n)$ | n / u | n / u |
| \ldots |
| $r(m-1,1)$ | $r(m-1,2)$ | \cdots | $r(m-1, n-1)$ | $r(m-1, n)$ | n / u | n / u |
| $r(m, 1)$ | $r(m, 2)$ | \cdots | $r(m, n-1)$ | $r(m, n)$ | n / u | n / u |
| n / u | n / u | \ldots | n / u | n / u | n / u | n / u |
| n / u | n / u | \ldots | n / u | n / u | n / u | n / u |

* n / u - not used

Output Parameters

$r \quad$ The output real array $r(1: m+2,1: n+2)$ contains the complex conjugate-symmetric matrix $z(1: m, 1: n)$ packed in CCS format for Fortran-interface as follows:

- Rows 1 and $m+1$ contain in $n+2$ locations the complex conjugate-symmetric vectors $z(1, j)$ and $z(m / 2+1, j)$ packed in CCS format (seeReal-to-Complex
One-dimensional FFTs above).
The full complex vector $z(1, j)$ is defined by:
$z(1, j)=\operatorname{cmplx}(r(1,2 * j-1), r(1,2 * j)), 1 \leq j \leq n / 2+1$,
$z(1, n / 2+1+j)=\operatorname{conjg}(z(1, n / 2+1-j)), 1 \leq j \leq n / 2-1$.
The full complex vector $z(m / 2+1, j)$ is defined by:
$z(m / 2+1, j)=\operatorname{cmplx}(r(m+1,2 * j-1), r(m+1,2 * j))$,
$1 \leq \mathrm{j} \leq n / 2+1$,
$z(m / 2+1, n / 2+1+j)=\operatorname{conjg}(z(m / 2+1, n / 2+1-j))$, $1 \leq j \leq n / 2-1$;
- Rows from 3 to m contain in n locations complex vectors represented as
$z(i+1, j)=\operatorname{cmplx}(r(2 * i+1, j), r(2 * i+2, j)$, $1 \leq i \leq m / 2-1,1 \leq j \leq n$.
- The rest matrix elements can be obtained from

$$
\begin{aligned}
& z(m / 2+1+i, j)=\operatorname{conjg}(z(m / 2+1-i, j)), \\
& 1 \leq i \leq m / 2-1, \quad 1 \leq j \leq n .
\end{aligned}
$$

The storage of the complex conjugate-symmetric matrix z for Fortran-interface is shown in Table 12-6.

Table 12-6 Fortran-interface Data Storage of CCS Format for the Real-to-Complex and Complex-to-Real Two-Dimensional FFTs

| $z(1,1)$ | 0 | $\operatorname{RE} z(1,2)$ | $\operatorname{IM} z(1,2)$ | ... | $\operatorname{RE} z(1, n / 2)$ | $\operatorname{IM} z(1, n / 2)$ | $\begin{aligned} & z(1, \\ & n / 2+1) \end{aligned}$ | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 |
| $\operatorname{RE} z(2,1)$ | $\operatorname{RE} z(2,2)$ | $\operatorname{RE} z(2,3)$ | $\operatorname{RE} z(2,4)$ | \ldots | $\operatorname{RE} z(2, n-1)$ | $\operatorname{RE} z(2, n)$ | n/u | n / u |
| $\operatorname{IM} z(2,1)$ | $\operatorname{IM} z(2,2)$ | $\operatorname{IM} z(2,3)$ | $\operatorname{IM} z(2,4)$ | \ldots | $\operatorname{IM} z(2, n-1)$ | $\operatorname{IM} z(2, n)$ | n / u | n / u |
| \ldots | ... | \ldots | \ldots | \ldots | \ldots | \ldots | n / u | n / u |
| $\operatorname{RE} z(m / 2,1)$ | $\operatorname{RE} z(m / 2,2)$ | $\operatorname{RE} z(m / 2,3)$ | $\operatorname{RE} z(m / 2,4)$ | \ldots | $\begin{gathered} \operatorname{RE} z(m / 2, \\ n-1) \end{gathered}$ | $\operatorname{RE} z(m / 2,$
 n) | n / u | n / u |
| $\operatorname{IMz}(\mathrm{m} / 2,1)$ | $\operatorname{IM} z(m / 2,2)$ | $\operatorname{IM} z(m / 2,3)$ | $\operatorname{IMz}(m / 2,4)$ | \ldots | $\begin{gathered} \operatorname{IM} z(m / 2, \\ n-1) \end{gathered}$ | $\begin{gathered} \operatorname{IMz}(\mathrm{m} / 2 \\ \mathrm{n}) \end{gathered}$ | n / u | n / u |
| $z(m / 2+1,1)$ | 0 | $\operatorname{RE} z(m / 2+1,2)$ | $\operatorname{IMz}(m / 2+1,2)$ | ... | $\begin{gathered} \operatorname{RE} z(m / 2+1, \\ n / 2) \end{gathered}$ | $\begin{gathered} \operatorname{IMz}(m / 2+1 \\ n / 2) \end{gathered}$ | $\begin{gathered} z(m / 2+1 \\ n / 2+1) \end{gathered}$ | 0 |
| 0 | 0 | 0 | 0 | \cdots | 0 | 0 | n / u | n / u |

* n/u - not used

scfft2dc/dzfft2dc

C-interface routine. Compute forward FFT of a real matrix and represent the complex conjugate-symmetric result in CCS format (in-place).

Syntax

```
void scfft2dc ( float* r, int m, int n )
void dzfft2dc ( double* r, int m, int n )
```


Description

See the equations of the operations for the Real-to-Complex Two-dimensional FFTs above.
These routines are complementary to the complex-to-real transform routines csfft2dc/zdfft2dc.

Input Parameters

r

```
float* for scfft2dc
double* for dzfft2dc
```

Pointer to an array of size at least ($m+2, n+2$), with its leading dimension equal to $(n+2)$. The first m rows and n columns of this array contain the real matrix to be transformed.

Table 12-7 presents the input data layout.
$m \quad$ int. Column transform length; m must be a power of 2 .
n
int. Row transform length; n must be a power of 2 .

Table 12-7 C-interface Real Data Storage for a Real-to-Complex and Complex-to-Real Two-dimensional FFTs

| $r(0,0)$ | $r(0,1)$ | \cdots | $r(0, n-2)$ | $r(0, n-1)$ | n / u | n / u |
| :--- | :---: | :--- | :--- | :--- | :--- | :--- |
| $r(1,0)$ | $r(1,1)$ | \ldots | $r(1, n-2)$ | $r(1, n-1)$ | n / u | n / u |
| $r(2,0)$ | $r(2,1)$ | \ldots | $r(2, n-2)$ | $r(2, n-1)$ | n / u | n / u |
| $r(3,0)$ | $r(3,1)$ | \cdots | $r(3, n-2)$ | $r(3, n-1)$ | n / u | n / u |
| \ldots |
| $r(m-2,0)$ | $r(m-2,1)$ | \ldots | $r(m-2, n-2)$ | $r(m-2, n-1)$ | n / u | n / u |
| $r(m-1,0)$ | $r(m-1,1)$ | \cdots | $r(m-1, n-2)$ | $r(m-1, n-1)$ | n / u | n / u |
| n / u | n / u | \ldots | n / u | n / u | n / u | n / u |
| n / u | n / u | \cdots | n / u | n / u | n / u | n / u |

Output Parameters

r

The output real array $r(0: m+1,0: n+1)$ contains the complex conjugate-symmetric matrix $z(0: m-1,0: n-1)$ packed in CCS format for C-interface as follows:

- Columns 0 and $n / 2$ contain in $m+2$ locations the complex conjugate-symmetric vectors $z(i, 0)$ and $z(i, n / 2)$ in CCS format (seeReal-to-Complex One-dimensional FFTs above).
The full complex vector $z(i, 0)$ is defined by:

```
z(i,0)= cmplx(r(i,0),r(m/2+i+1,0)),0\leqi\leqm/2,
```

$z(m / 2+i, 0)=\operatorname{conjg}(z(m / 2-i, 0)), 1 \leq i \leq m / 2-1$.

The full complex vector $\mathrm{z}(\mathrm{i}, \mathrm{n} / 2)$ is defined by: $z(i, n / 2)=\operatorname{cmplx}(r(i, n / 2), r(m / 2+i+1, n / 2)), 0 \leq i \leq m / 2$, $z(m / 2+i, n / 2)=\operatorname{conjg}(z(m / 2-i, n / 2)), 1 \leq i \leq m / 2-1$.

- Columns from 1 to $n / 2-1$ contain real parts, and columns from $n / 2+2$ to n contain imaginary parts of complex vectors. These values for each vector are stored in m locations represented as follows

```
z(i,j)= cmplx(r(i,j),r(i,n/2+1+j)),
0\leqi\leqm-1, 1\leqj\leqn/2-1.
```

- The rest matrix elements can be obtained from
$z(i, n / 2+j)=\operatorname{conjg}(z(i, n / 2-j))$, $0 \leq i \leq m-1,1 \leq j \leq n / 2-1$.

The storage of the complex conjugate-symmetric matrix z for C-interface is shown in Table 12-8.

Table 12-8 C-interface Data Storage of CCS Format for the Real-to-Complex and

 Complex-to-Real Two-dimensional FFT| $z(0,0)$ | $\operatorname{REz}(0,1)$ | \ldots | $\begin{aligned} & \mathrm{REz}(0, \\ & \mathrm{n} / 2-1) \end{aligned}$ | $z(0, n / 2)$ | 0 | $\operatorname{IMz}(0,1)$ | ... | $\begin{aligned} & \operatorname{IMz}(0, \\ & \quad \mathrm{n} / 2-1) \end{aligned}$ | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\operatorname{REz}(1,0)$ | $\operatorname{REz}(1,1)$ | \ldots | REz(1,
 n/2-1) | $\operatorname{REz}(1, \mathrm{n} / 2)$ | 0 | $\operatorname{IMz}(1,1)$ | \ldots | $\begin{aligned} & \operatorname{IMz}(1, \\ & \quad \mathrm{n} / 2-1) \end{aligned}$ | 0 |
| ... | \ldots | \ldots | \ldots | \ldots | 0 | \ldots | ... | \ldots | 0 |
| $\operatorname{REz}(\mathrm{m} / 2-1,$
 0) | $\operatorname{REz}(\mathrm{m} / 2-1,$
 1) | \ldots | $\begin{aligned} & \mathrm{REz}(\mathrm{~m} / 2-1, \\ & \mathrm{n} / 2-1) \end{aligned}$ | $\begin{gathered} \mathrm{REz}(\mathrm{~m} / 2-1, \\ \mathrm{n} / 2) \end{gathered}$ | 0 | $\mathrm{IMz}(\mathrm{~m} / 2-1,$
 1) | ... | $\begin{gathered} \operatorname{IMz}(\mathrm{m} / 2-1, \\ \mathrm{n} / 2-1) \end{gathered}$ | 0 |
| $z(\mathrm{~m} / 2,0)$ | $\operatorname{REz}(\mathrm{m} / 2,1)$ | ... | $\begin{gathered} \mathrm{REz}(\mathrm{~m} / 2, \\ \mathrm{n} / 2-1) \end{gathered}$ | $\mathrm{z}(\mathrm{m} / 2, \mathrm{n} / 2)$ | 0 | $\mathrm{IMz}(\mathrm{m} / 2,1)$ | ... | $\begin{array}{r} \operatorname{IMz}(\mathrm{m} / 2, \\ \mathrm{n} / 2-1) \end{array}$ | 0 |
| 0 | $\operatorname{REz}(\mathrm{m} / 2+1,$
 1) | ... | $\begin{aligned} & \operatorname{REz}(\mathrm{m} / 2+1, \\ & \mathrm{n} / 2-1) \end{aligned}$ | 0 | 0 | $\mathrm{IMz}(\mathrm{~m} / 2+1,$
 1) | ... | $\begin{gathered} \mathrm{IMz}(\mathrm{~m} / 2+1, \\ \mathrm{n} / 2-1) \end{gathered}$ | 0 |
| $\operatorname{IMz}(1,0)$ | $\operatorname{REz}(\mathrm{m} / 2+2,$
 1) | ... | $\begin{aligned} & \mathrm{RE} z(\mathrm{~m} / 2+2, \\ & \mathrm{n} / 2-1) \end{aligned}$ | $\operatorname{IMz}(1, \mathrm{n} / 2)$ | 0 | $\operatorname{IMz}(\mathrm{m} / 2+2,$
 1) | ... | $\begin{gathered} \mathrm{IMz}(\mathrm{~m} / 2+2, \\ \mathrm{n} / 2-1) \end{gathered}$ | 0 |
| ... | ... | ... | ... | ... | 0 | ... | ... | ... | 0 |
| $\operatorname{IMz}(\mathrm{m} / 2-2,$
 0) | $\mathrm{REz}(\mathrm{m}-1,1)$ | \ldots | $\begin{gathered} \mathrm{REz}(\mathrm{~m}-1, \\ \mathrm{n} / 2-1) \end{gathered}$ | $\begin{gathered} \operatorname{IMz}(\mathrm{m} / 2-2, \\ \mathrm{n} / 2) \end{gathered}$ | 0 | $\mathrm{IMz}(\mathrm{m}-1,1)$ | ... | $\begin{aligned} & \operatorname{IMz}(\mathrm{m}-1, \\ & \mathrm{n} / 2-1) \end{aligned}$ | 0 |
| $\operatorname{IMz}(\mathrm{m} / 2-1$
 $0)$ | n/u | ... | n/u | $\begin{gathered} \operatorname{IMz}(\mathrm{m} / 2-1, \\ \mathrm{n} / 2) \end{gathered}$ | n/u | n/u | ... | n/u | n/u |
| 0 | n/u | ... | n/u | 0 | n/u | n/u | ... | n/u | n/u |

Complex-to-Real Two-dimensional FFTs

Each of the complex-to-real routines computes a two-dimensional inverse FFT according to the mathematical equation:
$t_{i, j}=\frac{1}{m * n} \sum_{k=0}^{m-1} \sum_{1=0}^{n-1} z_{k, 1} * w_{m}^{i} * k w_{n}^{j * l}, \quad 0 \leq i \leq m-1,0 \leq j \leq n-1$
The mathematical input $z_{i, j}, \quad 0 \leq i \leq m-1, \quad 0 \leq j \leq n-1$, is a complex matrix of size (m, n). Each column is the complex conjugate-symmetric vector as follows:
for $0 \leq j \leq n-1$, $z(m / 2+i, j)=\operatorname{conjg}(z(m / 2-i, j)), 1 \leq i \leq m / 2-1$.
Moreover, $z(0, j)$ and $z(m / 2, j)$ are real values for $j=0$ and $j=n / 2$.

This mathematical result can be stored in the real two-dimensional array of size $(m+2, n+2)$ or in the complex two-dimensional array of size $(m / 2+1, n+1)$ for Fortran-interface and in the complex two-dimensional array of size $(m+1, n / 2+1)$ for C-interface. The data storage of CCS format is defined later for Fortran-interface and C-interface routines separately.

The mathematical result of the transform is $t_{k, 1}=\operatorname{cmplx}\left(r_{k, 1}, 0\right)$, where $r_{k, 1}$ is the real matrix, $0 \leq k \leq m-1,0 \leq 1 \leq n-1$.

csfft2d/zdfft2d

Fortran-interface routine. Compute inverse FFT of a complex conjugate-symmetric matrix packed in CCS format (in-place).

Syntax

```
call csfft2d ( r, m, n )
call zdfft2d ( r, m, n )
```


Description

See the equations of the operations for the Complex-to-Real Two-dimensional FFTs above. These routines are complementary to the real-to-complex transform routines $\underline{s c f f t 2 d / d z f f t 2 d . ~}$

Input Parameters

r
n

SINGLE PRECISION REAL*4 for csfft2d DOUBLE PRECISION REAL*8 for $z d f f t 2 d$

Array, DIMENSION at least $(m+2, n+2)$, with its leading dimension equal to $(m+2)$. This array contains the complex conjugate-symmetric matrix in CCS format to be transformed. The input data layout is given in Table 12-6.

INTEGER. Column transform length (number of rows); m must be a power of 2.
INTEGER. Row transform length (number of columns); n must be a power of 2 .

Output Parameters

$r \quad$ Contains the real result returned by the transform. For the output data layout, see Table 12-5.

csfft2dc/zdfft2dc

C-interface routines. Compute inverse FFT of a complex conjugate-symmetric matrix packed in CCS format (in-place).

Syntax

```
void csfft2dc ( float* r, int m, int n );
void zdfft2dc ( double* r, int m, int n );
```


Description

See the equations of the operations for the Complex-to-Real Two-dimensional FFTs above. These routines are complementary to the real-to-complex transform routines $\underline{s c f f t 2 d c / d z f f t 2 d c . ~}$

Input Parameters

r
m
n
float* for csfft2dc
double* for $z d f f t 2 d c$
Pointer to an array of size at least $(m+2, n+2)$, with its leading dimension equal to $(n+2)$. This array contains the complex conjugate-symmetric matrix in CCS format to be transformed. The input data layout is given in Table 12-8. int. Column transform length; m must be a power of 2 .
int. Row transform length; n must be a power of 2 .

Output Parameters

r

Contains the real result returned by the transform. The output data layout is the same as that for the input data of scfft2dc/dzfft2dc. See Table 12-7 for the details.

Linear Solvers Basics

Many applications in science and engineering require the solution of a system of linear equations. This problem is usually expressed mathematically by the matrix-vector equation, $A x=b$, where A is an n by n matrix and x and b are n element column vectors. The matrix A is usually referred to as the coefficient matrix, and the vectors x and b are referred to as the solution vector and the right-hand side, respectively.

In many real-life applications, most of the elements in A are zero. Such a matrix is referred to as sparse. Conversely, matrices with very few zero elements are called dense. For sparse matrices, computing the solution to the equation $A x=b$ can be made much more efficient with respect to both storage and computation time, if the sparsity of the matrix can be exploited. The more an algorithm can exploit the sparsity without sacrificing the correctness, the better the algorithm.

Generally speaking, computer software that finds solutions to systems of linear equations is called a solver. A solver designed to work specifically on sparse systems of equations is called a sparse solver. Solvers are usually classified into two groups - direct and iterative.

Iterative Solvers start with an initial approximation to a solution and attempt to estimate the difference between the approximation and the true result. Based on the difference, an iterative solver calculates a new approximation that is closer to the true result than the initial approximation. This process is repeated until the difference between the approximation and the true result is sufficiently small. The main drawback to iterative solvers is that the rate of convergence depends greatly on the values in the matrix A. Consequently, it is not possible to predict how long it will take for an iterative solver to produce a solution. In fact, for ill-conditioned matrices, the iterative process will not converge to a solution at all. However, for well-conditioned matrices it is possible for iterative solvers to converge to a solution very quickly. Consequently for the right applications, iterative solvers can be very efficient.

Direct Solvers, on the other hand, often factor the matrix A into the product of two triangular matrices and then perform a forward and backward triangular solve.

This approach makes the time required to solve a systems of linear equations relatively predictable, based on the size of the matrix. In fact, for sparse matrices, the solution time can be predicted based on the number of non-zero elements in the array A.

Matrix Fundamentals

A matrix is a rectangular array of either real or complex numbers. A matrix is denoted by a capital letter; its elements are denoted by the same lower case letter with row/column subscripts. Thus, the value of the element in row i and column j in matrix A is denoted by $a(i, j)$. For example, a 3 by 4 matrix A, is written as follows:

$$
A=\left[\begin{array}{llll}
a(1,1) & a(1,2) & a(1,3) & a(1,4) \\
a(2,1) & a(2,2) & a(2,3) & a(2,4) \\
a(3,1) & a(3,2) & a(3,3) & a(3,4)
\end{array}\right]
$$

Note that with the above notation, we assume the standard Fortran programming language convention of starting array indices at 1 rather than the C programming language convention of starting them at 0 .

A matrix in which all of the elements are real numbers is called a real matrix. A matrix that contains at least one complex number is called a complex matrix.
A real or complex matrix A with the property that $a(i, j)=a(j, i)$, is called a symmetric matrix. A complex matrix A with the property that $a(i, j)=\operatorname{conj}(a(j, i))$, is called a Hermitian matrix. Note that programs that manipulate symmetric and Hermitian matrices need only store half of the matrix values, since the values of the non-stored elements can be quickly reconstructed from the stored values.

A matrix that has the same number of rows as it has columns is referred to as a square matrix. The elements in a square matrix that have same row index and column index are called the diagonal elements of the matrix, or simply the diagonal of the matrix.

The transpose of a matrix A is the matrix obtained by "flipping" the elements of the array about its diagonal. That is, we exchange the elements $a(i, j)$ and $a(j, i)$. For a complex matrix, if we both flip the elements about the diagonal and then take the complex conjugate of the element, the resulting matrix is called the Hermitian transpose or conjugate transpose of the original matrix. The transpose and Hermitian transpose of a matrix A are denoted by A^{T} and A^{H} respectively.

A column vector, or simply a vector, is a $n \times 1$ matrix, and a row vector is a $1 \times n$ matrix. A real or complex matrix A is said to be positive definite if the vector-matrix product $x^{T} A x$ is greater than zero for all non-zero vectors x. A matrix that is not positive definite is referred to as indefinite.

An upper (or lower) triangular matrix, is a square matrix in which all elements below (or above) the diagonal are zero. A unit triangular matrix is an upper or lower triangular matrix with all 1's along the diagonal.

A matrix P is called a permutation matrix if, for any matrix A, the result of the matrix product $P A$ is identical to A except for interchanging the rows of A. For a square matrix, it can be shown that if $P A$ is a permutation of the rows of A, then $A P^{T}$ is the same permutation of the columns of A.
Additionally, it can be shown that the inverse of P is P^{T}.
In order to save space, a permutation matrix is usually stored as a linear array, called a permutation vector, rather than as an array. Specifically, if the permutation matrix maps the i-th row of a matrix to the j-th row, then the i-th element of the permutation vector is j.

A matrix with non-zero elements only on the diagonal is called a diagonal matrix. As is the case with a permutation matrix, it is usually stored as a vector of values, rather than as a matrix.

Direct Method

For solvers that use the direct method, the basic technique employed in finding the solution of the system $A x=b$ is to first factor A into triangular matrices. That is, find a lower triangular matrix L and an upper triangular matrix U, such that $A=L U$. Having obtained such a factorization (usually referred to as an $L U$ decomposition or $L U$ factorization), the solution to the original problem can be rewritten as follows.

$$
\begin{array}{ll}
& A x=b \\
\Rightarrow & L U x=b \\
\Rightarrow & (U x)=b
\end{array}
$$

This leads to the following two-step process for finding the solution to the original system of equations:

1. Solve the systems of equations $L y=b$.
2. Solve the system $U x=y$.

Solving the systems $L y=b$ and $U x=y$ is referred to as a forward solve and a backward solve, respectively.
If a symmetric matrix A is also positive definite, it can be shown that A can be factored as $L L^{T}$ where L is a lower triangular matrix. Similarly, a Hermitian matrix, A, that is positive definite can be factored as $A=L L^{H}$. For both symmetric and Hermitian matrices, a factorization of this form is called a Cholesky factorization.

In a Cholesky factorization, the matrix U in an $L U$ decomposition is either L^{T} or L^{H}. Consequently, a solver can increase its efficiency by only storing L, and one-half of A, and not computing U. Therefore, users who can express their application as the solution of a system of positive definite equations will gain a significant performance improvement over using a general representation.

For matrices that are symmetric (or Hermitian) but not positive definite, there are still some significant efficiencies to be had. It can be shown that if A is symmetric but not positive definite, then A can be factored as $A=L D L^{T}$, where D is a diagonal matrix and L is a lower unit triangular matrix. Similarly, if A is Hermitian, it can be factored as $A=L D L^{H}$. In either case, we again only need to store L, D, and half of A and we need not compute U. However, the backward solve phases must be amended to solving $L^{T} x=D^{-1} y$ rather than $L^{T} x=y$.

Fill-In and Reordering of Sparse Matrices

Two important concepts associated with the solution of sparse systems of equations are fill-in and reordering. The following example illustrates these concepts.

Consider the system of linear equation $A x=b$, where A is the symmetric positive definite sparse matrix defined by the following:
$A=\left[\begin{array}{lllll}9 & \frac{3}{2} & 6 & \frac{3}{4} & 3 \\ \frac{3}{2} & \frac{1}{2} & * & * & * \\ 6 & * & 12 & * & * \\ \frac{3}{4} * & * & \frac{5}{8} & * \\ 3 & * & * & * & 16\end{array}\right] b=\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4 \\ 5\end{array}\right]$
A star (*) is used to represent zeros and to emphasize the sparsity of A. The Cholesky factorization of A is: $A=L L^{T}$, where L is the following:

$$
L=\left[\begin{array}{ccccc}
3 & * & * & * & * \\
\frac{1}{2} & \frac{1}{2} & * & * & * \\
2 & -2 & 2 & * & * \\
\frac{1}{4} & \frac{1}{-4} & \frac{1}{-2} & \frac{1}{2} & * \\
1 & -1 & -2 & -3 & 1
\end{array}\right]
$$

Notice that even though the matrix A is relatively sparse, the lower triangular matrix L has no zeros below the diagonal. If we computed L and then used it for the forward and backward solve phase, we would do as much computation as if A had been dense.

The situation of L having non-zeros in places where A has zeros is referred to as fill-in.
Computationally, it would be more efficient if a solver could exploit the non-zero structure of A in such a way as to reduce the fill-in when computing L. By doing this, the solver would only need to compute the non-zero entries in L. Toward this end, consider permuting the rows and columns of A. As described in Matrix Fundamentals section, the permutations of the rows of A can be represented as a permutation matrix, P. The result of permuting the rows is the product of P and A. Suppose, in the above example, we swap the first and fifth row of A, then swap the first and fifth columns of A, and call the resulting matrix B. Mathematically, we can express the process of permuting the rows and columns of A to get B as $B=P A P^{T}$. After permuting the rows and columns of A, we see that B is given by the following:
$B=\left[\begin{array}{lllll}16 & * & * & * & 3 \\ * & \frac{1}{2} & * & * & \frac{3}{2} \\ * & * & 12 & * & 6 \\ * & * & * & \frac{5}{8} & \frac{3}{4} \\ 3 & \frac{3}{2} & 6 & \frac{3}{4} & 9\end{array}\right]$
Since B is obtained from A by simply switching rows and columns, the numbers of non-zero entries in A and B are the same. However, when we find the Cholesky factorization, $B=L L^{T}$, we see the following:
$L=\left[\begin{array}{ccccc}4 & * & * & * & * \\ * & \frac{1}{\sqrt{2}} & * & * & * \\ * & * & 2(\sqrt{3}) & * & * \\ * & * & * & \frac{\sqrt{10}}{4} & * \\ \frac{3}{4} & \frac{3}{\sqrt{2}} & \sqrt{3} & \frac{3}{\sqrt{10}} & \frac{\sqrt{3}}{4}\end{array}\right]$

The fill-in associated with B is much smaller than the fill-in associated with A. Consequently, the storage and computation time needed to factor B is much smaller than to factor A. Based on this, we see that an efficient sparse solver needs to find permutation P of the matrix A, which minimizes the fill-in for factoring $B=P A P^{T}$, and then use the factorization of B to solve the original system of equations.

