SAND91-8230 e UC-405
Unlimited Release
Reprinted February 1996

The Twopnt Program
for Boundary Value Problems

Version 3.10 of March 1992

J. F. Grecar

Prepared by

Sandia National Laboratories

Albuquerque, New Mexico 87185 and Livermore, California 94551
for the United States Department of Energy

under Contract DE-ACO4-94AL85000

Approved for public release; distribution is unlimited.

This report has been reproduced from the best available copy.

Available to DOE and DOE contractors from:

Office of Scientific and Technical Information
P. O. Box 62
Oak Ridge TN 37831

Prices available from (615) 576-8401, FTS 626-8401

Available to the public from:

National Technica Information Service
U. S. Department of Commerce

5285 Port Royal Rd.

Springfield VA 22161

SAND91-8230 UC-405
Unlimited Release
Printed April 1992
Reprinted February 1996

The Twopnt Program
for Boundary Value Problems
Version 3.10 of March 1992

Joseph F. Grear

Sandia National Laboratories
Livermore, California USA 94551-0969
(510) 294-2662
na.grcar@na-net.ornl.gov
sepp@snll-arpagw.linl.gov

Abstract

Twopnt is a computer program that finds steady state solutions for systems of differential
equations, usually, in one space dimension. This is a guide to the program’s use and a
description of its operation.

Acknowledgements

| thank Dr. R. J. Kee for encouraging this work and awaiting its completion. Thanks to
him and to Prof. M. D. Smooke for advice in writing the program, to Dr. J. A. Miller and
F. M. Rupley for enduring many errors, to Dr. D. S. Dandy and Dr. G. H. Evans for the
examplein Chapter 7, andto F. M. Rupley for the datain Appendix 1. | thank Dr. W. G. Houf
for reading the preliminary manuscript. And thanks to Prof. D. E. Knuth for TpX and to
Blue Sky Research for Macintosh Textures.

Contents

chapter 1

chapter 2

chapter 3

chapter 4

chapter 5

chapter 6

chapter 7

appendix 1
appendix 2
appendix 3

Introduction

What Twopnt Does

2.0
2.1
2.2
2.3

Introduction

What Newton’s Search Does
What Time Evolution Does
What Grid Selection Does

Text Output

3.0
3.1
3.2
3.3
3.4

Introduction

Briefest Output

Output for Newton’s Search
Output for Time Evolution
Output for Grid Selection

Using Controls

4.0
4.1
4.2

Introduction
Short List of Controls
Long List of Controls

Messages

5.0
5.1
5.2

Introduction
Short List of Messages
Long List of Messages

Writing a Simulator

6.0
6.1
6.2
6.3
6.4

Introduction

Calling Twopnt

What the Arguments Do
Long List of Arguments
Ancillary Subroutines

Swirling Flows

7.0
7.1
7.2
7.3
7.4

Introduction

Step 1, Model

Step 2, Discretization
Step 3, Solution
Errors

Common Keywords

Software Notes

Change History

References

9
12
15
16

21
22
26
27
29

32
32
33

41
42
44

56
56
61
65
71

74
74
77
78
81

21

32

41

56

74

83
85
87
90

5/6

1 Introduction

| ntroduction

When computers were invented, John von Neumann foresaw computer simulations would
have four indelible errors [26]. Oneisarithmetic precision. Results can’t be more accurate
than machines allow, and they could be much worse if errors compound perversely. Two is
approximation. Mathematical expressions must be made amenable to machine calculation,
and unending searches for results must be terminated. Three isthe model. 1t may simplify
the laws of science, which simplify the laws of nature. Four is measurement. Physical
constants must be ascertained experimentally.

Twopnt (pronounced two point) isacomputer program that finds steady-state sol utions
for systems of differential equations, usually, in one space dimension. Those equations are
called two point boundary value problems, whence the program’s name. Twopnt addresses
von Neumann's point two. It worksinside simulation programs—Ilike “original equipment”
that secondary manufacturersinterconnect to build complete systems. Twopnt now supports
roughly a dozen reacting flow simulations; some are in daily use throughout the world.

This publication describes how to use a smulation based on twopnt. Twopnt runs
automatically, generally, and reports its progress in printed output described here. Sim-
ulators running twopnt provide access to controls for twopnt’s operation. Those controls
are described here too. Often, only the control for “turning off” printing is needed. If a
simulation appearsto beinefficient however, or if it fails, then investigating twopnt’s printed
output may suggest better control settings.

This publication aso describes how to write a new simulation program using twopnt.
Twopnt’s advantages are its independence from specific applications, and its ability to
solve otherwise intractable problems. Among these are combustion simulations rich in
chemical detail [22]. Twopnt owes much to collaboration with R. J. Kee, J. A. Miller and
M. D. Smooke; the first and still the most extensive use of twopnt isin the premix simulator
for laminar flames [21]. The success of that simulation prompted the strict segregation of
twopnt from the rest of the simulator to facilitate twopnt’s migration to other simulations.

Twopnt isboth an algorithm and acomputer program. The algorithm hasx “ controls’
(for simulation users) and the program has e arguments (for simulation writers). All are

O @ > X

1 Introduction

marked and cross-referenced as follows.

ADAPT perform grid selection (control) 16, 34
PMAX maximum points in any grid (control) 18, 34 (e 63, 68)
PMAX maximum points in any grid (argument) 63, 68 (x 18, 34)
Pl VOT pivoting data (argument, but not twopnt’s)

The cross-references make it easy to look things up, but they shouldn’t be pursued when
reading straight through.

This manual is organized as follows. Chapter 2 describes what twopnt can do and
the controls that change what twopnt does. Chapter 3 explains twopnt’s printed output.
Chapter 4 liststwopnt’s controls and offers advice for setting them. Chapter 5 liststwopnt’s
error messages. Chapters 6 and 7 explain how to write simulation programs using twopnt.
Appendix 1 cross-references twopnt’s controls with the “keywords’ that manipulate the
controls in simulators written at Sandia National Laboratories in Livermore, California.
Appendix 2 contains some programming notes. Appendix 3 records changes made to
twopnt.

This publication has diamond lanes, [/, not dangerous bends. They are easier than
N. Bourbaki’s curves (which were popularized by D. E. Knuth), but read carefully just the
same. Correspondence on this manual and on twopnt is welcome. Correspondence on von
Neumann'’s points three and four should be directed to specific simulators authors.

When a problem in pure or applied mathematics is “solved” by numerical
computation, errors, that is, deviations of the numerical “solution” obtained
from the true, rigorous one, are unavoidable. Such a “solution” is therefore
meaningless, unless there is an estimate of the total error in the above sense.

Such estimates have to be obtained by a combination of several different
methods, because the errors that are involved are aggregates of several differ-
ent kinds of contributory, primary errors. These primary errors are so different
from each other in their origin and character, that the methods by which they
have to be estimated must differ widely from each other. A discussion of the
subject may, therefore, advantageously begin with an analysis of the main
kinds of primary errors, or rather, of the sources from which they spring.

This analysis of the sources of errors should be objective and strict
inasmuch as completeness is concerned, but when it comes to the defining,
classifying, and separating of the sources, a certain subjectiveness and arbi-
trariness is unavoidable. With these reservations, the following enumeration
and classification of sources of errors seems to be adequate and reasonable.

— J. von Neumann and H. H. Goldstine [26]

2 What Twopnt Does

What Twopnt Does

2.0 Introduction

A simulationisbuiltinthree steps. Each step incurssome of von Neumann’sfour simulation
errors, see Figure 2.1 and Chapter 1. Thefirst step isascientific model. Twopnt leaves that
to scientists, and concerns itself with the rest. So far as twopnt is concerned, a simulation
is a system of equations to be solved. To this end, twopnt performs three interrelated tasks

e grid selection
e Newton’'ssearch
e timeevolution

which are introduced here together and then discussed separately in subsections.

Twopnt does not require the simulation have spatial dependence, but since thisisoften
the case, twopnt provides special facilities for two point boundary value problems. Twopnt
never seesthedifferential equations, however, because twopnt expectsthe simulator it serves
to “ discretize” the equations beforehand. Since twopnt has little to do with this aspect of
the simulation, it can solve problems with more than one spatial dimension, or with none.

humbErS
]
: Futs 2
h dlﬁErg—lt Equaj':nr S‘ﬂl-l‘h-;h 14
=
dlﬁer‘ﬂ'ﬂj %qua-h |E':'.- re‘ljxajj E|4-|-|':l|'.
o

Figure 2.1 The stepsin building a computer simulation, with von Neumann’s errors which
each step entails. See Chapter 1 and Section 2.0.

2 What Twopnt Does

For two point boundary value problems, twopnt expects the simulator to provide a
“grid” of p numbers

T xT9 SN Tp

and at each of these “ grid points,” twopnt seeks valuesfor ¢ solution “ components.”

U1,1 ui,2 ‘e Ul,p
U211 u2,2 ‘e Uu2.p
Ue,1 Ue,2 e Ue,p

These values are unknown at the outset and must be determined. There may be many
unknowns since ¢ = 50 and p = 100 are common in reacting flow simulations. For
example, uy , might be the concentration of the k-th chemical species at the distance z,,
from a nozzle.)| Twopnt also may have some unknowns associated with “ boundary
conditions’ at the ends of the grid.

For two point boundary value problems, the equations solved by twopnt may arisein
the following way. The values at all grid points for each component

Uk,1 Uk,2 e Uk,p

congtitute adiscrete sampling of aquantity, wy, that varies continuously in space. From this
discrete sample, approximations can be built for the differentials of u,. For example, if x
isthe spatial variable, then

duy, _ Ukn+l — Ukn

I— ~
de |,_,. Tpt1l — T

Uk, — Uk,n—1
Tp — Tp—1

or ~

A ug g1 + (A% L = A% Jug = A2 Uk 1
ATLAH+1 (An + An-‘,—l)

or perhaps ~

with A1 =T; — Tj—1

depending, of course, on the simulator’s choice. “ Discretizing” the differential equations
may amount to replacing the equation’s differentials by the approximations above. More
elaborate discretizations are possible, for example, reacting flow simulations might have
equations representing mass conservation for each species, &, in control volumes around
each grid point, n. By these or other means, the unknowns u;, ,, become variables in
nondifferential equations.

For differential equations, the values sought for the unknowns are not exactly correct,
in the following sense. The solution values for each component

Uk,1 Uk,2 e Uk,p

sample only approximately the continuously varying quantity uy in the differential equa-
tions.

Uk ~ Up(Tn)

not ug., = uk(Ty)
These errors are the first aspect of John von Neumann’s approximation error (mentioned
in Chapter 1). They occur because the differentials are only approximated, and moreover,

10

2 What Twopnt Does

only at a few points. Twopnt can add points to better the approximation. The solution
valuesfound for one grid suggest additional points for anext grid, and so on. In combustion
simulations, M. D. Smooke[31] demonstrated that successive enlargements, beginning from
grids too coarse to afford much resolution, lead to good placement of efficiently few points.
Thus, twopnt has facilities to solve nondifferential equations repeatedly, for the unknowns
associated with successive grids.

(The chief numerical issuesin designing asimulation are the discretization and solu-
tion of the differential equations. The best discretization is the prevailing one in the subject
at hand, one that has been discovered and improved by trial and error. The mathematical
theory of solving two-point boundary value problems a so offers guidance, but may include
recommendations not tempered by experience. For example, the text [2] reduces equations
to “standard first order form” and solves them by “shooting.” In reacting flow problems
the system is usualy too large to reduce the order, and further, the resulting equations are
usually too sensitive to solve by shooting.)

Twopnt expects al the equations it solves to have been “brought to one side” so they
can be written symbolically as

flv)=0

in which v isthe vector of all unknownsand f(v) isthe vector of al equations. If arbitrary
numbers are chosen for the unknowns, as when v, is a collection of “good guesses,” then
the equations likely will not be solved—which is to say the vector of “ residuals’ f(v,)
formed by evaluating the “ residual function” f likely will not vanish.

f(ve) #0

Twopnt seeks values, v,, with zero residuals, f(v,) = 0.

(These equations are nonlinear, hence difficult to solve. “Functiona iteration,” “non-
linear Gauss-Seidel,” “operator split,” and “uncoupled” methods determine valuesfor some
unknowns by assuming values for others, in round-robin fashion. This process must be
repeated many timesto obtain self-consistent solutions, and the detail s vary with the subject
matter. For example, the“simpler” method and the Gummel method both solve convection-
diffusionequations, but for fluidsand semiconductors, respectively. Sincetwopntisintended
for avariety of applications, it employs a solution process for “fully coupled” eguations.)

Twopnt solvestheequations by successive approximation usingavariant of “ Newton's
method” [11] [28]. From a reasonable guess vg, Sir Issac Newton’s namesake constructs
an unending sequence of improving approximations

Vo U1 T Un

that converge on a vector v, with f(v,) = 0. After reasonably many steps, twopnt accepts
some “approximate solution” v,, in lieu of v,, and this v, becomes the “result” of the
simulation. Accepting v,, in place of v, is the second aspect of John von Neumann's
approximation error.

Thechief difficulty with Newton’s method isthat even awell chosen vy heedn’t spawn
a convergent sequence of approximate solutions. In this case twopnt tempers the guess by
evolving it intime. When Newton’s method goes astray, twopnt begins building a different
sequence

Ve = V(0) v(1) Y(2) e Y(m)

which samples the time evolution of the simulated phenomena at grid pointsin time.
0=to t1 to e tm

The time dependent states eventually converge on the steady state too, but twopnt stops far
short of that. Early transient states usualy are sufficiently “better guesses’ that Newton's

11

2.1 What

2.1 What Newton’s Search Does

method, beginning from them, can find the steady state directly. In combustion simulations,
J. F. Grcar and company [15] found the systematic use of this shortcut efficient.

The time dependent states are obtained by solving time dependent rather than steady
stateequations. Simulated phenomenainvariably haveatemporal aspect, sothesimulation’s
equations naturally include time derivatives. Indeed, the steady state formulation simply
assumes those derivatives vanish. Thus, the time dependent residual functions, *4f (m)» &€
just more elaborate versions of the steady state residual function, whichishenceforth named
ssf. In particular, the time dependent equations must incorporate values from previoustime
points to permit building approximations for the time differential's, hence the inclusion of a
time point index, m, in the notation t4f (m)-

(Many pioneering steady state simulationswere performed entirely by time evolution.
Consult [31] for references to early simulations in combustion chemistry. This practice
continues because some time discretizations, “explicit” ones, lend themselves to uncoupled
solution methods. Their advantages are ease of programming and economy of computer
memory; disadvantages are choosing where to stop and taking too long to get there. Since
twopnt already expects to use Newton's fast method for the steady state, when transient
states are needed, it uses “implicit” time discretizations.)

In summary, twopnt uses three devicesto solvewhat could be hard problems. For two
point boundary value problems, twopnt undertakes cal culations on small gridsto determine
good point locations and good solution guesses for large grids. Moreover, twopnt improves
solution guesses by time evolution when necessary. Finally, twopnt solves equations by
Newton's rapidly converging method. The following sections explain these three tasks and
how to control them.

Newton's Search Does
Twopnt solves nonlinear equations
Ffv)=0 and “f,(v) =0

for the steady and time dependent states, respectively. Twopnt has a control that omits
searches for the steady state if desired.

* STEADY search for the steady state (yes or no) 37

This control can avoid exhaustive searches whose results might be unnecessarily accurate,
for example, aspreliminary estimatesfor subsequent simulations. Other controlscan prevent
searches for transient states, see Section 2.2.

Whatever theequations' origin, Newton’smethod [11] [28] solvesnhonlinear equations
f(v) = 0 by successive approximations

UO V1 .. Un
formed by repeated iterations

Sy = —Jflf(un)
that is, given v,, solve Js,, = —f(v,,) for s,,, and then

Un+1 = Up + sn,

in which J isthe Jacobian matrix of f with respect to v evaluated at v,,. The i-th column
of J contains the derivatives of all the residual functions with respect to the i-th unknown.
The linear part of Taylor’'s series representation for f

flv) = f(on) + J(v = vn)

12

2.1 What Newton’s Search Does

suggests f(v) ~ 0 whenv = v,, — J~*(f(v,,)) which is Newton's choice for v,, ;.

The expense of matrix evaluation is usually so great a“ modified” Newton's method
is used which retains the Jacobian matrix through several steps. Twopnt has controls that
retire the matrix after a specified number of steps (Newton's “ pure” method retires the
matrix immediately).

* SSAGE steady state Jacobian’s retirement age 37
* TDAGE time dependent Jacobian’s retirement age 37

* ot

*

In the steady state case the first Jacobian matrix is evaluated at vy, so with SSAGE = 5, the
othersare at vs, v19 and so on. Thetime dependent case isthe same. If successiveintervals
in the time grid are the same length, however, then twopnt retains the Jacobian matrix from
one Newton search to the next. || In the time dependent case, the Jacobian matrix of t4f 1)
is evaluated at vo := v(g) first, and with TDAGE = 5, a v5 next. If vg is accepted as the
time dependent state v(;), then the search for v, begins from the guess vy := v(;) witha
matrix of age 4. Thus, the Jacobian matrix of tdf@) isevaluated at v, vg and so on.

The selection of an acceptable approximate solution v,, depends on the size of the
correction, s,,. Theresidua f(v,,) itself isignored because the relationship between good
approximations and small residuals is difficult to quantify, though in fact, the residual for
the chosen v,, is much nearer 0 than the residual for the guess vg. Proofs that Newton's
modified method converges suggest the error v, — v,, decreases at least geometrically, which
implies s,, decreases geometrically too. Presumably, if s; ,, issmall relativeto v, ,,, then the
error v; . — v; ,, should be of the same relative magnitude (the notation here means s; ,,, is
the i-th entry in the vector s,,, and similarly for v,, and v,). Twopnt has controlsfor relative
accuracy measured in thisindirect way.

SSREL steady state relative convergence test's bound 35
TDREL time dependent relative convergence test's bound 35

In many simulations some quantities are vanishingly small. In reacting flows for example,
reactants and products generally do not coexist. Since approximating zero to high relative
accuracy is meaningless, twopnt also has controls for absolute accuracy.

SSABS steady state absolute convergence test's bound 35
TDABS time dependent absolute convergence test’s bound 35

These controls can be interpreted as meaning v,, is chosen as the approximate solution
provided each entry in v,, has error either absolutely or relatively small. Twopnt’s precise
criteriafor stopping at v,, is

| < either ABS, or
Si,n| =
REL x |U7;7n|

in which 7 indexes all the entries in the vectors, that is, all the unknowns.

I Actually, twopnt applies the convergence criteriato (v,, + s,,) — v, rather than
to s, itself, for the following reason. If s, is very small relative to v, then arithmetic
rounding could make v,,, 1 identical to v,,, and then further searching is pointless. In this
case, (v, +$p) — v, probably equals0 not s,,, sothe convergence criteriawith (v, + s,,) — vy,
in place of s,, will stop the search.

1] || Twopnt shouldn’t be asked tofind av,, withan s,, insignificantly small. Usually,
rounding makes f, J and s,, difficult to evaluate with precision near v,., SO Newton’s search
wanders aimlessly near its goal. Thuswith ABS = 0 and REL = 0 two things can happen.
(1) Newton's search ends successfully at some v,, the machine can’t improve and which

13

2.1 What Newton’s Search Does

is presumably almost v,. More likely, (2) the convergence monitors, below, end Newton's
search in failure.

All proofs of convergence for Newton’s method derivefrom L. Kantorovich’sfamous
one [28, p. 428] which has stringent assumptions difficult to verify. Implementations of
Newton’s method therefore must take care all goes well and make adjustments when not.
Thesimplest precaution confinesthe search to safe or desired territory. Thatis, the equations
f(v) = 0 may have multiple solutions with some not wanted, or the residual function f
may be impossible to evaluate for some v. For example, chemical species must not have
negative densities. Twopnt therefore has controls that limit the acceptable values for each

unknown.
* ABOVE(7) upper limit for the i-th unknown 33 (e 62, 66)
* BELOW i) lower limit for the i-th unknown 33 (e 62, 66)

Twopnt expects theinitial guess, vy, obeys the bounds
BELOW) < v;0 < ABOVE(?)

and it ensures the subsequent solution estimates obey the bounds too, in the following way.
Twopnt evaluates
Up+1 = Un + 0BSp
inplaceof v,4+1 = v, + sy

where 0 < 65 < 1 isthelargest number that keeps v,,; within bounds. || Three things
can happen. (1) If v,, lies on aboundary and s,, points outside, then Newton’s method is
judged afailure unless an old Jacobian has been used and anew oneturns s,, around. (2) If
Newton fails to find the steady state, then twopnt begins a time evolution—from vy where
Newton started, not v,, where Newton failed. (3) If Newton fails to find a time dependent
state, then refer to Section 2.2.

Twopnt al so usesthefollowing check for progress. Givenv,, andalikely v,, 1, twopnt
evaluates what would be the next step, s,,4-1.* Twopnt accepts v,, 1 provided the potential
next step is shorter than the present step, that is, provided

[8n+1lloc < [[8nlloo

inwhich || - || isthe maximum-magnitude norm (the max or infinity norm). If not shorter,
then twopnt retreats from v, 1, evaluating

Unt1 = Un + 6D6Bsn
inplaceof v,411 =v, +6Bs,

where the “ damping factor” 6 decreases geometrically.

2—2.5

(sD — 2—0.5 2—1.07

)

|| Three things can happen. (1) If no v,,,; passes the test above, then Newton’s method
is judged a failure unless an old Jacobian has been used and a new one produces better
Sny Una1 @d s,11. (2) If Newton fails to find the steady state, then twopnt begins atime
evolution—from vy where Newton started, not v,, where Newton failed. (3) If Newton fails
to find a time dependent state, then refer to Section 2.2.

*)] For economy, the same Jacobian matrix produces both s,, and s,, 1. If a Jacobian
evaluation is not scheduled at v,, 41, then this s,, 1.1 would be the next step.

14

2.2 What Time Evolution Does

2.2 What Time Evolution Does

Twopnt undertakes a transient evolution with states
Ve = V(0) v(1) v(2) Y(m)
at successive pointsin time
0=to t1 to e tm

solely to replace the starting guess in Newton's search for the steady state by something
better, namely v(,,,) for some m. Time evolution begins at the guess v, supplied by the
simulator or suggested by the previous spatial grid—see Section 2.3. Twopnt obtains the
time evolution by solving the time-dependent equations

tdf(m) (U(m)) =0

for successive m by Newton’s method, beginning the search for v(,,, at the“guess’ v(,,, _1).
These searches can fail, too.

Twopnt can be directed to passtime even before the search for the steady state begins
and whenever Newton’'s method fails thereafter.

* STEPSO time steps before first steady state search 38
* STEPS1 time steps upon failing to find a steady state 38

Thus, with STEPSO = 100 and STEPS1 = 50, Newton's search for a steady state begins
at v(100), and if unsuccessful beginsagain at v(;50), and if still unsuccessful beginsagain at
¥(200), and so on without limit.

The initiad time evolution, STEPSO > 0, has two uses. When the solution guess
is poor and time evolution is needed, then STEPSO > 0 avoids one fruitless search for
the steady state. When there are multiple steady states and Newton's search might find a
nonphysical one, then STEPSO > 0 moves the solution toward a stable state.

A well developed branch of numerical analysis chooses time points tg, t1, ta, ... to
follow transient evolutions accurately [4] [18]. Twopnt does not use the methods devel oped
there, for two reasons. First, accurate transient simulations may incur computing expenses
incidental to twopnt’s goal. Second, the proper choice of time grids varies with the dis-
cretization of the time differentials. As a convenience to the smulators it serves, twopnt
leaves the choice of time discretizations open.

Twopnt chooses the steps between the time points as follows. Twopnt takes many
steps of the same length,

* STRI DO initial stride between time points 38

and expecting longer steps to approach the steady state in fewer steps, twopnt periodically
lengthens its stride, but only so far.

* STEPS2 time steps before increasing the stride 38

* multiplier by which to increase the stride 38

* maximum stride 38
Conversely, twopnt shortensitsstrideinthefollowing situations. 1f Newton’smethod cannot
solve thetransient equationsfor anewly increased stride, then twopnt revertsto the previous
stride. If Newton’s method cannot solve the transient equations for a not-newly-increased
stride, then twopnt shortens its stride, but again only so far.

* divisor by which to decrease the stride 38

* minimum stride 38

15

2@ eaapleriditelection Does
STEPS2 =75 STRIDO=10"°® TINC=10 TDEC=3.16

the first seventy-five steps have stride 10—, and the next have stride 10~ x 10 = 107°.
If Newton’s method initially fails in the search for v(;37), then twopnt shortens the stride
to 107° + 3.16 = 1075 and tries again. If Newton's method repeatedly fails despite
shortening the strideto TM N, then twopnt abandons the time evol ution and begins one last
search for the steady state from the |ast available time dependent state, v ;3¢ If that search
fails, then twopnt fails.

2.3 What Grid Salection Does

Twopnt constructs a succession of finer grids with more pointsfor two point boundary value
problems, when so directed.

* ADAPT perform grid selection (yes or no) 34

Twopnt must be given an initia grid, and when it finds a solution there, twopnt selects
another grid, and so on.

* X the grid 40 (e 58, 63, 71)
* PO NTS points (in the initial grid) 35 (¢ 58, 62, 68)

Each grid’s solution is used to suggest the next grid, and moreover, is used to provide a
guess for the next solution. Asthe grids grow, the solutions of the discrete equations better
approximate the solution of the differential equations. Since the approximations improve
from grid to grid, so the solutions differ less, and thus the guesses improve too. Solving the
equations therefore becomes easier although the grids become larger. The use of succes-
sively chosen grids to improve solution accuracy is well established and difficult to credit,
but the use also to improve solution efficiency apparently originated with M. D. Smooke
[31] [32].

1] In multiple simulations such as parameter studies, large grids may result if twopnt
adds points to successive simulation grids. Twopnt has no means to remove points, so some
simulators may have their own.

Twopnt constructs the next grid by adding points to the present grid

I i) Tp

based on examining some components of the solution.

Ug,1 ui,2 . U1,p

U211 u2,2 ‘e Uu2.p

Ue,1 Ue,2 e Ue,p
An examined component

Uk,1 Uk,2 e Uk,p

should approximate a quantity that varies continuously in space.
Uk, n ~ uk(wn)

16

2.3 What Grid Selection Does

Hesult of the Simulation in Chapter 7

d —
3 —
E —
1 T f4000
G i
|:| —
F

_1 —
_E — H
-d | | | | |

0 1 2 3 4 5

Figure 2.2 Four solution components of the example in Chapter 7 found by twopnt with
TOLER1 = 0.1 and TOLER2 = 0.1. Figures 2.3.1 and 2.3.2 enlarge a portion of the F’
curve for close viewing. Section 2.3 discusses this graph.

When graphed, the pairs (x,,, u,) approximate the graph of wy ().

Twopnt has two controls that choose the solution components it examines. The first
control is additive: it selects components outright. The second control is subtractive: it
eliminates seemingly insignificant components.

* ACTI VE(k) use component k for grid selection (yes or no) 33 (e 63, 66)
* TOLERO absolute and relative significance floor 39

The k-th component is judged “insignificant” if its variation (maximum less minimum) is
either absolutely small or small relative to its magnitude.

either TOLERQO, or

max uy , — minw <
n kn n ko = {TG_ERO X max ‘uk7n|
n
Twopnt seeks two features in each graph it examines. First, the variation over each
grid interval should be less than a controlled fraction of the variation over al grid intervals.

u — U _
RATIOLl,, = [t4m il 1 < TOLERL
’ maX,, Uk, — MiN, Uk n

* TOLERL bound on change of value in each interval 39

If this condition fails, then twopnt “marks’ for attention the interval between z,,_; and
x,. These marks ensure the grid concentrates points where the solution changes abruptly,
for example, in fronts. [¢| The marking process for each feature in the graph is more or
less independent of any other feature because only the maximum variation (not the total
variation) occurs in the ratio’s denominator. For example, if a graph has many identical
ups and downs in succession, then twopnt marks the same intervals for subdivision in each
front, no matter how many fronts there may be.

