

Disaster Management Program
Open Platform for Emergency Networks

Instructions for Using the
NOAA HazCollect Interface on the

Open Platform for Emergency Networks (OPEN)

December 31, 2008

Version 0.4

Creating NWEM CAP Messages on Open Platform Emergency Networks November 6, 2008

Revision History

Date Version Description Author
September 15, 2006 0.1 Initial draft Gary Ham

July 20, 2007 0.2 POC updates Gary Ham

November 6, 2008 0.3 POC updates and updates related to
new FEMA Program Management

Gary Ham

December 31, 2008 0.4 Correct minor document errors and
identify issues with Area Block
identification that require
programmer “work around” until
new release is available.

Gary Ham

Disaster Management Open Platform for Emergency Networks Page ii

Creating NWEM CAP Messages on Open Platform Emergency Networks November 6, 2008

Table of Contents

1. Introduction ... 1

1.1. Purpose...1

1.2. Scope..1

1.3. Relationship to Other Documents..1

1.4. References..1

2. Before You Begin.. 2

3. Defining a HazCollect NWEM Message in CAP 1.1 Format... 3

4. Generating Service Classes and Beans from the WSDL .. 4

5. Connecting to the Web Service ... 5

6. Brief Explanations of Service Methods .. 5

7. Steps in a Typical NWEM Post .. 8

8. More Examples and Contact Info .. 10

9. Coming Attractions... 11

10. Known Issues.. 12

11. Suggestions, Recommendations and Assistance... 13

12. Acronyms .. 14

Appendix A. Annotated NWEM CAP Example.. A-1

Appendix B. Explanatory Information Concerning HazCollect Server Mode B-1

Appendix C. NWEM Event Codes .. C-1

Disaster Management Open Platform for Emergency Networks Page iii

Creating NWEM CAP Messages on Open Platform Emergency Networks	 November 6, 2008

1. Introduction
The Disaster Management Open Platform for Emergency Networks (DM-OPEN) provides
interoperability interfaces for sharing of alerts, situation reports, common operational picture
snapshots, and other emergency-related information. These interfaces provide data structures
and rules of operations designed to enable information sharing between diverse systems, both
commercial and government. In general, these interfaces conform to open messaging standards
as defined through the Emergency Management Technical Committee sponsored by the
OASIS standards organization and through the National Information Exchange Model
(NIEM).

1.1. Purpose
This document is designed to help programmers and system designers to understand and
use OPEN web service interfaces. This is primarily a technical “how to” document
which will be updated whenever new releases are made within scope.

1.2. Scope
The All Hazards Emergency Collection System (HazCollect) was developed to collect
and efficiently distribute non-weather emergency messages (NWEM). NWEMs,
commonly known as Civil Emergency Messages (CEMs), will be sent through the NWS
dissemination infrastructure, other national systems, and to the Emergency Alert System
(EAS). HazCollect will provide emergency responders and government officials a more
efficient means to distribute alerts and warning information to an affected population in
the event of an emergency.

This document covers the DM-OPEN interfaces that support this function through
conversion from specially formatted Common Alerting Protocol (CAP) Version 1.1
messages to Non Weather Emergency Messages (NWEM). Other interfaces are, or will
be, covered separately.

1.3. Relationship to Other Documents
This is one of a set of documents that will describe connections to different web services
interfaces. There will be a separate document written to cover each OPEN web service
that is separately defined using Web Service Definition Language (WSDL).

1.4. References
The following documents were used to obtain source information or are referenced in
this document:

•	 OASIS Common Alerting Protocol, v1.1, OASIS Standard CAPV-1.1, October
2005

•	 NWEM permission procedures for DM COGs (to be published).
•	 National Weather Service Instruction 10-1701, Text Product Formats and Codes,

February 12, 2003.

Disaster Management Open Platform for Emergency Networks	 Page 1

Creating NWEM CAP Messages on Open Platform Emergency Networks November 6, 2008

2. Before You Begin
If you have not connected to OPEN in the past, please email OPEN@eyestreet.com for an
FAQ that explains the basics of OPEN. The FAQ explains how to become approved for
OPEN connection and where to find information on other OPEN offerings as well as this one.

The DM-OPEN environment operates on the basis of what the DM Program calls a
Collaborative Operations Group or COG. A COG is a virtual organization that holds
membership in DM-OPEN and manages individual user names and passwords within that
membership. All DM COGs are sponsored by a vetted Emergency Management Organization.
The FAQ explains the basics of how this works.

Operational NWEM capability requires additional COG level permission from the National
Weather Service to submit NWEM messages. Initial testing COGs have already been defined
and will not require additional permissions. Commercial and other Government system
operational instances will require separate specific permission for each COG that wishes to
post NWEM messages. (See NWEM approval procedures – published separately.)

