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Abstract

Optimization under uncertainty (OUU) was performed on an inertial confinement fusion (ICF)
capsule model using the ALEGRA shock physics simulation code coupled with the DAKOTA software
toolkit. The OUU results demonstrate how the inclusion of an uncertain variable in the ICF capsule design
problem yields a different optimal design than would have been found with conventional optimization
methods. In this particular ICF capsule design, maximum implosion performance of the ICF capsule was
sacrificed to obtain robust implosion performance. These results provide a proof-of-concept demonstration
of the utility of OUU methods in ICF capsule design and motivate future OUU algorithm development and
ICF capsule design studies.

Keywords:optimization, uncertainty quantification, inertial confinement fusion, capsule design

* Senior Member of Technical Staff, Senior Member AIAA
† Principal Member of Technical Staff, Senior Member AIAA
‡ Distinguished Member of Technical Staff
§ Senior Member of Technical Staff, Member AIAA
** Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for
the United States Department of Energy under contract DE-AC04-94AL85000.
 This material is declared a work of the U.S. Government and is not subject to copyright protection in the
United States.

1. Introduction
This report documents the first stage of a de-

sign optimization study for fusion capsules that
will be employed in inertial confinement fusion
(ICF) testing at Sandia National Laboratories.
Fusion capsule design is replete with uncertain-
ties in areas such as capsule material properties,
capsule manufacturing tolerances, and radiation
pulse characteristics (i.e., experimental test con-
ditions). Thus, while deterministic optimization
provides useful insights into fusion capsule per-
formance, ultimately these various sources of
uncertainty must be accounted for in the design
process. The goal of this study is to produce ICF
capsule designs that exhibit performance that is
robust to uncertainty sources.

Traditional deterministic optimization ac-
counts for uncertainty through the use of safety
factors and other heuristics that provide design
margins on the expected behavior of the phe-
nomena of interest. While useful, these simplifi-
cations obscure the true stochastic nature of the
phenomena. In contrast, optimization under un-
certainty (OUU) methods retain the probabilistic

characterization of uncertain phenomena and
parameters. However, one of the main draw-
backs to the use of OUU methods is their com-
putational expense, which can be unacceptably
high for real-world design problems. This ex-
pense is a result of the nesting of an uncertainty
quantification (UQ) method inside an optimiza-
tion method. Various approaches exist to weaken
or break the nested relationship between UQ and
optimization, while retaining the probabilistic
characteristics of the problem. In parallel with
this ICF capsule design activity, research is un-
derway by the authors to develop new OUU al-
gorithms that strive to reduce the computational
expense of traditional OUU through the use of
surrogate modeling techniques. This OUU algo-
rithm research is not address here, but will be
described in the forthcoming paper by Eldred, et
al.1

This study employed the ALEGRA compu-
tational shock physics simulation code2 devel-
oped at Sandia National Laboratories. ALEGRA
is a multi-material, arbitrary Lagrangian-Eulerian
code that is used to simulate physical phenomena
such as shock hydrodynamics, magneto-
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hydrodynamics, and coupled radiation transport-
hydrodynamics. ALEGRA is employed in the
present study to simulate the radiation deposi-
tion, and resulting hydrodynamic implosion, of
an ICF capsule, but these calculations do not
contain the ignition physics models necessary to
simulate deuterium-tritium fusion as might occur
in an optimally designed ICF capsule. Additional
details on the ICF capsule, boundary conditions
of the simulation, and capsule implosion metrics
are described below.

The DAKOTA (Design Analysis Kit for
Optimization and Terascale Applications) tool-
kit3,4 was used to perform the parameter studies
and optimization cases conducted in this study.
DAKOTA has been under development at San-
dia National Laboratories since 1994. Originally
developed as a collection of gradient-based and
nongradient-based optimization software, DA-
KOTA now includes methods for sensitivity
analysis, parameter estimation, surrogate-based
optimization, and uncertainty quantification
(UQ), along with a variety of other statistical and
mathematical software tools useful to the design
engineer.

Section 2 provides an overview of the ICF
capsule design problem, including a description
of the ALEGRA shock physics code used to
simulate ICF capsule implosions. Section 3 cov-
ers the DAKOTA software toolkit and Section 4
describes the OUU problem formulation used in
this study. Section 5 describes the insights
gained by applying OUU to the ICF capsule de-
sign problem. Section 6 summarizes this study
and describes areas of future research.