17

2.3 What Grid Selection Does

The second feature twopnt seeksis, the variation in angle of slope at each interior grid
point should be less than a controlled fraction of the variation over al grid points.

Uk, n+1 — Uk,
0. = atan (M)
anrl — T

| ek,n - 9k,n—1|

RATI Q24 ,, = -
n maX,, 0., — min,, 0 ,,

< TOLER2

* TOLER2 bound on change of angle at each point 39

If this condition fails, then twopnt marks for attention the intervals on either side of z,,.
These marksensurethe grid concentrates pointswhere the sol ution’sslope changes abruptly,
for example, at peaks and troughs. Note the angles’ sensitivity to scaling. Twopnt omits
this portion of its examination if the k-th component’s angles are judged insignificant, as
follows.
either TOLERO, or
max 0y, —mnb, <
no no TOLERO x my?x\9k7n|

The complementary effectsof TOLERL and TOLERZ areillustrated by some solutions
obtained for Chapter 7's example. Figure 2.2 shows four of the simulation’s five solution
components that have been obtained with both controlsset at 0.1. Figure 2.3.1 shows part
of thissolution and part of another that has TOLER2 = 1. Only TOLER1 governsthe other
solution’s grid, and clearly, TOLERL resolves fronts but not peaks or troughs. Conversely,
Figure 2.3.2 shows part of the reference solution and part of another that has TOLER1L = 1.
Only TOLER2 governs this other solution’s grid, and clearly, TOLER2 resolves peaks or
troughs but not fronts.

In general, TOLERL and TOLER2 place grid points where the first derivative and the
curvature, respectively, have large magnitudes. Usually, TOLERL controls accuracy and
TOLER2 controls appearance. In Figures 2.3.1 and 2.3.2 for example, TOLERL places
a coarse peak at the correct atitude, while TOLER2 places a smooth peak at the wrong
dtitude. Since twopnt uses the same grid for all solution components, simulations with
overlapping regions of peaks and fronts may muddy the distinction between these controls.

Twopnt constructsitsgrids, asfollows. After examining each component and marking
the grid intervals according to TOLER1 and TOLER2, three things can happen. (1) Twopnt
constructs anew grid by halving marked intervals. Sincethe equationsfor agrid with many
new points may be difficult to solve, twopnt has a control to limit the introduction of new
points, and of course, a control to limit the total number of points.

* PADD maximum points added to any one grid 34
* PMAX maximum points in the grid 34 (e 63, 68)

When moreinterval sare marked than points can be added, twopnt halvesthe most frequently
marked intervals. (2) If someintervals have been marked but none can be halved, because
either PADD = 0 or PO NTS = PMAX, then twopnt fails. (3) If no intervals have been
marked, then twopnt supposes the boundary value problem has been solved.

|| The features that twopnt seeks in the graphs constitute twopnt's measure of dis-
cretization accuracy. Thismeasureisnecessarily superficial because twopnt doesnot choose
thediscretization. Twopnt’sgrid sel ection process can beinterpreted geometrically asabove,
or interms of discretization error asfollows. “Anonymous’ discretizations of complicated
boundary value problems likely have truncation errors dependent on low derivatives of the
analytic solution functions, uy. Twopnt'sfirst criterion for rejecting intervals approximates

18

2.5

2.0

1.5

1.0

5

0.0

2.3 What Grid Selection Does

Effect of TCLERZ

Effect of TOLER1

2.6 —
F F
2.0 —
coarse peak ameooth peak
1.6 —
1.0
arnoath front coarse front
nh —
|] D0 | |
R oA 02 oL oA 02

Figure 2.3.1 Close view of Figure 2.2
(smooth curve) together with a solution
found by twopnt for identical controls ex-
cept TOLER2 = 1 (rough curve). Alone,
TOLER1 resolves the front, but not the
peak. Section 2.3 discusses this graph.

Figure 2.3.2 Close view of Figure 2.2
(smooth curve) together with a solution
found by twopnt for identical controls ex-
cept TOLERL = 1 (rough curve). Alone,
TOLER2 resolves the peak, but not the
front. Section 2.3 discusses this graph.

the constraint that each interval accounts for only a controlled fraction of the maximum

variation in uy.
Tn
lnl

When the grids have been successively enlarged many times by halving offending intervals,
then al the integrals might have roughly the same magnitude, because “the raised nail
gets the hammer” (Japanese proverb). V. Pereyra and G. Sewell relate this condition to
approximation error by deriving error bounds, in some cases, when the definite integrals
do have the same magnitude [2, pp. 365, 554]. Twopnt’'s second criterion amounts to the
constraint

d .
Ukl gz < TOLERL x (Maxuy — minug)

X

(Zntont1)/2
/ kx| ds < TOLER2 x (maxak - minak)
(-’l’n_1+.’L'n)/2 x T

inwhich s isarc length and xy, is the curvature of the graph of .

d duk
0, =— | a —
kT ds (an (dx >>
The relation between curvature and approximation error is unknown. In general, grid

selection remains aresearch topic [2]. The process used by twopnt is a modified version of
one used by M. D. Smooke [31], who apparently originated it.

19

2.3 What Grid Selection Does

20

(A) The mathematical formulation that is chosen to represent the under-
lying problem may represent it only with certain idealizations, simplifications,
neglections. This is even conceivable in pure mathematics, when the numeri-
cal calculation is effected in order to obtain a preliminary orientation over the
underlying problem. It will, however, be the rule and not the exception in ap-
plied mathematics, where these things are hardly avoidable in a mathematical
representation. This complex is further closely related to the methodological
observation that a mathematical formulation necessarily represents only a
(more or less explicit) theory of some phase of reality, and not reality itself.

— J. von Neumann and H. H. Goldstine [26]

3 Text Output

Text Output

3.0 Introduction

Twopnt’swritten output hasselectablelevel sof detail. Thelevelscorrespond tothehierarchy
of tasks twopnt performs during the simulation, see Figure 3.1. Twopnt's controls choose
the level in the hierarchy beyond which output stops. Higher levels provide more detailed

output.
* LEVELM level of informative message output 34
* LEVELD level of solution data output, no larger than LEVELM 34

For example, LEVELM= 0 prohibits output except error messages, and = 1 enables output
fromthe decision-makinglevel, while= 2 adds output from themid-level tasksin Figure 3.1.
If LEVELM= 3 and if time evolution occurs, then Newton’s search for each transient state
provides output too—this could be voluminous because there may be hundreds of time
points.

Mewdorn's SEATITH
Level 2 | or Tansiantsietes

Mewion's SEARICH
Leved 2 [oor he seady sae

EVGLIrE FEFTE
Arne evolution grid szlection

TWIRAT
Level 1 | sk sabrodion |

Figure 3.1 Levelsin the hierarchy of twopnt’s tasks.

21

3.1 Briefest Output

Theinformative output controlled by L EVEL Mis explained bel ow in separate sections
for the decision-making level and for each task at higher levels. The output is illustrated
by examples from the simulation described in Chapter 7. This output chronicles twopnt’s
internal activities, so the examples should clarify Chapter 2’'s explanation of what twopnt
does. In unsuccessful simulations, the output may suggest how to improve efficiency or
how to forestall failure. Successful simulations usually “turn off” this output or reduceit to
aminimum, = 1.

The control for solution output, LEVELD, functions similarly. The latest solution
estimate appearsafter other output for eachtask at the chosenlevel. For example, LEVELD =
0 writes no solution data, while = 1 writes only the initial guess and the final result, and
= 2 writesthe latest solution estimate after each mid-level task in Figure 3.1. LEVELD = 3
is discouraged.

The solution output controlled by LEVELDis simulation specific and is not discussed
further in this publication. Simulators usually provide other, separate output for graphics
andthelike. If thesimulator does providedetail ed written output viaL EVEL D, then= 1 may
be useful for aquick look at thefinal result, while = 2 may help diagnose a malfunctioning
simulation.

3.1 Briefest Output

The output described here, LEVELM= 1, isthe briefest next to none-at-all. Thisoutput has
two parts: one chronicles what twopnt does

e grid selection
e Newton's search
e timeevolution

and theother explainswhat doingthesethingscosts. Thefirst part, thechronicle, summarizes
data from higher output levels and so only appears when LEVELM = 1. The second part,
the expense account, always appears after everything else, whenever output is requested.

Figure 3.2 shows the chronicle for the simulation in Chapter 7. The first column
in the Figure, TASK, names the various tasks twopnt performs; the other columns report
how the tasks fare. This particular simulation requires eleven grids which grow from 6 to
76 points. Lines 7 though 14 describe twopnt’s efforts to find the solution on the smallest
grid. Thrice Newton's search fails (LINES 8, 10 AND 12), and thrice time evolution of 50
time stepsimproves the guess (LINES 9, 11 AND 13). Thus, after 150 time steps, Newton's
search succeeds on the fourth try (LINE 14). The solution found there suggests a new grid
of 11 points (LINE 16) whose guess is sufficiently good that Newton's search succeeds
immediately (LINE 17). Similarly, no subsequent grid requires time evolution (LINES 19
TO 44). The solution on the grid of 76 points produces no new grid (LINE 46), so it isthe
result of the simulation.

The second column in Figure 3.2, NORM F, indicates twopnt’s progress toward the
solution for each grid. This column reports the residual for the latest solution estimate,
specifically

logy [(v)]|

in which || - || is the maximum-magnitude norm (the max or infinity norm) and v is the
latest proposed solution. Section 2.2 explainsthat twopnt ignorestheresidua when deciding
accuracy, so column two isfor information only. In this example, the residual for the guess
on thefirst grid measures6.14 (LINE 7), and time evol ution makes matters worse, increasing
the measure to 6.37 (LINE 11) before dropping it to 6.02 (LINE 13). Newton's search then
converges, stopping with aresidual measuring —3.08 (LINE 14).

K> The third column in Figure 3.2, COND J, indicates the potential difficulty of
solving the discrete steady state and time dependent equations. This column reports the

22

3.1 Briefest Output

TWOPNT: DOUBLE PRECI SI ON (TWO PO NT BOUNDARY VALUE PROBLEM SOLVER,
VERSI ON 3. 08 OF JANUARY 1992 BY DR JOSEPH F. GRCAR

LOGLO LOGLO
TASK NORM F COND J REMARK

START 6.14 6 GRI D PO NTS
SEARCH 7.00 DI VERG NG
EVCOLVE 6. 32 1.85 50 TI ME STEPS, 3.2E-03 LAST STRI DE
SEARCH 6.73 GO NG OUT OF BOUNDS
EVOLVE 6.37 2.69 50 TI ME STEPS, 1.0E-02 LAST STRI DE
SEARCH 6. 36 GO NG OUT OF BOUNDS
EVCOLVE 6. 02 2.72 50 TI ME STEPS, 1.0E-02 LAST STRIDE
SEARCH -3.08 5.64 14 SEARCH STEPS
REFI NE 6.32 1.00 AND 1.00 RATICS, 11 GRID PO NTS
SEARCH -2.16 5.77 13 SEARCH STEPS
REFI NE 6. 65 0.94 AND 1.00 RATICS, 16 GRID PO NTS
SEARCH -3.10 5.94 7 SEARCH STEPS
REFI NE 6. 87 0.92 AND 1.00 RATICS, 23 GRID PO NTS
SEARCH -0.75 6. 07 10 SEARCH STEPS
REFI NE 7.01 0.91 AND 0.97 RATICS, 35 GRID PO NTS
SEARCH -1.07 6. 22 6 SEARCH STEPS
REFI NE 7.11 0.76 AND 0.93 RATICS, 42 GRID PO NTS
SEARCH -0.69 6. 25 4 SEARCH STEPS
REFI NE 7.16 0.52 AND 0.85 RATICS, 47 GRID PO NTS
SEARCH -0.97 6. 26 3 SEARCH STEPS
REFI NE 7.20 0.31 AND 0.69 RATICS, 55 GRID PO NTS
SEARCH 0.74 6. 28 2 SEARCH STEPS
REFI NE 7.22 0.17 AND 0. 47 RATICS, 62 GRID PO NTS
SEARCH -0.52 6. 29 2 SEARCH STEPS
REFI NE 7.23 0.10 AND 0. 27 RATICS, 69 GRID PO NTS
SEARCH -1.73 6.30 2 SEARCH STEPS
REFI NE 7.23 0.10 AND 0.16 RATICS, 76 GRID PO NTS
SEARCH 2.00 6.29 1 SEARCH STEP
REFI NE 0.10 AND 0. 09 RATICS

Figure3.2. Theportion of LEVELM= 1 output that describeswhat twopnt does. Section 3.1
interpretsthis data. Chapter 7 explains the particular simulation.

worst condition number for any Jacobian matrix encountered in Newton's searches for
steady or transient states. Specificaly, it reports

max logy, (+())

inwhich, for thisexample, «(J) isthelinpack condition number estimator [8]. Thecondition
number measures the difficulty of solving accurately the matrix equations at each step of
Newton’'s search. Lower condition numbers indicate easier problems. Usually, as here, the
time dependent equations are easier than the steady state equations.

23

©CoO~NOOTAWNPEF

3.1 Briefest Output

TWOPNT:

TWOPNT:

17. 34 SECONDS TOTAL COVPUTER TI ME (SEE BREAKDOAN BELOW .
PERCENT OF TOTAL COVPUTER TI ME FOR VARI QUS TASKS
TASK SUBTASK
GRID GRID -----ccmcmmemcieeiee imeeee i e e e m e
PO NTS TOTALS EVOLVE SEARCH REFINE EVAL F PREP J SOLVE OTHER
6 51.0 37.3 13.5 0.0 10.6 15.3 12. 4 12.8
11 2.6 0.0 2.5 0.1 0.3 1.3 0.5 0.5
16 3.8 0.0 3.7 0.1 0.6 2.1 0.7 0.5
23 3.7 0.0 3.5 0.1 0.7 1.6 0.9 0.5
35 4.4 0.0 4.2 0.1 0.6 2.4 0.8 0.6
42 4.4 0.0 4.1 0.1 0.5 2.7 0.5 0.6
47 4.8 0.0 4.4 0.1 0.6 3.1 0.5 0.6
55 5.4 0.0 5.0 0.2 0.5 3.7 0.5 0.6
62 6.1 0.0 5.5 0.2 0.7 4.3 0.7 0.4
69 6.7 0.0 6.2 0.2 0.7 4.7 0.7 0.6
76 7.1 0.0 6.5 0.4 0.6 5.4 0.5 0.5
TASK TOTALS: 37.3 58.9 1.5 16.6 46. 6 18.6 18.2
AVERAGE COWVPUTER TI MES FOR, AND NUMBERS OF, SUBTASKS
AVERAGE SECONDS NUMBER OF SUBTASKS
GRID -----mmmm e e
PO NTS EVAL F PREP J SCLVE EVAL F PREP J SCLVE
6 0. 002 0. 060 0. 003 814 44 809
11 0. 004 0. 115 0. 005 17 2 15
16 0. 006 0. 180 0. 008 17 2 15
23 0. 009 0. 270 0.013 14 1 12
35 0.012 0.410 0. 020 9 1 7
42 0.013 0. 470 0.018 7 1 5
47 0.018 0. 540 0. 022 6 1 4
55 0.018 0. 650 0. 027 5 1 3
62 0. 024 0.740 0. 040 5 1 3
69 0. 024 0. 820 0. 040 5 1 3
76 0.028 0. 940 0. 045 4 1 2

SUCCESS. PROBLEM SOLVED.

Figure3.3. The portion of LEVELM> 0 output that describesthe cost of what twopnt does.
Section 3.1 interprets this data. Chapter 7 explains the particular simulation.

Thefourth column in Figure 3.2, REMARK, contains miscellaneous information about
each task. Thegrid selection task, REFI NE, reports Section 2.3'sworst ratios for the most
recent grid’s solution

RATI Oi := max RATI Oi, =~ i=1and2

kn

and when those ratios exceed TOLERL and TOLERZ, it reports the size of the then newly
created grid. Newton's search for the steady state, SEARCH, reports the number of steps
taken when successful (LINE 14), or the reason for failure when not successful (LINES 8,
10 AND 12). Time evolution, EVOLVE, reports the number of time steps and either the last
step’ssize (LINES 9, 11 AND 13) or the last step’s reason for failure.

The second part of twopnt’s output, in Figure 3.3, displays the cost of what twopnt
does. The unit of measure is computing time, so costs vary by machine and by machine
load. In this example, an unstressed vax 8700 needs 17.34 seconds (LINE 1) to complete
Chapter 7’s simulation. Some machines may provide no timing data, or may provide rea

24

©CoO~NOOTAWNPEF

3.1 Briefest Output

TWOPNT: DOUBLE PRECI SI ON (TWO PO NT BOUNDARY VALUE PROBLEM SOLVER,
VERSI ON 3. 08 OF JANUARY 1992 BY DR JOSEPH F. GRCAR
LOGLO LOGLO
TASK NORM F COND J REVARK
START 6.14
SEARCH 7.00 DI VERG NG
EVCOLVE 6. 32 1.85 50 TI ME STEPS, 3.2E-03 LAST STRI DE
SEARCH 6.73 GO NG OUT OF BOUNDS
EVOLVE 6.37 2.69 50 TI ME STEPS, 1.0E-02 LAST STRI DE
SEARCH 6. 36 GO NG OUT OF BOUNDS
EVCOLVE 6. 02 2.72 50 TI ME STEPS, 1.0E-02 LAST STRIDE
SEARCH -3.08 5.64 14 SEARCH STEPS

TWOPNT:

TWOPNT:

8.49 SECONDS TOTAL COVPUTER TI ME (SEE BREAKDOAN BELOW .

SUBTASK TASK

EVAL F PREP J SCLVE OTHER EVOLVE SEARCH

% OF TOTAL 21.3 30. 2 23.0 25.6 74.1 25.7

MEAN SECONDS 0. 002 0. 058 0. 002

QUANTI TY 814 44 809

SUCCESS. PROBLEM SOLVED.

Figure3.4. Complete LEVELM= 1 and LEVELD = 0 output when grid selection isturned
off, ADAPT = no. Section 3.1 interprets this data. Chapter 7 explains the particular
simulation.

time (that is, elapsed wall-clock time) rather than computing time. Appendix 2 explains
how twopnt acquires timing data.

Figure 3.3 analyzes twopnt’s costs three ways (LINES 3 TO 21). Analysis oneis by
grid. TheFigure showsthe smallest grid needs51.0% of all time (LINE 9). Subsequent grids
need much less time because better solution guesses are available for them. Analysistwois
by task. For the only grid to require time evolution, Figure 3 shows evolution needs 37.3%
of all computing time (LINE 9), while Newton's search needs only 13.5%. Thus, Newton's
search for the steady state cuts short what could be a very expensive time evolution to the
steady state. Analysisthreeisby subtask, that is, by the building blocks of twopnt’s larger

tasks. . . .
e EVAL F residual function evaluation

e PREP J Jacobian matrix preparation
e SOLVE solution of matrix equations

Figure 3.3 shows function evaluations need 16.6% of all time (LINE 21), and matrix prepa-
rations need 46.6%. In this example, matrix preparations include both evaluating and
factoring the Jacobian matrices, and moreover, matrix evaluation is by numerical approx-
imation requiring still more function evaluations. Altogether, nearly 63.7% of all timeis
spent evaluating the residual function—and in this example the function is particularly easy
to evaluate! Thus as usual, the greatest performance improvements come from speeding
residua function evaluation, see [12] [27].

Figure 3.3 also displays the costs and quantities of subtasks (LINES 23 TO 39). More
subtasks are heeded for earlier grids because twopnt finds solutions more easily once it has
good solution guesses—the first grid needs 814 function evaluations and the last needs 4
(LINES 29 AND 39). Yet the earlier subtasks are less expensive because the cost per subtask

25

©CoO~NOOTAWNPEF

3.2 Output for Newton’s Search

SEARCH:

SEARCH:

SCLVE NONLI NEAR, NONDI FFERENTI AL EQUATI ONS.
LOGLO
I LR R R EEE R LR LR
NUMBER NORMF COND J NORM S ABS AND REL DELTA B AND D
0 6. 02 5.03 2.42 2.42 0. 37
1 5.31 1.61 1.61 0.59 -0.30
2 4.93 1.54 1.54 0. 58 -0.30
3 4.85 1.51 1.51 0.91
4 4.90 1.26 1.26 0.95 -0.30
5 4.88 5.50 1.72 1.72 0.35
6 4.53 5. 64 1.10 1.10 1.52
7 3.65 0.02 0.02 -0.16
8 2.55 -0.76 -0.76 -1.01
9 1.65 -2.17 -2.17 -1.87
10 0. 65 -2.80 -2.80 -2.86
11 -0.26 -3.91 -5.75 -3.86
12 -1.22 -4.69 -6. 64 -4.62
13 -2.07 -5.75 -8.01 -5.71
14 -3.08 -6.53 ZERO -7.29
SUCCESS.

Figure 3.5. The portion of LEVELM = 2 output that describes Newton's search for the
steady state. Section 3.2 interprets this data. Chapter 7 explains the particular simulation.

is proportional to grid size—function evaluation time per grid point varies little between the
smallest and the largest grids (LINES 29 AND 39).

000250005 _)55 D028 oo _
6 points 76 points

Thus, the hardest problems occur where the subtasks are cheapest; the easiest problems
occur where the subtasks are dearest. Using a succession of gridsisclearly efficient.

When twopnt uses only one grid, ADAPT = no, then the briefest output can be very
brief. In this case, Figure 3.4 displays the entire output for Chapter 7's example. The
succession of grids is gone from the lists of tasks and expenses.

3.2 Output for Newton's Search

The output explained here describes both Newton's search for the steady state when
LEVELM = 2, and Newton’'s searches for the transient states when = 3. Figure 3.5
show output for the fourth and successful search for the steady state on the first grid in
Chapter 7's example.

Thefirst three columnsin Figure 3.5 report data summarized online 14 in Figure 3.2.
Column 1, SLTN NUMBER, counts the solution estimates. Column 2 measures the steady
state residual

1% (vn) [l oo

in which v,, is the n-th solution estimate. Column 3, COND J, measures the condition of
the Jacobian matrices

logy (k(J))
in which, for this example, «(J) isthe linpack condition estimator [8].

26

©CoO~NOOTAWNPEF

3.3 Output for Time Evolution

The fourth and the last two columnsin Figure 3.5 describe the step from one solution
estimate to the next.
5= —J L 5f (vy)
Un+1 = Up + 0poéBsn

Column 4, NORM S, reports 109, ||$n]lec- When 65 and ép differ from 1.0, then their
logarithms appear in columns 7 and 8, DELTA B AND D.

The data in Figure 3.5 reveals much about the performance of Newton’s method.
The search would stray in the first few steps if not for the convergence monitors explained
in Section 2.1. The monitors use 65 to keep v,,.1 in bounds, and they use ép to ensure
I$n+1lloe < |[$nlloo- Whenever appropriate 6z and 6p can’t be found for some s,,, then
another s,, isobtained from a new Jacobian matrix. For thisreason, sincethefirst few steps
are difficult, matrix evaluations occur at many early solution estimates (LINES 8 TO 13).
Finally, when Newton's modified method can retain the Jacobian matrix over several steps,
then columns 2 and 4 show convergenceis roughly linear on alogarithmic scale (LINES 14
TO 21). In contrast, Newton’s pure method converges quadratically. Although that method
would need fewer steps, it would need more computing overall because matrix preparation
is expensive, hence the controls SSAGE and TDAGE.

K> The fifth and sixth columnsin Figure 3.5, ABS and REL, indicate convergence of
the search. Section 2.1 explains the criteria for stopping at v,, is

| < either ABS, or
Sin| >
REL x |U7;7n|

in which i indexes all the entriesin the vectors, and in which the controls ABS and REL are
either SSABS and SSREL in searches for steady states, or TDABS and TDREL in searches
for transient states. Columns 5 and 6 report the smallest ABS and REL sufficient to accept
the unknownsviolating the other’scriterion. For example, al theentriesintheinitial guess,
V9, that do not meet the absolute bound, do meet arelative bound

|3i,0| ﬁ ABS — |5i,()| < 100'37 X |’Ui’0|

so Figure 3.5 reports 0.37 to measure the relative error in vy (LINE 7). Similarly, al the
entries in the initial guess, vy, that do not meet the relative bound, do meet an absolute
bound

‘Si’()‘ g REL x |’Ui’()| —— |5i,0| < 102'42

so Figure 3.5 reports 2.42 to measure the absolute error in vy (LINE 7). These numbers
generally decline as the search progresses (LINES 7 TO 21). The search stops when the
numbers drop below the respective control values, which in this case are SSABS = 10~?
and SSREL = 10~%. For example, at the chosen solution v14, column 6 reports —7.29 for
REL, which suggests any unknowns that do not meet the absolute bound have acceptable
relative errors below 10722, || This example reports ZEROfor ABS, meaning al the
unknowns do meet the relative bound.

3.3 Output for Time Evolution

The output explained here describes time evolution when LEVELM = 2. At higher levels
this output gives way to that of Newton's search for each transient state interspersed by
messages counting time points. For Chapter 7'sexample, Figur e 3.6 showsthe output from
thetime evolution following theinitial failure of Newton’smethod. Thistask issummarized
online9in Figure 3.2.

27

3.3 Output for Time Evolution

EVCLVE:

EVCOLVE:

BEG N TI ME EVOLUTI ON

TIME LOGLO NEWION SEARCH
20 I I R R R R
NUMBER NORMF CHANGE STRIDE STEPS J'S COND J REMARK

0 6. 14

1 5. 83 1.10 -3.00 3 1 1.25
2 5.81 -0.65 -3.00 3

3 5. 80 -0. 67 -3.00 3

4 5.79 -0.68 -3.00 3

5 5.78 -0.69 -3.00 3

6 5.76 -0.71 -3.00 3

7 5.75 -0.72 -3.00 3 1 1.25
8 5.73 -0.73 -3.00 2

9 5.72 -0.75 -3.00 2

10 5.71 -0.76 -3.00 2

11 5.69 -0.78 -3.00 3

12 5. 67 -0.79 -3.00 2

13 5. 66 -0.81 -3.00 2

14 5.64 -0.82 -3.00 2

15 5. 63 -0.84 -3.00 2

16 5.61 -0. 86 -3.00 2

17 5.59 -0.87 -3.00 2 1 1.25
18 5. 60 -0.89 -3.00 2

19 5. 64 -0.91 -3.00 2

20 5.68 -0.93 -3.00 2

21 5.71 -0.93 -3.00 2

22 5.74 -0.90 -3.00 2

23 5.77 -0.87 -3.00 2

24 5. 80 -0.84 -3.00 2

25 5.82 -0.82 -3.00 2

26 5. 89 -0.25 -2.50 2 1 1.85
27 5.94 -0.20 -2.50 3

28 5.99 -0.15 -2.50 3

29 6.03 -0.11 -2.50 3

30 6. 07 -0. 07 -2.50 3

31 6.10 -0.04 -2.50 3

32 6.13 -0.01 -2.50 3

33 6. 15 0.02 -2.50 3 1 1.85
34 6.18 0.05 -2.50 3

35 6. 20 0. 07 -2.50 3

36 6.21 0. 09 -2.50 3

37 6. 23 0.11 -2.50 3

38 6.24 0.12 -2.50 3

39 6. 26 0.14 -2.50 3 1 1.85
40 6. 27 0.15 -2.50 2
41 6.28 0.16 -2.50 2
42 6.29 0.17 -2.50 3
43 6. 29 0.18 -2.50 3
44 6. 30 0.19 -2.50 3
45 6. 30 0.19 -2.50 3
46 6.31 0.20 -2.50 3
47 6.31 0. 20 -2.50 2 1 1.84
48 6. 32 0.21 -2.50 2
49 6.32 0.21 -2.50 3

50 6. 32 0.21 -2.50 3

SUCCESS. TI ME EVOLUTI ON COVPLETED.