Although the above example is based on a symmetric positive definite matrix and a Cholesky decomposition, the same approach works for a general $L U$ decomposition. Specifically, let P be a permutation matrix, $B=P A P^{T}$ and suppose that B can be factored as $B=L U$. Then

$$
\begin{array}{ll}
A x= & b \\
\Rightarrow & P A\left(P^{-1} P\right) x=P b \\
\Rightarrow & P A\left(P^{T} P\right) x=P b \\
\Rightarrow & \left(P A P^{T}\right)(P x)=P b \\
\Rightarrow & B(P x)=P b \\
\Rightarrow & L U(P x)=P b
\end{array}
$$

It follows that if we obtain an $L U$ factorization for B, we can solve the original system of equations by a three step process:

1. Solve $L y=P b$.
2. Solve $U z=y$.
3. Set $x=P^{T} z$.

If we apply this three step process to the current example, we first need to perform the forward solve of the systems of equation $L y=P b$:
$\left[\begin{array}{ccccc}4 & * & * & * & * \\ * & \frac{1}{\sqrt{2}} & * & * & * \\ * & * & 2(\sqrt{3}) & * & * \\ * & * & * & \frac{\sqrt{10}}{4} & * \\ \frac{3}{4} \frac{3}{\sqrt{2}} & \sqrt{3} & \frac{3}{\sqrt{10}} & \frac{\sqrt{\frac{3}{5}}}{4}\end{array}\right] *\left[\begin{array}{l}y_{1} \\ y_{2} \\ y_{3} \\ y^{4} \\ y_{5}\end{array}\right]=\left[\begin{array}{l}5 \\ 2 \\ 3 \\ 4 \\ 1\end{array}\right]$
This gives: $y^{T}=\frac{5}{4}, 2 \sqrt{2}, \frac{\sqrt{3}}{2}, \frac{16}{\sqrt{10}}, \frac{-979}{\sqrt{\frac{3}{5}}}$.
The second step is to perform the backward solve, $U z=y$. Or, in this case, since we are using a Cholesky factorization, $L^{T} z=y$.

$$
\left[\begin{array}{ccccc}
4 & * & * & * & \frac{3}{4} \\
* \frac{1}{\sqrt{2}} & * & * & \frac{3}{\sqrt{2}} \\
* & * & 2(\sqrt{3}) & * & \sqrt{3} \\
* & * & * & \frac{\sqrt{10}}{4} & \frac{3}{\sqrt{10}} \\
* & * & * & * & \frac{\sqrt{\frac{3}{5}}}{4}
\end{array}\right] *\left[\begin{array}{l}
z 1 \\
z 2 \\
z 3 \\
z 4 \\
z 5
\end{array}\right]=\left[\begin{array}{c}
\frac{5}{4} \\
2(\sqrt{2}) \\
\frac{\sqrt{3}}{2} \\
\frac{16}{\sqrt{10}} \\
\frac{-979 \sqrt{\frac{3}{5}}}{12}
\end{array}\right]
$$

This gives $z=\frac{123}{2}, 983, \frac{1961}{12}, 398, \frac{-979}{3}$.

The third and final step is to set $x=P^{T} z$. This gives $x^{T}=\frac{-979}{3}, 983, \frac{1961}{12}, 398, \frac{123}{2}$.

Sparse Matrix Storage Format

As discussed above, it is more efficient to store only the non-zeros of a sparse matrix. This assumes that the sparsity is large, ie., the number of non-zero entries is a small percentage of the total number of entries. If there is only an occasional zero entry, the cost of exploiting the sparsity actually slows down the computation when compared to simply treating the matrix as dense, meaning that all the values, zero and non-zero, are used in the computation.

There are a number of common storage schemes used for sparse matrices, but most of the schemes employ the same basic technique. That is, compress all of the non-zero elements of the matrix into a linear array, and then provide some number of auxiliary arrays to describe the locations of the non-zeros in the original matrix.

The compression of the non-zeros of a sparse matrix A into a linear array is done by walking down each column (column major format) or across each row (row major format) in order, and writing the non-zero elements to a linear array in the order that they appear in the walk.

When storing symmetric matrices, it is necessary to store only the upper triangular half of the matrix (upper triangular format) or the lower triangular half of the matrix (lower triangular format).

The Intel MKL direct sparse solver uses a row major upper triangular storage format. That is, the matrix is compressed row-by-row and for symmetric matrices only non-zeros in the upper triangular half of the matrix are stored.

The Intel MKL storage format for sparse matrices consists of three arrays, which are called the values, columns, and rowIndex arrays. The following table describes the arrays in terms of the values, row, and column positions of the non-zero elements in a sparse matrix A.
values A real or complex array that contains the non-zero entries of A. The non-zero values of A are mapped into the values array using the row major, upper triangular storage mapping described above.
columns Element i of the integer array columns contains the number of the column in A that contained the value in values(i).
rowIndex Element j of the integer array rowIndex gives the index into the values array that contains the first non-zero element in a row j of A. The length of the values and columns arrays is equal to the number of non-zeros in A.

Since the rowIndex array gives the location of the first non-zero within a row, and the non-zeros are stored consecutively, then we would like to be able to compute the number of non-zeros in the i-th row as the difference of rowIndex(i) and rowIndex(i+1).

In order to have this relationship hold for the last row of A, we need to add an entry (dummy entry) to the end of rowIndex whose value is equal to the number of non-zeros in A, plus one. This makes the total length of the rowIndex array one larger than the number of rows of A.

NOTE. The Intel MKL sparse storage scheme uses the Fortran programming language convention of starting array indices at 1, rather than the C programming language convention of starting at 0 .

With the above in mind, consider storing the symmetric matrix discussed in the example from the previous section.

$$
A=\left[\begin{array}{llll}
9 \frac{3}{2} & 6 & \frac{3}{4} & 3 \\
* \frac{1}{2} & * & * & * \\
* * & \frac{1}{2} & * & * \\
* * & * & \frac{5}{8} & * \\
* * * & * & 16
\end{array}\right]
$$

In this case, A has nine non-zero elements, so the lengths of the values and columns arrays will be nine. Also, since the matrix A has five rows, the rowIndex array is of length six. The actual values for each of the arrays for the example matrix are as follows:

Table 0-1 Storage Arrays for a Symmetric Example Matrix
$\left.\begin{array}{lllllllllll}\text { values } & = & (9 & 3 / 2 & 6 & 3 / 4 & 3 & 1 / 2 & 12 & 5 / 8 & 16) \\ \text { columns } & = & (1 & 2 & 3 & 4 & 5 & 2 & 3 & 4 & 5\end{array}\right)$

For a non-symmetric or non-Hermitian array, all of the non-zeros need to be stored. Consider the non-symmetric matrix B defined by the following:
$B=\left[\begin{array}{ccccc}1 & -1 & * & -3 & * \\ -2 & 5 & * & * & * \\ * & * & 4 & 6 & 4 \\ -4 & * & 2 & 7 & * \\ * & 8 & * & * & -5\end{array}\right]$
We see that B has 13 non-zeros, and we store B as follows:

Table 0-2 Storage Arrays for a Non-Symmetric Example Matrix

$\left.\begin{array}{lllllllllllllll}\text { values } & = & (1 & -1 & -3 & -2 & 5 & 4 & 6 & 4 & -4 & 2 & 7 & 8 & -5) \\ \text { columns } & = & (1 & 2 & 4 & 1 & 2 & 3 & 4 & 5 & 1 & 3 & 4 & 2 & 5\end{array}\right)$

In the current version of Intel MKL, direct sparse solvers cannot solve non-symmetric systems of equations. However, it can solve symmetrically structured systems of equations.
A symmetrically structured system of equations is one where the pattern of non-zeros is symmetric. That is, a matrix has a symmetric structure if $a(j, i)$ is non-zero if and only if $a(j, i)$ is non-zero.

From the point of view of the solver software, a non-zero element of a matrix is anything that is stored in the values array. In that sense, we can turn any non-symmetric matrix into a symmetrically structured matrix by carefully adding zeros to the values array.
For example, suppose we consider the matrix B to have the following set of non-zero entries:
$B=\left[\begin{array}{ccccc}1 & -1 & * & -3 & * \\ -2 & 5 & * & * & 0 \\ * & * & 4 & 6 & 4 \\ -4 & * & 2 & 7 & * \\ * & 8 & 0 & * & -5\end{array}\right]$

Now B can be considered to be symmetrically structured with 15 non-zero entries. We would represent the matrix as:

Table 0-3 Storage Arrays for a Symmetrically Structured Example Matrix

| values | $=\left(\begin{array}{lllllllllllllll}1 & -1 & -3 & -2 & 5 & 0 & 4 & 6 & 4 & -4 & 2 & 7 & 8 & 0 & -5\end{array}\right)$ |
| :--- | :--- |
| columns | $=$ |
| rowIndex | $(1$ | 2

Storage Format Restrictions

The storage format for the sparse solver must conform to two important restrictions:
First, the non-zero values in a given row must be placed into the values array in the order in which they occur in the row (from left to right). Second, no diagonal element can be omitted from the values array for any symmetric or structurally symmetric matrix.

The second restriction implies that when dealing with symmetric or structurally symmetric matrices that have zeros on the diagonal, the zero diagonal elements must be explicitly represented in the values array.

Routine and Function Arguments

The major arguments in the BLAS routines are vector and matrix, whereas VML functions work on vector arguments only.
The sections that follow discuss each of these arguments and provide examples.

Vector Arguments in BLAS

Vector arguments are passed in one-dimensional arrays. The array dimension (length) and vector increment are passed as integer variables. The length determines the number of elements in the vector. The increment (also called stride) determines the spacing between vector elements and the order of the elements in the array in which the vector is passed.

A vector of length n and increment incx is passed in a one-dimensional array x whose values are defined as

```
x(1), x(1+|incx|), ..., x(1+(n-1)* |incx|)
```

If incx is positive, then the elements in array x are stored in increasing order. If incx is negative, the elements in array x are stored in decreasing order with the first element defined as $x(1+(n-1) *|i n c x|)$. If incx is zero, then all elements of the vector have the same value, $x(1)$. The dimension of the one-dimensional array that stores the vector must always be at least

```
idimx = 1 + (n-1)* | incx |
```


Example B-1 One-dimensional Real Array

Let $x(1: 7)$ be the one-dimensional real array
$x=(1.0,3.0,5.0,7.0,9.0,11.0,13.0)$.
If incx $=2$ and $n=3$, then the vector argument with elements in order from first to last is (1.0, 5.0, 9.0).
If incx $=-2$ and $n=4$, then the vector elements in order from first to last is $(13.0$, 9.0, 5.0, 1.0).

If incx $=0$ and $n=4$, then the vector elements in order from first to last is $(1.0$, 1.0, 1.0, 1.0).

One-dimensional substructures of a matrix, such as the rows, columns, and diagonals, can be passed as vector arguments with the starting address and increment specified. In Fortran, storing the m by n matrix is based on column-major ordering where the increment between elements in the same column is 1 , the increment between elements in the same row is m, and the increment between elements on the same diagonal is $m+1$.

Example B-2 Two-dimensional Real Matrix

Let a be the real 5×4 matrix declared as REAL A $(5,4)$.
To scale the third column of a by 2.0 , use the BLAS routine sscal with the following calling sequence:
call sscal (5, 2.0, a(1,3), 1).
To scale the second row, use the statement:
call sscal (4, 2.0, a(2,1), 5).
To scale the main diagonal of A by 2.0 , use the statement:
call sscal (5, 2.0, a(1,1), 6).

NOTE. The default vector argument is assumed to be 1 .

Vector Arguments in VML

Vector arguments of VML mathematical functions are passed in one-dimensional arrays with unit vector increment. It means that a vector of length n is passed contiguously in an array a whose values are defined as a[0], a[1], ..., a[n-1] (for C-interface).

To accommodate for arrays with other increments, or more complicated indexing, VML contains auxiliary pack/unpack functions that gather the array elements into a contiguous vector and then scatter them after the computation is complete.

Generally, if the vector elements are stored in a one-dimensional array a as

```
a[m0], a[m1], ..., a [mn-1]
```

and need to be regrouped into an array y as

```
y[k0], y[k1], ..., y [kn-1],
```

VML pack/unpack functions can use one of the following indexing methods:

Positive Increment Indexing

$$
\mathrm{kj}=\text { incy * j, mj }=\text { inca * j, } \quad j=0, \ldots, \mathrm{n}-1
$$

Constraint: incy > 0 and inca > 0 .
For example, setting incy $=1$ specifies gathering array elements into a contiguous vector.

This method is similar to that used in BLAS, with the exception that negative and zero increments are not permitted.

Index Vector Indexing

$$
k j=i y[j], m j=i a[j], j=0, \ldots, n-1,
$$

where ia and iy are arrays of length n that contain index vectors for the input and output arrays a and y, respectively.

Mask Vector Indexing

Indices kj, mj are such that:
my [kj] $\neq 0$, ma $[m j] \neq 0, j=0, \ldots, n-1$,
where ma and my are arrays that contain mask vectors for the input and output arrays a and y , respectively.

Matrix Arguments

Matrix arguments of the Intel ${ }^{\circledR}$ Math Kernel Library routines can be stored in either one- or two-dimensional arrays, using the following storage schemes:

- conventional full storage (in a two-dimensional array)
- packed storage for Hermitian, symmetric, or triangular matrices (in a one-dimensional array)
- band storage for band matrices (in a two-dimensional array).

Full storage is the following obvious scheme: a matrix A is stored in a two-dimensional array a, with the matrix element $a_{i j}$ stored in the array element $a(i, j)$.

If a matrix is triangular (upper or lower, as specified by the argument uplo), only the elements of the relevant triangle are stored; the remaining elements of the array need not be set.

Routines that handle symmetric or Hermitian matrices allow for either the upper or lower triangle of the matrix to be stored in the corresponding elements of the array:

```
if uplo ='U', \(\quad a_{i j}\) is stored in \(a(i, j)\) for \(i \leq j\),
    other elements of a need not be set.
if uplo ='L', \(\quad a_{i j}\) is stored in \(a(i, j)\) for \(j \leq i\),
    other elements of a need not be set.
```

Packed storage allows you to store symmetric, Hermitian, or triangular matrices more compactly: the relevant triangle (again, as specified by the argument uplo) is packed by columns in a one-dimensional array ap:
if uplo ='U', $a_{i j}$ is stored in $\operatorname{ap}(i+j(j-1) / 2)$ for $i \leq j$
if uplo='L', $a_{i j}$ is stored in $\operatorname{ap}(i+(2 * n-j) *(j-1) / 2)$ for $j \leq i$.
In descriptions of LAPACK routines, arrays with packed matrices have names ending in p.
Band storage is as follows: an m by n band matrix with $k l$ non-zero sub-diagonals and $k u$ non-zero super-diagonals is stored compactly in a two-dimensional array ab with $k l+k u+1$ rows and n columns. Columns of the matrix are stored in the corresponding columns of the array, and diagonals of the matrix are stored in rows of the array. Thus,
$a_{i j}$ is stored in $a b(k l+k u+1+i-j, j)$ for $\max (n, j-k u) \leq i \leq \min (n, j+k l)$.
Use the band storage scheme only when $k l$ and $k u$ are much less than the matrix size n. (Although the routines work correctly for all values of $k l$ and $k u$, it's inefficient to use the band storage if your matrices are not really banded).

When a general band matrix is supplied for $L U$ factorization, space must be allowed to store kl additional super-diagonals generated by fill-in as a result of row interchanges. This means that the matrix is stored according to the above scheme, but with $k l+k u$ super-diagonals.

The band storage scheme is illustrated by the following example, when $m=n=6, k l=2, k u=1:$
c
$\left[\begin{array}{cccccc}a_{11} & a_{12} & 0 & 0 & 0 & 0 \\ a_{21} & a_{22} & a_{23} & 0 & 0 & 0 \\ a_{31} & a_{32} & a_{33} & a_{34} & 0 & 0 \\ 0 & a_{42} & a_{43} & a_{44} & a_{45} & 0 \\ 0 & 0 & a_{53} & a_{54} & a_{55} & a_{56} \\ 0 & 0 & 0 & a_{64} & a_{65} & a_{66}\end{array}\right]$

Band storage of A

$$
\begin{array}{cccccc}
* & * & * & + & + & + \\
* & * & + & + & + & + \\
* & a_{12} & a_{23} & a_{34} & a_{45} & a_{56} \\
a_{11} & a_{22} & a_{33} & a_{44} & a_{55} & a_{66} \\
a_{21} & a_{32} & a_{43} & a_{54} & a_{65} & * \\
a_{31} & a_{42} & a_{53} & a_{64} & * & *
\end{array}
$$

Array elements marked * are not used by the routines; elements marked + need not be set on entry, but are required by the LU factorization routines to store the results. The input array will be overwritten on exit by the details of the LU factorization as follows:

$$
\begin{array}{cccccc}
* & * & * & u_{14} & u_{25} & u_{36} \\
* & * & u_{13} & u_{24} & u_{35} & u_{46} \\
* & u_{12} & u_{23} & u_{34} & u_{45} & u_{56} \\
u_{11} & u_{22} & u_{33} & u_{44} & u_{55} & u_{66} \\
m_{21} & m_{32} & m_{43} & m_{54} & m_{65} & * \\
m_{31} & m_{42} & m_{53} & m_{64} & * & *
\end{array}
$$

where u_{ij} are the elements of the upper triangular matrix U , and m_{ij} are the multipliers used during factorization.

Triangular band matrices are stored in the same format, with either $\mathrm{kl}=0$ if upper triangular, or ku $=0$ if lower triangular. For symmetric or Hermitian band matrices with k sub-diagonals or super-diagonals, you need to store only the upper or lower triangle, as specified by the argument uplo:
if uplo='U', $a_{i j}$ is stored in $a b(k+1+i-j, j)$ for $\max (1, j-k) \leq i \leq j$
if uplo='L', $a_{i j}$ is stored in $a b(1+i-j, j)$ for $j \leq i \leq \min (n, j+k)$.
In descriptions of LAPACK routines, arrays that hold matrices in band storage have names ending in b.

In Fortran, column-major ordering of storage is assumed. This means that elements of the same column occupy successive storage locations.

Three quantities are usually associated with a two-dimensional array argument: its leading dimension, which specifies the number of storage locations between elements in the same row, its number of rows, and its number of columns. For a matrix in full storage, the leading dimension of the array must be at least as large as the number of rows in the matrix.

A character transposition parameter is often passed to indicate whether the matrix argument is to be used in normal or transposed form or, for a complex matrix, if the conjugate transpose of the matrix is to be used.
The values of the transposition parameter for these three cases are the following:

```
'N' or 'n' normal (no conjugation, no transposition)
'T' or't' transpose
'C' or 'c' conjugate transpose.
```


Example B-3 Two-Dimensional Complex Array

Suppose $A(1: 5,1: 4)$ is the complex two-dimensional array presented by matrix

$$
\left[\begin{array}{l}
(1.1,0.11)(1.2,0.12)(1.3,0.13)(1.4,0.14) \\
(2.1,0.21)(2.2,0.22)(2.3,0.23)(2.4,0.24) \\
(3.1,0.31)(3.2,0.32)(3.3,0.33)(3.4,0.34) \\
(4.1,0.41)(4.2,0.42)(4.3,0.43)(4.4,0.44) \\
(5.1,0.51)(5.2,0.52)(5.3,0.53)(5.4,0.54)
\end{array}\right]
$$

Let transa be the transposition parameter, m be the number of rows, n be the number of columns, and 1 da be the leading dimension. Then if
transa $=$ 'N', $m=4, n=2$, and lda $=5$, the matrix argument would be

$$
\left[\begin{array}{ll}
(1.1,0.11) & (1.2,0.12) \\
(2.1,0.21) & (2.2,0.22) \\
(3.1,0.31) & (3.2,0.32) \\
(4.1,0.41) & (4.2,0.42)
\end{array}\right]
$$

If transa $=$ ' T ', $m=4, n=2$, and lda $=5$, the matrix argument would be

$$
\left[\begin{array}{lll}
(1.1,0.11) & (2.1,0.21) & (3.1,0.31) \\
(1.2,0.12) & (2.2,0.22) & (3.2,0.32) \\
(4.2,0.42)
\end{array}\right]
$$

If transa $=' C ', m=4, n=2$, and lda $=5$, the matrix argument would be

$$
\left[\begin{array}{l}
(1.1,-0.11)(2.1,-0.21)(3.1,-0.31)(4.1,-0.41) \\
(1.2,-0.12)(2.2,-0.22)(3.2,-0.32)(4.2,-0.42)
\end{array}\right]
$$

Note that care should be taken when using a leading dimension value which is different from the number of rows specified in the declaration of the two-dimensional array. For example, suppose the array A above is declared as COMPLEX A $(5,4)$.

continued $<$ TableFinger $>*$

Then if transa $=' N ', m=3, n=4$, and $l d a=4$, the matrix argument will be

$$
\left[\begin{array}{l}
(1.1,0.11)(5.1,0.51)(4.2,0.42)(3.3,0.33) \\
(2.1,0.21)(1.2,0.12)(5.2,0.52)(4.3,0.43) \\
(3.1,0.31)(2.2,0.22)(1.3,0.13)(5.3,0.53)
\end{array}\right]
$$

Code Examples

This appendix presents code examples of using some Intel MKL routines and functions. You can find here example code written in both Fortran and C.

Currently, the appendix includes the following sections:

- BLAS Code Examples
- PARDISO Code Examples
- Direct Sparse Solver Examples
- DFT Code Examples

Please refer to respective chapters in the manual for detailed descriptions of function parameters and operation.

BLAS Code Examples

Example C-1 Using BLAS Level 1 Function

The following example illustrates a call to the BLAS Level 1 function sdot. This function performs a vector-vector operation of computing a scalar product of two single-precision real vectors x and y.

Parameters

| n | Specifies the order of vectors x and y. |
| :--- | :--- |
| incx | Specifies the increment for the elements of x. |
| incy | Specifies the increment for the elements of y. |

```
program dot_main
real x(10), y(10), sdot, res
integer n, incx, incy, i
external sdot
n = 5
incx = 2
incy = 1
do i = 1, 10
    x(i) = 2.0e0
    y(i) = 1.0e0
end do
res = sdot (n, x, incx, y, incy)
print*, `SDOT = `, res
end
```

As a result of this program execution, the following line is printed:
$\mathrm{SDOT}=10.000$

Example C-2 Using BLAS Level 1 Routine

The following example illustrates a call to the BLAS Level 1 routine scopy. This routine performs a vector-vector operation of copying a single-precision real vector x to a vector y.

Parameters

$n \quad$ Specifies the order of vectors x and y.
incx Specifies the increment for the elements of x.
incy Specifies the increment for the elements of y.

```
program copy_main
real x(10), y(10)
integer n, incx, incy, i
n = 3
incx = 3
incy = 1
do i = 1, 10
    x(i) = i
```

```
end do
call scopy (n, x, incx, y, incy)
print*, 'Y = `, (y(i), i = 1, n)
end
```

As a result of this program execution, the following line is printed:
$\mathrm{Y}=1.000004 .000007 .00000$

Example C-3 Using BLAS Level 2 Routine

The following example illustrates a call to the BLAS Level 2 routine sger. This routine performs a matrix-vector operation
$a:=a l p h a{ }^{*} X^{*} Y^{\prime}+a$.

Parameters

```
alpha Specifies a scalar alpha.
x m-element vector.
y n-element vector.
a mbyn matrix.
program ger_main
real a(5,3), x(10), y(10), alpha
integer m, n, incx, incy, i, j, lda
m = 2
n = 3
lda = 5
incx = 2
incy = 1
alpha = 0.5
do i = 1, 10
    x(i) = 1.0
    y(i) = 1.0
end do
```

```
do i = 1, m
    do j = 1, n
        a(i,j) = j
    end do
end do
call sger (m, n, alpha, x, incx, y, incy, a, lda)
print*, `Matrix A:
do i = 1, m
    print*, (a(i,j), j = 1, n)
end do
end
```

As a result of this program execution, matrix a is printed as follows:
Matrix A:
1.500002 .500003 .50000
1.500002 .500003 .50000

Example C-4 Using BLAS Level 3 Routine

The following example illustrates a call to the BLAS Level 3 routine ssymm. This routine performs a matrix-matrix operation

```
c := alpha*a*b' + beta*c.
```


Parameters

alpha Specifies a scalar alpha.
beta Specifies a scalar beta.
a Symmetric matrix.
$b \quad m$ by n matrix.
c $\quad m$ by n matrix.

```
program symm_main
real a(3,3), b(3,2), c(3,3), alpha, beta
integer m, n, lda, ldb, ldc, i, j
```

```
character uplo, side
uplo = 'u
side = 'l'
m = 3
n = 2
lda = 3
ldb = 3
ldc = 3
alpha = 0.5
beta = 2.0
do i = 1, m
    do j = 1, m
        a(i,j) = 1.0
    end do
end do
do i = 1, m
    do j = 1, n
        c(i,j) = 1.0
        b(i,j) = 2.0
    end do
end do
call ssymm (side, uplo, m, n, alpha, a, lda, b, ldb, beta, c, ldc)
print*, 'Matrix C: '
do i = 1, m
    print*, (c(i,j), j = 1, n)
end do
end
```

As a result of this program execution, matrix c is printed as follows:
Matrix C:
5.000005 .00000
5.000005 .00000
5.000005 .00000

Example C-5 Calling a Complex BLAS Level 1 Function from C

The following example illustrates a call from a C program to the complex BLAS Level 1 function zdotc (). This function computes the dot product of two double-precision complex vectors.

In this example, the complex dot product is returned in the structure c .

```
#define N 5
void main()
{
    int n, inca = 1, incb = 1, i;
    typedef struct{ double re; double im; } complex16;
    complex16 a[N], b[N], c;
    void zdotc();
    n = N;
    for( i = 0; i < n; i++ ){
        a[i].re = (double)i; a[i].im = (double)i * 2.0;
        b[i].re = (double)(n - i); b[i].im = (double)i * 2.0;
    }
    zdotc( &c, &n, a, &inca, b, &incb );
    printf( "The complex dot product is: ( %6.2f, %6.2f )\n", c.re, c.im );
}
```

NOTE. Instead of calling BLAS directly from C programs, you might wish to use the CBLAS interface; this is the supported way of calling BLAS from C. For more information about CBLAS, see Appendix D, which presents CBLAS, the C interface to the Basic Linear Algebra Subprograms (BLAS) implemented in Intel® MKL..

PARDISO Code Examples

This section presents code examples of using the PARDISO direct solver for computing solutions of linear systems with sparse matrices. For description of this solver, refer to Chapter 8 of the manual.

