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Abstract

An engineering design study was performed using computational simulation software
coupled with the DAKOTA (Design Analysis Kit for Optimization and Terascale Applica-
tions) software package. This study made use of the data sampling methods in DAKOTA, which
included grid-based parameter studies and Latin hypercube sampling. Multidimensional surface
fitting methods such as quadratic polynomial regression were used to smooth out numerical noise
generated by the computational simulation software. This enabled the application of a surrogate-
based optimization algorithm to solve the design problem. These results serve as a case study that
demonstrates the utility of employing a combination of statistical methods and optimization

methods in engineering design.
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1. Introduction

The objective of this study is to demon-
strate the use of statistical data sampling
methods, surrogate modeling methods, and
numerical optimization techniques, to per-
form design optimization on problems that
are difficult or intractable using conven-
tional gradient-based methods. Typica
computational simulations used in engi-
neering analyses exhibit nonsmooth trends
or “numerical noise” in response quantities
of interest (e.g., stress values, viscous drag
estimates, heat transfer rates) due to factors
such as limited grid resolution, fixed itera-
tion counts in iterative solvers, and discrete
values in tabular databases. This noise in-
hibits the use of traditional gradient-based
optimization methods since gradients esti-
mated using finite differences can be inaccu-
rate or may not exist. While this noise is not

stochastic, data sampling and statistical
analysis methods can be applied to quantify
the magnitude of the noise. If the magnitude
of the noise does not obscure the overall
trends in the response quantities of interest,
then a common approach is to use surrogate
modeling methods, also known as response
surface approximation methods or meta-
models, to smooth out the numerical noise
and to permit gradient-based optimiza-
tion."*3

The DAKOTA (Design Analysis Kit
for Optimization and Terascale Applica-
tions) toolkif has been under development
at Sandia National Laboratories since 1994.
Originally developed as collection of gradi-
ent-based and nongradient-based optimiza-
tion software, DAKOTA now includes
methods for statistical data sampling, surro-
gate modeling methods, and surrogate-based
optimization strategies (SBO), plus a variety
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of other statistical and mathematical soft-
ware tools useful to the design engineer.

This report describes of application of
various methods in the DAKOTA toolkit to
solve an engineering design problem that
could not be solved using traditional gradi-
ent-based optimization. Section 2 of this
report provides an overview of the DA-
KOTA software, while Sections 3 and 4
cover data sampling methods and surrogate
modeling methods, respectively. Section 5
provides information on the surrogate-based
optimization agorithm in DAKOTA. The
application of SBO to an engineering design
optimization study is given in Section 6, and
concluding remarks are presented in Section
7.

2. DAKOTA Software

The DAKOTA toolkit is a software
framework for systems analysis that in-
cludes methods for optimization, nonlinear
parameter estimation, uncertainty quantifi-
cation, design of experiments, statistical
sampling methods, parameter studies, sensi-
tivity analysis, and surrogate models (i.e.,
metamodels, response surface approxima-
tions).

DAKOTA employs a generic interface
capability based on UNIX commands that
permit the linking of DAKOTA to a variety
of commercial and custom-developed engi-
neering and physics simulation codes.
Figure 1 depicts this generic interface, or
“black-box,” coupling approach between
DAKOTA and a simulation code. That is,
DAKOTA and the simulation code remain
entirely independent, with data being trans-
ferred between DAKOTA and the simula-
tion code through writing and reading text
files. During the execution of DAKOTA, the
UNIX syst emcommand is used to run the
simulation code along with any pre- and
post-processing steps that are needed to ex-
change data between the two codes. A com-
bination of text output and graphical output
allow the user to monitor DAKOTA's prog-
ress during execution.

The DAKOTA toolkit is designed to
exploit massively parallel computing plat-

2

forms through a multi-level parallelism ap-
proach which takes advantage of opportu-
nities for concurrent function evaluations
that are afforded by the different optimiza-
tion algorithms. For example, a two-level
parallelism strategy is often used when
many function evaluations (i.e., simulation
code runs) are needed to estimate gradients
via finite difference approximation. On a
parallel computer, the function evaluations
are performed concurrently, where each in-
dividual function evaluation uses a domain-
decomposition approach to run on multiple
processors. Depending on the optimization
algorithm in use and the nature of the engi-
neering design problem, up to four levels of
parallel computing can be utilized by DA-
KOTA. This multi-level parallelism ap-
proach enables the user to achieve near-
linear scaling on massively parallel comput-
ers.

DAKOTA

Parameter
Values

Response
Values

k)

Simulation
Code

Figure 1. This flowchart demonstrates the
“black-box” coupling between DAKOTA and
computational simulation codes. The dashed
lines represent file input/output.

Numerous optimization agorithms are
available in DAKOTA. These include gradi-
ent-based nonlinear programming methods,
nongradient-based pattern search and ge-
netic agorithm methods, and mixed integer-
continuous variable nonlinear programming
methods. The flexibility, and extensibility,
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of the C++ object-oriented design approach
used in creating DAKOTA permits the rapid
development of more sophisticated optimi-
zation strategies such as surrogate-based
optimization, hybrid optimization (e.g., a
mix of nongradient- and gradient-based
methods), and optimization under uncer-
tainty. Additional capabilities in DAKOTA
that pertain to this study are described be-
low. For a more complete description of
DAKOTA's capabilities, consult the DA-
KOTA online manuals and web sfté.