Figure 3.6. The portion of LEVELM= 2 output that describes time evolution. Section 3.3
interpretsthis data. Chapter 7 explains the particular simulation.

28

©CoO~NOOTAWNPEF

3.4 Output for Grid Selection

The cumulative count of time points, m, appears in the Figure's first column,
TI ME PO NT NUMBER. Twopnt's control, STEPS1, specifies 50 time points per time
evolution, so the second time evol ution continues from point 50. Output from that evolution
is not pictured here.

Asin other output tables, the second column in Figure 3.6, NORM F, measures the
steady state residual, specifically

logo I (v(m)) oo

in which v(,,) isthe m-th transient state. The residual quickly decreases over the first step
10 5.83 (LINE 7), then decreases more slowly t0 5.59 (LINE 23), and finally increasesto 6.32
(LINE 54). Newton's search for the steady state usually fails when begun from transient
states with large or increasing residuals (the residual s oscillate in time when the underlying
simulated phenomena has oscillatory transient behavior). In this simulation too, after the
residual pesks at 6.32 for v(4g), and again at 6.62 for v(ss5) (not shown), then Newton's
search for the steady state succeeds from v(;50) where the residual is 6.02.

The third column in Figure 3.6, CHANGE, measures the change to the solution from
one time point to the next.

10g10 || V(m) — V(m—1) Hoo

IO If the transient residual is explicit in time

() = 5~)

then the change to the solution equals the product of the steady state residual and the time
stride. In the Figure'slogarithmic scale, column 3 then equals the sum of columns 2 and 4,
which report theresidual and the stride, respectively. Evenwhen thetransient residual isnot
explicit in time, asin Chapter 7's simulation, column 3 still moves jointly with columns 2
and 4. In this example, column 3 jumps from —0.82 to —0.25 when the stride increases
one-half order of magnitude (LINES 31 AND 32).

The fourth column in Figure 3.6, STRI DE, displays the time stride chosen by the
controls discussed in Section 2.2. With

STRIDO =103 STEPS2 =25 TINC=+v10 TMAX =102

thestrideis 10~ for thefirst 25 steps, then 1025 for the next 25, and finally 102 thereafter.

Theremaining columnsin Figure 3.6 describe Newton’ ssearch for each transient state.
Column 5, STEPS, countssearch steps; column 6,J" S, counts Jacobian matrices; column 7,
COND J, reports the largest condition number measured in the manner of Section 3.1;
column 8, REMARK, explains why Newton's search failswhen it does. The count of steps,
column 5, indicates the work of solving the transient equations. Shorter, easier time strides
need few search steps. Longer, harder strides need more searching, particularly as the
Jacobian matrix grows older and yields poorer search directions. Inthisexample TDAGE =
20, so after the matrix evaluation at one of the 3 search steps for v (39 (LINE 45), at most
twenty Newton search steps pass before the next matrix evaluation at one of the 2 steach
steps for v(47) (LINE 53).

3.4 Output for Grid Selection

The output explained here describes grid selection when LEVELM > 2. For each grid, this
output analyzesthelatest solution and showsthe resultant new grid, if any. Figure3.7 shows

29

3.4 Output for Grid Selection

REFI NE:

SELECT A GRID.
RATIO 1 RATI O 2
ACTUAL 0.939 1. 000
DESI RED 0. 100 0. 100
THE NEW GRI D (* MARKS NEW PO NTS):
LARGEST RATI GS AND
I NDEX GRI D PO NT NUMBER TOO LARGE
RATIO 1 RATI O 2
1 0. 000000000E+00
2% 2.500000037E-01 0.94 4
3 5. 000000075E- 01 1.00 3
4* 7.500000112E-01 0.70 4
5 1. 000000015E+00 0.42 3
6* 1. 250000019E+00 0.23 3
7 1. 500000022E+00 0. 45 4
8* 1. 750000026E+00 0. 06
9 2. 000000030E+00 0.23 3
10* 2. 250000052E+00 0.02
11 2. 500000075E+00 0. 08
0. 02
12 3. 000000119E+00 0.04
0. 02
13 3. 500000089E+00 0.03
0.02
14 4. 000000060E+00 0. 04
0.01
15 4.500000030E+00 0.04
0.01

16 5. 000000000E+00

Figure 3.7. The portion of LEVELM= 2 output that describes grid selection. Section 3.4
interpretsthis data. Chapter 7 explains the particular simulation.

this output for the transition from the second to the third grids in Chapter 7's simulation.
Thistask is summarized on line 19 of Figure 3.2 when LEVELM= 1.

Thefirst portion of Figure 3.7 (LINES 3 TO 6) reports Section 2.3's largest ratios for
the most recent grid’s solution. In this example these ratios exceed their desired values,
TOLER1 and TOLER2, so twopnt constructs a new grid.

The second portion of Figure 3.7 (LINES 10 TO 34) liststhe new and old grid points.
Twopnt’s grid construction process retains al old points and then adds new points to halve
selected intervals. Column 1in the Figure, | NDEX, counts pointsin the new grid and marks
new pointswith asterisks. Column 2, GRI D PO NT, shows point locations. The old points
lie on every other line; the new points, if any, lie between. Grid regions with no new points
therefore have many blank lines (LINES 24 TO 34).

Columns 3through 6 in Figure 3.7, RATI O 1 and RATI O 2, reveal the workings of
Section 2.3's grid acceptance criteria.

?
max RATI Oi, < TOLERi i=land2

RATI OL monitors the greatest change in value from one grid point to the next, so entries
in column 3 appear on lines between old points. Column 3 lists the largest RATI Ol ,,
for any component, k, in agiven interval. Column 4 counts the components whose ratios
exceed TOLERL in that interval. Intervals with entries in column 4 have been marked for

30

©CoO~NOOTAWNPEF

3.4 Output for Grid Selection

halving. For example, in the interval between the second and third old points (LINE 17),
the largest ratio is 0.70, and altogether, four solution components have ratios exceeding
TOLERL = 0.1.

Similarly, RATI O2 monitorsthe greatest changein angle at grid points, so the entries
in column 4 appear onlineswiththeold grid’spoints. Column5 liststhelargest RATI Q2 ,,
for any component, &, at agiven point. Column 6 countsthe componentswhoseratiosexceed
TOLERZ at that point. Intervals on either side of old points with entries in column 6 have
been marked for halving.

Twopnt halves marked intervals. If too many intervals need halving, then those with
more marks win priority. For example, in Figure 3.7 the interval between the second and
third old points (LINES 16 TO 18) has4 + (3 + 3) = 10 marks, while the interval between
the fifth and sizth old points (LINES 22 TO 24) has 0 + (3 4+ 0) = 3 marks. Twopnt halves
al marked intervals in this example because, with PADD = PMAX, twopnt has no limit on
new points.

(B) Even if the mathematical formulation is not questioned, that is, if the
theoretical description which it represents and the idealizations, simplifications,
and neglections which it involves are accepted as final (and not viewed as
sources of errors), this further point remains: The description may involve
parameters, the values of which have to be derived directly or indirectly (that is,
through other theories or calculations) from observations. These parameters
will be affected with errors, and these underlying errors will cause errors in the
result of our calculation.

— J. von Neumann and H. H. Goldstine [26]

31

4.1 Short List of Controls

Using Controls

4.0 Introduction

Simulators using twopnt must provide the meansto accesstwopnt’scontrols. Usually, values
for twopnt’s controls are intermingled with other data in text files read by the simulators.
In this case, the simulators may use their own names, or “ keywords,” to indicate twopnt’s
control data. Those simulators reference manuals should be consulted for explanation.
Appendix 1 cross-references twopnt’s controls with the keywords used by some common
simulators.

In extreme cases, the simulator programs themselves may have to be modified to
adjust twopnt’s behavior. Some controls may be inaccessible this way because they are
inapplicable, or because simulation writers know best how to set them. Other controls
may be accessible but seldom in need of changing. Twopnt provides default values for its
controls in case simulators do not.

4.1 Short List of Controls

Xk X X ok X % X o X% X

This short list of controls collects in one place everything introduced elsewhere. If avaue
appears after an = sign, then that value is twopnt’s default for the control. Simulators
generally replace twopnt’s defaults by their own. Page numbersrefer to the explanationsin
Chapter 2 or 3, and to the caveatsin Section 4.2.

ABOVE(1) upper limit for the i-th unknown 14, 33 (e 62, 66)
ACTI VE(k) use the k-th component for grid selection 17, 33 (e 63, 66)
ADAPT = no perform grid selection . 16, 34
BELOW) lower limit for the i-th unknown 14, 33 (e 62, 66)
LEVELD =1 level of solution data output 21, 34
LEVELM=1 level of informative message output 21,34
PADD = PMAX maximum points added to any one grid 18, 34
PMAX maximum points in any grid 18, 34 (e 63, 68)
PO NTS points (in the initial grid) . . . 16, 35 (e 58, 62, 68)
SSABS = 10~* steady state absolute convergence test's bound 13,35
SSAGE = 10 steady state Jacobian’s retirement age 13, 37

32

b D D S . S D S D T S R s . S D S

4.2 Long List of Controls

SSREL = 1076 steady state relative convergence test’s bound 13, 35
STEADY = yes search for the steady state . . . 12,37
STEPSO =0 time steps before searching for the steady state 15, 38
STEPS1 = 200 time steps after failing to find a steady state . . . 15, 38
STEPS2 = 100 time steps before increasing the stride 15, 38
STRIDO = 10~* initial stride between time points . . . 15, 38
TDABS = 10~? time dependent absolute convergence tests bound 13, 35
TDAGE = 20 time dependent Jacobian’s retirement age . 13, 37
TDEC = /10 divisor by which to decrease the stride 15, 38
TDREL = 10— time dependent relative convergence test’'s bound . 13, 35
TINC=10 multiplier by which to increase the stride 15, 38
TVAX = 1072 maximum stride 15738
TM N=10"20 minimum stride 15, 38
TOLERO = 107Y absolute and relative significance floor e 17, 39
TOLERL = 0.2 bound on change of value in each interval 17, 39
TOLER2 = 0.2 bound on change of angle at each point . . . 18, 39
U initial guess 40 (e 61, 71)
X initial grid 16,40(e58,63,71)

4.2 Long List of Controls

This list matches Section 4.1's short list but has long explanations. Details are explained
here, so familiarity with Chapter 2 and sometimes Chapter 6 is assumed.

* ABOVE(i7) = upper limit for the i-th unknown 14 (e 62, 66)
* BELOW i) = lower limit for the i-th unknown 14 (e 62, 66)

Twopnt most commonly fails when Newton's search “goes out of bounds.” Writers
and users of simulators then offer differing explanations: the simulation is being abused,
some say; the choice of limits is too conservative, others say. Simulators usually choose
appropriate limits but provide controls to override their choices. The bounds can be “turned
off” only by choosing very largelimits. Simulations* going out of bounds’ might berepeated
with looser limits, but simulations consistently going out of bounds may be improperly
formulated. The bounds are an independent check on the veracity of the scientific model.

The controls provided by the simulator may not have full functionality. For example,
chemistry simulations usually have one control for the lower limit of all species’ concen-
trations simultaneously.)| Twopnt’s own controls have some coarseness too: unknowns
belonging to the same component must have the same limits. See Chapter 6.

Whatever limitsare chosen, they should berelaxed from the precisely correct physical
limits. For example, chemistry simulations should not limit species concentrationsto > 0.
The eguations underlying the simulation usually allow non-physical values, < 0, and it
may be expedient to permit searches for physically correct values to pass through non-
physical regimes. Moreover, computer imprecision enables quantities to lie vanishingly
near boundaries but on either side without harm.

* ACTI VE(k) = use the k-th component for grid selection 17 (e 63, 66)

These controls apply only to two point boundary value problems with automatic grid
selection. Simulators usually set them without provision for change. They know which
components are physically real and smoothly varying. These controls are meant to exclude
other components which might exist only for computational convenience. For example,
simulators may find it convenient to treat finite elements’ coefficients as components, or to

33

4.2 Long List of Controls

replicate eigenvalues throughout the grid (though this last computational device is unnec-
essary, see[16]).

* ADAPT = no perform grid selection 16

Twopnt selects grids automatically only for two point boundary value problems, and
then only when permitted. When ADAPT = yes, then twopnt checks whether each grid is
adequate even though PADD = 0 or PO NTS = PMAX might prevent an inadequate grid
from improving. Some simulators reserve ADAPT for use behind the scenes. For example,
they may perform asequence of increasingly difficult simulationsto obtai n solution guesses,
and while doing so, they may set ADAPT = no to prevent grid selection.

* LEVELD =1 level of solution data output 21
* LEVELM=1 level of informative message output 21

These controls affect only twopnt’s output and not the graphical output or the solution
files some simulators may provide. Twopnt acts asthough the controls satisfy the following
inequalities.

too much output = 3 > LEVELM > LEVELD > 0 = no output

Some simulators repackage these controls as one number: 00, 10, 11 and so on. Level 00
permits only error messages.

* PADD = PMAX maximum points added to any one grid 18

This control applies only to two point boundary value problems with automatic grid
selection. Twopnt’sdefault, PADD = PMAX, limits each grid's growth only by the available
memory. Since twopnt enlarges grids by halving intervals, a grid of p points acquires at
most p — 1 new points. If PADD > 0 then ADAPT = no still can forbid grid selection.

Many simulations restrict PADD to a few points for reasons of efficiency, as follows.
Early in the simulation when no grid is adequate, much different grids can have much
different solutions. For example, flame fronts migrate as grid points permit. Thus, if an
early grid acquires many new points, then its solution may poorly guess the next. Twopnt
then must solve, with some difficulty, astill inaccurately resolved problem. Restricting the
grids' growth restricts the solutions' change, and so eases progress to grids that do resolve
the simulation.

Very small values for PADD may lead to unnecessarily large grids. If several regions
need improvement in locations dependent on one another, thenimproving only someregions
may add points ultimately not needed. Thus, PADD = 1 is not recommended.

* PMAX = maximum points in any grid 18 (e 63, 68)

This control applies only to two point boundary value problems with automatic grid
selection. A simulation whose grids grow large needs more computing time and more
memory space. A limit on grid size protects against overzealous grid enlargement, and so
might be chosen smaller than the simulator would otherwise allow.

Simulation programs that adhere to the fortran standard [1] must fix memory size
when they are written, and thus must anticipate the largest grids they may encounter. Since
thisis difficult to do, and since computer systems penalize programs using much memory,
simulation programs sometimes need changing to adjust memory size.

Many things besides the grid affect memory size, and for limited memory, may force
grids smaller. For example, Jacobian matrices usually are formed explicitly. Their memory
needs then dominate all others and grow as COVMPS? x PMAX. In chemistry simulations

o S S

4.2 Long List of Controls

for example, COVPS counts chemical species. If asimulator alowsthis number to change,
then its limit on PMAX necessarily changes too, in the opposite direction.

PO NTS = points (in the initial grid) 16 (e 58, 62, 68)

Simulators have “points’ if they employ the “components at points’ convention for
grouping their unknowns, see Section 6.2. Usually, simulators provide controls to specify
grid size either directly, or else indirectly through other attributes of the grid.

SSABS = 10~* absolute bound for steady state convergence 13
TDABS = 10~ absolute bound for time dependent convergence 13
SSREL =106 relative bound for steady state convergence 13
TDREL = 10~ relative bound for time dependent convergence 13

Newton'’s search halts when the change to each unknown is small (|| actually, New-
ton’s search halts when the change would be small). This means the estimated solution has
approximately the desired accuracy. The conflicting demands for low | and high 1} bounds
in the convergence tests are the same for every simulation, but of course, the values may
change with each simulation.

(@ | consistency within the solution
(b) | confidencein simulation results

(¢) f+ compromisesin the simulation
(d) f economy of computer use
(e) 1+ imprecision in machine arithmetic

(8 | High bounds, meaning weak convergence tests, are not recommended. The
simulation must be performed with reasonable numerical accuracy to assure consistency
within the simulation model.

(b) 4 Any really important simulation should be repeated with more stringent con-
vergent tests, say with bounds one or two orders of magnitude smaller, to gain confidence
in the simulation.

(c) ft Low solution error may be unnecessarily stringent owing to both scientific and
mathematical compromises in the simulation. For example, secondary phenomenamay be
“left out” for lack of data, or coarse grids may be chosen for lack of computing power.
Perhaps for many simulations, only the order of magnitude of the results is meaningful.

(d) + Newton’s modified method converges geometrically or faster, so computing
timeisinversely proportional to the logarithm of thebounds. That is, increasing all controls
from 108 to 10~ may decrease computing time by fifty percent. Of course, when Newton's
searches are few or short, then the computing time may be difficult to control precisely.

(e) + Because machines necessarily make (very small) arithmetic errors, thereis a
level of error impossible to breach. If the convergence tests are set below this floor, then
Newton'’s searches may wander indefinitely among the best solutions the machine can find.

Beware that these bounds do not control all simulation errors, and they do not control
with certainty what few they try to. See John von Neumann'’s four simulation errors in
Chapter 1, and the stepsfor building asimulation in Chapter 2. Simulation accuracy depends
ultimately on the scientific model. Twopnt’s controls affect other simulation errors.

35

4.2 Long List of Controls

simulationstep von Neumann’s errors twopnt’s controls

3, solution approximation, precision SSABS and SSREL
2, discretization approximation TOLERL and TOLER2

1, modeling measurement, model

The bounds of interest here pertain only to the errors of solving nondifferential equations.
Errors even in this restricted sense are not controlled precisely. The mathematical anal-
ysis required to do so varies with each simulation, and is seldom performed. In generd,
guantitative relationships between accuracy and simulation controls are unknown.

Twopnt’s convergence tests for Newton's searches control absolute and relative accu-
racy, and they vary for steady and transient searches.

‘ absolute relative

steady SSABS SSREL
transient TDABS TDREL

The transient convergence tests can be less stringent because twopnt uses transient states
only as guesses for steady state searches.

The absolute and rel ative tests apply separately to each unknown. That is, the solution
estimate for one unknown may be absolutely accurate, while the estimate for another may
be relatively accurate. Each unknown is required to pass only onetest. If one convergence
bound istoo stringent or is zero, intending “no error allowed,” then the other test till allows
some slack. Both should not be set zero because (e, above) imprecise machine arithmetic
cannot find exactly accurate solutions. Usually, low relative error is more valuable because
relative accuracy means “some digits are significant.” Thus, the absolute convergence test
is “just in case” some values are too small to have meaningfully low relative error. In
chemistry simulations for example, if mass fractions are unknowns, then fractions below
10~ probably mean the corresponding molecules aren’t present, so in this case 10~ is
reasonable for SSABS and TDABS.

The relative convergence bounds can range from 0 to 1. Relative accuracy near 1
means no precision at all. The practical upper limit (a, above) may be 10~ because some
precision is needed to assure consistency within the simulation. The machine “ roundoff
level” relative to 1.0 establishes afloor beyond which precision cannot improve. Precision
at the roundoff level is unattainable because errors compound in long calculations. The
practical lower limit (e, above) for the relative bounds may be three orders of magnitude
above the roundoff level.

)] Computing machines provide thirty-two and sixty-four bit binary arithmetic. The
roundoff level exceeds 2732 = 10726 and 2764 = 10~19-3 because some bhits are lost to
exponents and signs. For sixty-four bits, the roundoff level is roughly 2748 = 107145
(cray single precision) or 27°2 = 10~ !5-7 (vax double precision), and then the attainable
floor for relative errors might be (€) 10~1-® (cray) or 10~127 (vax). For thirty-two bits, the
roundoff level isroughly 2723 = 10~6-9, and then the attainable floor is 10~3-? (vax single
precision). Thirty-two bit arithmetic is not recommended because the floor is too near the
ceiling (a, above) 1073.

Theabsol ute convergence bounds can rangefrom Oto anything. Their attainablelower
limit depends both on the roundoff level of the machine and on the anticipated magnitudes
of theunknowns. If an unknown isexpected to have magnitude 104, and if the roundoff level
relativeto 1is10~ 14>, then by the earlier reasoning, the attainabl e absol ute accuracy isthree
orders of magnitudeabove 10* x 10145, This10~"-® isfor unknownswith magnitude 10*.

36

4.2 Long List of Controls

Twopnt applies the same absol ute convergence test to al unknowns, however, so difficulties
may result when unknowns have much different magnitudes.

Some simul ators perform transformations of variables that complicate choosing these
bounds. These simulators might alter their data for printing and plotting. For example,
chemistry simulations typically employ mass fractions for unknowns, but they might report
mole fractions, or bulk quantities instead. The data reported by the simulator then are not
the data to which twopnt appliesits convergence tests, so the relationship between twopnt’s
controls and the accuracy of reported results is unclear.

* SSACE =10 steady state Jacobian’s retirement age 13
* TDACE = 20 time dependent Jacobian’s retirement age 13

The retirement age limits the steps in Newton’s search between matrix evaluations.
The limits may range from 1 to anything, though Section 2.1's convergence monitors may
retire some matrices early.

Smaller retirement ages improve the chances for successful searches, because more
current matrices produce better search directions. If the retirement ageis 1, then the search
revertstothepure, but still damped, Newton’smethod. Thismay succeed wherethemodified
method does not. For example, SSAGE=1 makes time integration unnecessary on the first
grid in Chapter 7’s simulation. Transient searches should be easy, so TDAGE=1 should be
unnecessary for them.

Larger retirement ages generally reduce computing time. Although older matrices
produce slightly misdirected searches and so entail more search steps, fewer matrices are
needed, usually, when the retirement age increases. Since matrix preparation likely isthe
most expensive subtask twopnt performs, on balance, any reductionin the matrix population
also reduces the overall computing time.

I The preceding discussion can be quantified as follows. When as usual, Gauss
elimination method solves the matrix equationsin Newton’s method (we stand on the shoul-
ders of giants), then the computing time for Newton’s search is roughly

N Tm, + Ns Ts

inwhich“,,,” notesmatricesand” ;" notessearch steps, andinwhichn isthe count and r isthe
computing time of such things. If matrices are computed on schedule then n.,, ~ ns / AGE
in which AGE is SSAGE or TDAGE. The time of one step, 7, is mostly the time of one
function evaluation, 7. Matrix preparation involves forming and factoring the matrices, but
Tm iIsmostly thetime of forming. Owing to the complexity of residual functions, simulators
usually form Jacobian matrices by numerical rather than analytic differentiation. In two
point boundary value problems for example, matrix evaluation requires at least 3 x COMPS
function evaluations, S0 7,,, = 3 x COMPS x 7¢. In chemistry simulations moreover, COMPS
may be 50. With these substitutions, total computing time might be as follows.

+ Sy E
N, T, + N Tg R ACE NsTf

Thus, increasing the retirement age will reduce the total computing time so long asn; does
not change proportionally with AGE.

* STEADY = yes search for the steady state (yes or no) 12

Twopnt undertakes the search for the steady state, twopnt’s primary task, only when
permitted. When not, twopnt performs the initial time evolution controlled by STEPSO,
but no grid selection follows. Time evolution alone sometimes reaches the steady state with
reasonable efficiency. See the discussion of STRI DO and related controls.

37

4.2 Long List of Controls

The search for the steady state might be omitted to diagnose a malfunctioning sim-
ulation. A simulation with agitated time evolution, and seemingly without a steady state,
might be better understood by inspecting the transient states. With STEADY = no, twopnt
finishes after the initial time evolution, and lets the simulator draw pictures and so on.

The search for the steady state might be omitted to avoid unnecessary work in a
sequence of simulations. Many simulators improve their scientific model piecemeal, and
then the result of one simulation is only the guess for the next. Short transient evolutions
might find sufficient guesses, while exhaustive searches might bewasted finding preliminary
results too accurately.

Finally, the search for the steady state might be omitted to avoid convergence difficul-
ties in a sequence of simulations. Many simulators undertake sequences of simulations to
perform parameter studies, and then the result of one simulation isavery good guessfor the
next. Unfortunately, steady states usually occur where strong opposing trends balance, so
with imprecise machine arithmetic, residual functions have large relative errors near steady
states. The search directions in Newton’s method then have large réelative errors too, and
thus Newton's search may have difficulty continuing or recognizing it need not. A time
evolution might approach the steady state more reliably, or at least, might have less trou-
ble recognizing the steady state. Beware if Newton's search consistently fails to find the
steady state while time evolution appears to, then there is reason to doubt the veracity of the

simulator.
* STEPSO =0 time steps before searching for the steady state 15
* STEPS1 = 200 time steps after failing to find a steady state 15

Twopnt evolvesintimetheguessfor the steady state either when asked, by STEPSO >
0, or when Newton’s search is unable find the steady state, provided STEPS1 > 0. The
requested quantities of steps may range from 0 to anything. If automatic grid selection has
been requested, then theinitial time evolution specified by STEPSO occursonly for thefirst
grid.

It is best to perform many transient steps, STEPS1 > 0, when any are needed.
Much computing time can be wasted by frequently reverting to unsuccessful searches for
the steady state. Searches for transient states usually need comparatively little computing

time.
x STRIDO =10~* initial stride between time points 15
* STEPS2 = 100 time steps before increasing the stride 15
* TINC=10 multiplier by which to increase the stride 15
* TMAX = 1072 maximum stride 15
* TDEC = /10 divisor by which to decrease the stride 15
* TMN=10"20 minimum stride 15

These controls choose and change the time stride. The initial stride and the stride
limits must be positive, the other controls must range upward from 1. The stride cannot
lengthen if TMAX = STRI DO or TI NC = 1 or STEPS2 isvery large. The stride cannot
shortenif TM N = STRI DO or TDEC = 1.

Twopnt’s use of time evolution supposes the simulated phenomena relax to a steady
state over time. The time stride should be chosen to reach, in as little computing time as
possible, either (1) the steady state, or (2) astate from which Newton's search for the steady
state can be successful. The conflicting demandsfor short |} and long 1) strides are the same
for every simulation, but again, the values may change for each simulation.

38

4.2 Long List of Controls

(& | follow thetransient evolution to the steady state
(b) || easesearchesfor transient states

(¢) ©+ reduce searches for transient states
(d) f¢ forgo detailed resolution of transient response

The transient evolution is efficient if searches for transient states are easy and few.
(b) | Shorter strides make the searches easier because the states change less from one time
point to the next, but (c) 1 longer strides need fewer stepsto reach an acceptable state. For
very long strides, searches for transient states degenerate to seeking the steady state directly.

The time evolution is accurate if the transient state, v ,,,), computed at time point ¢,,,
closely approximates the “true” state, v(¢,,), determined by the time dependent differential
equations. It isnot possible to havev(,,) = v(t,,) dueto the errors explained in Chapter 1,
butitispossibleto havev,,) ~ v(t,,) provided thetimestrides, t,,, —t,,,1, areshort. Thus,
on the way to an acceptable v ,,,), short strides keep v(,,,) near v(t,,), but long strides allow
V(m) tostray. () | Short strides preserve the physical meaning of the transient simulation,
but (d) 1} long stridesavoid the expense of tracking minor variationsin thetransient response.

Usually, longer strides are easier and safer as the evolution proceeds, hence twopnt’s
controlsto gradually lengthen stride and to shorteniit if trouble occurs. Frequent adjustments
to the stride are not recommended because each change requires a new Jacobian matrix.