The location of WSDL for generating needed client side classes is:
http://interopdev.cmiservices.org/axis/services/NWEM?wsdl

[IMPORTANT TEMPORARY NOTE: the NWEM interface is currently available for
development/test/prototyping on http://interopdev.cmiservices.org/. It has not been moved to
https://interop.cmiservices.org (its eventual production environment). Please substitute the
“interopdev” reference for the “interop” in your development activities until the move is
complete. You will be notified in the DM-OPEN Special Interest Group (SIG) mail list as
soon as the move is complete.]

These instructions are Java specific information. If you are a .NET programmer, or use
another language capable of consuming WSDL, please use the above WSDL as appropriate,
following your normal methods for building a web service client. Read what follows below to
understand the methods that should be available to you and parameters that you will need to
employ.

This instruction also assumes that you understand the structure and usage of a CAP 1.1

message. For further reference please see the OASIS standard available from:

http://www.oasis-open.org/committees/download.php/14759/emergency-CAPv1.1.pdf

Disaster Management Open Platform for Emergency Networks Page 2

Creating NWEM CAP Messages on Open Platform Emergency Networks November 6, 2008

3. Defining a HazCollect NWEM Message in CAP 1.1 Format
A HazCollect Message is a valid CAP 1.1 message. Not all valid CAP 1.1 messages, however,
have the data content and structure needed for HazCollect. So, HazCollect messages must be
described as a specialization of CAP1.1 message. Because HazCollect Messages inherit, in an
object-oriented sense, from CAP messaging, they can be sent over standard CAP networks and
processed as a CAP message with no difficulty.

But a HazCollect message has specific needs for to allow downstream processing through
NWS and EAS systems that require particular structuring and data content within a Valid CAP
1.1 format. Appendix A provides an annotated CAP1.1 sample message that identifies the
structure and other data requirements needed for NWEM processing. Appendix A is
normative, meaning that it the rules and structure found there MUST be followed in preparing
you NWEM message. Once that is done, the processes and procedures needed to post NWEM
messages are fairly simple. They are defined in the remainder of this document.

In addition to Appendix A, the following restriction (Paragraph 2.1 from NWS Instruction 10-
1701) applies to all narrative data used in the message:

“Characters, Case, and Punctuation for Narrative Text. Narrative text uses upper case and
only the following punctuation marks in the text: the period (.), and the three dot ellipsis
(...); the forward slash (/); the dash (-); and the plus (+). Use of other characters may inhibit
the proper dissemination or automated processing by certain users’ systems.”

Disaster Management Open Platform for Emergency Networks Page 3

Creating NWEM CAP Messages on Open Platform Emergency Networks November 6, 2008

4. Generating Service Classes and Beans from the WSDL
Using the Axis libraries, run the WSDL2Java tool on the WSDL to generate the needed client
side files. The following example call uses some additional parameters to create a package
structure consistent with the OPEN server side. These parameters (NStoPkg) should not be
necessary, but may be helpful.

java org.apache.axis.wsdl.WSDL2Java

--NStoPkg http://dmi-services.org/beans=org.cmis.interopserver.beans

--NStoPkg http://dmi-services.org=org.cmis.interopserver.services.nwem

--NStoPkg urn:oasis:names:tc:emergency:cap:1.1=org.cmis.interopserver.beans.cap1_1
-v https://interop.cmiservices.org/axis/services/NWEM?wsdl

Assuming your classpath was correctly set, running the above WSD2Java call will generate
the following package and class structure:

org\cmis\interopserver\beans\cap1_1\Urgency.java

org\cmis\interopserver\beans\cap1_1\Info.java

org\cmis\interopserver\beans\cap1_1\Area.java

org\cmis\interopserver\beans\cap1_1\Parameter.java

org\cmis\interopserver\beans\cap1_1\Geocode.java

org\cmis\interopserver\beans\cap1_1\Resource.java

org\cmis\interopserver\beans\cap1_1\Status.java

org\cmis\interopserver\beans\cap1_1\ResponseType.java

org\cmis\interopserver\beans\cap1_1\Category.java

org\cmis\interopserver\beans\cap1_1\Severity.java

org\cmis\interopserver\beans\cap1_1\Scope.java

org\cmis\interopserver\beans\cap1_1\EventCode.java

org\cmis\interopserver\beans\cap1_1\Alert.java

org\cmis\interopserver\beans\SimpleCOG.java

org\cmis\interopserver\beans\cap1_1\Certainty.java

org\cmis\interopserver\beans\cap1_1\MsgType.java

org\cmis\interopserver\services\nwem\NWEM.java

org\cmis\interopserver\services\nwem\NWEMSoapBindingStub.java

org\cmis\interopserver\services\nwem\NWEMService.java

org\cmis\interopserver\services\nwem\NWEMServiceLocator.java

With these classes you can post NWEM messages to the HazCollect server for transmission to
the NWS. Because the CAP specific classes are exactly the same as used in the CAP 1.1
general interface, these messages may also be posted to and retrieved by other DM-OPEN
COGs using the general interface (see USING CAP1.1 on OPEN).

