
SAND91-8230 • UC-405
Unlimited Release
Reprinted February 1996

The Twopnt Program
for Boundary Value Problems
Version 3.10 of March 1992

J. F. Grcar

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94551
for the United States Department of Energy
under Contract DE-ACO4-94AL85000

Approved for public release; distribution is unlimited.

This report has been reproduced from the best available copy.

Available to DOE and DOE contractors from:
Office of Scientific and Technical Information
P. O. Box 62
Oak Ridge TN 37831

Prices available from (615) 576-8401, FTS 626-8401

Available to the public from:
National Technical Information Service
U. S. Department of Commerce
5285 Port Royal Rd.
Springfield VA 22161

SAND91-8230 UC-405
Unlimited Release
Printed April 1992

Reprinted February 1996

The Twopnt Program
for Boundary Value Problems

Version 3.10 of March 1992

Joseph F. Grcar
Sandia National Laboratories

Livermore, California USA 94551-0969
(510) 294-2662

na.grcar@na-net.ornl.gov
sepp@snll-arpagw.llnl.gov

Abstract
Twopnt is a computer program that finds steady state solutions for systems of differential
equations, usually, in one space dimension. This is a guide to the program’s use and a
description of its operation.

3

Acknowledgements

I thank Dr. R. J. Kee for encouraging this work and awaiting its completion. Thanks to
him and to Prof. M. D. Smooke for advice in writing the program, to Dr. J. A. Miller and
F. M. Rupley for enduring many errors, to Dr. D. S. Dandy and Dr. G. H. Evans for the
example in Chapter 7, and to F. M. Rupley for the data in Appendix 1. I thank Dr. W. G. Houf
for reading the preliminary manuscript. And thanks to Prof. D. E. Knuth for TEX and to
Blue Sky Research for Macintosh Textures.

4

Contents

chapter 1 Introduction 7

chapter 2 What Twopnt Does 9
2.0 Introduction 9
2.1 What Newton’s Search Does 12
2.2 What Time Evolution Does 15
2.3 What Grid Selection Does 16

chapter 3 Text Output 21
3.0 Introduction 21
3.1 Briefest Output 22
3.2 Output for Newton’s Search 26
3.3 Output for Time Evolution 27
3.4 Output for Grid Selection 29

chapter 4 Using Controls 32
4.0 Introduction 32
4.1 Short List of Controls 32
4.2 Long List of Controls 33

chapter 5 Messages 41
5.0 Introduction 41
5.1 Short List of Messages 42
5.2 Long List of Messages 44

chapter 6 Writing a Simulator 56
6.0 Introduction 56
6.1 Calling Twopnt 56
6.2 What the Arguments Do 61
6.3 Long List of Arguments 65
6.4 Ancillary Subroutines 71

chapter 7 Swirling Flows 74
7.0 Introduction 74
7.1 Step 1, Model 74
7.2 Step 2, Discretization 77
7.3 Step 3, Solution 78
7.4 Errors 81

appendix 1 Common Keywords 83

appendix 2 Software Notes 85

appendix 3 Change History 87

References 90

5/6

1 Introduction

1
Introduction

When computers were invented, John von Neumann foresaw computer simulations would
have four indelible errors [26]. One is arithmetic precision. Results can’t be more accurate
than machines allow, and they could be much worse if errors compound perversely. Two is
approximation. Mathematical expressions must be made amenable to machine calculation,
and unending searches for results must be terminated. Three is the model. It may simplify
the laws of science, which simplify the laws of nature. Four is measurement. Physical
constants must be ascertained experimentally.

Twopnt (pronounced two point) is a computer program that finds steady-state solutions
for systems of differential equations, usually, in one space dimension. Those equations are
called two point boundary value problems, whence the program’s name. Twopnt addresses
von Neumann’s point two. It works inside simulation programs—like “original equipment”
that secondary manufacturers interconnect to build complete systems. Twopnt now supports
roughly a dozen reacting flow simulations; some are in daily use throughout the world.

This publication describes how to use a simulation based on twopnt. Twopnt runs
automatically, generally, and reports its progress in printed output described here. Sim-
ulators running twopnt provide access to controls for twopnt’s operation. Those controls
are described here too. Often, only the control for “turning off” printing is needed. If a
simulation appears to be inefficient however, or if it fails, then investigating twopnt’s printed
output may suggest better control settings.

This publication also describes how to write a new simulation program using twopnt.
Twopnt’s advantages are its independence from specific applications, and its ability to
solve otherwise intractable problems. Among these are combustion simulations rich in
chemical detail [22]. Twopnt owes much to collaboration with R. J. Kee, J. A. Miller and
M. D. Smooke; the first and still the most extensive use of twopnt is in the premix simulator
for laminar flames [21]. The success of that simulation prompted the strict segregation of
twopnt from the rest of the simulator to facilitate twopnt’s migration to other simulations.

Twopnt is both an algorithm and a computer program. The algorithm has ? “controls”
(for simulation users) and the program has • arguments (for simulation writers). All are

7

1 Introduction

marked and cross-referenced as follows.

? ADAPT perform grid selection (control) 16, 34
? PMAX maximum points in any grid (control) 18, 34 (• 63, 68)
• PMAX maximum points in any grid (argument) 63, 68 (? 18, 34)
◦ PIVOT pivoting data (argument, but not twopnt’s)

The cross-references make it easy to look things up, but they shouldn’t be pursued when
reading straight through.

This manual is organized as follows. Chapter 2 describes what twopnt can do and
the controls that change what twopnt does. Chapter 3 explains twopnt’s printed output.
Chapter 4 lists twopnt’s controls and offers advice for setting them. Chapter 5 lists twopnt’s
error messages. Chapters 6 and 7 explain how to write simulation programs using twopnt.
Appendix 1 cross-references twopnt’s controls with the “keywords” that manipulate the
controls in simulators written at Sandia National Laboratories in Livermore, California.
Appendix 2 contains some programming notes. Appendix 3 records changes made to
twopnt.

This publication has diamond lanes, |♦|, not dangerous bends. They are easier than
N. Bourbaki’s curves (which were popularized by D. E. Knuth), but read carefully just the
same. Correspondence on this manual and on twopnt is welcome. Correspondence on von
Neumann’s points three and four should be directed to specific simulators’ authors.

When a problem in pure or applied mathematics is “solved” by numerical
computation, errors, that is, deviations of the numerical “solution” obtained
from the true, rigorous one, are unavoidable. Such a “solution” is therefore
meaningless, unless there is an estimate of the total error in the above sense.

Such estimates have to be obtained by a combination of several different
methods, because the errors that are involved are aggregates of several differ-
ent kinds of contributory, primary errors. These primary errors are so different
from each other in their origin and character, that the methods by which they
have to be estimated must differ widely from each other. A discussion of the
subject may, therefore, advantageously begin with an analysis of the main
kinds of primary errors, or rather, of the sources from which they spring.

This analysis of the sources of errors should be objective and strict
inasmuch as completeness is concerned, but when it comes to the defining,
classifying, and separating of the sources, a certain subjectiveness and arbi-
trariness is unavoidable. With these reservations, the following enumeration
and classification of sources of errors seems to be adequate and reasonable.

— J. von Neumann and H. H. Goldstine [26]

8

2 What Twopnt Does

2
What Twopnt Does

2.0 Introduction
A simulation is built in three steps. Each step incurs some of von Neumann’s four simulation
errors, see Figure 2.1 and Chapter 1. The first step is a scientific model. Twopnt leaves that
to scientists, and concerns itself with the rest. So far as twopnt is concerned, a simulation
is a system of equations to be solved. To this end, twopnt performs three interrelated tasks

• grid selection
• Newton’s search
• time evolution

which are introduced here together and then discussed separately in subsections.
Twopnt does not require the simulation have spatial dependence, but since this is often

the case, twopnt provides special facilities for two point boundary value problems. Twopnt
never sees the differential equations, however, because twopnt expects the simulator it serves
to “discretize” the equations beforehand. Since twopnt has little to do with this aspect of
the simulation, it can solve problems with more than one spatial dimension, or with none.

Figure 2.1 The steps in building a computer simulation, with von Neumann’s errors which
each step entails. See Chapter 1 and Section 2.0.

9

2 What Twopnt Does

For two point boundary value problems, twopnt expects the simulator to provide a
“grid” of p numbers

x1 x2 . . . xp

and at each of these “grid points,” twopnt seeks values for c solution “components.”

u1,1 u1,2 . . . u1,p

u2,1 u2,2 . . . u2,p

...
...

. . .
...

uc,1 uc,2 . . . uc,p

These values are unknown at the outset and must be determined. There may be many
unknowns since c = 50 and p = 100 are common in reacting flow simulations. For
example, uk,n might be the concentration of the k-th chemical species at the distance xn
from a nozzle. |♦| Twopnt also may have some unknowns associated with “boundary
conditions” at the ends of the grid.

For two point boundary value problems, the equations solved by twopnt may arise in
the following way. The values at all grid points for each component

uk,1 uk,2 . . . uk,p

constitute a discrete sampling of a quantity, uk , that varies continuously in space. From this
discrete sample, approximations can be built for the differentials of uk. For example, if x
is the spatial variable, then

duk
dx

∣∣∣∣
x=xn

≈ uk,n+1 − uk,n
xn+1 − xn

or ≈ uk,n − uk,n−1

xn − xn−1

or perhaps ≈ ∆2
nuk,n+1 + (∆2

n+1 −∆2
n)uk,n −∆2

n+1uk,n−1

∆n∆n+1(∆n + ∆n+1)

with ∆i = xi − xi−1

depending, of course, on the simulator’s choice. “Discretizing” the differential equations
may amount to replacing the equation’s differentials by the approximations above. More
elaborate discretizations are possible, for example, reacting flow simulations might have
equations representing mass conservation for each species, k, in control volumes around
each grid point, n. By these or other means, the unknowns uk,n become variables in
nondifferential equations.

For differential equations, the values sought for the unknowns are not exactly correct,
in the following sense. The solution values for each component

uk,1 uk,2 . . . uk,p

sample only approximately the continuously varying quantity uk in the differential equa-
tions.

uk,n ≈ uk(xn)

not uk,n = uk(xn)

These errors are the first aspect of John von Neumann’s approximation error (mentioned
in Chapter 1). They occur because the differentials are only approximated, and moreover,

10

2 What Twopnt Does

only at a few points. Twopnt can add points to better the approximation. The solution
values found for one grid suggest additional points for a next grid, and so on. In combustion
simulations, M. D. Smooke [31] demonstrated that successive enlargements, beginning from
grids too coarse to afford much resolution, lead to good placement of efficiently few points.
Thus, twopnt has facilities to solve nondifferential equations repeatedly, for the unknowns
associated with successive grids.

(The chief numerical issues in designing a simulation are the discretization and solu-
tion of the differential equations. The best discretization is the prevailing one in the subject
at hand, one that has been discovered and improved by trial and error. The mathematical
theory of solving two-point boundary value problems also offers guidance, but may include
recommendations not tempered by experience. For example, the text [2] reduces equations
to “standard first order form” and solves them by “shooting.” In reacting flow problems
the system is usually too large to reduce the order, and further, the resulting equations are
usually too sensitive to solve by shooting.)

Twopnt expects all the equations it solves to have been “brought to one side” so they
can be written symbolically as

f(v) = 0

in which v is the vector of all unknowns and f(v) is the vector of all equations. If arbitrary
numbers are chosen for the unknowns, as when v• is a collection of “good guesses,” then
the equations likely will not be solved—which is to say the vector of “residuals” f(v•)
formed by evaluating the “residual function” f likely will not vanish.

f(v•) 6= 0

Twopnt seeks values, v?, with zero residuals, f(v?) = 0.
(These equations are nonlinear, hence difficult to solve. “Functional iteration,” “non-

linear Gauss-Seidel,” “operator split,” and “uncoupled” methods determine values for some
unknowns by assuming values for others, in round-robin fashion. This process must be
repeated many times to obtain self-consistent solutions, and the details vary with the subject
matter. For example, the “simpler” method and the Gummel method both solve convection-
diffusion equations, but for fluids and semiconductors, respectively. Since twopnt is intended
for a variety of applications, it employs a solution process for “fully coupled” equations.)

Twopnt solves the equations by successive approximation using a variant of “Newton’s
method” [11] [28]. From a reasonable guess v0, Sir Issac Newton’s namesake constructs
an unending sequence of improving approximations

v0 v1 · · · vn · · ·

that converge on a vector v? with f(v?) = 0. After reasonably many steps, twopnt accepts
some “approximate solution” vn in lieu of v?, and this vn becomes the “result” of the
simulation. Accepting vn in place of v? is the second aspect of John von Neumann’s
approximation error.

The chief difficulty with Newton’s method is that even a well chosen v0 needn’t spawn
a convergent sequence of approximate solutions. In this case twopnt tempers the guess by
evolving it in time. When Newton’s method goes astray, twopnt begins building a different
sequence

v• = v(0) v(1) v(2) · · · v(m) · · ·

which samples the time evolution of the simulated phenomena at grid points in time.

0 = t0 t1 t2 · · · tm · · ·

The time dependent states eventually converge on the steady state too, but twopnt stops far
short of that. Early transient states usually are sufficiently “better guesses” that Newton’s

11

2.1 What Newton’s Search Does

method, beginning from them, can find the steady state directly. In combustion simulations,
J. F. Grcar and company [15] found the systematic use of this shortcut efficient.

The time dependent states are obtained by solving time dependent rather than steady
state equations. Simulated phenomena invariably have a temporal aspect, so the simulation’s
equations naturally include time derivatives. Indeed, the steady state formulation simply
assumes those derivatives vanish. Thus, the time dependent residual functions, tdf(m), are
just more elaborate versions of the steady state residual function, which is henceforth named
ssf . In particular, the time dependent equations must incorporate values from previous time
points to permit building approximations for the time differentials, hence the inclusion of a
time point index, m, in the notation tdf (m).

(Many pioneering steady state simulations were performed entirely by time evolution.
Consult [31] for references to early simulations in combustion chemistry. This practice
continues because some time discretizations, “explicit” ones, lend themselves to uncoupled
solution methods. Their advantages are ease of programming and economy of computer
memory; disadvantages are choosing where to stop and taking too long to get there. Since
twopnt already expects to use Newton’s fast method for the steady state, when transient
states are needed, it uses “implicit” time discretizations.)

In summary, twopnt uses three devices to solve what could be hard problems. For two
point boundary value problems, twopnt undertakes calculations on small grids to determine
good point locations and good solution guesses for large grids. Moreover, twopnt improves
solution guesses by time evolution when necessary. Finally, twopnt solves equations by
Newton’s rapidly converging method. The following sections explain these three tasks and
how to control them.

2.1 What Newton’s Search Does
Twopnt solves nonlinear equations

ssf(v) = 0 and tdf (m)(v) = 0

for the steady and time dependent states, respectively. Twopnt has a control that omits
searches for the steady state if desired.

? STEADY search for the steady state (yes or no) 37

This control can avoid exhaustive searches whose results might be unnecessarily accurate,
for example, as preliminary estimates for subsequent simulations. Other controls can prevent
searches for transient states, see Section 2.2.

Whatever the equations’ origin, Newton’s method [11] [28] solves nonlinear equations
f(v) = 0 by successive approximations

v0 v1 · · · vn · · ·

formed by repeated iterations

sn = −J−1f(vn)

that is, given vn solve Jsn = −f(vn) for sn, and then

vn+1 = vn + sn

in which J is the Jacobian matrix of f with respect to v evaluated at vn. The i-th column
of J contains the derivatives of all the residual functions with respect to the i-th unknown.
The linear part of Taylor’s series representation for f

f(v) ≈ f(vn) + J(v − vn)

12

2.1 What Newton’s Search Does

suggests f(v) ≈ 0 when v = vn − J−1(f(vn)) which is Newton’s choice for vn+1.
The expense of matrix evaluation is usually so great a “modified” Newton’s method

is used which retains the Jacobian matrix through several steps. Twopnt has controls that
retire the matrix after a specified number of steps (Newton’s “pure” method retires the
matrix immediately).

? SSAGE steady state Jacobian’s retirement age 37
? TDAGE time dependent Jacobian’s retirement age 37

In the steady state case the first Jacobian matrix is evaluated at v0, so with SSAGE = 5, the
others are at v5, v10 and so on. The time dependent case is the same. If successive intervals
in the time grid are the same length, however, then twopnt retains the Jacobian matrix from
one Newton search to the next. |♦| In the time dependent case, the Jacobian matrix of tdf (1)

is evaluated at v0 := v(0) first, and with TDAGE = 5, at v5 next. If v9 is accepted as the
time dependent state v(1), then the search for v(2) begins from the guess v0 := v(1) with a
matrix of age 4. Thus, the Jacobian matrix of tdf (2) is evaluated at v1, v6 and so on.

The selection of an acceptable approximate solution vn depends on the size of the
correction, sn. The residual f(vn) itself is ignored because the relationship between good
approximations and small residuals is difficult to quantify, though in fact, the residual for
the chosen vn is much nearer 0 than the residual for the guess v0. Proofs that Newton’s
modified method converges suggest the error v?−vn decreases at least geometrically, which
implies sn decreases geometrically too. Presumably, if si,n is small relative to vi,n, then the
error vi,? − vi,n should be of the same relative magnitude (the notation here means si,n is
the i-th entry in the vector sn, and similarly for vn and v?). Twopnt has controls for relative
accuracy measured in this indirect way.

? SSREL steady state relative convergence test’s bound 35
? TDREL time dependent relative convergence test’s bound 35

In many simulations some quantities are vanishingly small. In reacting flows for example,
reactants and products generally do not coexist. Since approximating zero to high relative
accuracy is meaningless, twopnt also has controls for absolute accuracy.

? SSABS steady state absolute convergence test’s bound 35
? TDABS time dependent absolute convergence test’s bound 35

These controls can be interpreted as meaning vn is chosen as the approximate solution
provided each entry in vn has error either absolutely or relatively small. Twopnt’s precise
criteria for stopping at vn is

|si,n| ≤
{

either ABS, or

REL × |vi,n|

in which i indexes all the entries in the vectors, that is, all the unknowns.
|♦| Actually, twopnt applies the convergence criteria to (vn + sn) − vn rather than

to sn itself, for the following reason. If sn is very small relative to vn, then arithmetic
rounding could make vn+1 identical to vn, and then further searching is pointless. In this
case, (vn+sn)−vn probably equals 0 not sn, so the convergence criteria with (vn+sn)−vn
in place of sn will stop the search.

|♦| |♦|Twopnt shouldn’t be asked to find a vn with an sn insignificantly small. Usually,
rounding makes f , J and sn difficult to evaluate with precision near v?, so Newton’s search
wanders aimlessly near its goal. Thus with ABS = 0 and REL = 0 two things can happen.
(1) Newton’s search ends successfully at some vn the machine can’t improve and which

13

2.1 What Newton’s Search Does

is presumably almost v?. More likely, (2) the convergence monitors, below, end Newton’s
search in failure.

All proofs of convergence for Newton’s method derive from L. Kantorovich’s famous
one [28, p. 428] which has stringent assumptions difficult to verify. Implementations of
Newton’s method therefore must take care all goes well and make adjustments when not.
The simplest precaution confines the search to safe or desired territory. That is, the equations
f(v) = 0 may have multiple solutions with some not wanted, or the residual function f
may be impossible to evaluate for some v. For example, chemical species must not have
negative densities. Twopnt therefore has controls that limit the acceptable values for each
unknown.

? ABOVE(i) upper limit for the i-th unknown 33 (• 62, 66)
? BELOW(i) lower limit for the i-th unknown 33 (• 62, 66)

Twopnt expects the initial guess, v0, obeys the bounds

BELOW(i) ≤ vi,0 ≤ ABOVE(i)

and it ensures the subsequent solution estimates obey the bounds too, in the following way.
Twopnt evaluates

vn+1 = vn + δBsn

in place of vn+1 = vn + sn

where 0 < δB ≤ 1 is the largest number that keeps vn+1 within bounds. |♦| Three things
can happen. (1) If vn lies on a boundary and sn points outside, then Newton’s method is
judged a failure unless an old Jacobian has been used and a new one turns sn around. (2) If
Newton fails to find the steady state, then twopnt begins a time evolution—from v0 where
Newton started, not vn where Newton failed. (3) If Newton fails to find a time dependent
state, then refer to Section 2.2.

Twopnt also uses the following check for progress. Given vn and a likely vn+1, twopnt
evaluates what would be the next step, sn+1.* Twopnt accepts vn+1 provided the potential
next step is shorter than the present step, that is, provided

‖sn+1‖∞ ≤ ‖sn‖∞

in which ‖ · ‖∞ is the maximum-magnitude norm (the max or infinity norm). If not shorter,
then twopnt retreats from vn+1, evaluating

vn+1 = vn + δDδBsn

in place of vn+1 = vn + δBsn

where the “damping factor” δD decreases geometrically.

δD = 2−0.5, 2−1.0, . . . , 2−2.5

|♦| Three things can happen. (1) If no vn+1 passes the test above, then Newton’s method
is judged a failure unless an old Jacobian has been used and a new one produces better
sn, vn+1 and sn+1. (2) If Newton fails to find the steady state, then twopnt begins a time
evolution—from v0 where Newton started, not vn where Newton failed. (3) If Newton fails
to find a time dependent state, then refer to Section 2.2.

* |♦| For economy, the same Jacobian matrix produces both sn and sn+1. If a Jacobian
evaluation is not scheduled at vn+1, then this sn+1 would be the next step.

14

2.2 What Time Evolution Does

2.2 What Time Evolution Does
Twopnt undertakes a transient evolution with states

v• = v(0) v(1) v(2) · · · v(m) · · ·

at successive points in time

0 = t0 t1 t2 · · · tm · · ·

solely to replace the starting guess in Newton’s search for the steady state by something
better, namely v(m) for some m. Time evolution begins at the guess v• supplied by the
simulator or suggested by the previous spatial grid—see Section 2.3. Twopnt obtains the
time evolution by solving the time-dependent equations

tdf(m)(v(m)) = 0

for successive m by Newton’s method, beginning the search for v(m) at the “guess” v(m−1).
These searches can fail, too.

Twopnt can be directed to pass time even before the search for the steady state begins
and whenever Newton’s method fails thereafter.

? STEPS0 time steps before first steady state search 38
? STEPS1 time steps upon failing to find a steady state 38

Thus, with STEPS0 = 100 and STEPS1 = 50, Newton’s search for a steady state begins
at v(100), and if unsuccessful begins again at v(150), and if still unsuccessful begins again at
v(200), and so on without limit.

The initial time evolution, STEPS0 > 0, has two uses. When the solution guess
is poor and time evolution is needed, then STEPS0 > 0 avoids one fruitless search for
the steady state. When there are multiple steady states and Newton’s search might find a
nonphysical one, then STEPS0 > 0 moves the solution toward a stable state.

A well developed branch of numerical analysis chooses time points t0, t1, t2, . . . to
follow transient evolutions accurately [4] [18]. Twopnt does not use the methods developed
there, for two reasons. First, accurate transient simulations may incur computing expenses
incidental to twopnt’s goal. Second, the proper choice of time grids varies with the dis-
cretization of the time differentials. As a convenience to the simulators it serves, twopnt
leaves the choice of time discretizations open.

Twopnt chooses the steps between the time points as follows. Twopnt takes many
steps of the same length,

? STRID0 initial stride between time points 38

and expecting longer steps to approach the steady state in fewer steps, twopnt periodically
lengthens its stride, but only so far.

? STEPS2 time steps before increasing the stride 38
? TINC multiplier by which to increase the stride 38
? TMAX maximum stride 38

Conversely, twopnt shortens its stride in the following situations. If Newton’s method cannot
solve the transient equations for a newly increased stride, then twopnt reverts to the previous
stride. If Newton’s method cannot solve the transient equations for a not-newly-increased
stride, then twopnt shortens its stride, but again only so far.

? TDEC divisor by which to decrease the stride 38
? TMIN minimum stride 38

15

2.3 What Grid Selection DoesFor example, with

STEPS2 = 75 STRID0 = 10−6 TINC = 10 TDEC = 3.16

the first seventy-five steps have stride 10−6, and the next have stride 10−6 × 10 = 10−5.
If Newton’s method initially fails in the search for v(137), then twopnt shortens the stride
to 10−5 ÷ 3.16 = 10−5.5 and tries again. If Newton’s method repeatedly fails despite
shortening the stride to TMIN, then twopnt abandons the time evolution and begins one last
search for the steady state from the last available time dependent state, v(136). If that search
fails, then twopnt fails.

2.3 What Grid Selection Does
Twopnt constructs a succession of finer grids with more points for two point boundary value
problems, when so directed.

? ADAPT perform grid selection (yes or no) 34

Twopnt must be given an initial grid, and when it finds a solution there, twopnt selects
another grid, and so on.

? X the grid 40 (• 58, 63, 71)
? POINTS points (in the initial grid) 35 (• 58, 62, 68)

Each grid’s solution is used to suggest the next grid, and moreover, is used to provide a
guess for the next solution. As the grids grow, the solutions of the discrete equations better
approximate the solution of the differential equations. Since the approximations improve
from grid to grid, so the solutions differ less, and thus the guesses improve too. Solving the
equations therefore becomes easier although the grids become larger. The use of succes-
sively chosen grids to improve solution accuracy is well established and difficult to credit,
but the use also to improve solution efficiency apparently originated with M. D. Smooke
[31] [32].

|♦| In multiple simulations such as parameter studies, large grids may result if twopnt
adds points to successive simulation grids. Twopnt has no means to remove points, so some
simulators may have their own.

Twopnt constructs the next grid by adding points to the present grid

x1 x2 . . . xp

based on examining some components of the solution.

u1,1 u1,2 . . . u1,p

u2,1 u2,2 . . . u2,p

...
...

. . .
...

uc,1 uc,2 . . . uc,p

An examined component

uk,1 uk,2 . . . uk,p

should approximate a quantity that varies continuously in space.

uk,n ≈ uk(xn)

16

2.3 What Grid Selection Does

Figure 2.2 Four solution components of the example in Chapter 7 found by twopnt with
TOLER1 = 0.1 and TOLER2 = 0.1. Figures 2.3.1 and 2.3.2 enlarge a portion of the F
curve for close viewing. Section 2.3 discusses this graph.

When graphed, the pairs (xn, uk,n) approximate the graph of uk(x).
Twopnt has two controls that choose the solution components it examines. The first

control is additive: it selects components outright. The second control is subtractive: it
eliminates seemingly insignificant components.

? ACTIVE(k) use component k for grid selection (yes or no) 33 (• 63, 66)
? TOLER0 absolute and relative significance floor 39

The k-th component is judged “insignificant” if its variation (maximum less minimum) is
either absolutely small or small relative to its magnitude.

max
n

uk,n −min
n

uk,n ≤

either TOLER0, or

TOLER0 ×max
n
|uk,n|

Twopnt seeks two features in each graph it examines. First, the variation over each
grid interval should be less than a controlled fraction of the variation over all grid intervals.

RATIO1k,n :=
|uk,n − uk,n−1|

maxn uk,n −minn uk,n
≤ TOLER1

? TOLER1 bound on change of value in each interval 39

If this condition fails, then twopnt “marks” for attention the interval between xn−1 and
xn. These marks ensure the grid concentrates points where the solution changes abruptly,
for example, in fronts. |♦| The marking process for each feature in the graph is more or
less independent of any other feature because only the maximum variation (not the total
variation) occurs in the ratio’s denominator. For example, if a graph has many identical
ups and downs in succession, then twopnt marks the same intervals for subdivision in each
front, no matter how many fronts there may be.