Examples for sparse symmetric linear systems

In this section two examples (Fortran, C) are provided to solve symmetric linear systems with PARDISO. To solve the systems of equations $A x=b$, where
$A=\left[\begin{array}{ccccccccc}7.0 & 0.0 & 1.0 & 0.0 & 0.0 & 2.0 & 7.0 & 0.0 \\ 0.0 & -4.0 & 8.0 & 0.0 & 2.0 & 0.0 & 0.0 & 0.0 \\ 1.0 & 8.0 & 1.0 & 0.0 & 0.0 & 0.0 & 0.0 & 5.0 \\ 0.0 & 0.0 & 0.0 & 7.0 & 0.0 & 0.0 & 9.0 & 0.0 \\ 0.0 & 2.0 & 0.0 & 0.0 & 5.0 & 1.0 & 5.0 & 0.0 \\ 2.0 & 0.0 & 0.0 & 0.0 & 1.0 & -1.0 & 0.0 & 5.0 \\ 7.0 & 0.0 & 0.0 & 9.0 & 5.0 & 0.0 & 11.0 & 0.0 \\ 0.0 & 0.0 & 5.0 & 0.0 & 0.0 & 5.0 & 0.0 & 5.0\end{array}\right] \quad$ and $\mathrm{B}=\left[\begin{array}{c}1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0\end{array}\right]$

Example results for symmetric systems

Upon successful execution of the solver, the result of the solution X is as follows

```
Reordering completed ...
Number of nonzeros in factors = 30
Number of factorization MFLOPS = 0
Factorization completed ...
Solve completed ...
The solution of the system is
x(1) = -0.0418602013
x(2) = -0.00341312416
x(3) = 0.117250377
x(4) = -0.11263958
x(5) = 0.0241722445
```

```
x(6) = -0.10763334
x(7) = 0.198719673
x(8) = 0.190382964
```


Example C-6 Example pardiso_sym.f for symmetric linear systems

```
C--------------------------------------------------------------------------------
C Example program to show the use of the "PARDISO" routine
C for symmetric linear systems
C-------------------------------------------------------------------------------
C This program can be downloaded from the following site:
C http://www.computational.unibas.ch/cs/scicomp
C
C (C) Olaf Schenk, Department of Computer Science,
C University of Basel, Switzerland.
C Email: olaf.schenk@unibas.ch
C
C--------------------------------------------------------------------------------
    PROGRAM pardiso_sym
    IMPLICIT NONE
C.. Internal solver memory pointer for 64-bit architectures
C.. INTEGER*8 pt(64)
C.. Internal solver memory pointer for 32-bit architectures
C.. INTEGER*4 pt(64)
C.. This is OK in both cases
    INTEGER*8 pt(64)
C.. All other variables
    INTEGER maxfct, mnum, mtype, phase, n, nrhs, error, msglvl
    INTEGER iparm(64)
    INTEGER ia(9)
    INTEGER ja(18)
    REAL*8 a(18)
    REAL*8 b(8)
    REAL*8 x(8)
```

```
    INTEGER i, idum
    REAL*8 waltime1, waltime2, ddum
C.. Fill all arrays containing matrix data.
    DATA n /8/, nrhs /1/, maxfct /1/, mnum /1/
    DATA ia /1,5,8,10,12,15,17,18,19/
    DATA ja
    /1, 3, 6,7,
    2 2,3, 5,
    3 3, 8,
    4 4, 7,
    5 5,6,7,
    6 6, 8,
    7 7,
    8 8/
    DATA a
    1 /7.do, 1.do, 2.do,7.do,
    2 -4.do,8.do, 2.do,
    3 1.do, 5.d0,
    4 7.do, 9.d0,
    5 5.do,1.do,5.do,
    6 -1.do, 5.d0,
    7 11.d0,
    8
                                    5.d0/
    integer omp_get_max_threads
    external omp_get_max_threads
C..
C.. Set up PARDISO control parameter
C..
    do i = 1, 64
        iparm(i) = 0
    end do
    iparm(1) = 1 ! no solver default
    iparm(2) = 2 ! fill-in reordering from METIS
```

```
    iparm(3) = omp_get_max_threads() !numbers of processors, value of OMP_NUM_THREADS
    iparm(4) = 0 ! no iterative-direct algorithm
    iparm(5) = 0 ! no user fill-in reducing permutation
    iparm(6) = 0 ! =0 solution on the first n compoments of x
    iparm(7) = 16 ! default logical fortran unit number for output
    iparm(8) = 9 ! numbers of iterative refinement steps
    iparm(9) = 0 ! not in use
    iparm(10) = 13 ! perturbe the pivot elements with 1E-13
    iparm(11) = 1 ! use nonsymmetric permutation and scaling MPS
    iparm(12) = 0 ! not in use
    iparm(13) = 0 ! not in use
    iparm(14) = 0 ! Output: number of perturbed pivots
    iparm(15) = 0 ! not in use
    iparm(16) = 0 ! not in use
    iparm(17) = 0 ! not in use
    iparm(18) = -1 ! Output: number of nonzeros in the factor LU
    iparm(19) = -1 ! Output: Mflops for LU factorization
    iparm(20) = 0 ! Output: Numbers of CG Iterations
    error = 0 ! initialize error flag
    msglvl = 0 ! don't print statistical information
    mtype = -2 ! unsymmetric matrix symmetric, indefinite, no pivoting
C.. Initiliaze the internal solver memory pointer. This is only
C necessary for the FIRST call of the PARDISO solver.
    do i = 1, 64
        pt(i) = 0
end do
C.. Reordering and Symbolic Factorization, This step also allocates
C all memory that is necessary for the factorization
    phase = 11 ! only reordering and symbolic factorization
    CALL pardiso (pt, maxfct, mnum, mtype, phase, n, a, ia, ja,
    l idum, nrhs, iparm, msglvl, ddum, ddum, error)
    WRITE(*,*) 'Reordering completed ... '
    IF (error .NE. O) THEN
```

```
        WRITE(*,*) 'The following ERROR was detected: ', error
        STOP
    END IF
    WRITE(*,*) 'Number of nonzeros in factors = ',iparm(18)
    WRITE(*,*) 'Number of factorization MFLOPS = ',iparm(19)
C.. Factorization.
    phase = 22 ! only factorization
    CALL pardiso (pt, maxfct, mnum, mtype, phase, n, a, ia, ja,
    1 idum, nrhs, iparm, msglvl, ddum, ddum, error)
    WRITE(*,*) 'Factorization completed ... '
    IF (error .NE. O) THEN
        WRITE(*,*) 'The following ERROR was detected: ', error
        STOP
        ENDIF
C.. Back substitution and iterative refinement
    iparm(8) = 2 ! max numbers of iterative refinement steps
    phase = 33 ! only factorization
    do i = 1, n
        b(i) = 1.do
    end do
    CALL pardiso (pt, maxfct, mnum, mtype, phase, n, a, ia, ja,
    l idum, nrhs, iparm, msglvl, b, x, error)
    WRITE(*,*) 'Solve completed ... '
    WRITE(*,*) 'The solution of the system is '
    DO i = 1, n
        WRITE(*,*) ' x(',i,') = ', x(i)
        END DO
C.. Termination and release of memory
    phase = -1 ! release internal memory
    CALL pardiso (pt, maxfct, mnum, mtype, phase, n, ddum, idum, idum,
    1 idum, nrhs, iparm, msglvl, ddum, ddum, error)
    END
```


Example C-7 Example pardiso_sym.c for symmetric linear systems

```
/* --------------------------------------------------------------------------*/
/* Example program to show the use of the "PARDISO" routine */
/* on symmetric linear systems */
/* --------------------------------------------------------------------------------
/* This program can be downloaded from the following site: */
/* http://www.computational.unibas.ch/cs/scicomp */
/* */
/* (C) Olaf Schenk, Department of Computer Science, */
/* University of Basel, Switzerland. */
/* Email: olaf.schenk@unibas.ch */
/* ---------------------------------------------------------------------------*/
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
extern int omp_get_max_threads();
/* PARDISO prototype. */
extern int PARDISO
    (void *, int *, int *, int *, int *, int *,
    double *, int *, int *, int *, int *, int *,
    int *, double *, double *, int *);
int main( void ) {
        /* Matrix data. */
        int n = 8;
        int ia[ 9] = { 1, 5, 8, 10, 12, 15, 17, 18, 19 };
        int ja[18] = { 1, 3, 6, 7,
            2, 3, 5,
            3, 8,
            4, 7,
            5, 6, 7,
            6, 8,
```

```
            7,
            8 };
    double a[18] = { 7.0, 1.0, 2.0, 7.0,
        -4.0, 8.0, 2.0,
        1.0, 5.0,
        7.0, 9.0,
        5.0, 1.0, 5.0,
        -1.0, 5.0,
        11.0,
        5.0 };
        int mtype = -2; /* Real symmetric matrix */
        /* RHS and solution vectors. */
        double b[8], x[8];
        int nrhs = 1; /* Number of right hand sides. */
        /* Internal solver memory pointer pt, */
        /* 32-bit: int pt[64]; 64-bit: long int pt[64] */
        /* or void *pt[64] should be OK on both architectures */
        void *pt[64];
        /* Pardiso control parameters. */
        int iparm[64];
        int maxfct, mnum, phase, error, msglvl;
        /* Auxiliary variables. */
        int i;
        double ddum; /* Double dummy */
    int idum; /* Integer dummy. */
/* ---------------------------------------------------------------------------***
/* .. Setup Pardiso control parameters. */
/* --------------------------------------------------------------------------*/
    for (i = 0; i < 64; i++) {
            iparm[i] = 0;
    }
    iparm[0] = 1; /* No solver default */
    iparm[1] = 2; /* Fill-in reordering from METIS */
```

```
/* Numbers of processors, value of OMP_NUM_THREADS */
iparm[2] = omp_get_max_threads();
iparm[3] = 0; /* No iterative-direct algorithm */
iparm[4] = 0; /* No user fill-in reducing permutation */
iparm[5] = 0; /* Write solution into x */
iparm[6] = 16; /* Default logical fortran unit number for output */
iparm[7] = 2; /* Max numbers of iterative refinement steps */
iparm[8] = 0; /* Not in use */
iparm[9] = 13; /* Perturb the pivot elements with 1E-13 */
iparm[10] = 1; /* Use nonsymmetric permutation and scaling MPS */
iparm[11] = 0; /* Not in use */
iparm[12] = 0; /* Not in use */
iparm[13] = 0; /* Output: Number of perturbed pivots */
iparm[14] = 0; /* Not in use */
iparm[15] = 0; /* Not in use */
iparm[16] = 0; /* Not in use */
iparm[17] = -1; /* Output: Number of nonzeros in the factor LU */
iparm[18] = -1; /* Output: Mflops for LU factorization */
iparm[19] = 0; /* Output: Numbers of CG Iterations */
maxfct = 1; /* Maximum number of numerical factorizations. */
mnum = 1; /* Which factorization to use. */
msglvl = 0; /* Don't print statistical information in file */
error = 0; /* Initialize error flag */
```


/* .. Initialize the internal solver memory pointer. This is only */
/* necessary for the FIRST call of the PARDISO solver. */

for (i = 0; $i<64$; i++) \{
pt[i] $=0$;
\}

/* .. Reordering and Symbolic Factorization. This step also allocates */
/* all memory that is necessary for the factorization. */

```
/* --------------------------------------------------------------------------*/
    phase = 11;
    PARDISO (pt, &maxfct, &mnum, &mtype, &phase,
            &n, a, ia, ja, &idum, &nrhs,
            iparm, &msglvl, &ddum, &ddum, &error);
        if (error != 0) {
            printf("\nERROR during symbolic factorization: %d", error);
            exit(1);
    }
    printf("\nReordering completed ... ");
    printf("\nNumber of nonzeros in factors = %d", iparm[17]);
    printf("\nNumber of factorization MFLOPS = %d", iparm[18]);
/* --------------------------------------------------------------------------*/
/* .. Numerical factorization. */
/* ---------------------------------------------------------------------------****
    phase = 22;
    PARDISO (pt, &maxfct, &mnum, &mtype, &phase,
        &n, a, ia, ja, &idum, &nrhs,
        iparm, &msglvl, &ddum, &ddum, &error);
        if (error != 0) {
            printf("\nERROR during numerical factorization: %d", error);
            exit(2);
    }
    printf("\nFactorization completed ... ");
/* --------------------------------------------------------------------------------
/* .. Back substitution and iterative refinement. */
/* -------------------------------------------------------------------------------
    phase = 33;
    iparm[7] = 2; /* Max numbers of iterative refinement steps. */
    /* Set right hand side to one. */
    for (i = 0; i < n; i++) {
        b[i] = 1;
    }
```

```
    PARDISO (pt, &maxfct, &mnum, &mtype, &phase,
            &n, a, ia, ja, &idum, &nrhs,
            iparm, &msglvl, b, x, &error);
        if (error != 0) {
            printf("\nERROR during solution: %d", error);
            exit(3);
        }
        printf("\nSolve completed ... ");
        printf("\nThe solution of the system is: ");
        for (i = 0; i < n; i++) {
            printf("\n x [%d] = % f", i, x[i] );
        }
        printf ("\n");
/* ---------------------------------------------------------------------------***
/* .. Termination and release of memory. */
/* --------------------------------------------------------------------------***
    phase = -1; /* Release internal memory. */
    PARDISO (pt, &maxfct, &mnum, &mtype, &phase,
        &n, &ddum, ia, ja, &idum, &nrhs,
        iparm, &msglvl, &ddum, &ddum, &error);
    return 0;
}
```


Examples for sparse unsymmetric linear systems

In this section two examples (Fortran, C) are provided to solve unsymmetric linear systems with PARDISO. To solve the systems of equations $A x=b$, where

$$
A=\left[\begin{array}{ccccc}
1.0 & -1.0 & 0.0 & -3.0 & 0.0 \\
-2.0 & 5.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 4.0 & 6.0 & 4.0 \\
-4.0 & 0.0 & 2.0 & 7.0 & 0.0 \\
0.0 & 8.0 & 0.0 & 0.0 & -5.0
\end{array}\right] \quad \text { and } B=\left[\begin{array}{c}
1.0 \\
1.0 \\
1.0 \\
1.0 \\
1.0
\end{array}\right]
$$

Example results for unsymmetric systems

Upon successful execution of the solver, the result of the solution X is as follows

```
Reordering completed ...
Number of nonzeros in factors = 21
Number of factorization MFLOPS = 0
Factorization completed ...
Solve completed ...
The solution of the system is
    x( 1) = -0.522321429
    x( 2) = -0.00892857143
    x( 3) = 1.22098214
    x( 4) = -0.504464286
    x( 5) = -0.214285714
```


Example C-8 Example pardiso_unsym.f for unsymmetric linear systems

* The source code contained or described herein and all documents related to
* the source code ("Material") are owned by Intel Corporation or its suppliers
* or licensors. Title to the Material remains with Intel Corporation or its
* suppliers and licensors. The Material contains trade secrets and proprietary
* and confidential information of Intel or its suppliers and licensors. The * Material is protected by worldwide copyright and trade secret laws and * treaty provisions. No part of the Material may be used, copied, reproduced, * modified, published, uploaded, posted, transmitted, distributed or disclosed * in any way without Intel's prior express written permission.
* No license under any patent, copyright, trade secret or other intellectual * property right is granted to or conferred upon you by disclosure or delivery * of the Materials, either expressly, by implication, inducement, estoppel or * otherwise. Any license under such intellectual property rights must be * express and approved by Intel in writing.
*

*

* Content : MKL DSS Fortran-77 example
*
*

C-
C Example program to show the use of the "PARDISO" routine
C for symmetric linear systems

C This program can be downloaded from the following site:
C http://www.computational.unibas.ch/cs/scicomp
C
C (C) Olaf Schenk, Department of Computer Science,
C University of Basel, Switzerland.
C Email: olaf.schenk@unibas.ch
C

PROGRAM pardiso_unsym
IMPLICIT NONE
C. . Internal solver memory pointer for 64-bit architectures
C. . INTEGER*8 pt(64)

```
C.. Internal solver memory pointer for 32-bit architectures
C.. INTEGER*4 pt(64)
C.. This is OK in both cases
    INTEGER*8 pt(64)
C.. All other variables
    INTEGER maxfct, mnum, mtype, phase, n, nrhs, error, msglvl
    INTEGER iparm(64)
    INTEGER ia(6)
    INTEGER ja(13)
    REAL*8 a(13)
    REAL*8 b (5)
    REAL*8 x(5)
    INTEGER i, idum
    REAL*8 waltime1, waltime2, ddum
C.. Fill all arrays containing matrix data.
    DATA n /5/, nrhs /1/, maxfct /1/, mnum /1/
    DATA ia /1,4,6,9,12,14/
    DATA ja
    1 / 1, 2, 4,
    2 1, 2,
    3 3, 4, 5,
    4 1, 3, 4,
    5 2, 5/
    DATA a
    1/1.do,-1.do, -3.do,
    2 -2.do, 5.do,
    3 4.do, 6.do, 4.do,
    4-4.do, 2.do, 7.do,
    5 8.d0, -5.do/
    integer omp_get_max_threads
    external omp_get_max_threads
C..
C.. Set up PARDISO control parameter
```

```
C..
    do i = 1, 64
        iparm(i) = 0
        end do
        iparm(1) = 1 ! no solver default
        iparm(2) = 2 ! fill-in reordering from METIS
        iparm(3) = omp_get_max_threads() ! numbers of processors, value of
OMP_NUM_THREADS
    iparm(4) = 0 ! no iterative-direct algorithm
    iparm(5) = 0 ! no user fill-in reducing permutation
    iparm(6) = 0 ! =0 solution on the first n compoments of x
    iparm(7) = 0 ! not in use
    iparm(8) = 9 ! numbers of iterative refinement steps
    iparm(9) = 0 ! not in use
    iparm(10) = 13 ! perturbe the pivot elements with 1E-13
    iparm(11) = 1 ! use nonsymmetric permutation and scaling MPS
    iparm(12) = 0 ! not in use
    iparm(13) = 0 ! not in use
    iparm(14) = 0 ! Output: number of perturbed pivots
    iparm(15) = 0 ! not in use
    iparm(16) = 0 ! not in use
    iparm(17) = 0 ! not in use
    iparm(18) = -1 ! Output: number of nonzeros in the factor LU
    iparm(19) = -1 ! Output: Mflops for LU factorization
    iparm(20) = 0 ! Output: Numbers of CG Iterations
    error = 0 ! initialize error flag
    msglvl = 1 ! print statistical information
    mtype = 11 ! real unsymmetric
C.. Initiliaze the internal solver memory pointer. This is only
C necessary for the FIRST call of the PARDISO solver.
    do i = 1, 64
        pt(i) = 0
    end do
```

```
C.. Reordering and Symbolic Factorization, This step also allocates
C all memory that is necessary for the factorization
    phase = 11 ! only reordering and symbolic factorization
    CALL pardiso (pt, maxfct, mnum, mtype, phase, n, a, ia, ja,
    1 idum, nrhs, iparm, msglvl, ddum, ddum, error)
    WRITE(*,*) 'Reordering completed ... '
    IF (error .NE. O) THEN
        WRITE(*,*) 'The following ERROR was detected: ', error
        STOP
    END IF
    WRITE(*,*) 'Number of nonzeros in factors = ',iparm(18)
    WRITE(*,*) 'Number of factorization MFLOPS = ',iparm(19)
C.. Factorization.
    phase = 22 ! only factorization
    CALL pardiso (pt, maxfct, mnum, mtype, phase, n, a, ia, ja,
    l idum, nrhs, iparm, msglvl, ddum, ddum, error)
    WRITE(*,*) 'Factorization completed ... '
    IF (error .NE. O) THEN
        WRITE(*,*) 'The following ERROR was detected: ', error
        STOP
    ENDIF
C.. Back substitution and iterative refinement
    iparm(8) = 2 ! max numbers of iterative refinement steps
    phase = 33 ! only factorization
    do i = 1, n
        b(i) = 1.do
    end do
    CALL pardiso (pt, maxfct, mnum, mtype, phase, n, a, ia, ja,
    1 idum, nrhs, iparm, msglvl, b, x, error)
    WRITE(*,*) 'Solve completed ... '
    WRITE(*,*) 'The solution of the system is '
    DO i = 1, n
        WRITE(*,*) ' x(',i,') = ', x(i)
```

END DO
C. . Termination and release of memory
phase = -1 ! release internal memory
CALL pardiso (pt, maxfct, mnum, mtype, phase, n, ddum, idum, idum, 1 idum, nrhs, iparm, msglvl, ddum, ddum, error)
END

Example C-9 Example C-9 Example pardiso_unsym.c for unsymmetric linear systems

/*

*

* INTEL CONFIDENTIAL
* Copyright(C) 2004 Intel Corporation. All Rights Reserved.
* The source code contained or described herein and all documents related to * the source code ("Material") are owned by Intel Corporation or its suppliers * or licensors. Title to the Material remains with Intel Corporation or its * suppliers and licensors. The Material contains trade secrets and proprietary * and confidential information of Intel or its suppliers and licensors. The * Material is protected by worldwide copyright and trade secret laws and * treaty provisions. No part of the Material may be used, copied, reproduced, * modified, published, uploaded, posted, transmitted, distributed or disclosed
* in any way without Intel's prior express written permission.
* No license under any patent, copyright, trade secret or other intellectual
* property right is granted to or conferred upon you by disclosure or delivery
* of the Materials, either expressly, by implication, inducement, estoppel or
* otherwise. Any license under such intellectual property rights must be
* express and approved by Intel in writing.
*

*

* Content : MKL DSS C example
*

```
*
*/
/* -------------------------------------------------------------------------*/
/* Example program to show the use of the "PARDISO" routine */
/* on symmetric linear systems */
/* --------------------------------------------------------------------------*/
/* This program can be downloaded from the following site: */
/* http://www.computational.unibas.ch/cs/scicomp */
/* */
/* (C) Olaf Schenk, Department of Computer Science, */
/* University of Basel, Switzerland. */
/* Email: olaf.schenk@unibas.ch */
/* -------------------------------------------------------------------------------
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
extern int omp_get_max_threads();
/* PARDISO prototype. */
#if defined(_WIN32) || defined(_WIN64)
#define pardiso_ PARDISO
#else
#define PARDISO pardiso_
#endif
extern int PARDISO
    (void *, int *, int *, int *, int *, int *,
    double *, int *, int *, int *, int *, int *,
    int *, double *, double *, int *);
int main( void ) {
    /* Matrix data. */
    int n = 5;
    int ia[ 6] = { 1, 4, 6, 9, 12, 14 };
```

```
    int ja[13] = { 1, 2, 4,
        1, 2,
        3, 4, 5,
        1, 3, 4,
        2, 5 };
        double a[18] = {1.0, -1.0, -3.0,
        -2.0, 5.0,
        4.0, 6.0, 4.0,
        -4.0, 2.0, 7.0,
        8.0, -5.0 };
int mtype = 11; /* Real unsymmetric matrix */
/* RHS and solution vectors. */
double b[5], x[5];
int nrhs = 1; /* Number of right hand sides. */
/* Internal solver memory pointer pt, */
/* 32-bit: int pt[64]; 64-bit: long int pt[64] */
/* or void *pt[64] should be OK on both architectures */
void *pt[64];
/* Pardiso control parameters. */
int iparm[64];
int maxfct, mnum, phase, error, msglvl;
/* Auxiliary variables. */
int i;
double ddum; /* Double dummy */
int idum; /* Integer dummy. */
/* --------------------------------------------------------------------------****
/* .. Setup Pardiso control parameters. */
/* ---------------------------------------------------------------------------*/
    for (i = 0; i < 64; i++) {
        iparm[i] = 0;
}
iparm[0] = 1; /* No solver default */
iparm[1] = 2; /* Fill-in reordering from METIS */
```

```
/* Numbers of processors, value of OMP_NUM_THREADS */
iparm[2] = omp_get_max_threads();
iparm[3] = 0; /* No iterative-direct algorithm */
iparm[4] = 0; /* No user fill-in reducing permutation */
iparm[5] = 0; /* Write solution into x */
iparm[6] = 0; /* Not in use */
iparm[7] = 2; /* Max numbers of iterative refinement steps */
iparm[8] = 0; /* Not in use */
iparm[9] = 13; /* Perturb the pivot elements with 1E-13 */
iparm[10] = 1; /* Use nonsymmetric permutation and scaling MPS */
iparm[11] = 0; /* Not in use */
iparm[12] = 0; /* Not in use */
iparm[13] = 0; /* Output: Number of perturbed pivots */
iparm[14] = 0; /* Not in use */
iparm[15] = 0; /* Not in use */
iparm[16] = 0; /* Not in use */
iparm[17] = -1; /* Output: Number of nonzeros in the factor LU */
iparm[18] = -1; /* Output: Mflops for LU factorization */
iparm[19] = 0; /* Output: Numbers of CG Iterations */
maxfct = 1; /* Maximum number of numerical factorizations. */
mnum = 1; /* Which factorization to use. */
msglvl = 1; /* Print statistical information in file */
error = 0; /* Initialize error flag */
```



```
/* .. Initialize the internal solver memory pointer. This is only */
/* necessary for the FIRST call of the PARDISO solver. */
```



```
for (i = 0; i < 64; i++) {
            pt[i] = 0;
            }
/*---------------------------------------------------------------------------------------------
/* .. Reordering and Symbolic Factorization. This step also allocates */
/* all memory that is necessary for the factorization. */
```

```
/* ----------------------------------------------------------------------------*/
    phase = 11;
    PARDISO (pt, &maxfct, &mnum, &mtype, &phase,
    &n, a, ia, ja, &idum, &nrhs,
            iparm, &msglvl, &ddum, &ddum, &error);
        if (error != 0) {
            printf("\nERROR during symbolic factorization: %d", error);
            exit(1);
        }
        printf("\nReordering completed ... ");
        printf("\nNumber of nonzeros in factors = %d", iparm[17]);
    printf("\nNumber of factorization MFLOPS = %d", iparm[18]);
/* --------------------------------------------------------------------------*/
/* .. Numerical factorization. */
/* ---------------------------------------------------------------------------------
    phase = 22;
    PARDISO (pt, &maxfct, &mnum, &mtype, &phase,
    &n, a, ia, ja, &idum, &nrhs,
    iparm, &msglvl, &ddum, &ddum, &error);
        if (error != 0) {
    printf("\nERROR during numerical factorization: %d", error);
    exit(2);
        }
        printf("\nFactorization completed ... ");
/* ------------------------------------------------------------------------------------
/* .. Back substitution and iterative refinement. */
/* --------------------------------------------------------------------------------
    phase = 33;
    iparm[7] = 2; /* Max numbers of iterative refinement steps. */
    /* Set right hand side to one. */
    for (i = 0; i < n; i++) {
        b[i] = 1;
    }
```

```
    PARDISO (pt, &maxfct, &mnum, &mtype, &phase,
            &n, a, ia, ja, &idum, &nrhs,
            iparm, &msglvl, b, x, &error);
if (error != 0) {
            printf("\nERROR during solution: %d", error);
            exit(3);
}
printf("\nSolve completed ... ");
printf("\nThe solution of the system is: ");
for (i = 0; i < n; i++) {
    printf("\n x [%d] = % f", i, x[i] );
}
printf ("\n");
/* ---------------------------------------------------------------------------***
/* .. Termination and release of memory. */
/* --------------------------------------------------------------------------*/
    phase = -1; /* Release internal memory. */
    PARDISO (pt, &maxfct, &mnum, &mtype, &phase,
        &n, &ddum, ia, ja, &idum, &nrhs,
        iparm, &msglvl, &ddum, &ddum, &error);
    return 0;
}
```