You may also access these classes without using WSDL2Java from the DM-OPEN Special
Interest Group Web Site:

http://www.disasterhelp.gov/disastermanagement/library/documents/

A downloadable zip file contains the generated stubs needed for all DM-OPEN interfaces. A
second zip file contains the axis jar files needed to use the interface. These axis jar files are
required to support your Java application regardless of whether you generate directly from the
WSDL or use the pre-generated stubs.

Disaster Management Open Platform for Emergency Networks Page 4

Creating NWEM CAP Messages on Open Platform Emergency Networks November 6, 2008

5. Connecting to the Web Service
Run the following class (call it from a main function with your user id, password and COG id)
to prove that you can establish a connection. A return string of “pong” proves that you are
using appropriate credentials and that the service is alive. It is always good to do a ping to
check your connection before attempting other functionality. It isolates any connection errors
for possible problems of another nature.

import java.net.*;

import java.rmi.RemoteException;

import javax.xml.rpc.ServiceException;

import org.cmis.interopserver.services.nwem.NWEMService;

import org.cmis.interopserver.services.nwem.NWEMServiceLocator;

import org.cmis.interopserver.services.nwem.NWEMSoapBindingStub;

public class SimplePingExample {

public SimplePingExample (String userId, String pwd, String cogId){

URL svcURL;

NWEMService service = new NWEMServiceLocator();

NWEMSoapBindingStub nwem;

try {
// INTEROPDEV or INTEROP
svcURL = new URL("http://interopdev.cmiservices.org/axis/services/NWEM");

// svcURL = new URL("https://interop.cmiservices.org/axis/services/NWEM");
System.out.println("Invoking service at " + svcURL.toString());

nwem = (NWEMSoapBindingStub) service.getNWEM(svcURL);

nwem.setUsername(cogId+"/"+userId);

nwem.setPassword(pwd);

try {

System.out.println(nwem.ping());

} catch (RemoteException e1) {

e1.printStackTrace();

}

} catch (MalformedURLException e) {

e.printStackTrace();

} catch (ServiceException e) {

e.printStackTrace();

}

}

}

6. Brief Explanations of Service Methods
Including the ping() method, you now have access to six proven CAP 1.1 service methods
(There are a couple of other methods found in the WSDL that employ SOAP with attachments.
These should be used only for special needs as they are, by definition, not compatible with the
CAP 1.1 standard.):

a. To ping the service and ensure that it is up and running:

Disaster Management Open Platform for Emergency Networks Page 5

Creating NWEM CAP Messages on Open Platform Emergency Networks	 November 6, 2008

String ping() throws java.rmi.RemoteException;

The ping method returns the string “pong” if you are able to connect to the web
service. It is used simply to verify that the service is up and running and that the user
has been successfully authenticated.

b.	 To get the COG you are logged into in SimpleCOG format (id as long, name as
String):

SimpleCOG getMyCog() throws java.rmi.RemoteException;

The getMyCog method returns an object of type SimpleCOG which contains the
connection cogId as a long and the name of the COG as a String. (A SimpleCOG
object is an instance of the SimpleCOG class generated from WSDL2Java). This is not
a particularly useful function on operational basis, but its simplicity can be used to
determine whether database connectivity is alive and well before attempting to
diagnose more complicated system connection issues.

c.	 To get all of the COGs that you are allowed to post to in an array of type
SimpleCOG:

SimpleCOG[] getCogs() throws java.rmi.RemoteException;

From the returned array, you may choose the target for your Alert posts. The getCogs
method returns an array of SimpleCOG objects where each object includes a cogid as a
long and the name of the COG as a String. Each SimpleCOG instance represents an
organization that can retrieve an OPEN posted alert. For testing and initial
development, OPEN interoperability partners are given passwords and ids in COG
1737, the OPEN Interoperability COG. For members of COG 1737, this method will
return only two SimpleCOGs that have been set up expressly for test purposes (COG
1000 – the DMI Services Project Team and COG 2 – OPEN Interoperability COG 2).
When testing is sufficient and a vendor or project has been sponsored by a vetted
emergency organization, fully operational COGs can be set up for each sponsor. At
that point, this method will retrieve an array of more than 2000 available COGs
sponsored by organizations throughout the United States (and a couple of location in
Canada). As a developer, you could make this a dynamically built pick list for your
users. Since a list of this size may not be practical for your users, you can run this
query and manually pick from those of interest to your users to build a static pick list
for your users. (Note: See coming attractions below. There are plans to remedy this
shortcoming.)

d.	 To post an NWEM Alert to one or more OPEN COGs:
void postNWEM(Alert alertObj, String timeZone, SimpleCOG[]

simpleCOGs) throws java.rmi.RemoteException;

This method first sends the NWEM message to the HazCollect Server to be broadcast.
After HazCollect Server broadcasts the message, the message will be posted to the DM
COGs. Only valid NWEM messages can be posted to the HazCollect Server.
The first parameter is an instance of the Alert object generated from the WSDL. This
instance must be populated according to CAP 1.1 schema and NWEM specialization
instructions found in Appendix A. The second parameter is a string representing the
time Zone of the sender in three digit, all capitalized format (e.g., EST for Eastern