17

2.3 What Grid Selection Does

The second feature twopnt seeks is, the variation in angle of slope at each interior grid
point should be less than a controlled fraction of the variation over all grid points.

θk,n = atan

(
uk,n+1 − uk,n
xn+1 − xn

)

RATIO2k,n :=
| θk,n − θk,n−1|

maxn θk,n −minn θk,n
≤ TOLER2

? TOLER2 bound on change of angle at each point 39

If this condition fails, then twopnt marks for attention the intervals on either side of xn.
These marks ensure the grid concentrates points where the solution’s slope changes abruptly,
for example, at peaks and troughs. Note the angles’ sensitivity to scaling. Twopnt omits
this portion of its examination if the k-th component’s angles are judged insignificant, as
follows.

max
n

θk,n −min
n

θk,n ≤

either TOLER0, or

TOLER0 ×max
n
|θk,n|

The complementary effects ofTOLER1 and TOLER2 are illustrated by some solutions
obtained for Chapter 7’s example. Figure 2.2 shows four of the simulation’s five solution
components that have been obtained with both controls set at 0.1. Figure 2.3.1 shows part
of this solution and part of another that has TOLER2 = 1. Only TOLER1 governs the other
solution’s grid, and clearly, TOLER1 resolves fronts but not peaks or troughs. Conversely,
Figure 2.3.2 shows part of the reference solution and part of another that has TOLER1 = 1.
Only TOLER2 governs this other solution’s grid, and clearly, TOLER2 resolves peaks or
troughs but not fronts.

In general, TOLER1 and TOLER2 place grid points where the first derivative and the
curvature, respectively, have large magnitudes. Usually, TOLER1 controls accuracy and
TOLER2 controls appearance. In Figures 2.3.1 and 2.3.2 for example, TOLER1 places
a coarse peak at the correct altitude, while TOLER2 places a smooth peak at the wrong
altitude. Since twopnt uses the same grid for all solution components, simulations with
overlapping regions of peaks and fronts may muddy the distinction between these controls.

Twopnt constructs its grids, as follows. After examining each component and marking
the grid intervals according to TOLER1 and TOLER2, three things can happen. (1) Twopnt
constructs a new grid by halving marked intervals. Since the equations for a grid with many
new points may be difficult to solve, twopnt has a control to limit the introduction of new
points, and of course, a control to limit the total number of points.

? PADD maximum points added to any one grid 34
? PMAX maximum points in the grid 34 (• 63, 68)

When more intervals are marked than points can be added, twopnt halves the most frequently
marked intervals. (2) If some intervals have been marked but none can be halved, because
either PADD = 0 or POINTS = PMAX, then twopnt fails. (3) If no intervals have been
marked, then twopnt supposes the boundary value problem has been solved.

|♦| The features that twopnt seeks in the graphs constitute twopnt’s measure of dis-
cretization accuracy. This measure is necessarily superficial because twopnt does not choose
the discretization. Twopnt’s grid selection process can be interpreted geometrically as above,
or in terms of discretization error as follows. “Anonymous” discretizations of complicated
boundary value problems likely have truncation errors dependent on low derivatives of the
analytic solution functions, uk. Twopnt’s first criterion for rejecting intervals approximates

18

2.3 What Grid Selection Does

Figure 2.3.1 Close view of Figure 2.2
(smooth curve) together with a solution
found by twopnt for identical controls ex-
cept TOLER2 = 1 (rough curve). Alone,
TOLER1 resolves the front, but not the
peak. Section 2.3 discusses this graph.

Figure 2.3.2 Close view of Figure 2.2
(smooth curve) together with a solution
found by twopnt for identical controls ex-
cept TOLER1 = 1 (rough curve). Alone,
TOLER2 resolves the peak, but not the
front. Section 2.3 discusses this graph.

the constraint that each interval accounts for only a controlled fraction of the maximum
variation in uk.

∫ xn

xn−1

∣∣∣∣
duk
dx

∣∣∣∣dx ≤ TOLER1 × (maxuk −min uk)

When the grids have been successively enlarged many times by halving offending intervals,
then all the integrals might have roughly the same magnitude, because “the raised nail
gets the hammer” (Japanese proverb). V. Pereyra and G. Sewell relate this condition to
approximation error by deriving error bounds, in some cases, when the definite integrals
do have the same magnitude [2, pp. 365, 554]. Twopnt’s second criterion amounts to the
constraint ∫ (xn+xn+1)/2

(xn−1+xn)/2

|κk| ds ≤ TOLER2×
(

max
x

θk −min
x
θk

)

in which s is arc length and κk is the curvature of the graph of uk .

θk =
d

ds

(
atan

(
duk
dx

))

The relation between curvature and approximation error is unknown. In general, grid
selection remains a research topic [2]. The process used by twopnt is a modified version of
one used by M. D. Smooke [31], who apparently originated it.

19

2.3 What Grid Selection Does

(A) The mathematical formulation that is chosen to represent the under-
lying problem may represent it only with certain idealizations, simplifications,
neglections. This is even conceivable in pure mathematics, when the numeri-
cal calculation is effected in order to obtain a preliminary orientation over the
underlying problem. It will, however, be the rule and not the exception in ap-
plied mathematics, where these things are hardly avoidable in a mathematical
representation. This complex is further closely related to the methodological
observation that a mathematical formulation necessarily represents only a
(more or less explicit) theory of some phase of reality, and not reality itself.

— J. von Neumann and H. H. Goldstine [26]

20

3 Text Output

3
Text Output

3.0 Introduction
Twopnt’s written output has selectable levels of detail. The levels correspond to the hierarchy
of tasks twopnt performs during the simulation, see Figure 3.1. Twopnt’s controls choose
the level in the hierarchy beyond which output stops. Higher levels provide more detailed
output.

? LEVELM level of informative message output 34
? LEVELD level of solution data output, no larger than LEVELM 34

For example, LEVELM = 0 prohibits output except error messages, and = 1 enables output
from the decision-making level, while= 2adds output from the mid-level tasks in Figure 3.1.
If LEVELM = 3 and if time evolution occurs, then Newton’s search for each transient state
provides output too—this could be voluminous because there may be hundreds of time
points.

Figure 3.1 Levels in the hierarchy of twopnt’s tasks.

21

3.1 Briefest Output

The informative output controlled by LEVELM is explained below in separate sections
for the decision-making level and for each task at higher levels. The output is illustrated
by examples from the simulation described in Chapter 7. This output chronicles twopnt’s
internal activities, so the examples should clarify Chapter 2’s explanation of what twopnt
does. In unsuccessful simulations, the output may suggest how to improve efficiency or
how to forestall failure. Successful simulations usually “turn off” this output or reduce it to
a minimum, = 1.

The control for solution output, LEVELD, functions similarly. The latest solution
estimate appears after other output for each task at the chosen level. For example,LEVELD =
0 writes no solution data, while = 1 writes only the initial guess and the final result, and
= 2 writes the latest solution estimate after each mid-level task in Figure 3.1. LEVELD = 3
is discouraged.

The solution output controlled by LEVELD is simulation specific and is not discussed
further in this publication. Simulators usually provide other, separate output for graphics
and the like. If the simulator does provide detailed written output viaLEVELD, then= 1 may
be useful for a quick look at the final result, while = 2 may help diagnose a malfunctioning
simulation.

3.1 Briefest Output
The output described here, LEVELM = 1, is the briefest next to none-at-all. This output has
two parts: one chronicles what twopnt does

• grid selection
• Newton’s search
• time evolution

and the other explains what doing these things costs. The first part, the chronicle, summarizes
data from higher output levels and so only appears when LEVELM = 1. The second part,
the expense account, always appears after everything else, whenever output is requested.

Figure 3.2 shows the chronicle for the simulation in Chapter 7. The first column
in the Figure, TASK, names the various tasks twopnt performs; the other columns report
how the tasks fare. This particular simulation requires eleven grids which grow from 6 to
76 points. Lines 7 though 14 describe twopnt’s efforts to find the solution on the smallest
grid. Thrice Newton’s search fails (LINES 8, 10 AND 12), and thrice time evolution of 50
time steps improves the guess (LINES 9, 11 AND 13). Thus, after 150 time steps, Newton’s
search succeeds on the fourth try (LINE 14). The solution found there suggests a new grid
of 11 points (LINE 16) whose guess is sufficiently good that Newton’s search succeeds
immediately (LINE 17). Similarly, no subsequent grid requires time evolution (LINES 19
TO 44). The solution on the grid of 76 points produces no new grid (LINE 46), so it is the
result of the simulation.

The second column in Figure 3.2, NORM F, indicates twopnt’s progress toward the
solution for each grid. This column reports the residual for the latest solution estimate,
specifically

log10 ‖ssf(v)‖∞
in which ‖ · ‖∞ is the maximum-magnitude norm (the max or infinity norm) and v is the
latest proposed solution. Section 2.2 explains that twopnt ignores the residual when deciding
accuracy, so column two is for information only. In this example, the residual for the guess
on the first grid measures 6.14 (LINE 7), and time evolution makes matters worse, increasing
the measure to 6.37 (LINE 11) before dropping it to 6.02 (LINE 13). Newton’s search then
converges, stopping with a residual measuring −3.08 (LINE 14).

|♦| The third column in Figure 3.2, COND J, indicates the potential difficulty of
solving the discrete steady state and time dependent equations. This column reports the

22

3.1 Briefest Output

TWOPNT: DOUBLE PRECISION (TWO POINT BOUNDARY VALUE PROBLEM) SOLVER, 1
VERSION 3.08 OF JANUARY 1992 BY DR. JOSEPH F. GRCAR. 2

3
LOG10 LOG10 4

TASK NORM F COND J REMARK 5
6

START 6.14 6 GRID POINTS 7
SEARCH 7.00 DIVERGING 8
EVOLVE 6.32 1.85 50 TIME STEPS, 3.2E-03 LAST STRIDE 9
SEARCH 6.73 GOING OUT OF BOUNDS 10
EVOLVE 6.37 2.69 50 TIME STEPS, 1.0E-02 LAST STRIDE 11
SEARCH 6.36 GOING OUT OF BOUNDS 12
EVOLVE 6.02 2.72 50 TIME STEPS, 1.0E-02 LAST STRIDE 13
SEARCH -3.08 5.64 14 SEARCH STEPS 14

15
REFINE 6.32 1.00 AND 1.00 RATIOS, 11 GRID POINTS 16
SEARCH -2.16 5.77 13 SEARCH STEPS 17

18
REFINE 6.65 0.94 AND 1.00 RATIOS, 16 GRID POINTS 19
SEARCH -3.10 5.94 7 SEARCH STEPS 20

21
REFINE 6.87 0.92 AND 1.00 RATIOS, 23 GRID POINTS 22
SEARCH -0.75 6.07 10 SEARCH STEPS 23

24
REFINE 7.01 0.91 AND 0.97 RATIOS, 35 GRID POINTS 25
SEARCH -1.07 6.22 6 SEARCH STEPS 26

27
REFINE 7.11 0.76 AND 0.93 RATIOS, 42 GRID POINTS 28
SEARCH -0.69 6.25 4 SEARCH STEPS 29

30
REFINE 7.16 0.52 AND 0.85 RATIOS, 47 GRID POINTS 31
SEARCH -0.97 6.26 3 SEARCH STEPS 32

33
REFINE 7.20 0.31 AND 0.69 RATIOS, 55 GRID POINTS 34
SEARCH 0.74 6.28 2 SEARCH STEPS 35

36
REFINE 7.22 0.17 AND 0.47 RATIOS, 62 GRID POINTS 37
SEARCH -0.52 6.29 2 SEARCH STEPS 38

39
REFINE 7.23 0.10 AND 0.27 RATIOS, 69 GRID POINTS 40
SEARCH -1.73 6.30 2 SEARCH STEPS 41

42
REFINE 7.23 0.10 AND 0.16 RATIOS, 76 GRID POINTS 43
SEARCH 2.00 6.29 1 SEARCH STEP 44

45
REFINE 0.10 AND 0.09 RATIOS 46

Figure 3.2. The portion ofLEVELM = 1 output that describes what twopnt does. Section 3.1
interprets this data. Chapter 7 explains the particular simulation.

worst condition number for any Jacobian matrix encountered in Newton’s searches for
steady or transient states. Specifically, it reports

max
J

log10 (κ(J))

in which, for this example, κ(J) is the linpack condition number estimator [8]. The condition
number measures the difficulty of solving accurately the matrix equations at each step of
Newton’s search. Lower condition numbers indicate easier problems. Usually, as here, the
time dependent equations are easier than the steady state equations.

23

3.1 Briefest Output

TWOPNT: 17.34 SECONDS TOTAL COMPUTER TIME (SEE BREAKDOWN BELOW). 1
2

PERCENT OF TOTAL COMPUTER TIME FOR VARIOUS TASKS: 3
4

TASK SUBTASK 5
GRID GRID -------------------- --------------------------- 6

POINTS TOTALS EVOLVE SEARCH REFINE EVAL F PREP J SOLVE OTHER 7
8

6 51.0 37.3 13.5 0.0 10.6 15.3 12.4 12.8 9
11 2.6 0.0 2.5 0.1 0.3 1.3 0.5 0.5 10
16 3.8 0.0 3.7 0.1 0.6 2.1 0.7 0.5 11
23 3.7 0.0 3.5 0.1 0.7 1.6 0.9 0.5 12
35 4.4 0.0 4.2 0.1 0.6 2.4 0.8 0.6 13
42 4.4 0.0 4.1 0.1 0.5 2.7 0.5 0.6 14
47 4.8 0.0 4.4 0.1 0.6 3.1 0.5 0.6 15
55 5.4 0.0 5.0 0.2 0.5 3.7 0.5 0.6 16
62 6.1 0.0 5.5 0.2 0.7 4.3 0.7 0.4 17
69 6.7 0.0 6.2 0.2 0.7 4.7 0.7 0.6 18
76 7.1 0.0 6.5 0.4 0.6 5.4 0.5 0.5 19

20
TASK TOTALS: 37.3 58.9 1.5 16.6 46.6 18.6 18.2 21

22
AVERAGE COMPUTER TIMES FOR, AND NUMBERS OF, SUBTASKS: 23

24
AVERAGE SECONDS NUMBER OF SUBTASKS 25

GRID ------------------------- ------------------------- 26
POINTS EVAL F PREP J SOLVE EVAL F PREP J SOLVE 27

28
6 0.002 0.060 0.003 814 44 809 29
11 0.004 0.115 0.005 17 2 15 30
16 0.006 0.180 0.008 17 2 15 31
23 0.009 0.270 0.013 14 1 12 32
35 0.012 0.410 0.020 9 1 7 33
42 0.013 0.470 0.018 7 1 5 34
47 0.018 0.540 0.022 6 1 4 35
55 0.018 0.650 0.027 5 1 3 36
62 0.024 0.740 0.040 5 1 3 37
69 0.024 0.820 0.040 5 1 3 38
76 0.028 0.940 0.045 4 1 2 39

40
TWOPNT: SUCCESS. PROBLEM SOLVED. 41

Figure 3.3. The portion of LEVELM > 0 output that describes the cost of what twopnt does.
Section 3.1 interprets this data. Chapter 7 explains the particular simulation.

The fourth column in Figure 3.2, REMARK, contains miscellaneous information about
each task. The grid selection task, REFINE, reports Section 2.3’s worst ratios for the most
recent grid’s solution

RATIO i := max
k,n

RATIO i
k,n

i = 1 and 2

and when those ratios exceed TOLER1 and TOLER2, it reports the size of the then newly
created grid. Newton’s search for the steady state, SEARCH, reports the number of steps
taken when successful (LINE 14), or the reason for failure when not successful (LINES 8,
10 AND 12). Time evolution, EVOLVE, reports the number of time steps and either the last
step’s size (LINES 9, 11 AND 13) or the last step’s reason for failure.

The second part of twopnt’s output, in Figure 3.3, displays the cost of what twopnt
does. The unit of measure is computing time, so costs vary by machine and by machine
load. In this example, an unstressed vax 8700 needs 17.34 seconds (LINE 1) to complete
Chapter 7’s simulation. Some machines may provide no timing data, or may provide real

24

3.1 Briefest Output

TWOPNT: DOUBLE PRECISION (TWO POINT BOUNDARY VALUE PROBLEM) SOLVER, 1
VERSION 3.08 OF JANUARY 1992 BY DR. JOSEPH F. GRCAR. 2

3
LOG10 LOG10 4

TASK NORM F COND J REMARK 5
6

START 6.14 7
SEARCH 7.00 DIVERGING 8
EVOLVE 6.32 1.85 50 TIME STEPS, 3.2E-03 LAST STRIDE 9
SEARCH 6.73 GOING OUT OF BOUNDS 10
EVOLVE 6.37 2.69 50 TIME STEPS, 1.0E-02 LAST STRIDE 11
SEARCH 6.36 GOING OUT OF BOUNDS 12
EVOLVE 6.02 2.72 50 TIME STEPS, 1.0E-02 LAST STRIDE 13
SEARCH -3.08 5.64 14 SEARCH STEPS 14

15
TWOPNT: 8.49 SECONDS TOTAL COMPUTER TIME (SEE BREAKDOWN BELOW). 16

17
SUBTASK TASK 18
--------------------------------- --------------- 19
EVAL F PREP J SOLVE OTHER EVOLVE SEARCH 20

21
% OF TOTAL 21.3 30.2 23.0 25.6 74.1 25.7 22

MEAN SECONDS 0.002 0.058 0.002 23
QUANTITY 814 44 809 24

25
TWOPNT: SUCCESS. PROBLEM SOLVED. 26

Figure 3.4. Complete LEVELM = 1 and LEVELD = 0 output when grid selection is turned
off, ADAPT = no. Section 3.1 interprets this data. Chapter 7 explains the particular
simulation.

time (that is, elapsed wall-clock time) rather than computing time. Appendix 2 explains
how twopnt acquires timing data.

Figure 3.3 analyzes twopnt’s costs three ways (LINES 3 TO 21). Analysis one is by
grid. The Figure shows the smallest grid needs 51.0% of all time (LINE 9). Subsequent grids
need much less time because better solution guesses are available for them. Analysis two is
by task. For the only grid to require time evolution, Figure 3 shows evolution needs 37.3%
of all computing time (LINE 9), while Newton’s search needs only 13.5%. Thus, Newton’s
search for the steady state cuts short what could be a very expensive time evolution to the
steady state. Analysis three is by subtask, that is, by the building blocks of twopnt’s larger
tasks.

• EVAL F residual function evaluation
• PREP J Jacobian matrix preparation
• SOLVE solution of matrix equations

Figure 3.3 shows function evaluations need 16.6% of all time (LINE 21), and matrix prepa-
rations need 46.6%. In this example, matrix preparations include both evaluating and
factoring the Jacobian matrices, and moreover, matrix evaluation is by numerical approx-
imation requiring still more function evaluations. Altogether, nearly 63.7% of all time is
spent evaluating the residual function—and in this example the function is particularly easy
to evaluate! Thus as usual, the greatest performance improvements come from speeding
residual function evaluation, see [12] [27].

Figure 3.3 also displays the costs and quantities of subtasks (LINES 23 TO 39). More
subtasks are needed for earlier grids because twopnt finds solutions more easily once it has
good solution guesses—the first grid needs 814 function evaluations and the last needs 4
(LINES 29 AND 39). Yet the earlier subtasks are less expensive because the cost per subtask

25

3.2 Output for Newton’s Search

SEARCH: SOLVE NONLINEAR, NONDIFFERENTIAL EQUATIONS. 1
2

LOG10 3
SLTN -- 4

NUMBER NORM F COND J NORM S ABS AND REL DELTA B AND D 5
6

0 6.02 5.03 2.42 2.42 0.37 7
1 5.31 1.61 1.61 0.59 -0.30 8
2 4.93 1.54 1.54 0.58 -0.30 9
3 4.85 1.51 1.51 0.91 10
4 4.90 1.26 1.26 0.95 -0.30 11
5 4.88 5.50 1.72 1.72 0.35 12
6 4.53 5.64 1.10 1.10 1.52 13
7 3.65 0.02 0.02 -0.16 14
8 2.55 -0.76 -0.76 -1.01 15
9 1.65 -2.17 -2.17 -1.87 16
10 0.65 -2.80 -2.80 -2.86 17
11 -0.26 -3.91 -5.75 -3.86 18
12 -1.22 -4.69 -6.64 -4.62 19
13 -2.07 -5.75 -8.01 -5.71 20
14 -3.08 -6.53 ZERO -7.29 21

22
SEARCH: SUCCESS. 23

Figure 3.5. The portion of LEVELM = 2 output that describes Newton’s search for the
steady state. Section 3.2 interprets this data. Chapter 7 explains the particular simulation.

is proportional to grid size—function evaluation time per grid point varies little between the
smallest and the largest grids (LINES 29 AND 39).

0.002 seconds
6 points

= 0.000333
0.028 seconds

76 points
= 0.000368

Thus, the hardest problems occur where the subtasks are cheapest; the easiest problems
occur where the subtasks are dearest. Using a succession of grids is clearly efficient.

When twopnt uses only one grid, ADAPT = no, then the briefest output can be very
brief. In this case, Figure 3.4 displays the entire output for Chapter 7’s example. The
succession of grids is gone from the lists of tasks and expenses.

3.2 Output for Newton’s Search
The output explained here describes both Newton’s search for the steady state when
LEVELM = 2, and Newton’s searches for the transient states when = 3. Figure 3.5
show output for the fourth and successful search for the steady state on the first grid in
Chapter 7’s example.

The first three columns in Figure 3.5 report data summarized on line 14 in Figure 3.2.
Column 1, SLTN NUMBER, counts the solution estimates. Column 2 measures the steady
state residual

‖ssf(vn)‖∞
in which vn is the n-th solution estimate. Column 3, COND J, measures the condition of
the Jacobian matrices

log10 (κ(J))

in which, for this example, κ(J) is the linpack condition estimator [8].

26

3.3 Output for Time Evolution

The fourth and the last two columns in Figure 3.5 describe the step from one solution
estimate to the next.

sn := −J−1 ssf(vn)

vn+1 := vn + δDδBsn

Column 4, NORM S, reports log10 ‖sn‖∞. When δB and δD differ from 1.0, then their
logarithms appear in columns 7 and 8, DELTA B AND D.

The data in Figure 3.5 reveals much about the performance of Newton’s method.
The search would stray in the first few steps if not for the convergence monitors explained
in Section 2.1. The monitors use δB to keep vn+1 in bounds, and they use δD to ensure
‖sn+1‖∞ ≤ ‖sn‖∞. Whenever appropriate δB and δD can’t be found for some sn, then
another sn is obtained from a new Jacobian matrix. For this reason, since the first few steps
are difficult, matrix evaluations occur at many early solution estimates (LINES 8 TO 13).
Finally, when Newton’s modified method can retain the Jacobian matrix over several steps,
then columns 2 and 4 show convergence is roughly linear on a logarithmic scale (LINES 14
TO 21). In contrast, Newton’s pure method converges quadratically. Although that method
would need fewer steps, it would need more computing overall because matrix preparation
is expensive, hence the controls SSAGE and TDAGE.

|♦| The fifth and sixth columns in Figure 3.5, ABS and REL, indicate convergence of
the search. Section 2.1 explains the criteria for stopping at vn is

|si,n| ≤
{

either ABS, or

REL × |vi,n|

in which i indexes all the entries in the vectors, and in which the controls ABS and REL are
either SSABS and SSREL in searches for steady states, or TDABS and TDREL in searches
for transient states. Columns 5 and 6 report the smallest ABS and REL sufficient to accept
the unknowns violating the other’s criterion. For example, all the entries in the initial guess,
v0, that do not meet the absolute bound, do meet a relative bound

|si,0| 6≤ ABS =⇒ |si,0| ≤ 100.37 × |vi,0|

so Figure 3.5 reports 0.37 to measure the relative error in v0 (LINE 7). Similarly, all the
entries in the initial guess, v0, that do not meet the relative bound, do meet an absolute
bound

|si,0| 6≤ REL× |vi,0| =⇒ |si,0| ≤ 102.42

so Figure 3.5 reports 2.42 to measure the absolute error in v0 (LINE 7). These numbers
generally decline as the search progresses (LINES 7 TO 21). The search stops when the
numbers drop below the respective control values, which in this case are SSABS = 10−9

and SSREL = 10−6. For example, at the chosen solution v14, column 6 reports −7.29 for
REL, which suggests any unknowns that do not meet the absolute bound have acceptable
relative errors below 10−7.29. |♦||♦| This example reports ZERO for ABS, meaning all the
unknowns do meet the relative bound.

3.3 Output for Time Evolution
The output explained here describes time evolution when LEVELM = 2. At higher levels
this output gives way to that of Newton’s search for each transient state interspersed by
messages counting time points. For Chapter 7’s example, Figure 3.6 shows the output from
the time evolution following the initial failure of Newton’s method. This task is summarized
on line 9 in Figure 3.2.

27

3.3 Output for Time Evolution

EVOLVE: BEGIN TIME EVOLUTION. 1
2

TIME LOG10 NEWTON SEARCH 3
POINT ------------------------ ----------------------------- 4
NUMBER NORM F CHANGE STRIDE STEPS J'S COND J REMARK 5

0 6.14 6
1 5.83 1.10 -3.00 3 1 1.25 7
2 5.81 -0.65 -3.00 3 8
3 5.80 -0.67 -3.00 3 9
4 5.79 -0.68 -3.00 3 10
5 5.78 -0.69 -3.00 3 11
6 5.76 -0.71 -3.00 3 12
7 5.75 -0.72 -3.00 3 1 1.25 13
8 5.73 -0.73 -3.00 2 14
9 5.72 -0.75 -3.00 2 15
10 5.71 -0.76 -3.00 2 16
11 5.69 -0.78 -3.00 3 17
12 5.67 -0.79 -3.00 2 18
13 5.66 -0.81 -3.00 2 19
14 5.64 -0.82 -3.00 2 20
15 5.63 -0.84 -3.00 2 21
16 5.61 -0.86 -3.00 2 22
17 5.59 -0.87 -3.00 2 1 1.25 23
18 5.60 -0.89 -3.00 2 24
19 5.64 -0.91 -3.00 2 25
20 5.68 -0.93 -3.00 2 26
21 5.71 -0.93 -3.00 2 27
22 5.74 -0.90 -3.00 2 28
23 5.77 -0.87 -3.00 2 29
24 5.80 -0.84 -3.00 2 30
25 5.82 -0.82 -3.00 2 31
26 5.89 -0.25 -2.50 2 1 1.85 32
27 5.94 -0.20 -2.50 3 33
28 5.99 -0.15 -2.50 3 34
29 6.03 -0.11 -2.50 3 35
30 6.07 -0.07 -2.50 3 36
31 6.10 -0.04 -2.50 3 37
32 6.13 -0.01 -2.50 3 38
33 6.15 0.02 -2.50 3 1 1.85 39
34 6.18 0.05 -2.50 3 40
35 6.20 0.07 -2.50 3 41
36 6.21 0.09 -2.50 3 42
37 6.23 0.11 -2.50 3 43
38 6.24 0.12 -2.50 3 44
39 6.26 0.14 -2.50 3 1 1.85 45
40 6.27 0.15 -2.50 2 46
41 6.28 0.16 -2.50 2 47
42 6.29 0.17 -2.50 3 48
43 6.29 0.18 -2.50 3 49
44 6.30 0.19 -2.50 3 50
45 6.30 0.19 -2.50 3 51
46 6.31 0.20 -2.50 3 52
47 6.31 0.20 -2.50 2 1 1.84 53
48 6.32 0.21 -2.50 2 54
49 6.32 0.21 -2.50 3 55
50 6.32 0.21 -2.50 3 56

57
EVOLVE: SUCCESS. TIME EVOLUTION COMPLETED. 58

Figure 3.6. The portion of LEVELM = 2 output that describes time evolution. Section 3.3
interprets this data. Chapter 7 explains the particular simulation.

