Safety Surveillance for Licensed Biological Products at FDA's Center for Biologics Evaluation and Research

Robert P. Wise, MD, MPH

for presentation to the

51st Annual FDLI* & FDA Conference

Washington, D.C., March 26-27, 2008

*Food and Drug Law Institute

The speaker's views may not reflect official FDA policies or positions.

Post-Market Surveillance (PMS) at CBER

- Goals and principles
- Biological products
 - Tissues and cells
 - Vaccines
 - Blood and blood products

Many partners share responsibilities for safety surveillance after product marketing begins!

CBER Assures Safety and Efficacy of Licensed or Regulated Products

- Vaccines, toxins, antitoxins
- Blood, components, and derivatives
- Allergenic extracts
- Human tissue products (only safety)
- Human cellular products
- Devices involving biological products
- Xenotransplants
- Future: Gene therapies

Biologicals vs. Drugs

- Biologicals traditionally prophylactic
 - administered to healthy persons for threats of future illnesses
 - frequently given to most of population
 - require very high benefit/risk ratio
- Drugs typically therapeutic
 - given to ill patients
 - Substantial serious risks frequently acceptable in consideration of anticipated therapeutic benefits
- But this distinction is waning:
 - Most vaccines are still preventive and require exceptional benefit/risk ratios
 - But many therapeutic biologicals (e.g., specific immune globulins or BCG for bladder cancer) can provoke substantial but acceptable morbidity.

Post-Licensure Safety Surveillance for Biologicals vs. Drugs

- Philosophies and methods generally similar
- Numerous variables in biological production processes
 - Contrast with precise, chemically-defined composition of traditional small molecule drug products;
 - After licensure, CBER continues to "release" product lots, maintains lot distribution database, and monitors AE reports for possible lot-specific patterns.

Historical Biological Safety Incidents

• Lot-specific

- 1901: Contaminated diphtheria antitoxin lot; 13 fatal tetanus infections
- 1955: "Cutter incident" 204 vaccinee or contact poliomyelitis infections from new Salk vaccine with deficient viral inactivation (7 lots)
- 1996: Septic shock during albumin infusions led to recognition that Enterobacter cloacae had contaminated at least one lot.

Others

- 1970's: Hemophiliacs and others developed AIDS from contaminated units of whole blood, cellular components, and plasma derivatives until effective procedures to restrict donors and test donations became available.
- 1958-1985: Creutzfeldt-Jakob Disease from human pituitaries
- Intussusception after first rotavirus vaccine

FDA does not regulate the "practice of medicine."

- Off-label use of licensed products is legal and can be medically sound.
- Safety surveillance encompasses all product use, including patient experiences with unlabeled indications.

CBER'S Role and Goals in Safety Surveillance

- Work with manufacturers to assess need for pharmacovigilance plans and other Phase 4 studies; often assist with design and review results.
- But most additions to safety data after licensure stem from spontaneous reports of suspected side effects.
- Several safety surveillance objectives:
 - **Detect new risks** (previously unrecognized reactions, including medication errors).
 - Identify new information about known risks, such as greater rate or severity or specificity than previously appreciated, including infection surveillance.
 - Look for pertinent pre-existing conditions to **find risk factors** that might guide future prescribing for safer use of products.
 - Monitor patterns by production lot.

Passive Surveillance: Pro and Con

STRENGTHS:

- Open-ended for hypothesis generation
- Potential detection of new or rare adverse events
- Timeliness
- Geographic diversity
- Capability to monitor production lots

LIMITATIONS:

- Missing and inaccurate data
- Under-reporting
- Absence of controls and denominators
- Inability to assess causation
- Low likelihood of detection for long latency events

Passive Safety Surveillance Systems

Current

- Vaccine Adverse Event Reporting System (VAERS)
 - Jointly operated by FDA and CDC since July 1990
 - Approximately 12,000 reports annually, 15% serious
- Adverse Event Reporting System (AERS/MedWatch)
 - Pre-VAERS private sector vaccine reports
 - Includes indications since 11/1997

Previous

- FDA Spontaneous Reporting System (SRS)
- CDC Monitoring System for Adverse Events Following Immunizations (**MSAEFI**)
 - Pre-VAERS public sector vaccine reports
 - "Check box" format

FDA's Safety Surveillance for

Human Tissue and Cell Products

Tissue and Cell Safety Surveillance

- Products not licensed
- Regulatory framework differs from that for drugs and most biologicals
- Based on FDA authority to control transmission of infectious disease
- Hence primary current focus on allograft-attributable infections from
 - contaminated donor (cadaveric or living) cells and tissue or
 - contamination through processing
- CBER frequently collaborates with CDC