Disaster Management Open Platform for Emergency Networks	 Page 6

Creating NWEM CAP Messages on Open Platform Emergency Networks	 November 6, 2008

Standard Time or PDT for Pacific Daylight Time). The third parameter is an array of
SimpleCOG (see 3.c above) where each SimpleCOG represents an organization that
you are allowing to retrieve the alert in addition to NOAA. Do NOT post to your own
COG (i.e., do not include include the sign on COG in the array of SimpleCOG). It will
raise errors. (Note: this differs from the EDXL DE implementation where posting to
your own cog is required for retrieval of your own posted messages).

e. To retrieve a particular Alert with known identifier and sender from the OPEN
interface:

Alert getAlert(String senderIdentifier) throws
java.rmi.RemoteException;

The getAlert method returns a specific Alert object based upon the combined value of
the <sender> and <identifier> tags. The String argument is colon delimited string
consisting of the identifier and the sender (e.g., “hamg@battelle.org” + “:“+
“DM001567” or “sender:identifier”). (Note: This particular method fails when a
colon (“:”) is an integral part of the identifier or sender. It is likely that the delimiter
will be changed to a character that cannot be used as part of the identifier or sender
fields in the next release). You can only retrieve an alert using this method if the alert
was posted by your COG, the alert was expressly posted to your COG by a user
member of a different COG, or the Alert was posted globally across the system. If the
"senderIdentifier" does not correspond to an Alert in the DM-OPEN system, an empty
value (NULL) will be returned.

f. To retrieve all Alerts posted to or from your COG with <sent> values greater than
the time specified by the Calendar parameter:

Alert[] getAlertsBySentDate(java.util.Calendar dateTime)
throws java.rmi.RemoteException;

The getAlertsBySentDate method returns an array of Alert objects where the time
specified in each Alert object's <sent> tag is later than the Java Calendar argument.
This includes Alerts that have been posted directly to the caller's COG, Alerts sent by
the caller, as well as those that have been posted globally. The Alerts are returned in
chronological order, from newest to oldest. If the date is invalid, an error is returned. If
there are no alerts since that date-time, an empty list is returned.

This method allows retrieving systems to choose not to retrieve older alerts, making the
retrieval process somewhat less onerous. Users of the getAlertsBySentDate (Calendar)
method should still allow some overlap in time from most recent retrieval when
choosing the Calendar value for subsequent retrievals. This overlap is needed because
relevant messages can be posted to OPEN at some time after the original message
creation time and OPEN does not alter the originating <sent>tag value, regardless of
the actual post time. Of course, this also means duplicate Alert retrievals should be
checked for and discarded as appropriate.

g.	 To retrieve all Alerts posted to or from your COG later than the date and time
specified by the Calendar value:

Alert[]getAlertsByPostedDate(Calendar dateTime) throws

java.rmi.RemoteException;

Disaster Management Open Platform for Emergency Networks	 Page 7

Creating NWEM CAP Messages on Open Platform Emergency Networks	 November 6, 2008

The getAlertsByPostedDate method returns an array of Alert objects posted to the DM
OPEN service after the time specified in the Java Calendar argument. This includes
Alerts that have been posted directly to the caller's COG, Alerts sent by the caller, as
well as those that have been posted globally. The Alerts are returned in chronological
order, from newest to oldest. If the date is invalid, an error is returned. If there are no
alerts since that date-time, an empty list is returned.

This method is almost identical to getAlertsBySentDate(Calendar) (paragraph
5f above) except that the date-time value is being compared to the actual time that
Alert is posted to the DM-OPEN server instead of the <sent> field in the Alert.

h.	 To retrieve the current DM-OPEN server time in Calendar format:
Calendar getServerTime()throws java.rmi.RemoteException

Retrieves the current time on the server; useful for time-synching to ensure that
getAlertsByPostedDate() is accurate. Note that current server time is also returned as a
SOAP header with each request; this method is here only for convenience.

i.	 To retrieve the current operational mode of the HazCollect server :
String getHCSMode()throws java.rmi.RemoteException

Possible modes are Active, Training, and Test. Actual dissemination of an NWEM
message through NWS systems is dependent on a combination of this value with the
value of the <status> tag in the CAP 1.1 message. Appendix B provides specific
details.

j.	 To determine whether a COG is authorized to post NWEM messages to the NWS:
boolean isCogAuthorized(String cogID)

throws java.rmi.RemoteException;

Requires entry of a string representing a valid cogId as a parameter. Returns “true” if
the COG has been authorized by the NWS to post NWEM messages. Returns "false" if
permission has not been expressly been granted to that COG.

k.	 To retrieve list of geographic areas and associated codes to which a COG is
authorized to broadcast:

CogGeoFipsCodeImpl[]getNWEMAuxData (String cogId) throws

 java.rmi.RemoteException

Each COG will be authorized by the NWS to request a broadcast of alerts to a pre-
defined set of geographic areas. This function retrieves the code values and associated
names (e.g. FIPS code and associated County Name) that have been authorized for the
COG identified by the cogId as an array of CogGeoFipsCodeImpl objects. Developing
systems can build dynamically populated pick lists of “warnable” areas for their user
interfaces from this data. The codes chosen by users are then used to populate the
<area> and <geocode> tags in the CAP message (as shown in Appendix A).