28

3.4 Output for Grid Selection

The cumulative count of time points, m, appears in the Figure’s first column,
TIME POINT NUMBER. Twopnt’s control, STEPS1, specifies 50 time points per time
evolution, so the second time evolution continues from point 50. Output from that evolution
is not pictured here.

As in other output tables, the second column in Figure 3.6, NORM F, measures the
steady state residual, specifically

log10 ‖ssf(v(m))‖∞

in which v(m) is the m-th transient state. The residual quickly decreases over the first step
to 5.83 (LINE 7), then decreases more slowly to 5.59 (LINE 23), and finally increases to 6.32
(LINE 54). Newton’s search for the steady state usually fails when begun from transient
states with large or increasing residuals (the residuals oscillate in time when the underlying
simulated phenomena has oscillatory transient behavior). In this simulation too, after the
residual peaks at 6.32 for v(48), and again at 6.62 for v(85) (not shown), then Newton’s
search for the steady state succeeds from v(150) where the residual is 6.02.

The third column in Figure 3.6, CHANGE, measures the change to the solution from
one time point to the next.

log10 ‖ v(m) − v(m−1)‖∞
|♦| If the transient residual is explicit in time

tdf(v) =
dv

dt
− ssf(v)

then the change to the solution equals the product of the steady state residual and the time
stride. In the Figure’s logarithmic scale, column 3 then equals the sum of columns 2 and 4,
which report the residual and the stride, respectively. Even when the transient residual is not
explicit in time, as in Chapter 7’s simulation, column 3 still moves jointly with columns 2
and 4. In this example, column 3 jumps from −0.82 to −0.25 when the stride increases
one-half order of magnitude (LINES 31 AND 32).

The fourth column in Figure 3.6, STRIDE, displays the time stride chosen by the
controls discussed in Section 2.2. With

STRID0 = 10−3 STEPS2 = 25 TINC =
√

10 TMAX = 10−2

the stride is 10−3 for the first 25 steps, then 10−2.5 for the next 25, and finally 10−2 thereafter.
The remaining columns in Figure 3.6 describe Newton’s search for each transient state.

Column 5, STEPS, counts search steps; column 6,J'S, counts Jacobian matrices; column 7,
COND J, reports the largest condition number measured in the manner of Section 3.1;
column 8, REMARK, explains why Newton’s search fails when it does. The count of steps,
column 5, indicates the work of solving the transient equations. Shorter, easier time strides
need few search steps. Longer, harder strides need more searching, particularly as the
Jacobian matrix grows older and yields poorer search directions. In this example TDAGE =
20, so after the matrix evaluation at one of the 3 search steps for v(39) (LINE 45), at most
twenty Newton search steps pass before the next matrix evaluation at one of the 2 steach
steps for v(47) (LINE 53).

3.4 Output for Grid Selection
The output explained here describes grid selection when LEVELM ≥ 2. For each grid, this
output analyzes the latest solution and shows the resultant new grid, if any. Figure 3.7 shows

29

3.4 Output for Grid Selection

REFINE: SELECT A GRID. 1
2

RATIO 1 RATIO 2 3
------- ------- 4

ACTUAL 0.939 1.000 5
DESIRED 0.100 0.100 6

7
THE NEW GRID (* MARKS NEW POINTS): 8

9
LARGEST RATIOS AND 10

INDEX GRID POINT NUMBER TOO LARGE 11
------ ---------------- ------------------- 12

RATIO 1 RATIO 2 13
1 0.000000000E+00 14
2* 2.500000037E-01 0.94 4 15
3 5.000000075E-01 1.00 3 16
4* 7.500000112E-01 0.70 4 17
5 1.000000015E+00 0.42 3 18
6* 1.250000019E+00 0.23 3 19
7 1.500000022E+00 0.45 4 20
8* 1.750000026E+00 0.06 21
9 2.000000030E+00 0.23 3 22
10* 2.250000052E+00 0.02 23
11 2.500000075E+00 0.08 24

0.02 25
12 3.000000119E+00 0.04 26

0.02 27
13 3.500000089E+00 0.03 28

0.02 29
14 4.000000060E+00 0.04 30

0.01 31
15 4.500000030E+00 0.04 32

0.01 33
16 5.000000000E+00 34

Figure 3.7. The portion of LEVELM = 2 output that describes grid selection. Section 3.4
interprets this data. Chapter 7 explains the particular simulation.

this output for the transition from the second to the third grids in Chapter 7’s simulation.
This task is summarized on line 19 of Figure 3.2 when LEVELM = 1.

The first portion of Figure 3.7 (LINES 3 TO 6) reports Section 2.3’s largest ratios for
the most recent grid’s solution. In this example these ratios exceed their desired values,
TOLER1 and TOLER2, so twopnt constructs a new grid.

The second portion of Figure 3.7 (LINES 10 TO 34) lists the new and old grid points.
Twopnt’s grid construction process retains all old points and then adds new points to halve
selected intervals. Column 1 in the Figure, INDEX, counts points in the new grid and marks
new points with asterisks. Column 2, GRID POINT, shows point locations. The old points
lie on every other line; the new points, if any, lie between. Grid regions with no new points
therefore have many blank lines (LINES 24 TO 34).

Columns 3 through 6 in Figure 3.7, RATIO 1 and RATIO 2, reveal the workings of
Section 2.3’s grid acceptance criteria.

max
k,n

RATIO i
k,n

?
≤ TOLER i i = 1 and 2

RATIO1 monitors the greatest change in value from one grid point to the next, so entries
in column 3 appear on lines between old points. Column 3 lists the largest RATIO1k,n
for any component, k, in a given interval. Column 4 counts the components whose ratios
exceed TOLER1 in that interval. Intervals with entries in column 4 have been marked for

30

3.4 Output for Grid Selection

halving. For example, in the interval between the second and third old points (LINE 17),
the largest ratio is 0.70, and altogether, four solution components have ratios exceeding
TOLER1 = 0.1.

Similarly, RATIO2 monitors the greatest change in angle at grid points, so the entries
in column 4 appear on lines with the old grid’s points. Column 5 lists the largestRATIO2k,n
for any component, k, at a given point. Column 6 counts the components whose ratios exceed
TOLER2 at that point. Intervals on either side of old points with entries in column 6 have
been marked for halving.

Twopnt halves marked intervals. If too many intervals need halving, then those with
more marks win priority. For example, in Figure 3.7 the interval between the second and
third old points (LINES 16 TO 18) has 4 + (3 + 3) = 10 marks, while the interval between
the fifth and sizth old points (LINES 22 TO 24) has 0 + (3 + 0) = 3 marks. Twopnt halves
all marked intervals in this example because, with PADD = PMAX, twopnt has no limit on
new points.

(B) Even if the mathematical formulation is not questioned, that is, if the
theoretical description which it represents and the idealizations, simplifications,
and neglections which it involves are accepted as final (and not viewed as
sources of errors), this further point remains: The description may involve
parameters, the values of which have to be derived directly or indirectly (that is,
through other theories or calculations) from observations. These parameters
will be affected with errors, and these underlying errors will cause errors in the
result of our calculation.

— J. von Neumann and H. H. Goldstine [26]

31

4.1 Short List of Controls

4
Using Controls

4.0 Introduction
Simulators using twopnt must provide the means to access twopnt’s controls. Usually, values
for twopnt’s controls are intermingled with other data in text files read by the simulators.
In this case, the simulators may use their own names, or “keywords,” to indicate twopnt’s
control data. Those simulators’ reference manuals should be consulted for explanation.
Appendix 1 cross-references twopnt’s controls with the keywords used by some common
simulators.

In extreme cases, the simulator programs themselves may have to be modified to
adjust twopnt’s behavior. Some controls may be inaccessible this way because they are
inapplicable, or because simulation writers know best how to set them. Other controls
may be accessible but seldom in need of changing. Twopnt provides default values for its
controls in case simulators do not.

4.1 Short List of Controls
This short list of controls collects in one place everything introduced elsewhere. If a value
appears after an = sign, then that value is twopnt’s default for the control. Simulators
generally replace twopnt’s defaults by their own. Page numbers refer to the explanations in
Chapter 2 or 3, and to the caveats in Section 4.2.

? ABOVE(i) upper limit for the i-th unknown 14, 33 (• 62, 66)
? ACTIVE(k) use the k-th component for grid selection 17, 33 (• 63, 66)
? ADAPT = no perform grid selection 16, 34
? BELOW(i) lower limit for the i-th unknown 14, 33 (• 62, 66)
? LEVELD = 1 level of solution data output 21, 34
? LEVELM = 1 level of informative message output 21, 34
? PADD = PMAX maximum points added to any one grid 18, 34
? PMAX maximum points in any grid 18, 34 (• 63, 68)
? POINTS points (in the initial grid) 16, 35 (• 58, 62, 68)
? SSABS = 10−9 steady state absolute convergence test’s bound 13, 35
? SSAGE = 10 steady state Jacobian’s retirement age 13, 37

32

4.2 Long List of Controls

? SSREL = 10−6 steady state relative convergence test’s bound 13, 35
? STEADY = yes search for the steady state 12, 37
? STEPS0 = 0 time steps before searching for the steady state 15, 38
? STEPS1 = 200 time steps after failing to find a steady state . . . 15, 38
? STEPS2 = 100 time steps before increasing the stride 15, 38
? STRID0 = 10−4 initial stride between time points 15, 38
? TDABS = 10−9 time dependent absolute convergence test’s bound 13, 35
? TDAGE = 20 time dependent Jacobian’s retirement age . . . 13, 37
? TDEC =

√
10 divisor by which to decrease the stride 15, 38

? TDREL = 10−6 time dependent relative convergence test’s bound . 13, 35
? TINC = 10 multiplier by which to increase the stride 15, 38
? TMAX = 10−2 maximum stride 15, 38
? TMIN = 10−20 minimum stride 15, 38
? TOLER0 = 10−9 absolute and relative significance floor 17, 39
? TOLER1 = 0.2 bound on change of value in each interval 17, 39
? TOLER2 = 0.2 bound on change of angle at each point 18, 39
? U initial guess 40 (• 61, 71)
? X initial grid 16, 40 (• 58, 63, 71)

4.2 Long List of Controls
This list matches Section 4.1’s short list but has long explanations. Details are explained
here, so familiarity with Chapter 2 and sometimes Chapter 6 is assumed.

? ABOVE(i) = upper limit for the i-th unknown 14 (• 62, 66)
? BELOW(i) = lower limit for the i-th unknown 14 (• 62, 66)

Twopnt most commonly fails when Newton’s search “goes out of bounds.” Writers
and users of simulators then offer differing explanations: the simulation is being abused,
some say; the choice of limits is too conservative, others say. Simulators usually choose
appropriate limits but provide controls to override their choices. The bounds can be “turned
off” only by choosing very large limits. Simulations “going out of bounds” might be repeated
with looser limits, but simulations consistently going out of bounds may be improperly
formulated. The bounds are an independent check on the veracity of the scientific model.

The controls provided by the simulator may not have full functionality. For example,
chemistry simulations usually have one control for the lower limit of all species’ concen-
trations simultaneously. |♦| Twopnt’s own controls have some coarseness too: unknowns
belonging to the same component must have the same limits. See Chapter 6.

Whatever limits are chosen, they should be relaxed from the precisely correct physical
limits. For example, chemistry simulations should not limit species concentrations to ≥ 0.
The equations underlying the simulation usually allow non-physical values, < 0, and it
may be expedient to permit searches for physically correct values to pass through non-
physical regimes. Moreover, computer imprecision enables quantities to lie vanishingly
near boundaries but on either side without harm.

? ACTIVE(k) = use the k-th component for grid selection 17 (• 63, 66)

These controls apply only to two point boundary value problems with automatic grid
selection. Simulators usually set them without provision for change. They know which
components are physically real and smoothly varying. These controls are meant to exclude
other components which might exist only for computational convenience. For example,
simulators may find it convenient to treat finite elements’ coefficients as components, or to

33

4.2 Long List of Controls

replicate eigenvalues throughout the grid (though this last computational device is unnec-
essary, see [16]).

? ADAPT = no perform grid selection 16

Twopnt selects grids automatically only for two point boundary value problems, and
then only when permitted. When ADAPT = yes, then twopnt checks whether each grid is
adequate even though PADD = 0 or POINTS = PMAX might prevent an inadequate grid
from improving. Some simulators reserve ADAPT for use behind the scenes. For example,
they may perform a sequence of increasingly difficult simulations to obtain solution guesses,
and while doing so, they may set ADAPT = no to prevent grid selection.

? LEVELD = 1 level of solution data output 21
? LEVELM = 1 level of informative message output 21

These controls affect only twopnt’s output and not the graphical output or the solution
files some simulators may provide. Twopnt acts as though the controls satisfy the following
inequalities.

too much output = 3 ≥ LEVELM ≥ LEVELD ≥ 0 = no output

Some simulators repackage these controls as one number: 00, 10, 11 and so on. Level 00
permits only error messages.

? PADD = PMAX maximum points added to any one grid 18

This control applies only to two point boundary value problems with automatic grid
selection. Twopnt’s default, PADD = PMAX, limits each grid’s growth only by the available
memory. Since twopnt enlarges grids by halving intervals, a grid of p points acquires at
most p− 1 new points. If PADD > 0 then ADAPT = no still can forbid grid selection.

Many simulations restrict PADD to a few points for reasons of efficiency, as follows.
Early in the simulation when no grid is adequate, much different grids can have much
different solutions. For example, flame fronts migrate as grid points permit. Thus, if an
early grid acquires many new points, then its solution may poorly guess the next. Twopnt
then must solve, with some difficulty, a still inaccurately resolved problem. Restricting the
grids’ growth restricts the solutions’ change, and so eases progress to grids that do resolve
the simulation.

Very small values for PADD may lead to unnecessarily large grids. If several regions
need improvement in locations dependent on one another, then improving only some regions
may add points ultimately not needed. Thus, PADD = 1 is not recommended.

? PMAX = maximum points in any grid 18 (• 63, 68)

This control applies only to two point boundary value problems with automatic grid
selection. A simulation whose grids grow large needs more computing time and more
memory space. A limit on grid size protects against overzealous grid enlargement, and so
might be chosen smaller than the simulator would otherwise allow.

Simulation programs that adhere to the fortran standard [1] must fix memory size
when they are written, and thus must anticipate the largest grids they may encounter. Since
this is difficult to do, and since computer systems penalize programs using much memory,
simulation programs sometimes need changing to adjust memory size.

Many things besides the grid affect memory size, and for limited memory, may force
grids smaller. For example, Jacobian matrices usually are formed explicitly. Their memory
needs then dominate all others and grow as COMPS2 × PMAX. In chemistry simulations

34

4.2 Long List of Controls

for example, COMPS counts chemical species. If a simulator allows this number to change,
then its limit on PMAX necessarily changes too, in the opposite direction.

? POINTS = points (in the initial grid) 16 (• 58, 62, 68)

Simulators have “points” if they employ the “components at points” convention for
grouping their unknowns, see Section 6.2. Usually, simulators provide controls to specify
grid size either directly, or else indirectly through other attributes of the grid.

? SSABS = 10−9 absolute bound for steady state convergence 13
? TDABS = 10−9 absolute bound for time dependent convergence 13
? SSREL = 10−6 relative bound for steady state convergence 13
? TDREL = 10−6 relative bound for time dependent convergence 13

Newton’s search halts when the change to each unknown is small (|♦| actually, New-
ton’s search halts when the change would be small). This means the estimated solution has
approximately the desired accuracy. The conflicting demands for low ⇓ and high ⇑ bounds
in the convergence tests are the same for every simulation, but of course, the values may
change with each simulation.

(a) ⇓ consistency within the solution
(b) ⇓ confidence in simulation results

(c) ⇑ compromises in the simulation
(d) ⇑ economy of computer use
(e) ⇑ imprecision in machine arithmetic

(a) ⇓ High bounds, meaning weak convergence tests, are not recommended. The
simulation must be performed with reasonable numerical accuracy to assure consistency
within the simulation model.

(b) ⇓ Any really important simulation should be repeated with more stringent con-
vergent tests, say with bounds one or two orders of magnitude smaller, to gain confidence
in the simulation.

(c) ⇑ Low solution error may be unnecessarily stringent owing to both scientific and
mathematical compromises in the simulation. For example, secondary phenomena may be
“left out” for lack of data, or coarse grids may be chosen for lack of computing power.
Perhaps for many simulations, only the order of magnitude of the results is meaningful.

(d) ⇑ Newton’s modified method converges geometrically or faster, so computing
time is inversely proportional to the logarithm of the bounds. That is, increasing all controls
from 10−8 to 10−4 may decrease computing time by fifty percent. Of course, when Newton’s
searches are few or short, then the computing time may be difficult to control precisely.

(e) ⇑ Because machines necessarily make (very small) arithmetic errors, there is a
level of error impossible to breach. If the convergence tests are set below this floor, then
Newton’s searches may wander indefinitely among the best solutions the machine can find.

Beware that these bounds do not control all simulation errors, and they do not control
with certainty what few they try to. See John von Neumann’s four simulation errors in
Chapter 1, and the steps for building a simulation in Chapter 2. Simulation accuracy depends
ultimately on the scientific model. Twopnt’s controls affect other simulation errors.

35

4.2 Long List of Controls

simulation step von Neumann’s errors twopnt’s controls

3, solution approximation, precision SSABS and SSREL

2, discretization approximation TOLER1 and TOLER2

1, modeling measurement, model

The bounds of interest here pertain only to the errors of solving nondifferential equations.
Errors even in this restricted sense are not controlled precisely. The mathematical anal-
ysis required to do so varies with each simulation, and is seldom performed. In general,
quantitative relationships between accuracy and simulation controls are unknown.

Twopnt’s convergence tests for Newton’s searches control absolute and relative accu-
racy, and they vary for steady and transient searches.

absolute relative

steady SSABS SSREL

transient TDABS TDREL

The transient convergence tests can be less stringent because twopnt uses transient states
only as guesses for steady state searches.

The absolute and relative tests apply separately to each unknown. That is, the solution
estimate for one unknown may be absolutely accurate, while the estimate for another may
be relatively accurate. Each unknown is required to pass only one test. If one convergence
bound is too stringent or is zero, intending “no error allowed,” then the other test still allows
some slack. Both should not be set zero because (e, above) imprecise machine arithmetic
cannot find exactly accurate solutions. Usually, low relative error is more valuable because
relative accuracy means “some digits are significant.” Thus, the absolute convergence test
is “just in case” some values are too small to have meaningfully low relative error. In
chemistry simulations for example, if mass fractions are unknowns, then fractions below
10−9 probably mean the corresponding molecules aren’t present, so in this case 10−9 is
reasonable for SSABS and TDABS.

The relative convergence bounds can range from 0 to 1. Relative accuracy near 1
means no precision at all. The practical upper limit (a, above) may be 10−3 because some
precision is needed to assure consistency within the simulation. The machine “roundoff
level” relative to 1.0 establishes a floor beyond which precision cannot improve. Precision
at the roundoff level is unattainable because errors compound in long calculations. The
practical lower limit (e, above) for the relative bounds may be three orders of magnitude
above the roundoff level.

|♦| Computing machines provide thirty-two and sixty-four bit binary arithmetic. The
roundoff level exceeds 2−32 = 10−9.6 and 2−64 = 10−19.3 because some bits are lost to
exponents and signs. For sixty-four bits, the roundoff level is roughly 2−48 = 10−14.5

(cray single precision) or 2−52 = 10−15.7 (vax double precision), and then the attainable
floor for relative errors might be (e) 10−11.5 (cray) or 10−12.7 (vax). For thirty-two bits, the
roundoff level is roughly 2−23 = 10−6.9, and then the attainable floor is 10−3.9 (vax single
precision). Thirty-two bit arithmetic is not recommended because the floor is too near the
ceiling (a, above) 10−3.

The absolute convergence bounds can range from 0 to anything. Their attainable lower
limit depends both on the roundoff level of the machine and on the anticipated magnitudes
of the unknowns. If an unknown is expected to have magnitude 104, and if the roundoff level
relative to 1 is 10−14.5, then by the earlier reasoning, the attainable absolute accuracy is three
orders of magnitude above 104×10−14.5. This 10−7.5 is for unknowns with magnitude 104.

36

4.2 Long List of Controls

Twopnt applies the same absolute convergence test to all unknowns, however, so difficulties
may result when unknowns have much different magnitudes.

Some simulators perform transformations of variables that complicate choosing these
bounds. These simulators might alter their data for printing and plotting. For example,
chemistry simulations typically employ mass fractions for unknowns, but they might report
mole fractions, or bulk quantities instead. The data reported by the simulator then are not
the data to which twopnt applies its convergence tests, so the relationship between twopnt’s
controls and the accuracy of reported results is unclear.

? SSAGE = 10 steady state Jacobian’s retirement age 13
? TDAGE = 20 time dependent Jacobian’s retirement age 13

The retirement age limits the steps in Newton’s search between matrix evaluations.
The limits may range from 1 to anything, though Section 2.1’s convergence monitors may
retire some matrices early.

Smaller retirement ages improve the chances for successful searches, because more
current matrices produce better search directions. If the retirement age is 1, then the search
reverts to the pure, but still damped, Newton’s method. This may succeed where the modified
method does not. For example, SSAGE=1 makes time integration unnecessary on the first
grid in Chapter 7’s simulation. Transient searches should be easy, so TDAGE=1 should be
unnecessary for them.

Larger retirement ages generally reduce computing time. Although older matrices
produce slightly misdirected searches and so entail more search steps, fewer matrices are
needed, usually, when the retirement age increases. Since matrix preparation likely is the
most expensive subtask twopnt performs, on balance, any reduction in the matrix population
also reduces the overall computing time.

|♦| The preceding discussion can be quantified as follows. When as usual, Gauss’
elimination method solves the matrix equations in Newton’s method (we stand on the shoul-
ders of giants), then the computing time for Newton’s search is roughly

nm τm + ns τs

in which “m” notes matrices and “s” notes search steps, and in whichn is the count and τ is the
computing time of such things. If matrices are computed on schedule then nm ≈ ns /AGE
in which AGE is SSAGE or TDAGE. The time of one step, τs, is mostly the time of one
function evaluation, τf . Matrix preparation involves forming and factoring the matrices, but
τm is mostly the time of forming. Owing to the complexity of residual functions, simulators
usually form Jacobian matrices by numerical rather than analytic differentiation. In two
point boundary value problems for example, matrix evaluation requires at least 3×COMPS
function evaluations, so τm ≈ 3×COMPS×τf . In chemistry simulations moreover, COMPS
may be 50. With these substitutions, total computing time might be as follows.

nm τm + ns τs ≈
(

150

AGE
+ 1

)
ns τf

Thus, increasing the retirement age will reduce the total computing time so long as ns does
not change proportionally with AGE.

? STEADY = yes search for the steady state (yes or no) 12

Twopnt undertakes the search for the steady state, twopnt’s primary task, only when
permitted. When not, twopnt performs the initial time evolution controlled by STEPS0,
but no grid selection follows. Time evolution alone sometimes reaches the steady state with
reasonable efficiency. See the discussion of STRID0 and related controls.

37

4.2 Long List of Controls

The search for the steady state might be omitted to diagnose a malfunctioning sim-
ulation. A simulation with agitated time evolution, and seemingly without a steady state,
might be better understood by inspecting the transient states. With STEADY = no, twopnt
finishes after the initial time evolution, and lets the simulator draw pictures and so on.

The search for the steady state might be omitted to avoid unnecessary work in a
sequence of simulations. Many simulators improve their scientific model piecemeal, and
then the result of one simulation is only the guess for the next. Short transient evolutions
might find sufficient guesses, while exhaustive searches might be wasted finding preliminary
results too accurately.

Finally, the search for the steady state might be omitted to avoid convergence difficul-
ties in a sequence of simulations. Many simulators undertake sequences of simulations to
perform parameter studies, and then the result of one simulation is a very good guess for the
next. Unfortunately, steady states usually occur where strong opposing trends balance, so
with imprecise machine arithmetic, residual functions have large relative errors near steady
states. The search directions in Newton’s method then have large relative errors too, and
thus Newton’s search may have difficulty continuing or recognizing it need not. A time
evolution might approach the steady state more reliably, or at least, might have less trou-
ble recognizing the steady state. Beware if Newton’s search consistently fails to find the
steady state while time evolution appears to, then there is reason to doubt the veracity of the
simulator.

? STEPS0 = 0 time steps before searching for the steady state 15
? STEPS1 = 200 time steps after failing to find a steady state 15

Twopnt evolves in time the guess for the steady state either when asked, bySTEPS0 >
0, or when Newton’s search is unable find the steady state, provided STEPS1 > 0. The
requested quantities of steps may range from 0 to anything. If automatic grid selection has
been requested, then the initial time evolution specified by STEPS0 occurs only for the first
grid.

It is best to perform many transient steps, STEPS1 À 0, when any are needed.
Much computing time can be wasted by frequently reverting to unsuccessful searches for
the steady state. Searches for transient states usually need comparatively little computing
time.

? STRID0 = 10−4 initial stride between time points 15

? STEPS2 = 100 time steps before increasing the stride 15
? TINC = 10 multiplier by which to increase the stride 15
? TMAX = 10−2 maximum stride 15

? TDEC =
√

10 divisor by which to decrease the stride 15
? TMIN = 10−20 minimum stride 15

These controls choose and change the time stride. The initial stride and the stride
limits must be positive, the other controls must range upward from 1. The stride cannot
lengthen if TMAX = STRID0 or TINC = 1 or STEPS2 is very large. The stride cannot
shorten if TMIN = STRID0 or TDEC = 1.

Twopnt’s use of time evolution supposes the simulated phenomena relax to a steady
state over time. The time stride should be chosen to reach, in as little computing time as
possible, either (1) the steady state, or (2) a state from which Newton’s search for the steady
state can be successful. The conflicting demands for short ⇓ and long ⇑ strides are the same
for every simulation, but again, the values may change for each simulation.

38

4.2 Long List of Controls

(a) ⇓ follow the transient evolution to the steady state
(b) ⇓ ease searches for transient states

(c) ⇑ reduce searches for transient states
(d) ⇑ forgo detailed resolution of transient response

The transient evolution is efficient if searches for transient states are easy and few.
(b) ⇓ Shorter strides make the searches easier because the states change less from one time
point to the next, but (c) ⇑ longer strides need fewer steps to reach an acceptable state. For
very long strides, searches for transient states degenerate to seeking the steady state directly.

The time evolution is accurate if the transient state, v(m), computed at time point tm
closely approximates the “true” state, v(tm), determined by the time dependent differential
equations. It is not possible to have v(m) = v(tm) due to the errors explained in Chapter 1,
but it is possible to have v(m) ≈ v(tm) provided the time strides, tm−tm−1, are short. Thus,
on the way to an acceptable v(m), short strides keep v(m) near v(tm), but long strides allow
v(m) to stray. (a) ⇓ Short strides preserve the physical meaning of the transient simulation,
but (d)⇑ long strides avoid the expense of tracking minor variations in the transient response.

Usually, longer strides are easier and safer as the evolution proceeds, hence twopnt’s
controls to gradually lengthen stride and to shorten it if trouble occurs. Frequent adjustments
to the stride are not recommended because each change requires a new Jacobian matrix.