The aggressive strategy for choosing the time stride (1, above) ignores other advice
given here regarding efficiency. It favors long strides to reach the steady state “quickly.”
Thisstrategy beginswith STRI DO large, relieson search failuresto prompt stride reductions
if needed, and allowslargeincreases after few steps, perhaps STEPS2 = 20. An aggressive
strategy may reach the steady state through time evolution alone, and thus its expense may
be partly compensated by eliminating the search for the steady state.

Simulators favor success over speed, and so err conservatively: they try to follow the
natural relaxation with reasonable haste. The conservative strategy (2, above) uses short
stridesto keep transient searches easy and to avoid straying fromthetrue, transient evolution.
This strategy begins with STRI DO small and allows small increases, perhaps TI NC = 2,
after many steps. These control settings might be changed after some experience with them.
For example, twopnt’s own choicesare more aggressive. Theinitia strideislong, and large
increases are permitted, but only after many steps.

x TOLERO = 1077 absolute and relative significance floor 17

This control applies only to two point boundary value problems with automatic grid
selection. Many simulators have no provision for changing the floor because it seldom
matterswhenthe ACTI VE(k) controlsare properly set. Twopnt inspects only components
whose absolute and relative variations exceed the floor. Twopnt's default value suits sixty-
four bit arithmetics and chemistry simulations. A higher absolute floor might exclude trace
quantities of intermediate chemical species. For thirty-two bits, twopnt’s floor is below
the roundoff level, so the relative floor passes every component and only the absolute floor

discriminates.
* TOLERL = 0.2 bound on change of value in each interval 17
* TOLER2 = 0.2 bound on change of angle at each point 18

These controls apply only to two point boundary value problems with automatic
grid selection. They limit the change to the solution occurring at any one grid point by
concentrating points in regions where large changes occur. The bounds may range from 0
to 1, that is, from insatiable to no effect. Simulation accuracy and expense increase as the
bounds decrease.

Beware that these bounds do not control al simulation errors, and they do not control
with certainty what few they try to. See John von Neumann's four simulation errors in

39

4.2 Long List of Controls

Chapter 1, and the stepsfor building asimulation in Chapter 2. Simulation accuracy depends
ultimately on the scientific model. Twopnt’s controls affect other simulation errors.

simulationstep von Neumann’s errors twopnt’s controls

3, solution approximation, precision SSABS and SSREL
2, discretization approximation TOLER1 and TOLER2

1, modeling measurement, model

Errors even in twopnt’s restricted sense are not controlled precisely. The mathematical
analysisrequired to do so varies with each simulation, and is seldom performed. In general,
quantitative relationships between accuracy and simulation controls are unknown. Sec-
tion 2.3 explains the apparent effects on accuracy of the grid selection process controlled
by TOLERL and TOLER2.

Some aspects of a simulation may be particularly sensitive to the grid. In reacting
flowsfor example, theseincludethelocationsof flamefrontsand the thicknesses of boundary
layers. Simulations should be repeated with different tolerances to assess the accuracies of
such things. The effects of TOLER2 seem to be cosmetic, so TOLER2 might be made less
stringent when computing resources are limited.

TOLERL and TOLER2 affect memory space more strongly than computing time.
L ower tolerances require larger grids, but these are grids whose problems are solved more
easily because good guessesareavailable. In Chapter 7’ssimulation for example, Figures 3.2
and 3.3 show continuing from 35 to 76 points requires only 34.5% of all computing time.
Memory space and computing time thus increase disproportionately, by 88% and 52%
respectively in this example.

TOLERL and TOLER2 affect grid size differently. For example, Figure 3.2 shows
RATI O1 decreases more rapidly with grid size than does RATI Q2. A simulation stops
when it finds grids for which RATI OL < TOLER1 and RATI O2 < TOLERZ2. Output like
Figures 3.2 and 3.7 indicate how TOLER1 and TOLER2 affect grid size, and output like
Figure 3.3 indicates how grid size affects computing time.

initial guess (e 61, 71)

There is no subsgtitute for a good guess. Simulators either (1) choose guesses them-
selves based on problem data, or (2) provide controls that specify guesses directly, or (3)
provide controls that specify guesses indirectly via expected properties of the solution, or
(4) perform sequences of increasingly complex simulations with each supplying the guess
for the next, or (5) borrow guesses from other simulations. Thereis no substitute for a good
guess. Thereis no substitute for agood guess. . .

initial grid 16 (e 58, 63, 71)

This control applies only to two point boundary value problems with automatic grid
selection. Other simulations may have grids too, and though twopnt has nothing to do
with theirs, well chosen grids are no less important for them. Proper grids ease twopnt's
work. For example, adding one point to the initial grid of Chapter 7's simulation (in the
boundary layer at the disk) halves the computing expense by eliminating the need for time
evolution. Simulators may provide controls to specify the initial grid either directly or
indirectly through various attributes of the grid such as spacing and the like.

40

5 Messages

M essages

5.0 Introduction

A simulator isan ensemble of many fortran subroutines only some of which write messages.
Twopnt’s subroutines identify themselves when they write, and their names are mnemonic,
so the context of twopnt’s messagesiis clear.

TWOPNT task selection
SEARCH Newton's search
EVOLVE time evolution
REFI NE grid selection

Long, informative messages from these subroutines appear in Sections 3.1 through 3.4,
respectively. The error and outcome messages discussed here are shorter.

Outcome messages are needed because “success’ and “failure” are not mutually ex-
clusive. For example, twopnt neither succeeds nor fails when it exhausts memory space
before finding asatisfactory grid. Twopnt writes messages to explain such outcomes, and it
warns simulators of inconclusive results, see Section 6.2. Simulators then must decide what
to do. They may continue past unsuccessful preliminary phases of complex simulations,
for example, or they may report inconclusive final resultsin the expectation these are “ good
enough.”

Twopnt fails unconditionally when it encounters programming errors and nonsensical
controls. Twopnt checks the consistency of its data as a precaution against such errors, and
writes messages like those in Figure 5.1 when errors are found. Error messages usualy
occur in groups. The subroutine that discovers the error writes a detailed message first,
and then each subroutine in the calling sequence reports successive failure. In this Figure,
SEARCH discovers anegative bound for a convergence test. EVOLVE isthe next subroutine
to complain, so the offending control is the one for transient state searches, TDABS.

All twopnt’s messages have the same format. (1) The first line and the first column
are blank. The examplesin this manual omit these. (2) The name of the writing subroutine
begins linetwo and ends at column eight. (3) Thetext beginsin column eleven and extends
no further than column eighty. Simulators usually ignore twopnt's format conventions
when they write their own messages, and particularly when they write much data. They,
not twopnt, write solution data.

a1

5.1 Short List of Messages

SEARCH. ERROR

THE BOUNDS FOR THE ABSOLUTE AND RELATI VE

CONVERGENCE TESTS MUST BE ZERO OR PGSI Tl VE.

EVOLVE: ERROR

-1. 00E+00 SSABS OR TDABS, ABSOLUTE ERROR
1. 00E-06 SSREL OR TDREL, RELATIVE ERROR

SEARCH FAI LS.

TWOPNT: ERROR EVCOLVE FAI LS.

Figure5.1. A sequence of fatal error messages spawned by one error. Section 5.0 explains

this Figure.

5.1 Short List of Messages

This alphabetical, short list of messages displays the first line of every message twopnt
writes. It also includesthefew messages written by the subroutines bel ow, that are supplied
with twopnt but are not part of twopnt, see Section 6.4.

EVOLVE:
EVOLVE:
EVOLVE:
EVOLVE:
EVOLVE:
EVOLVE:
EVOLVE:
EVOLVE:
EVOLVE:
EVOLVE:
EVOLVE:
EVOLVE:
EVOLVE:
EVOLVE:
EVOLVE:
EVOLVE:
EVOLVE:
EVOLVE:
EVOLVE:
EVOLVE:
EVOLVE:

REFI NE:
REFI NE:
REFI NE:
REFI NE:
REFI NE:
REFI NE:
REFI NE:
REFI NE:
REFI NE:

e TWPREP matrix preparer
e TWSHOW solution data writer
e TWSOLV equation solver

Page numbers in the list below refer to the complete texts and detailed explanations of
messages found either in Chapter 3 for informative messages, or in Section 5.2 for outcome
and error messages. Some messages have identical first lines.

BEG N TI ME EVCLUTI ON.

BEG N TI ME EVCLUTI ON.

CONTI NUE TI ME EVOLUTI ON.

CONTI NUE TI ME EVOLUTI ON.

CONTI NUE TI ME EVOLUTI ON W TH | NCREASED STRI DE.

ERROR.
ERROR.
ERROR.
ERROR.
ERROR.
ERROR.
ERROR.
ERROR.
FAI LURE.
PARTI AL
PARTI AL

NUMBERS OF COMPONENTS AND PO NTS MUST BE
SEARCH FAI LS. . .
THE BOUNDS ON THE TI I\/E STRI DE ARE QJT (]:
THE COUNT OF TIME STEPS MJUST BE ZERO OR
THE FACTORS FOR CHANG NG THE Tl ME STRI DE
THE INITIAL TI ME STRIDE MJST LI E BETVEEN
THE NUMBER OF TI ME STEPS MJST BE POSI TI VE
THE TI ME STEPS BEFORE STRI DE | NCREASES
NO TI ME EVOLUTI ON.
SUCCESS. Tl ME EVCOLUTI ON | NCOVPLETE.
SUCCESS. TI ME EVOLUTI ON | NCOVPLETE.

RETRY THE STEP W TH A DECREASED TI ME STRI DE.

SUCCESS.
SUCCESS.

TI ME EVOLUTI ON COVPLETED.
TI ME EVOLUTI ON COVPLETED.

THE LATEST SOLUTI ON:
THE SOLUTI ON DI D NOT CHANGE. RETRYI NG THE STEP

ERROR.
ERROR.
ERROR.
ERROR.
ERROR.
ERROR.
ERROR.
ERROR.
FAI LURE.

42

PO NTS | S OQUT OF RANGE.
SOME | NTERVALS IN THE GRID ARE TOO SHORT.
THE BOUNDS ON MAGNI TUDE AND RELATI VE CHANGE
THE BOUNDS ON RELATI VE CHANGES | N MAGNI TUDE
THE GRID I'S NOT' ORDERED.
THE LIMT ON PO NTS ADDED TO A GRID MJUST BE
THERE MUST BE AT LEAST ONE COVPONENT AND AT
THERE ARE NO ACTI VE COMPONENTS. . .

MORE PO NTS ARE NEEDED BUT NONE CAN BE

28
44
44
44
44
44
45
45
45
45
45
45
45
45
45
45
46
46
46
46
46

46
46
46
46
46
46
47
47
47

©CoO~NOOTAWNPEF

REFI NE:
REFI NE:
REFI NE:
REFI NE:

SEARCH:
SEARCH:
SEARCH:
SEARCH:
SEARCH:
SEARCH:
SEARCH:
SEARCH:
SEARCH:
SEARCH:
SEARCH:
SEARCH:

TWOPNT:
TWOPNT:
TWOPNT:
TWOPNT:
TWOPNT:
TWOPNT:
TWOPNT:
TWOPNT:
TWOPNT:
TWOPNT:
TWOPNT:
TWOPNT:
TWOPNT:
TWOPNT:
TWOPNT:
TWOPNT:
TWOPNT:
TWOPNT:
TWOPNT:
TWOPNT:
TWOPNT:
TWOPNT:
TWOPNT:
TWOPNT:
TWOPNT:
TWOPNT:
TWOPNT:
TWOPNT:
TWOPNT:
TWOPNT:
TWOPNT:
TWOPNT:
TWOPNT:
TWOPNT:
TWOPNT:
TWOPNT:
TWOPNT:

TWPREP:
TWPREP:
TWPREP:
TWPREP:

5.1 Short List of Messages

SELECT A GRID.

SUCCESS.
SUCCESS.

THE GRIID IS ADEQJATE
THE GRID IS ADEQUATE BECAUSE ALL ACTI VE

THE SCLUTI ON GUESS FOR THE NEW GRI D

ERROR.
ERROR.
ERROR.
ERROR.
ERROR.
ERROR.
ERROR.
FAI LURE.
FAI LURE.

NUMBERS OF COVPONENTS AND PO NTS MUST BE

THE BOUNDS FOR THE ABSCLUTE AND RELATI VE

THE DAMPI NG CCEFFI Cl ENT FOR STAYI NG .

THE GUESSES FOR SOVE UNKNOWNS ARE OQUT OF

THE LOAER AND UPPER BOUNDS ON SOVE UNKNOWNS

THE NUMBER OF NAMES IS VWRONG

THE RETI REMENT AGE OF THE JACOBI AN MATRI X
THE SEARCH DI VERGES.

THE SEARCH FOR THE FOLLOW NG UNKNOMNS GCES

SOLVE NONLI NEAR, NONDI FFERENTI AL EQJATI ONS.

SUCCESS.

SUCCESS.
17. 34 SECONDS TOTAL COWPUTER TI ME (SEE BREAKDOWN BELOW .

THE SOLUTI ON:

CALLI NG EVOLVE TO PERFORM TI ME EVOLUTI ON.

CALLI NG REFI NE TO PRODUCE A NEW GRI D. . .
CALLI NG SEARCH TO SCLVE THE STEADY STATE PRCBLEM
DOUBLE PRECI SI ON (TWO PO NT BOUNDARY VALUE PROBLEM) SOLVER 23

ERROR.
ERROR.
ERROR.
ERROR.
ERROR.
ERROR.
ERROR.
ERROR.
ERROR.
ERROR.
ERROR.
ERROR.
ERROR.
ERROR.
ERROR.
ERROR.
ERRCOR.
ERROR.

A CONTROL NAME | S NOT RECOGNI ZED.

EVOLVE FAI LS. . .

NEI THER THE | NI Tl AL TI I\/E EV(]_UTI O\l N(]? THE
NUMBERS OF ALL TYPES OF UNKNOWNS MUST BE AT
NUMBERS OF COMPONENTS AND PO NTS MUST BE
ONE OR BOTH WORK SPACES ARE TOO SMALL.

REFI NE FAI LS.

SEARCH FAI LS. . .

THE CALLI NG PROGRAM EXPECT S A VERSI O\l O:
THE LOAER AND UPPER BOUNDS ON SOME TYPES OF
THE NUMBER OF CONTROLS MJUST BE POSI TI VE.
THE NUMBER OF NAMES | S VWRONG .

THE PRI NTI NG LEVELS ARE OQUT OF O?DER

THERE ARE TOO MANY PO NTS. .

TOTAL UNKNOWNS MUST BE PCSI Tl VE.

TWERAB FAI LS.

UNKNOWN TASK.

UNKNOWN REPORT CODE.

EVCOLVE DI D NOT PERFORM A TI ME EV(]_UTI O\l
EVOLVE PERFORMED A TI ME EVOLUTI ON.

FAI LURE.
FAI LURE.
FAI LURE.

A SOLUTI ON WAS FOUND FCR A éRI D WTH '7'?'7
A SOLUTI ON WAS FOUND FOR A GRID WTH ???
NO SCLUTI ON WAS FOUND.

FI NAL SOLUTI ON:

I NI TI AL

GUESS:

REFI NE DI D NOT SELECT A NEW GRI D.
REFI NE SELECTED A NEW GRI D.

SEARCH DI D NOT FI ND THE STEADY STATE.
SEARCH FOUND THE STEADY STATE.

SI NGLE PRECI SI ON (TWO PO NT BOUNDARY VALUE PROBLEM SOLVER 23
SOLVE THE PROBLEM

SUCCESS.

ERROR.
ERROR.
ERROR.
ERROR.

PROBLEM SOLVED.

NUMBERS COF COVPONENTS AND PO NTS MJST BE
SOMVE COLUWNS ARE ZERO.

SOVE RON5 ARE ZERO.

THE JACOBI AN MATRI X I'S SI NGULAR.

30
a7
47
47

47
a7
a7
48
48
48
48
48
48
26
49
49

24
49
49
49

49
49
49
49
50
50
50
50
50
50
51
51
51
51
51
51
51
51
51
51
52
52
52
52
52
52
52
52
52

52
52

52
53
53
53

43

TWPREP:
TWSHOW

TWBOLV:
TWBOLV:

5.2 Long List of Messages

ERROR. THE MATRI X SPACE IS TOO SMALL.
ERROR. NUMBERS OF COVPONENTS AND PO NTS MUST BE

ERROR. NUMBERS COF COMPONENTS AND PO NTS MJUST BE
ERROR. THE MATRI X SPACE IS TOO SMALL.

5.2 Long List of Messages

This list matches Section 5.1's short list but displays the complete text of, and provides
explanations for, outcome and error messages. Long, informative messages are cut short
withvertical elipsis, : . Their full textsappear in Chapter 3 onthe pagesfound in Section 5.1.
When printing levels increase, these messages break into many short m es in the list

EVOLVE:

EVOLVE:

EVOLVE:

EVOLVE:

EVOLVE:

EVOLVE:

below. No explanations are provided for those.

54
54

54
55

Also, no explanations are provided for error messages that trap bugs. These un-
likely messages are precautions against programming mistakes in twopnt. For example, all
twopnt’s subroutines check to see the number of unknowns is positive. Assuming twopnt
contains no mistakes, the checks after thefirst oneareredundant and necessarily find nothing

wrong unless the computer itself isfaulty, 2 + 2 = 5.

BEG N TI ME EVCLUTI ON.

BEG N TI ME EVCLUTI ON.
0 LATEST TIME PO NT
-1.23 LOGLO STEADY STATE RESI DUAL HERE
-4.00 LOGLO STRIDE TO NEXT TI ME PO NT

SEARCHI NG FOR THE NEXT TRANSI ENT STATE.

CONTI NUE TI ME EVOLUTI ON.

CONTI NUE TI ME EVOLUTI ON.
100 LATEST TI ME PO NT
-1.23 LOGLO STEADY STATE RESI DUAL HERE
-3.00 LOCGLO STRIDE TO NEXT TI ME PO NT

SEARCHI NG FOR THE NEXT TRANSI ENT STATE.

CONTI NUE TI ME EVOLUTI ON W TH | NCREASED STRI DE.
100 LATEST TI ME PO NT
-1.23 LOGLO STEADY STATE RESI DUAL HERE
-4.00 LOGLO I NCREASED STRIDE TO NEXT TI ME PO NT

SEARCHI NG FOR THE NEXT TRANSI ENT STATE.

ERROR. NUMBERS OF COVPONENTS AND PO NTS MUST BE

El THER BOTH ZERO OR BOTH POSI Tl VE, NUMBERS OF ALL TYPES
OF UNKNOWNS MUST BE AT LEAST ZERO, AND TOTAL UNKNOMNS
MUST BE POSI TI VE.

COWPS, COVPONENTS

PO NTS

GROUPA, GROUP A UNKNOMNS ﬁ
GROUPB, GROUP B UNKNOMNS

TOTAL UNKNOMNS

[eolelolole)

~Nooh~hwNPRE

BN

~NoO O~ WNPRE

~NO O~ WNPRE

CQOVWoO~NOUIDhWNEF

Iy

EVOLVE:

EVOLVE:

EVOLVE:

EVOLVE:

EVOLVE:

EVOLVE:

EVOLVE:

EVOLVE:

EVOLVE:

EVOLVE:

5.2 Long List of Messages

ERROR. SEARCH FAI LS.

Newton's search encountered an error when trying to find a transient state. A preceding
message from SEARCH explains what went wrong.

ERROR. THE BOUNDS ON THE TI ME STRI DE ARE QUT OF
ORDER.

-1.00E-20 TM N, SHORTEST STRI DE
1. 00E-02 TMAX, LONGEST STRI DE

The values given to the controls TMAX and TM N are nonsense.

ERROR. THE COUNT OF TI ME STEPS MUST BE ZERO OR
PCSI TI VE.

-123 STEP E

ERROR. THE FACTORS FOR CHANG NG THE TI ME STRI DE
MUST BE NO SMALLER THAN 1.

3. 16E+00 TDEC, DECREASE FACTOR
0. 00E+00 TINC, | NCREASE FACTOR

The value given to the control TDEC or TI NCis nonsense.

ERROR. THE INITIAL TIME STRI DE MJST LI E BETWEEN
THE LONER AND UPPER BOUNDS.

1.00E-20 TM N, SHORTEST STRI DE
1.00E-01 STRIDO, INITIAL STRI DE
1. 00E-02 TMAX, LONGEST STRI DE

The values given to the controls STRI DO, TMAX and TM N are inconsi stent.
ERROR. THE NUMBER OF Tl ME STEPS MUST BE PCSI Tl VE.

-100 STEPSO OR STEPS1, DESI RED NUMBER OF STEPS
The value given to the control STEPSO or STEPSL is nonsense.

ERROR. THE TI ME STEPS BEFCRE STRI DE | NCREASES
MUST BE POSI TI VE.

-100 STEPS2, TIME STEPS BEFORE STRI DE | NCREASES
The value given to the control STEPS2 is nonsense.

FAI LURE. NO TI ME EVOLUTI ON.

Newton's search was unable to find the first transient state in the current sequence. De-
pending on the printing level, LEVELM a preceding message from EVOLVE or SEARCH
explains what went wrong.

PARTI AL SUCCESS. TI ME EVOLUTI ON | NCOVPLETE.

Newton's search was unabl e to compl ete the current sequence of transient states. A preced-
ing message from EVOLVE explains what went wrong.

PARTI AL SUCCESS. TI ME EVOLUTI ON | NCOMPLETE.

13 LAST TI ME PO NT
-0.67 LOGLO STEADY STATE RESI DUAL HERE

Newton's search was unable to complete the current sequence of transient states. A preced-
ing message from SEARCH explains what went wrong.

45

abrwWNPEP

WM

abhwN PR

WN P OO WNPE

A WN P

A WN P

EVOLVE:

EVOLVE:
EVOLVE:

EVOLVE:
EVOLVE:

REFI NE:

REFI NE:

REFI NE:

REFI NE:

REFI NE:

REFI NE:

5.2 Long List of Messages

RETRY THE STEP WTH A DECREASED TI ME STRI DE.
13 LATEST TI ME PO NT
-1.23 LOGLO STEADY STATE RESI DUAL HERE
-4.00 LOGLO DECREASED STRIDE TO NEXT TI ME PO NT

SEARCHI NG FOR THE NEXT TRANSI ENT STATE, AGAI N.

SUCCESS. Tl ME EVOLUTI ON COVPLETED.

SUCCESS. Tl ME EVOLUTI ON COVPLETED.

200 LAST TI ME PO NT
-2.35 LOGLO STEADY STATE RESI DUAL HERE

THE LATEST SOLUTI ON:

THE SCLUTI ON DI D NOT CHANGE. RETRYI NG THE STEP
W TH AN | NCREASED Tl ME STRI DE.

13 LATEST TI ME PO NT
-0.67 LOGLO STEADY STATE RESI DUAL HERE
-4.00 LOGLO I NCREASED STRIDE TO NEXT TI ME PO NT

SEARCHI NG FOR THE NEXT TRANSI ENT STATE, AGAI N.

ERROR. PO NTS IS OQUT OF RANGE.

8 PO NTS
-123 PMAX, LIMT ON PO NTS

ERROR. SOME | NTERVALS IN THE GRID ARE TOO SHORT.
THE NEW GRI D WOULD NOT BE ORDERED.

Thegridissofinethat, if theinterval between two pointsis halved, then imprecise machine
arithmetic places the midpoint at an endpoint. This outcome might be considered merely

unsuccessful, but twopnt views it as an error because it is so rare.

ERROR. THE BOUNDS ON MAGNI TUDE AND RELATI VE CHANCGE
OF MAGNI TUDE FOR | NSI GNI FI CANT COMPONENTS MUST BE
PCSI TI VE.

0. 00E-09 TOLERO, SIGNIFI CANCE LEVEL

The value given to the control TOLERO is nonsense.

ERROR. THE BOUNDS ON RELATI VE CHANGES | N MAGNI TUDE
AND ANGLE MJUST LI E BETWEEN O AND 1.

-1.00E-01 TOLERL
1. 00E-01 TOLER2

The value given to the control TOLERL or TOLER? is nonsense.

ERROR. THE GRID IS NOT ORDERED.

The initial grid, X, provided by the simulator should be a decreasing or an increasing

sequence of numbers without duplications.

ERROR. THE LIMT ON PO NTS ADDED TO A GRI D MUST BE
ZERO OR POCSI TI VE.

-123 PADD, LIMT ON ADDED PO NTS

The value given to the control PADD is nonsense.

46

~Nooah~hwNBRE

A OWN P [

O~NO A~ WNPE [

N A WN P

O WNPEF

arwWNPEP

A WN P

5.2 Long List of Messages

REFI NE: ERROR THERE MUST BE AT LEAST ONE COVPONENT AND AT
LEAST TWO PO NTS.
0 COWwS, COVPONENTS
0 PO NTS
The values given to the controls ADAPT, COVPS and POl NTS areinconsistent. ADAPT =
yes reguests automatic grid selection, but the other two controls indicate the unknowns are
not arranged to permit grid selection.
REFI NE: ERROR THERE ARE NO ACTI VE COVPONENTS.
The values given to the controls ADAPT and ACTI VE are inconsistent. ADAPT = yes
requests automatic grid selection, but ACTI VE excludes al solution components from
consideration for grid selection.
REFI NE: FAILURE. MORE PO NTS ARE NEEDED BUT NONE CAN BE
ADDED.
The solution doesn’t meet the requirements established by TOLER1 and TOLER2, but a
new grid cannot be formed because either PADD=0 or PO NTS=PNMAX.
REFI NE: SELECT A GRID.
REFI NE: SUCCESS. THE GRID | S ADEQUATE.
REFI NE: SUCCESS. THE GRID | S ADEQUATE BECAUSE ALL ACTI VE
COVPONENTS ARE | NSI GNI FI CANT.
According to the criteria established by TOLERQO, all the ACT| VE solution components are
insignificant—either very small or very “flat” across the grid—so there are no features to
guide the selection of anew grid.
REFI NE: THE SOLUTI ON GUESS FOR THE NEW GRI D:
SEARCH: ERROR. NUMBERS OF COVPONENTS AND PO NTS MUST BE
El THER BOTH ZERO OR BOTH POSI TI VE, NUMBERS OF ALL TYPES
OF UNKNOMANS MUST BE AT LEAST ZERO, AND TOTAL UNKNOMNS
MUST BE POSI Tl VE.
5 COWS, COVPONENTS
8 PA NTS
:’@ 0 GROUPA, GROUP A UNKNOWNS
-10 GROUPB, GROUP B UNKNOANS
30 TOTAL UNKNOWNS
SEARCH ERROR. THE BOUNDS FOR THE ABSOLUTE AND RELATI VE
CONVERGENCE TESTS MUST BE ZERO OR POSI TI VE.
-1.00E-09 SSABS OR TDABS, ABSOLUTE ERROR
1. 00E-06 SSREL OR TDREL, RELATIVE ERROR
Thevaluesgiventothe controls SSABS and SSREL , or to TDABS and TDREL , arenonsense.
If TWOPNT writesthenext error messagethen SSABS and SSREL arewrong, but if EVOLVE
writes next then TDABS and TDREL are at fault.
SEARCH: ERROR. THE DAMPI NG COEFFI Cl ENT FOR STAYI NG

I N BOUNDS | S NEGATI VE.
-1. 00E+00 DELTA B %{

47

[En

O WNPE

[

QOVWoO~NOUAWNE

b wWNE

A WN P

SEARCH:

SEARCH:

SEARCH:

SEARCH:

SEARCH:
SEARCH:

5.2 Long List of Messages

ERROR.
BOUNDS.