7. Steps in a Typical NWEM Post

Disaster Management Open Platform for Emergency Networks	 Page 8

Creating NWEM CAP Messages on Open Platform Emergency Networks	 November 6, 2008

The following steps illustrate the “happy path” (no errors, unexpected results, or exceptions) of
a DM-OPEN connection and post to HazCollect:

a.	 Establish the connection.
b.	 Use either ping() or getServerTime() to ensure that you DM-Open credentials are

accepted and that the service is running correctly.
c.	 Use isCogAuthorized() to ensure that your COG is currently authorized to send

NWEM messages. Remember that COG establishment is done through DM-OPEN but
approval of the COG for NWEM creation is a NWS action and is done separately.

d.	 Use GetNWEMAuxData() to get the geocode information that your COG is allowed to us
in building the CAP area block of the NWEM specialized CAP message. This probably
becomes a pick list for your users to choose from.

e.	 Use getHCSMode() to determine the operational status of the HazCollect Server. .
Actual dissemination of an NWEM message through NWS systems is dependent on a
combination of this value with the value of the <status> tag in the CAP 1.1 message.
To send an actual alert through HazCollect to the public requires a <status>= “Actual”
and HCSMode = “Active.” System users should be specifically warned that this
combination will result in public dissemination as an actual alert. Special care
should be taken that such messages are real alerts requiring immediate public
dissemination. Appendix B provides specific details on the results of each potential
combination of HCSMode and CAP <status> tag.

f.	 Build your valid CAP 1.1 message such at all rules defined in Appendix A of this
document are followed.

g.	 If you plan to post the message to other COGs (as well as to NWS), use getCogs() or
a predetermined list of COGs to allow your users to select additional COGs for posting.

h.	 Finally use the postNWEM() method to send your message downstream.
i.	 You may wish to use getAlert() to retrieve a return copy of the message to ensure

that your post was successful.

Disaster Management Open Platform for Emergency Networks	 Page 9

Creating NWEM CAP Messages on Open Platform Emergency Networks November 6, 2008

8. More Examples and Contact Info
Sample code is available. E-mail the OPEN Systems interoperability coordinator at
OPEN@eyestreet.com for some WSDL generated classes, appropriate Axis libraries, and
some test drive code to get you started. Be sure to identify you client as Java 1.4 or 1.5
because the needed Axis libraries will be different. OPEN@eyestreet.com should also be
your first point-of-contact for any problems related to programming issues when using OPEN.

Disaster Management Open Platform for Emergency Networks Page 10

Creating NWEM CAP Messages on Open Platform Emergency Networks	 November 6, 2008

9. Coming Attractions
•	 getCogs(geography) – There will soon be a version of getCogs using a circle structure

(point and radius) or similar geographic reference that will limit the number of COGs
retrieved by this method. This will make the creation of dynamic posting pick lists
more effective. Date of release TBD (near future).

•	 COG Profile – More complete COG information is needed if user systems wish any
form of dynamic creation of COG posting pick lists. This requirement is still in the
analysis.

Disaster Management Open Platform for Emergency Networks	 Page 11

Creating NWEM CAP Messages on Open Platform Emergency Networks November 6, 2008

10. Known Issues
Circular post bug – A posted alert with identical <sender> and <identifier> is rejected as
duplicate and an exception. In most case, this is appropriate. However, if the Alert is already
in the system for COG A where COG A represents a rule-based distribution activity, COG A is
prevented from using those rule to post the same alert back to COG B because the alert is
already in the DM OPEN system. A temporary work around would be for COG B to slightly
alter the identifier and repost. The proper solution will be to add COG B to the list of COGs
posted to without adding a new alert to the system. This would allow COG B to retrieve the
alert in an unaltered state, without duplicating the data in the database. [Note: this bug is not
related in any way to NWEM processing directly. It only applies to CAP messages that are the
basis for NWEM messages, but may also be transmitted on parallel CAP networks.

Disaster Management Open Platform for Emergency Networks Page 12

Creating NWEM CAP Messages on Open Platform Emergency Networks November 6, 2008

11. Suggestions, Recommendations and Assistance
Please send your suggestions, recommendations for improvement, etc. by e-mail to
OPEN@eyestreet.com. Be sure to specify that you are referencing the OPEN Interop NWEM
interface. Be specific. Remember that resources are limited and that the DM Program
emphasizes the use of open standards for data and uses a directed distribution (user chooses
recipients) sharing paradigm.

Initial programming and connection assistance can be provided through our OPEN Systems
interoperability Coordinator, also at OPEN@eyestreet.com.