The aggressive strategy for choosing the time stride (1, above) ignores other advice
given here regarding efficiency. It favors long strides to reach the steady state “quickly.”
This strategy begins withSTRID0 large, relies on search failures to prompt stride reductions
if needed, and allows large increases after few steps, perhaps STEPS2 = 20. An aggressive
strategy may reach the steady state through time evolution alone, and thus its expense may
be partly compensated by eliminating the search for the steady state.

Simulators favor success over speed, and so err conservatively: they try to follow the
natural relaxation with reasonable haste. The conservative strategy (2, above) uses short
strides to keep transient searches easy and to avoid straying from the true, transient evolution.
This strategy begins with STRID0 small and allows small increases, perhaps TINC = 2,
after many steps. These control settings might be changed after some experience with them.
For example, twopnt’s own choices are more aggressive. The initial stride is long, and large
increases are permitted, but only after many steps.

? TOLER0 = 10−9 absolute and relative significance floor 17

This control applies only to two point boundary value problems with automatic grid
selection. Many simulators have no provision for changing the floor because it seldom
matters when the ACTIVE(k) controls are properly set. Twopnt inspects only components
whose absolute and relative variations exceed the floor. Twopnt’s default value suits sixty-
four bit arithmetics and chemistry simulations. A higher absolute floor might exclude trace
quantities of intermediate chemical species. For thirty-two bits, twopnt’s floor is below
the roundoff level, so the relative floor passes every component and only the absolute floor
discriminates.

? TOLER1 = 0.2 bound on change of value in each interval 17
? TOLER2 = 0.2 bound on change of angle at each point 18

These controls apply only to two point boundary value problems with automatic
grid selection. They limit the change to the solution occurring at any one grid point by
concentrating points in regions where large changes occur. The bounds may range from 0
to 1, that is, from insatiable to no effect. Simulation accuracy and expense increase as the
bounds decrease.

Beware that these bounds do not control all simulation errors, and they do not control
with certainty what few they try to. See John von Neumann’s four simulation errors in

39

4.2 Long List of Controls

Chapter 1, and the steps for building a simulation in Chapter 2. Simulation accuracy depends
ultimately on the scientific model. Twopnt’s controls affect other simulation errors.

simulation step von Neumann’s errors twopnt’s controls

3, solution approximation, precision SSABS and SSREL

2, discretization approximation TOLER1 and TOLER2

1, modeling measurement, model

Errors even in twopnt’s restricted sense are not controlled precisely. The mathematical
analysis required to do so varies with each simulation, and is seldom performed. In general,
quantitative relationships between accuracy and simulation controls are unknown. Sec-
tion 2.3 explains the apparent effects on accuracy of the grid selection process controlled
by TOLER1 and TOLER2.

Some aspects of a simulation may be particularly sensitive to the grid. In reacting
flows for example, these include the locations of flame fronts and the thicknesses of boundary
layers. Simulations should be repeated with different tolerances to assess the accuracies of
such things. The effects of TOLER2 seem to be cosmetic, so TOLER2 might be made less
stringent when computing resources are limited.

TOLER1 and TOLER2 affect memory space more strongly than computing time.
Lower tolerances require larger grids, but these are grids whose problems are solved more
easily because good guesses are available. In Chapter 7’s simulation for example, Figures 3.2
and 3.3 show continuing from 35 to 76 points requires only 34.5% of all computing time.
Memory space and computing time thus increase disproportionately, by 88% and 52%
respectively in this example.

TOLER1 and TOLER2 affect grid size differently. For example, Figure 3.2 shows
RATIO1 decreases more rapidly with grid size than does RATIO2. A simulation stops
when it finds grids for which RATIO1 ≤ TOLER1 and RATIO2 ≤ TOLER2. Output like
Figures 3.2 and 3.7 indicate how TOLER1 and TOLER2 affect grid size, and output like
Figure 3.3 indicates how grid size affects computing time.

? U initial guess (• 61, 71)

There is no substitute for a good guess. Simulators either (1) choose guesses them-
selves based on problem data, or (2) provide controls that specify guesses directly, or (3)
provide controls that specify guesses indirectly via expected properties of the solution, or
(4) perform sequences of increasingly complex simulations with each supplying the guess
for the next, or (5) borrow guesses from other simulations. There is no substitute for a good
guess. There is no substitute for a good guess . . .

? X initial grid 16 (• 58, 63, 71)

This control applies only to two point boundary value problems with automatic grid
selection. Other simulations may have grids too, and though twopnt has nothing to do
with theirs, well chosen grids are no less important for them. Proper grids ease twopnt’s
work. For example, adding one point to the initial grid of Chapter 7’s simulation (in the
boundary layer at the disk) halves the computing expense by eliminating the need for time
evolution. Simulators may provide controls to specify the initial grid either directly or
indirectly through various attributes of the grid such as spacing and the like.

40

5 Messages

5
Messages

5.0 Introduction
A simulator is an ensemble of many fortran subroutines only some of which write messages.
Twopnt’s subroutines identify themselves when they write, and their names are mnemonic,
so the context of twopnt’s messages is clear.

• TWOPNT task selection
• SEARCH Newton’s search
• EVOLVE time evolution
• REFINE grid selection

Long, informative messages from these subroutines appear in Sections 3.1 through 3.4,
respectively. The error and outcome messages discussed here are shorter.

Outcome messages are needed because “success” and “failure” are not mutually ex-
clusive. For example, twopnt neither succeeds nor fails when it exhausts memory space
before finding a satisfactory grid. Twopnt writes messages to explain such outcomes, and it
warns simulators of inconclusive results, see Section 6.2. Simulators then must decide what
to do. They may continue past unsuccessful preliminary phases of complex simulations,
for example, or they may report inconclusive final results in the expectation these are “good
enough.”

Twopnt fails unconditionally when it encounters programming errors and nonsensical
controls. Twopnt checks the consistency of its data as a precaution against such errors, and
writes messages like those in Figure 5.1 when errors are found. Error messages usually
occur in groups. The subroutine that discovers the error writes a detailed message first,
and then each subroutine in the calling sequence reports successive failure. In this Figure,
SEARCH discovers a negative bound for a convergence test. EVOLVE is the next subroutine
to complain, so the offending control is the one for transient state searches, TDABS.

All twopnt’s messages have the same format. (1) The first line and the first column
are blank. The examples in this manual omit these. (2) The name of the writing subroutine
begins line two and ends at column eight. (3) The text begins in column eleven and extends
no further than column eighty. Simulators usually ignore twopnt’s format conventions
when they write their own messages, and particularly when they write much data. They,
not twopnt, write solution data.

41

5.1 Short List of Messages

SEARCH: ERROR. THE BOUNDS FOR THE ABSOLUTE AND RELATIVE 1
CONVERGENCE TESTS MUST BE ZERO OR POSITIVE. 2

3
-1.00E+00 SSABS OR TDABS, ABSOLUTE ERROR 4
1.00E-06 SSREL OR TDREL, RELATIVE ERROR 5

6
EVOLVE: ERROR. SEARCH FAILS. 7

8
TWOPNT: ERROR. EVOLVE FAILS. 9

Figure 5.1. A sequence of fatal error messages spawned by one error. Section 5.0 explains
this Figure.

5.1 Short List of Messages
This alphabetical, short list of messages displays the first line of every message twopnt
writes. It also includes the few messages written by the subroutines below, that are supplied
with twopnt but are not part of twopnt, see Section 6.4.

• TWPREP matrix preparer
• TWSHOW solution data writer
• TWSOLV equation solver

Page numbers in the list below refer to the complete texts and detailed explanations of
messages found either in Chapter 3 for informative messages, or in Section 5.2 for outcome
and error messages. Some messages have identical first lines.

EVOLVE: BEGIN TIME EVOLUTION. 28
EVOLVE: BEGIN TIME EVOLUTION. 44
EVOLVE: CONTINUE TIME EVOLUTION. 44
EVOLVE: CONTINUE TIME EVOLUTION. 44
EVOLVE: CONTINUE TIME EVOLUTION WITH INCREASED STRIDE. . . . 44
EVOLVE: ERROR. NUMBERS OF COMPONENTS AND POINTS MUST BE 44
EVOLVE: ERROR. SEARCH FAILS. 45
EVOLVE: ERROR. THE BOUNDS ON THE TIME STRIDE ARE OUT OF 45
EVOLVE: ERROR. THE COUNT OF TIME STEPS MUST BE ZERO OR . . . 45
EVOLVE: ERROR. THE FACTORS FOR CHANGING THE TIME STRIDE 45
EVOLVE: ERROR. THE INITIAL TIME STRIDE MUST LIE BETWEEN . . . 45
EVOLVE: ERROR. THE NUMBER OF TIME STEPS MUST BE POSITIVE. 45
EVOLVE: ERROR. THE TIME STEPS BEFORE STRIDE INCREASES . . . 45
EVOLVE: FAILURE. NO TIME EVOLUTION. 45
EVOLVE: PARTIAL SUCCESS. TIME EVOLUTION INCOMPLETE. 45
EVOLVE: PARTIAL SUCCESS. TIME EVOLUTION INCOMPLETE. 45
EVOLVE: RETRY THE STEP WITH A DECREASED TIME STRIDE. 46
EVOLVE: SUCCESS. TIME EVOLUTION COMPLETED. 46
EVOLVE: SUCCESS. TIME EVOLUTION COMPLETED. 46
EVOLVE: THE LATEST SOLUTION: 46
EVOLVE: THE SOLUTION DID NOT CHANGE. RETRYING THE STEP . . . 46

REFINE: ERROR. POINTS IS OUT OF RANGE. 46
REFINE: ERROR. SOME INTERVALS IN THE GRID ARE TOO SHORT. . . 46
REFINE: ERROR. THE BOUNDS ON MAGNITUDE AND RELATIVE CHANGE 46
REFINE: ERROR. THE BOUNDS ON RELATIVE CHANGES IN MAGNITUDE . . 46
REFINE: ERROR. THE GRID IS NOT ORDERED. 46
REFINE: ERROR. THE LIMIT ON POINTS ADDED TO A GRID MUST BE . . 46
REFINE: ERROR. THERE MUST BE AT LEAST ONE COMPONENT AND AT 47
REFINE: ERROR. THERE ARE NO ACTIVE COMPONENTS. 47
REFINE: FAILURE. MORE POINTS ARE NEEDED BUT NONE CAN BE 47

42

5.1 Short List of Messages

REFINE: SELECT A GRID. 30
REFINE: SUCCESS. THE GRID IS ADEQUATE. 47
REFINE: SUCCESS. THE GRID IS ADEQUATE BECAUSE ALL ACTIVE . . 47
REFINE: THE SOLUTION GUESS FOR THE NEW GRID: 47

SEARCH: ERROR. NUMBERS OF COMPONENTS AND POINTS MUST BE . . . 47
SEARCH: ERROR. THE BOUNDS FOR THE ABSOLUTE AND RELATIVE 47
SEARCH: ERROR. THE DAMPING COEFFICIENT FOR STAYING 47
SEARCH: ERROR. THE GUESSES FOR SOME UNKNOWNS ARE OUT OF 48
SEARCH: ERROR. THE LOWER AND UPPER BOUNDS ON SOME UNKNOWNS . . 48
SEARCH: ERROR. THE NUMBER OF NAMES IS WRONG. 48
SEARCH: ERROR. THE RETIREMENT AGE OF THE JACOBIAN MATRIX . . 48
SEARCH: FAILURE. THE SEARCH DIVERGES. 48
SEARCH: FAILURE. THE SEARCH FOR THE FOLLOWING UNKNOWNS GOES . 48
SEARCH: SOLVE NONLINEAR, NONDIFFERENTIAL EQUATIONS. 26
SEARCH: SUCCESS. 49
SEARCH: SUCCESS. THE SOLUTION: 49

TWOPNT: 17.34 SECONDS TOTAL COMPUTER TIME (SEE BREAKDOWN BELOW). 24
TWOPNT: CALLING EVOLVE TO PERFORM TIME EVOLUTION. 49
TWOPNT: CALLING REFINE TO PRODUCE A NEW GRID. 49
TWOPNT: CALLING SEARCH TO SOLVE THE STEADY STATE PROBLEM. 49
TWOPNT: DOUBLE PRECISION (TWO POINT BOUNDARY VALUE PROBLEM) SOLVER 23
TWOPNT: ERROR. A CONTROL NAME IS NOT RECOGNIZED. 49
TWOPNT: ERROR. EVOLVE FAILS. 49
TWOPNT: ERROR. NEITHER THE INITIAL TIME EVOLUTION NOR THE 49
TWOPNT: ERROR. NUMBERS OF ALL TYPES OF UNKNOWNS MUST BE AT . . 49
TWOPNT: ERROR. NUMBERS OF COMPONENTS AND POINTS MUST BE 50
TWOPNT: ERROR. ONE OR BOTH WORK SPACES ARE TOO SMALL. . . . 50
TWOPNT: ERROR. REFINE FAILS. 50
TWOPNT: ERROR. SEARCH FAILS. 50
TWOPNT: ERROR. THE CALLING PROGRAM EXPECTS A VERSION OF 50
TWOPNT: ERROR. THE LOWER AND UPPER BOUNDS ON SOME TYPES OF . . 50
TWOPNT: ERROR. THE NUMBER OF CONTROLS MUST BE POSITIVE. 51
TWOPNT: ERROR. THE NUMBER OF NAMES IS WRONG. 51
TWOPNT: ERROR. THE PRINTING LEVELS ARE OUT OF ORDER. 51
TWOPNT: ERROR. THERE ARE TOO MANY POINTS. 51
TWOPNT: ERROR. TOTAL UNKNOWNS MUST BE POSITIVE. 51
TWOPNT: ERROR. TWGRAB FAILS. 51
TWOPNT: ERROR. UNKNOWN TASK. 51
TWOPNT: ERROR. UNKNOWN REPORT CODE. 51
TWOPNT: EVOLVE DID NOT PERFORM A TIME EVOLUTION. 51
TWOPNT: EVOLVE PERFORMED A TIME EVOLUTION. 51
TWOPNT: FAILURE. A SOLUTION WAS FOUND FOR A GRID WITH ??? 52
TWOPNT: FAILURE. A SOLUTION WAS FOUND FOR A GRID WITH ??? . . 52
TWOPNT: FAILURE. NO SOLUTION WAS FOUND. 52
TWOPNT: FINAL SOLUTION: 52
TWOPNT: INITIAL GUESS: 52
TWOPNT: REFINE DID NOT SELECT A NEW GRID. 52
TWOPNT: REFINE SELECTED A NEW GRID. 52
TWOPNT: SEARCH DID NOT FIND THE STEADY STATE. 52
TWOPNT: SEARCH FOUND THE STEADY STATE. 52
TWOPNT: SINGLE PRECISION (TWO POINT BOUNDARY VALUE PROBLEM) SOLVER 23
TWOPNT: SOLVE THE PROBLEM. 52
TWOPNT: SUCCESS. PROBLEM SOLVED. 52

TWPREP: ERROR. NUMBERS OF COMPONENTS AND POINTS MUST BE 52
TWPREP: ERROR. SOME COLUMNS ARE ZERO. 53
TWPREP: ERROR. SOME ROWS ARE ZERO. 53
TWPREP: ERROR. THE JACOBIAN MATRIX IS SINGULAR. 53

43

5.2 Long List of Messages

TWPREP: ERROR. THE MATRIX SPACE IS TOO SMALL. 54

TWSHOW: ERROR. NUMBERS OF COMPONENTS AND POINTS MUST BE . . . 54

TWSOLV: ERROR. NUMBERS OF COMPONENTS AND POINTS MUST BE 54
TWSOLV: ERROR. THE MATRIX SPACE IS TOO SMALL. 55

5.2 Long List of Messages
This list matches Section 5.1’s short list but displays the complete text of, and provides
explanations for, outcome and error messages. Long, informative messages are cut short
with vertical ellipsis,

... . Their full texts appear in Chapter 3 on the pages found in Section 5.1.
When printing levels increase, these messages break into many short messages in the list
below. No explanations are provided for those.

Also, no explanations are provided for error messages that trap bugs. These un-
likely messages are precautions against programming mistakes in twopnt. For example, all
twopnt’s subroutines check to see the number of unknowns is positive. Assuming twopnt
contains no mistakes, the checks after the first one are redundant and necessarily find nothing
wrong unless the computer itself is faulty, 2 + 2 = 5.

EVOLVE: BEGIN TIME EVOLUTION. 1...
...

EVOLVE: BEGIN TIME EVOLUTION. 1
2

0 LATEST TIME POINT 3
-1.23 LOG10 STEADY STATE RESIDUAL HERE 4
-4.00 LOG10 STRIDE TO NEXT TIME POINT 5

6
SEARCHING FOR THE NEXT TRANSIENT STATE. 7

EVOLVE: CONTINUE TIME EVOLUTION. 1...
...

EVOLVE: CONTINUE TIME EVOLUTION. 1
2

100 LATEST TIME POINT 3
-1.23 LOG10 STEADY STATE RESIDUAL HERE 4
-3.00 LOG10 STRIDE TO NEXT TIME POINT 5

6
SEARCHING FOR THE NEXT TRANSIENT STATE. 7

EVOLVE: CONTINUE TIME EVOLUTION WITH INCREASED STRIDE. 1
2

100 LATEST TIME POINT 3
-1.23 LOG10 STEADY STATE RESIDUAL HERE 4
-4.00 LOG10 INCREASED STRIDE TO NEXT TIME POINT 5

6
SEARCHING FOR THE NEXT TRANSIENT STATE. 7

EVOLVE: ERROR. NUMBERS OF COMPONENTS AND POINTS MUST BE 1
EITHER BOTH ZERO OR BOTH POSITIVE, NUMBERS OF ALL TYPES 2
OF UNKNOWNS MUST BE AT LEAST ZERO, AND TOTAL UNKNOWNS 3
MUST BE POSITIVE. 4

5
0 COMPS, COMPONENTS 6
0 POINTS 7
0 GROUPA, GROUP A UNKNOWNS 8
0 GROUPB, GROUP B UNKNOWNS 9
0 TOTAL UNKNOWNS 10

44

5.2 Long List of Messages

EVOLVE: ERROR. SEARCH FAILS. 1

Newton’s search encountered an error when trying to find a transient state. A preceding
message from SEARCH explains what went wrong.

EVOLVE: ERROR. THE BOUNDS ON THE TIME STRIDE ARE OUT OF 1
ORDER. 2

3
-1.00E-20 TMIN, SHORTEST STRIDE 4
1.00E-02 TMAX, LONGEST STRIDE 5

The values given to the controls TMAX and TMIN are nonsense.

EVOLVE: ERROR. THE COUNT OF TIME STEPS MUST BE ZERO OR 1
POSITIVE. 2

3
-123 STEP 4

EVOLVE: ERROR. THE FACTORS FOR CHANGING THE TIME STRIDE 1
MUST BE NO SMALLER THAN 1. 2

3
3.16E+00 TDEC, DECREASE FACTOR 4
0.00E+00 TINC, INCREASE FACTOR 5

The value given to the control TDEC or TINC is nonsense.

EVOLVE: ERROR. THE INITIAL TIME STRIDE MUST LIE BETWEEN 1
THE LOWER AND UPPER BOUNDS. 2

3
1.00E-20 TMIN, SHORTEST STRIDE 4
1.00E-01 STRID0, INITIAL STRIDE 5
1.00E-02 TMAX, LONGEST STRIDE 6

The values given to the controls STRID0, TMAX and TMIN are inconsistent.

EVOLVE: ERROR. THE NUMBER OF TIME STEPS MUST BE POSITIVE. 1
2

-100 STEPS0 OR STEPS1, DESIRED NUMBER OF STEPS 3

The value given to the control STEPS0 or STEPS1 is nonsense.

EVOLVE: ERROR. THE TIME STEPS BEFORE STRIDE INCREASES 1
MUST BE POSITIVE. 2

3
-100 STEPS2, TIME STEPS BEFORE STRIDE INCREASES 4

The value given to the control STEPS2 is nonsense.

EVOLVE: FAILURE. NO TIME EVOLUTION. 1

Newton’s search was unable to find the first transient state in the current sequence. De-
pending on the printing level, LEVELM, a preceding message from EVOLVE or SEARCH
explains what went wrong.

EVOLVE: PARTIAL SUCCESS. TIME EVOLUTION INCOMPLETE. 1

Newton’s search was unable to complete the current sequence of transient states. A preced-
ing message from EVOLVE explains what went wrong.

EVOLVE: PARTIAL SUCCESS. TIME EVOLUTION INCOMPLETE. 1
2

13 LAST TIME POINT 3
-0.67 LOG10 STEADY STATE RESIDUAL HERE 4

Newton’s search was unable to complete the current sequence of transient states. A preced-
ing message from SEARCH explains what went wrong.

45

5.2 Long List of Messages

EVOLVE: RETRY THE STEP WITH A DECREASED TIME STRIDE. 1
2

13 LATEST TIME POINT 3
-1.23 LOG10 STEADY STATE RESIDUAL HERE 4
-4.00 LOG10 DECREASED STRIDE TO NEXT TIME POINT 5

6
SEARCHING FOR THE NEXT TRANSIENT STATE, AGAIN. 7

EVOLVE: SUCCESS. TIME EVOLUTION COMPLETED. 1

EVOLVE: SUCCESS. TIME EVOLUTION COMPLETED. 1
2

200 LAST TIME POINT 3
-2.35 LOG10 STEADY STATE RESIDUAL HERE 4

EVOLVE: THE LATEST SOLUTION: 1

EVOLVE: THE SOLUTION DID NOT CHANGE. RETRYING THE STEP 1
WITH AN INCREASED TIME STRIDE. 2

3
13 LATEST TIME POINT 4

-0.67 LOG10 STEADY STATE RESIDUAL HERE 5
-4.00 LOG10 INCREASED STRIDE TO NEXT TIME POINT 6

7
SEARCHING FOR THE NEXT TRANSIENT STATE, AGAIN. 8

REFINE: ERROR. POINTS IS OUT OF RANGE. 1
2

8 POINTS 3
-123 PMAX, LIMIT ON POINTS 4

REFINE: ERROR. SOME INTERVALS IN THE GRID ARE TOO SHORT. 1
THE NEW GRID WOULD NOT BE ORDERED. 2

The grid is so fine that, if the interval between two points is halved, then imprecise machine
arithmetic places the midpoint at an endpoint. This outcome might be considered merely
unsuccessful, but twopnt views it as an error because it is so rare.

REFINE: ERROR. THE BOUNDS ON MAGNITUDE AND RELATIVE CHANGE 1
OF MAGNITUDE FOR INSIGNIFICANT COMPONENTS MUST BE 2
POSITIVE. 3

4
0.00E-09 TOLER0, SIGNIFICANCE LEVEL 5

The value given to the control TOLER0 is nonsense.

REFINE: ERROR. THE BOUNDS ON RELATIVE CHANGES IN MAGNITUDE 1
AND ANGLE MUST LIE BETWEEN 0 AND 1. 2

3
-1.00E-01 TOLER1 4
1.00E-01 TOLER2 5

The value given to the control TOLER1 or TOLER2 is nonsense.

REFINE: ERROR. THE GRID IS NOT ORDERED. 1

The initial grid, X, provided by the simulator should be a decreasing or an increasing
sequence of numbers without duplications.

REFINE: ERROR. THE LIMIT ON POINTS ADDED TO A GRID MUST BE 1
ZERO OR POSITIVE. 2

3
-123 PADD, LIMIT ON ADDED POINTS 4

The value given to the control PADD is nonsense.

46

5.2 Long List of Messages

REFINE: ERROR. THERE MUST BE AT LEAST ONE COMPONENT AND AT 1
LEAST TWO POINTS. 2

3
0 COMPS, COMPONENTS 4
0 POINTS 5

The values given to the controls ADAPT, COMPS and POINTS are inconsistent. ADAPT =
yes requests automatic grid selection, but the other two controls indicate the unknowns are
not arranged to permit grid selection.

REFINE: ERROR. THERE ARE NO ACTIVE COMPONENTS. 1

The values given to the controls ADAPT and ACTIVE are inconsistent. ADAPT = yes
requests automatic grid selection, but ACTIVE excludes all solution components from
consideration for grid selection.

REFINE: FAILURE. MORE POINTS ARE NEEDED BUT NONE CAN BE 1
ADDED. 2

The solution doesn’t meet the requirements established by TOLER1 and TOLER2, but a
new grid cannot be formed because either PADD=0 or POINTS=PMAX.

REFINE: SELECT A GRID. 1

REFINE: SUCCESS. THE GRID IS ADEQUATE. 1

REFINE: SUCCESS. THE GRID IS ADEQUATE BECAUSE ALL ACTIVE 1
COMPONENTS ARE INSIGNIFICANT. 2

According to the criteria established by TOLER0, all the ACTIVE solution components are
insignificant—either very small or very “flat” across the grid—so there are no features to
guide the selection of a new grid.

REFINE: THE SOLUTION GUESS FOR THE NEW GRID: 1

SEARCH: ERROR. NUMBERS OF COMPONENTS AND POINTS MUST BE 1
EITHER BOTH ZERO OR BOTH POSITIVE, NUMBERS OF ALL TYPES 2
OF UNKNOWNS MUST BE AT LEAST ZERO, AND TOTAL UNKNOWNS 3
MUST BE POSITIVE. 4

5
5 COMPS, COMPONENTS 6
8 POINTS 7
0 GROUPA, GROUP A UNKNOWNS 8

-10 GROUPB, GROUP B UNKNOWNS 9
30 TOTAL UNKNOWNS 10

SEARCH: ERROR. THE BOUNDS FOR THE ABSOLUTE AND RELATIVE 1
CONVERGENCE TESTS MUST BE ZERO OR POSITIVE. 2

3
-1.00E-09 SSABS OR TDABS, ABSOLUTE ERROR 4
1.00E-06 SSREL OR TDREL, RELATIVE ERROR 5

The values given to the controlsSSABS andSSREL, or toTDABS andTDREL, are nonsense.
If TWOPNTwrites the next error message thenSSABS andSSREL are wrong, but ifEVOLVE
writes next then TDABS and TDREL are at fault.

SEARCH: ERROR. THE DAMPING COEFFICIENT FOR STAYING 1
IN BOUNDS IS NEGATIVE. 2

3
-1.00E+00 DELTA B 4

47

5.2 Long List of Messages

SEARCH: ERROR. THE GUESSES FOR SOME UNKNOWNS ARE OUT OF 1
BOUNDS. 2

3
0 GROUP A UNKNOWNS (A) 4
0 GROUP B UNKNOWNS (B) 5
5 COMPONENTS AT POINTS (C) 6
6 POINTS (P) 7

30 TOTAL UNKNOWNS 8
2 NUMBER OUT OF BOUNDS 9

10
LOWER UPPER 11
BOUND VALUE BOUND UNKNOWN 12

13
1.50E+02 3.00E+03 2.00E+03 T (C 5 P 1) 14
-1.00E+04 -1.00E+03 1.00E+04 G (C 2 P 3) 15

This error suggests either a programming mistake or faulty input to a simulator. Some
guesses violate their bounds, ABOVE or BELOW. Either the bounds or the guesses must
change. Simulators often assign the same values to many bounds and guesses, so many may
be wrong if any are. Twopnt lists only the first twenty. A simulator may provide names for
the unknowns, and twopnt adds this identification: (A 6) is the sixth unknown in group
A, and (C 2 P 3) is the second component at the third point, and so on.