3. Data Sampling M ethods

3.1 Background

Many sampling methods are available
for choosing sample sites in a parameter
space. Classical design of experiments
(DOE) methods were originally developed
for use in planning physical experiments
where there are random variations that can-
not be eliminated. Sampling methods devel-
oped in classical DOE include full factorial
designs, central composite designs, Box-
Behnken designs, and many varights.

As computer simulations (i.e., compu-
tational experiments) became more widely
used in scientific research, new data sam-
pling approaches were developed. Known as
design and analysis of computer experi-
ments (DACE), these approaches include
Monte Carlo sampling, Latin hypercube
sampling’ orthogonal array samplirig,and
other approaches. DACE differs from classi-
cal DOE methods in that it is based on the
notion of deterministic computer simulations
rather than on stochastic physical experi-
ments. Because of this assumption, DACE
sampling methods tend to be more “space-
filling” than classical DOE methods. That is,
DACE methods tend to spread the samples
throughout the parameter space, whereas
DOE methods tend to concentrate samples
on the boundaries of the parameter space.

Latin hypercube sampling (LHS) is one
popular DACE method that has found wide
application in computational applications.
Reasons for its popularity include its com-
putational simplicity and its theoretical un-
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derpinnings that show it can have less vari-
ance error than Monte Carlo (random) sam-
pling. In addition, LHS gives the user the
ability to tailor the number of sample sites to
the available computational budget. For ex-
ample, with an expensive computer simula-
tion with n design parameters, one may only
be able to affordd(n) samples. In contrast,
many classical DOE methods have a rigid
requirement for the number of samples, and
typically the number of samples scales as
o(nd).

3.2 Latin Hypercube Sampling

The Latin hypercube sampling method
was developed by McKay, et las an al-
ternative to random sampling. Under certain
monotonicity conditions associated with the
function to be sampled, Latin hypercube
sampling provides a more accurate estimate
of the mean value than does random sam-
pling. That is, given an equal number of
samples, the LHS estimate of the mean will
have less variance than the mean value ob-
tained through random sampling.

Figure 2 demonstrates Latin hypercube
sampling on a two-variable parameter space.
Here, the range of both parameters,axd
Xa, is [0,1]. Also, for this example both; X
and X% have uniform statistical distributions.
For Latin hypercube sampling, the range of
each parameter is divided intp“bins” of
equal probability. For parameters with uni-
form distributions, this corresponds to parti-
tions of equal size. Far design parameters,
this partitioning yields a total gf" bins in
the parameter space. Next,samples are
randomly selected in the parameter space,
with the following restrictions: (a) each
sample is randomly placed inside a bin, and
(b) for all one-dimensional projections of the
p samples and bins, there will be one and
only one sample in each bin.

In a two-dimensional example such as
that shown in Figure 2, these LHS rules
guarantee that only one bin can be selected
in each row and column. Fpe4, there are
four partitions in both Xand . This gives
a total of 16 bins, of which four will be cho-
sen according to the criteria described
above. Note that there is more than one pos-
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sible arrangement of bins that meet the LHS
criteria. The stars in Figure 2 represent the
four sample gites in this example, where
each sample is randomly located in its bin.
Thereis no restriction on the number of bins
in the range of each parameter, however, all
parameters must have the same number of
bins.

1

=

X>

*

X1

Figure 2. Latin hypercube sampling with four
bins in each of the parameters X, and X,. The
stars are sample sites randomly selected inside
each bin.

3.3 Data Sampling Software

The DAKQOTA toolkit contains two
software packages that can be used to per-
form Latin hypercube sampling, as well asa
variety of other DACE and classicd DOE
sampling methods.

The LHS software package™ provides
both Monte Carlo (random) sampling and
Latin hypercube sampling methods, which
can be used with probabilistic variables in
DAKOQOTA that have the following distribu-
tions: Gaussan (normal), lognormal, uni-
form, loguniform, Weibull, and user-
supplied histograms. In addition, the user
can supply a correlation matrix for the vari-
ables to account for correlations among the
variables.

The DDACE (Distributed Design and
Anaysis of Computer Experiments) soft-
ware package” includes both stochastic
sampling methods and classical design of
experiments methods. The stochastic meth-
ods are random sampling, Latin hypercube
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sampling, and orthogona array sampling.
The DDACE package currently supports
variables that have either normal or uniform
distributions. However, only the uniform
distribution is available in the DAKOTA
interface to DDACE. The classical design of
experiments methods in DDACE are central
composite design, Box-Behnken sampling,
and full factorial sampling.