Disaster Management Open Platform for Emergency Networks Page 13

Creating NWEM CAP Messages on Open Platform Emergency Networks November 6, 2008

Acronyms

The following acronyms are used in this document or are relevant to its content.

Acronym Description
CAP Common Alerting Protocol
CEM Civil Emergency Message
COG Collaborative Operations Group
DM-OPEN Disaster Management Open Platform for Emergency Networks
EAS Emergency Alert System
HazCollect All Hazards Emergency Message Collection System
HTTP Hypertext Transfer Protocol
NIEM National Information Exchange Model
NOAA National Oceanic and Atmospheric Administration
NWEM Non Weather Emergency Messages
NWS National Weather Service
NWS I National Weather Service Instruction
OASIS Organization for the Advancement of Structured Information Standards
SOAP Simple Object Access Protocol
WSDL Web Service Definition Language

Disaster Management Open Platform for Emergency Networks Page 14

A.

Creating NWEM CAP Messages on Open Platform Emergency Networks November 6, 2008

Appendix A. Annotated NWEM CAP Example
<!--

HazCollect Non-weather Emergency Messages are a specialization of CAP 1.1.

1. There are some tags that are required for CAP, but not used in NWEM. NWEM builders should

use these fields appropriately as NWEM Messages may also travel on Cap networks.

2. There are some optional tags that are required for NWEM. Some of these have special content

restrictions. Those restrictions are needed in order to support NOAA's downstream systems.

3. Some cardinalities are more restrictive in NWEM than they are in CAP. These cardinality

restrictions are also required to adequately support downstream system requirements.

4. Finally, there are some tags that are optional in CAP and not used by HazCollect. As in item 1

above, the OPEN interface will take these fields but will not process them thorough NWEM.

If the message is also posted though the general CAP network, these tags will be processed

appropriately.

The Comments in the following CAP message further define the specific requirements for processing

as an NWEM message.

-->

<alert xmlns="urn:oasis:names:tc:emergency:cap:1.1">

<!-- Identifier must be a unique identifier across the system. Suggest using a system identifier in

form of an actual identifier string. The DM program affixes a DM in form of a randomly generated

long integer turned to a string. You may use what you like, but it should carry a guarantee of

uniqueness.

-->

<identifier>DM3117513862327615488gh_02</identifier>

<!-- The sender field is required in CAP but not used in the corresponding NWEM. It is of value

for messages that will travel on CAP networks as well as to HazCollect. A common practice

is to use an email identification type format (e.g., senderPerson@domainName.net). The DM

program uses the COG name with underlines in place of any spaces found in that name.

Either solution is acceptable.

-->

<sender>DMI-_Services_Project_Team</sender>

<!-- Time at which the message is released. Exactly as define in the CAP1.1 spec

-->

<sent>2006-04-20T10:12:29-04:00</sent>

<!-- Enumerated Value Actual, Exercise, System, or Test. "Draft" from CAP1.1 is
not allowed for NWEM posting. The tag itself in not used in the actual
NWEM message, but is used in pre-processing. For any message other than
Actual the following text will automatically be added by the HazCollect Server to
Resulting NWEM message translation: "THIS IS A <status> MESSAGE. DO NOT TAKE
ACTION BASED ON THIS <status> message..." This additional text WILL NOT be added to
the text of the CAP message itself. Messages broadcast on other CAP networks will need
to take this into account and add specific additional warnings to the description field in the
info block of the CAP message, where applicable. Such additional warnings are OK with the
HazCollect system as they re-emphasize the fact that a message is not an “actual” alert.
-->
<status>Test</status>

<!-- msgType is not directly used in NWEM but is valid for NWEM messages passed

in parallel through CAP channels. It is also used in NWEM pre-processing.

The server will use an Error, Update or Cancel message to do exactly that

Disaster Management Open Platform for Emergency Networks Page A-1

Creating NWEM CAP Messages on Open Platform Emergency Networks November 6, 2008

if the message references a previously sent NWEM Alert that has not yet

expired. The Error, Update or Cancel message must properly reference the originating

message in its references tag.

-->

<msgType>Alert</msgType>

<!--
Last name of sender and initials. This field is used in combination with the CAP <identifier>

to “sign” the bottom of the message in its NWEM format.

-->

<source>HamGA</source>

<!-- All NWEM Messages must have a Public scope

-->

<scope>Public</scope>

<!-- <references> is not used directly in an NWEM message but is valid for

NWEM messages passed in parallel through CAP channels and is processed by

the NWEM server to update unexpired previous NWEM messages. The server

will use an Error, Update or Cancel messageType message to do exactly that

if the message references a previously sent NWEM Alert that has not yet

expired.
-->

<references/>

<!-- An NWEM instance can have only one info block vice the many allowed in

regular CAP messaging.

-->

<info>

<!-- Language is required. Only two values allowed: en-US or sp-US.