2. ICF Capsule Design
Figure 1 shows the five stages of an ICF

implosion. The energy deposition event in stage
one is typically characterized in two distinct
ways.5 In direct drive ICF, source energy is de-
posited directly on the outer surface of the ICF
capsule to drive the implosion, whereas forindi-
rect driveICF, the energy is deposited in a hohl-
raum that surrounds the capsule. The hohlraum
materials convert the original energy source
(e.g., lasers, ion beams, x-rays) into a uniform,
approximately Planckian temporally modulated
x-ray drive that creates the subsequent capsule
implosion. Sandia’s Z Accelerator generates up
to approximately two million joules of raw x-ray
radiation from the implosion of fast Z pinch de-
vices. Hohlraums are then employed to convert
this radiation into useful x-ray pulses for indirect
drive studies of ICF capsule implosions, among

other applications.6 A discussion of hohlraum
design for the Z Accelerator is not included in
this paper. Instead, the focus is on capsule design
given specific indirect drive (i.e., radiation time
history) characteristics produced by a hohlraum.

Figure 1. The typical sequence of events in the
implosion of an ICF capsule*.

A diagram of the computational model used
in this study is shown in Figure 2. This simple
capsule design has an outer layer of polystyrene
(CH) and an inner core of deuterium-tritium
(DT). The outer CH layer is known as theabla-
tor. This material absorbs the radiation pulse,
vaporizes and blows off at very high velocities
(ablates), and consequently compresses the DT
fuel through momentum reaction forces.

Rcap =
0.110 cm

Rfuel =
0.100 cmFuel:

DT

Ablator: CH

Figure 2. Cross-section of a spherical ICF cap-
sule showing the DT fuel layer and the CH ab-
lator layer.

In this nominal capsule design, the outer
radii of the DT fuel and ablator are 0.100 cm and
0.110 cm, respectively (denoted asRfuel andRcap

in Figure2). The densities of the DT and ablator
materials are 0.002 g/cc and 1.05 g/cc, respec-
tively. The ICF capsule is modeled in ALEGRA

* Figure provided courtesy of Dr. Mary Ann
Sweeney, Sandia National Laboratories.
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using a quasi-one-dimensional, spherically
symmetric mesh that forms a 10 degree polar
wedge. Restriction to this quasi-one-dimensional
mesh is not essential, but does increase the effi-
ciency of the ALEGRA calculations, which is an
important factor in this study. The FASTQ7 tool
was used to generate the computational mesh for
the capsule model. Ten equally spaced zones
were used in the fuel layer and 50 clustered
zones were used in the ablator layer. The zones
in the ablator were clustered near the fuel/ablator
interface, and were distributed in the radial di-
rection with a constant growth factor of 1.06.
This clustering scheme was employed to provide
approximate matching of zonal masses between
the adjacent fuel and ablator zones at the
fuel/ablator interface.

Radiation transport in ALEGRA was mod-
eled using a flux-limited multigroup diffusion
algorithm with eight logarithmically distributed
groups between energies of 1eV to 1keV. For
this study, the time history of the radiation pulse
applied to the ablator of the ICF capsule is
shown in Figure 3. This energy-time history is
produced by the hohlraum that encloses the ICF
capsule. The hohlraum converts the raw x-ray
energy produced by the Z Accelerator into an
energy-time history with desired temporal char-
acteristics.
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Figure 3. Time history of the radiation pulse
applied to the ICF capsule outer surface. (Note:
1keV = 11,604,450 Kelvin)

The ICF capsule implosion process is
simulated in ALEGRA over a time span of 24
nanoseconds, which corresponds to the duration
of the radiation pulse. ALEGRA uses an explicit
time step algorithm to maintain computational
stability during the simulation of this transient
event. Since there is no capability in ALEGRA

to model deuterium-tritium fusion burn physics
in the ICF capsule, a metric unrelated to fusion
physics was needed to assess the quality of the
implosion event. For this study, this metric was
chosen as the maximum implosion velocity ex-
perienced by the capsule fuel. This velocity
value was obtained by tracking the movement of
the grid point at the fuel/ablator interface. This
data was obtained from the ALEGRA output
files using the BLOT8 post-processing tool.