Direct Sparse Solver Examples

This section contains example code in Fortan 77, Fortran 90 and C. For description of the sparse solver routines used in this code, refer to "Direct Sparse Solver (DSS) Interface Routines" in Chapter 8 of the manual.
The example code solves the equations presented in Direct Method section of Appendix A a symmetric positive definite system of equations $A x=b$ with a sparse matrix, where
$A=\left[\begin{array}{ccccc}9 & 1.5 & 6 & 0.75 & 3 \\ 1.5 & 0.5 & 0 & 0 & 0 \\ 6 & 0 & 12 & 0 & 0 \\ 0.75 & 0 & 0 & 0.625 & 0 \\ 3 & 0 & 0 & 0 & 16\end{array}\right] \quad$ and $B=\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4 \\ 5\end{array}\right]$

Example results for symmetric systems

Upon successful execution of the solver, the determinant and the result of the solution array are as follows

| pow of determinant is | 0.000 | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| base of determinant is | 2.250 | | | | |
| Determinant is | 2.250 | | | | |
| Solution Array: | -326.333 | 983.000 | 163.417 | 398.000 | 61.500 |

Example C-10 Fortran 77 example to solve symmetric positive definite system

*
* INTEL CONFIDENTIAL
* Copyright(C) 2001-2004 Intel Corporation. All Rights Reserved.
* The source code contained or described herein and all documents related to * the source code ("Material") are owned by Intel Corporation or its suppliers * or licensors. Title to the Material remains with Intel Corporation or its * suppliers and licensors. The Material contains trade secrets and proprietary * and confidential information of Intel or its suppliers and licensors. The * Material is protected by worldwide copyright and trade secret laws and * treaty provisions. No part of the Material may be used, copied, reproduced, * modified, published, uploaded, posted, transmitted, distributed or disclosed
* in any way without Intel's prior express written permission.
* No license under any patent, copyright, trade secret or other intellectual
* property right is granted to or conferred upon you by disclosure or delivery
* of the Materials, either expressly, by implication, inducement, estoppel or
* otherwise. Any license under such intellectual property rights must be
* express and approved by Intel in writing.
*
*
* Content : Intel MKL DSS Fortran-77 example

```
*
*******************************************************************************
*
C------------------------------------------------------------------------------------
C Example program for solving symmetric positive definite system of
C equations.
C------------------------------------------------------------------------------------
    PROGRAM solver_f77_test
    IMPLICIT NONE
    INCLUDE 'mkl_dss.f77'
C-------------------------------------------------------------------------------------
C Define the array and rhs vectors
C------------------------------------------------------------------------------------
    INTEGER nRows, nCols, nNonZeros, i, nRhs
    PARAMETER (nRows = 5,
    1 nCols = 5,
    2 nNonZeros = 9,
    3 nRhs = 1)
    INTEGER rowIndex(nRows + 1), columns(nNonZeros)
    DOUBLE PRECISION values(nNonZeros), rhs(nRows)
    DATA rowIndex / 1, 6, 7, 8, 9, 10 /
    DATA columns / 1, 2, 3, 4, 5, 2, 3, 4, 5 /
    DATA values / 9, 1.5, 6, .75, 3, 0.5, 12, .625, 16 /
    DATA rhs / 1, 2, 3, 4, 5 /
C--------------------------------------------------------------------------------------
C Allocate storage for the solver handle and the solution vector
C--------------------------------------------------------------------------------------
    DOUBLE PRECISION solution(nRows)
    INTEGER*8 handle
    INTEGER error
    CHARACTER*15 statIn
    DOUBLE PRECISION statOut(5)
    INTEGER bufLen
```

```
    PARAMETER(bufLen = 20)
    INTEGER buff(bufLen)
C----------------------------------------------------------------------------------
C Initialize the solver
C----------------------------------------------------------------------------------
    error = dss_create(handle, MKL_DSS_DEFAULTS)
    IF (error .NE. MKL_DSS_SUCCESS ) GOTO 999
C-------------------------------------------------------------------------------------
C Define the non-zero structure of the matrix
C----------------------------------------------------------------------------------
    error = dss_define_structure( handle, MKL_DSS_SYMMETRIC,
    & rowIndex, nRows, nCols, columns, nNonZeros )
    IF (error .NE. MKL_DSS_SUCCESS ) GOTO 999
C------------------------------------------------------------------------------------
C Reorder the matrix
C-------------------------------------------------------------------------------------
    error = dss_reorder( handle, MKL_DSS_DEFAULTS, 0)
    IF (error .NE. MKL_DSS_SUCCESS ) GOTO 999
C-------------------------------------------------------------------------------------
C Factor the matrix
C--------------------------------------------------------------------------------------
    error = dss_factor_real( handle,
    & MKL_DSS_DEFAULTS, VALUES)
    IF (error .NE. MKL_DSS_SUCCESS ) GOTO 999
C------------------------------------------------------------------------------------
C Get the solution vector
C------------------------------------------------------------------------------------
    error = dss_solve_real( handle, MKL_DSS_DEFAULTS,
    & rhs, nRhs, solution)
    IF (error .NE. MKL_DSS_SUCCESS ) GOTO 999
C------------------------------------------------------------------------------------
C Print Determinant of the matrix
C-------------------------------------------------------------------------------------
```

 statIn = 'determinant'
 call mkl_cvt_to_null_terminated_str(buff,bufLen,statIn)
 error = dss_statistics(handle, MKL_DSS_DEFAULTS,
 & buff,statOut)
 WRITE(*,"(' pow of determinant is ', 5(F10.3))") statOut(1)
 WRITE(*,"(' base of determinant is ', 5(F10.3))") statOut(2)
 WRITE(*,"(' Determinant is ', 5(F10.3))")(10**statOut(1))*
 & statOut(2)
 C-
C Deallocate solver storage
C---
error = dss_delete(handle, MKL_DSS_DEFAULTS)
IF (error .NE. MKL_DSS_SUCCESS) GOTO 999
C--
C Print solution vector
C---
WRITE(*,900) (solution(i), i = 1, nCols)
900 FORMAT(' Solution Array: ',5(F10.3))
GOTO 1000
999 WRITE(*,*) "Solver returned error code ", error
1000 END

```

\section*{Example C-11 C example to solve symmetric positive definite system}
/*
\(\star * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ~\)
*
*
INTEL CONFIDENTIAL
* Copyright (C) 2001-2004 Intel Corporation. All Rights Reserved.
* The source code contained or described herein and all documents related to * the source code ("Material") are owned by Intel Corporation or its suppliers * or licensors. Title to the Material remains with Intel Corporation or its * suppliers and licensors. The Material contains trade secrets and proprietary
* and confidential information of Intel or its suppliers and licensors. The * Material is protected by worldwide copyright and trade secret laws and * treaty provisions. No part of the Material may be used, copied, reproduced, * modified, published, uploaded, posted, transmitted, distributed or disclosed * in any way without Intel's prior express written permission.
* No license under any patent, copyright, trade secret or other intellectual * property right is granted to or conferred upon you by disclosure or delivery * of the Materials, either expressly, by implication, inducement, estoppel or * otherwise. Any license under such intellectual property rights must be
```

* express and approved by Intel in writing.

```
*

*
* Content : Intel MKL DSS C example
*
```

**

```
*/
/*
**
** Example program to solve symmetric positive definite system of equations.
**
*/
\#include<stdio.h>
\#include<stdlib.h>
\#include<math.h>
\#include "mkl_dss.h"
/*
** Define the array and rhs vectors
*/
\#define NROWS 5
\#define NCOLS 5
\#define NNONZEROS 9
\#define NRHS 1
static const int nRows \(=\) NROWS ;
C-32
```

static const int nCols = NCOLS ;
static const int nNonZeros = NNONZEROS ;
static const int nRhs = NRHS ;
static _INTEGER_t rowIndex[NROWS+1] = { 1, 6, 7, 8, 9, 10 };
static _INTEGER_t columns[NNONZEROS] = { 1, 2, 3, 4, 5, 2, 3, 4, 5 };
static _DOUBLE_PRECISION_t values [NNONZEROS] = { 9, 1.5, 6, . 75, 3, 0.5, 12, .625, 16 };
static _DOUBLE_PRECISION_t rhs[NCOLS] = { 1, 2, 3, 4, 5 };
void main() {
int i;
/* Allocate storage for the solver handle and the right-hand side. */
_DOUBLE_PRECISION_t solValues[NROWS];
_MKL_DSS_HANDLE_t handle;
_INTEGER_t error;
_CHARACTER_STR_t statIn[] = "determinant";
_DOUBLE_PRECISION_t statOut[5];
int opt = MKL_DSS_DEFAULTS;
int sym = MKL_DSS_SYMMETRIC;
int type = MKL_DSS_POSITIVE_DEFINITE;
/* --------------------- */
/* Initialize the solver */
/* --------------------- */
error = dss_create(handle, opt);
if (error != MKL_DSS_SUCCESS) goto printError;
/* ---
/* Define the non-zero structure of the matrix */
/* --
error = dss_define_structure(
handle, sym, rowIndex, nRows, nCols,
columns, nNonZeros);
if (error != MKL_DSS_SUCCESS) goto printError;
/* ------------------ */
/* Reorder the matrix */

```
```

/* ------------------ */
error = dss_reorder(handle, opt, 0);
if (error != MKL_DSS_SUCCESS) goto printError;
/* ------------------ */
/* Factor the matrix */
/* ------------------ */
error = dss_factor_real(handle, type, values);
if (error != MKL_DSS_SUCCESS) goto printError;
/* ------------------------ */
/* Get the solution vector */
/* ------------------------- */
error = dss_solve_real(handle, opt, rhs, nRhs, solValues);
if (error != MKL_DSS_SUCCESS) goto printError;
/* ------------------------ */
/* Get the determinant */
/*--------------------------**/
error = dss_statistics(handle, opt, statIn, statOut);
if (error != MKL_DSS_SUCCESS) goto printError;
/*-------------------------*-* /
/* print determinant */
/*-------------------------*-*/
printf(" determinant power is %g \n", statOut[0]);
printf(" determinant base is %g \n", statOut[1]);
printf(" Determinant is %g \n", (pow(10.0,statOut[0]))*statOut[1]);
free((void *) statIn);
/* --------------------------- */
/* Deallocate solver storage */
/* --------------------------- */
error = dss_delete(handle, opt);
if (error != MKL_DSS_SUCCESS) goto printError;
/* ---------------------- */
/* Print solution vector */
/* ---------------------- */

```
    printf(" Solution array: ");
    for(i = 0; i< nCols; i++)
        printf(" %g", solValues[i] );
    printf("\n");
    exit(0);
printError:
    printf("Solver returned error code %d\n", error);
    exit(1);
}
```


Example C-12 Fortran 90 example to solve symmetric positive definite system

```
!*************************************************************************************
*
!
```


INTEL CONFIDENTIAL

```
! Copyright(C) 2001-2004 Intel Corporation. All Rights Reserved.
! The source code contained or described herein and all documents related to
! the source code ("Material") are owned by Intel Corporation or its suppliers
! or licensors. Title to the Material remains with Intel Corporation or its
! suppliers and licensors. The Material contains trade secrets and proprietary
! and confidential information of Intel or its suppliers and licensors. The
! Material is protected by worldwide copyright and trade secret laws and
! treaty provisions. No part of the Material may be used, copied, reproduced,
! modified, published, uploaded, posted, transmitted, distributed or disclosed
! in any way without Intel's prior express written permission.
! No license under any patent, copyright, trade secret or other intellectual
! property right is granted to or conferred upon you by disclosure or delivery
! of the Materials, either expressly, by implication, inducement, estoppel or
! otherwise. Any license under such intellectual property rights must be
! express and approved by Intel in writing.
!
!************************************************************************************
*
! Content : Intel MKL DSS Fortran-90 example
```

```
!
! ******************************************************************************
*
```



```
!
! Example program for solving a symmetric positive definite system of
! equations.
!
!-----------------------------------------------------------------------------------
INCLUDE 'mkl_dss.f90' ! Include the standard DSS "header file."
PROGRAM solver_f90_test
use mkl_dss
IMPLICIT NONE
INTEGER, PARAMETER :: dp = KIND(1.ODO)
INTEGER :: error
INTEGER :: i
INTEGER, PARAMETER :: bufLen = 20
! Define the data arrays and the solution and rhs vectors.
INTEGER, ALLOCATABLE :: columns( : )
INTEGER :: nCols
INTEGER :: nNonZeros
INTEGER :: nRhs
INTEGER :: nRows
REAL(KIND=DP), ALLOCATABLE :: rhs( : )
INTEGER, ALLOCATABLE :: rowIndex( : )
REAL(KIND=DP), ALLOCATABLE :: solution( : )
REAL(KIND=DP), ALLOCATABLE :: values( : )
TYPE(MKL_DSS_HANDLE) :: handle ! Allocate storage for the solver handle.
REAL(KIND=DP),ALLOCATABLE::statOUt( : )
CHARACTER*15 statIn
INTEGER perm(1)
INTEGER buff(bufLen)
EXTERNAL MKL_CVT_TO_NULL_TERMINATED_STR
```

```
! Set the problem to be solved.
nRows = 5
nCols = 5
nNonZeros = 9
nRhs = 1
perm(1) = 0
ALLOCATE( rowIndex( nRows + 1 ) )
rowIndex = (/ 1, 6, 7, 8, 9, 10 /)
ALLOCATE( Columns( nNonZeros ) )
columns = (/ 1, 2, 3, 4, 5, 2, 3, 4, 5 /)
ALLOCATE( values( nNonZeros ) )
values = (/ 9.0_DP, 1.5_DP, 6.0_DP, 0.75_DP, 3.0_DP, 0.5_DP, 12.0_DP, &
& 0.625_DP, 16.0_DP /)
ALLOCATE( rhs( nRows ) )
rhs = (/ 1.0_DP, 2.0_DP, 3.0_DP, 4.0_DP, 5.0_DP /)
! Initialize the solver.
error = dss_create( handle, MKL_DSS_DEFAULTS )
IF (error /= MKL_DSS_SUCCESS) GOTO 999
! Define the non-zero structure of the matrix.
error = dss_define_structure( handle, MKL_DSS_SYMMETRIC, rowIndex, nRows, &
& nCols, columns, nNonZeros )
IF (error /= MKL_DSS_SUCCESS) GOTO 999
! Reorder the matrix.
error = dss_reorder( handle, MKL_DSS_DEFAULTS, perm )
IF (error /= MKL_DSS_SUCCESS) GOTO 999
! Factor the matrix.
error = dss_factor_real( handle, MKL_DSS_DEFAULTS, values )
IF (error /= MKL_DSS_SUCCESS) GOTO 999
! Allocate the solution vector and solve the problem.
ALLOCATE( solution( nRows ) )
error = dss_solve_real(handle, MKL_DSS_DEFAULTS, rhs, nRhs, solution )
IF (error /= MKL_DSS_SUCCESS) GOTO 999
! Print Out the determinant of the matrix
```

```
ALLOCATE(statOut( 5 ) )
statIn = 'determinant'
call mkl_cvt_to_null_terminated_str(buff,bufLen,statIn);
error = dss_statistics(handle, MKL_DSS_DEFAULTS, buff, statOut )
IF (error /= MKL_DSS_SUCCESS) GOTO 999
WRITE(*,"('pow of determinant is '(5F10.3))") ( statOut(1) )
WRITE(*,"('base of determinant is '(5F10.3))") ( statOut(2) )
WRITE(*,"('Determinant is '(5F10.3))") ( (10**statOut(1))*statOut(2) )
! Deallocate solver storage and various local arrays.
error = dss_delete( handle, MKL_DSS_DEFAULTS )
IF (error /= MKL_DSS_SUCCESS ) GOTO 999
IF ( ALLOCATED( rowIndex) ) DEALLOCATE( rowIndex )
IF ( ALLOCATED( columns ) ) DEALLOCATE( columns )
IF ( ALLOCATED( values ) ) DEALLOCATE( values )
IF ( ALLOCATED( rhs ) ) DEALLOCATE( rhs )
IF ( ALLOCATED( statOut ) ) DEALLOCATE( statOut )
! Print the solution vector, deallocate it and exit
WRITE(*,"('Solution Array: '(5F10.3))") ( solution(i), i = 1, nCols )
IF ( ALLOCATED( solution ) ) DEALLOCATE( solution )
GOTO 1000
! Print an error message and exit
999 WRITE(*,*) "Solver returned error code ", error
1000 CONTINUE
END PROGRAM solver_f90_test
```


DFT Code Examples

This section presents code examples of using the DFT interface functions described in "Discrete Fourier Transform Functions" chapter.
Here are the examples of two one-dimensional computations. These examples use the default settings for all of the configuration parameters, which are specified in "Configuration Settings".

Example C-13 One-dimensional DFT (Fortran-interface)

```
! Fortran example.
! 1D complex to complex, and real to conjugate even
Use MKL_DFTI
Complex :: X(32)
Real :: Y(34)
type(DFTI_DESCRIPTOR), POINTER :: My_Desc1_Handle, My_Desc2_Handle
Integer :: Status
...put input data into X(1),...,X(32); Y(1),...,Y(32)
! Perform a complex to complex transform
Status = DftiCreateDescriptor( MY_Descl_Handle, DFTI_SINGLE,
    DFTI_COMPLEX, 1, 32 )
Status = DftiCommitDescriptor( My_Desc1_Handle )
Status = DftiComputeForward( My_Desc1_Handle, X )
Status = DftiFreeDescriptor(My_Desc1_Handle)
! result is given by {X(1),X(2),...,X(32)}
! Perform a real to complex conjugate even transform
Status = DftiCreateDescriptor(My_Desc2_Handle, DFTI_SINGLE,
    DFTI_REAL, 1, 32)
Status = DftiCommitDescriptor(My_Desc2_Handle)
Status = DftiComputeForward(My_Desc2_Handle, Y)
Status = DftiFreeDescriptor(My_Desc2_Handle)
! result is given by {Y(1)+iY(2), Y(3)+iY(4), ..., Y(33)+iY(34),
! Y(31)-iY(32), Y(29)-iY(30), ..., Y(3)-iY(4).
```

```
Example C-14 One-dimensional DFT (C-interface)
/* C example, float _Complex is defined in C9x */
#include "mkl_dfti.h"
float _Complex x[32];
float y[34];
DFTI_DESCRIPTOR *my_descl_handle, *my_desc2_handle;
/* .... or alternatively
DFTI_DESCRIPTOR_HANDLE my_desc1_handle, my_desc2_handle; */
long status;
...put input data into x[0],...,x[31]; y[0],...,y[31]
status = DftiCreateDescriptor( &my_descl_handle, DFTI_SINGLE,
    DFTI_COMPLEX, 1, 32);
status = DftiCommitDescriptor( my_desc1_handle );
status = DftiComputeForward( my_descl_handle, x);
status = DftiFreeDescriptor(&my_desc1_handle);
/* result is x[0], ..., x[31] */
status = DftiCreateDescriptor( &my_desc2_handle, DFTI_SINGLE,
    DFTI_REAL, 1, 32);
status = DftiCommitDescriptor( my_desc2_handle);
status = DftiComputeForward( my_desc2_handle, y);
status = DftiFreeDescriptor(&my_desc2_handle);
/* y[0]+iy[1], ..., y[32]+iy[33], y[30]-iy[31], ..., y[2]-iy[3] */
```

The following is an example of two simple two-dimensional transforms. Notice that the data and result parameters in computation functions are all declared as assumed-size rank-1 array DIMENSION ($0: *$). Therefore two-dimensional array must be transformed to one-dimensional array by EQUIVALENCE statement or other facilities of Fortran.

Example C-15 Two-dimensional DFT (Fortran-interface)

```
! Fortran example.
! 2D complex to complex, and real to conjugate even
Use MKL_DFTI
Complex :: X_2D(32,100)
Real :: Y_2D(34, 102)
Complex :: X(3200)
Real :: Y(3468)
Equivalence (X_2D, X)
Equivalence (Y_2D, Y)
type(DFTI_DESCRIPTOR), POINTER :: My_Desc1_Handle, My_Desc2_Handle
Integer :: Status, L(2)
...put input data into X_2D(j,k), Y_2D(j,k), 1<= j=32,1<==k<=100
...set L(1) = 32, L(2) = 100
...the transform is a 32-by-100
! Perform a complex to complex transform
Status = DftiCreateDescriptor( My_Descl_Handle, DFTI_SINGLE,
        DFTI_COMPLEX, 2, L)
Status = DftiCommitDescriptor( My_Desc1_Handle)
Status = DftiComputeForward( My_Desc1_Handle, X)
Status = DftiFreeDescriptor(My_Desc1_Handle)
! result is given by X_2D(j,k), 1<=j<=32, 1<=k<=100
! Perform a real to complex conjugate even transform
Status = DftiCreateDescriptor( My_Desc2_Handle, DFTI_SINGLE,
    DFTI_REAL, 2, L)
Status = DftiCommitDescriptor( My_Desc2_Handle)
Status = DftiComputeForward( My_Desc2_Handle, Y)
Status = DftiFreeDescriptor(My_Desc2_Handle)
! result is given by the complex value z(j,k) l<=j<=32; 1<=k<=100 where
! z(j,k) = Y_2D(2j-1,k) + iY_2D(2j,k) l<=j<=17; 1<=k<=100
! z(j,k) = Y_2D(2(34-j)-1,k) - iY_2D(2(34-j),k) 18<=j<=32; 1<=k<==100
```

```
Example C-16 Two-dimensional DFT (C-interface)
/* C example */
#include "mkl_dfti.h"
float _Complex x[32][100];
float y[34][102];
DFTI_DESCRIPTOR_HANDLE my_desc1_handle, my_desc2_handle;
/* or alternatively
DFTI_DESCRIPTOR *my_desc1_handle, *my_desc2_handle; */
long status, l[2];
...put input data into x[j][k] 0<=j<=31, 0<=k<=99
...put input data into y[j][k] 0<=j<=31, 0<=k<=99
l[0] = 32; l[1] = 100;
status = DftiCreateDescriptor( &my_desc1_handle, DFTI_SINGLE,
    DFTI_COMPLEX, 2, l);
status = DftiCommitDescriptor( my_desc1_handle);
status = DftiComputeForward( my_descl_handle, x);
status = DftiFreeDescriptor(&my_desc1_handle);
/* result is the complex value x[j][k], 0<=j<=31, 0<=k<=99 */
status = DftiCreateDescriptor( &my_desc2_handle, DFTI_SINGLE,
    DFTI_REAL, 2, l);
status = DftiCommitDescriptor( my_desc2_handle);
status = DftiComputeForward( my_desc2_handle, y);
status = DftiFreeDescriptor(&my_desc2_handle);
/* result is the complex value z(j,k) 0<=j<=31; 0<=k<=99
/* z(j,k) = y[2j][k] + iy[2j+1][k] 0<=j<=16; 0<=k<=99 */
/* z(j,k) = y[2(32-j)][k] - iy[2(32-j)+1][k] 17<==j<=31; 1<=k<=100 */
```

The following examples demonstrate how you can change the default configuration settings by using the DftiSetValue function.

For instance, to preserve the input data after the DFT computation, the configuration of the DFTI_PLACEMENT should be changed to "not in place" from the default choice of "in place."

The code below illustrates how this can be done:

Example C-17 Changing Default Settings (Fortran)

```
! Fortran example
! 1D complex to complex, not in place
Use MKL_DFTI
Complex :: X_in(32), X_out(32)
type(DFTI_DESCRIPTOR), POINTER :: My_Desc_Handle
Integer :: Status
...put input data into X_in(j), l<=j<=32
Status = DftiCreateDescriptor( My_Desc_Handle, DFTI_SINGLE,
    DFTI_COMPLEX, 1, 32)
Status = DftiSetValue( My_Desc_Handle, DFTI_PLACEMENT, DFTI_NOT_INPLACE)
Status = DftiCommitDescriptor( My_Desc_Handle)
Status = DftiComputeForward( My_Desc_Handle, X_in, X_out)
Status = DftiFreeDescriptor (My_Desc_Handle)
! result is X_out(1),X_out(2),...,X_out(32)
```


Example C-18 Changing Default Settings (C)

```
/* C example */
#include "mkl_dfti.h"
float _Complex x_in[32], x_out[32];
DFTI_DESCRIPTOR_HANDLE my_desc_handle;
/* or alternatively
DFTI_DESCRIPTOR *my_desc_handle; */
long status;
...put input data into x_in[j], 0 <= j < 32
status = DftiCreateDescriptor( &my_desc_handle, DFTI_SINGLE,
DFTI_COMPLEX, 1, 32);
status = DftiSetValue( my_desc_handle, DFTI_PLACEMENT,
DFTI_NOT_INPLACE);
status = DftiCommitDescriptor( my_desc_handle);
status = DftiComputeForward( my_desc_handle, x_in, x_out);
status = DftiFreeDescriptor(&my_desc_handle);
/* result is x_out[0], x_out[1], ..., x_out[31] */
```

The Example C-19 below illustrates the use of the status checking functions described in Chapter 11.

Example C-19 Using Status Checking Function

```
from C language:
DFTI_DESCRIPTOR_HANDLE desc;
long-status, cläss_error, value;
char* error_message;
. . . descriiptor creation and other code
status = DftiGetValue( desc, DFTI_PRECISION, &value); //
//or any DFTI function
class_error = DftiErrorClass(status, DFTI_ERROR_CLASS);
if (! class_error) {
printf ("stātus is not a member of Predefined Error
Class\n");
} else {
error_message = DftiErrorMessage(status);
print\overline{f}("error_message = %s \n", error_message);
}
from Fortran:
type(DFTI_DESCRIPTOR), POINTER : : desc
integer vallue, status
character(DFTI_MAX_MESSAGE_LENGTH) error_message
logical class_error
. . . descrip}tor creation and other code
status = DftiGetValue( desc, DFTI_PRECISION, value)
class_error = DftiErrorClass(status, DFTI_ERROR_CLASS)
if (.not. class error) then
print *, 'statu\overline{s}}\mathrm{ is not a member of Predefined Error
Class '
else
error_message = DftiErrorMessage(status)
print *, 'error_message = ', error_message
endif
```

Below is an example where a 20 -by- 40 two-dimensional DFT is computed explicitly using one-dimensional transforms. Notice that the data and result parameters in computation functions are all declared as assumed-size rank-1 array DIMENSION ($0: *$). Therefore two-dimensional array must be transformed to one-dimensional array by EQUIVALENCE statement or other facilities of Fortran.