THE

0
0
5
6
30
2

LONER
BOUND

1. 50E+02
-1. 00E+04

GQUESSES FOR SOVE UNKNOWNS ARE OQUT OF

GROUP A UNKNOWKS (A)
GROUP B UNKNOWKS (B)
COVPONENTS AT POl NTS (C)
PO NTS (P)

TOTAL UNKNOWKS

NUVBER OUT OF BOUNDS

UPPER

VALUE BOUND UNKNOWN

3. 00E+03
-1. 00E+03

2. 00E+03
1. OOE+04

T

(C5 P 1)

G (C2P3)

This error suggests either a programming mistake or faulty input to a simulator. Some
guesses violate their bounds, ABOVE or BELOW Either the bounds or the guesses must
change. Simulators often assign the same values to many bounds and guesses, so many may
be wrong if any are. Twopnt lists only the first twenty. A simulator may provide names for
the unknowns, and twopnt adds this identification: (A 6) isthe sixth unknown in group
A,and (C 2 P 3) isthe second component at the third point, and so on.

ERROR. THE LOAER AND UPPER BOUNDS ON SOVE UNKNOMNS
ARE QUT OF CORDER

GROUP A UNKNOWKS (A)

GROUP B UNKNOWKS (B)
COVPONENTS AT POl NTS (C)
TOTAL TYPES OF UNKNOARS
NUVBER OF BOUNDS OUT OF ORDER

NO1O1O O

LONER
BOUND

- 1. 00E+04
1. 50E+02

UPPER
BOUND UNKNOWN
-1.00E+04 LANBDA

0.00E+00 T (C 5)

(C4)

ERROR. THE

NUMBER OF NAMES | S VW\RONG

NAMES

COWPS, COVPONENTS

i GROUPA, GROUP A UNKNOMNS
GROUPB, GROUP B UNKNOMNS
TOTAL NUMBER

ERROR. THE RETI REMENT AGE OF THE JACOBI AN MATRI X
MUST BE POSI TI VE.

o wul (3]

-10 SSAGE OR TDAGE, MATRI X RETI REMENT AGE

The value given to the control SSAGE or TDACE is nonsense. If TWOPNT writes the next
error message then SSAGE iswrong, but if EVOLVE writes next then TDAGE is at fault.

THE SEARCH DI VERGES.

FAI LURE. THE SEARCH FOR THE FOLLOW NG UNKNOWNS GOES
OQUT OF BOUNDS.

FAI LURE.

BOUND VALUE UNKNOYW

LONER -2.00E+00 H (C 3 P 2)

48

©Co~NOUDWNPE

©Coo~NOUA~AWNE

O~NO A WNPE

A WN PP

OO WN P [

SEARCH:
SEARCH:
SEARCH:
TWOPNT:
TWOPNT:
TWOPNT:
TWOPNT:
TWOPNT:

TWOPNT:

TWOPNT:
TWOPNT:

TWOPNT:

5.2 Long List of Messages

Newton’s search fails because thefirst convergence monitor discussed in Section 2.1 cannot
be met. Twopnt stops values headed out of bounds at the boundary. Usually one or two
unknowns arrive there before the others, so twopnt’s list of those going out is short. A
simulator may provide names to identify the unknowns, to which twopnt adds this annota-
tion: (A 6) indicatesthe sixth unknowningroup A,and (C 3 P 2) indicatesthethird
component at the second point, and so on.

Newton's search reaches bounds from bad luck, or more likely, from bad guesses.
Both the bounds and the guesses embody expectations: when ausually successful simulation
repeatedly fails at bounds, it may be operating under conditions not anticipated. Twopnt’'s
controls ABOVE and BELOWcan relax the bounds. Better guesses can be obtained from
performing time evol ution (which twopnt performsautomatically) or from performing easier
simulations (which some simulators might provide automatically).

SCOLVE NONLI NEAR, NONDI FFERENTI AL EQUATI ONS.
SUCCESS.

SUCCESS. THE SCLUTI ON:

17. 34 SECONDS TOTAL COVPUTER TI ME (SEE BREAKDOWN BELOW .
CALLI NG EVOLVE TO PERFORM TI ME EVOLUTI ON.

CALLI NG REFI NE TO PRCDUCE A NEW GRI D.

CALLI NG SEARCH TO SOLVE THE STEADY STATE PROBLEM

DOUBLE PRECI SI ON (TWD PO NT BOUNDARY VALUE PROBLEM SOLVER,
VERSI ON 3. 07 OF JANUARY 1992 BY DR JOSEPH F. GRCAR

ERROR. A CONTROL NAME |'S NOT' RECOGNI ZED.

3 POSITION IN THE CONTROL LI ST
6 CNTRLS, LENGIH OF THE CONTROL LI ST

NAME: ADEPT

Simulators pass lists of control names and values to twopnt, see Section 6.2. The simulator
either spelled anamewrong or expects some version of twopnt with different control names.

ERROR. EVOLVE FAI LS.

ERROR. NEI THER THE I NI TI AL TI ME EVOLUTI ON NOR THE
SEARCH FOR THE STEADY STATE | S ALLOWED.

The values given to the controls STEADY and STEPSO are inconsistent. If STEADY = no
and STEPSO = 0, then twopnt has nothing to do.

ERROR. NUMBERS COF ALL TYPES OF UNKNOWNS MUST BE AT
LEAST ZERO

5 COWPS, COVPONENTS
8 PO NTS

-1 GROUPA, GROUP A UNKNOWNS
0 GROUPB, GROUP B UNKNOMNS

The values given to the controls COMPS, POl NTS, GROUPA or GROUPB are nonsense. The
simulator may have a programming mistake, or may have been given incorrect data.

49

[N

N =

OO WNE

~No ok~ wWNRE

TWOPNT:

TWOPNT:

TWOPNT:
TWOPNT:
TWOPNT:

TWOPNT:

5.2 Long List of Messages

ERROR. NUMBERS COF COMPONENTS AND PO NTS MUST BE
El THER BOTH ZERO OR BOTH POSI TI VE.

5 COWPS, COVPONENTS
0 PO NTS

The values given to the controls COMPS and PO NTS are inconsistent. The simulator may
have a programming mistake, or it may have been given incorrect data.

ERROR. ONE OR BOTH WORK SPACES ARE TOO SMALL.

I NTEGER REAL
PRESENT SI ZE 5000 100000
REQUI RED SI ZE 7395 63921

The simulator has been given a problem that requires too much memory. Either the program
must be changed to include more space, or the problem must be made smaller. Many
simulators check memory size themselves, based on twopnt’s announced memory needsin
Chapter 6. Thus, a simulator reaching this error might have a programming mistake.

ERROR. REFI NE FAI LS.
ERROR. SEARCH FAI LS.

ERROR. THE CALLI NG PROGRAM EXPECTS A VERSI ON OF
TWOPNT NOT COMPATI BLE WTH THI' S VERSI ON.

EXPECTS: DOUBLE PRECI SI ON VERSI ON 3. 08

THI'S VERSI ON: SI NGLE PRECI SI ON VERI SON 3. 02
CAN REPLACE: SI NGLE PRECI SI ON VERI SON 3. 01
CAN REPLACE: SI NGLE PRECI SI ON VERI SON 3. 00

The simulator expects a different version of twopnt. Either the arithmetic precision or the
version number iswrong. If the precision, then Appendix 2 explains how to change that. If
the version, then adifferent twopnt or a different simulator must be obtained. The message
lists al older twopnts compatible with the present one, but some newer twopnts might be
compatible too. At some risk of catastrophe, the simulator program might be changed to
identify the present twopnt as the one expected.

ERROR. THE LOAER AND UPPER BOUNDS ON SOVE UNKNOMNS
ARE QUT OF CORDER

GROUP A UNKNOWKS (A)

GROUP B UNKNOWKS (B)
COVPONENTS AT POl NTS (C)
TOTAL TYPES OF UNKNOANS
NUVBER OF BOUNDS OUT OF ORDER

NOTO1TO O

LONER UPPER
BOUND BOUND UNKNOWN

-1.00E+04 -1.00E+04 LAMBDA (C 4)
1. 50E+02 0.00E+00 T (C 5)

This error suggests either a programming mistake or faulty input to a smulator. Some
values given to the controls ABOVE and BEL OWare inconsistent. Simulators often assign
the same values to many bounds, so many may be wrong if any are. Twopnt lists only the
first twenty. A simulator may provide names to identify the unknowns, but in any case,
twopnt includes the following annotation: (A 6) indicates the sixth unknown in group A,

50

O WNPE

OO WNE

[EEN

O~NOOP~WNPE

©CoOo~NOUAWNPEF

TWOPNT:

TWOPNT:

TWOPNT:

TWOPNT:

TWOPNT:

TWOPNT:
TWOPNT:
TWOPNT:
TWOPNT:

TWOPNT:

5.2 Long List of Messages

and (C 4) indicatesthefourth component at the points (a component has the same bounds
at al points), and so on.

ERROR. THE NUMBER OF CONTRCLS MUST BE POSI Tl VE.

0 CNTRLS, LENGIH OF THE CONTROL LI ST

Simulators pass lists of control names and values to twopnt. This error occurs when a
simulator passes none, and may indicate a programming mistake.

ERROR. THE NUMBER OF NAMES | S VWRONG

3 NAMES

3 COWPS, COVPONENTS

7 GROUPA, GROUP A UNKNOMNS
0 GROUPB, CGROUP B UNKNOWNS
10 TOTAL NUMBER

This error indicates a programming mistake. Simulators may pass lists of names for un-
knowns to twopnt. If so, the number of names must be COVPS + GROUPA + GROUPB.

ERROR. THE PRI NTI NG LEVELS ARE QUT OF ORDER
LEVELD CANNOT EXCEED LEVELM

2 LEVELD, FOR SOLUTI ONS
1 LEVELM FOR MESSAGES

The values given to the controls LEVELMand LEVELD are inconsi stent.
ERROR. THERE ARE TOO MANY PO NTS.

591 PA NTS
100 PMAX, LIMT ON PO NTS

ThevaluesgiventothecontrolsPO NTS and PMAX areinconsistent. Thiserror may indicate
a programming mistake.

ERROR. TOTAL UNKNOWNS MUST BE PGCSI TI VE.

0 COWS, COVPONENTS

0 PO NTS

0 GROUPA, GROUP A UNKNOMNS
0 GROUPB, CGROUP B UNKNOWNS
0 TOTAL NUMBER

The values given to the controls COVPS, PO NTS, GROUPA or GROUPB are nonsense.
Since these controls determine numbers of unknowns, this error indicates a programming
mistake.

ERROR. TWERAB FAI LS. -
ERROR. UNKNOWN TASK. =
ERROR. UNKNOWN REPORT CODE. =

EVCOLVE DI D NOT' PERFORM A TI ME EVOLUTI ON.

Newton's search was unable to find the first transient state in the current sequence. De-
pending on the printing level, LEVELM a preceding message from EVOLVE or SEARCH
explains what went wrong.

EVOLVE PERFORMED A TI ME EVOLUTI ON.

51

O~NO U~ WNPEF wWN P

abrhwWNPE

A WN R

~NoO O~ WNPRE

TWOPNT:

TWOPNT:

TWOPNT:

TWOPNT:
TWOPNT:
TWOPNT:
TWOPNT:
TWOPNT:
TWOPNT:
TWOPNT:

TWOPNT:
TWOPNT:
TWPREP:

5.2 Long List of Messages

FAILURE. A SOLUTI ON WAS FOUND FOR A GRID WTH 67
PO NTS, BUT ONE CR BOTH RATI OS ARE TOO LARGE.

RATIO 1 RATI O 2
FOUND 0.31 0.78
DESI RED 0. 50 0. 50

A LARGER GRI D COULD NOT BE FORMED.

Twopnt did not find a sufficiently good solution. A larger grid cannot be formed because ei-
ther PADD=0 or PO NTS=PMAX. Theneedfor alarger grid can beeliminated by increasing
TOLERL or TOLER? to the values shown (LINE 6).

FAI LURE. A SOLUTI ON WAS FOUND FOR A GRID WTH 67
PO NTS, BUT ONE OR BOTH RATI OGS ARE TOO LARGE.

RATIO 1 RATI O 2
FOUND 0.31 0.78
DESI RED 0. 50 0. 50

A SOLUTI ON COULD NOT BE FOUND FOR A LARGER GRI D.

Twopnt did not find a sufficiently good solution. Solutionswere found for smaller grids, but
not for the largest, indicating the smaller grids do not resolve some critical solution feature.
Twopnt’s other messages may suggest how to adjust the controls to find the solution for
the largest grid, or the sequence of grids can be stopped short of the largest by increasing
TOLER1 or TOLER? to the values shown (LINE 6).

FAI LURE. NO SOLUTI ON WAS FOUND.

Twopnt did not find a solution. Twopnt's other messages may suggest how to adjust the
controls for Newton’s search and time evolution so twopnt can succeed.

FI NAL SCLUTI ON:

I NI TI AL GUESS:

REFI NE DI D NOT' SELECT A NEW GRI D.

REFI NE SELECTED A NEW GRI D.
SEARCH DI D NOT FI ND THE STEADY STATE.
SEARCH FOUND THE STEADY STATE.

SI NGLE PRECI SI ON (TWD PO NT BOUNDARY VALUE PROBLEM SOLVER,
VERSI ON 3. 07 OF JANUARY 1992 BY DR JOSEPH F. CGRCAR

SOLVE THE PROBLEM

SUCCESS. PROBLEM SOLVED.

ERROR. NUMBERS OF COVPONENTS AND PO NTS MUST BE

El THER BOTH ZERO OR BOTH POSI Tl VE, NUMBERS OF ALL TYPES
OF UNKNOWNS MUST BE AT LEAST ZERO, AND TOTAL UNKNOMNS
MUST BE POSI TI VE.

0 COWPS, COVPONENTS

8 PO NTS

31 GROUPA, GROUP A UNKNOMNS
0 GROUPB, GROUP B UNKNOMNS
31 TOTAL UNKNOMNS

52

©Co~NOUDWNPE

©Coo~NOUODWNE

QOWO~NOURAWNE =

[Eny

TWPREP:

TWPREP:

TWPREP:

5.2 Long List of Messages

The values given to the controls COVPS, PO NTS, GROUPA or GROUPB are nonsense.
Since TWOPNT should have checked these values already, there may be a programming
mistake.

ERROR. SOME COLUWNS ARE ZERO.

5 COWS, COVPONENTS

8 PO NTS

0 GROUPA, CROUP A UNKNOWNS

0 GROUPB, CGROUP B UNKNOWNS
40 TOTAL COLUWMNS

4 ZERO COLUWNS

UNKNOMNS W TH ZERO COLUMNS:

COVPONENT 2 AT PO NT 1
COVPONENT 2 AT PO NT 2
COVPONENT 2 AT PO NT 3
COVPONENT 2 AT PO NT 4

The Jacobian matrix has a zero column. There are two causes. (1) The residual function
is independent of some unknown. Usually, thisis a programming mistake. The residual
function should be examined to see every unknown is used. In rare cases, specia values
for some unknowns might make the residual function insensitive to other unknowns, and
then refer to the second cause. (2) The numerical perturbations used to approximate the
differentials might be too small to perturb the residual function. Either the residual function
should be reformulated, or the perturbations used by TWPREP should be increased.

ERROR. SOME ROAS ARE ZERO

COWPS, COVPONENTS

PO NTS

GROUPA, GROUP A UNKNOMNS
GROUPB, GROUP B UNKNOWNS
TOTAL RONG

ZERO RON6

NOOOOU

ZERO ROW6:

COVPONENT 5 AT PO NT 1
COMPONENT 5 AT PO NT 8

The Jacobian matrix has a zero row. There are two causes. (1) Some residua value is
independent of all unknowns. Usually, this error indicates a programming mistake. The
residua function should be examined to see every equation is evaluated. In rare cases,
special values for the unknowns might make some equations insensitive to the unknowns,
and then refer to the second cause. (2) The numerical perturbations used to approximate
the differentials might be too small to perturb some equation. Either the residual function
should be reformulated, or the perturbations used by TWPREP should be increased.

ERROR. THE JACOBI AN MATRI X I'S SI NGULAR.

The linpack subroutine DGBCO or SGBCO|[8] finds a singular Jacobian matrix. The matrix
may be very badly conditioned rather than exactly singular, but in either case, the matrix
equationsfor the search directionsin Newton’s method cannot be solved. If thiserror occurs
at the start of asimulation, then usually either (1) theinitial guessisbad or (2) thesimulation
is formulated incorrectly.

53

O©CoO~NOOTAWNPRF

©Coo~NOUA~AWNE

TWPREP:

TWSHOW

TWBOLV:

5.2 Long List of Messages

When thiserror occurslatein thesimulation, the causeisusually oneof two others. (3)
The search has strayed too far. Twopnt’s controls might be changed to make the search more
conservative. (4) The simulation is near aturning point or a bifurcation point. This means
the simulation has two or more valid outcomes for the same data. Twopnt’s controls might
be changed to coax twopnt to one outcome, but such simulations are inherently difficult to
perform. Either the simulation should be reformulated, or twopnt should be replaced by
continuation and path following software which can find all the multiple outcomes, see[24].

ERROR. THE MATRI X SPACE IS TOO SMALL.

5
8
0
0
40
9

1160
1000

COWPS, COVPONENTS

PO NTS

GROUPA, GROUP A UNKNOWNS
GROUPB, GROUP B UNKNOMNS
MATRI X ORDER

STRI CT HALF BANDW DTH

SPACE REQUI RED
ASI ZE, PROVI DED

RPOOWO~NOUDWNE

el

The matrix requires more memory than the simulator allows. Either the simulator must be
changed to include more space, or the problem must be changed to make the matrix smaller.
Many simulators check memory size themselves, based on TWPREP's announced memory
needs in Section 6.4. Thus, a simulator reaching this error might have a programming

mistake.
ERROR. NUMBERS OF COVPONENTS AND PO NTS MUST BE 1
El THER BOTH ZERO OR BOTH PGCSI TI VE, NUMBERS OF ALL TYPES 2
OF UNKNOMNS MUST BE AT LEAST ZERO, AND TOTAL UNKNOWMNS 3
MJST BE PCSI Tl VE. 4
5
5 COWPS, COVPONENTS 6
0 PO NTS 7
0 GROUPA, GROUP A UNKNOWNS 8
0 GROUPB, GROUP B UNKNOWNS 9
0 TOTAL UNKNOWNS 10
The values given to the controls COVPS, POl NTS, GROUPA or GROUPB are nonsense. The
simulator may have a programming mistake.
ERROR. NUMBERS OF COVPONENTS AND PO NTS MUST BE 1
El THER BOTH ZERO OR BOTH PCSI TI VE, NUMBERS OF ALL TYPES 2
OF UNKNOMNS MUST BE AT LEAST ZERO, AND TOTAL UNKNOWMNS 3
MJST BE PCSI Tl VE. 4
5
5 COWPS, COVPONENTS 6
0 PO NTS 7
0 GROUPA, GROUP A UNKNOWNS 8
10 GROUPB, GROUP B UNKNOWNS 9
10 TOTAL UNKNOWNS 10

The values given to the controls COVPS, PO NTS, GROUPA or GROUPB are nonsense.
Since TWOPNT and TWPREP should have checked these values already, there may be a
programming mistake.

5.2 Long List of Messages

THE MATRI X SPACE IS TOO SMALL.

5 COWPS, COVPONENTS

8 PO NTS

0 GROUPA, GROUP A UNKNOWNS

0 GROUPB, GROUP B UNKNOMNS
40 MATRI X ORDER

9 STRICT HALF BANDW DTH

1160 SPACE EXPECTED
1000 ASIZE, PROVI DED

The equation solving subroutine has been given amatrix that seemsto require more memory
than the simulator allows. Since TWPREP should have checked this space when it prepared
the matrix, there may be a programming mistake.

(C) Now let mathematical formulation and observational data go un-
guestioned. The next stumbling block is this: The mathematical formulation
will in general involve transcendental operations (for example, functions like
sin or log, operations like integration or differentiation, and so on) and implicit
definitions (for example, solutions of algebraical or transcendental equations,
proper value [eigenvalue] problems of various kinds, and so on). In order to be
approached by numerical calculation, these have to be replaced by elementary
processes (involving only those elementary arithmetical operations which the
computer can handle directly) and explicit definitions, which correspond to
a finite, constructive procedure that resolves itself into a linear sequence of
steps.

Similarly, every convergent, limiting process, which in its strict mathe-
matical form is infinite, must in a numerical computation be broken off at some
final stage, where the approximation to the limiting value is known to have
reached a level that is considered to be satisfactory. It would be easy to give
further examples.

— J. von Neumann and H. H. Goldstine [26]

55

POOO~NOUTDWNE

e

6.1 Calling Twopnt

Writing a Simulator

6.0 Introduction

A simulator based on twopnt has three magjor parts. One gathers and reports data. Two
evaluates aresidual. Three callstwopnt. An entirely new simulator might be written step
by step, by adding the software needed to support each part. Alternatively, a simulator
might be written by modifying someone else’s. To that end, twopnt’s software distribu-
tion includes the rudimentary simulator whose output appears throughout this manual, see
Appendix 2. That simulation may have independent interest, so Chapter 7 discusses it sep-
arately. Section 6.1 here, and Section 7.3 there, illustrate the programming needed to use
twopnt.

Twopnt is a collection of fortran subroutines [1]. Appendix 2 lists them all. The
intended entry point is the subroutine with the mnemonic name and the twenty-nine argu-
ments shown in Figure 6.1. Some arguments have been introduced elsewhere as controls,
but in general, controlsare not arguments. Sections 6.1 and 6.2 discuss groups of arguments
with similar uses, while Section 6.3 explains each argument alone.

6.1 Calling Twopnt

A simulation is a scientific model and an evaluation algorithm. Its software consists of a
simulator which poses numerical problems, and a solver which solves them. The smula-
tor formulates the problem and interprets the solution, by doing such things as gathering
parameters and drawing graphs. Some simulations can make do with “black box” solvers,
and then the software has simple control and communication paths: the simulator gives
problems to the solver, and the solver gives solutions back.

Software for complex simulations is rarely tidy. (1) Parameters may be numerous
and not easily communicated. (2) Problem formulation and solution may be special and
inseparable. (3) Solutions may be obtained by expensive methods tuned to each problem.
In these situations, the distinction between simulator and solver can be lost, and then the
experience gained from successful simulations cannot be transferred easily.

Twopnt is a solver for complex simulations that deals with the difficulties above by
delegating many tasks back to the simulator. In some sense, the simulator serves twopnt
because it performs much of the numerical work under twopnt’s direction. Twopnt is

56

6.1 Calling Twopnt

+ + + + +

SUBROUTI NE TWOPNT

(ERROR, TEXT, VERSIOQ
ABOVE, ACTIVE, BELOW BUFFER, CNTRL, CNTRLS, COWPS, CONDIT,
GROUPA, GROUPB, |SIZE, |VALUE, |WORK, LVALUE, MARK, NAME,
NAMVES, PMAX, PO NTS, REPORT, RSIZE, RVALUE, RWORK, SIGNAL,
STRIDE, TIMg, U, X

Figure 6.1. Twopnt's arguments with those used for reverse communication highlighted.
Section 6.1 explains reverse communication.

intended to serve many simulators without modification to itself, so it omits features that
would limit its use. For example, other software for differential equations choose both the
discretization and, when the discretization is implicit, the linear algebra. Twopnt chooses
neither because no choice is appropriate for all simulations. This means simulators using
twopnt must provide their own discretization and, under twopnt’s direction, must perform
their own linear algebra. Since the simulator has temporal precedence, it is necessarily the
calling program, but the control and communication paths between twopnt and the simul ator
are elaborate.

Twopnt passes commands back to the simulator by “ reverse communication.” That
is, twopnt’s arguments include one that signal sthe simulator to perform some task and then
to call twopnt again. Figure 6.1 highlights this and related arguments in twopnt’s calling
sequence. Briefly, twopnt begins a new problem when called with SI GNAL blank, and if
twopnt returns with SI GNAL not blank, then some task must be performed.

e SI GNAL reverse communication signal 69
e BUFFER array for reverse communication data 61, 66

Thetasks operate on data twopnt placesin BUFFER, and if twopnt expects some result, then
twopnt generally receivesit there too.
Twopnt asksthree major tasks of thesimulator. Oneisto evaluatetheresidual function.

S| GNAL =" RESI DUAL' signal to evaluate the residual
Evaluation should occur at the approximate solution found in BUFFER, and twopnt wants

the residual vector there when it resumes. Thistask needs more information than BUFFER
can supply because there are two residual functions.

e TIME signal to use the transient residual 71
e STRI DE time stride for the transient residual 71

The transient residual, moreover, needs earlier transient states to approximate time differ-
entials, so a supporting task identifies those.

S| GNAL =" RETAI N signal to retain a transient state

When the simulator receives this signal, it must store the transient state found in BUFFER
for later use in evaluating the transient residual.

The other two major tasks twopnt asks of the simulator involve the matrix equations
in Newton's method.

e SI GNAL = " PREPARE signal to prepare the Jacobian matrix
e CONDI'T matrix condition humber 67
e S| GNAL =" SOLVE signal to solve matrix equations

57

OO~ WNPRF

6.1 Calling Twopnt

Simulation designers prefer direct matrix operations, so simulators usually form and factor
the Jacobian matrix when signaled to prepare. Alternatively, they might build precondition-
ersfor iterative equation solving algorithms. The Jacobian matrix should be evaluated at the
solution estimate in BUFFER, and should be for either the steady state or the transient resid-
ua asindicated by TI ME. Twopnt needs no direct knowledge of the matrix, so the simulator
can store what it prepares where and how it likes. If acondition estimate isavailable for the
matrix, then that should be placed in CONDI T when twopnt resumes. The SOLVE signal
indicates the most recently prepared matrix should be used to solve linear equations with
the “right side,” or constant terms, found in BUFFER. When twopnt resumes, it expects to
find the solution in BUFFER too.

The matrix tasks are the most onerous twopnt asks of the simulator. Many solvers
undertake such tasksinternally, but then unlike twopnt, they need nontrivial reprogramming
when matrix operationsneed revising. Twopnt includes subroutines, TWPREP and TWSOLV,
that the simulator can use for these tasks if desired. These routines are discussed later in
this Section and again in Section 6.4.

The remaining three tasks requested by reverse communication areless strenuous. (1)
Simulators may want to prepare some things ahead when twopnt advances to a new grid.

S| GNAL = " UPDATE' signal to update to a new grid

PO NTS number of points 62, 68 (x 16, 35)
MARK array of markers for new points 63, 68
X array of grid points 63, 71 (* 16, 40)

For example, twopnt constructs new grids by halving intervals, and it guesses new solution
values by averaging old ones. If more than linear interpolation is wanted, then simulators
must provide it. (2) Simulators like to save work in progress in case machines fail during
long computations.

SI GNAL =" SAVE signal to save the solution

The latest, best solution estimate in BUFFER should be saved; it can serve as a guess to
begin anew. If twopnt is choosing grids, then PO NTS and X should be saved too. (3)
Finally, twopnt has controls that govern writing solutions, but the simulator does the actual
writing.

SI GNAL =" SHOW signal to show the solution

The solution data in BUFFER should be written to the fortran unit number, TEXT, where
twopnt writes it own messages. This output is what appears when LEVELD > 0. Twopnt
includes a subroutine, TWBHOW that can do the simulator’swriting, if desired.

Figure 6.2 shows what is heeded to support reverse communication. This program
fragment might be used as atemplate for calling twopnt. It sets the reverse communication
signal blank to begin (LINE 1), and when twopnt returns, the signal explains what to do
(LINES 11, 15, ...). The program performs one of six chores—RESI DUAL, PREPARE,
SOLVE, SHOW RETAI N and UPDATE (it ignores SAVE)—and then it calls twopnt again
with SI GNAL not blank (LINE 43).

The program fragment in Figure 6.2 delegates the RESI DUAL task to a subroutine
(LINE 12). Thisisthe heart of the simulation because it embodies the scientific model.
Figure 6.3 showsthe arguments for such asubroutine, TWFUNC, which Chapter 7 describes
fully. The subroutine's argumentsinclude parameters for the model and parameters for the
discretization. The most important is BUFFER, which is where twopnt places the solution
estimate, and where the subroutine places the residual.

