Public Workshop: Adjuvants and Adjuvanted Preventive and Therapeutic Vaccines for Infectious Disease Indications

Norman W. Baylor, Ph.D.

Office of Vaccines Research & Review CBER/FDA

December 2 & 3, 2008 Bethesda, MD

INTRODUCTION

The goal in vaccine development is to:

provide the safest vaccine

provide maximal efficacy

•

require the least amount of

antigen, and number of doses

INTRODUCTION (CONT'D)

- Interest in vaccine adjuvants and new delivery systems has significantly increased over the past decade.
- New technological advances in vaccine development present significant challenges to National Regulatory Authorities including the US FDA, however, these products may present opportunities for advancing the public health.
- FDA must be in a position to develop new scientific and regulatory criteria to facilitate the development of new vaccines, including those with novel adjuvants for safety and effectiveness.

BACKGROUND

- Presently, adjuvants are not licensed separately from the vaccine with which they are formulated.
 - Currently, only aluminum containing adjuvants are used in U.S. licensed vaccines.
- The individual vaccine/adjuvant combination that is licensed, necessitates case by case evaluation.
 - This leads to difficulties in the developing guidelines that would apply to all situations.

Adjuvants: Challenges

- Safety concerns
 - Evaluating benefit vs. risks
- Lack of universality
 - adjuvants are currently not considered the active ingredient in prophylactic vaccines
 - immune responses obtained with one antigen/adjuvant cannot be extrapolated to another antigen or even to the same combination given by different routes

Adjuvants: Challenges (contid)

 There are also challenges evaluating manufacturing and clinical outcomes of vaccines made with novel adjuvants

- Scale-up
- Consistency of manufacturing from lot to lot
- Stability
- Determination of clinical endpoints for assessing safety and efficacy?

Workshop Objectives

- Mechanism of action of adjuvants
- Identification of scientific gaps
- Approaches to non-clinical safety evaluation for adjuvanted vaccines
 - Criteria for selecting the appropriate ROA, doses, schedule
 - Animal models
 - Alternate methods
- Clinical experience WRT safety

- Current approach to adjuvant toxicology testing
 - Is it sufficient to test only the highest 1X human dose of the vaccine/adjuvant combination and adjuvant alone?
 - Should dose-ranging studies be conducted on the adjuvant alone?
 - Should other parameters, such as cytokine levels or other biomarkers (e.g., CRP, fibrinogen) be assessed?
 - Are other aspects of the current study design such as route of administration and regimen appropriate?

Roundtable 2: Clinical Issues

- What type of clinical studies are needed to:
 - Detect age-specific differences in adjuvant responses?
 - Provide long-term safety information?
 - Provide dose-ranging data on adjuvants as well as antigens?
- What clinical studies can be designed that will incorporate safety information obtained from preclinical data?

Summary

- The development and evaluation of novel adjuvants present unique challenges
- Use of adjuvants in vaccines may provide opportunities to improve public health
- Nonclinical safety assessment:
 - Product CMC, characterization
 - Pharm/tox testing
- Clinical safety evaluation of adjuvanted vaccines is critical
 - risk vs. benefit

BACKUP SLIDES

- Is it sufficient to test in only one animal species?
- What constitutes a "relevant" animal model?
 - Species-specificity of the innate immune response
 - Species-specificity of the antigen/adjuvant
- Should toxicology studies be conducted in specific animal models to support the safety of adjuvants in special populations (elderly, pediatric, immunosuppressed, etc.)?

- What immunologic parameters should be evaluated?
 - Vaccine antigen specific responses
 - Adjuvant specific responses
- How can in vitro assays be incorporated into nonclinical safety assessments?
 - E.g., cell based assays to supplement animal studies

 Is it adequate to assess only the combination when assessing a combination adjuvant (e.g., oil-in-water emulsion plus QS-21, and MPL) or should doseranging toxicity studies be conducted on each separate component as well?

- What other toxicity testing should be conducted?
- E.g.,
 - Should the tendency to cause/exacerbate autoimmune or inflammatory disease be evaluated, if useful animal models exist?
 - Genotoxicity studies?
 - Chronic toxicity studies?

- Should additional animal studies be required to evaluate long term effects of adjuvants?
- e.g.,
 - Exposure over multiple years (such as adjuvanted influenza vaccines)?
 - Exposure to multiple types of adjuvants either concurrently or over multiple years?
 - If so, at what stage of clinical development should these studies be required?