Example C-20 Computing 2D DFT by One-Dimentional Transforms

```
! Fortran
Complex :: X_2D(20,40),
Complex :: X(800)
Equivalence (X_2D, X)
INTEGER :: STRIDE(2)
type(DFTI_DESCRIPTOR), POINTER :: Desc_Handle_Dim1
type(DFTI_DESCRIPTOR), POINTER :: Desc_Handle_Dim2
Status = DftiCreateDescriptor( Desc_Handle_Dim1, DFTI_SINGLE,
    DFTI_COMPLEX, 1, 20 )
Status = DftiCreateDescriptor( Desc_Handle_Dim2, DFTI_SINGLE,
        DFTI_COMPLEX, 1, 40 )
! perform 40 one-dimensional transforms along 1st dimension
Status = DftiSetValue( Desc_Handle_Dim1, DFTI_NUMBER_OF_TRANSFORMS, 40 )
Status = DftiSetValue( Desc_Handle_Dim1, DFTI_INPUT_DISTANCE, 20 )
Status = DftiSetValue( Desc_Handle_Dim1, DFTI_OUTPUT_DISTANCE, 20 )
Status = DftiCommitDescriptor( Desc_Handle_Dim1 )
Status = DftiComputeForward( Desc_Handle_Dim1, X )
! perform 20 one-dimensional transforms along 2nd dimension
Stride(1) = 0; Stride(2) = 20
Status = DftiSetValue( Desc_Handle_Dim2, DFTI_NUMBER_OF_TRANSFORMS, 20 )
Status = DftiSetValue( Desc_Handle_Dim2, DFTI_INPUT_DISTANCE, 1 )
Status = DftiSetValue( Desc_Handle_Dim2, DFTI_OUTPUT_DISTANCE, 1 )
Status = DftiSetValue( Desc_Handle_Dim2, DFTI_INPUT_STRIDES, Stride )
Status = DftiSetValue( Desc_Handle_Dim2, DFTI_OUTPUT_STRIDES, Stride )
```

```
Status = DftiCommitDescriptor( Desc_Handle_Dim2 )
Status = DftiComputeForward( Desc_Handle_Dim2, X )
Status = DftiFreeDescriptor( Desc_Handle_Dim1 )
Status = DftiFreeDescriptor( Desc_Handle_Dim2 )
/* C */
float _Complex x[20][40];
long stride[2];
long status;
DFTI_DESCRIPTOR_HANDLE desc_handle_dim1;
DFTI_DESCRIPTOR_HANDLE desc_handle_dim2;
status = DftiCreateDescriptor( &desc_handle_dim1, DFTI_SINGLE,
    DFTI_COMPLEX, 1, 20 );
status = DftiCreateDescriptor( &desc_handle_dim2, DFTI_SINGLE,
    DFTI_COMPLEX, 1, 40 );
/* perform 40 one-dimensional transforms along 1st dimension */
/* note that the 1st dimension data are not unit-stride */
stride[0] = 0; stride[1] = 40;
status = DftiSetValue( desc_handle_dim1, DFTI_NUMBER_OF_TRANSFORMS, 40 );
status = DftiSetValue( desc_handle_dim1, DFTI_INPUT_DISTANCE, 1 );
status = DftiSetValue( desc_handle_dim1, DFTI_OUTPUT_DISTANCE, 1 );
status = DftiSetValue( desc_handle_dim1, DFTI_INPUT_STRIDES, stride );
status = DftiSetValue( desc_handle_dim1, DFTI_OUTPUT_STRIDES, stride );
status = DftiCommitDescriptor( desc_handle_dim1 );
status = DftiComputeForward( desc_handle_dim1, x );
/* perform 20 one-dimensional transforms along 2nd dimension */
/* note that the 2nd dimension is unit stride */
status = DftiSetValue( desc_handle_dim2, DFTI_NUMBER_OF_TRANSFORMS, 20 );
status = DftiSetValue( desc_handle_dim2, DFTI_INPUT_DISTANCE, 40 );
status = DftiSetValue( desc_handle_dim2, DFTI_OUTPUT_DISTANCE, 40 );
status = DftiCommitDescriptor( desc_handle_dim2 );
```

```
status = DftiComputeForward( desc_handle_dim2, x );
status = DftiFreeDescriptor( &Desc_Handle_Dim1 );
status = DftiFreeDescriptor( &Desc_Handle_Dim2 );
```


Examples of Using Multi-Threading for DFT Computation

The following example program shows how to employ internal threading in Intel MKL for DFT computation (see case 1 in "Number of user threads").

To specify the number of threads inside Intel MKL, use the following settings:
set OMP_NUM_THREADS = 1 for one-threaded mode;
set OMP_NUM_THREADS $=4$ for multi-threaded mode.
Note that the configuration parameter DFTI_NUMBER_OF_USER_THREADS must be equal to its default value 1 .

Example C-21 Using Intel MKL Internal Threading Mode

```
#include "mkl_dfti.h"
void main () {
float x[200][100];
DFTI_DESCRIPTOR_HANDLE my_desc1_handle;
long status, len[2];
//...put input data into x[j][k] 0<=j<=199, 0<=k<==99
len[0] = 200; len[1] = 100;
status = DftiCreateDescriptor( &my_desc1_handle, DFTI_SINGLE,DFTI_REAL, 2,
len);
status = DftiCommitDescriptor( my_desc1_handle);
status = DftiComputeForward( my_desc1_handle, x);
status = DftiFreeDescriptor(&my_desc1_handle);
}
```

The following Example C-22 illustrates a parallel customer program with each descriptor instance used only in a single thread (see case 2 in "Number of user threads").

To specify the number of threads, use the following settings:
set MKL_SERIAL = 1 for single-threaded mode in Intel MKL (recommended);
set OMP_NUM_THREADS = 4 for multi-threaded mode in customer program.
The configuration parameter DFTI_NUMBER_OF_USER_THREADS must be equal to its default value 1 .

Note that in this example the program can be transformed to become single-threaded on the customer level but using parallel mode within Intel MKL. To achieve this, you need to set the parameter DFTI_NUMBER_OF_TRANSFORMS = 4 and to set the corresponding parameter DFTI_INPUT_DISTANCE = 5000 .

Example C-22 Using Parallel Mode with Multiple Descriptors

```
#include "mkl_dfti.h"
void main () {
float _Complex x[200][100];
DFTI_DESCRIPTOR_HANDLE my_desc_handle;
long status, len[2];
int iThread;
//...put input data into x[j][k] 0<=j<=199, 0<=k<=99
len[0] = 50; len[1] = 100;
int nThread = omp_get_max_threads();
// each thread calculates real DFT for matrix (50*100)
#pragma omp parallel default(shared)
{
#pragma omp for private(iThread, my_desc_handle) /* parallel step */
for (iThread = 0; iThread < nThread; iThread++) {
    status = DftiCreateDescriptor( &my_desc_handle, DFTI_SINGLE, DFTI_COMPLEX, 2, len);
```

```
    status = DftiCommitDescriptor( my_desc_handle);
    status = DftiComputeForward( my_desc_handle, &x[iThread * len[0] * len[1]]);
    status = DftiFreeDescriptor(&my_desc_handle);
}/* parallel for */
}/* #pragma omp */
}
```

The following Example C-23 illustrates a parallel customer program with a common descriptor used in several threads (see case 3 in "Number of user threads").

In this case the number of threads, as well as any other configuration parameter, must not be changed after DFT initialization by the DftiCommitDescriptor() function is done.

Example C-23 Using Parallel Mode with a Common Descriptor

```
// set number of threads inside Intel MKL:
//rem set MKL_SERIAL = 1 - is not required since one-threaded mode for
Intel MKL is forced automatically
// set OMP_NUM_THREADS = 4 - multi-threaded mode for customer
#include "mkl_dfti.h"
void main () {
float _Complex x[200][100];
DFTI_DESCRIPTOR_HANDLE my_desc_handle;
long status, len[2];
int iThread;
//...put input data into x[j][k] 0<=j<=199, 0<=k<==99
len[0] = 50; len[1] = 100;
int nThread = omp_get_max_threads();
status = DftiCreateDescriptor( &my_desc_handle, DFTI_SINGLE, DFTI_COMPLEX, 2, len);
status = DftiSetValue(my_desc_handle, DFTI_NUMBER_OF_USER_THREADS, nThread);
```

```
status = DftiCommitDescriptor( my_desc_handle);
// each thread calculates real DFT for matrix (50*100)
#pragma omp parallel default(shared)
{
#pragma omp for private(iThread) /* parallel step */
for (iThread = 0; iThread < nThread; iThread++) {
    status = DftiComputeForward( my_desc_handle, &x[iThread * len[0] * len[1]]);
}/* parallel for */
}
status = DftiFreeDescriptor(&my_desc_handle);
}
```


CBLAS Interface to the BLAS

This appendix presents CBLAS, the C interface to the Basic Linear Algebra Subprograms (BLAS) implemented in Intel ${ }^{\circledR}$ MKL.

Similar to BLAS, the CBLAS interface includes the following levels of functions:

- "Level 1 CBLAS" (vector-vector operations)
- "Level 2 CBLAS" (matrix-vector operations)
- "Level 3 CBLAS" (matrix-matrix operations).
- "Sparse CBLAS" (operations on sparse vectors).

To obtain the C interface, the Fortran routine names are prefixed with cblas_ (for example, dasum becomes cblas_dasum). Names of all CBLAS functions are in lowercase letters.

Complex functions ?dotc and ?dotu become CBLAS subroutines (void functions); they return the complex result via a void pointer, added as the last parameter. CBLAS names of these functions are suffixed with _sub. For example, the BLAS function cdotc corresponds to cblas_cdotc_sub.

CBLAS Arguments

The arguments of CBLAS functions obey the following rules:

- Input arguments are declared with the const modifier.
- Non-complex scalar input arguments are passed by value.
- Complex scalar input arguments are passed as void pointers.
- Array arguments are passed by address.
- Output scalar arguments are passed by address.
- BLAS character arguments are replaced by the appropriate enumerated type.
- Level 2 and Level 3 routines acquire an additional parameter of type CBLAS_ORDER as their first argument. This parameter specifies whether two-dimensional arrays are row-major (CblasRowMajor) or column-major (CblasColMajor).

Enumerated Types

The CBLAS interface uses the following enumerated types:

```
enum CBLAS_ORDER {
    CblasRowMajor=101, /* row-major arrays */
    CblasColMajor=102}; /* column-major arrays */
enum CBLAS_TRANSPOSE {
    CblasNoTrans=111, /* trans='N' */
    CblasTrans=112, /* trans='T' */
    CblasConjTrans=113}; /* trans='C' */
enum CBLAS_UPLO {
    CblasUpper=121, /* uplo ='U' */
    CblasLower=122}; /* uplo ='L' */
enum CBLAS_DIAG {
    CblasNonUnit=131, /* diag ='N' */
    CblasUnit=132}; /* diag ='U' */
enum CBLAS_SIDE {
    CblasLeft=141, /* side ='L' */
    CblasRight=142}; /* side ='R' */
```


Level 1 CBLAS

This is an interface to "BLAS Level 1 Routines and Functions", which perform basic vector-vector operations.

ipps? 2 asum

float cblas_sasum(const int N, const float *X, const int incX);
double cblas_dasum(const int N, const double *X, const int incX);
float cblas_scasum(const int N, const void *X, const int incX);
double cblas_dzasum(const int N, const void *X, const int incX);
ipps? axpy
void cblas_saxpy(const int N, const float alpha, const float *X, const int incX, float *Y, const int incy);
void cblas_daxpy(const int N, const double alpha, const double *X, const int incX, double *Y, const int incy);
void cblas_caxpy(const int N, const void *alpha, const void *X, const int incX, void *Y, const int incy);
void cblas_zaxpy(const int N, const void *alpha, const void *X, const int incX, void *Y, const int incy);
ipps?copy
void cblas_scopy(const int N, const float *X, const int incX, float *Y, const int incY);
void cblas_dcopy(const int N, const double *X, const int incX, double *Y, const int incy);
void cblas_ccopy (const int N, const void *X, const int incX, void *Y, const int incY);
void cblas_zcopy(const int N, const void *X, const int incX, void *Y, const int incY);

ipps?dot

float cblas_sdot (const int N, const float *X, const int incX, const float *Y, const int incy);
double cblas_ddot (const int N, const double *X, const int incX, const double *Y, const int incy);
ipps?sdot
float cblas_sdsdot (const int N, const float *SB, const float *SX, const int incX, const float *SY, const int incY);
double cblas_dsdot (const int N, const float *SX, const int incX, const float *SY, const int incy);

ipps?dotc

void cblas_cdotc_sub(const int N, const void *X, const int incX, const void *Y, const int incy, void *dotc);
void cblas_zdotc_sub (const int N, const void *X, const int incX, const void *Y,
const int incy, void *dotc);

ipps?dotu

void cblas_cdotu_sub (const int N, const void *X, const int incX, const void *Y, const int incy, void *dotu);
void cblas_zdotu_sub(const int N, const void *X, const int incX, const void *Y, const int incy, void *dotu);

ipps?nrm2

float cblas_snrm2 (const int N, const float *X, const int incX);
double cblas_dnrm2 (const int N, const double *X, const int incX);
float cblas_scnrm2 (const int N, const void *X, const int incX);
double cblas_dznrm2 (const int N, const void *X, const int incX);

ipps? ${ }^{\text {rot }}$

void cblas_srot (const int N, float *X, const int incX, float *Y, const int incy, const float c, const float s);
void cblas_drot (const int N, double *X, const int incX, double *Y, const int incy, const double c, const double s);
ipps? rotg
void cblas_srotg(float *a, float *b, float *C, float *s);
void cblas_drotg(double *a, double *b, double *c, double *s);
ipps? rotm
void cblas_srotm(const int N, float *X, const int incX, float *Y, const int incy, const float *P);
void cblas_drotm(const int N, double *X, const int incX, double *Y, const int incY, const double *P);
ipps? rotmg
void cblas_srotmg(float *d1, float *d2, float *b1, const float b2, float *P); void cblas_drotmg(double *d1, double *d2, double *b1, const double b2, double *P) ;

```
ipps?scal
void cblas_sscal(const int N, const float alpha, float *X, const int incX);
void cblas_dscal(const int N, const double alpha, double *X, const int incX);
void cblas_cscal(const int N, const void *alpha, void *X, const int incX);
void cblas_zscal(const int N, const void *alpha, void *X, const int incX);
void cblas_csscal(const int N, const float alpha, void *X, const int incX);
void cblas_zdscal(const int N, const double alpha, void *X, const int incX);
ipps?swap
void cblas_sswap(const int N, float *X, const int incX, float *Y, const int incY);
void cblas_dswap(const int N, double *X, const int incX, double *Y, const int
incY);
void cblas_cswap(const int N, void *X, const int incX, void *Y, const int incY);
void cblas_zswap(const int N, void *X, const int incX, void *Y, const int incY);
ippsi?amax
CBLAS_INDEX cblas_isamax(const int N, const float *X, const int incX);
CBLAS_INDEX cblas_idamax(const int N, const double *X, const int incX);
CBLAS_INDEX cblas_icamax(const int N, const void *X, const int incX);
CBLAS_INDEX cblas_izamax(const int N, const void *X, const int incX);
ippsi?amin
CBLAS_INDEX cblas_isamin(const int N, const float *X, const int incX);
CBLAS_INDEX cblas_idamin(const int N, const double *X, const int incX);
CBLAS_INDEX cblas_icamin(const int N, const void *X, const int incX);
CBLAS_INDEX cblas_izamin(const int N, const void *X, const int incX);
```


Level 2 CBLAS

This is an interface to "BLAS Level 2 Routines", which perform basic matrix-vector operations. Each C routine in this group has an additional parameter of type CBLAS_ORDER (the first argument) that determines whether the two-dimensional arrays use column-major or row-major storage.

ipps?gbmv

```
void cblas_sgbmv(const enum CBLAS_ORDER order, const enum CBLAS_TRANSPOSE TransA,
const int M, const int N, const int KL, const int KU, const float alpha, const
float *A, const int lda, const float *X, const int incX, const float beta, float
*Y, const int incY);
```

void cblas_dgbmv(const enum CBLAS_ORDER order, const enum CBLAS_TRANSPOSE TransA, const int \bar{M}, const int N, const int $K L$, const int $K U$, const double alpha, const double *A, const int lda, const double *X, const int incX, const double beta, double *Y, const int incY);
void cblas_cgbmv(const enum CBLAS_ORDER order, const enum CBLAS_TRANSPOSE TransA, const int M, const int N, const int $K L$, const int $K U$, const void *alpha, const void *A, const int lda, const void *X, const int incX, const void *beta, void *Y, const int incY);
void cblas_zgbmv(const enum CBLAS_ORDER order, const enum CBLAS_TRANSPOSE TransA, const int M, const int N, const int $K L$, const int $K U$, const void *alpha, const void *A, const int lda, const void *X, const int incX, const void *beta, void *Y, const int incy);

ipps?gemv

void cblas_sgemv (const enum CBLAS_ORDER order, const enum CBLAS_TRANSPOSE TransA, const int M, const int N, const float alpha, const float *A, const int lda, const float *X, const int incX, const float beta, float *y, const int incy) ;
void cblas_dgemv(const enum CBLAS_ORDER order, const enum CBLAS_TRANSPOSE TransA, const int M, const int N, const double alpha, const double *A, const int lda, const double *X, const int incX, const double beta, double *Y, const int incy); void cblas_cgemv (const enum CBLAS_ORDER order, const enum CBLAS_TRANSPOSE TransA, const int M, const int N, const void *alpha, const void *A, const int lda, const void *X, const int incX, const void *beta, void *Y, const int incY);
void cblas_zgemv (const enum CBLAS_ORDER order, const enum CBLAS_TRANSPOSE TransA, const int M, const int N, const void *alpha, const void *A, const int lda, const void *X, const int incX, const void *beta, void *Y, const int incY);

ipps?ger

void cblas_sger (const enum CBLAS_ORDER order, const int M, const int N, const float alpha, const float *X, const int incX, const float *Y, const int incy, float *A, const int lda);
void cblas_dger (const enum CBLAS_ORDER order, const int M, const int N, const double alpha, const double *X, const int incX, const double *Y, const int incy, double *A, const int lda);

ipps?gerc

void cblas_cgerc (const enum CBLAS_ORDER order, const int M, const int N, const void *alpha, const void *X, const int incX, const void *Y, const int incY, void *A, const int lda);
void cblas_zgerc (const enum CBLAS_ORDER order, const int M, const int N, const void *alphā, const void *X, const int incX, const void *Y, const int incY, void *A, const int lda);

ipps? ${ }^{2}$ eru

void cblas_cgeru(const enum CBLAS_ORDER order, const int M, const int N, const void *alpha, const void *X, const int incX, const void *Y, const int incy, void *A, const int lda);
void cblas_zgeru(const enum CBLAS_ORDER order, const int M, const int N, const void *alpha, const void *X, const int incX, const void *Y, const int incY, void *A, const int lda);

ipps?hbmv

void cblas_chbmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N, cons̄t int K, const void *alpha, const void *A, const int lda, const void *X, const int incX, const void *beta, void *Y, const int incy);
void cblas_zhbmv (const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N, const int K, const void *alpha, const void *A, const int lda, const void *X, const int incX, const void *beta, void *Y, const int incY);

ipps?hemv

void cblas_chemv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N, const void *alpha, const void *A, const int lda, const void *X, const int incX, const void *beta, void *Y, const int incY);
void cblas_zhemv (const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N, const void *alpha, const void *A, const int lda, const void *X, const int incX, const void *beta, void *Y, const int incy);

ipps?her

void cblas_cher (const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N, const float alpha, const void *X, const int incX, void *A, const int lda); void cblas_zher (const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N, const double alpha, const void *X, const int incX, void *A, const int lda);

ipps?her2

void cblas_cher2 (const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N, const void *alpha, const void *X, const int incX, const void *Y, const int incy, void *A, const int lda);
void cblas_zher2 (const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N , const void *alpha, const void *X, const int incX, const void *Y, const int incy, void *A, const int lda);

ipps?hpmv

void cblas_chpmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N, const void *alpha, const void *Ap, const void *X, const int incX, const void *beta, void *y, const int incy);
void cblas_zhpmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N, const void *alpha, const void *Ap, const void *X, const int incX, const void *beta, void *Y, const int incy);

ipps?hpr

void cblas_chpr(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N, const float alpha, const void *X, const int incX, void *A);
void cblas_zhpr (const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N, const double alpha, const void *X, const int incX, void *A);

ipps?hpr2

void cblas_chpr2 (const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N, const void *alpha, const void *X, const int incX, const void *Y, const int incy, void *Ap);
void cblas_zhpr2 (const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N, const void *alpha, const void *X, const int incX, const void *Y, const int incY, void *Ap);

ipps?sbmv

void cblas_ssbmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N, const int K, const float alpha, const float *A, const int lda, const float *X, const int incX, const float beta, float *Y, const int incY);
void cblas_dsbmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N, const int K, const double alpha, const double *A, const int lda, const double *X, const int incX, const double beta, double *Y, const int incy);

ipps?spmv

void cblas_sspmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N, const float alpha, const float *Ap, const float *X, const int incX, const float beta, float *Y, const int incY);
void cblas_dspmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N, const double alpha, const double *Ap, const double *X, const int incX, const double beta, double *Y, const int incy);

ipps?spr

void cblas_sspr (const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N, const float alpha, const float *X, const int incX, float *Ap); void cblas_dspr (const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N, const double alpha, const double *X, const int incX, double *Ap);

ipps?spr2

void cblas_sspr2 (const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N, const float alpha, const float *X, const int incX, const float *Y, const int incy, float *A);
void cblas_dspr2 (const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N, const double alpha, const double *X, const int incX, const double *Y, const int incY, double *A);

ipps?symv

void cblas_ssymv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N, const float alpha, const float *A, const int lda, const float *X, const int incX, const float beta, float *Y, const int incY);
void cblas_dsymv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N, const double alpha, const double *A, const int lda, const double *X, const int incX, const double beta, double *Y, const int incY);

ipps?syr

void cblas_ssyr (const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N, const float alpha, const float *X, const int incX, float *A, const int lda);
void cblas_dsyr (const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N, const double alpha, const double *X, const int incX, double *A, const int lda) ;

ipps?syr2

void cblas_ssyr2 (const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N, const float alpha, const float *X, const int incX, const float *y, const int incy, float *A, const int lda);
void cblas_dsyr2 (const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N, const double alpha, const double *X, const int incX, const double *Y, const int incY, double *A, const int lda);

ipps? tbmv

void cblas_stbmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N, const int K, const float *A, const int lda, float *X, const int incX);
void cblas_dtbmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N, const int K, const double *A, const int lda, double *X, const int incX);
void cblas_ctbmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N, const int K, const void *A, const int lda, void *X, const int incX);
void cblas_ztbmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N, const int K, const vōid *A, const int lda, void *X, const int incX);

ipps? tbsv

void cblas_stbsv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N, const int K, const float *A, const int lda, float *X, const int incX);
void cblas_dtbsv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N, const int K, const double *A, const int lda, double *X, const int incX);
void cblas_ctbsv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N, const int K, const void *A, const int lda, void *X, const int incX);
void cblas_ztbsv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N, const int K, const vōid *A, const int lda, void *X, const int incX);

ipps? tpmv

void cblas_stpmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N, const float *Ap, float *X, const int incX);
void cblas_dtpmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N, const double *Ap, double *X, const int incX);
void cblas_ctpmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N, const void *Ap, void *X, const int incX);
void cblas_ztpmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N, const void *Ap, void *X, const int incX);

ipps? tpsv

void cblas_stpsv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N, const float
*Ap, float *X, const int incX);
void cblas_dtpsv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N , const double *Ap, double *X, const int incX) ;
void cblas_ctpsv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N, const void *Ap, void *X, const int incX);
void cblas_ztpsv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N, const void *Ap, void *X, const int incX);

ipps? trmv

void cblas_strmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N, const float *A, const int lda, float *X, const int incX);
void cblas_dtrmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N, const double *A, const int lda, double *X, const int incX);
void cblas_ctrmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N, const void *A, const int lda, void *X, const int incX);
void cblas_ztrmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N, const void *A, const int lda, void *X, const int incX);

ipps?trsv

void cblas_strsv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N, const float *A, const int lda, float *X, const int incX);
void cblas_dtrsv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N, const double *A, const int lda, double *X, const int incX);
void cblas_ctrsv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N, const void *A, const int lda, void *X, const int incX);
void cblas_ztrsv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N, const void *A, const int lda, void *X, const int incX);

Level 3 CBLAS

This is an interface to "BLAS Level 3 Routines", which perform basic matrix-matrix operations. Each C routine in this group has an additional parameter of type CBLAS_ORDER (the first argument) that determines whether the two-dimensional arrays use column-major or row-major storage.

ipps?.gemm

void cblas_sgemm (const enum CBLAS_ORDER Order, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_TRANSPOSE TransB, const int M, const int N, const int K , const float alpha, const float *A, const int lda, const float *B, const int ldb, const float beta, float *C, const int ldc);
void cblas_dgemm (const enum CBLAS_ORDER Order, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_TRANSPOSE TransB, const int M, const int N, const int K, const double alpha, const double *A, const int lda, const double *B, const int ldb, const double beta, double *C, const int ldc);
void cblas_cgemm (const enum CBLAS_ORDER Order, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_TRANSPOSE TransB, const int M , const int N , const int K , const void *alpha, const void *A, const int lda, const void $* B$, const int ldb, const void *beta, void *C, const int ldc);
void cblas_zgemm (const enum CBLAS_ORDER Order, const enum CBLAS_TRANSPOSE TransA, const enum CbLAS_TRANSPOSE TransB, const int M, const int N, const int K, const void *alpha, const void *A, const int lda, const void ${ }^{\mathrm{B}}$, const int ldb, const void *beta, void *c, const int ldc);

ipps?hemm

void cblas_chemm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side, const enum CBLAS_UPLO Uplo, const int M, const int N, const void *alpha, const void *A, const int lda, const void *B, const int ldb, const void *beta, void *c, const int ldc);
void cblas_zhemm (const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side, const enum CBLAS_UPLO Uplo, const int M, const int N, const void *alpha, const void *A, const int lda, const void $* \mathrm{~B}$, const int ldb, const void *beta, void $* \mathrm{C}$, const int ldc);

ipps?herk

void cblas_cherk (const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE Trans, const int N, const int K, const float alpha, const void *A, const int lda, const float beta, void *C, const int ldc);
void cblas_zherk(const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE Trans, const int N, const int K, const double alpha, const void *A, const int lda, const double beta, void *C, const int ldc);

ipps?her2k

void cblas_cher $2 k$ (const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE Trans, const int N, const int K, const void *alpha, const void *A, const int lda, const void *B, const int ldb, const float beta, void *C, const int ldc);
void cblas_zher2k(const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE Trans, const int N, const int K, const voi \bar{d} *alpha, const void *A, const int lda, const void *B, const int ldb, const double beta, void *C, const int ldc);

ipps?symm

void cblas_ssymm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side, const enum CBLAS_UPLO Uplo, const int M, const int N, const float alpha, const float *A, const int lda, const float *B, const int ldb, const float beta, float *C, const int ldc);
void cblas_dsymm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side, const enum CBLAS_UPLO Uplo, const int M, const int N, const double alpha, const double *A, const int lda, const double *B, const int ldb, const double beta, double *C, const int ldc);
void cblas_csymm (const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side, const enum CBLAS_UPLO Uplo, const int M, const int N, const void *alpha, const void *A, const int lda, const void *B, const int ldb, const void *beta, void *C, const int ldc) ;
void cblas_zsymm (const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side, const enum CBLAS_UPLO Uplo, const int M, const int N, const void *alphá, const void *A, const int lda, const void *B, const int ldb, const void *beta, void *C, const int ldc) ;

ipps?syrk

void cblas_ssyrk (const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE Trans, const int N, const int K, const float alpha, const float *A, const int lda, const float beta, float *C, const int ldc);
void cblas_dsyrk(const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE Trans, const int N, const int K, const double alpha, const double *A, const int lda, const double beta, double *C, const int ldc);
void cblas_csyrk (const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE Trans, const int N, const int K, const void *alpha, const void *A, const int lda, const void *beta, void *C, const int ldc);
void cblas_zsyrk(const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE Trans, const int N, const int K, const void *alpha, const void *A, const int lda, const void *beta, void *C, const int ldc);

ipps?syr2k

void cblas_ssyr2k (const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE Trans, const int N, const int K, const float alpha, const float *A, const int lda, const float *B, const int ldb, const float beta, float *C, const int ldc);
void cblas_dsyr2k(const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE Trans, const int N, const int K, const double alpha, const double *A, const int lda, const double *B, const int ldb, const double beta, double *C, const int ldc);
void cblas_csyr $2 k$ (const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSP SE Trans, const int N, const int K, const void *alpha, const void *A, const int lda, const void *B, const int ldb, const void *beta, void *C, const int ldc);
void cblas_zsyr2k(const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE Trans, const int N, const int K, const void *alpha, const void *A, const int lda, const void *B, const int ldb, const void *beta, void *C, const int ldc);

ipps? trmm

void cblas_strmm (const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int M, const int N, const float alpha, const float *A, const int lda, float *B, const int ldb);
void cblas_dtrmm (const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int M, const int N, const double alpha, const double *A, const int lda, double *B, const int ldb);
void cblas_ctrmm (const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int M, const int N, const void *alpha, const void *A, const int lda, void *B, const int ldb);
void cblas_ztrmm (const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int M, const int N, const void *alpha, const void *A, const int lda, void *B, const int ldb);

ipps? trsm

void cblas_strsm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int M, const int N, const float alpha, const float *A, const int lda, float *B, const int ldb);
void cblas_dtrsm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int M, const int N, const double alpha, const double *A, const int lda, double *B, const int ldb);
void cblas_ctrsm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int M, const int N, const void *alpha, const void *A, const int lda, void *B, const int ldb);
void cblas_ztrsm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int M, const int N, const void *alpha, const void *A, const int lda, void *B, const int ldb) ;

Sparse CBLAS

This is an interface to "Sparse BLAS Routines and Functions", which perform a number of common vector operations on sparse vectors stored in compressed form.