The program fragment in Figure 6.2 leaves the matrix tasks to the TWPREP and
TWSOLV subroutines supplied with twopnt (LINES 18 AND 28). Figure 6.4 depicts the

58

6.1 Calling Twopnt

SIGNAL = ' 1

2

0100 CALL TWOPNT 3

+ (ERROR, TEXT, 'DOUBLE PRECI SI ON VERSI ON 3. 08', 4

+ ABOVE, ACTIVE, BELOW BUFFER, CNTRL, CNTRLS, COWS, CONDIT, 5

+ GROUPA, GROUPB, |SIZE, |VALUE, |WORK, LVALUE, MARK, NAME, 6

+ NAMVES, PMAX, PO NTS, REPORT, RSIZE, RVALUE, RWORK, SI GNAL, 7

+ STRIDE, TIMg, U, X 8

| F (ERROR) GO TO 9001 9

10

IF (SIGNAL . EQ 'RESIDUAL') THEN 11

CALL TWFUNC (ERROR, TEXT, BUFFER, ..)) 12

| F (ERROR) GO TO 9002 13

14

ELSE I F (SIGNAL . EQ 'PREPARE) THEN 15

RETURN = . FALSE. 16

17

0200 CALL TWPREP (ERROR, TEXT, A, ... BUFFER, ... RETURN, ..) 18

| F (ERROR) GO TO 9003 19

20

| F (RETURN) THEN 21

CALL TWFUNC (ERROR, TEXT, BUFFER, ..)) 22

| F (ERROR) GO TO 9002 23

GO TO 0200 24

END | F 25

26

ELSE IF (SIGNAL . EQ 'SOLVE') THEN 27

CALL TWSOLV (ERROR, TEXT, A, ... BUFFER, ..)) 28

| F (ERROR) GO TO 9005 29

30

ELSE I F (SIGNAL . EQ 'SHOW) THEN 31

CALL TWSHOW (ERROR, TEXT, BUFFER, ..)) 32

| F (ERROR) GO TO 9004 33

34

ELSE IF (SIGNAL . EQ 'RETAIN) THEN 35

CALL TWCOPY (N, BUFFER, U0) 36

37

ELSE I F (SIGNAL . EQ ' UPDATE) THEN 38

N = GROUPA + COWPS * PO NTS + GROUPB 39

40

END | F 41

42

IF (SIGNAL .NE. ' ') GO TO 0100 43
Figure 6.2. Segment of a fortran program calling twopnt and illustrating the use of reverse

communication. Section 6.1 explains the program.

SUBROUTI NE TWFUNC 1
+ (ERROR, TEXT, 2
+ BUFFER, F, FO, G @0, H, K, LAMBDA, MJ, OVEGA, PO NTS, RHO 3
+ STRIDE, T, TO, TIME, TMAX, TZERO U0, WWAX, X) 4

Figure 6.3. Typically idiosyncratic arguments for a subroutine evaluating a simulation’s
residual function. Figure 6.2 shows the use of such a subroutine in calling twopnt. Sec-
tion 7.3 explains this particular subroutine, which is supplied with twopnt.

59

6.1 Calling Twopnt

Figure 6.4. The TWPREP and TWSOLV subroutines that are supplied with twopnt support
atridiagonal, blocked arrangement of nonzeroesin the Jacobian matrices. All blocks must
have the same size except, optionally, the extremes. Section 6.1 describes these subroutines
briefly. Section 6.4 describes themin detail.

type of Jacobian matrices these subroutines expect. This tridiagonal, blocked structure
predominates in two point boundary value problems. If a ssimulator has different looking
matrices, then it must respond to the PREPARE and SOL VE requests by doing its own thing.
Section 6.3 explains what that might be.

The TWPREP subroutine uses reverse communication too. A small portion of Fig-
ure 6.2 (LINES 16 TO 25) thus embeds one reverse communication system within another.
Section 6.4 explains TWPREP's argumentsin detail. Briefly, RETURNisitsreverse commu-
nication signal, and function evaluation isits only request, hence the second use of TWFUNC
(LINE 22). TWPREP stores the matrix in the large array A that likely accounts for most of
the simulator’s storage.

FI NAL SOLUTI ON
GRI D PO NT COW 1 COW 2 COw 3 COW 4 COWP 5
1> 0. 000000 O0.000E+00 1.257E+01 O0.O0O0OE+00 8.562E-05 3.000E+02
2> 0. 000977 5.783E-02 1.250E+01 -5.665E-05 8.562E-05 3.018E+02
3> 0.001953 1.143E-01 1.243E+01 -2.256E-04 8.562E-05 3.037E+02
4> 0.002930 1.696E-01 1.237E+01 -5.051E-04 8.562E-05 3.055E+02
5> 0. 003906 2.236E-01 1.230E+01 -8.932E-04 8.562E-05 3.073E+02
70> 2.250000 -2.287E-01 1.404E-02 -2.629E+00 8.562E-05 9.904E+02
71> 2.500000 -2.128E-01 7.534E-03 -2.527E+00 8.562E-05 9.935E+02
72> 3.000000 -1.733E-01 2.655E-03 -2.342E+00 8.562E-05 9.969E+02
73> 3.500000 -1.309E-01 9.656E-04 -2.194E+00 8.562E-05 9.985E+02
74> 4.000000 -8.759E-02 3.376E-04 -2.086E+00 8.562E-05 9.993E+02
75> 4.500000 -4.386E-02 9.496E-05 -2.021E+00 8.562E-05 9.998E+02
76> 5.000000 0. 0OOE+00 0.O0O0OE+00 -2.000E+00 8.562E-05 1.000E+03

Figure 6.5. The portion of LEVELD > 0 output prepared by TWSHOWthat describes the
final result of the simulation in Chapter 7. Figure 2.2 plots some of this data. Components
1, 2,3 and 5 hereare F, G, H and T' there. Section 6.1 explains TWSHOW's use, while
Section 6.4 explains the subroutine in detail.

60

6.2 What the Arguments Do

The program fragment in Figure 6.2 leaves the SHOWtask to the TWEHOWsubroutine
(LINE 32) aso supplied with twopnt and also explained in Section 6.4. Figure 6.5 shows
what is shown, if LEVELD > 0, after the simulation discussed in Chapter 7 finishes.
TWSHOWdoes not name solution data, but it can be changed easily to do so.

The program fragment in Figure 6.2 performs the RETAI Ntask by copying the prof-
fered transient stateinto an array, UO (LINE 36). TWFUNC needsthisarray when it evaluates
transient residuals. Finally, the program fragment performsthe UPDATE task by recounting
unknowns (LINE 40). Since twopnt changes POl NTS when it selects a new grid, BUFFER
and other arrays must be able to accommodate the largest possible grid, see Section 6.2.

6.2 What the Arguments Do

Numerical software isn't the focus of research in programming languages, so as a resullt,
many subroutine arguments are needed to implement (with some clumsiness) programming
devices (such as reverse communication) revered only in the numerical folklore. Twopnt’s
own arguments thus divide into functional groups.

e reverse communication
e gridsand unknowns

e work space arrays

e statusreporting

e control lists

A few arguments serve both reverse communication and some other purpose. Reverse
communication is discussed in Section 6.1; the other uses are discussed here.

SUBROUTI NE TWOPNT

+ (ERROR TEXT, VERSIOQ
+ ABOVE, ACTIVE, BELOW BUFFER, CNTRL, CNTRLS, COWPS, CONDI T,
+ GROUPA, GROUPB, 1SIZE, |VALUE, |WORK, LVALUE, MARK, NAME,
+ NAMES, PMAX, PO NTS, REPORT, RSIZE, RVALUE, RWORK, SI GNAL,
+ STRIDE, TIME U, X)
Figure 6.6. Twopnt's arguments with those used for grids and unknowns highlighted.
Section 6.2 explains them.
Figure 6.6 highlights twopnt’s arguments for communicating grids and unknowns.
Two arrays communicate values for the unknowns.
e BUFFER array of values and residuals in reverse communication 66
e U array of guesses on input, solution values on output 71 (x 40)

The datain these arrays must have a particular arrangement only when twopnt selects grids
for two point boundary value problems. Otherwise, the arrangement isno concernto twopnt,
but even then, it should not be entirely arbitrary.

The arrangement of unknowns and residual s establishes the nonzero structure of the
Jacobian matrices. If thei-th equation depends on the j-th unknown, then the matrix reflects
that through its entry in row 7 and column ;. If there is no dependence, then the entry there
is zero. Usualy, matrices encountered in simulations have many zeroes. Unknowns and
equations may have a spatial distribution, for example, with only those at nearby locations
dependent. The pattern of nonzeroes determines the ease of solving matrix equations, and
this often determines the feasibility of the simulation.

Software for matrix equations usually assumes some pattern of nonzeroes. The
TWPREP and TWSOLV subroutines supplied with twopnt assume a tridiagonal pattern of

61

OO0 hrWNPRP

6.2 What the Arguments Do

blocks, see Figure 6.4. This pattern is natural in two point boundary value problems, and
some aspects of it appear in other simulations, asfollows. Usually, unknownsare associated
with equations, and then values and residuals might appear in the same order. Moreover,
unknowns and equations often have a spatial distribution, and then coincident values are
conveniently made contiguous. In chemistry simulations for example, species are associ-
ated with their conservation equations, and both are associated with points in space. (The
tridiagonal matrix structure occurs when, additionally, the points line up, and the equations
at each point need only the values there or at neighboring points.)

The “ components at points’” arrangement of unknowns is convenient whenever a
simulation involvesreplication. This convention supposes every one of p points has exactly
¢ solution components.

Uuy,1 ui,2 e Ui,p
U211 U2,2 e u2,p
Ue,1 Uc,2 N Uce,p

Simulators employing this convention should order values for the unknowns in BUFFER
and U point by point—or interms of the pi cture above, column by column—so all the values
at the same point are contiguous.

U1 U2,1 ... Ued U2 U22 ... Uc?2 U,z U233 ... Uc3

Thisisthe memory arrangement prescribed for fortran arrays dimensioned (¢, p) . Twopnt
does not use fortran dimensioning, however, because twopnt allows two groups of extra
unknowns to precede and follow the others.

w g ... U, ... theothers ... @ Uz ... U

Altogether there are a + cp + b unknowns. The extra unknowns are intended for boundary
conditions in two point boundary value problems.

Twopnt counts unknowns using four arguments with names suggested by the compo-
nents at points convention.

COWPS number of components 67
PO NTS number of points 58, 68 (% 16, 35)
GROUPA number of initial, group A unknowns 67
GROUPB number of final, group B unknowns 67
Simulators that don’t use automatic grid selection may choose these arguments arbitrarily
to count their unknowns so long as GROUPA + COVPS x POl NTS 4 GROUPB isthe proper
number. For example, asimulator with» unknownsand no spatial dimensions might choose
GROUPA = n. A simulator with three quantities distributed throughout atwo dimensional,
m x n, grid might choose COVPS = 3 and PO NTS = mn.
The grouping of unknowns imposed by the arguments above extends to bounds and
names for the unknowns, as follows.
ABOVE array of upper bounds 66 (% 14, 33)
BELOW array of lower bounds 66 (x 14, 33)
NAME array of names 68
NAMES dimension of the NAMVE array 68

Thesearrays hold bounds and namesfor group A unknownsfirst, then those for components,
and finally bounds and names for group B. Each unknown in groups A and B has its own
bounds and name, but unknowns associated with a component have the same bounds and

62

6.2 What the Arguments Do

name at every point. The arrays thus have a dimension, GROUPA + COVPS + GROUPB,
which is independent of grid size. If names for unknowns are not available, then NAMVES
should be 1, and then twopnt ignores NAME, which may be ablank character string.
Twopnt uses some arrays only with automatic grid selection. Memory space needn’t
be wasted when grid selection isn’t permitted because twopnt al'so dimensionsthese (*) .

e ACTI VE array marking components for examination 66
o MARK array marking new grid points 58, 68
e X array of grid points 58, 71 (x 16, 40)

Section 6.3 provides the expected dimensions for these and other arrays. The ACTI VE
array communicates the control values of the same name: ACTI VE(k) truetellstwopnt to
examine the k-th component. The MARK array marks new grid points when twopnt makes
the UPDATE reverse communication request: MARK(n) true means X(n) isnew.

With automatic grid sel ection, the extent of meaningful datain arrays BUFFER, MARK,
U and X grows with each new grid. If the simulator conforms to the fortran standard [1],
then array space must be fixed when the program is written. These arrays therefore must
accommodate the maximum points allowed.

o PMAX maximum points in any grid 68 (x 18, 34)

MARK and X must have size PMAX not PO NTS, while BUFFER and U must have size
GROUPA + COWPS x PMAX + GROUPB. Simulators conforming to the fortran stan-
dard thus cannot leave PMAX entirely to choice. Usually, they impose an upper limit that
can be adjusted downward, if desired, when the simulation is performed.

SUBROUTI NE TWOPNT

+ (ERROR, TEXT, VERSIO
+ ABOVE, ACTIVE, BELOW BUFFER, CNTRL, CNTRLS, COWS, CONDI T,
+ CGROUPA, GROUPB, |SIZE, |VALUE, |WORK, LVALUE, MARK, NAME,
+ NAMES, PMAX, PO NTS, REPORT, RSIZE, RVALUE, RWORK, S| GNAL,
+ STRIDE, TIME, U, X)
Figure 6.7. Twopnt's arguments with those used for work space highlighted. Section 6.2
explains them.
Figure 6.7 highlights twopnt’s arguments for work space. Twopnt’s work spaceisn’t
scratch space, so the simulator can't use it for other things.
e | SIZE size of the integer work array 67
o | VORK integer work array 68
e RSI ZE size of the real work array 69
e RWORK real work array 69

The integer size must be at least 3p and the (single or double precision) real size must be
at least 3p + 9n, in which p = PMAX and n = GROUPA + COVPS x PMAX + GROUPB.
Twopnt alows PMAX = 0 when there are no “points,” but then the work array sizes must
be 3 and 3 + 9n, respectively.

63

OO0 WNPRE

6.2 What the Arguments Do

SUBROUTI NE TWOPNT

+ (ERROR, TEXT, VERSIO,
+ ABOVE, ACTIVE, BELOW BUFFER, CNTRL, CNTRLS, COWS, CONDI T,
+ GROUPA, GROUPB, 1SIZE, |VALUE, |WORK, LVALUE, MARK, NAME,
+ NAMES, PMAX, PO NTS, REPORT, RSIZE, RVALUE, RWORK, SI GNAL,
+ STRIDE, TIME U, X
Figure6.8. Twopnt’ sargumentswith those used for statusreporting highlighted. Section 6.2
explains them.
Figure 6.8 highlights twopnt’s arguments for status reporting. The three most im-
portant arguments occur first and outside the otherwise alphabetical ordering. Twopnt sets
ERROR true when catastrophes occur, and then error messages explain what went wrong.
e ERROR error signal 66
e TEXT fortran unit number for the message file 66
All messages, including those controlled by LEVELD and LEVELM go to the unit number
designated by TEXT, unless TEXT < 0, in which case twopnt writes no messages of any
kind anywhere.
Reporting is bidirectional: most is from but some is to twopnt. The simulator an-
nounces the version of twopnt it expects through VERSI O.
e VERSI O expected version of twopnt 66
This argument’s value should be a character string like the following.
SI NGLE PRECI SI ON VERSI ON 3. 00
The precision can change to DOUBL E and the version number can changeto something of the
same form, 3. 08, but otherwise no variation isalowed. Twopnt’s version number should
be the one on this publication’s cover; other versions might have different arguments or
controls. Twopnt’s precision can change easily, see Appendix 2. The simulator’s precision
should change as easily, to facilitate portability between machines.
Twopnt announces the outcome of the simulation through REPORT.
o REPORT outcome status 69

This character string is significant when twopnt returns with SI GNAL blank and ERROR
false. The string then is one of these.

blank

NO SPACE
SOVE FOUND
NONE FOUND

(1) Blank means al is well. (2) NO SPACE means the solution doesn’t satisfy the grid
selection criteria, and twopnt hasn't space for larger grids. (3) SOVE FOUND means the
solution doesn't satisfy the grid selection criteria, and twopnt couldn’t find a solution for
larger grids. (4) NONE FOUND means no solution was found. Inall cases, Uisthe result of
the simulation, and if automatic grid selection was requested then PO NTS and X contain
output too. For NONE FOUND twopnt returns the initial guess.

64

OO~ WNPRF

6.3 Long List of Arguments

SUBROUTI NE TWOPNT

+ (ERROR TEXT, VERSIOQ

+ ABOVE, ACTIVE, BELOW BUFFER, CNTRL, CNTRLS, COWS, CONDI T,

+ GROUPA, GROUPB, 1SIZE, |VALUE, |WORK, LVALUE, MARK, NAME,

+ NAMES, PMAX, PO NTS, REPORT, RSIZE, RVALUE, RWORK, SI GNAL,

+ STRIDE, TIME U, X
Figure 6.9. Twopnt's arguments with those used for control lists highlighted. Section 6.2
explains them.

Figure 6.9 highlights twopnt’s arguments for communicating control values. When
twopnt begins a simulation, it searches the array CNTRL for control names, and to each
control it finds, it givesthe valuein | VALUE, LVALUE or RVALUE. The value for the i-th
control should bein the i-th position of the appropriate value array.

e CNTRL array of control names 67
e CNTRLS dimension of the control arrays 67
e | VALUE array of integer values 68
e LVALUE array of logical values 68
e RVALUE array of real values 69

For example, if CNTRL(3) is SSABS, then RVALUE(3) becomes twopnt’s value for
SSABS. Thethird entriesin | VALUE and LVVALUE are ignored.

i CNTRL | VALUE LVALUE RVALUE
1 ADAPT ignored . TRUE. ignored
2 LEVELM 2 ignored ignored
3 SSABS ignored ignored 1.0E-7

The controls that receive values this way, and the data types of their values, are as follows.

integer | VALUE: LEVELD LEVELMPADD STEPSO STEPS1
STEPS2 TDAGE

logical LVALUE: ADAPT STEADY

real RVALUE: SSABS SSAGE SSREL STRI DO TDABS TDEC
TDREL TI NC TMAX TM N TCLERO TOLER1
TOLER2

A few controlslisted in Section 4.1 are not listed here. They receive values directly through
twopnt’s arguments with the same names.

Twopnt’s search for names in CNTRL is straightforward. Unrecognized names are
errors, but since arrays must have at least one entry, blank names are accepted. If a name
appears more than once, then the last value supersedes. If a name does not appear, then
twopnt’s default does not change. Beware the default value is always twopnt’s: a second
simulation does not inherit the first’s control values.

6.3 Long List of Arguments

Thislong list of twopnt’s arguments provides some details omitted from earlier discussions.
The arguments appear in Figure 6.9 and in several preceding Figures.

Notefour things. (1) Argumentsoccur a phabetically after thefirst three. Thisistheir
order both in subroutine callsand inthelist below. (2) The argumentsignore fortran naming

65

OO~ WNPRF

6.3 Long List of Arguments

conventions. TEXT is an integer variable, for example. (3) Floating point arguments are
al single or all double precision. Thirty-two bit computers generally use double precision,
while sixty-four bit machines use single precision. (4) Twopnt’s precision changes easily
by atering afew fortran statements, see Appendix 2, but twopnt’s subroutine names do not
change, so confusion might result when moving twopnt among machinesthat need different
precisions.

ERROR use: error signal 64
declaration: output logical

If true, then anumerical or programming error occurs. Error messages appear in the
message file.

TEXT use: fortran unit number for the message file 64
declaration: input integer

Twopnt writes all error and informative messages to this unit. Twopnt neither opens
nor closes the file, and if the unit number isn't positive, then twopnt writes nothing.

VERSI O use: expected version of twopnt 64
input character length (*)

This string identifies the precision and version expected of twopnt. It has the form
"SI NGLE PRECI SI ON VERSI ON 3. 00' , in which SI NGLE can change to DOUBLE
and 3. 00 can change to something similar.

ABOVE use: upper bounds 62 (% 14, 33)

declaration: input floating dimensioned (GROUPA +
COWVPS + GROUPB)

Values for unknowns never exceed their bounds. Bounds should be arranged with
those for group A unknowns first, then bounds for components, and finally bounds for
group B unknowns.

ACTI VE use: markers for components to be examined during 63 (x 17, 33)
grid selection
declaration: input logical dimensioned (*), or dimen-
sioned (COVWPS) for grid selection

Twopnt uses this augument only with automatic grid selection. The selection process
examines component k provided ACTI VE(k) istrue. An error occursif no component is

active.
BELOW use: lower bounds 62 (x 14, 33)
see: ABOVE
BUFFER use: reverse communication data consisting of residual values 57,61
or search directions on input, and values for unknowns on
output

declaration: input and output floating dimensioned (GROUPA +
COWPS * PMAX + GROUPB)

When making reverse communication requests, TWOPNT always places an approx-
imate solution in BUFFER, and sometimes twopnt expects to find something there when
it resumes. If twopnt expects nothing, then BUFFER can be used for scratch space. For

66

6.3 Long List of Arguments

automatic grid selection, values should be ordered in BUFFER by the components at points
convention.

e CNTRL use: control names 65
declaration: input character length (*) dimensioned (CNTRLS)
This array identifies control valuesin | VALUE, LVALUE and RVALUE. The control

named by CNTRL() hasvalue | VALUE(i) , LVALUE(i), or RVALUE(¢) . Whether an
|, L or RVALUE depends on the control name.

integer | VALUE: LEVELD LEVELMPADD STEPSO STEPS1
STEPS2 TDAGE
logical LVALUE: ADAPT STEADY

reall RVALUE: SSABS SSAGE SSREL STRI DO TDABS TDEC
TDREL TI NC TMAX TM N TCLERO TOLER1
TOLER2

Names may appear in any order in CNTRL. They must bethe control names above, or blank.
For repeated names, the last value supersedes. For absent control names, twopnt assigns
default values, see Section 4.1.

o CNTRLS use: number of control values 65
declaration: input integer

The number must be at least 1 because it dimensions arrays CNTRL, | VALUE,
LVALUE and RVAL UE.

COWPS use: number of components 62
declaration: input integer

On input, this number must be at least zero, and it must be positive if PO NTS is

positive. It contributes to the dimensions of arrays ABOVE, ACTI VE, BELOW BUFFER

and U, and it contributes to the total number of unknowns, GROUPA -+ COVPS x POl NTS -+
GROUPB.

e CONDI T use: matrix condition number 57
declaration: input floating
When twopnt requests matrix preparation, SI GNAL = * PREPARE' , then it also

acceptsthe matrix condition number for writing ininformative messages. Zero and negative
values mean no number is available.

o GROUPA use: number of initial, group A unknowns 62
declaration: input integer
The number must be at least zero. It contributes to the dimensions of arrays ABOVE,

BELOW BUFFER and U, and it contributes to the total number of unknowns, GROUPA +
COMPS x PO NTS + GROUPB.

e GROUPB use: number of final, group B unknowns 62
see: GROUPA
e | SI ZE use: dimension of the integer work array, | WORK 63

declaration: input integer

67

6.3 Long List of Arguments

The size must be at least 3 x PMAX, or at least 3 if PMAX = 0.

| VALUE use: integer control values 65
declaration: input integer dimensioned (CNTRLS)

If CNTRL(%) iseither LEVELD, LEVELM PADD, STEPSO, STEPS1, STEPS2 or
TDAGE, then twopnt expects avalue for that control in | VALUE(7) .

| WORK use: integer work array 63
declaration: input integer dimensioned (| SI ZE)

The work space should not be changed while twopnt returns for reverse communica-
tion.

LVALUE use: logical control values 65
declaration: input logical dimensioned (CNTRLS)

If CNTRL() is ADAPT or STEADY, then twopnt expects to find a value for that
control in LVALUE(7) .

MARK use: array marking new grid points for the UPDATE reverse 58, 63
communication request
declaration: output logical dimensioned (*), or dimensioned
(PMAX) for grid selection

Twopnt uses this augument only with automatic grid selection. When twopnt signals
it hasanew grid, SI GNAL = "~ UPDATE' , then the new grid isin X, and if MARK(4) is
true, then X(¢) isanew grid point.

NANE use: array of names for the unknowns 62
declaration: input character length (*) dimensioned (NAMVES)

Twopnt writes these namesin messages and may truncate long names. Names should

be arranged with those for group A unknowns first, then names for components, and finally

names for group B unknowns. The array should be replaced by a single blank character
string if no names are available.

NAMES use: number of names for the unknowns, 62
either 1 or GROUPA + COVPS + GROUPB

declaration: input integer

NAMES tellstwopnt the number of namesin NAMVE. The value should be 1 if no names
are available.

PIVAX use: maximum points in any grid 63 (x 18, 34)
declaration: input integer

The number must be at least PO NTS. It contributes to the dimensions of arrays
BUFFER, U and X.

PO NTS use: number of points 58, 62 (x 16, 35)
declaration: input and output integer

Oninput, this number must be at least zero, and positive if COMPS is. It contributesto
the total number of unknowns, GROUPA + COVPS x PO NTS + GROUPB. For automatic

68

6.3 Long List of Arguments

grid selection, PO NTS isthe size of the current grid (it should be the size of the initia grid
initially, and twopnt increases it as the grids grow).

e REPORT use: outcome status 64

declaration: output character length (*)

If ERRCR is false and Sl GNAL is blank, then twopnt has finished and REPORT
explains one of four outcomes. (1) Blank means al iswell. (2) NO SPACE means the
solution doesn’t satisfy the grid selection criteria, and twopnt hasn't space for larger grids.
(3) SOVE FOUND means the solution doesn’t satisfy the grid selection criteria, and twopnt
couldn’t find a solution for larger grids. (4) NONE FOUND means no solution was found.
When twopnt finishes, Uis the result of the simulation, and if automatic grid selection was
requested then POl NTS and X contain output too. For NONE FOUND twopnt returns the
initial guess.

RSI ZE use: dimension of the floating work array, RWORK 63

declaration: input integer

The size must be at least 3 x PMAX 4+ 9 x n in which n = GROUPA + COVPS x
PMAX 4+ GROUPB, or if PMAX = 0 then the sizemust be at least 3 + 9 x n.

RVALUE use: floating control values 65

declaration: input integer dimensioned (CNTRLS)

When CNTRL(7) is SSABS, SSAGE, SSREL, STRI DO, TDABS, TDEC, TDREL,
TI NC, TMAX, TM N, TOLERO, TOLER1 or TOLER?Z, then twopnt expects to find a value
for that control in RVALUE(7) .

RWORK use: floating work array 63

declaration: input floating dimensioned (RSl ZE)

The work space should not be changed while twopnt returns for reverse communica-
tion.

SI GNAL use: reverse communication signal 57

declaration: input and output character length (*)

Blank on input marks the start of a simulation; blank on output marks the finish. Not
blank on output signals a reverse communication request. In this case, the following tasks
must be performed.

S| GNAL = " PREPARE' signal to prepare the Jacobian matrix

This signal means subsequent requests to solve matrix equations should use the Jaco-
bian matrix (of theresidual function) evaluated at the approximate solution now in BUFFER.
The (i, 7) matrix entry is the partial derivative of the i-th equation’s residua with respect
to the j-th unknown. Twopnt expects equations to be solved with this matrix when the
" SOLVE' signal suppliesright sides. Twopnt doesn’t want the matrix and doesn’t care how
the eguations are solved, so simulator writers must decide what to do here. The simplest
option isto use the TWPREP and TWSOLV subroutines supplied with twopnt.