-->

<language>en-US</language>

<!-- Category is a required CAP1.1 tag. It is not used in the outgoing NWEM but is
used in parallel CAP channels.
-->

<category>Other</category>

<!-- Event is a required field for HazCollect and is still a string. The specific
String, however is specialized from CAP. It must be one of an enumerated
set of NWEM names and must relate to the Event Code tag below. For NWEM,
it is the text name of the SAME Code found below in alert/info/eventCode/value.
Allowed values are found in Appendix C below.
-->

<event>Administrative Message/Follow up Statement</event>

<!-- Urgency is a required CAP1.1 tag. It is not used in the outgoing NWEM,

but is used in parallel CAP channels.

-->

<urgency>Future</urgency>

<!-- Severity is a required CAP1.1 tag. It is not used in the outgoing NWEM,

but is used in parallel CAP channels.

-->

<severity>Moderate</severity>

Disaster Management Open Platform for Emergency Networks Page A-2

Creating NWEM CAP Messages on Open Platform Emergency Networks November 6, 2008

<!-- Certainty is a required CAP1.1 tag. It is not used in the outgoing NWEM,
but is used in parallel CAP channels.
-->

<certainty>Unlikely</certainty>

<!-- Event Code is an optional, 1 to many, structure in CAP1.1. For HazCollect
exactly one instance of the tag is required.
-->

<eventCode>

<!-- The only eventCode/ValueName name accepted by HazCollect

is "SAME" or "same." All HazCollect CAP messages must be

“SAME” messages or they will not be accepted for NWEM translation.

-->

<valueName>SAME</valueName>

<!-- The eventCode/value must be one item from the list of SAME codes

recognized by HazCollect. It must be the code that corresponds to the

name found in the <event> tag above. Allowed values are defined in

Appendix C below.

-->

<value>ADR</value>

</eventCode>

<!-- <effective> must be set to the same time as <sent> for HazCollect

-->

<effective>2006-04-20T10:12:29-04:00</effective>

<!-- <onset> is not used by HazCollect. HazCollect assumes

sent = effective = onset

This makes sense in the NWEM scenario because NOAA radio warnings

are limited to immanent actual happenings.

<expires> is optional in CAP1.1 but required for HazCollect. Known in HazCollect as

"Product Purge Time”, it also has special requirements in terms

of value as follows:

1. It must not exceed <sent> by more than 360 minutes
2. It must differ from <sent> in exactly 15 minute intervals up to 120 minutes.
3. It must differ from <sent> in exactly 30 minute intervals between 120 and 360.
-->

<expires>2006-04-20T10:27:29-04:00</expires>

<!-- Sender name is a required and specifically formatted field for HazCollect
Format is <CogName>,<City>,<State>.

Most systems will want to generate this field for the user.
-->
<senderName>COG Name,Stafford,VA</senderName>

<!--
Headline requires a String <= 160 characters including spaces
-->
<headline>THIS MESSAGE IS FOR TEST PURPOSES ONLY. THIS IS TEST

MESSAGE NUMBER 1.</headline>

Disaster Management Open Platform for Emergency Networks Page A-3

Creating NWEM CAP Messages on Open Platform Emergency Networks November 6, 2008

<!-- The NWEM message concatenates the CAP description and the CAP

Instruction and is limited to a single field that must be <= 160 words. The

description field for NWEM includes what might also be in

the instruction field of a normal CAP message. The interface concatenates

for posting to NWEM but will use the original structure

for posting copies of the NWEM message to other CAP users and networks when

directed by your application. This allows the Call to action portion of the

CAP message to be properly placed within the instruction tag per the CAP 1.1 specification-->

<description>THIS IS A TEST MESSAGE. THIS IS A TEST OF THE CAPABILITY

TO RELAY EMERGENCY MESSAGES FROM NON-NATIONAL WEATHER SERVICE SOURCES

USING DEPARTMENT OF HOMELAND SECURITY AND NWS SYSTEMS. THIS TEST

MESSAGE IS NOT INTENDED TO ACTIVATE THE EMERGENCY ALERT SYSTEM.

</description>

<!-- The Call to action portion of the CAP message should be placed within the <instruction>

tag per the CAP 1.1 specification. The combined size of <description> and <instruction>

cannot exceed 160 words.

-->

<instruction>This is a place holder for evac instructions, etc.

It is where the “call to action” should be placed.</instruction>

<!-- Area:

1.Each FIPS, ZONE, or STATE CODE gets it own <area> block in a HazCollect message

2.The current implementation of HazCollect does not use <polygon> or <circle>.

within <area>. Support for these structures is projected for a future release. For now, however

they are ignored. Only the <geocode> tag is processed.

Interim Note 1 concerning Area: While it is suggested that each FIPS, ZONE, or STATE CODE get its own
separate area as shown below so that the proper name for the FIPS code can be associated with the area
in <areaDesc>, the HazCollect server will allow multiple <geocode> entries within the same <area> block
and will process all of them.

Interim Note 2 concerning Area: Parts of <area> other than <geocode> can be used for non-NWEM
purposes in a NWEM CAP message because the HazCollect Server simply ignores them.