Note that all index parameters, indx, are in C-type notation and vary in the range [0..N-1].

ipps?axpyi

```
void cblas_saxpyi(const int N, const float alpha,
const float *X, const int *indx, float *Y);
void cblas_daxpyi(const int N, const double alpha,
const double *X, const int *indx, double *Y);
void cblas_caxpyi(const int N, const void *alpha,
const void *X, const int *indx, void *Y);
void cblas_zaxpyi(const int N, const void *alpha,
const void *X, const int *indx, void *Y);
```

ipps? doti
float cblas_sdoti(const int N, const float *X,
const int *indx, const float *Y);
double cblas_ddoti(const int N, const double *X,
const int *indx, const double *y);
ipps?dotci
void cblas_cdotci_sub(const int N, const void *X, const int *indx, const void
*Y, void *dotui);
void cblas_zdotci_sub(const int N, const void *X, const int *indx, const void
*Y, void *dotui);
ipps?dotui
void cblas_cdotui_sub(const int N, const void *X, const int *indx, const void
*Y, void *dotui);
void cblas_zdotui_sub(const int N, const void *X, const int *indx, const void
*Y, void *dotui);
ipps? gth r
void cblas_sgthr (const int N, const float *Y, float *X,
const int *indx) ;
void cblas_dgthr(const int N, const double *Y, double *X,
const int *indx);
void cblas_cgthr (const int N, const void *Y, void *X,
const int *indx);
void cblas_zgthr (const int N, const void *Y, void *X, const int *indx);

ipps?gthrz

```
void cblas_sgthrz(const int N, float *Y, float *X,
const int *indx);
void cblas_dgthrz(const int N, double *Y, double *X,
const int *indx);
void cblas_cgthrz(const int N, void *Y, void *X,
const int *indx);
void cblas_zgthrz(const int N, void *Y, void *X,
const int *indx);
ipps?roti
void cblas_sroti(const int N, float *X, const int *indx,
float *Y, const float c, const float s);
void cblas_droti(const int N, double *X, const int *indx,
double *Y, const double c, const double s);
ipps?sctr
```

void cblas_ssctr(const int N, const float *X, const int *indx, float *Y);
void cblas_dsctr(const int N, const double *X, const int *indx, double *Y);
void cblas_csctr (const int N, const void *X, const int *indx, void *Y);
void cblas_zsctr (const int N, const void *X, const int *indx, void *Y);

Glossary

| A^{H} | Denotes the conjugate of a general matrix A.
 See also conjugate matrix. |
| :--- | :--- |
| A^{T} | Denotes the transpose of a general matrix A.
 See also transpose. |
| band matrix | A general m by n matrix A such that $a_{i j}=0$ for
 $\|i-j\|>l$, where $1<l<\min (m, n)$. For example, any
 tridiagonal matrix is a band matrix. |
| band storage | A special storage scheme for band matrices.
 A matrix is stored in a two-dimensional array: columns
 of the matrix are stored in the corresponding columns
 of the array, and diagonals of the matrix are stored in
 rows of the array. |
| BLAS | Abbreviation for Basic Linear Algebra Subprograms.
 These subprograms implement vector, matrix-vector,
 and matrix-matrix operations. |
| BRNG | Abbreviation for Basic Random Number Generator.
 Basic random number generators are pseudorandom
 number generators imitating i.i.d. random number
 sequences of uniform distribution. Distributions other
 than uniform are generated by applying different
 transformation techniques to the sequences of random
 numbers of uniform distribution. |
| BRNG registration | Standardized mechanism that allows a user to include a
 user-designed BRNG into the VSL and use it along
 with the predefined VSL basic generators. |

$\left.\begin{array}{ll}\text { Bunch-Kaufman } & \begin{array}{l}\text { Representation of a real symmetric or complex } \\ \text { factorization } \\ \\ \text { Hermitian matrix } A \text { in the form } A=P U D U^{H} P^{T}\end{array} \\ \text { (or } A=P L D L^{H} P^{T} \text {) where } P \text { is a permutation matrix, } U \\ \text { and } L \text { are upper and lower triangular matrices with unit } \\ \text { diagonal, and } D \text { is a Hermitian block-diagonal matrix }\end{array}\right\}$

| d | When found as the first letter of routine names,
 d indicates the usage of double-precision real data
 type. |
| :--- | :--- |
| dot product | |
| | The number denoted $x \cdot y$ and defined for given vectors

 x and y as follows: $x \cdot y=\Sigma_{i} x_{i} y_{i}$. |
| | Here x_{i} and y_{i} stand for the ith elements of x and y, |
| respectively. | |

| FFTs | Abbreviation for Fast Fourier Transforms. See Chapter
 3 of this book. |
| :--- | :--- |
| full storage | A storage scheme allowing you to store matrices of any
 kind. A matrix A is stored in a two-dimensional array
 a, with the matrix element $a_{i j}$ stored in the array
 element $a(i, j)$. |
| Hermitian matrix | A square matrix A that is equal to its conjugate matrix
 A^{H}. |
| | $\left(a_{j i}\right)^{*}$. |

MPICH A freely available, portable implementation of
orthogonal matrix A real square matrix A whose transpose and inverse are
packed storage A storage scheme allowing you to store symmetric,
machine precision

MPI

PDF

The number ε determining the precision of the machine representation of real numbers. For Intel ${ }^{\circledR}$ architecture, the machine precision is approximately 10^{-7} for single-precision data, and approximately 10^{-15} for double-precision data. The precision also determines the number of significant decimal digits in the machine representation of real numbers. See also double precision and single precision.
Message Passing Interface. This standard defines the user interface and functionality for a wide range of message-passing capabilities in parallel computing. MPI standard for message-passing libraries. equal, that is, $A^{T}=A^{-1}$, and therefore $A A^{T}=A^{T} A=I$. All eigenvalues of an orthogonal matrix have the absolute value 1 . Hermitian, or triangular matrices more compactly. The upper or lower triangle of a matrix is packed by columns in a one-dimensional array.
Probability Density Function. The function that determines probability distribution for univariate or multivariate continuous random variable X. The probability density function $f(x)$ is closely related with the cumulative distribution function $F(x)$. For univariate distribution the relation is

$$
F(x)=\int_{-\infty}^{x} f(t) d t .
$$

For multivariate distribution the relation is

$$
F\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\int_{-\infty}^{x_{1}} \int_{-\infty}^{x_{2}} \ldots \int_{-\infty}^{x_{n}} f\left(t_{1}, t_{2}, \ldots, t_{n}\right) d t_{1} d t_{2} \ldots d t_{n}
$$

| positive-definite matrix | A square matrix A such that $A x \cdot x>0$ for any non-zero vector x. Here - denotes the dot product. |
| :---: | :---: |
| pseudorandom number generator | A completely deterministic algorithm that imitates truly random sequences. |
| $Q R$ factorization | Representation of an m by n matrix A as $A=Q R$, where Q is an m by m orthogonal (unitary) matrix, and R is n by n upper triangular with real diagonal elements (if m $\geq n$) or trapezoidal (if $m<n$) matrix. |
| random stream | An abstract source of independent identically distributed random numbers of uniform distribution. In this manual a random stream points to a structure that uniquely defines a random number sequence generated by a basic generator associated with a given random stream. |
| RNG | Abbreviation for Random Number Generator. In this manual the term 'random number generators' stands for pseudorandom number generators, that is, generators based on completely deterministic algorithms imitating truly random sequences. |
| s | When found as the first letter of routine names, s indicates the usage of single-precision real data type |
| ScaLAPACK | Stands for Scalable Linear Algebra PACKage. |
| Schur factorization | Representation of a square matrix A in the form $A=Z T Z^{H}$. Here T is an upper quasi-triangular matrix (for complex A, triangular matrix) called the Schur form of A; the matrix Z is orthogonal (for complex A, unitary). Columns of Z are called Schur vectors. |

$\left.\begin{array}{ll}\text { single precision } & \begin{array}{l}\text { A floating-point data type. On Intel }{ }^{\circledR} \text { processors, this } \\ \text { data type allows you to store real numbers } x \text { such that } \\ \\ \\ \\ \\ \text { For this data type, the machine precision }(\varepsilon) \text { is } \\ \text { approximately } 10^{-7} \text {, which means that single-precision }\end{array} \\ & \text { numbers usually contain no more than } 7 \text { significant } \\ \text { decimal digits. For more information, refer to }\end{array}\right\}$

| trapezoidal matrix | A matrix A such that $A=\left(A_{1} A_{2}\right)$, where A_{1} is an upper triangular matrix, A_{2} is a rectangular matrix. |
| :---: | :---: |
| triangular matrix | A matrix A is called an upper (lower) triangular matrix if all its subdiagonal elements (superdiagonal elements) are zeros. Thus, for an upper triangular matrix $a_{i j}=0$ when $i>j$; for a lower triangular matrix $a_{i j}=0$ when $i<j$. |
| tridiagonal matrix | A matrix whose non-zero elements are in three diagonals only: the leading diagonal, the first subdiagonal, and the first super-diagonal. |
| unitary matrix | A complex square matrix A whose conjugate and inverse are equal, that is, that is, $A^{H}=A^{-1}$, and therefore $A A^{H}=A^{H} A=I$. All eigenvalues of a unitary matrix have the absolute value 1. |
| VML | Abbreviation for Vector Mathematical Library. See Chapter 9 of this book. |
| VSL | Abbreviation for Vector Statistical Library. See Chapter 10 of this book. |
| Z | When found as the first letter of routine names, z indicates the usage of double-precision complex data type. |

Bibliography

For more information about the BLAS, Sparse BLAS, LAPACK, ScaLAPACK, Sparse Solver, VML, VSL, and DFT routines, refer to the following publications:

- BLAS Level 1
C. Lawson, R. Hanson, D. Kincaid, and F. Krough. Basic Linear Algebra Subprograms for Fortran Usage, ACM Transactions on Mathematical Software, Vol.5, No. 3 (September 1979) 308-325.
- BLAS Level 2
J. Dongarra, J. Du Croz, S. Hammarling, and R. Hanson. An Extended Set of Fortran Basic Linear Algebra Subprograms, ACM Transactions on Mathematical Software, Vol.14, No. 1 (March 1988) 1-32.
- BLAS Level 3
J. Dongarra, J. DuCroz, I. Duff, and S. Hammarling. A Set of Level 3 Basic Linear Algebra Subprograms, ACM Transactions on Mathematical Software (December 1989).
- Sparse BLAS
D. Dodson, R. Grimes, and J. Lewis. Sparse Extensions to the FORTRAN Basic Linear Algebra Subprograms, ACM Transactions on Math Software, Vol.17, No. 2 (June 1991).
D. Dodson, R. Grimes, and J. Lewis. Algorithm 692: Model Implementation and Test Package for the Sparse Basic Linear Algebra Subprograms, ACM Transactions on Mathematical Software, Vol.17, No. 2 (June 1991).
- LAPACK
[LUG] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK Users' Guide, Third Edition, Society for Industrial and Applied Mathematics (SIAM), 1999.
[Golub96] G. Golub and C. Van Loan. Matrix Computations, Johns Hopkins University Press, Baltimore, third edition,1996.
- ScaLAPACK
[SLUG] L. Blackford, J. Choi, A.Cleary, E. D'Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K.Stanley, D. Walker, and R. Whaley. ScaLAPACK Users' Guide, Society for Industrial and Applied Mathematics (SIAM), 1997.
- Sparse Solver
[1] I. S. Duff and J. Koster. The design and use of algorithms for permuting large entries to the diagonal of sparse matrices. SIAM J. Matrix Analysis and Applications, 20(4):889-901, 1999.
G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM Journal on Scientific Computing, 20(1):359-392, 1998.
R. Menon L. Dagnum. OpenMP: An Industry-Standard API for Shared-Memory Programming. IEEE Computational Science \& Engineering, 1:46-55, 1998. http://www.openmp.org.
X.S. Li and J.W. Demmel. A scalable sparse direct solver using static pivoting. In Proceeding of the 9th SIAM conference on Parallel Processing for Scientific Computing, San Antonio, Texas, March 22-34,1999.
J.W.H. Liu. Modification of the Minimum-Degree algorithm by multiple elimination. ACM Transactions on Mathematical Software, 11(2):141-153, 1985.
O. Schenk. Scalable Parallel Sparse LU Factorization Methods on Shared Memory Multiprocessors. PhD thesis, ETH Zurich, 2000.
[7]
O. Schenk and K. Gartner. Two-level scheduling in PARDISO: Improved scalability on shared memory multiprocessing systems. Parallel Computing, 28:187-197, 2002.
[8] O. Schenk and K. Gartner. Solving unsymmetric sparse systems of linear equations with PARDISO. Future Generation Computer Systems. Accepted, in press., 2003.
[9] O. Schenk and K. Gartner. Sparse factorization with two-level scheduling in PARDISO. In Proceeding of the 10th SIAM conference on Parallel Processing for Scientific Computing, Portsmouth, Virginia, March 12-14, 2001.
[10] O. Schenk, K. Gartner, and W. Fichtner. Efficient sparse LU factorization with left-right looking strategy on shared memory multiprocessors. BIT, 40(1):158-176, 2000.
[11] P. Sonneveld. CGS, a fast Lanczos-type solver for nonsymmetric linear systems. SIAM Journal on Scientific and Statistical Computing, 10:36-52, 1989.
- VSL
[VSL Notes] Document included with Intel® MKL product (file name vslnotes.pdf).
[Bratley87] Bratley P., Fox B.L., and Schrage L.E. A Guide to Simulation. 2nd edition. Springer-Verlag, New York, 1987.
[Bratley88] Bratley P. and Fox B.L. Implementing Sobol`s Quasirandom Sequence Generator, ACM Transactions on Mathematical Software, Vol. 14, No. 1, Pages 88-100, March 1988.
[Bratley92] Bratley P., Fox B.L., and Niederreiter H. Implementation and Tests of Low-Discrepancy Sequences, ACM Transactions on Modeling and Computer Simulation, Vol. 2, No. 3, Pages 195-213, July 1992.
[Coddington94] Coddington, P. D. Analysis of Random Number Generators Using Monte Carlo Simulation. Int. J. Mod. Phys. C-5, 547, 1994.
[Gentle98] Gentle, James E. Random Number Generation and Monte Carlo Methods, Springer-Verlag New York, Inc., 1998.
[L'Ecuyer94] L'Ecuyer, Pierre. Uniform Random Number Generation. Annals of Operations Research, 53, 77-120, 1994.
[L'Ecuyer99] L'Ecuyer, Pierre. Tables of Linear Congruential Generators of Different Sizes and Good Lattice Structure. Mathematics of Computation, 68, 225, 249-260, 1999.
[L’Ecuyer99a] L'Ecuyer, Pierre. Good Parameter Sets for Combined Multiple Recursive Random Number Generators. Operations Research, 47, 1, 159-164, 1999.
[L'Ecuyer01] L'Ecuyer, Pierre. Software for Uniform Random Number Generation: Distinguishing the Good and the Bad. Proceedings of the 2001 Winter Simulation Conference, IEEE Press, 95-105, Dec. 2001.
[Kirkpatrick81] Kirkpatrick, S., and Stoll, E. A Very Fast Shift-Register Sequence Random Number Generatory. Journal of Computational Physics, V. 40. 517-526, 1981.
[Knuth81] Knuth, Donald E. The Art of Computer Programming, Volume 2, Seminumerical Algorithms. 2nd edition, Addison-Wesley Publishing Company, Reading, Massachusetts, 1981.
[NAG] NAG Numerical Libraries. http://www.nag.co.uk/numeric/numerical libraries.asp
[Sobol76] Sobol, I.M., and Levitan, Yu.L. The production of points uniformly distributed in a multidimensional cube. Preprint 40, Institute of Applied Mathematics, USSR Academy of Sciences, 1976 (In Russian).
- DFT
[1] E. Oran Brigham, The Fast Fourier Transform and Its Applications, Prentice Hall, New Jersey, 1988.
Athanasios Papoulis, The Fourier Integral and its Applications, 2nd edition, McGraw-Hill, New York, 1984.

Ping Tak Peter Tang, DFTI, a New API for DFT: Motivation, Design, and Rationale, July 2002.

Charles Van Loan, Computational Frameworks for the Fast Fourier Transform, SIAM, Philadelphia, 1992

- VML
J.M.Muller. Elementary functions: algorithms and implementation, Birkhauser Boston, 1997.
IEEE Standard for Binary Floating-Point Arithmetic. ANSI/IEEE Std 754-1985.

For a reference implementation of BLAS, sparse BLAS, LAPACK, and ScaLAPACK packages (without platform-specific optimizations) visit www.netlib.org.

Index

Symbols

?asum, 2-5
? axpy, 2-6
?axpyi, 2-104
?bdsdc, 4-92
?bdsqr, 4-88
?combamax 1, 7-9
?copy, 2-7
?dbtf2, 7-182
?dbtrf, 7-184
?disna, 4-145
?dot, 2-8
?dotc, 2-10
?dotci, 2-107
?doti, 2-106
?dotu, 2-11
?dotui, 2-108
?dttrf, 7-185
?dttrsv, 7-187
?fft1d, 12-4, 12-7, 12-12
?fft1dc, 12-5, 12-9, 12-13
?fft2d, 12-17, 12-20, 12-26
?fft2dc, 12-18, 12-22, 12-27
?gbbrd, 4-73
?gbcon, 3-59
? gbequ, 3-136
?gbmv, 2-25
?gbrfs, 3-87
?gbsv, 3-152
?gbsvx, 3-153
?gbtf2, 5-26
?gbtrf, 3-9
?gbtrs, 3-31
?gebak, 4-181
?gebal, 4-178
?gebd2, 5-27
?gebrd, 4-70
?gecon, 3-57
?geequ, 3-134
?gees, 4-348
?geesx, 4-353
?geev, 4-358
?geevx, 4-362
?gehd2, 5-29
?gehrd, 4-166
?gelq2, 5-32
?gelqf, 4-23
?gels, 4-258
?gelsd, 4-268
?gelss, 4-265
?gelsy, 4-261
?gemm, 2-77
?gemv, 2-28
?geq12, 5-33
?geqlf, 4-34
?geqp3, 4-12
?geqpf, 4-9
?geqr2, 5-35
?geqrf, 4-7, 6-75
?ger, 2-30
?gerc, 2-32
?gerfs, 3-84
?gerq2, 5-37
?gerqf, 4-44
?geru, 2-33
?gesc2, 5-38
?gesdd, 4-372
?gesv, 3-145
?gesvd, 4-368
?gesvx, 3-146
?getc2, 5-40
?getf2, 5-41
?getrf, 3-7
?getri, 3-119
?getrs, 3-29
?ggbak, 4-217
?ggbal, 4-214
?gges, 4-439
?ggesx, 4-445
?ggev, 4-452
?ggevx, 4-456
?ggglm, 4-275
?gghrd, 4-211
?gglse, 4-272
?ggqrf, 4-62
?ggrqf, 4-65
?ggsvd, 4-376
?ggsvp, 4-247
?gtcon, 3-61
?gthr, 2-109
?gthrz, 2-110
?gtrfs, 3-89
?gtsv, 3-159
?gtsvx, 3-160
?gttrf, 3-11
?gttrs, 3-33
?gtts2, 5-42
?hbev, 4-320
?hbevd, 4-324
?hbevx, 4-332
?hbgst, 4-158
?hbgv, 4-423
?hbgvd, 4-428
?hbgvx, 4-435
?hbtrd, 4-123
?hecon, 3-73
?heev, 4-280
?heevd, 4-284
?heevr, 4-298
?heevx, 4-290
?heft2, 5-311
?hegst, 4-150
?hegv, 4-385
?hegvd, 4-391
?hegvx, 4-398
?hemm, 2-79
?hemv, 2-37
?her, 2-39
?her2, 2-41
?her2k, 2-84
?herfs, 3-104
?herk, 2-82
?hesv, 3-193
?hesvx, 3-195
?hetrd, 4-105
?hetrf, 3-22
?hetri, 3-126
?hetrs, 3-45
?hgeqz, 4-219
?hpcon, 3-76
?hpev, 4-305
?hpevd, 4-309
?hpevx, 4-315
?hpgst, 4-154
?hpgv, 4-404
?hpgvd, 4-410
?hpgvx, 4-417
?hpmv, 2-43
?hpr, 2-45
?hpr2, 2-46
?hprfs, 3-108
?hpsvx, 3-207
?hptrd, 4-116
?hptrf, 3-27
?hptri, 3-129
?hptrs, 3-49
?hsein, 4-187
?hseqr, 4-183
?labrd, 5-44
?lacgv, 5-11
?lacon, 5-47
?lacpy, 5-48
?lacrm, 5-12
?lacrt, 5-13
?ladiv, 5-49
?lae2, 5-51
?laebz, 5-52
?laed0, 5-56
?laed1, 5-59
?laed2, 5-61
?laed3, 5-63
?laed4, 5-66
?laed5, 5-67
?laed6, 5-68
?laed7, 5-70
?laed8, 5-73
?laed9, 5-77
?laeda, 5-79
?laein, 5-81
?laesy, 5-14
?laev2, 5-84
?laexc, 5-85
?lag2, 5-87
?lags2, 5-89
?lagtf, 5-91
?lagtm, 5-93
?lagts, 5-95
?lagv2, 5-97
?lahef, 5-260
?lahqr, 5-99
?lahrd, 5-101
?laic 1, 5-104
?laln2, 5-106
?lals0, 5-109
?lalsa, 5-113
?lalsd, 5-117
?lamc1, 5-328
?lamc2, 5-329
?lamc3, 5-330
?lamc4, 5-331
?lamc5, 5-331
?lamch, 5-327
?lamrg, 5-119
?lamsh, 7-173
?langb, 5-120
?lange, 5-122
?langt, 5-124
?lanhb, 5-128
?lanhe, 5-136
?lanhp, 5-132
?lanhs, 5-125
?lansb, 5-126
?lansp, 5-130
?lanst/?lanht, 5-133
?lansy, 5-135
?lantb, 5-138
?lantp, 5-140
?lantr, 5-142
?lanv2, 5-144
?lapll, 5-145
?lapmt, 5-146
?lapy2, 5-147
?lapy3, 5-148
?laqgb, 5-149
?laqge, 5-151
?laqp2, 5-153
?laqps, 5-154
?laqsb, 5-157
?laqsp, 5-159
?laqsy, 5-160
?laqtr, 5-162
?lar1v, 5-165
?lar2v, 5-167
?laref, 7-175
?larf, 5-168
?larfb, 5-170
?larfg, 5-172
?larft, 5-174
?larfx, 5-177
?largv, 5-178
?larnv, 5-180
?larrb, 5-181
?larre, 5-183
?larrf, 5-185
?larrv, 5-187
?lartg, 5-190
?lartv, 5-191
?laruv, 5-193
?larz, 5-194
?larzb, 5-196
?larzt, 5-198
?las2, 5-201
?lascl, 5-202
?lasd0, 5-204
?lasd1, 5-206
?lasd2, 5-209
?lasd3, 5-212
?lasd4, 5-215
?lasd5, 5-217
?lasd6, 5-218
?lasd7, 5-223
?lasd8, 5-226
?lasd9, 5-228
?lasda, 5-230
?lasdq, 5-234
?lasdt, 5-237
?laset, 5-238
?lasorte, 7-177
?lasq1, 5-239
?lasq2, 5-240
?lasq3, 5-242
?lasq4, 5-243
?lasq5, 5-245
?lasq6, 5-246
?lasr, 5-247
?lasrt, 5-249
?last2, 7-178
?lassq, 5-250
?lasv2, 5-252
?laswp, 5-254
?lasy2, 5-255
?lasyf, 5-257
?latbs, 5-262
?latdf, 5-264
?latps, 5-266
?latrd, 5-269
?latrs, 5-272
?latrz, 5-276
?lauu2, 5-278
?lauum, 5-280
?nrm2, 2-12
?opgtr, 4-113
?opmtr, 4-114
?org21/?ung21, 5-281
?org2r/?ung2r, 5-283
?orgbr, 4-76
?orghr, 4-168
?orgl2/?ungl2, 5-284
?orglq, 4-26
?orgql, 4-36
?orgqr, 4-15
?orgr2/?ungr2, 5-286
?orgrq, 4-46
?orgtr, 4-101
?orm21/?unm21, 5-287
?orm2r/?unm2r, 5-290
?ormbr, 4-79
?ormhr, 4-170
?orml2/?unml2, 5-292
?ormlq, 4-28
?ormql, 4-40
?ormqr, 4-17
?ormr2/?unmr2, 5-294
?ormr3/?unmr3, 5-297
?ormrq, 4-50
?ormrz, 4-56
?ormtr, 4-103
?pbcon, 3-67
?pbequ, 3-141
?pbrfs, 3-97
?pbstf, 4-160
?pbsv, 3-176
?pbsvx, 3-178
?pbtf2, 5-299
?pbtrf, 3-16
?pbtrs, 3-39
?pocon, 3-63
?poequ, 3-138
?porfs, 3-92
?posv, 3-164
?posvx, 3-166
?potf2, 5-301
?potrf, 3-12
?potri, 3-121
?potrs, 3-35
?ppcon, 3-65
?ppequ, 3-140
?pprfs, 3-94
?ppsv, 3-170
?ppsvx, 3-172
?pptrf, 3-14
?pptri, 3-122
?pptrs, 3-37
?ptcon, 3-69
?pteqr, 4-137
?ptrfs, 3-99
?ptsv, 3-182
?ptsvx, 3-184
?pttrf, 3-18
?pttrs, 3-41
?pttrsv, 7-188
?ptts2, 5-303
?rot, 2-13
?rot (complex), 5-16
?rotg, 2-15
?roti, 2-111
?rotm, 2-16
?rotmg, 2-18
?rscl, 5-304
?sbev, 4-318
?sbevd, 4-322
?sbevx, 4-328
?sbgst, 4-155
?sbgv, 4-421
?sbgvd, 4-425
?sbgvx, 4-431
?sbmv, 2-48
?sbtrd, 4-121
?scal, 2-19
?sctr, 2-112
?sdot, 2-9
?spcon, 3-74
?spev, 4-303
?spevd, 4-306
?spevx, 4-312
?spgst, 4-152
?spgv, 4-402
?spgvd, 4-407
?spgvx, 4-413
?spmv, 2-51, 5-17
?spr, 2-53, 5-19
?spr2, 2-54
?sprfs, 3-106
?spsv, 3-199
?spsvx, 3-201
?sptrd, 4-111
?sptrf, 3-24
?sptri, 3-127
?sptrs, 3-47
?stebz, 4-140
?stedc, 4-130
?stegr, 4-133
?stein, 4-143
?stein2, 7-179
?steqr, 4-127
?steqr2, 7-190
?sterf, 4-125
?stev, 4-336
?stevd, 4-338
?stevr, 4-344
?stevx, 4-341
?sum1, 5-25
?swap, 2-20
?sycon, 3-71
?syev, 4-278
?syevd, 4-282
?syevr, 4-294
?syevx, 4-287
?sygs $2 /$?hegs2, 5-305
?sygst, 4-148
?sygv, 4-382
?sygvd, 4-388
?sygvx, 4-394
?symm, 2-87
?symv, 2-56
?symv (complex), 5-20
?syr, 2-58
?syr (complex), 5-22
?syr2, 2-60
?syr2k, 2-93
?syrfs, 3-101
?syrk, 2-90
?sysv, 3-187
?sysvx, 3-189
?sytd2/?hetd2, 5-307
?sytf2, 5-309
?sytrd, 4-99
?sytrf, 3-19
?sytri, 3-124
?sytrs, 3-43
?tbcon, 3-82
?tbmv, 2-62
?tbsv, 2-65
?tbtrs, 3-55
?tgevc, 4-225
?tgex2, 5-313
?tgexc, 4-229
?tgsen, 4-232
?tgsja, 4-251
?tgsna, 4-242
?tgsy2, 5-315
?tgsyl, 4-238
?tpcon, 3-80
?tpmv, 2-67
?tprfs, 3-113
?tpsv, 2-69
?tptri, 3-132
?tptrs, 3-53
?trcon, 3-78
?treve, 4-192
?trexc, 4-201
?trmm, 2-96
?trmv, 2-71
?trrfs, 3-111
?trsen, 4-203
?trsm, 2-98
?trsna, 4-196
?trsv, 2-73
?trsyl, 4-207
?trti2, 5-319
?trtri, 3-131
?trtrs, 3-51
?tzrzf, 4-54
?ungbr, 4-82
?unghr, 4-173
?unglq, 4-30
?ungql, 4-38
?ungqr, 4-19
?ungrq, 4-48
? ungtr, 4-107
?unmbr, 4-85
?unmhr, 4-175
?unmlq, 4-32
?unmql, 4-42
? unmqr, 4-21
?unmrq, 4-52
?unmrz, 4-59
?unmtr, 4-109
?upgtr, 4-118
?upmtr, 4-119