SEARCH: ERROR. THE LOWER AND UPPER BOUNDS ON SOME UNKNOWNS 1
ARE OUT OF ORDER. 2

3
0 GROUP A UNKNOWNS (A) 4
0 GROUP B UNKNOWNS (B) 5
5 COMPONENTS AT POINTS (C) 6
5 TOTAL TYPES OF UNKNOWNS 7
2 NUMBER OF BOUNDS OUT OF ORDER 8

9
LOWER UPPER 10
BOUND BOUND UNKNOWN 11

12
-1.00E+04 -1.00E+04 LAMBDA (C 4) 13
1.50E+02 0.00E+00 T (C 5) 14

SEARCH: ERROR. THE NUMBER OF NAMES IS WRONG. 1
2

5 NAMES 3
4

5 COMPS, COMPONENTS 5
3 GROUPA, GROUP A UNKNOWNS 6
0 GROUPB, GROUP B UNKNOWNS 7
8 TOTAL NUMBER 8

SEARCH: ERROR. THE RETIREMENT AGE OF THE JACOBIAN MATRIX 1
MUST BE POSITIVE. 2

3
-10 SSAGE OR TDAGE, MATRIX RETIREMENT AGE 4

The value given to the control SSAGE or TDAGE is nonsense. If TWOPNT writes the next
error message then SSAGE is wrong, but if EVOLVE writes next then TDAGE is at fault.

SEARCH: FAILURE. THE SEARCH DIVERGES. 1

SEARCH: FAILURE. THE SEARCH FOR THE FOLLOWING UNKNOWNS GOES 1
OUT OF BOUNDS. 2

3
BOUND VALUE UNKNOWN 4

5
LOWER -2.00E+00 H (C 3 P 2) 6

48

5.2 Long List of Messages

Newton’s search fails because the first convergence monitor discussed in Section 2.1 cannot
be met. Twopnt stops values headed out of bounds at the boundary. Usually one or two
unknowns arrive there before the others, so twopnt’s list of those going out is short. A
simulator may provide names to identify the unknowns, to which twopnt adds this annota-
tion: (A 6) indicates the sixth unknown in group A, and (C 3 P 2) indicates the third
component at the second point, and so on.

Newton’s search reaches bounds from bad luck, or more likely, from bad guesses.
Both the bounds and the guesses embody expectations: when a usually successful simulation
repeatedly fails at bounds, it may be operating under conditions not anticipated. Twopnt’s
controls ABOVE and BELOW can relax the bounds. Better guesses can be obtained from
performing time evolution (which twopnt performs automatically) or from performing easier
simulations (which some simulators might provide automatically).

SEARCH: SOLVE NONLINEAR, NONDIFFERENTIAL EQUATIONS. 1

SEARCH: SUCCESS. 1

SEARCH: SUCCESS. THE SOLUTION: 1

TWOPNT: 17.34 SECONDS TOTAL COMPUTER TIME (SEE BREAKDOWN BELOW). 1

TWOPNT: CALLING EVOLVE TO PERFORM TIME EVOLUTION. 1

TWOPNT: CALLING REFINE TO PRODUCE A NEW GRID. 1

TWOPNT: CALLING SEARCH TO SOLVE THE STEADY STATE PROBLEM. 1

TWOPNT: DOUBLE PRECISION (TWO POINT BOUNDARY VALUE PROBLEM) SOLVER, 1
VERSION 3.07 OF JANUARY 1992 BY DR. JOSEPH F. GRCAR. 2

TWOPNT: ERROR. A CONTROL NAME IS NOT RECOGNIZED. 1
2

3 POSITION IN THE CONTROL LIST 3
6 CNTRLS, LENGTH OF THE CONTROL LIST 4

5
NAME: ADEPT 6

Simulators pass lists of control names and values to twopnt, see Section 6.2. The simulator
either spelled a name wrong or expects some version of twopnt with different control names.

TWOPNT: ERROR. EVOLVE FAILS. 1

TWOPNT: ERROR. NEITHER THE INITIAL TIME EVOLUTION NOR THE 1
SEARCH FOR THE STEADY STATE IS ALLOWED. 2

The values given to the controls STEADY and STEPS0 are inconsistent. If STEADY = no
and STEPS0 = 0, then twopnt has nothing to do.

TWOPNT: ERROR. NUMBERS OF ALL TYPES OF UNKNOWNS MUST BE AT 1
LEAST ZERO. 2

3
5 COMPS, COMPONENTS 4
8 POINTS 5

-1 GROUPA, GROUP A UNKNOWNS 6
0 GROUPB, GROUP B UNKNOWNS 7

The values given to the controls COMPS, POINTS, GROUPA or GROUPB are nonsense. The
simulator may have a programming mistake, or may have been given incorrect data.

49

5.2 Long List of Messages

TWOPNT: ERROR. NUMBERS OF COMPONENTS AND POINTS MUST BE 1
EITHER BOTH ZERO OR BOTH POSITIVE. 2

3
5 COMPS, COMPONENTS 4
0 POINTS 5

The values given to the controls COMPS and POINTS are inconsistent. The simulator may
have a programming mistake, or it may have been given incorrect data.

TWOPNT: ERROR. ONE OR BOTH WORK SPACES ARE TOO SMALL. 1
2

INTEGER REAL 3
4

PRESENT SIZE 5000 100000 5
REQUIRED SIZE 7395 63921 6

The simulator has been given a problem that requires too much memory. Either the program
must be changed to include more space, or the problem must be made smaller. Many
simulators check memory size themselves, based on twopnt’s announced memory needs in
Chapter 6. Thus, a simulator reaching this error might have a programming mistake.

TWOPNT: ERROR. REFINE FAILS. 1

TWOPNT: ERROR. SEARCH FAILS. 1

TWOPNT: ERROR. THE CALLING PROGRAM EXPECTS A VERSION OF 1
TWOPNT NOT COMPATIBLE WITH THIS VERSION. 2

3
EXPECTS: DOUBLE PRECISION VERSION 3.08 4

5
THIS VERSION: SINGLE PRECISION VERISON 3.02 6
CAN REPLACE: SINGLE PRECISION VERISON 3.01 7
CAN REPLACE: SINGLE PRECISION VERISON 3.00 8

The simulator expects a different version of twopnt. Either the arithmetic precision or the
version number is wrong. If the precision, then Appendix 2 explains how to change that. If
the version, then a different twopnt or a different simulator must be obtained. The message
lists all older twopnts compatible with the present one, but some newer twopnts might be
compatible too. At some risk of catastrophe, the simulator program might be changed to
identify the present twopnt as the one expected.

TWOPNT: ERROR. THE LOWER AND UPPER BOUNDS ON SOME UNKNOWNS 1
ARE OUT OF ORDER. 2

3
0 GROUP A UNKNOWNS (A) 4
0 GROUP B UNKNOWNS (B) 5
5 COMPONENTS AT POINTS (C) 6
5 TOTAL TYPES OF UNKNOWNS 7
2 NUMBER OF BOUNDS OUT OF ORDER 8

9
LOWER UPPER 10
BOUND BOUND UNKNOWN 11

12
-1.00E+04 -1.00E+04 LAMBDA (C 4) 13
1.50E+02 0.00E+00 T (C 5) 14

This error suggests either a programming mistake or faulty input to a simulator. Some
values given to the controls ABOVE and BELOW are inconsistent. Simulators often assign
the same values to many bounds, so many may be wrong if any are. Twopnt lists only the
first twenty. A simulator may provide names to identify the unknowns, but in any case,
twopnt includes the following annotation: (A 6) indicates the sixth unknown in group A,

50

5.2 Long List of Messages

and (C 4) indicates the fourth component at the points (a component has the same bounds
at all points), and so on.

TWOPNT: ERROR. THE NUMBER OF CONTROLS MUST BE POSITIVE. 1
2

0 CNTRLS, LENGTH OF THE CONTROL LIST 3

Simulators pass lists of control names and values to twopnt. This error occurs when a
simulator passes none, and may indicate a programming mistake.

TWOPNT: ERROR. THE NUMBER OF NAMES IS WRONG. 1
2

3 NAMES 3
4

3 COMPS, COMPONENTS 5
7 GROUPA, GROUP A UNKNOWNS 6
0 GROUPB, GROUP B UNKNOWNS 7

10 TOTAL NUMBER 8

This error indicates a programming mistake. Simulators may pass lists of names for un-
knowns to twopnt. If so, the number of names must be COMPS + GROUPA + GROUPB.

TWOPNT: ERROR. THE PRINTING LEVELS ARE OUT OF ORDER. 1
LEVELD CANNOT EXCEED LEVELM. 2

3
2 LEVELD, FOR SOLUTIONS 4
1 LEVELM, FOR MESSAGES 5

The values given to the controls LEVELM and LEVELD are inconsistent.

TWOPNT: ERROR. THERE ARE TOO MANY POINTS. 1
2

591 POINTS 3
100 PMAX, LIMIT ON POINTS 4

The values given to the controlsPOINTS andPMAX are inconsistent. This error may indicate
a programming mistake.

TWOPNT: ERROR. TOTAL UNKNOWNS MUST BE POSITIVE. 1
2

0 COMPS, COMPONENTS 3
0 POINTS 4
0 GROUPA, GROUP A UNKNOWNS 5
0 GROUPB, GROUP B UNKNOWNS 6
0 TOTAL NUMBER 7

The values given to the controls COMPS, POINTS, GROUPA or GROUPB are nonsense.
Since these controls determine numbers of unknowns, this error indicates a programming
mistake.

TWOPNT: ERROR. TWGRAB FAILS. 1

TWOPNT: ERROR. UNKNOWN TASK. 1

TWOPNT: ERROR. UNKNOWN REPORT CODE. 1

TWOPNT: EVOLVE DID NOT PERFORM A TIME EVOLUTION. 1

Newton’s search was unable to find the first transient state in the current sequence. De-
pending on the printing level, LEVELM, a preceding message from EVOLVE or SEARCH
explains what went wrong.

TWOPNT: EVOLVE PERFORMED A TIME EVOLUTION. 1

51

5.2 Long List of Messages

TWOPNT: FAILURE. A SOLUTION WAS FOUND FOR A GRID WITH 67 1
POINTS, BUT ONE OR BOTH RATIOS ARE TOO LARGE. 2

3
RATIO 1 RATIO 2 4

5
FOUND 0.31 0.78 6

DESIRED 0.50 0.50 7
8

A LARGER GRID COULD NOT BE FORMED. 9

Twopnt did not find a sufficiently good solution. A larger grid cannot be formed because ei-
ther PADD=0 orPOINTS=PMAX. The need for a larger grid can be eliminated by increasing
TOLER1 or TOLER2 to the values shown (LINE 6).

TWOPNT: FAILURE. A SOLUTION WAS FOUND FOR A GRID WITH 67 1
POINTS, BUT ONE OR BOTH RATIOS ARE TOO LARGE. 2

3
RATIO 1 RATIO 2 4

5
FOUND 0.31 0.78 6

DESIRED 0.50 0.50 7
8

A SOLUTION COULD NOT BE FOUND FOR A LARGER GRID. 9

Twopnt did not find a sufficiently good solution. Solutions were found for smaller grids, but
not for the largest, indicating the smaller grids do not resolve some critical solution feature.
Twopnt’s other messages may suggest how to adjust the controls to find the solution for
the largest grid, or the sequence of grids can be stopped short of the largest by increasing
TOLER1 or TOLER2 to the values shown (LINE 6).

TWOPNT: FAILURE. NO SOLUTION WAS FOUND. 1

Twopnt did not find a solution. Twopnt’s other messages may suggest how to adjust the
controls for Newton’s search and time evolution so twopnt can succeed.

TWOPNT: FINAL SOLUTION: 1

TWOPNT: INITIAL GUESS: 1

TWOPNT: REFINE DID NOT SELECT A NEW GRID. 1

TWOPNT: REFINE SELECTED A NEW GRID. 1

TWOPNT: SEARCH DID NOT FIND THE STEADY STATE. 1

TWOPNT: SEARCH FOUND THE STEADY STATE. 1

TWOPNT: SINGLE PRECISION (TWO POINT BOUNDARY VALUE PROBLEM) SOLVER, 1
VERSION 3.07 OF JANUARY 1992 BY DR. JOSEPH F. GRCAR. 2

TWOPNT: SOLVE THE PROBLEM. 1

TWOPNT: SUCCESS. PROBLEM SOLVED. 1

TWPREP: ERROR. NUMBERS OF COMPONENTS AND POINTS MUST BE 1
EITHER BOTH ZERO OR BOTH POSITIVE, NUMBERS OF ALL TYPES 2
OF UNKNOWNS MUST BE AT LEAST ZERO, AND TOTAL UNKNOWNS 3
MUST BE POSITIVE. 4

5
0 COMPS, COMPONENTS 6
8 POINTS 7

31 GROUPA, GROUP A UNKNOWNS 8
0 GROUPB, GROUP B UNKNOWNS 9

31 TOTAL UNKNOWNS 10

52

5.2 Long List of Messages

The values given to the controls COMPS, POINTS, GROUPA or GROUPB are nonsense.
Since TWOPNT should have checked these values already, there may be a programming
mistake.

TWPREP: ERROR. SOME COLUMNS ARE ZERO. 1
2

5 COMPS, COMPONENTS 3
8 POINTS 4
0 GROUPA, GROUP A UNKNOWNS 5
0 GROUPB, GROUP B UNKNOWNS 6

40 TOTAL COLUMNS 7
4 ZERO COLUMNS 8

9
UNKNOWNS WITH ZERO COLUMNS: 10

11
COMPONENT 2 AT POINT 1 12
COMPONENT 2 AT POINT 2 13
COMPONENT 2 AT POINT 3 14
COMPONENT 2 AT POINT 4 15

The Jacobian matrix has a zero column. There are two causes. (1) The residual function
is independent of some unknown. Usually, this is a programming mistake. The residual
function should be examined to see every unknown is used. In rare cases, special values
for some unknowns might make the residual function insensitive to other unknowns, and
then refer to the second cause. (2) The numerical perturbations used to approximate the
differentials might be too small to perturb the residual function. Either the residual function
should be reformulated, or the perturbations used by TWPREP should be increased.

TWPREP: ERROR. SOME ROWS ARE ZERO. 1
2

5 COMPS, COMPONENTS 3
8 POINTS 4
0 GROUPA, GROUP A UNKNOWNS 5
0 GROUPB, GROUP B UNKNOWNS 6

40 TOTAL ROWS 7
2 ZERO ROWS 8

9
ZERO ROWS: 10

11
COMPONENT 5 AT POINT 1 12
COMPONENT 5 AT POINT 8 13

The Jacobian matrix has a zero row. There are two causes. (1) Some residual value is
independent of all unknowns. Usually, this error indicates a programming mistake. The
residual function should be examined to see every equation is evaluated. In rare cases,
special values for the unknowns might make some equations insensitive to the unknowns,
and then refer to the second cause. (2) The numerical perturbations used to approximate
the differentials might be too small to perturb some equation. Either the residual function
should be reformulated, or the perturbations used by TWPREP should be increased.

TWPREP: ERROR. THE JACOBIAN MATRIX IS SINGULAR. 1

The linpack subroutine DGBCO or SGBCO [8] finds a singular Jacobian matrix. The matrix
may be very badly conditioned rather than exactly singular, but in either case, the matrix
equations for the search directions in Newton’s method cannot be solved. If this error occurs
at the start of a simulation, then usually either (1) the initial guess is bad or (2) the simulation
is formulated incorrectly.

53

5.2 Long List of Messages

When this error occurs late in the simulation, the cause is usually one of two others. (3)
The search has strayed too far. Twopnt’s controls might be changed to make the search more
conservative. (4) The simulation is near a turning point or a bifurcation point. This means
the simulation has two or more valid outcomes for the same data. Twopnt’s controls might
be changed to coax twopnt to one outcome, but such simulations are inherently difficult to
perform. Either the simulation should be reformulated, or twopnt should be replaced by
continuation and path following software which can find all the multiple outcomes, see [24].

TWPREP: ERROR. THE MATRIX SPACE IS TOO SMALL. 1
2

5 COMPS, COMPONENTS 3
8 POINTS 4
0 GROUPA, GROUP A UNKNOWNS 5
0 GROUPB, GROUP B UNKNOWNS 6

40 MATRIX ORDER 7
9 STRICT HALF BANDWIDTH 8

9
1160 SPACE REQUIRED 10
1000 ASIZE, PROVIDED 11

The matrix requires more memory than the simulator allows. Either the simulator must be
changed to include more space, or the problem must be changed to make the matrix smaller.
Many simulators check memory size themselves, based on TWPREP’s announced memory
needs in Section 6.4. Thus, a simulator reaching this error might have a programming
mistake.

TWSHOW: ERROR. NUMBERS OF COMPONENTS AND POINTS MUST BE 1
EITHER BOTH ZERO OR BOTH POSITIVE, NUMBERS OF ALL TYPES 2
OF UNKNOWNS MUST BE AT LEAST ZERO, AND TOTAL UNKNOWNS 3
MUST BE POSITIVE. 4

5
5 COMPS, COMPONENTS 6
0 POINTS 7
0 GROUPA, GROUP A UNKNOWNS 8
0 GROUPB, GROUP B UNKNOWNS 9
0 TOTAL UNKNOWNS 10

The values given to the controls COMPS, POINTS, GROUPA or GROUPB are nonsense. The
simulator may have a programming mistake.

TWSOLV: ERROR. NUMBERS OF COMPONENTS AND POINTS MUST BE 1
EITHER BOTH ZERO OR BOTH POSITIVE, NUMBERS OF ALL TYPES 2
OF UNKNOWNS MUST BE AT LEAST ZERO, AND TOTAL UNKNOWNS 3
MUST BE POSITIVE. 4

5
5 COMPS, COMPONENTS 6
0 POINTS 7
0 GROUPA, GROUP A UNKNOWNS 8

10 GROUPB, GROUP B UNKNOWNS 9
10 TOTAL UNKNOWNS 10

The values given to the controls COMPS, POINTS, GROUPA or GROUPB are nonsense.
Since TWOPNT and TWPREP should have checked these values already, there may be a
programming mistake.

54

5.2 Long List of Messages

TWSOLV: ERROR. THE MATRIX SPACE IS TOO SMALL. 1
2

5 COMPS, COMPONENTS 3
8 POINTS 4
0 GROUPA, GROUP A UNKNOWNS 5
0 GROUPB, GROUP B UNKNOWNS 6

40 MATRIX ORDER 7
9 STRICT HALF BANDWIDTH 8

9
1160 SPACE EXPECTED 10
1000 ASIZE, PROVIDED 11

The equation solving subroutine has been given a matrix that seems to require more memory
than the simulator allows. Since TWPREP should have checked this space when it prepared
the matrix, there may be a programming mistake.

(C) Now let mathematical formulation and observational data go un-
questioned. The next stumbling block is this: The mathematical formulation
will in general involve transcendental operations (for example, functions like
sin or log, operations like integration or differentiation, and so on) and implicit
definitions (for example, solutions of algebraical or transcendental equations,
proper value [eigenvalue] problems of various kinds, and so on). In order to be
approached by numerical calculation, these have to be replaced by elementary
processes (involving only those elementary arithmetical operations which the
computer can handle directly) and explicit definitions, which correspond to
a finite, constructive procedure that resolves itself into a linear sequence of
steps.

Similarly, every convergent, limiting process, which in its strict mathe-
matical form is infinite, must in a numerical computation be broken off at some
final stage, where the approximation to the limiting value is known to have
reached a level that is considered to be satisfactory. It would be easy to give
further examples.

— J. von Neumann and H. H. Goldstine [26]

55

6.1 Calling Twopnt

6
Writing a Simulator

6.0 Introduction
A simulator based on twopnt has three major parts. One gathers and reports data. Two
evaluates a residual. Three calls twopnt. An entirely new simulator might be written step
by step, by adding the software needed to support each part. Alternatively, a simulator
might be written by modifying someone else’s. To that end, twopnt’s software distribu-
tion includes the rudimentary simulator whose output appears throughout this manual, see
Appendix 2. That simulation may have independent interest, so Chapter 7 discusses it sep-
arately. Section 6.1 here, and Section 7.3 there, illustrate the programming needed to use
twopnt.

Twopnt is a collection of fortran subroutines [1]. Appendix 2 lists them all. The
intended entry point is the subroutine with the mnemonic name and the twenty-nine argu-
ments shown in Figure 6.1. Some arguments have been introduced elsewhere as controls,
but in general, controls are not arguments. Sections 6.1 and 6.2 discuss groups of arguments
with similar uses, while Section 6.3 explains each argument alone.

6.1 Calling Twopnt
A simulation is a scientific model and an evaluation algorithm. Its software consists of a
simulator which poses numerical problems, and a solver which solves them. The simula-
tor formulates the problem and interprets the solution, by doing such things as gathering
parameters and drawing graphs. Some simulations can make do with “black box” solvers,
and then the software has simple control and communication paths: the simulator gives
problems to the solver, and the solver gives solutions back.

Software for complex simulations is rarely tidy. (1) Parameters may be numerous
and not easily communicated. (2) Problem formulation and solution may be special and
inseparable. (3) Solutions may be obtained by expensive methods tuned to each problem.
In these situations, the distinction between simulator and solver can be lost, and then the
experience gained from successful simulations cannot be transferred easily.

Twopnt is a solver for complex simulations that deals with the difficulties above by
delegating many tasks back to the simulator. In some sense, the simulator serves twopnt
because it performs much of the numerical work under twopnt’s direction. Twopnt is

56

6.1 Calling Twopnt

SUBROUTINE TWOPNT 1
+ (ERROR, TEXT, VERSIO, 2
+ ABOVE, ACTIVE, BELOW, BUFFER, CNTRL, CNTRLS, COMPS, CONDIT, 3
+ GROUPA, GROUPB, ISIZE, IVALUE, IWORK, LVALUE, MARK, NAME, 4
+ NAMES, PMAX, POINTS, REPORT, RSIZE, RVALUE, RWORK, SIGNAL, 5
+ STRIDE, TIME, U, X) 6

Figure 6.1. Twopnt’s arguments with those used for reverse communication highlighted.
Section 6.1 explains reverse communication.

intended to serve many simulators without modification to itself, so it omits features that
would limit its use. For example, other software for differential equations choose both the
discretization and, when the discretization is implicit, the linear algebra. Twopnt chooses
neither because no choice is appropriate for all simulations. This means simulators using
twopnt must provide their own discretization and, under twopnt’s direction, must perform
their own linear algebra. Since the simulator has temporal precedence, it is necessarily the
calling program, but the control and communication paths between twopnt and the simulator
are elaborate.

Twopnt passes commands back to the simulator by “reverse communication.” That
is, twopnt’s arguments include one that signals the simulator to perform some task and then
to call twopnt again. Figure 6.1 highlights this and related arguments in twopnt’s calling
sequence. Briefly, twopnt begins a new problem when called with SIGNAL blank, and if
twopnt returns with SIGNAL not blank, then some task must be performed.

• SIGNAL reverse communication signal 69
• BUFFER array for reverse communication data 61, 66

The tasks operate on data twopnt places in BUFFER, and if twopnt expects some result, then
twopnt generally receives it there too.

Twopnt asks three major tasks of the simulator. One is to evaluate the residual function.

• SIGNAL = `RESIDUAL' signal to evaluate the residual

Evaluation should occur at the approximate solution found in BUFFER, and twopnt wants
the residual vector there when it resumes. This task needs more information than BUFFER
can supply because there are two residual functions.

• TIME signal to use the transient residual 71
• STRIDE time stride for the transient residual 71

The transient residual, moreover, needs earlier transient states to approximate time differ-
entials, so a supporting task identifies those.

• SIGNAL = `RETAIN' signal to retain a transient state

When the simulator receives this signal, it must store the transient state found in BUFFER
for later use in evaluating the transient residual.

The other two major tasks twopnt asks of the simulator involve the matrix equations
in Newton’s method.

• SIGNAL = `PREPARE' signal to prepare the Jacobian matrix
• CONDIT matrix condition number 67
• SIGNAL = `SOLVE' signal to solve matrix equations

57

6.1 Calling Twopnt

Simulation designers prefer direct matrix operations, so simulators usually form and factor
the Jacobian matrix when signaled to prepare. Alternatively, they might build precondition-
ers for iterative equation solving algorithms. The Jacobian matrix should be evaluated at the
solution estimate in BUFFER, and should be for either the steady state or the transient resid-
ual as indicated by TIME. Twopnt needs no direct knowledge of the matrix, so the simulator
can store what it prepares where and how it likes. If a condition estimate is available for the
matrix, then that should be placed in CONDIT when twopnt resumes. The SOLVE signal
indicates the most recently prepared matrix should be used to solve linear equations with
the “right side,” or constant terms, found in BUFFER. When twopnt resumes, it expects to
find the solution in BUFFER too.

The matrix tasks are the most onerous twopnt asks of the simulator. Many solvers
undertake such tasks internally, but then unlike twopnt, they need nontrivial reprogramming
when matrix operations need revising. Twopnt includes subroutines, TWPREP andTWSOLV,
that the simulator can use for these tasks if desired. These routines are discussed later in
this Section and again in Section 6.4.

The remaining three tasks requested by reverse communication are less strenuous. (1)
Simulators may want to prepare some things ahead when twopnt advances to a new grid.

• SIGNAL = `UPDATE' signal to update to a new grid
• POINTS number of points 62, 68 (? 16, 35)
• MARK array of markers for new points 63, 68
• X array of grid points 63, 71 (? 16, 40)

For example, twopnt constructs new grids by halving intervals, and it guesses new solution
values by averaging old ones. If more than linear interpolation is wanted, then simulators
must provide it. (2) Simulators like to save work in progress in case machines fail during
long computations.

• SIGNAL = `SAVE' signal to save the solution

The latest, best solution estimate in BUFFER should be saved; it can serve as a guess to
begin anew. If twopnt is choosing grids, then POINTS and X should be saved too. (3)
Finally, twopnt has controls that govern writing solutions, but the simulator does the actual
writing.

• SIGNAL = `SHOW' signal to show the solution

The solution data in BUFFER should be written to the fortran unit number, TEXT, where
twopnt writes it own messages. This output is what appears when LEVELD > 0. Twopnt
includes a subroutine, TWSHOW, that can do the simulator’s writing, if desired.

Figure 6.2 shows what is needed to support reverse communication. This program
fragment might be used as a template for calling twopnt. It sets the reverse communication
signal blank to begin (LINE 1), and when twopnt returns, the signal explains what to do
(LINES 11, 15, . . .). The program performs one of six chores—RESIDUAL, PREPARE,
SOLVE, SHOW, RETAIN and UPDATE (it ignores SAVE)—and then it calls twopnt again
with SIGNAL not blank (LINE 43).

The program fragment in Figure 6.2 delegates the RESIDUAL task to a subroutine
(LINE 12). This is the heart of the simulation because it embodies the scientific model.
Figure 6.3 shows the arguments for such a subroutine, TWFUNC, which Chapter 7 describes
fully. The subroutine’s arguments include parameters for the model and parameters for the
discretization. The most important is BUFFER, which is where twopnt places the solution
estimate, and where the subroutine places the residual.