Note that there are many other alternatives
to this choice, such as the mass-averaged fuel
implosion velocity.5 The fuel/ablator interface
was chosen for conceptual ease. The basic opti-
mization issues of concern in this study are not
dependent upon the choice of objective.

3. DAKOTA Software
The DAKOTA toolkit is an open-source

software framework for systems analysis that
includes methods for optimization, parameter
estimation, sensitivity analysis, uncertainty
quantification, and statistical sampling. It also
provides parallel computing services and various
simulation code interface methods.3,4

DAKOTA may be interfaced to a user’s
simulation code in either a non-intrusive or in-
trusive manner. Figure 4 depicts the non-
intrusive, or “black-box,” interface approach.
That is, DAKOTA and the simulation code re-
main entirely independent, with data being trans-
ferred between DAKOTA and the simulation
code through user-supplied pre- and post-
processing steps. DAKOTA employs the UNIX
system command to execute the simulation
code, along with the pre- and post-processing
steps, without any intervention by the user. A
combination of text and graphical output allow
the user to monitor DAKOTA’s progress.

Although not employed in this study, DA-
KOTA is designed to exploit massively parallel
computing platforms through a multi-level par-
allelism approach9 which takes advantage of
opportunities for concurrency that are afforded
by different optimization algorithms. Depending
on the optimization algorithm in use and the na-
ture of the design problem, up to four nested
levels of parallel computing can be utilized by
DAKOTA. This multi-level parallelism approach
enables the user to achieve near-linear scaling on
massively parallel computers.
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Figure 4. This flowchart demonstrates the
“black-box” coupling between DAKOTA and
computational simulation codes. The dashed
lines represent user-supplied pre- and post-
processing steps.

Numerous optimization algorithms are
available in DAKOTA. These include gradient-
based nonlinear programming methods, nongra-
dient-based pattern search and genetic algorithm
methods, and mixed integer-nonlinear program-
ming methods. The flexibility, and extensibility,
of the C++ object-oriented design approach used
in creating DAKOTA permits the rapid devel-
opment of more sophisticated optimization
strategies such as surrogate-based optimization,
hybrid optimization (e.g., a mix of nongradient-
and gradient-based methods), and optimization
under uncertainty. For a more complete descrip-
tion of DAKOTA’s capabilities, consult the
DAKOTA manuals and web site.3,4

4. Optimization Problem Formulation
Consider a general nonlinear inequality-

constrained optimization problem of the form

minimize: f(x)
subject to:gL ≤ g(x) ≤ gU

xL ≤ x ≤ xU

x ∈ℜn

(1)

where f(x) is a scalar-valued objective function,
g(x) is the vector of inequality constraints,x is
the vector of design parameters, and the sub-
scripts “L” and “U” denote lower and upper
bounds, respectively, on the constraints and de-
sign variables. This is the standard form of a
deterministic optimization problem.

A general nonlinear inequality-constrained
optimization under uncertainty problem has a
similar form

minimize: f(x) + WTS(x,u)
subject to: gL ≤ g(x) ≤ gU

aL ≤ ATS(x,u)≤ aU

xL ≤ x ≤ xU

x ∈ℜn

u are probabilistic variables

(2)

whereu is the vector of variables that are uncer-
tain, S is the vector of statistical metrics com-
puted from an uncertainty quantification,W is
the vector of user-defined weights on the com-
ponents ofS that influence the objective func-
tion, andA is the vector of weights associated
with the inequality constraints. In this OUU for-
mulation, the terms inS typically are means,
standard deviations, or probability of failure es-
timates. Of course, other statistical metrics could
also be used.

This OUU problem formulation embeds an
uncertainty quantification (UQ) step inside the
optimization loop as depicted in Figure 5. This
step can add considerable computational expense
to solving an optimization problem, since for
each pass through the optimization loop, statisti-
cal information must be gathered on the re-
sponses of the simulation code due to variations
in the uncertain variables. The expense of the
UQ portion of OUU is problem dependent, but it
can easily require tens, if not hundreds or thou-
sands, of simulation code runs to produce accu-
rate estimates of the terms inS.

Optimizer

UQ

Simulation Code

Figure 5. Depiction of the information flow in
an optimization under uncertainty problem.

Due to the potentially high computational
expense of many OUU problems, research is
currently underway by Eldred, et al.,1 to develop
OUU algorithms that use surrogate models in
various capacities (i.e., between the optimization
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and UQ methods, between the UQ method and
the simulation code, or both).