Interim Note 3 concerning Area: Currently the “state” or “STATE” value for geocode also ignored. This
requires a statewide alert to include all of the fips codes applicable at the county level for the entire state.
This is a bug which will be fixed in a future release. As a workaround, the single area block naming the
state with multiple fips genocodes (as in Interim Note 1) might be appropriate.

-->

<area>

<!--
The <areaDesc> tag should contain the administrative name corresponding to the

geocode value. Allowed values for a particular COG are retrieved using the

getNWEMAuxData() method.

-->

<areaDesc>Burleigh</areaDesc>

<!-- Exactly one geocode is required for each area block. Allowed values will be

specified separately for each COG by NOAA. They are dynamically

retrievable using the GeNWEMAuxData() method on the DM-OPEN interface. The

downloadable structure includes administrative names associated with the

codes (for <areaDesc>) so that systems can build dynamic pick lists for alert

Disaster Management Open Platform for Emergency Networks Page A-4

Creating NWEM CAP Messages on Open Platform Emergency Networks November 6, 2008

creators that include all "Zone", FIPS, and State codes allowed to the alert issuing

COG by NWS.

-->

<geocode>

<valueName>fips</valueName>
<value>38015</value>

</geocode>

</area>

<area>

<areaDesc>Allegheny</areaDesc>
<geocode>

<valueName>fips</valueName>

<value>42003</value>

</geocode>

</area>

<area>

<areaDesc>Pennsylvania</areaDesc>
<geocode>

<valueName>state</valueName>

<value>PA</value>

</geocode>
</area>

</info>
</alert>

Disaster Management Open Platform for Emergency Networks Page A-5

B.

Creating NWEM CAP Messages on Open Platform Emergency Networks	 November 6, 2008

Appendix B.	 Explanatory Information Concerning HazCollect
Server Mode

Table B-1 below correlates HazCollect Server Mode and the value of the <status> tag in a
submitted CAP 1.1 message. The NWEM format column refers to the additional data that is
added to the final product submitted to the NWS as follows: "THIS IS A <status> MESSAGE.
DO NOT TAKE ACTION BASED ON THIS <status> message...” This additional structure is
attached to the outgoing NWEM only and is not maintained in the CAP message that may be
transmitted on other CAP networks.

One key fact that is discoverable from this table is that only three of the possible combinations of
HazCollect Server Mode and CAP <status> will result in downstream transmission of alerts
through NWS systems. “Actual” alerts will be sent only when the HazCollect Server is in “active”
mode. “Exercise” alerts also require that the HazCollect Server be in “active” mode. Finally,
“Test” alerts may be passed down stream under special circumstances defined by the NWS with
the HazCollect server in “Test” mode. All of the other combinations will be accepted, but will not
be sent to downstream systems for processing.

Table B-1 – HazCollect Server Mode to CAP Status Relationship

DM User
Activity

HazCollect Server
Mode

CAP
Status
Field

NWEM
Format

NWEM
Disseminated

Normal Active Ops Actual Normal Yes
Training Ops Actual Normal no
Test Ops Actual Normal no

Training

Exercise

Active Ops System [Training] no
Training Ops System [Training] no
Test Ops System [Training] no
Active Ops Exercise [Exercise] Yes
Training Ops Exercise [Exercise] no
Test Ops Exercise [Exercise] no

Test Active Ops Test [Test] no
Training Ops
Test Ops

Test
Test

[Test]
[Test]

no
Yes if Authorized*

Disaster Management Open Platform for Emergency Networks	 Page B-1

C.

Creating NWEM CAP Messages on Open Platform Emergency Networks November 6, 2008

Appendix C. NWEM Event Codes

The following codes are usable by HazCollect as SAME codes within an NWEM compatible
CAP message. The allowable CAP alert/info/eventCode/value entries make up the “Event
Code” Column. The allowable CAP alert/info/event entries are shown in “Event (Product)
Name” column. The Priority Column shows relative priority or processing upon receipt by
NWS.

Table C-1. NWEM Event Codes

Event Code Priority Event (Product) Name
AVW 1 Avalanche Warning
CDW 1 Civil Danger Warning
CEM 1 Civil Emergency Message
EQW 1 Earthquake Warning
EVI 1 Immediate Evacuation Warning

FRW 1 Fire Warning
HMW 1 Hazardous Materials Warning
LEW 1 Law Enforcement Warning
NUW 1 Nuclear Power Plant Warning
RHW 1 Radiological Hazard Warning
SPW 1 Shelter In Place Warning
VOW 1 Volcano Warning
AVA 2 Avalanche Watch
CAE 2 Child Abduction Emergency
LAE 2 Local Area Emergency
TOE 2 911 Telephone Outage Emergency
ADR 3 Administrative Message/Follow up Statement
NIC 3 National Information Center

DMO Configurable Practice/Demo Warning
NPT Configurable National Periodic Test
RMT Configurable Routine Monthly Test
RWT Configurable Routine Weekly Test
NMN Not Currently Disseminated Network Message Notification

Disaster Management Open Platform for Emergency Networks Page C-1