Problems with donor eligibility evaluations in BTS and DRS tissue recovery operations

- Falsification of causes of death on death certificates
- Substitution of blood samples for infectious disease testing from persons other than the identified donor

http://image.cbslocal.com/320x240/images_sizedimage_067185756.jpg

FDA/CDC Responses

- Prompt recognition of threat to tissue safety
- Formation of Human Tissue Task Force "to strengthen [FDA's] comprehensive, risk-based system for regulating human cells and tissue."
 - (http://www.fda.gov/bbs/topics/NEWS/2006/NEW01440.html)
- Public Health Notifications to inform physicians and encourage tissue recipients to be tested for potentially transmitted diseases
 - http://www.fda.gov/bbs/topics/NEWS/2005/NEW01249.html
 - http://www.fda.gov/cber/safety/bts030206.htm
 - http://www.fda.gov/Cber/safety/drs083006.htm
- Publication: *Investigation into Recalled Human Tissue for Transplantation United States, 2005-2006.* MMWR. 2006;55:564-566

FDA's Safety Surveillance for

Vaccine Products

VAERS

- National Childhood Vaccine Injury Act (NCVIA) requires manufacturers and physicians to report certain adverse events after specified vaccinations within particular time frames.
 - But VAERS centralizes surveillance by accepting reports from anyone for any adverse event after any vaccine.
 - Essential character of surveillance remains passive, voluntary, "spontaneous"
- Collaborative: FDA, CDC, vaccine manufacturers, and reporters (physicians, patients, parents, and others)
- http://www.vaers.org; 1-800-822-7967

Vaccine Safety Example

Rotavirus Vaccine and Intussusception

Paradigmatic Illustration of Successful Surveillance

Rotavirus Diarrhea

- Kills millions (mostly infants, toddlers) in developing world; rarely fatal in U.S.
- August, 1998: FDA licensed the first live virus rotavirus vaccine (RV), with primary public health hope to help infants in the third world.
- Patients in clinical trials had developed intussusception
 - 5 cases among 10,054 vaccinees
 - 1 case among 4,633 controls
 - Relative risk 2.3, "not significant"

Intussusception: invagination of an infant's intestine

http://www.yoursurgery.com/procedures/intussusception/images/Intussusception.jpg

Intussusception Background

- Etiology unknown; peaks at ages 4-6 months
- Obstructs and kills unless recognized and treated
- Diagnostic radiology (barium or air contrast enema) often curative
- Otherwise resection of necrosed intestinal segment imposes
 - acute risks from anesthesia and major abdominal surgery
 - long term risk of short bowel syndrome

Case Reports after RV Licensure

- 11 reports received by **6/1/1999**
- CDC calculations suggested similar number expected in a population of size and age vaccinated.
- But with under-reporting, actual post-vaccinal numbers could be much larger.
- 7/1999: RV use suspended pending urgent epidemiologic studies

RV-Intussusception Lessons

- Profound product hazard clearly appreciated only after licensure, despite hints from Phase 3 study
- Risk management required product withdrawal
- Rare quantitative evidence of
 - initial under-reporting followed by
 - publicity stimulation of reporting

FDA's Safety Surveillance for

Blood and Blood Products

Blood Safety Assurance and Surveillance

- Encompasses protection of blood (including components and products), donors, and recipients
- Multiple interconnected and overlapping safety domains and reporting systems
 - Deaths: donors, recipients
 - Product failures ("errors and accidents")
 - Device malfunctions
 - Adverse events (AE's) in product recipients
 - Medical errors

How are Donors Protected?

- Confidential interview
- Health status evaluations
- Rapid access to emergency care
- Notification of donors with medical referrals upon deferral for abnormal findings, including infectious disease test results

How is Blood Made Safe?

Five Layers of Blood Safety

- 1. Selection of suitable donors
 - Donor education
 - Extensive risk factor screens (including malaria and vCJD)
 - Limited physical examination
- 2. Use of deferral registries to identify unsuitable donors
- 3. Infectious disease testing (HIV-1, HIV-2, HCV, HBV, HTLV-I HTLV-II, syphilis, CMV)
- 4. Blood quarantine pending tests and suitability determination
- 5. Monitoring, investigating, and corrective actions for errors, accidents, and adverse reactions

cGMP's and product standards apply in all areas

- Staff training and certification; SOP's; Use of approved methods
- Pathogen reduction for plasma derivatives
- Bacterial contamination monitoring

How are Recipients Protected?