5. ICF Capsule Design Study

5.1 Computational Environment
All calculations in this study were per-

formed on a desktop computer having a single
750 MHz Pentium III processor, and running the
Red Hat LINUX operating system (version 6.2).
A typical ALEGRA execution required approxi-
mately two minutes of wall-clock time. The pre-
and post-processing steps associated with each
ALEGRA run incurred a negligible computa-
tional expense.

5.2 Parameter Studies
Prior to performing optimization on the ICF

capsule, a one-variable parameter study was per-
formed to assess the variability in maximum
implosion velocity. The parameter selected for
this study was the outer radius of the ablator
layer. The results of this parameter study are
shown in Figure 6 where the ablator radius was
varied from 0.101 cm to 0.140 cm, in increments
of 0.001 cm. The radius of the DT fuel layer was
held constant at 0.100 cm.
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Figure 6. Variations in the maximum im-
plosion velocity due to changes in the ablator
outer radius. The negative velocity values denote
implosion of the capsule.

Several interesting features are exhibited in
the velocity trend shown in Figure 6. First, the
optimal implosion velocity occurs for an ablator
radius of 0.106 cm. Second, there is a local op-
timum along the plateau region of the plot at
approximately 0.129 cm. Third, the global

minimum at 0.106 cm is less robust to variations
in ablator radius than is the local optimum at
0.129 cm. That is, small perturbations in the ab-
lator radius produce larger changes in velocity
when the ablator radius is 0.106 cm than when it
is 0.129 cm. Fourth, the kink in the velocity
trend at approximately 0.115 cm creates a dis-
continuity in the gradient of velocity with respect
to ablator radius (which will be needed by the
optimizer). These features impact both the for-
mulation and solution of the OUU problem.

5.3 OUU Problem Formulation
In an effort to test the OUU capabilities of

DAKOTA, a nonlinearly constrained OUU
problem was formulated as

minimize: V(r)
subject to:Pfail(∆V(r,u) ≥ 0.5× 106)≤ 0.05

0.101cm ≤ r ≤ 0.140cm
u ∈ Uniform

[-0.005, 0.005] cm

(3)

where r is the ablator radius,u is a uniformly
distributed perturbation of the radius,V(r) is the
implosion velocity, and∆V(r,u) is the variance in
velocity due to perturbations inu, where∆V(r,u)
= |V(r) – V(r+u)|.

The probability of failure constraint,Pfail,
was computed over a set of 10 samples for vari-
able u. These samples were generated using a
Latin hypercube sampling10 (LHS) approach that
incorporated the uniform probability distribution
on u and a fixed value ofr. The threshold value
on ∆V was 0.5× 106 cm/s. That is, any value of
∆V over the threshold exceeded the desired toler-
ance and was considered to be insufficiently ro-
bust. The probability of failure constraint implies
that at most five percent of the∆V values can
exceed the threshold and still satisfy the con-
straint. Since only 10 samples were used to com-
putePfail, this implies that the constraint can only
be satisfied if no∆V values exceed the threshold.
It would have been preferable to use a larger
sample size, however, computational expense
considerations limited this study to 10 samples in
each uncertainty quantification step.

Most often, the uncertain variables are
separate from the design variables. The OUU
problem presented here is a special case where
the uncertain variable is a perturbation on the
design variable. This OUU problem can be
thought of as a robust optimization problem.
That is, think of variableu as a manufacturing
tolerance of±0.005 cm on the ablator radius. The
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goal is to find the ablator radius that maximizes
the implosion velocity but is insensitive to manu-
facturing defects. In such a situation, one seeks
reliable and repeatable implosion performance
rather than maximum performance.

It should be noted that this OUU formula-
tion is a purely artificial problem built to test out
DAKOTA’s OUU methods. In actual ICF cap-
sule fabrication, the manufacturing tolerances are
much smaller than±0.005 cm. Future OUU
problem formulations will address more realistic
uncertain parameters in ICF capsule design.

5.4 OUU Problem Set-up
The OUU problem was solved using the

gradient-based Method of Feasible Directions
algorithm in CONMIN,11 which is contained in
the DAKOTA toolkit. While this algorithm is
antiquated by current optimization research stan-
dards, it remains an effective algorithm for many
applications. Gradients were computed using a
central difference scheme with a relative step
size of 0.01*r.