A

absolute value of a vector element
largest, 2-21
smallest, 2-22
accuracy modes, in VML, 9-2
adding magnitudes of the vector elements, 2-5
arguments
matrix, B-3
sparse vector, 2-102
vector, B-1
array descriptor, 6-2
auxiliary routines
LAPACK, 5-1
ScaLAPACK, 7-1

B

balancing a matrix, 4-178
band storage scheme, B-3
Bernoulli, 10-58
bidiagonal matrix, 4-68, 6-191
Binomial, 10-61
BLACS, 6-1
BLAS Level 1 functions
?asum, 2-4, 2-5
?dot, 2-4, 2-8
?dotc, 2-4, 2-10
?dotu, 2-4, 2-11
?nrm2, 2-4, 2-12
?sdot, 2-4, 2-9
code example, C-1
i?amax, 2-4, 2-21
i?amin, 2-4, 2-22
BLAS Level 1 routines
?axpy, 2-4, 2-6
?copy, 2-4, 2-7
?rot, 2-4, 2-13
?rotg, 2-4, 2-15
?rotm, 2-4, 2-16
?rotmg, 2-18
?rotmq, 2-4
?scal, 2-4, 2-19
?swap, 2-4, 2-20
code example, C-2
BLAS Level 2 routines
?gbmv, 2-24, 2-25
?gemv, 2-24, 2-28
?ger, 2-24, 2-30
?gerc, 2-24, 2-32
? geru, 2-24, 2-33
?hbmv, 2-24, 2-35
?hemv, 2-24, 2-37
?her, 2-24, 2-39
?her2, 2-24, 2-41
?hpmv, 2-24, 2-43
?hpr, 2-24, 2-45
?hpr2, 2-24, 2-46
?sbmv, 2-24, 2-48
?spmv, 2-24, 2-51
?spr, 2-24, 2-53
?spr2, 2-24, 2-54
?symv, 2-24, 2-56
?syr, 2-24, 2-58
?syr2, 2-24, 2-60
?tbmv, 2-24, 2-62
?tbsv, 2-24, 2-65
?tpmv, 2-25, 2-67
?tpsv, 2-25, 2-69
?trmv, 2-25, 2-71
?trsv, 2-25, 2-73
code example, C-3
BLAS Level 3 routines
?gemm, 2-76, 2-77
?hemm, 2-76, 2-79
?her2k, 2-76, 2-84
?herk, 2-76, 2-82
?symm, 2-76, 2-87
?syr2k, 2-76, 2-93
?syrk, 2-76, 2-90
?trmm, 2-76, 2-96
?trsm, 2-76, 2-98
code example, C-4
BLAS routines
matrix arguments, B-3
routine groups, 1-6, 2-1
vector arguments, $B-1$
block-cyclic distribution, 6-2
block-splitting method, 10-6
Bunch-Kaufman factorization, 3-7, 6-6
Hermitian matrix, 3-22
packed storage, 3-27
symmetric matrix, 3-19 packed storage, 3-24

C

C interface, 12-2
Cauchy, 10-44
CBLAS, D-1
arguments, D-1
level 1 (vector operations), D-3
level 2 (matrix-vector operations), D-5
level 3 (matrix-matrix operations), D-12
sparse BLAS, D-16

Cholesky factorization
Hermitian positive-definite matrix, 3-12, 6-13
band storage, 3-16, 6-14
packed storage, 3-14
symmetric positive-definite matrix, 3-12, 6-13
band storage, 3-16, 6-14
packed storage, 3-14
code examples
BLAS Level 1 function, C-1
BLAS Level 1 routine, C-2
BLAS Level 2 routine, C-3
BLAS Level 3 routine, C-4
CommitDescriptor, 11-10
communication subprograms, 6-1
complex-to-complex one-dimensional FFTs, 12-3
complex-to-complex two-dimensional FFTs, 12-16
complex-to-real one-dimensional FFTs, 12-10
complex-to-real two-dimensional FFTs, 12-25
computational node, 10-2
Computational Routines, 4-5
ComputeBackward, 11-16
ComputeForward, 11-13
condition number
band matrix, 3-59
general matrix, 3-57, 6-42, 6-45, 6-48
Hermitian matrix, 3-73
packed storage, 3-76
Hermitian positive-definite matrix, 3-63
band storage, 3-67
packed storage, 3-65
tridiagonal, 3-69
symmetric matrix, 3-71, 4-145
packed storage, 3-74
symmetric positive-definite matrix, 3-63
band storage, 3-67
packed storage, 3-65
tridiagonal, 3-69
triangular matrix, 3-78
band storage, 3-82
packed storage, 3-80
tridiagonal matrix, 3-61
configuration parameters, in DFTI, 11-2
Continuous Distribution Generators, 9-7, 10-26
converting a sparse vector into compressed storage form, 2-109
and writing zeros to the original vector, 2-110
converting compressed sparse vectors into full storage form, 2-112
CopyDescriptor, 11-11
copying vectors, 2-7
CopyStream, 10-16
CopyStreamState, 10-17
CreateDescriptor, 11-7
D
data structure requirements for FFTs, 12-2
data type
in VML, 9-2
shorthand, 1-8
DeleteStream, 10-15
Descriptor configuration, in DFTI, 11-4
Descriptor Manipulation, in DFTI, 11-4
DFT computation, 11-4
DFT routines
descriptor configuration
GetValue, 11-21
SetValue, 11-18
descriptor manipulation
CommitDescriptor, 11-10
CopyDescriptor, 11-11
CreateDescriptor, 11-7
FreeDescriptor, 11-12
DFT computation
ComputeBackward, 11-16
ComputeForward, 11-13
status checking
ErrorClass, 11-5
ErrorMessage, 11-6
diagonally dominant-like banded matrix
solving systems of linear equations, 6-36
diagonally dominant-like tridiagonal matrix
solving systems of linear equations, 6-34
dimension, B-1
Direct Sparse Solver (DSS) Interface Routines, 8-15
Discrete Distribution Generators, 10-26

Discrete Fourier Transform
CommitDescriptor, 11-10
ComputeBackward, 11-16
ComputeForward, 11-13
CopyDescriptor, 11-11
CreateDescriptor, 11-7
ErrorClass, 11-5
ErrorMessage, 11-6
FreeDescriptor, 11-12
GetValue, 11-21
SetValue, 11-18
distributed-memory computations, 6-1
dot product
complex vectors, conjugated, 2-10
complex vectors, unconjugated, 2-11
real vectors, 2-8
real vectors (extended precision), 2-9
sparse complex vectors, 2-108
sparse complex vectors, conjugated, 2-107
sparse real vectors, 2-106
Driver Routines, 3-144, 4-257

E

eigenvalue problems
general matrix, 4-162, 4-210, 6-178
generalized form, 4-147
Hermitian matrix, 4-95
symmetric matrix, 4-95
eigenvalues. See eigenvalue problems
eigenvectors. See eigenvalue problems
error diagnostics, in VML, 9-6
error estimation for linear equations
distributed tridiagonal coefficient matrix, 6-59
Error reporting routine, XERBLA, 2-1
ErrorClass, 11-5
ErrorMessage, 11-6
errors in solutions of linear equations
distributed tridiagonal coefficient matrix, 6-59
general matrix, 3-84, 6-51
band storage, 3-87
Hermitian matrix, 3-104
packed storage, 3-108
Hermitian positive-definite matrix, 3-92, 3-99
band storage, 3-97
packed storage, 3-94
symmetric matrix, 3-101
packed storage, 3-106
symmetric positive-definite matrix, 3-92, 3-99
band storage, 3-97
packed storage, 3-94
symmetric/Hermitian positive-definite distributed
matrix, 6-55
triangular matrix, 3-111
band storage, 3-116
packed storage, 3-113
tridiagonal matrix, 3-89
Euclidean norm
of a vector, 2-12
Exponential, 10-36

F

factorization
See also triangular factorization
Bunch-Kaufman, 3-7, 6-6
Cholesky, 3-7, 6-6
LU, 3-7, 6-6
orthogonal (LQ, QR), 4-6, 6-75
fast Fourier transforms
C interface, 12-2
data storage types, 12-2
data structure requirements, 12-2
routines
?fft1d, 12-4, 12-7, 12-12
?fft1dc, 12-5, 12-9, 12-13
?fft2d, 12-17, 12-20, 12-26
?fft2dc, 12-18, 12-22, 12-27
FFT. See fast Fourier transforms
fill-in, for sparse matrices, A-4
finding
element of a vector with the largest absolute value, 2-21
element of a vector with the smallest absolute value, 2-22
font conventions, 1-8
forward or inverse FFTs, 12-4, 12-5, 12-17, 12-18
FreeDescriptor, 11-12
full storage scheme, B-3
function name conventions, in VML, 9-2

G

gathering sparse vector's elements into compressed form, 2-109
and writing zeros to these elements, 2-110
Gaussian, 10-29
GaussianMV, 10-32
general matrix
eigenvalue problems, 4-162, 4-210, 6-178
estimating the condition number, 3-57, 6-42, 6-45, 6-48
band storage, 3-59
inverting the matrix, 3-119, 6-64
LQ factorization, 4-23, 6-92
LU factorization, 3-7, 6-6
band storage, 3-9, 6-8, 6-10, 7-184
matrix-vector product, 2-28
band storage, 2-25
QL factorization, 4-34, 6-106
QR factorization, 4-7, 4-65, 6-75
with pivoting, 4-9, 4-12, 6-78
rank-1 update, 2-30
rank-1 update, conjugated, 2-32
rank-l update, unconjugated, 2-33
RQ factorization, 4-44, 6-149
scalar-matrix-matrix product, 2-77
solving systems of linear equations, 3-29, 6-22
band storage, 3-31, 6-24
general rectangular matrix
RQ factorization, 6-120
generalized eigenvalue problems, 4-147
See also LAPACK routines, generalized eigenvalue problems
complex Hermitian-definite problem, 4-150, 6-209
band storage, 4-158
packed storage, 4-154
real symmetric-definite problem, 4-148, 6-207
band storage, 4-155
packed storage, 4-152
generation methods, 10-2
Geometric, 10-59

GetBrngProperties, 10-73
GetNumRegBrng, 10-25
GetStreamStateBrng, 10-24
GetValue, 11-21
GFSR, 10-3
Givens rotation
modified Givens transformation parameters, 2-18
of sparse vectors, 2-111
parameters, 2-15
global array, 6-2
Gumbel, 10-52

H

Hermitian matrix, 4-95, 4-147
Bunch-Kaufman factorization, 3-22
packed storage, 3-27
estimating the condition number, 3-73
packed storage, 3-76
generalized eigenvalue problems, 4-147
inverting the matrix, 3-126
packed storage, 3-129
matrix-vector product, 2-37 band storage, 2-35
packed storage, 2-43
rank-1 update, 2-39
packed storage, 2-45
rank-2 update, 2-41
packed storage, 2-46
rank-2k update, 2-84
rank-n update, 2-82
scalar-matrix-matrix product, 2-79
solving systems of linear equations, 3-45
packed storage, 3-49
Hermitian positive-definite matrix
Cholesky factorization, 3-12, 6-13
band storage, 3-16, 6-14
packed storage, 3-14
estimating the condition number, 3-63
band storage, 3-67
packed storage, 3-65
inverting the matrix, 3-121
packed storage, 3-122
solving systems of linear equations, 3-35, 6-27
band storage, 3-39
packed storage, 3-37
Hermitian positive-definite tridiagonal matrix
solving systems of linear equations, 6-31
Hypergeometric, 10-63

I

i?amax, 2-21
i?amin, 2-22
i?max1, 5-24
ilaenv, 5-321
increment, B-1
inverse matrix. See inverting a matrix
inverting a matrix
general matrix, 3-119, 6-64
Hermitian matrix, 3-126
packed storage, 3-129
Hermitian positive-definite matrix, 3-121
packed storage, 3-122
symmetric matrix, 3-124
packed storage, 3-127
symmetric positive-definite matrix, 3-121
packed storage, 3-122
symmetric/Hermitian positive definite distributed
matrix, 6-66
triangular distributed matrix, 6-68
triangular matrix, 3-131
packed storage, 3-132

L
LAPACK routines
auxiliary routines
?gbtf2, 5-26
?gebd2, 5-27
?gehd2, 5-29
?gelq2, 5-32
?geq12, 5-33
?geqr2, 5-35
?gerq2, 5-37
?gesc2, 5-38
?getc2, 5-40
?getf2, 5-41
?gtts2, 5-42
?hetf2, 5-311
?labrd, 5-44
?lacgv, 5-11
?lacon, 5-47
?lacpy, 5-48
?lacrm, 5-12
?lacrt, 5-13
?ladiv, 5-49
?lae2, 5-51
?laebz, 5-52
?laed0, 5-56
?laed1, 5-59
?laed2, 5-61
?laed3, 5-63
?laed4, 5-66
?laed5, 5-67
?laed6, 5-68
?laed7, 5-70
?laed8, 5-73
?laed9, 5-77
?laeda, 5-79
?laein, 5-81
?laesy, 5-14
?laev2, 5-84
?laexc, 5-85
?lag2, 5-87
?lags2, 5-89
?lagtf, 5-91
?lagtm, 5-93
?lagts, 5-95
?lagv2, 5-97
?lahef, 5-260
?lahqr, 5-99
?lahrd, 5-101
?laic1, 5-104
?laln2, 5-106
?lals0, 5-109
?lalsa, 5-113
?lalsd, 5-117
?lamrg, 5-119
?langb, 5-120
?lange, 5-122
?langt, 5-124
?lanhb, 5-128
?lanhe, 5-136
?lanhp, 5-132
?lanhs, 5-125
?lansb, 5-126
?lansp, 5-130
?lanst/?lanht, 5-133
?lansy, 5-135
?lantb, 5-138
?lantp, 5-140
?lantr, 5-142
?lanv2, 5-144
?lapll, 5-145
?lapmt, 5-146
?lapy2, 5-147
?lapy3, 5-148
?laqgb, 5-149
?laqge, 5-151
?laqp2, 5-153
?laqps, 5-154
?laqsb, 5-157
?laqsp, 5-159
?laqsy, 5-160
?laqtr, 5-162
?lar1v, 5-165
?lar2v, 5-167
?larf, 5-168
?larfb, 5-170
?larfg, 5-172
?larft, 5-174
?larfx, 5-177
?largv, 5-178
?larnv, 5-180
?larrb, 5-181
?larre, 5-183
?larrf, 5-185
?larrv, 5-187
?lartg, 5-190
?lartv, 5-191
?laruv, 5-193
?larz, 5-194
?larzb, 5-196
?larzt, 5-198
?las2, 5-201
?lascl, 5-202
?lasd0, 5-204
?lasd1, 5-206
?lasd2, 5-209
?lasd3, 5-212
?lasd4, 5-215
?lasd5, 5-217
?lasd6, 5-218
?lasd7, 5-223
?lasd8, 5-226
?lasd9, 5-228
?lasda, 5-230
?lasdq, 5-234
?lasdt, 5-237
?laset, 5-238
?lasq1, 5-239
?lasq2, 5-240
?lasq3, 5-242
?lasq4, 5-243
?lasq5, 5-245
?lasq6, 5-246
?lasr, 5-247
?lasrt, 5-249
?lassq, 5-250
?lasv2, 5-252
?laswp, 5-254
?lasy2, 5-255
?lasyf, 5-257
?latbs, 5-262
?latdf, 5-264
?latps, 5-266
?latrd, 5-269
?latrs, 5-272
?latrz, 5-276
?lauu2, 5-278
?lauum, 5-280
?org21/?ung21, 5-281
?org2r/?ung2r, 5-283
?orgl21/?ungl2, 5-284
?orgr2/?ungr2, 5-286
?orm21/?unm21, 5-287
?orm2r/?unm2r, 5-290
?orml2/?unml2, 5-292
?ormr2/?unmr2, 5-294
?ormr3/?unmr3, 5-297
?pbtf2, 5-299
?potf2, 5-301
?ptts2, 5-303
?rot, 5-16
?rscl, 5-304
?spmv, 5-17
?spr, 5-19
?sum1, 5-25
?sygs2/?hegs2, 5-305
?symv, 5-20
?syr, 5-22
?sytd2/?hetd2, 5-307
?sytf2, 5-309
? tgex2, 5-313
?tgsy2, 5-315
?trti2, 5-319
i? $\max 1,5-24$
condition number estimation
?disna, 4-145
?gbcon, 3-59
? gecon, 3-57
?gtcon, 3-61
?hecon, 3-73
?hpcon, 3-76
?pbcon, 3-67
?pocon, 3-63
?ppcon, 3-65
?ptcon, 3-69
?spcon, 3-74
?sycon, 3-71
?tbcon, 3-82
?tpcon, 3-80
?trcon, 3-78
driver routines
generalized LLS problems
?ggglm, 4-275
?gglse, 4-272
generalized nonsymmetric eigenproblems
?gges, 4-439
?ggesx, 4-445
?ggev, 4-452
?ggevx, 4-456
generalized symmetric definite eigenproblems
?hbgv, 4-423
?hbgvd, 4-428
?hbgvx, 4-435
?hegv, 4-385
?hegvd, 4-391
?hegvx, 4-398
?hpge, 4-404
?hpgvd, 4-410
?hpgvx, 4-417
?sbgv, 4-421
?sbgvd, 4-425
?sbgvx, 4-431
?spgv, 4-402
?spgvd, 4-407
?spgvx, 4-413
?sygv, 4-382
?sygvd, 4-388
?sygvx, 4-394
linear least squares problems
?gels, 4-258
?gelsd, 4-268
?gelss, 4-265
?gelsy, 4-261
nonsymmetric eigenproblems
?gees, 4-348
?geesx, 4-353
?geev, 4-358
?geevx, 4-362
singular value decomposition
?gesdd, 4-372
?gesvd, 4-368
?ggsvd, 4-376
solving linear equations
?gbsv, 3-152
?gbsvx, 3-153
?gesv, 3-145
?gesvx, 3-146
?gtsv, 3-159
?gtsvx, 3-160
?hesv, 3-193
?hesvx, 3-195
?hpsv, 3-205
?hpsvx, 3-207
?pbsv, 3-176
?pbsvx, 3-178
?posv, 3-164
?posvx, 3-166
?ppsv, 3-170
?ppsvx, 3-172
?ptsv, 3-182
?ptsvx, 3-184
?spsv, 3-199
?spsvx, 3-201
?sysv, 3-187
?sysvx, 3-189
symmetric eigenproblems
?hbev, 4-320
?hbevd, 4-324
?hbevx, 4-332
?heev, 4-280
?heevd, 4-284
?heevr, 4-298
?heevx, 4-290
?hpev, 4-305
?hpevd, 4-309
?hpevx, 4-315
?sbev, 4-318
?sbevd, 4-322
?sbevx, 4-328
?spev, 4-303
?spevd, 4-306
?spevx, 4-312
?stev, 4-336
?stevd, 4-338
?stevr, 4-344
?stevx, 4-341
?syev, 4-278
?syevd, 4-282
?syevr, 4-294
?syevx, 4-287
generalized eigenvalue problems
?hbgst, 4-158
?hegst, 4-150
?hpgst, 4-154
?pbstf, 4-160
?sbgst, 4-155
?spgst, 4-152
?sygst, 4-148
LQ factorization
?gelqf, 4-23
?orglq, 4-26
? ormlq, 4-28
?unglq, 4-30
?unmlq, 4-32
matrix equilibration
?gbequ, 3-136
?geequ, 3-134
?pbequ, 3-141
?poequ, 3-138
?ppequ, 3-140
matrix inversion
?getri, 3-119
?hetri, 3-126
?hptri, 3-129
?potri, 3-121
?pptri, 3-122
?sptri, 3-127
?sytri, 3-124
?tptri, 3-132
?trtri, 3-131
nonsymmetric eigenvalue problems
?gebak, 4-181
?gebal, 4-178
?gehrd, 4-166
?hsein, 4-187
?hseqr, 4-183
?orghr, 4-168
?ormhr, 4-170
?trevc, 4-192
?trexc, 4-201
?trsen, 4-203
?trsna, 4-196
?unghr, 4-173
? unmhr, 4-175
QL factorization
?geqlf, 4-34
?orgql, 4-36
?ormql, 4-40
?ungql, 4-38
?unmql, 4-42
QR factorization
?geqp $3,4-12$
?geqpf, 4-9
?geqrf, 4-7
?ggqrf, 4-62
?ggrqf, 4-65
?orgqr, 4-15
?ormqr, 4-17
?ungqr, 4-19
?unmqr, 4-21
p?geqrf, 6-75
RQ factorization
?gerqf, 4-44
?orgrq, 4-46
?ormrq, 4-50
?ungrq, 4-48
?unmrq, 4-52
RZ factorization
?ormrz, 4-56
?tzrzf, 4-54
?unmrz, 4-59
singular value decomposition
?bdsdc, 4-92
? bdsqr, 4-88
?gbbrd, 4-73
?gebrd, 4-70
?orgbr, 4-76
?ormbr, 4-79
? ungbr, 4-82
?unmbr, 4-85
solution refinement and error estimation
?gbrfs, 3-87
?gerfs, 3-84
?gtrfs, 3-89
?herfs, 3-104
?hprfs, 3-108
?pbrfs, 3-97
?porfs, 3-92
?pprfs, 3-94
?ptrfs, 3-99
?sprfs, 3-106
?syrfs, 3-101
?tbrfs, 3-116
?tprfs, 3-113
?trrfs, 3-111
solving linear equations
?gbtrs, 3-31
? getrs, 3-29
?gttrs, 3-33
?hetrs, 3-45
?hptrs, 3-49
?pbtrs, 3-39
?potrs, 3-35
?pptrs, 3-37
?pttrs, 3-41
?sptrs, 3-47
?sytrs, 3-43
?tbtrs, 3-55
?tptrs, 3-53
?trtrs, 3-51
Sylvester's equation
?trsyl, 4-207
symmetric eigenvalue problems
?disna, 4-145
?hbtrd, 4-123
?hetrd, 4-105
?hptrd, 4-116
?opgtr, 4-113
?opmtr, 4-114
? orgtr, 4-101
?ormtr, 4-103
?pteqr, 4-137
?sbtrd, 4-121
?sptrd, 4-111
?stebz, 4-140
?stedc, 4-130
?stegr, 4-133
?stein, 4-143
?steqr, 4-127
?sterf, 4-125
?sytrd, 4-99
?ungtr, 4-107
?unmtr, 4-109
?upgtr, 4-118
?upmtr, 4-119
triangular factorization
?gbtrf, 3-9
?getrf, 3-7
?gttrf, 3-11
?hetrf, 3-22
?hptrf, 3-27
?pbtrf, 3-16
?potrf, 3-12
?pptrf, 3-14
?pttrf, 3-18
?sptrf, 3-24
?sytrf, 3-19
p?dbtrf, 6-10
utility functions and routines
?labad, 5-326
?lame1, 5-328
?lamc2, 5-329
?lamc3, 5-330
?lamc4, 5-331
?lamc5, 5-331
?lamch, 5-327
ieeeck, 5-324
ilaenv, 5-321

1same, 5-325
1samen, 5-325
second/dsecnd, 5-332
xerbla, 5-333
Laplace, 10-39
leading dimension, B-6
leapfrog method, 10-6
LeapfrogStream, 10-18
length. See dimension
linear combination of vectors, 2-6
Linear Congruential Generator, 10-3
linear equations, solving
diagonally dominant-like banded matrix, 6-36
diagonally dominant-like tridiagonal matrix, 6-34
general matrix, 3-29, 6-22
band storage, 3-31, 6-24
Hermitian matrix, 3-45
packed storage, 3-49
Hermitian positive-definite matrix, 3-35, 6-27
band storage, 3-39
packed storage, 3-37
Hermitian positive-definite tridiagonal matrix, 6-31
symmetric matrix, 3-43
packed storage, 3-47
symmetric positive-definite matrix, 3-35, 6-27, 6-31
band storage, 3-39
packed storage, 3-37
triangular matrix, 3-51, 6-39
band storage, 3-55
packed storage, 3-53
tridiagonal matrix, 3-33, 3-41, 7-187
Lognormal, 10-49
LQ factorization, 4-5
computing the elements of orthogonal matrix Q, 4-26
real orthogonal matrix $\mathrm{Q}, 6-95$
unitary matrix $\mathrm{Q}, 4-30,6-97$
1same, 5-325
1samen, 5-325
LU factorization, 3-7, 6-6
band matrix, 3-9, 6-8, 6-10, 7-184
diagonally dominant-like tridiagonal matrix, 6-19
tridiagonal matrix, 3-11, 7-185