- Safe blood (including components and products) assured through 5 blood safety layers and cGMP's
- Automated processes reduce human errors
 - Recently implemented bar codes
 - Radio Frequency Identification (RFID) tags on horizon
- Blood and components are grouped, typed, and crossmatched for compatibility with recipient
- Other safety systems include:
 - Recipient, sample, and unit identifiers
 - Hospital practice standards
 - Event investigation and reporting
 - Corrective actions

Blood Safety Reporting

- Mandatory: reporting by manufacturers
 - Fatalities (donors and product recipients)
 - Product failures (errors and accidents)
 - Biological Product Deviation Reports
 - Medical Device Reports
 - Other adverse events*
- Voluntary: "spontaneous" reporting to FDA's Adverse Event Reporting System (AERS, MedWatch) from any source
- **Medical errors:** primarily reported through the hospital system, rather than to FDA
- *Currently excluding manufacturers of blood and blood components

Blood Fatality Surveillance for Transfusions and Donations

- When a blood donor or recipient dies from
- "a complication of donation or transfusion"
- Blood collecting or transfusing facility* must notify CBER's Office of Compliance and Biologics Quality (OCBQ)

*that performed type and cross-match

Biological Product Deviation (BPD) Reporting Objectives

- Early warning system
 - for possible problems in advance of scheduled inspections (generally every 2 years)
 - Indicator of potential immediate problems or need for a product or lot recall or prompt "directed inspection"
- Surveillance
 - Training for investigators and industry
 - Guidance for investigators before and during inspections, and for development of guidance documents and policies for industry

BPD: Who Must Report?

- Licensed manufacturers of blood and blood components (including source plasma)
- Unlicensed registered blood establishments (no inter-state commerce)
- Transfusion services

BPD: What is Reportable?

Any event associated with manufacturing of blood or blood components (licensed or unlicensed) that:

- Deviates from cGMP, regulations, standards, or specifications that may affect safety, purity, or potency;
 or
- Is unexpected or unforeseeable and may affect safety, purity, or potency;

and

• Involves a distributed biological product

Medical Device Reporting

- **Requirement:** Manufacturers must report a device-related death, serious injury, or malfunction within 30 days
- In-Vitro Diagnostics
 - Viral Marker test kits e.g., HIV, Hepatitis
 - Blood Bank reagents e.g., ABO/Rh, antibody screening
- Devices
 - Apheresis collection devices
 - Hematology analyzers for donor testing
 - Bacterial Detection Systems to test blood and components
- Computer Software: blood bank programs that can give incorrect results through inadequate design and/or validation

Adverse Event Monitoring and Reporting

- <u>AERS/MedWatch</u>: FDA safety information and reporting program
- Receives mandatory reports from manufacturers
- Receives voluntary reports from anyone
- Multiple submission modalities:
 - online for individuals
 - batch electronic submissions from manufacturers
 - Telephone
 - Fax
 - mail

Non-Fatal AE Reports Not Required for Blood and Blood Components

- Blood collection and transfusion facilities
 - currently required to conduct investigations and maintain reports of all AEs associated either with the collection or transfusion of blood or blood components.
 - reports reviewed during FDA establishment inspections, at least every 2 years
 - submission to AERS/MedWatch not required
- A proposed rule would change these requirements.

Proposed Reporting for Blood and Components: Serious Non-Fatal AE's

Safety Reporting Requirements for Human Drug and Biological Products Proposed Rule (Federal Register, March 14, 2003)

- Obligation to report:
 - Facility performing compatibility testing for AE related to transfusion
 - Collecting facility for AE related to the blood collection procedure
- Written report
- To FDA Center for Biologics Evaluation and Research
- Within 45 calendar days

rFVIIa and Thromboembolic Events

- Recombinant factor VII activated (rFVIIa, NovoSeven) licensed "for the treatment of bleeding episodes in hemophilia A or B patients with inhibitors to Factor VIII or Factor IX"
- Increasingly used off label for non-hemophiliacs
 - Case reports to FDA describe a variety of arterial and venous thromboses in 17 hemophiliacs and 151 other patients.
 - Major safety concern in published literature is thrombotic risk in patients without hemophilia.
- rFVIIa generates more thrombin in vitro with normal blood than with hemophiliac blood.
- Formation of undesired thrombus likely also depends on vasculopathy (exposing tissue factor), but it seems plausible that rFVIIa's safety could differ between hemophiliacs and normal patients.
- Because most cases also have other possible causes, only controlled clinical trials of rFVIIa for additional indications will clarify its safety and efficacy for non-hemophiliacs.

CBER Safety Summary

- Diversity of biological products requires multiple surveillance and safety assurance strategies.
- Open-ended safety surveillance essential for earliest possible discovery of unanticipated hazards to the public health.