Simulators usualy solve matrix equations by factorization—that is, by Gaussian
elimination—so they form and factor the Jacobian matrix when signaled to * PREPARE' .
In this case, (1) evaluate the matrix at the approximate solution in BUFFER. When T1 ME
is true, the matrix should be the one for the time dependent residual. The matrix entries
can be obtained either by evaluating formulas for partial derivatives or by approximating

69

6.3 Long List of Arguments

those derivatives with divided differences. Usually, computing approximations is easier
than deriving formulas. (2) Factor the matrix and store the factors somewhere for later use.
Mathematical software (mathware) libraries usually contain programsfor factoring matrices
and then solving equations[8] [9] [14]. (3) If acondition estimate for the matrix isavailable,
place that in CONDI T. If not, set CONDI T zero. (4) Cal twopnt. The TWPREP subroutine
supplied with twopnt will perform these steps with reasonable efficiency for matrices like
the one pictured in Figure 6.4. Sections 6.1 and 6.4 discuss TWPREP.

Some simulators solve matrix equations iteratively—that is, by successive approxi-
mation—because Gaussian elimination might need too much computer memory. Iterative
algorithms use the matrix only for matrix-vector products. For Jacobian matrices, matrix-
vector products are directional derivatives which can be evaluated without the matrix. Un-
fortunately, each of the many iterative a gorithms succeeds only in special situations [14].
If thisis one of them, then prepare to use an iterative agorithm for solving equations when
SI GNAL = " SOLVE' , asfollows. (1) Either evaluate and store the matrix (for usein form-
ing matrix-vector products later), or store the approximate solution found now in BUFFER
(in case matrix-vector products are to be evaluated as directional derivatives). If some pre-
conditioning matrix is needed, then prepare it now too. (2) If a condition estimate for the
matrix is available, place that in CONDI T. If not, set CONDI T zero. (3) Call twopnt.

SI GNAL = " RESI DUAL' signal to evaluate the residual

(1) Evauatetheresidual at the approximate solutionin BUFFER. When Tl MEistrue,
the residual should be the time dependent one. (2) Place the residual in BUFFER. (3) Call
twopnt.

SI GNAL = " RETAI N signal to retain a transient state

BUFFER contains atransient state that will be needed later when evaluating transient
residuals. (1) Store the contents of BUFFER. (2) Call twopnt.

SI GNAL = " SAVE' signal to save the solution

The latest approximate solution can be used to restart the simulation should the com-
puter crash or the money run out. (1) If desired, store the solution found in BUFFER with
whatever else describes the simulation, such as PO NTS and X when grid selection is used.
(2) Call twopnt.

SI GNAL =" SHOW signal to show the solution

Thecontrol LEVEL Dstipulatesthat solution data be displayed occasionally. (1) Write
to unit TEXT the approximate solution found in BUFFER. (2) Call twopnt. The TWSHOW
subroutine supplied with twopnt will perform this task with the result pictured in Figure 6.5.
Sections 6.1 and 6.4 discuss TWSHOW

SI GNAL =" SOLVE' signal to solve matrix equations

The matrix equations to be solved are the ones in Newton's method, but twopnt
chooses the matrix and supplies the right side, see Section 2.1, so the simulator must only
do the following. (1) Solve matrix equations using the most recently prepared matrix and
the “right side,” or constant terms, found in BUFFER. (2) Place the solution in BUFFER.
(3) Call twopnt. The TWSOLV subroutine supplied with twopnt can perform these tasks for
matrices prepared by TWPREP. Figure 6.4 and Sections 6.1 and 6.4 discuss TW5OLV.

70

6.4 Ancillary Subroutines

SI GNAL = " UPDATE' signal to update the problem to a new grid

When twopnt chooses a new grid it must guess the solution there. The residual
function also changes at this time because the grid islarger. (1) If desired, replace twopnt’s
guess in BUFFER by a better guess. (2) If desired, prepare to evaluate the new residual
function, for example, by computing some things ahead. (3) Call twopnt.

e STRI DE use: time stride for the transient residual 57
declaration: output floating

Use this stride when approximating time differentials for the transient residual or its
Jacobian matrix.

e TIME use: signal to use the transient residual 57
declaration: output logical

If true with reverse communication requests * PREPARE' and * SOLVE' , then use
the transient residual.

o U use: the guess and the solution 61 (x 40)

declaration: input and output floating dimensioned
(GROUPA + COVPS * PMAX + GROUPB)

Ushould containtheinitial guess at the start of thesimulation. It contains approximate
solutions from Newton's search and time evolution during the simulation. U contains a
solution at the finish of the simulation, unless REPORT is NONE FOUND, then twopnt
restorestheinitial guess. For automatic grid selection, values should be ordered in U by the
components at points convention.

e X use: grid points 58, 63 (x 16, 40)

declaration: input and output floating dimensioned
(*), or dimensioned (PMAX) for grid selection

Twopnt uses this augument only with automatic grid selection. X should contain the
initial grid at the start of the simulation. It contains the current grid during the simulation.
X containsthelast grid for which a solution was found at the finish of the simulation, unless
REPORT is NONE FOUND, then twopnt restores the initial grid. The initial grid must be
ordered

X(1) <X(2) < --- o X(1) >X(2) > ---

and twopnt retainsthe ordering when it selects grids, so twopnt may move old pointsto new
array positions.

6.4 Ancillary Subroutines

The TWPREP, TWSOLV and TWSHOW subroutines come with twopnt but aren’t part of
twopnt. They can perform the more difficult reverse communication requests: PREPARE,
SOLVE and SHOW respectively.

Figure6.10 showsthe argumentsfor all three ancillary routines. Notefour things. (1)
Argumentswith twopnt’snamesshould begiventwopnt’ sactual arguments. (2) ThisSection
explains only arguments unique to the ancillary routines. (3) For automatic grid selection,
arrays sized by PO NTS should be dimensioned using PMAX instead, but the PO NTS

71

6.4 Ancillary Subroutines

+
=+

=+
+
+

+
+

SUBROUTI NE TWSHOW
(ERROR, TEXT,

BUFFER, COWPS, GRI D, GROUPA, GROUPB, PO NTS, X)

SUBROUTI NE TWPREP
(ERROR, TEXT,
A, ASI ZE, BUFFER, COWPS, CONDI T, GROUPA, CGROUPB, PIVOT, PO NTS,

RETURN)

SUBROUTI NE TWSOLV
(ERROR, TEXT,
A, ASI ZE, BUFFER COMPS, GROUPA, GROUPB, PIVOT, PO NTS)

o GRID

Figure6.10. TWBHOW's, TWPREP' sand TWSOL V' sarguments. These subroutines show so-
[ution data, prepare matrices and solve matrix equations, respectively. Section 6.1 explains
their use with twopnt’ s rever se communication. Section 6.4 explains their arguments.

argument should not be given the value PMAX. (4) Like twopnt, TWPREP evaluates the
residual function by reverse communication.

TWBHOWcan perform the SHOWreverse communication request. Figure 6.5 shows
what is shown for components at points. GROUPA and GROUPB unknownswould be shown
similarly. TWSHOWhas one argument different from twopnt’s.

use: grid signal
declaration: input logical

This argument is needed in case twopnt does not perform automatic grid selection.
GRI D false signals TWSHOWto omit writing grid points.

The matrix subroutines, TWPREP and TWSOLV, only apply to matrices that resemble
the one in Figure 6.4. In this case, TWPREP (1) forms a Jacobian matrix by numerical
approximation, (2) scales the matrix so all rows have oco-norm of 1, (3) uses the banded
subroutines in the linpack package [8] to factor the matrix, (4) uses those subroutines also
to estimate the condition number of the scaled matrix, and (5) stores data in arrays A and
Pl VOT. TWSOLV usesthis data (6) to scal e equations to match the matrix scaling, and then
(7) to solve equations.

TWPREP approximatesthei-th column in the Jacobian matrix of afunction f evaluated
at the vector w, asfollows.

of . fw) = f(w)

Vi | y—yy €

€ = (w; £ 1) /e

In this expression, (a) v; isthe i-th variablein f, (b) w matches w except ¢; increments the
i-th entry (this perturbation ignores the bounds on twopnt’s unknowns), (€) w; is the i-th
entry inw, (d) e is the unit roundoff for the computer arithmetic in use, and (€) the & sign
matches the sign of w;. The tridiagonal, blocked pattern expected for the nonzeroesin the
meatrix allows TWPREP to build several columns at once, so approximately only 3 x COMPS
function evaluations are needed.

TWPREP and TWSOLV share many arguments with twopnt. The arrays have di-
mensions that vary with PO NTS—which twopnt might increase to PMAX during grid
selection—so actual dimensions should be chosen using PMAX instead. One new argument
for matrix storage likely accounts for most of asimulator’s memory needs.

use: matrix and scale factor storage space

declaration: output (for TWPREP) and input (for TWSOLV) floating
dimensioned (ASI ZE)

72

w N

A OWN PR

WN -

6.4 Ancillary Subroutines

This space should not be changed because it communicates matrix factors and scale
factors from TWPREP to TWSOLV.

o ASI ZE use: dimension of the storage space, A
declaration: input integer

The size must be at least (30 — 1)n.

b = COVPS + max{COMPS, GROUPA, GROUPB}

n = GROUPA + COVP x PO NTS + GROUPB
< GROUPA + COVP x PMAX 4+ GROUPB

PO NTS can grow to PMAX during automatic grid selection, so the value of twopnt’s
argument PMAX should be used for PO NTS when choosing avalue for ASI ZE.

o BUFFER use: reverse communication data for TWPREP, identical to 57, 61, 66
twopnt's argument of the same name

declaration: input and output floating dimensioned
(GROUPA + COVPS * PO NTS + GROUPB)

When twopnt requests matrix preparation, it placesin BUFFER the approximate solu-
tion at which thematrix should be evaluated. ThisisTWPREP'sinitial input. When TWPREP
requests residual evaluation, TWPREP places the approximate solution in BUFFER, and it
expects to find the residual there when it resumes.

o PI VOT use: pivoting data from the matrix factorization

declaration: input and output integer dimensioned (GROUPA +
COWPS * PO NTS + GROUPB)

This space should not be changed because it communicates pivoting data from
TWPREP to TWSOLV. PO NTS can grow to PMAX during automatic grid selection, so
PMAX should replace PO NT'S when choosing adimension for Pl VOT.

o RETURN use: reverse communication signal for TWPREP
declaration: input and output logical

False on input marks the start of matrix preparation; false on output marks the finish.
True on output signals a reverse communication request. In this case, (1) evaluate the
residua at the approximate solution in BUFFER. When twopnt’s argument Tl ME is true,
the residual should be the time dependent one. (2) Place the residual in BUFFER. (3) Call
TWPREP.

(D) Finally, let not only mathematical formulation and observational data,
but even the approximation process pass unchallenged. There still remains
this limitation: No computing procedure or device can perform the operations
which are its “elementary” operations (or at least all of them) rigorously and
faultlessly. This point is most important . ..

— J. von Neumann and H. H. Goldstine [26]

73

7.1 Step 1, Model

Swirling Flows

7.0 Introduction

A “solution” of the Navier-Stokes equati ons often invol ves a dimension reduction and often
must be obtained numerically. The simulation appearing throughout this manual is such
a solution for flows between infinite, parallel, rotating and stationary planes. This flow
problem illustrates the three steps in building a computer simulation, see Figure 2.1.

7.1 Step 1, Model

Figure 7.1 plots some streamlines for the whirlpool-like flow modelled here. Theodor
von Karman [19] originated the dimension reduction used to model these flows in 1921—
he considered flowsdirected against aninfinite, rotating plane—and similar flows have been
studied continuously since then, see[3] and [30]. The flows have practical use in modeling
chemical reactors [6], so to this end, G. H. Evans and R. Grief [10] recently extended the
model to variable fluid properties. The following discussion is based on their work, and on
notes of D. S. Dandy [7].

The coordinate system is cylindrical about the planes’ axis of rotation with the usual
notation. The fluid has velocity, pressure and temperature which are functions of position
and which must be determined.

r radial position cm

@ angular position radians

z axial position cm

u radial velocity cm/ sec

v circumferential velocity cm/ sec

w axial velocity cm/ sec

p pressure dynes / cm?
T temperature K

The flow cavity lies between the planes at z = 0 and z = zmax. Thelower plane at
z = Oisasolid disk: animpermeable surface which isreacting in some simulations[6], but
not this one. The upper plane a z = zmax is aporous disk: a permeable surface passing

74

7.1 Step 1, Model

Figure 7.1 Sreamlines computed from the results of Chapter 7's simulation. The flow
spirals downward from the porous, stationary plane to the impermeable, rotating plane.
Fluid travel sthe length of the streamlines shown herein 2.75 seconds. Section 7.1 describes
the flow model.

fluid with constant normal velocity, wmax, independent of location. Since the picture in
mind has 0 < zmax, flow into the cavity has negatively signed axial velocity, wmax < 0.
Both disks are heated and the solid one is spinning, imparting temperatures and a rotation
rate Ty, Tmax and wy, respectively.

Tp, solid disk temperature 300 K
Tmax porous disk temperature 1000 K

wo solid disk rotation rate 47 radians / sec
wmax axial inflow velocity -2 cm/ sec
zmax porous disk height 5cm

The dimension reduction for this flow assumes (1) rigid rotational symmetry—radial
and circumferential velocities linear in r, and axia velocity and temperature independent
of r, (2) density independent of pressure variation (the low Mach number approximation),
and (3) pressure quadratic in r and independent of z. From assumption (1), velocities can
be represented in terms of functions F', G and H of = alone.

u=rF v=1rG w=H

These functions and T' constitute a two point boundary value problem. The boundary
conditions are

G(0) = wo T(0) = To H(zmax) = wmax T (zmax) = Tmax

75

7.2 Step 2, Discretization

and other values are zero. The customary equations for radial momentum, angular momen-
tum, continuity, and energy reduce to equationsin these new variables.

/\+p<%—j+F2—G2+8—FH) 8(;18—F)=O

0z 0z 0z
oG oG 0 oG
ok + EH) - L (W) =
p<8t+ G5) az(“az) 0
OH dlnp
+ 0z + 0z 0

or or 0 oT

These equations contain an expression

1 0p
A=—-—
r or
which isindependent of and z by assumption (3) and which therefore becomes an “ eigen-

value’ for the boundary value problem.
Fluid properties are courtesy of the chemkin libraries [20, 23].

cp specific heat at ergs /(g K)
constant pressure

k thermal conductivity ergs/ (cmK's)

1 dynamic viscosity g/ (cms)

p density g/cm?

Thefluid in this example is argon gas. Argon’s specific heat isindependent of temperature

¢p specific heat 25R/W
R universal gas constant 8.314-107 ergs / (mole K)
W molecular weight 39.948 g / mole

but its conductivity and viscosity do vary with temperature

E(T) = exp(((0.0121673 e — 0.284023) o + 2.85205) o — 1.78377)
(1(T) = exp(((0.0121673 o — 0.284023) o + 2.85205) o — 17.6539)

in which « = InT. Density varies with both pressure and temperature, but this model
assumes (2), insensitivity to small pressure changes. Themodel therefore modifiestheidea
gas law asfollows.

W

Pref
T) = et —
p(T) T R

Pref thermodynamic pressure 1 atmosphere
(1013250.0 dynes / cm?)

Figure2.2 plots F', G, H and T for the equations, boundary conditions, and fluid properties
given above.

76

7.3 Step 3, Solution

7.2 Step 2, Discretization

A straightforward discretization of the model’s differential equations uses finite dif-
ference methods with p grid points and 4p unknowns

0= T i) X3 . Tp = Zmax
0= B F F ... F =0
wo = G1 G2 G3 ‘e Gp =0
0= H, H, Hjy H, = Wwmax
Ty = Ty Ty Ty . T, = Tmax

inwhich F,, G,,, H, and T,, ssmple F', G, H and T at x,,. Ingenerdl, if f,, and g,, sample
functions f and g at x,,, then

9
dz

d (df
(o)

in which the coefficients are messy.

a;fnfl + anfn + O‘Z+1fn+1

Q

Tn

~ Bgfnfl + ﬂnfn + 6;+1fn+1

Tn

a- — Tn — Tp+1 ﬁ7 _ 9n + In—1

" ($n71 - xn)(xnfl - wnJrl) " (1'n71 - xn)(xnfl - xn+1)
Oé+ _ Tp — Tp—1 + _ 9n + In+1

" (:En - anrl)(xnfl - xn+1) " (xn - anrl)(mnfl - xn+1)
an = —(ay, +a;)) B =~ (B +57)

The momentum and energy equations discretize by replacing their differentials by these
approximations. The resulting equations for 1 < n < p, and the trivial equations for the
boundary valuesat n = 1 and n = p, produce 3p equations for 3p unknowns. F,,, G,, and
T, withl <n <p.

Since the energy equation has only first order differentials, it most conveniently
discretizes using approximations formed midway between grid points. At z,1,/2 =
(zn, + xn+1)/2 there results the equation

F,+ F, H,\w—H, H,+H,+1 Inp,s1 —Inp,
9 + +1 + +1 1 Pp41 P

=0
2 Tp4l1l — Tn 2 Tn41l — Tn

inwhich p,, isthe density at ..
oy = Lret W
n Tn R

These equations for 1 < n + % < p, and the trivial equations for the boundary values at
n = 1andn = p, produce p + 1 equations for p unknowns. H,, with1 < n < p.

Equations and unknowns must balance and do. Thereare4p+ 1 equationsand 4p + 1
unknowns: 4p components at points and 1 eigenvalue, A. If the continuity equation were
discretized elaborately like the others however, then only 4p equations would result, and
the unknowns would be underdetermined.

Figure 6.5 lists some values for the F,,, G,,, H,, A, and T,, solving the discrete
equations given above.

77

7.3 Step 3, Solution

7.3 Step 3, Solution

The simulation model ultimately distillsto a subroutine that evaluates residual errors given
approximate solutions. Section 6.1, and the program fragment in Figure 6.2, show how
twopnt uses such subroutines. The present Section shows what goes in them.

The first consideration in writing any computer program is the organization of data.
The natural choice hereis twopnt’s components at points convention

GROUPA=1 COWS=4 PAONIS=p CROUPB=0

in which F', G, H and T' are the components, and the eigenvalue is the single unknown
in group A. Unfortunately, the eigenvalue doesn’'t suit the matrix routines TWPREP and
TWBCOLV because it appearsin equations a all points. This givesthe Jacobian matrices one
column outside Figure 6.4's tridiagonal, blocked structure. The resulting matrix equations
can be solved by “ stretching” them [16], but it is traditional to ater the model’s nonlinear
equationsinstead. Thus, the eigenvalueisreplicated at every point, and extra equations are
added to make all the copies the same.

0= T To T3 - Tp = Zmax
0= Fy Fy F3 .. F, =0
wo = G Gs Gs . G, =0
0= H, Ho Hj; Hp = Wmax
M= = A3 = ... =)
Ty = T 15 T3 . T, = Tmax

This device increases equations and unknowns to 5p each.
GROUPA=0 COWS=5 PONIS=p CROUPB=0

Both the unknowns and the residual s must be arranged carefully, because as explained
in Section 6.2, the arrangement determines the matrix structure. For F', G and T' (each
with p — 2 discrete and 2 boundary equations), the equations can pair with the unknowns.
However, thereis no natural pairing for H (with p — 1 discrete and 2 boundary equations),
nor for A (with p — 1 equations). An arrangement acceptable to TWPREP and TWSOLV
pairs the boundary equation for H,, with the unknown X, and pairs the energy equation at
Tp41/2 With the unknown H,,.

SUBROUTI NE TWFUNC 1 The TWFUNC sub-

+ (ERROR TEXT, 2 . :

+ BUFFER F, FO, G @0, H K LAVBDA, MJ, OVEGA, PO NTS, RHO 3 routine evaluates residuals

+ STRIDE, T, TO, TIME, TMAX, TZERO, U0, WWAX, X) 4 using the data arrangement

5 .
LTI iiiiiiiriiiiiiiiisiiiiiiiirs 6 described above. The
c 7 ; ;
c TVEUNG . subroutine communicates
c 9 through the array BUFFER
g SAMPLE RESI DUAL FUNCTI ON FOR SI MULATI NG SW RLI NG FLOWS. ig by replacing solution data
CLITTIITTII LTI LTI LIl iiiriiirriiiiiii1/ 12 with residual datain the
13

IMPLICIT COWPLEX (A - P, R - Z), INTEGER (Q 14 proper arrangement. Some

CHARACTER | D*9 15 i

I NTEGER COVPS, J, POINTS, TEXT 16 of the other subroutine

LOG CAL ERROR TIME 17 arguments are parame-
grITTPREGSION > SINGLE 18 ters for the model—such
Cr****END PRECI SI ON > SI NGLE 20 as OVEGA, which is wy
Cr****PRECI S| ON > DOUBLE 21

DOUBLE PRECI SI ON 22 (LINES1TO 4).
Cr****END PRECI S| ON > DOUBLE 23

+
+
+

A, A0, Al, A2, BO, Bl1, B2, BUFFER, 0, Cl, C, CP, F, FO, G 24
&, H K, LAMBDA, MJ, OVEGA, P, R, RHO STRIDE, T, TO, TEMP, 25
TMAX, TZERO, W0, W WWAX, X 26

78

¥
¥
¥
¥

ST r i rrnrry
C

o]

C
O RN NN

cairl

1010
alri

+

+
1020

ST r i b i rrrrry

000000000

LT bbb r i i

ali

PARAVETER (1D = ' TWEUNC: ')
PARAVETER (COMPS = 5)

PRESSURE AT 1 STANDARD ATMOSPHERE
PARAVETER (P = 1013250. 0)

MOLECULAR VEI GHT OF ARGON
PARAMETER (W = 39.948)

UNI VERSAL GAS CONSTANT
PARAMETER (R = 83140000. 0)

SPECI FI C HEAT OF ARGON AT CONSTANT PRESSURE (ERGS / (GM * K))

PARAMETER (CP = R* 2.5 / W

DI MENSI ON
BUFFER(COMPS, PO NTS), F(PO NTS), FO(
Q(PO NTS), H(PO NTS), K(PO NTS),
RHO(POI NTS), T(POINTS), TO(POI NTS),
X(POl NTS)

PROLOGUE.

CHECK THE ARGUMENTS.

ERROR = .NOT. (2 .LE. PO NTS)
IF (ERROR) GO TO 9001

UNPACK THE VARI ABLES.

DO 1010 J = 1, PO NTS
F(J) = BUFFER(1, J)
G(J) = BUFFER(2, J)
H(J) = BUFFER(3, J)
LAVBDA(J) = BUFFER(4, J)
T(J) = BUFFER(5, J)
FO(J) = Wo(1, J)

@(J) = w2, J)
To(J) = Wo(5, J)
CONTI NUE

CALCULATE DENSI TI ES, VI SCOSI TI ES AND THERVAL CONDUCTI VI TI ES.

DO 1020 J = 1, PO NTS
RHQ(J) = (P* W / (R* T(J))

A = LOG (T(J))
MY(J) = EXP

(((0.0121673 * A - 0.284023) * A + 2.85205) * A - 17.6539)

K(J) = EXP

(((0.0121673 * A - 0.284023) * A + 2.85205) * A - 1.78377)

CONTI NUE

F, G AND T EQUATI ONS
RHO * (dF/idt + F** 2 - G** 2 + FF H) -
RHO* (d@dt + 2 F G+ G H - (MJG)"

RHO* CP * (dT/dt + HT') - (KT)' =0

BOUNDARY CONDI Tl ONS.

BUFFER(1,
BUFFER(1,

1) = F(1)
PO NTS) =

- 0.0
F(PONTS) - 0.0

BUFFER(2, 1) = G(1) - OVEGA

BUFFER(2, PO NTS) = G(PONTS) - 0.0
BUFFER(5, 1) = T(1) - TZERO
BUFFER(5, POINTS) = T(PO NTS) - TMAX
EQUATI ONS.

DO 2010 J = 2, PONTS - 1
TEMP = ((X(J - 1) - X(J)) * (X(J - 1)

POl NTS),

LAVBDA(POl NTS),

(M F)

=0

S OX(3 o+

G(POINTS),

+P=0

1))

MJ PO NTS) ,
UO(COMPS, PO NTS),

7.3 Step 3, Solution

Most arguments
are arrays that ease ref-
erence and movement of
data within the subrou-
tine (LINES 43 TO 47).
The subroutine begins by
copying values into these
mnemonically named ar-
rays (LINES 62 TO 71).
It copies an approximate
solution from BUFFER,
and it copies a transient
state from U0 (where it
was placed at the last
S| GNAL =" RETAI N).

The subroutine next
performs some preliminary
calculations. It storesfluid
properties such as density
(LINES 75 TO 83) both for
convenience and to avoid
repeated evaluation.

The subroutine fi-
nally begins building the
residual vector. Since
values for the unknowns
have been copied out of
BUFFER, values for the
residuals can be stored
there directly. Equations
associated with F', G,
and T' depend on values
at three points, so their
residuas are evaluated to-
gether. Residual formulas
for boundary equations are
simple (LINES 99 TO 106),
but formulasfor discretized
equations are

79

7.3 Step 3, Solution

A0 = (X(J) - X(J + 1)) / TEWP 112

BO = (MXJ) + MXJ - 1)) / TEMP 113

@ = (K(J) + K(J - 1)) | TEMP 114

115

TEMP = ((X(J) - X(J + 1)) * (X(J - 1) - X(J + 1))) 116

A2 = (X(J) - X(J - 1)) | TEMP 117

B2 = (MXJ + 1) + MKJ)) / TEWP 118

@ = (K(J + 1) + KJ)) | TEMP 119

120

Al = - (A0 + A2) 121

Bl = - (BO + B2) 122

Cl=- (00 +C2) 123

124

BUFFER(1, J) 125

+ = RHO(J) * (F(J) ** 2 - QJ) ** 2 + HJ) 126

+ * (A0 * F(J - 1) + AL * F(J) + A2 * F(J + 1))) 127

+ - (B0 * F(J - 1) +BL* F(J) +B2* F(J + 1)) 128

+ + LAMBDA(J) 129

130

BUFFER(2, J) 131

+ = RHO(J) * (2.0 * F(J) * GJ) + HJ) 132

+ * (A0 * QI - 1) + AL QJ) + A2 EJ + 1)) 133

+ - (BO* GJ- 1) +BL* GJ) +B2* GJ+ 1)) 134
135

BUFFER(5, J) 136

+ = RHO(J) * CP * H(J) 137

+ * (A0 * T(J - 1) + AL * T(J) + A2 * T(J + 1)) 138

+ (o0 *T(I- 1) +CL*T(I) + 2 * T+ 1) 139
140

IF (TIME) THEN 141
BUFFER(1, J) 142

+ = BUFFER(1, J) + RHQ(J) * (F(J) - FO(J)) / STRIDE 143
BUFFER(2, J) 144

+ = BUFFER(2, J) + RHQ(J) * (&J) - @(J)) / STRIDE 145
BUFFER(5, J) 146

+ = BUFFER(5, J) + RHQ(J) * CP * (T(J) - TO(J)) / STRIDE 147

END | F 148

2010 CONTI NUE 149
150

CILTIIIITETI LTI L LTI LI i il i11111111151
C 152
C H AND P EQUATI ONS 153
C 154
C 2F+H +H* (LOGGRHO' =0 155
c 156
C P CONSTANT 157
C 158
N
160

C/// BOUNDARY CONDI TI ONS. 161
162

BUFFER(1, 1) = F(1) - 0.0 163

164

BUFFER(3, 1) = H(1) - 0.0 165
BUFFER(4, PO NTS) = H(POI NTS) - WWAX 166

167

C/// EQUATI ONS. 168
169

DO 3010 J = 2, POINTS 170
BUFFER(3, J) 171

+ = F(J) + F(J - 1) 172

+ + (HJ) - HJ - 1)) 1 (X)) - X3 - 1)) 173

+ + 0.5 * (HJ) + HJ - 1)) 174

+ * (LOG (RHO(J)) - LOG (RHO(J - 1))) / (X(J) - X(J - 1)) 175

176

BUFFER(4, J - 1) = LAVBDA(J) - LAMBDA(J - 1) 177

3010 CONTI NUE 178
179
N r:
C 181
C ERROR MESSAGES. 182
c 183
CLTIIIITETI LTI LT L LTI LI I i 1111111184
185

GO TO 99999 186

187

9001 |F (0 .LT. TEXT) WRITE (TEXT, 99001) ID, PO NTS 188
GO TO 99999 189

190

99001 FORMAT 191
+ (/1X, A9, 'ERROR THERE MUST BE AT LEAST TWO PO NTS.' 192

+ //10X, 110, ' PO NTS') 193

194

i/l EXIT. 195
196

80

complicated. Those for-
mulas are written more
easily if some coefficients
are evaluated separately
(LINES 111 TO 123). The
subroutine evaluates the
steady state residual first
(LINES 125 TO 139), and
then adds time dependent
terms if requested (LINES
141 TO 148).