The program fragment in Figure 6.2 leaves the matrix tasks to the TWPREP and
TWSOLV subroutines supplied with twopnt (LINES 18 AND 28). Figure 6.4 depicts the

58

6.1 Calling Twopnt

SIGNAL = ' ' 1
2

0100 CALL TWOPNT 3
+ (ERROR, TEXT, 'DOUBLE PRECISION VERSION 3.08', 4
+ ABOVE, ACTIVE, BELOW, BUFFER, CNTRL, CNTRLS, COMPS, CONDIT, 5
+ GROUPA, GROUPB, ISIZE, IVALUE, IWORK, LVALUE, MARK, NAME, 6
+ NAMES, PMAX, POINTS, REPORT, RSIZE, RVALUE, RWORK, SIGNAL, 7
+ STRIDE, TIME, U, X) 8
IF (ERROR) GO TO 9001 9

10
IF (SIGNAL .EQ. 'RESIDUAL') THEN 11

CALL TWFUNC (ERROR, TEXT, BUFFER, . . .) 12
IF (ERROR) GO TO 9002 13

14
ELSE IF (SIGNAL .EQ. 'PREPARE') THEN 15

RETURN = .FALSE. 16
17

0200 CALL TWPREP (ERROR, TEXT, A, . . . BUFFER, . . . RETURN, . . .) 18
IF (ERROR) GO TO 9003 19

20
IF (RETURN) THEN 21

CALL TWFUNC (ERROR, TEXT, BUFFER, . . .) 22
IF (ERROR) GO TO 9002 23
GO TO 0200 24

END IF 25
26

ELSE IF (SIGNAL .EQ. 'SOLVE') THEN 27
CALL TWSOLV (ERROR, TEXT, A, . . . BUFFER, . . .) 28
IF (ERROR) GO TO 9005 29

30
ELSE IF (SIGNAL .EQ. 'SHOW') THEN 31

CALL TWSHOW (ERROR, TEXT, BUFFER, . . .) 32
IF (ERROR) GO TO 9004 33

34
ELSE IF (SIGNAL .EQ. 'RETAIN') THEN 35

CALL TWCOPY (N, BUFFER, U0) 36
37

ELSE IF (SIGNAL .EQ. 'UPDATE') THEN 38
N = GROUPA + COMPS * POINTS + GROUPB 39

40
END IF 41

42
IF (SIGNAL .NE. ' ') GO TO 0100 43

Figure 6.2. Segment of a fortran program calling twopnt and illustrating the use of reverse
communication. Section 6.1 explains the program.

SUBROUTINE TWFUNC 1
+ (ERROR, TEXT, 2
+ BUFFER, F, F0, G, G0, H, K, LAMBDA, MU, OMEGA, POINTS, RHO, 3
+ STRIDE, T, T0, TIME, TMAX, TZERO, U0, WMAX, X) 4

Figure 6.3. Typically idiosyncratic arguments for a subroutine evaluating a simulation’s
residual function. Figure 6.2 shows the use of such a subroutine in calling twopnt. Sec-
tion 7.3 explains this particular subroutine, which is supplied with twopnt.

59

6.1 Calling Twopnt

Figure 6.4. The TWPREP and TWSOLV subroutines that are supplied with twopnt support
a tridiagonal, blocked arrangement of nonzeroes in the Jacobian matrices. All blocks must
have the same size except, optionally, the extremes. Section 6.1 describes these subroutines
briefly. Section 6.4 describes them in detail.

type of Jacobian matrices these subroutines expect. This tridiagonal, blocked structure
predominates in two point boundary value problems. If a simulator has different looking
matrices, then it must respond to the PREPARE and SOLVE requests by doing its own thing.
Section 6.3 explains what that might be.

The TWPREP subroutine uses reverse communication too. A small portion of Fig-
ure 6.2 (LINES 16 TO 25) thus embeds one reverse communication system within another.
Section 6.4 explains TWPREP’s arguments in detail. Briefly, RETURN is its reverse commu-
nication signal, and function evaluation is its only request, hence the second use of TWFUNC
(LINE 22). TWPREP stores the matrix in the large array A that likely accounts for most of
the simulator’s storage.

TWOPNT: FINAL SOLUTION: 1
2

GRID POINT COMP 1 COMP 2 COMP 3 COMP 4 COMP 5 3
1> 0.000000 0.000E+00 1.257E+01 0.000E+00 8.562E-05 3.000E+02 4
2> 0.000977 5.783E-02 1.250E+01 -5.665E-05 8.562E-05 3.018E+02 5
3> 0.001953 1.143E-01 1.243E+01 -2.256E-04 8.562E-05 3.037E+02 6
4> 0.002930 1.696E-01 1.237E+01 -5.051E-04 8.562E-05 3.055E+02 7
5> 0.003906 2.236E-01 1.230E+01 -8.932E-04 8.562E-05 3.073E+02 8

70> 2.250000 -2.287E-01 1.404E-02 -2.629E+00 8.562E-05 9.904E+02 73
71> 2.500000 -2.128E-01 7.534E-03 -2.527E+00 8.562E-05 9.935E+02 74
72> 3.000000 -1.733E-01 2.655E-03 -2.342E+00 8.562E-05 9.969E+02 75
73> 3.500000 -1.309E-01 9.656E-04 -2.194E+00 8.562E-05 9.985E+02 76
74> 4.000000 -8.759E-02 3.376E-04 -2.086E+00 8.562E-05 9.993E+02 77
75> 4.500000 -4.386E-02 9.496E-05 -2.021E+00 8.562E-05 9.998E+02 78
76> 5.000000 0.000E+00 0.000E+00 -2.000E+00 8.562E-05 1.000E+03 79

Figure 6.5. The portion of LEVELD > 0 output prepared by TWSHOW that describes the
final result of the simulation in Chapter 7. Figure 2.2 plots some of this data. Components
1, 2, 3 and 5 here are F , G, H and T there. Section 6.1 explains TWSHOW’s use, while
Section 6.4 explains the subroutine in detail.

60

6.2 What the Arguments Do

The program fragment in Figure 6.2 leaves the SHOW task to the TWSHOW subroutine
(LINE 32) also supplied with twopnt and also explained in Section 6.4. Figure 6.5 shows
what is shown, if LEVELD > 0, after the simulation discussed in Chapter 7 finishes.
TWSHOW does not name solution data, but it can be changed easily to do so.

The program fragment in Figure 6.2 performs the RETAIN task by copying the prof-
fered transient state into an array, U0 (LINE 36). TWFUNC needs this array when it evaluates
transient residuals. Finally, the program fragment performs the UPDATE task by recounting
unknowns (LINE 40). Since twopnt changes POINTS when it selects a new grid, BUFFER
and other arrays must be able to accommodate the largest possible grid, see Section 6.2.

6.2 What the Arguments Do
Numerical software isn’t the focus of research in programming languages, so as a result,
many subroutine arguments are needed to implement (with some clumsiness) programming
devices (such as reverse communication) revered only in the numerical folklore. Twopnt’s
own arguments thus divide into functional groups.

• reverse communication
• grids and unknowns
• work space arrays
• status reporting
• control lists

A few arguments serve both reverse communication and some other purpose. Reverse
communication is discussed in Section 6.1; the other uses are discussed here.

SUBROUTINE TWOPNT 1
+ (ERROR, TEXT, VERSIO, 2
+ ABOVE, ACTIVE, BELOW, BUFFER, CNTRL, CNTRLS, COMPS, CONDIT, 3
+ GROUPA, GROUPB, ISIZE, IVALUE, IWORK, LVALUE, MARK, NAME, 4
+ NAMES, PMAX, POINTS, REPORT, RSIZE, RVALUE, RWORK, SIGNAL, 5
+ STRIDE, TIME, U, X) 6

Figure 6.6. Twopnt’s arguments with those used for grids and unknowns highlighted.
Section 6.2 explains them.

Figure 6.6 highlights twopnt’s arguments for communicating grids and unknowns.
Two arrays communicate values for the unknowns.

• BUFFER array of values and residuals in reverse communication 66
• U array of guesses on input, solution values on output 71 (? 40)

The data in these arrays must have a particular arrangement only when twopnt selects grids
for two point boundary value problems. Otherwise, the arrangement is no concern to twopnt,
but even then, it should not be entirely arbitrary.

The arrangement of unknowns and residuals establishes the nonzero structure of the
Jacobian matrices. If the i-th equation depends on the j-th unknown, then the matrix reflects
that through its entry in row i and column j. If there is no dependence, then the entry there
is zero. Usually, matrices encountered in simulations have many zeroes. Unknowns and
equations may have a spatial distribution, for example, with only those at nearby locations
dependent. The pattern of nonzeroes determines the ease of solving matrix equations, and
this often determines the feasibility of the simulation.

Software for matrix equations usually assumes some pattern of nonzeroes. The
TWPREP and TWSOLV subroutines supplied with twopnt assume a tridiagonal pattern of

61

6.2 What the Arguments Do

blocks, see Figure 6.4. This pattern is natural in two point boundary value problems, and
some aspects of it appear in other simulations, as follows. Usually, unknowns are associated
with equations, and then values and residuals might appear in the same order. Moreover,
unknowns and equations often have a spatial distribution, and then coincident values are
conveniently made contiguous. In chemistry simulations for example, species are associ-
ated with their conservation equations, and both are associated with points in space. (The
tridiagonal matrix structure occurs when, additionally, the points line up, and the equations
at each point need only the values there or at neighboring points.)

The “components at points” arrangement of unknowns is convenient whenever a
simulation involves replication. This convention supposes every one of p points has exactly
c solution components.

u1,1 u1,2 . . . u1,p

u2,1 u2,2 . . . u2,p

...
...

. . .
...

uc,1 uc,2 . . . uc,p

Simulators employing this convention should order values for the unknowns in BUFFER
and U point by point—or in terms of the picture above, column by column—so all the values
at the same point are contiguous.

u1,1 u2,1 . . . uc,1 u1,2 u2,2 . . . uc,2 u1,3 u2,3 . . . uc,3 . . .

This is the memory arrangement prescribed for fortran arrays dimensioned (c,p). Twopnt
does not use fortran dimensioning, however, because twopnt allows two groups of extra
unknowns to precede and follow the others.

ú1 ú2 . . . úa . . . the others . . . ù1 ù2 . . . ùb

Altogether there are a+ cp+ b unknowns. The extra unknowns are intended for boundary
conditions in two point boundary value problems.

Twopnt counts unknowns using four arguments with names suggested by the compo-
nents at points convention.

• COMPS number of components 67
• POINTS number of points 58, 68 (? 16, 35)
• GROUPA number of initial, group A unknowns 67
• GROUPB number of final, group B unknowns 67

Simulators that don’t use automatic grid selection may choose these arguments arbitrarily
to count their unknowns so long as GROUPA+COMPS×POINTS+GROUPB is the proper
number. For example, a simulator withn unknowns and no spatial dimensions might choose
GROUPA = n. A simulator with three quantities distributed throughout a two dimensional,
m× n, grid might choose COMPS = 3 and POINTS = mn.

The grouping of unknowns imposed by the arguments above extends to bounds and
names for the unknowns, as follows.

• ABOVE array of upper bounds 66 (? 14, 33)
• BELOW array of lower bounds 66 (? 14, 33)
• NAME array of names 68
• NAMES dimension of the NAME array 68

These arrays hold bounds and names for group A unknowns first, then those for components,
and finally bounds and names for group B. Each unknown in groups A and B has its own
bounds and name, but unknowns associated with a component have the same bounds and

62

6.2 What the Arguments Do

name at every point. The arrays thus have a dimension, GROUPA + COMPS + GROUPB,
which is independent of grid size. If names for unknowns are not available, then NAMES
should be 1, and then twopnt ignores NAME, which may be a blank character string.

Twopnt uses some arrays only with automatic grid selection. Memory space needn’t
be wasted when grid selection isn’t permitted because twopnt also dimensions these (*).

• ACTIVE array marking components for examination 66
• MARK array marking new grid points 58, 68
• X array of grid points 58, 71 (? 16, 40)

Section 6.3 provides the expected dimensions for these and other arrays. The ACTIVE
array communicates the control values of the same name: ACTIVE(k) true tells twopnt to
examine the k-th component. The MARK array marks new grid points when twopnt makes
the UPDATE reverse communication request: MARK(n) true means X(n) is new.

With automatic grid selection, the extent of meaningful data in arraysBUFFER,MARK,
U and X grows with each new grid. If the simulator conforms to the fortran standard [1],
then array space must be fixed when the program is written. These arrays therefore must
accommodate the maximum points allowed.

• PMAX maximum points in any grid 68 (? 18, 34)

MARK and X must have size PMAX not POINTS, while BUFFER and U must have size
GROUPA + COMPS × PMAX + GROUPB. Simulators conforming to the fortran stan-
dard thus cannot leave PMAX entirely to choice. Usually, they impose an upper limit that
can be adjusted downward, if desired, when the simulation is performed.

SUBROUTINE TWOPNT 1
+ (ERROR, TEXT, VERSIO, 2
+ ABOVE, ACTIVE, BELOW, BUFFER, CNTRL, CNTRLS, COMPS, CONDIT, 3
+ GROUPA, GROUPB, ISIZE, IVALUE, IWORK, LVALUE, MARK, NAME, 4
+ NAMES, PMAX, POINTS, REPORT, RSIZE, RVALUE, RWORK, SIGNAL, 5
+ STRIDE, TIME, U, X) 6

Figure 6.7. Twopnt’s arguments with those used for work space highlighted. Section 6.2
explains them.

Figure 6.7 highlights twopnt’s arguments for work space. Twopnt’s work space isn’t
scratch space, so the simulator can’t use it for other things.

• ISIZE size of the integer work array 67
• IWORK integer work array 68
• RSIZE size of the real work array 69
• RWORK real work array 69

The integer size must be at least 3p and the (single or double precision) real size must be
at least 3p + 9n, in which p = PMAX and n = GROUPA + COMPS × PMAX + GROUPB.
Twopnt allows PMAX = 0 when there are no “points,” but then the work array sizes must
be 3 and 3 + 9n, respectively.

63

6.2 What the Arguments Do

SUBROUTINE TWOPNT 1
+ (ERROR, TEXT, VERSIO, 2
+ ABOVE, ACTIVE, BELOW, BUFFER, CNTRL, CNTRLS, COMPS, CONDIT, 3
+ GROUPA, GROUPB, ISIZE, IVALUE, IWORK, LVALUE, MARK, NAME, 4
+ NAMES, PMAX, POINTS, REPORT, RSIZE, RVALUE, RWORK, SIGNAL, 5
+ STRIDE, TIME, U, X) 6

Figure 6.8. Twopnt’s arguments with those used for status reporting highlighted. Section 6.2
explains them.

Figure 6.8 highlights twopnt’s arguments for status reporting. The three most im-
portant arguments occur first and outside the otherwise alphabetical ordering. Twopnt sets
ERROR true when catastrophes occur, and then error messages explain what went wrong.

• ERROR error signal 66
• TEXT fortran unit number for the message file 66

All messages, including those controlled by LEVELD and LEVELM, go to the unit number
designated by TEXT, unless TEXT ≤ 0, in which case twopnt writes no messages of any
kind anywhere.

Reporting is bidirectional: most is from but some is to twopnt. The simulator an-
nounces the version of twopnt it expects through VERSIO.

• VERSIO expected version of twopnt 66

This argument’s value should be a character string like the following.

SINGLE PRECISION VERSION 3.00

The precision can change toDOUBLE and the version number can change to something of the
same form, 3.08, but otherwise no variation is allowed. Twopnt’s version number should
be the one on this publication’s cover; other versions might have different arguments or
controls. Twopnt’s precision can change easily, see Appendix 2. The simulator’s precision
should change as easily, to facilitate portability between machines.

Twopnt announces the outcome of the simulation through REPORT.

• REPORT outcome status 69

This character string is significant when twopnt returns with SIGNAL blank and ERROR
false. The string then is one of these.

• blank
• NO SPACE
• SOME FOUND
• NONE FOUND

(1) Blank means all is well. (2) NO SPACE means the solution doesn’t satisfy the grid
selection criteria, and twopnt hasn’t space for larger grids. (3) SOME FOUND means the
solution doesn’t satisfy the grid selection criteria, and twopnt couldn’t find a solution for
larger grids. (4) NONE FOUND means no solution was found. In all cases, U is the result of
the simulation, and if automatic grid selection was requested then POINTS and X contain
output too. For NONE FOUND twopnt returns the initial guess.

64

6.3 Long List of Arguments

SUBROUTINE TWOPNT 1
+ (ERROR, TEXT, VERSIO, 2
+ ABOVE, ACTIVE, BELOW, BUFFER, CNTRL, CNTRLS, COMPS, CONDIT, 3
+ GROUPA, GROUPB, ISIZE, IVALUE, IWORK, LVALUE, MARK, NAME, 4
+ NAMES, PMAX, POINTS, REPORT, RSIZE, RVALUE, RWORK, SIGNAL, 5
+ STRIDE, TIME, U, X) 6

Figure 6.9. Twopnt’s arguments with those used for control lists highlighted. Section 6.2
explains them.

Figure 6.9 highlights twopnt’s arguments for communicating control values. When
twopnt begins a simulation, it searches the array CNTRL for control names, and to each
control it finds, it gives the value in IVALUE, LVALUE or RVALUE. The value for the i-th
control should be in the i-th position of the appropriate value array.

• CNTRL array of control names 67
• CNTRLS dimension of the control arrays 67
• IVALUE array of integer values 68
• LVALUE array of logical values 68
• RVALUE array of real values 69

For example, if CNTRL(3) is SSABS, then RVALUE(3) becomes twopnt’s value for
SSABS. The third entries in IVALUE and LVALUE are ignored.

i CNTRL IVALUE LVALUE RVALUE

1 ADAPT ignored .TRUE. ignored
2 LEVELM 2 ignored ignored
3 SSABS ignored ignored 1.0E-7
...

The controls that receive values this way, and the data types of their values, are as follows.

integer IVALUE: LEVELD LEVELM PADD STEPS0 STEPS1
STEPS2 TDAGE

logical LVALUE: ADAPT STEADY

real RVALUE: SSABS SSAGE SSREL STRID0 TDABS TDEC
TDREL TINC TMAX TMIN TOLER0 TOLER1
TOLER2

A few controls listed in Section 4.1 are not listed here. They receive values directly through
twopnt’s arguments with the same names.

Twopnt’s search for names in CNTRL is straightforward. Unrecognized names are
errors, but since arrays must have at least one entry, blank names are accepted. If a name
appears more than once, then the last value supersedes. If a name does not appear, then
twopnt’s default does not change. Beware the default value is always twopnt’s: a second
simulation does not inherit the first’s control values.

6.3 Long List of Arguments
This long list of twopnt’s arguments provides some details omitted from earlier discussions.
The arguments appear in Figure 6.9 and in several preceding Figures.

Note four things. (1) Arguments occur alphabetically after the first three. This is their
order both in subroutine calls and in the list below. (2) The arguments ignore fortran naming

65

6.3 Long List of Arguments

conventions. TEXT is an integer variable, for example. (3) Floating point arguments are
all single or all double precision. Thirty-two bit computers generally use double precision,
while sixty-four bit machines use single precision. (4) Twopnt’s precision changes easily
by altering a few fortran statements, see Appendix 2, but twopnt’s subroutine names do not
change, so confusion might result when moving twopnt among machines that need different
precisions.

• ERROR use: error signal

declaration: output logical

64

If true, then a numerical or programming error occurs. Error messages appear in the
message file.

• TEXT use: fortran unit number for the message file

declaration: input integer

64

Twopnt writes all error and informative messages to this unit. Twopnt neither opens
nor closes the file, and if the unit number isn’t positive, then twopnt writes nothing.

• VERSIO use: expected version of twopnt

input character length (*)

64

This string identifies the precision and version expected of twopnt. It has the form
`SINGLE PRECISION VERSION 3.00', in which SINGLE can change to DOUBLE
and 3.00 can change to something similar.

• ABOVE use: upper bounds

declaration: input floating dimensioned (GROUPA +
COMPS + GROUPB)

62 (? 14, 33)

Values for unknowns never exceed their bounds. Bounds should be arranged with
those for group A unknowns first, then bounds for components, and finally bounds for
group B unknowns.

• ACTIVE use: markers for components to be examined during
grid selection

declaration: input logical dimensioned (*), or dimen-
sioned (COMPS) for grid selection

63 (? 17, 33)

Twopnt uses this augument only with automatic grid selection. The selection process
examines component k provided ACTIVE(k) is true. An error occurs if no component is
active.

• BELOW use: lower bounds

see: ABOVE

62 (? 14, 33)

• BUFFER use: reverse communication data consisting of residual values
or search directions on input, and values for unknowns on
output

declaration: input and output floating dimensioned (GROUPA +
COMPS * PMAX + GROUPB)

57, 61

When making reverse communication requests, TWOPNT always places an approx-
imate solution in BUFFER, and sometimes twopnt expects to find something there when
it resumes. If twopnt expects nothing, then BUFFER can be used for scratch space. For

66

6.3 Long List of Arguments

automatic grid selection, values should be ordered in BUFFER by the components at points
convention.

• CNTRL use: control names

declaration: input character length (*) dimensioned (CNTRLS)

65

This array identifies control values in IVALUE, LVALUE and RVALUE. The control
named by CNTRL(i) has value IVALUE(i), LVALUE(i), or RVALUE(i). Whether an
I, L or RVALUE depends on the control name.

integer IVALUE: LEVELD LEVELM PADD STEPS0 STEPS1
STEPS2 TDAGE

logical LVALUE: ADAPT STEADY

real RVALUE: SSABS SSAGE SSREL STRID0 TDABS TDEC
TDREL TINC TMAX TMIN TOLER0 TOLER1
TOLER2

Names may appear in any order inCNTRL. They must be the control names above, or blank.
For repeated names, the last value supersedes. For absent control names, twopnt assigns
default values, see Section 4.1.

• CNTRLS use: number of control values

declaration: input integer

65

The number must be at least 1 because it dimensions arrays CNTRL, IVALUE,
LVALUE and RVALUE.

• COMPS use: number of components

declaration: input integer

62

On input, this number must be at least zero, and it must be positive if POINTS is
positive. It contributes to the dimensions of arrays ABOVE, ACTIVE, BELOW, BUFFER
and U, and it contributes to the total number of unknowns, GROUPA+COMPS×POINTS+
GROUPB.

• CONDIT use: matrix condition number

declaration: input floating

57

When twopnt requests matrix preparation, SIGNAL = `PREPARE', then it also
accepts the matrix condition number for writing in informative messages. Zero and negative
values mean no number is available.

• GROUPA use: number of initial, group A unknowns

declaration: input integer

62

The number must be at least zero. It contributes to the dimensions of arrays ABOVE,
BELOW, BUFFER and U, and it contributes to the total number of unknowns, GROUPA +
COMPS × POINTS+ GROUPB.

• GROUPB use: number of final, group B unknowns

see: GROUPA

62

• ISIZE use: dimension of the integer work array, IWORK

declaration: input integer

63

67

6.3 Long List of Arguments

The size must be at least 3× PMAX, or at least 3 if PMAX = 0.

• IVALUE use: integer control values

declaration: input integer dimensioned (CNTRLS)

65

If CNTRL(i) is either LEVELD, LEVELM, PADD, STEPS0, STEPS1, STEPS2 or
TDAGE, then twopnt expects a value for that control in IVALUE(i).

• IWORK use: integer work array

declaration: input integer dimensioned (ISIZE)

63

The work space should not be changed while twopnt returns for reverse communica-
tion.

• LVALUE use: logical control values

declaration: input logical dimensioned (CNTRLS)

65

If CNTRL(i) is ADAPT or STEADY, then twopnt expects to find a value for that
control in LVALUE(i).

• MARK use: array marking new grid points for the UPDATE reverse
communication request

declaration: output logical dimensioned (*), or dimensioned
(PMAX) for grid selection

58, 63

Twopnt uses this augument only with automatic grid selection. When twopnt signals
it has a new grid, SIGNAL = `UPDATE', then the new grid is in X, and if MARK(i) is
true, then X(i) is a new grid point.

• NAME use: array of names for the unknowns

declaration: input character length (*) dimensioned (NAMES)

62

Twopnt writes these names in messages and may truncate long names. Names should
be arranged with those for group A unknowns first, then names for components, and finally
names for group B unknowns. The array should be replaced by a single blank character
string if no names are available.

• NAMES use: number of names for the unknowns,
either 1 or GROUPA + COMPS + GROUPB

declaration: input integer

62

NAMES tells twopnt the number of names inNAME. The value should be 1 if no names
are available.

• PMAX use: maximum points in any grid

declaration: input integer

63 (? 18, 34)

The number must be at least POINTS. It contributes to the dimensions of arrays
BUFFER, U and X.

• POINTS use: number of points

declaration: input and output integer

58, 62 (? 16, 35)

On input, this number must be at least zero, and positive if COMPS is. It contributes to
the total number of unknowns, GROUPA+ COMPS× POINTS + GROUPB. For automatic

68

6.3 Long List of Arguments

grid selection, POINTS is the size of the current grid (it should be the size of the initial grid
initially, and twopnt increases it as the grids grow).

• REPORT use: outcome status

declaration: output character length (*)

64

If ERROR is false and SIGNAL is blank, then twopnt has finished and REPORT
explains one of four outcomes. (1) Blank means all is well. (2) NO SPACE means the
solution doesn’t satisfy the grid selection criteria, and twopnt hasn’t space for larger grids.
(3) SOME FOUND means the solution doesn’t satisfy the grid selection criteria, and twopnt
couldn’t find a solution for larger grids. (4) NONE FOUND means no solution was found.
When twopnt finishes, U is the result of the simulation, and if automatic grid selection was
requested then POINTS and X contain output too. For NONE FOUND twopnt returns the
initial guess.

• RSIZE use: dimension of the floating work array, RWORK

declaration: input integer

63

The size must be at least 3 × PMAX + 9 × n in which n = GROUPA + COMPS ×
PMAX + GROUPB, or if PMAX = 0 then the size must be at least 3 + 9× n.

• RVALUE use: floating control values

declaration: input integer dimensioned (CNTRLS)

65

When CNTRL(i) is SSABS, SSAGE, SSREL, STRID0, TDABS, TDEC, TDREL,
TINC, TMAX, TMIN, TOLER0, TOLER1 or TOLER2, then twopnt expects to find a value
for that control in RVALUE(i).

• RWORK use: floating work array

declaration: input floating dimensioned (RSIZE)

63

The work space should not be changed while twopnt returns for reverse communica-
tion.

• SIGNAL use: reverse communication signal

declaration: input and output character length (*)

57

Blank on input marks the start of a simulation; blank on output marks the finish. Not
blank on output signals a reverse communication request. In this case, the following tasks
must be performed.

SIGNAL = `PREPARE' signal to prepare the Jacobian matrix

This signal means subsequent requests to solve matrix equations should use the Jaco-
bian matrix (of the residual function) evaluated at the approximate solution now inBUFFER.
The (i, j) matrix entry is the partial derivative of the i-th equation’s residual with respect
to the j-th unknown. Twopnt expects equations to be solved with this matrix when the
`SOLVE' signal supplies right sides. Twopnt doesn’t want the matrix and doesn’t care how
the equations are solved, so simulator writers must decide what to do here. The simplest
option is to use the TWPREP and TWSOLV subroutines supplied with twopnt.

Simulators usually solve matrix equations by factorization—that is, by Gaussian
elimination—so they form and factor the Jacobian matrix when signaled to `PREPARE'.
In this case, (1) evaluate the matrix at the approximate solution in BUFFER. When TIME
is true, the matrix should be the one for the time dependent residual. The matrix entries
can be obtained either by evaluating formulas for partial derivatives or by approximating

69

6.3 Long List of Arguments

those derivatives with divided differences. Usually, computing approximations is easier
than deriving formulas. (2) Factor the matrix and store the factors somewhere for later use.
Mathematical software (mathware) libraries usually contain programs for factoring matrices
and then solving equations [8] [9] [14]. (3) If a condition estimate for the matrix is available,
place that in CONDIT. If not, set CONDIT zero. (4) Call twopnt. The TWPREP subroutine
supplied with twopnt will perform these steps with reasonable efficiency for matrices like
the one pictured in Figure 6.4. Sections 6.1 and 6.4 discuss TWPREP.