M

matrix arguments, B-3
column-major ordering, B-2, B-6
example, B-6
leading dimension, B-6
number of columns, B-6
number of rows, B-6
transposition parameter, B-6
matrix equation
$\mathrm{AX}=\mathrm{B}, 2-98,3-5,3-29,6-5,6-21$
matrix one-dimensional substructures, $\mathrm{B}-2$
matrix-matrix operation
product
general matrix, 2-77
rank-2k update
Hermitian matrix, 2-84
symmetric matrix, 2-93
rank-n update
Hermitian matrix, 2-82
symmetric matrix, 2-90
scalar-matrix-matrix product
Hermitian matrix, 2-79
symmetric matrix, 2-87
triangular matrix, 2-96
matrix-vector operation
product, 2-25, 2-28
Hermitian matrix, 2-37
band storage, 2-35
packed storage, 2-43
symmetric matrix, 2-56
band storage, 2-48
packed storage, 2-51
triangular matrix, 2-71
band storage, 2-62
packed storage, 2-67
rank-1 update, 2-30, 2-32, 2-33
Hermitian matrix, 2-39
packed storage, 2-45
symmetric matrix, 2-58
packed storage, 2-53
rank-2 update
Hermitian matrix, 2-41
packed storage, 2-46
symmetric matrix, 2-60
packed storage, 2-54
mkl_cvt_to_null_terminated_str, 8-28
MPI, 6-1
Multiplicative Congruential Generator, 10-3

N

naming conventions, 1-8
BLAS, 2-2
LAPACK, 3-2, 4-3, 6-3
Sparse BLAS, 2-102
VML, 9-2
NegBinomial, 10-68
NewStream, 10-12
NewStreamEx, 10-13

0

one-dimensional FFTs, 12-1
complex sequence, 12-8, 12-10, 12-12, 12-14
complex-to-complex, 12-3
complex-to-real, 12-10
computing a forward FFT, real input data, 12-7, 12-9
computing a forward or inverse FFT of a complex
vector, 12-4, 12-5
groups, 12-2
performing an inverse FFT, complex input data, 12-12, 12-13
real-to-complex, 12-6
storage effects, 11-36, 11-38, 12-7, 12-11
orthogonal matrix, 4-68, 4-95, 4-162, 4-210, 6-178, 6-191

P

p?dbsv, 6-224
p?dbtrf, 6-10
p?dbtrs, 6-36
p?dbtrsv, 7-11
p?dtsv, 6-226
p?dttrf, 6-19
p?dttrs, 6-34
p?dttrsv, 7-14
p?gbsv, 6-221
p?gbtrf, 6-8
p?gbtrs, 6-24
p?gebd2, 7-18
p?gebrd, 6-192
p?gecon, 6-42
p?gehd2, 7-22
p?gehrd, 6-179
p?gelq2, 7-25
p?gelqf, 6-92
p?gels, 6-243
p?geq12, 7-28
p?geqlf, 6-106
p?geqpf, 6-78
p?geqr2, 7-30
p?gerfs, 6-51
p?gerq2, 7-33
p? gerqf, 6-120
p?gesv, 6-213
p?gesvd, 6-264
p?gesvx, 6-215
p?getf2, 7-35
p?getrf, 6-6
p?getri, 6-64
p?getrs, 6-22
p?ggqrf, 6-144
p?ggrqf, 6-149
p?heevx, 6-257
p?hegst, 6-209
p?hegvx, 6-277
p?hetrd, 6-162
p?labad, 7-193
p?labrd, 7-37
p?lacgv, 7-6
p?lachkieee, 7-194
p?lacon, 7-41
p?laconsb, 7-43
p?lacp2, 7-44
p?lacp3, 7-46
p?lacpy, 7-48
p?laevswp, 7-50
p?lahqr, 6-189
p?lahrd, 7-52
p?laiect, 7-55
p?lamch, 7-195
p? lange, 7-56
p?lanhs, 7-58
p?lansy, p?lanhe, 7-60
p?lantr, 7-63
p?lapiv, 7-65
p?laqge, 7-68
p?laqsy, 7-70
p?lared1d, 7-73
p?lared2d, 7-74
p?larf, 7-76
p?larfb, 7-79
p?larfc, 7-82
p?larfg, 7-85
p?larft, 7-87
p?larz, 7-90
p?larzb, 7-94
p?larzc, 7-98
p?larzt, 7-101
p?lascl, 7-105
p?laset, 7-107
p?lasmsub, 7-109
p?lasnbt, 7-196
p?lassq, 7-110
p?laswp, 7-112
p?latra, 7-114
p?latrd, 7-115
p?latrs, 7-119
p?latrz, 7-121
p?lauu2, 7-124
p?lauum, 7-126
p?lawil, 7-127
p?max1, 7-7
p?org21/p?ung21, 7-128
p?org2r/p?ung2r, 7-131
p?orgl2/p?ungl2, 7-133
p?orglq, 6-95
p? orgql, 6-109
p? orgqr, 6-81
p?orgr2/p?ungr2, 7-136
p? orgrq, 6-123
p?orm21/p?unm21, 7-138
p?orm2r/p?unm2r, 7-142
p?ormbr, 6-197
p?ormhr, 6-182
p?orml2/p?unm12, 7-146
p?ormlq, 6-99
p?ormql, 6-113
p?ormqr, 6-85
p?ormr2/p?unmr2, 7-150
p?ormrq, 6-127
p?ormrz, 6-137
p?ormtr, 6-159
p?pbsv, 6-238
p?pbtrf, 6-14
p?pbtrsv, 7-154
p?pocon, 6-45
p?porfs, 6-55
p?posv, 6-229
p?posvx, 6-232
p?potf2, 7-162
p?potrf, 6-13
p?potri, 6-66
p?potrs, 6-27
p?ptsv, 6-241
p?pttrf, 6-17
p?pttrs, 6-31
p?pttrsv, 7-158
p?rscl, 7-163
p?stebz, 6-170
p?stein, 6-174
p?sum1, 7-10
p?syev, 6-247
p?syevx, 6-250
p?sygs2/p?hegs2, 7-165
p?sygst, 6-207
p?sygvx, 6-269
p?sytd2/p?hetd2, 7-167
p?sytrd, 6-154
p? trcon, 6-48
p?trrfs, 6-59
p? trti2, 7-171
p? trtri, 6-68
p?trtrs, 6-39
p?tzrzf, 6-134
p?unglq, 6-97
p?ungql, 6-111
p? ungqr, 6-83
p?ungrq, 6-125
p?unmbr, 6-202
p?unmhr, 6-186
p?unmlq, 6-103
p? unmql, 6-117
p? unmqr, 6-89
p?unmrq, 6-131
p? unmrz, 6-141
p? unmtr, 6-166
Packed formats, 11-31
packed storage scheme, B-3
parallel direct solver (Pardiso), 8-1
parameters
for a Givens rotation, 2-15
modified Givens transformation, 2-18
PARDISO, 8-1
pardiso function, 8-3
pdlaiectb, 7-55
pdlaiectl, 7-55
permutation matrix, A-3
platforms supported, 1-6
points
rotation in the modified plane, 2-16
rotation in the plane, 2-13
Poisson, 10-65
PoissonV, 10-67
positive-definite matrix
generalized eigenvalue problems, 4-148, 6-207
process grid, 6-2
product
See also dot product
matrix-vector
general matrix, 2-28
band storage, 2-25
Hermitian matrix, 2-37
band storage, 2-35
packed storage, 2-43
symmetric matrix, 2-56
band storage, 2-48
packed storage, 2-51
triangular matrix, 2-71
band storage, 2-62
packed storage, 2-67
scalar-matrix
general matrix, 2-77
Hermitian matrix, 2-79
scalar-matrix-matrix
general matrix, 2-77
Hermitian matrix, 2-79
symmetric matrix, 2-87
triangular matrix, 2-96
vector-scalar, 2-19
pseudorandom numbers, 10-1
pslaiect, 7-55
pxerbla, 7-197

Q

QL factorization
computing the elements of complex matrix Q, 4-38
orthogonal matrix $\mathrm{Q}, 6-109$
real matrix $\mathrm{Q}, 4-36$
unitary matrix $\mathrm{Q}, 6-111$
multiplying general matrix by
orthogonal matrix $\mathrm{Q}, 6-113$
unitary matrix Q, 6-117
QR factorization, 4-5
computing the elements of
orthogonal matrix $\mathrm{Q}, 4-15,6-81$
unitary matrix $\mathrm{Q}, 4-19,6-83$
with pivoting, 4-9, 4-12, 6-78
quasi-triangular matrix, 4-162, 4-210, 6-178

R

Random Number Generators, 10-1
random stream, 10-6
rank-1 update
conjugated, general matrix, 2-32
general matrix, 2-30
Hermitian matrix, 2-39
packed storage, 2-45
symmetric matrix, 2-58
packed storage, 2-53
unconjugated, general matrix, 2-33
rank-2 update
Hermitian matrix, 2-41
packed storage, 2-46
symmetric matrix, 2-60
packed storage, 2-54
rank-2k update
Hermitian matrix, 2-84
symmetric matrix, 2-93
rank-n update
Hermitian matrix, 2-82
symmetric matrix, 2-90
Rayleigh, 10-46
real-to-complex one-dimensional FFTs, 12-6
real-to-complex two-dimensional FFTs, 12-19
reducing generalized eigenvalue problems, 4-148, 6-207
refining solutions of linear equations
band matrix, 3-87
general matrix, 3-84, 6-51
Hermitian matrix, 3-104
packed storage, 3-108
Hermitian positive-definite matrix, 3-92, 3-99
band storage, 3-97
packed storage, 3-94
symmetric matrix, 3-101
packed storage, 3-106
symmetric positive-definite matrix, 3-92, 3-99
band storage, 3-97
packed storage, 3-94
symmetric/Hermitian positive-definite distributed matrix, 6-55
tridiagonal matrix, 3-89
RegisterBrng, 10-72
registering a basic generator, 10-70
reordering of matrices, A-4
rotation
of points in the modified plane, 2-16
of points in the plane, 2-13
of sparse vectors, 2-111
parameters for a Givens rotation, 2-15
parameters of modified Givens transformation, 2-18
routine name conventions
BLAS, 2-2
Sparse BLAS, 2-102
RQ factorization
computing the elements of
complex matrix $\mathrm{Q}, 4-48$
orthogonal matrix $\mathrm{Q}, 6-123$
real matrix $\mathrm{Q}, 4-46$
unitary matrix Q, 6-125

S

ScaLAPACK, 6-1
ScaLAPACK routines
auxiliary routines
?combamax1, 7-9
?dbtf2, 7-182
?dbtrf, 7-184
?dttrf, 7-185
?dttrsv, 7-187
?lamsh, 7-173
?laref, 7-175
?lasorte, 7-177
?lasrt2, 7-178
?pttrsv, 7-188
?stein2, 7-179
?steqr2, 7-190
p?dbtrsv, 7-11
p?gebd2, 7-18
p?gehd2, 7-22
p?gelq2, 7-25
p?geq12, 7-28
p? geqr2, 7-30
p?gerq2, 7-33
p?getf2, 7-35
p?labrd, 7-37
p?lacgv, 7-6
p?lacon, 7-41
p?laconsb, 7-43
p?lacp2, 7-44
p?lacp3, 7-46
p?lacpy, 7-48
p?laevswp, 7-50
p?lahrd, 7-52
p?laiect, 7-55
p? lange, 7-56
p? lanhs, 7-58
p?lansy, p?lanhe, 7-60
p?lantr, 7-63
p?lapiv, 7-65
p? laqge, 7-68
p?laqsy, 7-70
p? lared1d, 7-73
p? lared2d, 7-74
p?larf, 7-76
p?larfb, 7-79
p?larfc, 7-82
p?larfg, 7-85
p?larft, 7-87
p?larz, 7-90
p?larzb, 7-94
p?larzc, 7-98
p? larzt, 7-101
p?lascl, 7-105
p? laset, 7-107
p?lasmsub, 7-109
p?lassq, 7-110
p?laswp, 7-112
p?latra, 7-114
p? latrd, 7-115
p? latrs, 7-119
p? latrz, 7-121
p?lauu2, 7-124
p?lauum, 7-126
p?lawil, 7-127
p?max1, 7-7
p?org21/p?ung21, 7-128
p?org2r/p?ung2r, 7-131
p?org12/p?ungl2, 7-133
p?orgr2/p? ungr2, 7-136
p?orm21/p? unm21, 7-138
p?orm2r/p?unm2r, 7-142
p?orml2/p?unml2, 7-146
p?ormr2/p?unmr2, 7-150
p?pbtrsv, 7-154
p?potf2, 7-162
p?pttrsv, 7-158
p? $\mathrm{rscl}, 7-163$
p?sum1, 7-10
p?sygs2/p?hegs2, 7-165
p?sytd2/p?hetd2, 7-167
p? trti2, 7-171
pdlaiectb, 7-55
pdlaiectl, 7-55
pslaiect, 7-55
Cholesky factorization
p?pttrf, 6-17
condition number estimation
p?gecon, 6-42
p?pocon, 6-45
p? trcon, 6-48
driver routines
p?dbsv, 6-224
p?dtsv, 6-226
p?gbsv, 6-221
p?gels, 6-243
p?gesv, 6-213
p?gesvd, 6-264
p? gesvx, 6-215
p? heevx, 6-257
p?hegvx, 6-277
p?pbsv, 6-238
p? posv, 6-229
p?posvx, 6-232
p?ptsv, 6-241
p?syev, 6-247
p?syevx, 6-250
p?sygvx, 6-269
error estimation
p?trrfs, 6-59
generalized eigenvalue problems
p?hegst, 6-209
p?sygst, 6-207
LQ factorization
p?gelqf, 6-92
p?orglq, 6-95
p?ormlq, 6-99
p?unglq, 6-97
p?unmlq, 6-103
LU factorization
p?dttrf, 6-19
matrix inversion
p?getri, 6-64
p? potri, 6-66
p? trtri, 6-68
nonsymmetric eigenvalue problems
p? gehrd, 6-179
p?lahqr, 6-189
p?ormhr, 6-182
p?unmhr, 6-186
QL factorization
?geqlf, 6-106
?ungql, 6-111
p?orgql, 6-109
p?ormql, 6-113
p? unmql, 6-117
QR factorization
p?geqpf, 6-78
p?ggqrf, 6-144
p?orgqr, 6-81
p?ormqr, 6-85
p? ungqr, 6-83
p? unmqr, 6-89
RQ factorization
p?gerqf, 6-120
p?ggrqf, 6-149
p?orgrq, 6-123
p?ormrq, 6-127
p? ungrq, 6-125
p? unmrq, 6-131
RZ factorization
p?ormrz, 6-137
p?tzrzf, 6-134
p? unmrz, 6-141
singular value decomposition
p?gebrd, 6-192
p?ormbr, 6-197
p?unmbr, 6-202
solution refinement and error estimation
p?gerfs, 6-51
p?porfs, 6-55
solving linear equations
?dttrsv, 7-187
?pttrsv, 7-188
p?dbtrs, 6-36
p?dttrs, 6-34
p?gbtrs, 6-24
p?getrs, 6-22
p?potrs, 6-27
p?pttrs, 6-31
p? trtrs, 6-39
symmetric eigenproblems
p?hetrd, 6-162
p?ormtr, 6-159
p?stebz, 6-170
p?stein, 6-174
p?sytrd, 6-154
p? unmtr, 6-166
triangular factorization
?dbtrf, 7-184
?dttrf, 7-185
p?gbtrf, 6-8
p? getrf, 6-6
p?pbtrf, 6-14
p?potrf, 6-13
p?pttrf, 6-17
utility functions and routines
p?labad, 7-193
p?lachkieee, 7-194
p?lamch, 7-195
p?lasnbt, 7-196
pxerbla, 7-197
scalar-matrix product, 2-77, 2-79, 2-87
scalar-matrix-matrix product, 2-79
general matrix, 2-77
symmetric matrix, 2-87
triangular matrix, 2-96
scattering compressed sparse vector's elements into full
storage form, 2-112
SetValue, 11-18
singular value decomposition, 4-68, 6-191
See also LAPACK routines, singular value decomposition
SkipAheadStream, 10-21
smallest absolute value of a vector element, 2-22
solver, direct, A-1
solver, iterative, A-1
solver, sparse, 8-1
solving linear equations
Hermitian positive-definite tridiagonal linear equations, 7-188
symmetric positive-definite tridiagonal linear equations, 7-188
solving linear equations. See linear equations
Sparse BLAS, 2-102
data types, 2-103
naming conventions, 2-102
Sparse BLAS routines and functions, 2-103
?axpyi, 2-104
?dotci, 2-107
?doti, 2-106
?dotui, 2-108
?gthr, 2-109
?gthrz, 2-110
?roti, 2-111
?sctr, 2-112
sparse matrices, 8-1
Sparse Solver
direct sparse solver interface
dss_create, 8-18
dss_define_structure, 8-19
dss_delete, 8-24
dss_factor_real, dss_factor_complex, 8-21
dss_reorder, 8-20
dss_solve_real, dss_solve_complex, 8-23
dss_statistics, 8-25
mkl_cvt_to_null_terminated_str, 8-28
sparse vectors, 2-102
adding and scaling, 2-104
complex dot product, conjugated, 2-107
complex dot product, unconjugated, 2-108
compressed form, 2-102
converting to compressed form, 2-109, 2-110
converting to full-storage form, 2-112
full-storage form, 2-102
Givens rotation, 2-111
norm, 2-104
passed to BLAS level 1 routines, 2-104
real dot product, 2-106
scaling, 2-104
split Cholesky factorization (band matrices), 4-160

Status Checking, in DFTI, 11-4
storage, of sparse matrices, A-7
stream, 10-6
stream descriptor, 10-2
stride. See increment
sum
of magnitudes of the vector elements, 2-5
of sparse vector and full-storage vector, 2-104
of vectors, 2-6
SVD (singular value decomposition), 4-68, 6-191
swapping vectors, 2-20
Sylvester's equation, 4-207
symmetric matrix, 4-95, 4-147
Bunch-Kaufman factorization, 3-19
packed storage, 3-24
estimating the condition number, 3-71, 4-145 packed storage, 3-74
generalized eigenvalue problems, 4-147
inverting the matrix, 3-124
packed storage, 3-127
matrix-vector product, 2-56
band storage, 2-48
packed storage, 2-51
rank-1 update, 2-58
packed storage, 2-53
rank-2 update, 2-60 packed storage, 2-54
rank-2k update, 2-93
rank-n update, 2-90
scalar-matrix-matrix product, 2-87
solving systems of linear equations, 3-43 packed storage, 3-47
symmetric positive-definite matrix
Cholesky factorization, 3-12, 6-13
band storage, 3-16, 6-14
packed storage, 3-14
estimating the condition number, 3-63
band storage, 3-67
packed storage, 3-65
tridiagonal matrix, 3-69
inverting the matrix, 3-121 packed storage, 3-122
solving systems of linear equations, 3-35, 6-27 band storage, 3-39
packed storage, 3-37
symmetric positive-definite tridiagonal matrix
solving systems of linear equations, 6-31
symmetric/Hermitian positive definite distributed matrix
inverting the matrix, 6-66
symmetrically structured systems, A-9
system of linear equations
with a triangular matrix, 2-73
band storage, 2-65
packed storage, 2-69
systems of linear equations. See linear equations

T

transposition parameter, B-6
trapezoidal matrix
RZ factorization, 4-54, 6-134
triangular distributed matrix
inverting the matrix, 6-68
triangular factorization
band matrix, 3-9, 6-8, 6-10, 7-184
general matrix, 3-7, 6-6
Hermitian matrix, 3-22
packed storage, 3-27
Hermitian positive-definite matrix, 3-12, 6-13
band storage, 3-16, 6-14
packed storage, 3-14
tridiagonal matrix, 3-18, 6-17
symmetric matrix, 3-19
packed storage, 3-24
symmetric positive-definite matrix, 3-12, 6-13
band storage, 3-16, 6-14
packed storage, 3-14
tridiagonal matrix, 3-18, 6-17
tridiagonal matrix, 3-11, 7-185
triangular matrix, 4-162, 4-210, 6-178
estimating the condition number, 3-78
band storage, 3-82
packed storage, 3-80
inverting the matrix, 3-131
packed storage, 3-132
matrix-vector product, 2-71
band storage, 2-62
packed storage, 2-67
scalar-matrix-matrix product, 2-96
solving systems of linear equations, 2-73, 3-51, 6-39
band storage, 2-65, 3-55
packed storage, 2-69, 3-53
tridiagonal matrix, 4-95
estimating the condition number, 3-61
solving systems of linear equations, 3-33, 3-41, 7-187
two matrices
QR factorization, 4-62, 6-144
two-dimensional FFTs, 12-15
complex-to-complex, 12-16
complex-to-real, 12-25
computing a forward FFT, real input data, 12-20, 12-22
computing a forward or inverse FFT, 12-17, 12-18
computing an inverse FFT, complex input data, 12-26, 12-27
data storage types, 12-15
data structure requirements, 12-15
equations, 12-16
groups, 12-15
real-to-complex, 12-19

U

Uniform (continuous), 10-27
Uniform (discrete), 10-54
UniformBits, 10-56
unitary matrix, 4-68, 4-95, 4-162, 4-210, 6-178, 6-191
updating
rank-1
general matrix, 2-30
Hermitian matrix, 2-39
packed storage, 2-45
symmetric matrix, 2-58
packed storage, 2-53
rank-1, conjugated
general matrix, 2-32
rank-1, unconjugated
general matrix, 2-33
rank-2
Hermitian matrix, 2-41
packed storage, 2-46
symmetric matrix, 2-60
packed storage, 2-54
rank-2k
Hermitian matrix, 2-84
symmetric matrix, 2-93
rank-n
Hermitian matrix, 2-82
symmetric matrix, 2-90
upper Hessenberg matrix, 4-162, 4-210, 6-178

v

vector arguments, $\mathrm{B}-1$
array dimension, B-1
default, B-2
examples, B-2
increment, B-1
length, B-1
matrix one-dimensional substructures, B-2
sparse vector, 2-102
vector indexing, 9-6
vector mathematical functions, 9-7
complementary error function value, 9-42
cosine, 9-23
cube root, 9-14
denary logarithm, 9-22
division, 9-10
error function value, 9-40
exponential, 9-19
four-quadrant arctangent, 9-31
hyperbolic cosine, 9-33
hyperbolic sine, 9-34
hyperbolic tangent, 9-36
inverse cosine, 9-28
inverse cube root, 9-15
inverse hyperbolic cosine, 9-37
inverse hyperbolic sine, 9-38
inverse hyperbolic tangent, 9-39
inverse sine, 9-29
inverse square root, 9-12
inverse tangent, 9-30
inversion, 9-9
natural logarithm, 9-21
power, 9-16
power (constant), 9-18
sine, 9-24
sine and cosine, 9-25
square root, 9-11
tangent, 9-27
vector pack function, 9-44
vector statistics functions
Bernoulli, 10-58
Binomial, 10-61
Cauchy, 10-44
CopyStream, 10-16
CopyStreamState, 10-17
DeleteStream, 10-15
Exponential, 10-36
Gaussian, 10-29
GaussianMV, 10-32
Geometric, 10-59
GetBrngProperties, 10-73
GetNumRegBrng, 10-25
GetStreamStateBrng, 10-24
Gumbel, 10-52
Hypergeometric, 10-63
Laplace, 10-39
LeapfrogStream, 10-18
Lognormal, 10-49
NegBinomial, 10-68
NewStream, 10-12
NewStreamEx, 10-13
Poisson, 10-65
PoissonV, 10-67
Rayleigh, 10-46
RegisterBrng, 10-72
SkipAheadStream, 10-21
Uniform (continuous), 10-27
Uniform (discrete), 10-54
UniformBits, 10-56
Weibull, 10-41
vector unpack function, 9-46
vectors
adding magnitudes of vector elements, 2-5
copying, 2-7
dot product
complex vectors, 2-11
complex vectors, conjugated, 2-10
real vectors, 2-8
element with the largest absolute value, 2-21
element with the smallest absolute value, 2-22
Euclidean norm, 2-12

Givens rotation, 2-15
linear combination of vectors, 2-6
modified Givens transformation parameters, 2-18
rotation of points, 2-13
rotation of points in the modified plane, 2-16
sparse vectors, 2-103
sum of vectors, 2-6
swapping, 2-20
vector-scalar product, 2-19
vector-scalar product, 2-19
sparse vectors, 2-104
VML, 9-1
VML functions
mathematical functions
Acos, 9-28
Acosh, 9-37
Asin, 9-29
Asinh, 9-38
Atan, 9-30
Atan2, 9-31
Atanh, 9-39
Cbrt, 9-14
Cos, 9-23
Cosh, 9-33
Div, 9-10
Erf, 9-40
Erfc, 9-42
Exp, 9-19
Inv, 9-9
InvCbrt, 9-15
InvSqrt, 9-12
Ln, 9-21
Log 10, 9-22
Pow, 9-16
Powx, 9-18
Sin, 9-24
SinCos, 9-25
Sinh, 9-34
Sqrt, 9-11
Tan, 9-27
Tanh, 9-36
pack/unpack functions
Pack, 9-44
Unpack, 9-46
service functions
ClearErrorCallBack, 9-59
ClearErrStatus, 9-55GetErrorCallBack, 9-58
GetErrStatus, 9-54
GetMode, 9-51
SetErrorCallBack, 9-55
SetErrStatus, 9-53
SetMode, 9-49
VSL functions
advanced service subroutines
GetBrngProperties, 10-73
RegisterBrng, 10-72
generator subroutines
Bernoulli, 10-58
Binomial, 10-61
Cauchy, 10-44
Exponential, 10-36
Gaussian, 10-29
GaussianMV, 10-32
Geometric, 10-59
Gumbel, 10-52
Hypergeometric, 10-63
Laplace, 10-39
Lognormal, 10-49
NegBinomial, 10-68
Poisson, 10-65
PoissonV, 10-67
Rayleigh, 10-46
Uniform (continuous), 10-27
Uniform (discrete), 10-54
UniformBits, 10-56
Weibull, 10-41
sevice subroutines
CopyStream, 10-16
CopyStreamState, 10-17
DeleteStream, 10-15
GetNumRegBrng, 10-25
GetStreamStateBrng, 10-24
LeapfrogStream, 10-18
NewStream, 10-12
NewStreamEx, 10-13
SkipAheadStream, 10-21
W

Weibull, 10-41

Index-27

[^0]: y
 Overwritten by the updated vector y

[^1]: uplo CHARACTER*1. Must be 'U' or 'L'.
 Indicates whether the upper or lower triangular part of A is stored and how A is factored:

[^2]: a, b
 On exit, these arrays have been overwritten.

[^3]: y
 Overwritten by the updated vector y.

[^4]: norm (global) CHARACTER*1. Must be '1' or 'O' or 'I'.

[^5]: r
 Contains the complex result of the transform depending on isign.