Equations associated
with H and \ depend
on values at two points,
so their residuals are
evaluated apart from the
others (LINES 163 TO 176).
These equations also have
no time dependent terms.

99999 CONTI NUE
RETURN
END

7.4 Errors

197
198
199

Section 6.1 and Figure 6.2 explain how a simulator program might use twopnt and
TWFUNC to perform asimulation. The program mostly orchestrates reverse communication
and gives valuesto twopnt's controls. The present simulation beginswith agrid of six points
spaced uniformly from 0 to zmax. It guesses solution values for F', G, H and T' by linear
interpolation of boundary values, and it guesses 0 for A. It chooses

component ACTI VE BELOW ABOVE

F yes —4 4

G yes —10* 104
H yes —104 10*
A no —104 10*
T yes T0/2 2 Tmax

with the large bounds, 4+10%, intended to disable checking of bounds for many unknowns.
The simulation accepts twopnt’s defaults for many controls, except

ADAPT = true TINC= V10
LEVELD = 0 STEPS2 = 25
STEPS1 = 50 TOLERL = 0.1
STRIDO =103 TOLER2 = 0.1

so CNTRLS = 8 inthisexample. Twopnt’sdefault values would suffice, but different values
have been chosen to make the example interesting. Both the residual subroutine discussed
here and a fortran main program that usesit are supplied with twopnt, see Appendix 2.

7.4 Errors

An assessment of von Neumann’s errors for this simulation would proceed as follows. The
errors of themodel lieinthe dimension reduction of the Navier-Stokesand related equations,
and ultimately, in the continuum assumptions underlying these equations.

oF ., ., OF o (OF\

The errors of measurement occur in the physical “constants,” and in the data from which
formulas for such things as viscosity have been derived.

R universal gas constant 8.314-107 ergs / (mole K)
(B)
w(T) = exp(((0.0121673c — 0.284023) v + 2.85205)cr — 17.6539)

Theerrorsof approximation stem both from theformul asrepl acing thedifferential equations
derivatives, and also from the settings of twopnt’s controls for grid selection and for halting
Newton’s search.

d _

d_f ~ anfnfl +anfn+a;r+1fn+1
(C) z Tn

SSREL = 1076 TOLERL = 0.1

81

7.4 Errors

The errors of precision lie in the choice of computer, and the manner of evaluating all the
various formulas of the calculation.

DOUBLE PRECI SI ON VERSI ON 3. 08
(D)

- _ Tn — Tn+1
("Enfl - wn)(xnfl - $n+1)

When a problem in pure or applied mathematics is “solved” by numerical
computation, errors, that is, deviations of the numerical “solution” obtained
from the true, rigorous one, are unavoidable. Such a “solution” is therefore
meaningless, unless there is an estimate of the total error . ..

The errors described in (A) are the errors due to the theory. While their
role is clearly the most important, their analysis and estimation should not
be considered part of the mathematical or of the computational phase of the
problem, but of the underlying subject, in which the problem originates.

The errors described in (B) are the errors due to observation. To this
extent they are, strictly construed, again no concern of the mathematician.
However, their influence on the result is the thing that really matters. In this
way, their analysis requires an analysis of the question: What are the limits of
the change of the result, caused by changes of the parameters (data) of the
problem within given limits?

The errors described in (C) are those which are most conspicuous as
errors of approximation or truncation. Most discussions in “approximation
mathematics” are devoted to analysis and estimation of these errors: Numerical
methods to obtain approximate solutions of algebraical equations by iterative
and interpolation processes ... and so on.

We now come to the errors described in (D). As we saw, they are due
to the inner “noise level” of the numerical computing procedure or device—in
the digital case this means: to the round off errors.

— J. von Neumann and H. H. Goldstine [26]

82

Appendix 1 Common Keywords

Appendix
Common Keywords

ThisAppendix cross-referencestwopnt’s controlswith “ keywords’ that manipul ate the con-
trols for some simulators written at Sandia National Laboratoriesin Livermore, California
The cross-reference table is possible thanks to F. M. Rupley [29]. The simulators, their
current versions, and what they simulate, are as follows.

simulator wverson ___ simulation

CRESLAF chemical vapor deposition reactors [5]
PREM X laminar premixed flames [21]

PSR perfectly stirred chemical reactors [13]
SPI'N 3. 83 rotating disk and stagnation flow chemical

vapor deposition reactors [6]

SURPSR perfectly stirred chemical reactors with both gas
and surface reactions [25]

These simulators are used in the Laboratories own research, which is supported for the
most part by the United States Department of Energy, and they are available for others’
research too.

The simulators’ reference manuals should be consulted before using the keywords.
The page numbers in the table below refer to the descriptions of the controls in this man-
ua. Some controls have identical keywords because those keywords accept multiple data.
Other controls have multiple keywords, because (in the case of STEPS1 and STRI DO) the
simulators perform multiple simulations, or because (in the case of U and X) initial guesses
and grids have complicated descriptions.

83

Appendix 1 Common Keywords

twopnt
control

ABOVE
ACTI VE
ADAPT
BELOW
LEVELD
LEVELM
PADD
PMAX
PO NTS
SSABS
SSAGE
SSREL
STEADY
STEPSO
STEPS1

STEPS2
STRI DO

TDABS
TDAGE
TDEC
TDREL
TI'NC
TVAX
TM N
TOLERO
TOLERL
TOLER2
U

CRESLAF PREM X

TWPR
TWPR

NPTS
TWAB
NJAC
TVRE

| STP
TWST

| RET
STPO

TWIA
TIAC

TWR

DTMX
DTN

REAC
SURF

NPTS
XEND

SFLR
PRNT
PRNT

NTOT
NPTS
ATCL
NJAC
RTCL

| STP

TI ME
TI M2

| RET

TI ME
TI M2

ATI M
TIJAC
DFAC
RTI M
UFAC
DTMX
DTN

GRAD

I NTM
PROD
REAC
TEMP
WCEN
W X

&RID
NPTS
XEND

simul ator
PSR

SFLR
PRNT
PRNT

ATCL
NJAC
RTCL

| STP

TI ME
T M2

| RET

TI ME
T M2

ATI M
TIAC
DFAC
RTI M
UFAC
DTMX
DTWN

PRCD
REAC
TEMP

SPI'N

SFLR
PRNT
PRNT

NMAX
NPTS
ATCL
NJAC
RTCL
| STP
| STP

TI ME
TI M2

| RET

TI ME
TI M2

ATI M
TIJAC
DFAC
RTI M
UFAC
DTMX
DTN

GRAD

I NTM
PROD
REAC
SURF
WCEN
WM X

&R D
NPTS
XEND

SURPSR

SFLR
PRNT
PRNT

ATCQL
NJAC
RTCL

| STP

TI ME
T M2

| RET

TI ME
T M2

ATI M
TIAC
DFAC
RTI M
UFAC
DTMX
DTWN

PRCD
REAC
SURF
TEMP

manual
pages

14, 33
17, 33
16, 34
14, 33
21, 34
21,34
18, 34
18, 34

35
13, 35
13, 37
13, 35
12, 37
15, 38
15, 38

15, 38
15, 38

13, 35
13, 37
15, 38
13,35
15, 38
15, 38
15, 38
17,39
17,39
18, 39

40

40

Appendix 2 Software Notes

Appendix
Software Notes

Twopnt is distributed in two files. The first, TWOPNT. FOR or t wopnt . f, contains the
twelve fortran subroutines which constitute twopnt itself and the three ancillary routines
discussed in Section 6.4.

EVOLVE perform time evolution

REFI NE perform automatic grid selection

SEARCH perform the damped, modified Newton's search
TWCOPY copy one vector to another

TWGERAB reserve space in an array

TWLAPS obtain elapsed computing time in seconds
TWLAST find the last nonblank character in a string
TW.OGR write acommon logarithm to a character string
TWNORM compute the infinity-norm of avector

TWOPNT twopnt main entry and task manager

TWPREP ancillary routine for preparing Jacobian matrices
TWSHOW ancillary routine for writing solution data
TWBCOLV ancillary routine for solving matrix equations
TWBQEZ squeeze unnecessary blanks from a character string
TWI'l ME obtain computing time in seconds

Thesecondfile, TWMAI N. FORort wirai n. f , contains Chapter 7’ssimul ator whose output
appears throughout this manual.

TWWAI N main program
TWFUNC evaluate the residual function

All subroutines except TWI'I ME are believed to conform to the fortran standard [1]. In
observance of that standard, all subroutines are writtenin Bl GLETTERS.

The TWI'l ME subroutinedoes not conform to thefortran standard because the standard
does not specify how to obtain elapsed computing time. Compilers or linkers often give
up on the first try when they reach this subroutine, and then TWI'I ME must be adapted to
the computing system in use. The subroutine has provisions for a variety of computing
machines, and may need merely some editing to select one of those—this can be done
painlessly, see below. In some cases however, the subroutine may need rewriting to obtain
the correct time. If al else fails, TWI'l ME can return zero time. Twopnt does nothing with
the time but write it in messages.

85

Appendix 2 Software Notes

All twopnt’ssubroutinescontain“ changeblocks’ that facilitate basic reprogramming,
when necessary. A change block isasmall group of fortran statements, as follows.

Cr **** name of the change block
text of the change block
C+****END name of the change block

The change block aboveisactive; the block below isinactive because has been “ commented

out.”
Cx**** name of the change block

C :
C text of the inactive block

c :

Cx****END name of the change block

A utility program existsto alter the status of change blocks[17], or the status can be changed
by hand, using atext editor.

Twopnt uses change blocks to select arithmetic precision and to select the version
of TWI'I ME compatible with the computing machine in use. The blocks have names that
explain what they do.

COWPUTI NG TI ME
COVPUTI NG TI ME
COVPUTI NG Tl ME
COVPUTI NG Tl ME
COWPUTI NG TI ME
COVPUTI NG Tl ME

CRI (CRAY) CTSS (LI VERMORE)
CRI (CRAY) CTSS (LGOS ALAMOS)
CRI (CRAY) UNI COS

DEC (VAX) VMS

| BM (RI SC Syst enf 6000) Al X
SUN (SPARCst ati on) SunCS
COVPUTI NG TI ME > generic unix etine

COVPUTI NG Tl ME > none

LI ST MESSAGES > NO
LI ST MESSACES > YES

PRECI SI ON > DOUBLE
PRECI SI ON > SI NGLE

VVVVVYVYVYV

Only one block of each kind should be active. When twopnt is distributed, usually, the
blocks are set to anticipate the recipient’s needs. The COMPUTI NG Tl ME > ... blocks
appear only in the subroutine TWI'I ME which, as noted, may be edited by hand to select the
proper block. LI ST MESSACGES > YES prints messages for preparing this manual; this
option should not be selected.

Twopnt is complete and needs no other subroutines beyond thosein thet wopnt . f
or TWOPNT. FOR file. Twopnt calls, or links, all the subroutines there except the three
ancillary ones. If those are used, then the simulator that calls twopnt calls them.

Two ancillary routines areincomplete. TWPREP and TW5SOLV need some subroutines
from the linpack library [8]. Specifically, they need the double precision routines DGBCO
and DABSL, or the single precision routines SGBCO and SGBSL, and those subroutinesin
turn need afew more from that library. Linpack isn’t needed if the simulator doesn’'t use it,
either directly for matrix chores or indirectly through TWPREP and TWSCLV (the TWVAI N
example does use TWPREP and TWSOLV). Many computing centers supply the linpack
library, and avariety of sourcesdistributeit gratis. The simulators discussed in Appendix 1
include the required linpack routines in their distribution.

86

.00
.01
.02

.03
. 04

. 05
. 06

.07

.08
.09

.10

Appendix 3 Change History

Appendix
Change History

This Appendix chronicles the changes made to twopnt by version number and by date.
Version 1 was used in house at Sandia National Laboratoriesin Livermore, Californiawhile
twopnt and the first few simulators based on twopnt were developed. Version 2 has been
widely distributed with these ssimulators. Version 3 has a more extensible programming
interface and is the first with separate documentation (this manual).

November 1984.
September 1985. Remove unused subroutine simple. Shorten namesto six characters.

September 1985 (succeeds 1.00). Remove unused subroutine simple. Rewrite newton
and timstp.

October 1985 (succeeds 1.01). Rewrite newton and timstp.

October 1985. In timstp: add the xsave argument; ater an error message. In refine
accommodate negative points in the grid display.

October 1985. Add anabsolute/rel ative stopping test to newton viareversecommunication.

November 1985. Apply the relative stopping test to each vector entry rather than to the
vector norm.

November 1985. In twopnt: change the introductory message; go to the main loop rather
than to newton after refine.

November 1985. Force newton to step to the boundary.

November 1985. Add intwor to write integers to strings because some linl compilers
have trouble with internal files. Eliminate a redundant write statement in timstp. Order
the integer type statement in refine. In timwor: correct the formula for seconds; allow ten
or more hours. In twopnt: add a decision tree, replace computed branches by assigned
branches; reorder the arguments; correct the dimension of array column.

November 1985. In twopnt: initialize condit to zero; rename and reorder the arguments.
In refine: ater the significance criteria; expand above and below with the grid; interpolate
inactive components at new points; prevent refinement when tolerl and toler2 equal 1.
Correct the cal culation of minutesin timwor. Move level 2 printing decisions to newton and
timstp.

87

11

. 00

.01

.02

.03

. 04

.05

. 06

.07

.08

.09

.10
11
.12

Appendix 3 Change History

December 1985. In refine: add a completion status flag; move level2 printing decisions
and the update reverse communication request here; increase the dimension of vary from
(pmax - 1) to (pmax). In twopnt: store the completion status in a local variable during
reverse communication; remove the initialization of condit; alter statistics gathering by
removing statement functions and reducing the arguments in elapse.

December 1985. Correct newton to print condition estimates when anew matrix produces
a step that satisfies the termination criteria.

January 1986. Addtheability towriteresidualsfor graphing. Innewton, replace computed
branches by assigned branches.

January 1986. Add change blocks. Replace blas to minimize precision dependencies.
In intwor, make character string lengths 8 because cray/ctss requires word boundaries for
internal files.

January 1986. Write residual datain single precision.

February 1986. In timwor, replace nint because cray/ctss lacks the double precision
intrinsic function.

October 1986. In twopnt, initialize xreent. In timstp, recognize that no change to the
solution over atime step is an error.

August 1987. Intimstp, recognize that no change to the solution over atime step after the
first is not an error. Add report to explain unsuccessful completions. Modify twopnt and
timstp to print the actual number of time steps performed.

August 1987. Correct timstp to exit on success rather than entering the reverse communi-
cation blocks. Correct logical expressions by removing the eq relation.

September 1987. Correct twopnt to avoid changing completion status flags following
reverse communication.

December 1987. Add plimit to bound grid growth. Add pass and passes to alow severa
simulations per grid. Make cosmetic changes to twopnt’s output. Added report to newton.

December 1987. Add time stride selection to timstp.
December 1987. Intimstp: correct saving and restoring of solution values; alter printing.

February 1988. Change the appearance of many informative messages. Remove intwor;
replace logwor by logstr; add grab. In timstp: replace the stride change factor by separate
factors for increase and decrease; add a minimum stride. In refine, replace integer vary by
logical mark. In twopnt: replace several arrays by work space arrays; bring printing and
work space arguments to the front.

. 12R February 1988. Correct abugin 2.12, see 2.15.

.13

.14

.15

April 1989 (succeeds 2.12). Add the Los Alamos cray/ctss environment to cputim.
Correct the counting of matrices in twopnt.

October 1989. In cputim: add the cray/unicos environment; correct the vax/vms environ-
ment to make a system service call. In newton: correct the alignment of column labels. In
twopnt: note the precision in the banner.

November 1989. Intwopnt: correct an out of range subscript during initialization; correct
printing of the time step count.

88

w N N N NN

.16

.17

.18

.19

. 20

.21
.22

.23
. 00

.01

.02
.03

. 04
.05
. 06

.07

.08
.09
.10

Appendix 3 Change History

February 1990. Intwopnt, remove the dead branch before the error messages. 1n newton:
remove the record reverse communication request; re-evaluate the function after matrix
preparation in case preparation changes the function.

February 1990. Force newton to take one step. If newton makes no change, then since
linear interpolation preserves the kinks and slopes that prompt grid refinement, refine can
add points forever.

February 1990. Add sun unix environment to cputim.

April 1990. In newton, add printing of inconsistent bounds to the error message. In refine,
correct the limits of loops for gathering statistics.

August 1990. Simplify stride selection in timstp. Rename limit to stepsO; add stepsl,
ssage, tdage, and tmax. Limit newton to 100 steps per time step.

September 1990. Correct timstp logic.

September 1990. Correct timstp logic, again.

. 22B March 1991. Omit steady state search when steps0 is negative.
. 22C March 1991. Relax monitoring of newton step sizes.

January 1991 (succeeds 2.22). Rewrite newton. Add norm2.

June 1991. Reduce twopnt’s arguments, adding a control list for many. Rename all
routines, using the tw prefix for most. Rewrite many routines, conforming to the manual.
Change the appearance and content of many messages.

June 1991. Remove explicit dimensioning of arrays ACTI VE, MARK and X, and remove
initialization of array MARK, so array space isn’t needed when grid selection is disallowed.

August 1991. Correct SEARCH to place solution in BUFFER when SI GNAL = ' SHOW .

August 1991. Change TWNORM from the 2-norm to the oo-norm, thus reverting to pre-
version 3.00 practice.

August 1991. Correct choice of DELTAB.
October 1991. Correct subscripting in TWPREP.

January 1992. (1) Increase default TDEC from just below /10 to just above, thus ensuring
reduced time strides overtake TM N. (2) Correct TWOPNT to forgo time evolution when
SEARCH fails and EVOLVE has aready failed.

January 1992. (1) Remove unnecessary restoration of initial value to PO NTS, thus
allowing a constant value for the actual argument when grid selection is disalowed. (2)
Include change blocks for cpu time on more computing systems.

January 1992. Add arguments NAME and NAMES.
February 1992. Correct dimension of NAME.
March 1992. Correct error messages in SEARCH and TWOPNT.

89

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

References

References

Anonymous, ANS X3.9-1978 American National Standard Programming Language
FORTRAN, American National Standards Institute, New York, 1978.

U. M. Ascher, R. M. M. Mattheij and R. D. Russell, Numerical Solution of Boundary
Value Problems for Ordinary Differential Equations, Prentice-Hall, Englewood Cliffs, New
Jersey, 1988.

G. K. Batchelor, “Note on a Class of Solutions of the Navier-Stokes Equations representing
Steady Rotationally-symmetric Flow,” The Quarterly Journal of Mechanics and Applied
Mathematics, volume 4, 1951, pages 29-41.

K. E. Brenan, S. L. Campbell and L. R. Petzold, Numerical Solution of Initial-Value
Problems in Differential-Algebraic Equations, North-Holland Elsevier, New York, 1989.

M. E. Coltrin and R. J. Kee, CRESLAF: A Fortran Program for Modeling Chemically-
Reacting Boundary Layer Flow in a Chemical Vapor Deposition Reactor, Sandia National
Laboratories Report SAND9x-xxxx, Livermore, California, 199x. In preparation.

M. E. Coaltrin, R. J. Keg, G. H. Evans, E. Meeks, F. M. Rupley and J. F. Grcar, SPIN (Version
3.83): AFortran Programfor Modeling One-Dimensional Rotating-Disk / Sagnation-Flow
Chemical Vapor Deposition Reactors, SandiaNational Laboratories Report SAND91-8003,
Livermore, California, May 1991.

D. S. Dandy, private communication, Sandia National Laboratories, Livermore, California,
1991.

J. Dongarra, J. R. Bunch, C. B. Moler and G. W. Stewart, LINPACK Users Guide, Society
for Industrial and Applied Mathematics, Philadelphia, Pennsylvania, 1978.

I. S. Duff, A. M. Erisman and J. K. Reid, Direct Methods for Sparse Matrices, Oxford
University Press, Oxford, 1986.

G. H. Evans and R. Greif, “Forced Flow Near a Heated Rotating Disk: A Similarity
Solution,” Numerical Heat Transfer, volume 14, 1988, pages 363-387.

J. H. Ferziger, Numerical Methods for Engineering Applications, Wiley, 1981.

90

[12]

[13]

(14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

References

V. Giovangigli and N. Darabiha, “Vector computers and complex chemistry combustion,”
in Mathematical Modeling in Combustion and Related Topics, edited by C.-M. Brauner
and C. Schmidt-Laing, Martinus Nijhoff Publishers, Dordrecht, 1988, pages 491-503.

P. Glarborg, R. J. Kee, J. F. Grecar and J. A. Miller, PSR: A Fortran Program for Modeling
Well-Stirred Reactors, Sandia National Laboratories Report SAND86-8209, Livermore,
Cdlifornia, February 1991.

G. H. Golub and C. F. Van Loan, Matrix Computations, Johns Hopkins University Press,
Baltimore, 1983.

J. F. Grcar, R. J. Keg, M. D. Smooke and J. A. Miller, “A hybrid Newton / time-integration
procedure for the solution of steady, laminar, one-dimensional, premixed flames,” in
Twenty-first Symposium (International) on Combustion, The Combustion Institute,
Pittsburgh, Pennsylvania, 1986, pages 1773-1782.

J. F. Grear, Matrix Stretching for Linear Equations, Sandia National Laboratories Report
SAND90-8723, Livermore, California, 1990. Accepted by SAM Review.

J. F. Grcar, The Change Utility for Customizing Fortran Programs, Sandia National
Laboratories Report SAND9X-xxxx, Livermore, California, 199x. In preparation.

E. Hairer and G. Wanner, Solving Ordinary Differential Equations, Volume 11, Stiff and
Differential-Algebraic Problems, Springer Verlag, 1991.

T. von Karman, “Uber laminare und turbulente Reibung,” Z. Angew. Math. Mech., volume
1, number 4, 1921, pages 233-253.

R. J. Kee, G. Dixon-Lewis, J. Warnatz, M. E. Coltrin and J. A. Miller, A Fortran
Computer Code Package for the Evaluation of Gas-Phase Multicomponent Transport
Properties, Sandia National Laboratories Report SAND86-8246, Livermore, California,
1986. Reprinted November, 1988.

R. J. Kee, J. F. Grear, M. D. Smooke and J. A. Miller, A Fortran Program for Modeling
Seady Laminar One-Dimensional Premixed Flames, Sandia National Laboratories Report
SAND85-8240, Livermore, California, December 1985.

R. J. Keg, L. R. Petzold, M. D. Smooke and J. F. Grcar, “Implicit Methods in Combustion
and Chemical Kinetics Modeling,” in Multiple Time Scales, edited by J. U. Brackbill and
B. I. Cohen, Academic Press, Orlando, Florida, 1985, pages 113-144.

R. J. Kee, F. M. Rupley and J. A. Miller, Chemkin-11: A Fortran Chemical Kinetics Package
for the Analysis of Gas-Phase Chemical Kinetics, Sandia National Laboratories Report
SAND89-8009, Livermore, California, September 1989.

H. B. Keller, “Numerical Solution of Bifurcation and Nonlinear Eigenvalue Problems,” in
Applications of Bifurcation Theory, edited by P. H. Rabinowitz, Academic Press, 1977,
pages 359-384.

H. K. Moffat, P. Glarborg, R. J. Kee, J. F. Grear and J. A. Miller, SURFACE PSR: A Fortran
Program for Modeling Well-Stirred Reactors with Gas and Surface Reactions, Sandia
National Laboratories Report SAND91-8001, Livermore, California, May 1991.

J. von Neumann and H. H. Goldstine, “Numerical inverting of matrices of high order,”
Bulletin of the American Mathematical Society, volume 53, 1947, pages 1021-1099.

91

[27]

(28]

[29]

[30]

(31]

(32]

References

J. O. Olsson, O. Lindgren and O. Andersson, “Efficient Formation of Numerical Jacobian
Used in Flame Codes,” Combustion Science and Technology, volume 77, 1991, pages
319-327.

J. M. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several
Variables, Academic Press, New York, 1970.

F. M. Rupley, Keywords for Reacting Flow Smulators, Sandia National Laboratories,
Livermore, California, 1991.

H. Schlichting, Boundary-Layer Theory, seventh edition, McGraw-Hill, New York, reissued
1987.

M. D. Smooke, “ Solution of Burner-Stabilized Pre-mixed Laminar Flames by Boundary
Value Methods,” Journal of Computational Physics, volume 48, 1982, pages 72—105.

M. D. Smooke and R. M. M. Mattheij, “On the solution of nonlinear two point boundary
value problems on successively refined grids,” Applied Numerical Mathematics, volume 1,
1985, pages 463-487.

92

UNLIMITED RELEASE
INITIAL DISTRIBUTION

O. Andersson

Gothenburg Universities’ Computing Center
S-400 12 Gothenburg

Sweden

J. Y. Chen

University of California, Berkeley
Dept. of Mechanical Engineering
Berkeley, CA 94720

V. Giovangigli

Ecole Polytechnique

Centre de Mathématique Appliquées
U. A. CNRS 756

91128 Palaiseau cedex

France

P. Glarborg

Technical University of Denmark
Laboratory of Heating and Air Conditioning
2800 Lynghy

Denmark

O. Lindgren

Dept. of Physical Chemistry
Chalmers University of Technology
S-412 96 Gothenburg

Sweden

J. O. Olsson

Dept. of Physical Chemistry
Chalmers University of Technology
S-412 96 Gothenburg

Sweden

M. D. Smooke

Yale University

Dept. of Mechanical Engineering
P. O. Box 2159 Yale Station

New Haven, CT 06520

1126 W. G. Breiland
1126 M. E. Coltrin
1126 P Ho

1126 H. K. Moffat
1512 A. S. Geller
1553 W. L. Hermina
8000 J. C. Crawford

Attn: D. L. Crawford, 1900
R. J. Detry, 8200
P. L. Mattern, 8300
R. C. Wayne, 8400

8240 C. W. Robinson
8244 R. S. Larson
8245 D. S. Dandy
8245 H. A. Dwyer
8245 G. H. Evans
8245 J. F. Grcar (10)
8245 W. G. Houf
8245 R. J. Kee

8245 A.E. Lutz
8245 E. Meeks
8245 F M. Rupley (150)

8245 P. A. Spence

8245 W. S. Winters

8353 J. A. Miller

8361 M. D. Allendorf

8535 Publications for OSTI (10)

8535 Publications/Technical Library
Processes, 3141

3141 Technical Library Processes
Division (3)

8524-2 Central Technical Files (3)

SUBSEQUENT DISTRIBUTION

MS 9042 J. F. Grcar, 8345

MS 9042 F. M. Rupley, 8345 (100)

MS 0899 Technical Library, 7141 (4)

MS 9018 Central Technical Files, 8950-2 (3)

93,/94