Some simulators solve matrix equations iteratively—that is, by successive approxi-
mation—because Gaussian elimination might need too much computer memory. Iterative
algorithms use the matrix only for matrix-vector products. For Jacobian matrices, matrix-
vector products are directional derivatives which can be evaluated without the matrix. Un-
fortunately, each of the many iterative algorithms succeeds only in special situations [14].
If this is one of them, then prepare to use an iterative algorithm for solving equations when
SIGNAL = `SOLVE', as follows. (1) Either evaluate and store the matrix (for use in form-
ing matrix-vector products later), or store the approximate solution found now in BUFFER
(in case matrix-vector products are to be evaluated as directional derivatives). If some pre-
conditioning matrix is needed, then prepare it now too. (2) If a condition estimate for the
matrix is available, place that in CONDIT. If not, set CONDIT zero. (3) Call twopnt.

SIGNAL = `RESIDUAL' signal to evaluate the residual

(1) Evaluate the residual at the approximate solution inBUFFER. When TIME is true,
the residual should be the time dependent one. (2) Place the residual in BUFFER. (3) Call
twopnt.

SIGNAL = `RETAIN' signal to retain a transient state

BUFFER contains a transient state that will be needed later when evaluating transient
residuals. (1) Store the contents of BUFFER. (2) Call twopnt.

SIGNAL = `SAVE' signal to save the solution

The latest approximate solution can be used to restart the simulation should the com-
puter crash or the money run out. (1) If desired, store the solution found in BUFFER with
whatever else describes the simulation, such as POINTS and X when grid selection is used.
(2) Call twopnt.

SIGNAL = `SHOW' signal to show the solution

The control LEVELD stipulates that solution data be displayed occasionally. (1) Write
to unit TEXT the approximate solution found in BUFFER. (2) Call twopnt. The TWSHOW
subroutine supplied with twopnt will perform this task with the result pictured in Figure 6.5.
Sections 6.1 and 6.4 discuss TWSHOW.

SIGNAL = `SOLVE' signal to solve matrix equations

The matrix equations to be solved are the ones in Newton’s method, but twopnt
chooses the matrix and supplies the right side, see Section 2.1, so the simulator must only
do the following. (1) Solve matrix equations using the most recently prepared matrix and
the “right side,” or constant terms, found in BUFFER. (2) Place the solution in BUFFER.
(3) Call twopnt. The TWSOLV subroutine supplied with twopnt can perform these tasks for
matrices prepared by TWPREP. Figure 6.4 and Sections 6.1 and 6.4 discuss TWSOLV.

70

6.4 Ancillary Subroutines

SIGNAL = `UPDATE' signal to update the problem to a new grid

When twopnt chooses a new grid it must guess the solution there. The residual
function also changes at this time because the grid is larger. (1) If desired, replace twopnt’s
guess in BUFFER by a better guess. (2) If desired, prepare to evaluate the new residual
function, for example, by computing some things ahead. (3) Call twopnt.

• STRIDE use: time stride for the transient residual

declaration: output floating

57

Use this stride when approximating time differentials for the transient residual or its
Jacobian matrix.

• TIME use: signal to use the transient residual

declaration: output logical

57

If true with reverse communication requests `PREPARE' and `SOLVE', then use
the transient residual.

• U use: the guess and the solution

declaration: input and output floating dimensioned
(GROUPA + COMPS * PMAX + GROUPB)

61 (? 40)

U should contain the initial guess at the start of the simulation. It contains approximate
solutions from Newton’s search and time evolution during the simulation. U contains a
solution at the finish of the simulation, unless REPORT is NONE FOUND, then twopnt
restores the initial guess. For automatic grid selection, values should be ordered in U by the
components at points convention.

• X use: grid points

declaration: input and output floating dimensioned
(*), or dimensioned (PMAX) for grid selection

58, 63 (? 16, 40)

Twopnt uses this augument only with automatic grid selection. X should contain the
initial grid at the start of the simulation. It contains the current grid during the simulation.
X contains the last grid for which a solution was found at the finish of the simulation, unless
REPORT is NONE FOUND, then twopnt restores the initial grid. The initial grid must be
ordered

X(1) < X(2) < · · · or X(1) > X(2) > · · ·

and twopnt retains the ordering when it selects grids, so twopnt may move old points to new
array positions.

6.4 Ancillary Subroutines
The TWPREP, TWSOLV and TWSHOW subroutines come with twopnt but aren’t part of
twopnt. They can perform the more difficult reverse communication requests: PREPARE,
SOLVE and SHOW, respectively.

Figure 6.10 shows the arguments for all three ancillary routines. Note four things. (1)
Arguments with twopnt’s names should be given twopnt’s actual arguments. (2) This Section
explains only arguments unique to the ancillary routines. (3) For automatic grid selection,
arrays sized by POINTS should be dimensioned using PMAX instead, but the POINTS

71

6.4 Ancillary Subroutines

SUBROUTINE TWSHOW 1
+ (ERROR, TEXT, 2
+ BUFFER, COMPS, GRID, GROUPA, GROUPB, POINTS, X) 3

SUBROUTINE TWPREP 1
+ (ERROR, TEXT, 2
+ A, ASIZE, BUFFER, COMPS, CONDIT, GROUPA, GROUPB, PIVOT, POINTS, 3
+ RETURN) 4

SUBROUTINE TWSOLV 1
+ (ERROR, TEXT, 2
+ A, ASIZE, BUFFER, COMPS, GROUPA, GROUPB, PIVOT, POINTS) 3

Figure 6.10. TWSHOW’s, TWPREP’s and TWSOLV’s arguments. These subroutines show so-
lution data, prepare matrices and solve matrix equations, respectively. Section 6.1 explains
their use with twopnt’s reverse communication. Section 6.4 explains their arguments.

argument should not be given the value PMAX. (4) Like twopnt, TWPREP evaluates the
residual function by reverse communication.

TWSHOW can perform the SHOW reverse communication request. Figure 6.5 shows
what is shown for components at points. GROUPA and GROUPB unknowns would be shown
similarly. TWSHOW has one argument different from twopnt’s.

◦ GRID use: grid signal

declaration: input logical

This argument is needed in case twopnt does not perform automatic grid selection.
GRID false signals TWSHOW to omit writing grid points.

The matrix subroutines, TWPREP and TWSOLV, only apply to matrices that resemble
the one in Figure 6.4. In this case, TWPREP (1) forms a Jacobian matrix by numerical
approximation, (2) scales the matrix so all rows have ∞-norm of 1, (3) uses the banded
subroutines in the linpack package [8] to factor the matrix, (4) uses those subroutines also
to estimate the condition number of the scaled matrix, and (5) stores data in arrays A and
PIVOT. TWSOLV uses this data (6) to scale equations to match the matrix scaling, and then
(7) to solve equations.

TWPREP approximates the i-th column in the Jacobian matrix of a function f evaluated
at the vector w, as follows.

∂f

∂vi

∣∣∣∣
v=w

≈ f(w̃)− f(w)

εi
εi = (wi ± 1)

√
ε

In this expression, (a) vi is the i-th variable in f , (b) w̃ matches w except εi increments the
i-th entry (this perturbation ignores the bounds on twopnt’s unknowns), (c) wi is the i-th
entry in w, (d) ε is the unit roundoff for the computer arithmetic in use, and (e) the ± sign
matches the sign of wi. The tridiagonal, blocked pattern expected for the nonzeroes in the
matrix allows TWPREP to build several columns at once, so approximately only 3×COMPS
function evaluations are needed.

TWPREP and TWSOLV share many arguments with twopnt. The arrays have di-
mensions that vary with POINTS—which twopnt might increase to PMAX during grid
selection—so actual dimensions should be chosen using PMAX instead. One new argument
for matrix storage likely accounts for most of a simulator’s memory needs.

◦ A use: matrix and scale factor storage space

declaration: output (for TWPREP) and input (for TWSOLV) floating
dimensioned (ASIZE)

72

6.4 Ancillary Subroutines

This space should not be changed because it communicates matrix factors and scale
factors from TWPREP to TWSOLV.

◦ ASIZE use: dimension of the storage space, A

declaration: input integer

The size must be at least (3b− 1)n.

b = COMPS+ max{COMPS,GROUPA,GROUPB}
n = GROUPA+ COMP × POINTS + GROUPB

≤ GROUPA+ COMP × PMAX + GROUPB

POINTS can grow to PMAX during automatic grid selection, so the value of twopnt’s
argument PMAX should be used for POINTS when choosing a value for ASIZE.

◦ BUFFER use: reverse communication data for TWPREP, identical to
twopnt’s argument of the same name

declaration: input and output floating dimensioned
(GROUPA + COMPS * POINTS + GROUPB)

57, 61, 66

When twopnt requests matrix preparation, it places in BUFFER the approximate solu-
tion at which the matrix should be evaluated. This isTWPREP’s initial input. WhenTWPREP
requests residual evaluation, TWPREP places the approximate solution in BUFFER, and it
expects to find the residual there when it resumes.

◦ PIVOT use: pivoting data from the matrix factorization

declaration: input and output integer dimensioned (GROUPA +
COMPS * POINTS + GROUPB)

This space should not be changed because it communicates pivoting data from
TWPREP to TWSOLV. POINTS can grow to PMAX during automatic grid selection, so
PMAX should replace POINTS when choosing a dimension for PIVOT.

◦ RETURN use: reverse communication signal for TWPREP

declaration: input and output logical

False on input marks the start of matrix preparation; false on output marks the finish.
True on output signals a reverse communication request. In this case, (1) evaluate the
residual at the approximate solution in BUFFER. When twopnt’s argument TIME is true,
the residual should be the time dependent one. (2) Place the residual in BUFFER. (3) Call
TWPREP.

(D) Finally, let not only mathematical formulation and observational data,
but even the approximation process pass unchallenged. There still remains
this limitation: No computing procedure or device can perform the operations
which are its “elementary” operations (or at least all of them) rigorously and
faultlessly. This point is most important . . .

— J. von Neumann and H. H. Goldstine [26]

73

7.1 Step 1, Model

7
Swirling Flows

7.0 Introduction
A “solution” of the Navier-Stokes equations often involves a dimension reduction and often
must be obtained numerically. The simulation appearing throughout this manual is such
a solution for flows between infinite, parallel, rotating and stationary planes. This flow
problem illustrates the three steps in building a computer simulation, see Figure 2.1.

7.1 Step 1, Model
Figure 7.1 plots some streamlines for the whirlpool-like flow modelled here. Theodor
von Kármán [19] originated the dimension reduction used to model these flows in 1921—
he considered flows directed against an infinite, rotating plane—and similar flows have been
studied continuously since then, see [3] and [30]. The flows have practical use in modeling
chemical reactors [6], so to this end, G. H. Evans and R. Grief [10] recently extended the
model to variable fluid properties. The following discussion is based on their work, and on
notes of D. S. Dandy [7].

The coordinate system is cylindrical about the planes’ axis of rotation with the usual
notation. The fluid has velocity, pressure and temperature which are functions of position
and which must be determined.

r radial position cm
θ angular position radians
z axial position cm

u radial velocity cm / sec
v circumferential velocity cm / sec
w axial velocity cm / sec
p pressure dynes / cm2

T temperature K

The flow cavity lies between the planes at z = 0 and z = zmax. The lower plane at
z = 0 is a solid disk: an impermeable surface which is reacting in some simulations [6], but
not this one. The upper plane at z = zmax is a porous disk: a permeable surface passing

74

7.1 Step 1, Model

Figure 7.1 Streamlines computed from the results of Chapter 7’s simulation. The flow
spirals downward from the porous, stationary plane to the impermeable, rotating plane.
Fluid travels the length of the streamlines shown here in 2.75 seconds. Section 7.1 describes
the flow model.

fluid with constant normal velocity, wmax, independent of location. Since the picture in
mind has 0 < zmax, flow into the cavity has negatively signed axial velocity, wmax < 0.
Both disks are heated and the solid one is spinning, imparting temperatures and a rotation
rate T0, Tmax and ω0, respectively.

T0 solid disk temperature 300 K
Tmax porous disk temperature 1000 K
ω0 solid disk rotation rate 4π radians / sec

wmax axial inflow velocity –2 cm / sec
zmax porous disk height 5 cm

The dimension reduction for this flow assumes (1) rigid rotational symmetry—radial
and circumferential velocities linear in r, and axial velocity and temperature independent
of r, (2) density independent of pressure variation (the low Mach number approximation),
and (3) pressure quadratic in r and independent of z. From assumption (1), velocities can
be represented in terms of functions F , G and H of z alone.

u = rF v = rG w = H

These functions and T constitute a two point boundary value problem. The boundary
conditions are

G(0) = ω0 T (0) = T0 H(zmax) = wmax T (zmax) = Tmax

75

7.2 Step 2, Discretization

and other values are zero. The customary equations for radial momentum, angular momen-
tum, continuity, and energy reduce to equations in these new variables.

λ + ρ

(
∂F

∂t
+ F 2 −G2 +

∂F

∂z
H

)
− ∂

∂z

(
µ
∂F

∂z

)
= 0

ρ

(
∂G

∂t
+ 2FG+

∂G

∂z
H

)
− ∂

∂z

(
µ
∂G

∂z

)
= 0

2F +
∂H

∂z
+H

∂ ln ρ

∂z
= 0

cpρ

(
∂T

∂t
+
∂T

∂z
H

)
− ∂

∂x

(
k
∂T

∂z

)
= 0

These equations contain an expression

λ =
1

r

∂p

∂r

which is independent of r and z by assumption (3) and which therefore becomes an “eigen-
value” for the boundary value problem.

Fluid properties are courtesy of the chemkin libraries [20, 23].

cp specific heat at ergs / (g K)
constant pressure

k thermal conductivity ergs / (cm K s)
µ dynamic viscosity g / (cm s)
ρ density g / cm3

The fluid in this example is argon gas. Argon’s specific heat is independent of temperature

cp specific heat 2.5 R / W

R universal gas constant 8.314 ·107 ergs / (mole K)
W molecular weight 39.948 g / mole

but its conductivity and viscosity do vary with temperature

k(T) = exp(((0.0121673α− 0.284023)α+ 2.85205)α− 1.78377)

µ(T) = exp(((0.0121673α− 0.284023)α+ 2.85205)α− 17.6539)

in which α = lnT . Density varies with both pressure and temperature, but this model
assumes (2), insensitivity to small pressure changes. The model therefore modifies the ideal
gas law as follows.

ρ(T) =
pref
T

W

R

pref thermodynamic pressure 1 atmosphere
(1013250.0 dynes / cm2)

Figure 2.2 plots F ,G,H and T for the equations, boundary conditions, and fluid properties
given above.

76

7.3 Step 3, Solution

7.2 Step 2, Discretization
A straightforward discretization of the model’s differential equations uses finite dif-

ference methods with p grid points and 4p unknowns

0 = x1 x2 x3 . . . xp = zmax

0 = F1 F2 F3 . . . Fp = 0

ω0 = G1 G2 G3 . . . Gp = 0

0 = H1 H2 H3 . . . Hp = wmax
T0 = T1 T2 T3 . . . Tp = Tmax

in which Fn, Gn, Hn and Tn sample F , G, H and T at xn. In general, if fn and gn sample
functions f and g at xn, then

df

dz

∣∣∣∣
xn

≈ α−n fn−1 + αnfn + α+
n+1fn+1

d

dz

(
g
df

dz

)∣∣∣∣
xn

≈ β−n fn−1 + βnfn + β+
n+1fn+1

in which the coefficients are messy.

α−n =
xn − xn+1

(xn−1 − xn)(xn−1 − xn+1)
β−n =

gn + gn−1

(xn−1 − xn)(xn−1 − xn+1)

α+
n =

xn − xn−1

(xn − xn+1)(xn−1 − xn+1)
β+
n =

gn + gn+1

(xn − xn+1)(xn−1 − xn+1)

αn = −(α−n + α+
n) βn = −(β−n + β+

n)

The momentum and energy equations discretize by replacing their differentials by these
approximations. The resulting equations for 1 < n < p, and the trivial equations for the
boundary values at n = 1 and n = p, produce 3p equations for 3p unknowns: Fn, Gn and
Tn with 1 ≤ n ≤ p.

Since the energy equation has only first order differentials, it most conveniently
discretizes using approximations formed midway between grid points. At xn+1/2 =
(xn + xn+1)/2 there results the equation

2
Fn + Fn+1

2
+
Hn+1 −Hn

xn+1 − xn
+
Hn +Hn+1

2

ln ρn+1 − lnρn
xn+1 − xn

= 0

in which ρn is the density at xn.

ρn =
pref
Tn

W

R

These equations for 1 < n + 1
2 < p, and the trivial equations for the boundary values at

n = 1 and n = p, produce p+ 1 equations for p unknowns: Hn with 1 ≤ n ≤ p.
Equations and unknowns must balance and do. There are 4p+1 equations and 4p+1

unknowns: 4p components at points and 1 eigenvalue, λ. If the continuity equation were
discretized elaborately like the others however, then only 4p equations would result, and
the unknowns would be underdetermined.

Figure 6.5 lists some values for the Fn, Gn, Hn, λn and Tn solving the discrete
equations given above.

77

7.3 Step 3, Solution

7.3 Step 3, Solution
The simulation model ultimately distills to a subroutine that evaluates residual errors given
approximate solutions. Section 6.1, and the program fragment in Figure 6.2, show how
twopnt uses such subroutines. The present Section shows what goes in them.

The first consideration in writing any computer program is the organization of data.
The natural choice here is twopnt’s components at points convention

GROUPA = 1 COMPS = 4 POINTS = p GROUPB = 0

in which F , G, H and T are the components, and the eigenvalue is the single unknown
in group A. Unfortunately, the eigenvalue doesn’t suit the matrix routines TWPREP and
TWSOLV because it appears in equations at all points. This gives the Jacobian matrices one
column outside Figure 6.4’s tridiagonal, blocked structure. The resulting matrix equations
can be solved by “stretching” them [16], but it is traditional to alter the model’s nonlinear
equations instead. Thus, the eigenvalue is replicated at every point, and extra equations are
added to make all the copies the same.

0 = x1 x2 x3 . . . xp = zmax

0 = F1 F2 F3 . . . Fp = 0

ω0 = G1 G2 G3 . . . Gp = 0

0 = H1 H2 H3 . . . Hp = wmax
λ1 = λ2 = λ3 = . . . = λp

T0 = T1 T2 T3 . . . Tp = Tmax

This device increases equations and unknowns to 5p each.

GROUPA = 0 COMPS = 5 POINTS = p GROUPB = 0

Both the unknowns and the residuals must be arranged carefully, because as explained
in Section 6.2, the arrangement determines the matrix structure. For F , G and T (each
with p− 2 discrete and 2 boundary equations), the equations can pair with the unknowns.
However, there is no natural pairing for H (with p− 1 discrete and 2 boundary equations),
nor for λ (with p − 1 equations). An arrangement acceptable to TWPREP and TWSOLV
pairs the boundary equation for Hp with the unknown λp, and pairs the energy equation at
xn+1/2 with the unknown Hn.

SUBROUTINE TWFUNC 1 The TWFUNC sub-
routine evaluates residuals
using the data arrangement
described above. The
subroutine communicates
through the array BUFFER
by replacing solution data
with residual data in the
proper arrangement. Some
of the other subroutine
arguments are parame-
ters for the model—such
as OMEGA, which is ω0

(LINES 1 TO 4).

+ (ERROR, TEXT, 2
+ BUFFER, F, F0, G, G0, H, K, LAMBDA, MU, OMEGA, POINTS, RHO, 3
+ STRIDE, T, T0, TIME, TMAX, TZERO, U0, WMAX, X) 4

5
C/// 6
C 7
C TWFUNC 8
C 9
C SAMPLE RESIDUAL FUNCTION FOR SIMULATING SWIRLING FLOWS. 10
C 11
C/// 12

13
IMPLICIT COMPLEX (A - P, R - Z), INTEGER (Q) 14
CHARACTER ID*9 15
INTEGER COMPS, J, POINTS, TEXT 16
LOGICAL ERROR, TIME 17

C*****PRECISION > SINGLE 18
C REAL 19
C*****END PRECISION > SINGLE 20
C*****PRECISION > DOUBLE 21

DOUBLE PRECISION 22
C*****END PRECISION > DOUBLE 23

+ A, A0, A1, A2, B0, B1, B2, BUFFER, C0, C1, C2, CP, F, F0, G, 24
+ G0, H, K, LAMBDA, MU, OMEGA, P, R, RHO, STRIDE, T, T0, TEMP, 25
+ TMAX, TZERO, U0, W, WMAX, X 26

78

7.3 Step 3, Solution

27
PARAMETER (ID = 'TWFUNC: ') 28
PARAMETER (COMPS = 5) 29

30
C PRESSURE AT 1 STANDARD ATMOSPHERE 31

PARAMETER (P = 1013250.0) 32
33

C MOLECULAR WEIGHT OF ARGON 34
PARAMETER (W = 39.948) 35

36
C UNIVERSAL GAS CONSTANT 37

PARAMETER (R = 83140000.0) 38
39

C SPECIFIC HEAT OF ARGON AT CONSTANT PRESSURE (ERGS / (GM * K)) 40
PARAMETER (CP = R * 2.5 / W) 41

42
DIMENSION 43 Most arguments

are arrays that ease ref-
erence and movement of
data within the subrou-
tine (LINES 43 TO 47).
The subroutine begins by
copying values into these
mnemonically named ar-
rays (LINES 62 TO 71).
It copies an approximate
solution from BUFFER,
and it copies a transient
state from U0 (where it
was placed at the last
SIGNAL = `RETAIN').

+ BUFFER(COMPS, POINTS), F(POINTS), F0(POINTS), G(POINTS), 44
+ G0(POINTS), H(POINTS), K(POINTS), LAMBDA(POINTS), MU(POINTS), 45
+ RHO(POINTS), T(POINTS), T0(POINTS), U0(COMPS, POINTS), 46
+ X(POINTS) 47

48
C/// 49
C 50
C PROLOGUE. 51
C 52
C/// 53

54
C/// CHECK THE ARGUMENTS. 55

56
ERROR = .NOT. (2 .LE. POINTS) 57
IF (ERROR) GO TO 9001 58

59
C/// UNPACK THE VARIABLES. 60

61
DO 1010 J = 1, POINTS 62

F(J) = BUFFER(1, J) 63
G(J) = BUFFER(2, J) 64
H(J) = BUFFER(3, J) 65
LAMBDA(J) = BUFFER(4, J) 66
T(J) = BUFFER(5, J) 67
F0(J) = U0(1, J) 68
G0(J) = U0(2, J) 69
T0(J) = U0(5, J) 70

1010 CONTINUE 71 The subroutine next
performs some preliminary
calculations. It stores fluid
properties such as density
(LINES 75 TO 83) both for
convenience and to avoid
repeated evaluation.

72
C/// CALCULATE DENSITIES, VISCOSITIES AND THERMAL CONDUCTIVITIES. 73

74
DO 1020 J = 1, POINTS 75

RHO(J) = (P * W) / (R * T(J)) 76
77

A = LOG (T(J)) 78
MU(J) = EXP 79

+ (((0.0121673 * A - 0.284023) * A + 2.85205) * A - 17.6539) 80
K(J) = EXP 81

+ (((0.0121673 * A - 0.284023) * A + 2.85205) * A - 1.78377) 82
1020 CONTINUE 83

84
C/// 85
C 86 The subroutine fi-

nally begins building the
residual vector. Since
values for the unknowns
have been copied out of
BUFFER, values for the
residuals can be stored
there directly. Equations
associated with F , G,
and T depend on values
at three points, so their
residuals are evaluated to-
gether. Residual formulas
for boundary equations are
simple (LINES 99 TO 106),
but formulas for discretized
equations are

C F, G AND T EQUATIONS 87
C 88
C RHO * (dF/dt + F ** 2 - G ** 2 + F' H) - (MU F')' + P = 0 89
C 90
C RHO * (dG/dt + 2 F G + G' H) - (MU G')' = 0 91
C 92
C RHO * CP * (dT/dt + H T') - (K T')' = 0 93
C 94
C/// 95

96
C/// BOUNDARY CONDITIONS. 97

98
BUFFER(1, 1) = F(1) - 0.0 99
BUFFER(1, POINTS) = F(POINTS) - 0.0 100

101
BUFFER(2, 1) = G(1) - OMEGA 102
BUFFER(2, POINTS) = G(POINTS) - 0.0 103

104
BUFFER(5, 1) = T(1) - TZERO 105
BUFFER(5, POINTS) = T(POINTS) - TMAX 106

107
C/// EQUATIONS. 108

109
DO 2010 J = 2, POINTS - 1 110

TEMP = ((X(J - 1) - X(J)) * (X(J - 1) - X(J + 1))) 111

79

7.3 Step 3, Solution

A0 = (X(J) - X(J + 1)) / TEMP 112 complicated. Those for-
mulas are written more
easily if some coefficients
are evaluated separately
(LINES 111 TO 123). The
subroutine evaluates the
steady state residual first
(LINES 125 TO 139), and
then adds time dependent
terms if requested (LINES
141 TO 148).

B0 = (MU(J) + MU(J - 1)) / TEMP 113
C0 = (K(J) + K(J - 1)) / TEMP 114

115
TEMP = ((X(J) - X(J + 1)) * (X(J - 1) - X(J + 1))) 116
A2 = (X(J) - X(J - 1)) / TEMP 117
B2 = (MU(J + 1) + MU(J)) / TEMP 118
C2 = (K(J + 1) + K(J)) / TEMP 119

120
A1 = - (A0 + A2) 121
B1 = - (B0 + B2) 122
C1 = - (C0 + C2) 123

124
BUFFER(1, J) 125

+ = RHO(J) * (F(J) ** 2 - G(J) ** 2 + H(J) 126
+ * (A0 * F(J - 1) + A1 * F(J) + A2 * F(J + 1))) 127
+ - (B0 * F(J - 1) + B1 * F(J) + B2 * F(J + 1)) 128
+ + LAMBDA(J) 129

130
BUFFER(2, J) 131

+ = RHO(J) * (2.0 * F(J) * G(J) + H(J) 132
+ * (A0 * G(J - 1) + A1 * G(J) + A2 * G(J + 1))) 133
+ - (B0 * G(J - 1) + B1 * G(J) + B2 * G(J + 1)) 134

135
BUFFER(5, J) 136

+ = RHO(J) * CP * H(J) 137
+ * (A0 * T(J - 1) + A1 * T(J) + A2 * T(J + 1)) 138
+ - (C0 * T(J - 1) + C1 * T(J) + C2 * T(J + 1)) 139

140
IF (TIME) THEN 141

BUFFER(1, J) 142
+ = BUFFER(1, J) + RHO(J) * (F(J) - F0(J)) / STRIDE 143

BUFFER(2, J) 144
+ = BUFFER(2, J) + RHO(J) * (G(J) - G0(J)) / STRIDE 145

BUFFER(5, J) 146
+ = BUFFER(5, J) + RHO(J) * CP * (T(J) - T0(J)) / STRIDE 147

END IF 148
2010 CONTINUE 149

150
C///151
C 152
C H AND P EQUATIONS 153
C 154
C 2 F + H' + H * (LOG RHO)' = 0 155
C 156
C P CONSTANT 157
C 158
C///159

160
C/// BOUNDARY CONDITIONS. 161

162
BUFFER(1, 1) = F(1) - 0.0 163 Equations associated

with H and λ depend
on values at two points,
so their residuals are
evaluated apart from the
others (LINES 163 TO 176).
These equations also have
no time dependent terms.