The initial starting point for the optimiza-
tion problem wasr = 0.118 cm. This point was
selected to be near the kink in Figure 6 so as to
ensure that the probability of failure constraint
would be violated.

The OUU problem was formulated in a
DAKOTA input file (for an OUU example
problem, see the DAKOTA Users Manual3), and
all of the ALEGRA runs needed to solve the
OUU problem were coordinated by DAKOTA
with no intervention from the user. The ALE-
GRA execution commands, including mesh gen-
eration and other pre- and post-processing steps,
were contained in a single UNIX script.

The objective function of the OUU problem
was computed by DAKOTA using a single
ALEGRA run given the current value for the
ablator radius,r, and with the perturbation vari-
able,u, set to a value of zero. The probability of
failure constraint was computed based on implo-
sion velocity data from 10 ALEGRA runs, where
r was fixed at its current value and the 10 values
of u were chosen using Latin hypercube sam-
pling and the uniform distribution [-0.005 cm,
0.005 cm]. The OUU loop shown in Figure 5
continued until CONMIN’s convergence criteria
were reached. In this case, CONMIN’s “soft”
convergence tolerance was reached on iteration
#21 after three consecutive optimization itera-
tions where the improvement in the objective
function was less than 1.0×10-4.
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Figure 7. Optimization history of the ablator
outer radius design variable for OUU Run #1.

5.5 OUU Results: Run #1
Figure 7 shows the iteration history of the

ablator radius during the first run of the OUU
problem. Figure 8 and Figure 9 show the history
of the objective function and the probability of
failure constraint, respectively. The optimization
stopped after 21 iterations, moved from an initial
point of r = 0.118 cm to a feasible point atr =
0.129 cm, and improved the implosion velocity
from -8.45×106 cm/s to –8.70×106 cm/s. As ex-
pected, the optimizer moved to the local opti-
mum near its starting point.
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of failure constraint for OUU Run #1.

5.6 OUU Results: Run #2
A second OUU run was performed with a

starting point of r = 0.110 cm, i.e., near the
global optimum for implosion velocity. It was
expected that the optimizer would climb up the
velocity “hill” in an effort to satisfy the con-
straint on ∆V. The optimization history of the
ablator radius variable for OUU Run #2, shown
in Figure 10, demonstrates that the expected hill-
climbing behavior did occur as the optimizer
moved fromr = 0.106 cm tor = 0.140 cm before
being terminated by the user due lack of prog-
ress. It appears that the optimizer was unable to
compute gradients on∆V to find a feasible de-
scent direction towardr = 0.129 cm. This under-
scores an interesting feature of this optimization
problem. That is, there is high variability in the
implosion velocity near the lower and upper
bounds on the ablator radius. It may be the case
that a gradient-based optimizer will only con-
verge tor = 0.129 cm if the starting point is on
or near the “plateau” region shown in Figure 6.

Additional testing is needed to assess the
effects of gradient accuracy on the performance
of the optimizer. In particular, it is known that
small LHS sample sizes introduce discontinuities
in the gradient of the probability of failure con-
straint. It is likely that nongradient-based optimi-
zation algorithms, such as pattern search meth-
ods, are better suited to OUU problems in which
sample statistics are under-resolved.
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Figure 10. Optimization history for OUU Run
#2. This run was terminated due to lack of prog-
ress after iteration #17.

6. Summary
This study serves as a demonstration of the

application of optimization under uncertainty
methods to the design of an inertial confinement
fusion capsule. Initial OUU results show a trade-
off between robust implosion velocity and
maximum implosion velocity when there is un-
certainty in the capsule ablator radius.

This OUU study also identified several is-
sues that merit further study. These include the
accuracy of gradients for under-resolved (i.e.,
under-sampled) statistical quantities and their
impact on gradient-based optimization algo-
rithms.

Future work on ICF capsule design OUU
will include additional design and uncertain vari-
ables. These variables will encompass capsule
characteristics (e.g., multiple layers, material
property variations) along with uncertainty in the
time/magnitude history of the applied radiation
drive. In addition, surrogate-based OUU algo-
rithms will be applied to the ICF capsule design
problems to address issues such as computational
expense and gradient inaccuracy. Furthermore,
higher fidelity simulations of the ICF capsule
will be investigated, where additional fidelity
will be gained by increasing the mesh density of
the computational model and including more
accurate radiation transport physics.
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