164
BUFFER(3, 1) = H(1) - 0.0 165
BUFFER(4, POINTS) = H(POINTS) - WMAX 166

167
C/// EQUATIONS. 168

169
DO 3010 J = 2, POINTS 170

BUFFER(3, J) 171
+ = F(J) + F(J - 1) 172
+ + (H(J) - H(J - 1)) / (X(J) - X(J - 1)) 173
+ + 0.5 * (H(J) + H(J - 1)) 174
+ * (LOG (RHO(J)) - LOG (RHO(J - 1))) / (X(J) - X(J - 1)) 175

176
BUFFER(4, J - 1) = LAMBDA(J) - LAMBDA(J - 1) 177

3010 CONTINUE 178
179

C///180
C 181
C ERROR MESSAGES. 182
C 183
C///184

185
GO TO 99999 186

187
9001 IF (0 .LT. TEXT) WRITE (TEXT, 99001) ID, POINTS 188

GO TO 99999 189
190

99001 FORMAT 191
+ (/1X, A9, 'ERROR. THERE MUST BE AT LEAST TWO POINTS.' 192
+ //10X, I10, ' POINTS') 193

194
C/// EXIT. 195

196

80

7.4 Errors

99999 CONTINUE 197
RETURN 198
END 199

Section 6.1 and Figure 6.2 explain how a simulator program might use twopnt and
TWFUNC to perform a simulation. The program mostly orchestrates reverse communication
and gives values to twopnt’s controls. The present simulation begins with a grid of six points
spaced uniformly from 0 to zmax. It guesses solution values for F , G, H and T by linear
interpolation of boundary values, and it guesses 0 for λ. It chooses

component ACTIVE BELOW ABOVE

F yes −4 4
G yes −104 104

H yes −104 104

λ no −104 104

T yes T0/2 2 Tmax

with the large bounds, ±104, intended to disable checking of bounds for many unknowns.
The simulation accepts twopnt’s defaults for many controls, except

ADAPT = true

LEVELD = 0

STEPS1 = 50

STRID0 = 10−3

TINC =
√

10

STEPS2 = 25

TOLER1 = 0.1

TOLER2 = 0.1

so CNTRLS = 8 in this example. Twopnt’s default values would suffice, but different values
have been chosen to make the example interesting. Both the residual subroutine discussed
here and a fortran main program that uses it are supplied with twopnt, see Appendix 2.

7.4 Errors
An assessment of von Neumann’s errors for this simulation would proceed as follows. The
errors of the model lie in the dimension reduction of the Navier-Stokes and related equations,
and ultimately, in the continuum assumptions underlying these equations.

λ + ρ

(
∂F

∂t
+ F 2 −G2 +

∂F

∂z
H

)
− ∂

∂z

(
µ
∂F

∂z

)
= 0(A)

The errors of measurement occur in the physical “constants,” and in the data from which
formulas for such things as viscosity have been derived.

R universal gas constant 8.314 ·107 ergs / (mole K)

µ(T) = exp(((0.0121673α − 0.284023)α+ 2.85205)α− 17.6539)

(B)

The errors of approximation stem both from the formulas replacing the differential equations’
derivatives, and also from the settings of twopnt’s controls for grid selection and for halting
Newton’s search.

df

dz

∣∣∣∣
xn

≈ α−n fn−1 + αnfn + α+
n+1fn+1

SSREL = 10−6 TOLER1 = 0.1

(C)

81

7.4 Errors

The errors of precision lie in the choice of computer, and the manner of evaluating all the
various formulas of the calculation.

DOUBLE PRECISION VERSION 3.08

α−n =
xn − xn+1

(xn−1 − xn)(xn−1 − xn+1)

(D)

When a problem in pure or applied mathematics is “solved” by numerical
computation, errors, that is, deviations of the numerical “solution” obtained
from the true, rigorous one, are unavoidable. Such a “solution” is therefore
meaningless, unless there is an estimate of the total error . . .

The errors described in (A) are the errors due to the theory. While their
role is clearly the most important, their analysis and estimation should not
be considered part of the mathematical or of the computational phase of the
problem, but of the underlying subject, in which the problem originates.

The errors described in (B) are the errors due to observation. To this
extent they are, strictly construed, again no concern of the mathematician.
However, their influence on the result is the thing that really matters. In this
way, their analysis requires an analysis of the question: What are the limits of
the change of the result, caused by changes of the parameters (data) of the
problem within given limits?

The errors described in (C) are those which are most conspicuous as
errors of approximation or truncation. Most discussions in “approximation
mathematics” are devoted to analysis and estimation of these errors: Numerical
methods to obtain approximate solutions of algebraical equations by iterative
and interpolation processes . . . and so on.

We now come to the errors described in (D). As we saw, they are due
to the inner “noise level” of the numerical computing procedure or device—in
the digital case this means: to the round off errors.

— J. von Neumann and H. H. Goldstine [26]

82

Appendix 1 Common Keywords

Appendix 1
Common Keywords

This Appendix cross-references twopnt’s controls with “keywords” that manipulate the con-
trols for some simulators written at Sandia National Laboratories in Livermore, California.
The cross-reference table is possible thanks to F. M. Rupley [29]. The simulators, their
current versions, and what they simulate, are as follows.

simulator version simulation

CRESLAF chemical vapor deposition reactors [5]

PREMIX laminar premixed flames [21]

PSR perfectly stirred chemical reactors [13]

SPIN 3.83 rotating disk and stagnation flow chemical
vapor deposition reactors [6]

SURPSR perfectly stirred chemical reactors with both gas
and surface reactions [25]

These simulators are used in the Laboratories’ own research, which is supported for the
most part by the United States Department of Energy, and they are available for others’
research too.

The simulators’ reference manuals should be consulted before using the keywords.
The page numbers in the table below refer to the descriptions of the controls in this man-
ual. Some controls have identical keywords because those keywords accept multiple data.
Other controls have multiple keywords, because (in the case of STEPS1 and STRID0) the
simulators perform multiple simulations, or because (in the case of U and X) initial guesses
and grids have complicated descriptions.

83

Appendix 1 Common Keywords

twopnt
control

simulator

CRESLAF PREMIX PSR SPIN SURPSR
manual

pages

ABOVE 14, 33

ACTIVE 17, 33

ADAPT 16, 34

BELOW SFLR SFLR SFLR SFLR 14, 33

LEVELD TWPR PRNT PRNT PRNT PRNT 21, 34

LEVELM TWPR PRNT PRNT PRNT PRNT 21, 34

PADD NADP NADP 18, 34

PMAX NTOT NMAX 18, 34

POINTS NPTS NPTS NPTS 35

SSABS TWAB ATOL ATOL ATOL ATOL 13, 35

SSAGE NJAC NJAC NJAC NJAC NJAC 13, 37

SSREL TWRE RTOL RTOL RTOL RTOL 13, 35

STEADY ISTP 12, 37

STEPS0 ISTP ISTP ISTP ISTP ISTP 15, 38

STEPS1 TWST TIME TIME TIME TIME 15, 38
TIM2 TIM2 TIM2 TIM2

STEPS2 IRET IRET IRET IRET IRET 15, 38

STRID0 STP0 TIME TIME TIME TIME 15, 38
TIM2 TIM2 TIM2 TIM2

TDABS TWTA ATIM ATIM ATIM ATIM 13, 35

TDAGE TJAC TJAC TJAC TJAC TJAC 13, 37

TDEC DFAC DFAC DFAC DFAC 15, 38

TDREL TWTR RTIM RTIM RTIM RTIM 13, 35

TINC UFAC UFAC UFAC UFAC 15, 38

TMAX DTMX DTMX DTMX DTMX DTMX 15, 38

TMIN DTMN DTMN DTMN DTMN DTMN 15, 38

TOLER0 17, 39

TOLER1 GRAD GRAD 17, 39

TOLER2 CURV CURV 18, 39

U REAC INTM PROD INTM PROD 40
SURF PROD REAC PROD REAC

REAC TEMP REAC SURF
TEMP SURF TEMP
WCEN WCEN
WMIX WMIX

X NPTS GRID GRID 40
XEND NPTS NPTS

XEND XEND

84

Appendix 2 Software Notes

Appendix 2
Software Notes

Twopnt is distributed in two files. The first, TWOPNT.FOR or twopnt.f, contains the
twelve fortran subroutines which constitute twopnt itself and the three ancillary routines
discussed in Section 6.4.

EVOLVE perform time evolution
REFINE perform automatic grid selection
SEARCH perform the damped, modified Newton’s search
TWCOPY copy one vector to another
TWGRAB reserve space in an array
TWLAPS obtain elapsed computing time in seconds
TWLAST find the last nonblank character in a string
TWLOGR write a common logarithm to a character string
TWNORM compute the infinity-norm of a vector
TWOPNT twopnt main entry and task manager
TWPREP ancillary routine for preparing Jacobian matrices
TWSHOW ancillary routine for writing solution data
TWSOLV ancillary routine for solving matrix equations
TWSQEZ squeeze unnecessary blanks from a character string
TWTIME obtain computing time in seconds

The second file, TWMAIN.FOR ortwmain.f, contains Chapter 7’s simulator whose output
appears throughout this manual.

TWMAIN main program
TWFUNC evaluate the residual function

All subroutines except TWTIME are believed to conform to the fortran standard [1]. In
observance of that standard, all subroutines are written in BIG LETTERS.

The TWTIME subroutine does not conform to the fortran standard because the standard
does not specify how to obtain elapsed computing time. Compilers or linkers often give
up on the first try when they reach this subroutine, and then TWTIME must be adapted to
the computing system in use. The subroutine has provisions for a variety of computing
machines, and may need merely some editing to select one of those—this can be done
painlessly, see below. In some cases however, the subroutine may need rewriting to obtain
the correct time. If all else fails, TWTIME can return zero time. Twopnt does nothing with
the time but write it in messages.

85

Appendix 2 Software Notes

All twopnt’s subroutines contain “change blocks” that facilitate basic reprogramming,
when necessary. A change block is a small group of fortran statements, as follows.

C*****name of the change block
...
text of the change block
...

C*****END name of the change block

The change block above is active; the block below is inactive because has been “commented
out.”

C*****name of the change block
C

...
C text of the inactive block
C

...
C*****END name of the change block

A utility program exists to alter the status of change blocks [17], or the status can be changed
by hand, using a text editor.

Twopnt uses change blocks to select arithmetic precision and to select the version
of TWTIME compatible with the computing machine in use. The blocks have names that
explain what they do.

COMPUTING TIME > CRI (CRAY) CTSS (LIVERMORE)
COMPUTING TIME > CRI (CRAY) CTSS (LOS ALAMOS)
COMPUTING TIME > CRI (CRAY) UNICOS
COMPUTING TIME > DEC (VAX) VMS
COMPUTING TIME > IBM (RISC System/6000) AIX
COMPUTING TIME > SUN (SPARCstation) SunOS
COMPUTING TIME > generic unix etime
COMPUTING TIME > none

LIST MESSAGES > NO
LIST MESSAGES > YES

PRECISION > DOUBLE
PRECISION > SINGLE

Only one block of each kind should be active. When twopnt is distributed, usually, the
blocks are set to anticipate the recipient’s needs. The COMPUTING TIME > . . . blocks
appear only in the subroutine TWTIME which, as noted, may be edited by hand to select the
proper block. LIST MESSAGES > YES prints messages for preparing this manual; this
option should not be selected.

Twopnt is complete and needs no other subroutines beyond those in the twopnt.f
or TWOPNT.FOR file. Twopnt calls, or links, all the subroutines there except the three
ancillary ones. If those are used, then the simulator that calls twopnt calls them.

Two ancillary routines are incomplete. TWPREP and TWSOLV need some subroutines
from the linpack library [8]. Specifically, they need the double precision routines DGBCO
and DGBSL, or the single precision routines SGBCO and SGBSL, and those subroutines in
turn need a few more from that library. Linpack isn’t needed if the simulator doesn’t use it,
either directly for matrix chores or indirectly through TWPREP and TWSOLV (the TWMAIN
example does use TWPREP and TWSOLV). Many computing centers supply the linpack
library, and a variety of sources distribute it gratis. The simulators discussed in Appendix 1
include the required linpack routines in their distribution.

86

Appendix 3 Change History

Appendix 3
Change History

This Appendix chronicles the changes made to twopnt by version number and by date.
Version 1 was used in house at Sandia National Laboratories in Livermore, California while
twopnt and the first few simulators based on twopnt were developed. Version 2 has been
widely distributed with these simulators. Version 3 has a more extensible programming
interface and is the first with separate documentation (this manual).

1.00 November 1984.

1.01 September 1985. Remove unused subroutine simple. Shorten names to six characters.

1.02 September 1985 (succeeds 1.00). Remove unused subroutine simple. Rewrite newton
and timstp.

1.03 October 1985 (succeeds 1.01). Rewrite newton and timstp.

1.04 October 1985. In timstp: add the xsave argument; alter an error message. In refine:
accommodate negative points in the grid display.

1.05 October 1985. Add an absolute/relative stopping test to newton via reverse communication.

1.06 November 1985. Apply the relative stopping test to each vector entry rather than to the
vector norm.

1.07 November 1985. In twopnt: change the introductory message; go to the main loop rather
than to newton after refine.

1.08 November 1985. Force newton to step to the boundary.

1.09 November 1985. Add intwor to write integers to strings because some llnl compilers
have trouble with internal files. Eliminate a redundant write statement in timstp. Order
the integer type statement in refine. In timwor: correct the formula for seconds; allow ten
or more hours. In twopnt: add a decision tree, replace computed branches by assigned
branches; reorder the arguments; correct the dimension of array column.

1.10 November 1985. In twopnt: initialize condit to zero; rename and reorder the arguments.
In refine: alter the significance criteria; expand above and below with the grid; interpolate
inactive components at new points; prevent refinement when toler1 and toler2 equal 1.
Correct the calculation of minutes in timwor. Move level2 printing decisions to newton and
timstp.

87

Appendix 3 Change History

1.11 December 1985. In refine: add a completion status flag; move level2 printing decisions
and the update reverse communication request here; increase the dimension of vary from
(pmax - 1) to (pmax). In twopnt: store the completion status in a local variable during
reverse communication; remove the initialization of condit; alter statistics gathering by
removing statement functions and reducing the arguments in elapse.

2.00 December 1985. Correct newton to print condition estimates when a new matrix produces
a step that satisfies the termination criteria.

2.01 January 1986. Add the ability to write residuals for graphing. In newton, replace computed
branches by assigned branches.

2.02 January 1986. Add change blocks. Replace blas to minimize precision dependencies.
In intwor, make character string lengths 8 because cray/ctss requires word boundaries for
internal files.

2.03 January 1986. Write residual data in single precision.

2.04 February 1986. In timwor, replace nint because cray/ctss lacks the double precision
intrinsic function.

2.05 October 1986. In twopnt, initialize xreent. In timstp, recognize that no change to the
solution over a time step is an error.

2.06 August 1987. In timstp, recognize that no change to the solution over a time step after the
first is not an error. Add report to explain unsuccessful completions. Modify twopnt and
timstp to print the actual number of time steps performed.

2.07 August 1987. Correct timstp to exit on success rather than entering the reverse communi-
cation blocks. Correct logical expressions by removing the eq relation.

2.08 September 1987. Correct twopnt to avoid changing completion status flags following
reverse communication.

2.09 December 1987. Add plimit to bound grid growth. Add pass and passes to allow several
simulations per grid. Make cosmetic changes to twopnt’s output. Added report to newton.

2.10 December 1987. Add time stride selection to timstp.

2.11 December 1987. In timstp: correct saving and restoring of solution values; alter printing.

2.12 February 1988. Change the appearance of many informative messages. Remove intwor;
replace logwor by logstr; add grab. In timstp: replace the stride change factor by separate
factors for increase and decrease; add a minimum stride. In refine, replace integer vary by
logical mark. In twopnt: replace several arrays by work space arrays; bring printing and
work space arguments to the front.

2.12R February 1988. Correct a bug in 2.12, see 2.15.

2.13 April 1989 (succeeds 2.12). Add the Los Alamos cray/ctss environment to cputim.
Correct the counting of matrices in twopnt.

2.14 October 1989. In cputim: add the cray/unicos environment; correct the vax/vms environ-
ment to make a system service call. In newton: correct the alignment of column labels. In
twopnt: note the precision in the banner.

2.15 November 1989. In twopnt: correct an out of range subscript during initialization; correct
printing of the time step count.

88

Appendix 3 Change History

2.16 February 1990. In twopnt, remove the dead branch before the error messages. In newton:
remove the record reverse communication request; re-evaluate the function after matrix
preparation in case preparation changes the function.

2.17 February 1990. Force newton to take one step. If newton makes no change, then since
linear interpolation preserves the kinks and slopes that prompt grid refinement, refine can
add points forever.

2.18 February 1990. Add sun unix environment to cputim.

2.19 April 1990. In newton, add printing of inconsistent bounds to the error message. In refine,
correct the limits of loops for gathering statistics.

2.20 August 1990. Simplify stride selection in timstp. Rename limit to steps0; add steps1,
ssage, tdage, and tmax. Limit newton to 100 steps per time step.

2.21 September 1990. Correct timstp logic.

2.22 September 1990. Correct timstp logic, again.

2.22B March 1991. Omit steady state search when steps0 is negative.

2.22C March 1991. Relax monitoring of newton step sizes.

2.23 January 1991 (succeeds 2.22). Rewrite newton. Add norm2.

3.00 June 1991. Reduce twopnt’s arguments, adding a control list for many. Rename all
routines, using the tw prefix for most. Rewrite many routines, conforming to the manual.
Change the appearance and content of many messages.

3.01 June 1991. Remove explicit dimensioning of arrays ACTIVE, MARK and X, and remove
initialization of array MARK, so array space isn’t needed when grid selection is disallowed.

3.02 August 1991. Correct SEARCH to place solution in BUFFER when SIGNAL = 'SHOW'.

3.03 August 1991. Change TWNORM from the 2-norm to the ∞-norm, thus reverting to pre-
version 3.00 practice.

3.04 August 1991. Correct choice of DELTAB.

3.05 October 1991. Correct subscripting in TWPREP.

3.06 January 1992. (1) Increase default TDEC from just below
√

10 to just above, thus ensuring
reduced time strides overtake TMIN. (2) Correct TWOPNT to forgo time evolution when
SEARCH fails and EVOLVE has already failed.

3.07 January 1992. (1) Remove unnecessary restoration of initial value to POINTS, thus
allowing a constant value for the actual argument when grid selection is disallowed. (2)
Include change blocks for cpu time on more computing systems.

3.08 January 1992. Add arguments NAME and NAMES.

3.09 February 1992. Correct dimension of NAME.

3.10 March 1992. Correct error messages in SEARCH and TWOPNT.

89

References

References

[1] Anonymous, ANSI X3.9-1978 American National Standard Programming Language
FORTRAN, American National Standards Institute, New York, 1978.

[2] U. M. Ascher, R. M. M. Mattheij and R. D. Russell, Numerical Solution of Boundary
Value Problems for Ordinary Differential Equations, Prentice-Hall, Englewood Cliffs, New
Jersey, 1988.

[3] G. K. Batchelor, “Note on a Class of Solutions of the Navier-Stokes Equations representing
Steady Rotationally-symmetric Flow,” The Quarterly Journal of Mechanics and Applied
Mathematics, volume 4, 1951, pages 29–41.

[4] K. E. Brenan, S. L. Campbell and L. R. Petzold, Numerical Solution of Initial-Value
Problems in Differential-Algebraic Equations, North-Holland Elsevier, New York, 1989.

[5] M. E. Coltrin and R. J. Kee, CRESLAF: A Fortran Program for Modeling Chemically-
Reacting Boundary Layer Flow in a Chemical Vapor Deposition Reactor, Sandia National
Laboratories Report SAND9x-xxxx, Livermore, California, 199x. In preparation.

[6] M. E. Coltrin, R. J. Kee, G. H. Evans, E. Meeks, F. M. Rupley and J. F. Grcar, SPIN (Version
3.83): A Fortran Program for Modeling One-Dimensional Rotating-Disk / Stagnation-Flow
Chemical Vapor Deposition Reactors, Sandia National Laboratories Report SAND91-8003,
Livermore, California, May 1991.

[7] D. S. Dandy, private communication, Sandia National Laboratories, Livermore, California,
1991.

[8] J. Dongarra, J. R. Bunch, C. B. Moler and G. W. Stewart, LINPACK Users Guide, Society
for Industrial and Applied Mathematics, Philadelphia, Pennsylvania, 1978.

[9] I. S. Duff, A. M. Erisman and J. K. Reid, Direct Methods for Sparse Matrices, Oxford
University Press, Oxford, 1986.

[10] G. H. Evans and R. Greif, “Forced Flow Near a Heated Rotating Disk: A Similarity
Solution,” Numerical Heat Transfer, volume 14, 1988, pages 363–387.

[11] J. H. Ferziger, Numerical Methods for Engineering Applications, Wiley, 1981.

90

References

[12] V. Giovangigli and N. Darabiha, “Vector computers and complex chemistry combustion,”
in Mathematical Modeling in Combustion and Related Topics, edited by C.-M. Brauner
and C. Schmidt-Lainé, Martinus Nijhoff Publishers, Dordrecht, 1988, pages 491–503.

[13] P. Glarborg, R. J. Kee, J. F. Grcar and J. A. Miller, PSR: A Fortran Program for Modeling
Well-Stirred Reactors, Sandia National Laboratories Report SAND86-8209, Livermore,
California, February 1991.

[14] G. H. Golub and C. F. Van Loan, Matrix Computations, Johns Hopkins University Press,
Baltimore, 1983.

[15] J. F. Grcar, R. J. Kee, M. D. Smooke and J. A. Miller, “A hybrid Newton / time-integration
procedure for the solution of steady, laminar, one-dimensional, premixed flames,” in
Twenty-first Symposium (International) on Combustion, The Combustion Institute,
Pittsburgh, Pennsylvania, 1986, pages 1773–1782.

[16] J. F. Grcar, Matrix Stretching for Linear Equations, Sandia National Laboratories Report
SAND90-8723, Livermore, California, 1990. Accepted by SIAM Review.

[17] J. F. Grcar, The Change Utility for Customizing Fortran Programs, Sandia National
Laboratories Report SAND9x-xxxx, Livermore, California, 199x. In preparation.

[18] E. Hairer and G. Wanner, Solving Ordinary Differential Equations, Volume II, Stiff and
Differential-Algebraic Problems, Springer Verlag, 1991.

[19] T. von Kármán, “Über laminare und turbulente Reibung,” Z. Angew. Math. Mech., volume
1, number 4, 1921, pages 233–253.

[20] R. J. Kee, G. Dixon-Lewis, J. Warnatz, M. E. Coltrin and J. A. Miller, A Fortran
Computer Code Package for the Evaluation of Gas-Phase Multicomponent Transport
Properties, Sandia National Laboratories Report SAND86-8246, Livermore, California,
1986. Reprinted November, 1988.

[21] R. J. Kee, J. F. Grcar, M. D. Smooke and J. A. Miller, A Fortran Program for Modeling
Steady Laminar One-Dimensional Premixed Flames, Sandia National Laboratories Report
SAND85-8240, Livermore, California, December 1985.

[22] R. J. Kee, L. R. Petzold, M. D. Smooke and J. F. Grcar, “Implicit Methods in Combustion
and Chemical Kinetics Modeling,” in Multiple Time Scales, edited by J. U. Brackbill and
B. I. Cohen, Academic Press, Orlando, Florida, 1985, pages 113–144.

[23] R. J. Kee, F. M. Rupley and J. A. Miller, Chemkin-II: A Fortran Chemical Kinetics Package
for the Analysis of Gas-Phase Chemical Kinetics, Sandia National Laboratories Report
SAND89-8009, Livermore, California, September 1989.

[24] H. B. Keller, “Numerical Solution of Bifurcation and Nonlinear Eigenvalue Problems,” in
Applications of Bifurcation Theory, edited by P. H. Rabinowitz, Academic Press, 1977,
pages 359–384.

[25] H. K. Moffat, P. Glarborg, R. J. Kee, J. F. Grcar and J. A. Miller, SURFACE PSR: A Fortran
Program for Modeling Well-Stirred Reactors with Gas and Surface Reactions, Sandia
National Laboratories Report SAND91-8001, Livermore, California, May 1991.

[26] J. von Neumann and H. H. Goldstine, “Numerical inverting of matrices of high order,”
Bulletin of the American Mathematical Society, volume 53, 1947, pages 1021–1099.

91

References

[27] J. O. Olsson, O. Lindgren and O. Andersson, “Efficient Formation of Numerical Jacobian
Used in Flame Codes,” Combustion Science and Technology, volume 77, 1991, pages
319–327.

[28] J. M. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several
Variables, Academic Press, New York, 1970.

[29] F. M. Rupley, Keywords for Reacting Flow Simulators, Sandia National Laboratories,
Livermore, California, 1991.

[30] H. Schlichting, Boundary-Layer Theory, seventh edition, McGraw-Hill, New York, reissued
1987.

[31] M. D. Smooke, “Solution of Burner-Stabilized Pre-mixed Laminar Flames by Boundary
Value Methods,” Journal of Computational Physics, volume 48, 1982, pages 72–105.

[32] M. D. Smooke and R. M. M. Mattheij, “On the solution of nonlinear two point boundary
value problems on successively refined grids,” Applied Numerical Mathematics, volume 1,
1985, pages 463–487.

92

UNLIMITED RELEASE

INITIAL DISTRIBUTION

O. Andersson
Gothenburg Universities’ Computing Center
S-400 12 Gothenburg
Sweden

J. Y. Chen
University of California, Berkeley
Dept. of Mechanical Engineering
Berkeley, CA 94720

V. Giovangigli
Ecole Polytechnique
Centre de Mathématique Appliquées
U. A. CNRS 756
91128 Palaiseau cedex
France

P. Glarborg
Technical University of Denmark
Laboratory of Heating and Air Conditioning
2800 Lyngby
Denmark

O. Lindgren
Dept. of Physical Chemistry
Chalmers University of Technology
S-412 96 Gothenburg
Sweden

J. O. Olsson
Dept. of Physical Chemistry
Chalmers University of Technology
S-412 96 Gothenburg
Sweden

M. D. Smooke
Yale University
Dept. of Mechanical Engineering
P. O. Box 2159 Yale Station
New Haven, CT 06520

1126 W. G. Breiland
1126 M. E. Coltrin
1126 P. Ho
1126 H. K. Moffat
1512 A. S. Geller
1553 W. L. Hermina
8000 J. C. Crawford

Attn: D. L. Crawford, 1900
R. J. Detry, 8200
P. L. Mattern, 8300
R. C. Wayne, 8400

8240 C. W. Robinson
8244 R. S. Larson
8245 D. S. Dandy
8245 H. A. Dwyer
8245 G. H. Evans
8245 J. F. Grcar (10)
8245 W. G. Houf
8245 R. J. Kee
8245 A. E. Lutz
8245 E. Meeks
8245 F. M. Rupley (150)
8245 P. A. Spence
8245 W. S. Winters
8353 J. A. Miller
8361 M. D. Allendorf
8535 Publications for OSTI (10)
8535 Publications/Technical Library

Processes, 3141
3141 Technical Library Processes

Division (3)
8524-2 Central Technical Files (3)

SUBSEQUENT DISTRIBUTION

MS 9042 J. F. Grcar, 8345
MS 9042 F. M. Rupley, 8345 (100)
MS 0899 Technical Library, 7141 (4)
MS 9018 Central Technical Files, 8950-2 (3)

93/94