4. Surrogate Modeling M ethods

4.1 Background

Surrogate model  construction, also
known as surface fitting, metamodeling or
response surface approximation, is often
used in engineering design applications to
provide insight on the trends exhibited by
response quantities (objective function, con-
straints, etc.) with respect to changes in de-
sign parameter values. Once surrogate mod-
els are congtructed, they provide an inexpen-
sive subgtitute for the physical experiment or
computational simulation from which the
original response data were generated. For
this reason, surrogate models have been ex-
tensively used in numericaly intensive
studies such as optimization and uncertainty
quantification. Of course, the challenge of
using surrogate models for such purposes is
that they must be of sufficient accuracy to
the original experiment or simulation.

DAKQOTA contains several types of
surface fitting methods that can be used in
SBO. These are: quadratic polynomia mod-
es, first-order Taylor series expansion,
kriging spatia interpolation, stochastic lay-
ered perceptron artificial neural networks,
and multivariate adaptive regression splines.
All of these surface fitting methods can be
applied to problems having an arbitrary
number of design parameters. However, sur-
face fitting methods usually are practica
only for problems where the number of pa-
rametersisrelatively smal (e.g., typicaly 2-
10 parameters, but potentially ranging up to
50 parameters, or more).

4.2 Polynomial Regression
The functiona form of a quadratic
polynomial is
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where n is the number of design parameters,
y(x) isthe response value, the x;, x; terms are
the design parameters, the ¢, C;, C;; terms are
unknown coefficients, and ¢ is the residual
error term. Given a set of response values
and associated design parameters, Equation
(1) can be used to form a system of linear
equations, y=Xc, where y is the vector of
responses, ¢ is the vector of coefficients and
X is matrix of terms from Equation (1). If X
has full rank, the method of linear least
squares can be applied to determine the val-
ues of the polynomial coefficients.

Quadratic polynomials are often used in
surrogate-based optimization due to their
computational simplicity and their conven-
ient algebraic form. In addition, polynomial
regresson is useful in smoothing out nu-
merical noise that can appear in response
function data. However, polynomials are not
well-suited for al surface fitting applica-
tions, particularly when fitting response
functions that have multiple, well-defined
local extrema.™® In such cases, more accurate
surrogate models may be obtained using
methods such as cubic or higher-order poly-
nomial regression, kriging interpolation,** or
artificial neural networks.

5. Surrogate-Based Optimization

The surrogate-based  optimization
(SBO) agorithm used in this study is based
on the work of Giunta and Eldred,”® Alexan-
drov, et a.,'** and Rodriguez, et al."® The
SBO algorithm solves a sequence of optimi-
zation problems, each of which is an ap-
proximation to the origina optimization
problem. For example, consider a general
nonlinear programming problem of the form

minimize: f(x) (2
subject to: gi(x) <0, fori=1,...,m
XL X =Xy
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where f(X) is a scalar-valued objective func-
tion, gi(x) are the m scalar-valued inequality
constraints, X is a vector of design parame-
ters, and the subscripts “L” and “U” denote
lower and upper bounds, respectively,>xon
The SBO algorithm reformulates Equation
(2) as

minimize: f(x) ®)
subject to: g, (x) <0, fori=1,...,.m
XL SX SXy
Hx = Xg| =&
k=0,1,2,.. mk&

where f(x)and g, (x) are surrogate func-

tionsfor the original objective and constraint
functions. The added constraint

HX - x&| < A“inEquation (3) confines the

(=)

K" optimization subproblem to the trust re-

gion, A, where x¥; is the center of the k"
trust region. Thus, optimization is performed
on the surrogate model(s) rather than on the
original, possibly expensive, simulation
code(s).

One of the primary challengesin SBO
isin finding, or constructing at an acceptable
computational cost, surrogate models that
accurately capture the trends in the origina
functions. At the end of each of the k itera-
tions in the SBO algorithm there is a verifi-
cation step that compares the value of the
surrogate models with the true value of the
response functions. This step, and the asso-
ciated logic in the SBO algorithm, ensures
that the trust region size is adjusted to
maintain the accuracy of the surrogate mod-
els.

The use of SBO permits the applica-
tion of gradient-based optimization methods
to problems where there are clear trends in
the parameter study data, but where small-
scale nonsmooth behavior would lead to
inaccurate finite-difference gradient esti-
mates. The SBO agorithm in DAKOTA can
be implemented using heuristic rules (less
expensive) or provably-convergent rules
(more expensive). The SBO agorithm is
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particularly effective on real-world engi-
neering design problems that contain
nonsmooth features (e.g., slope discontinui-
ties, multiple local minima) where gradient-
based optimization methods often have
trouble, and where the computational ex-
pense of the simulation precludes the use of
nongradi ent-based methods.

6.1 Simulation Code and Model

The computational simulation soft-
ware employed in this study istypica of the
methods used to solve systems of partial
differential equations such as those encoun-
tered in computational structural mechanics,
computational fluid dynamics, and compu-
tational electromagnetics. The simulation

software employs a domain decomposition
approach so that the computational mesh or
grid can be partitioned to alow paralel
computing. For this report, the acronym
“CM” will be used to designate both the
¥/ computational simulation software and the
Ty associated computational model.

6.2 Computational Environment

The Computational Plant (Cplanj™
at Sandia National Laboratories is a mas-
sively paralel computing resource con-
structed from commodity-based computer
parts and running the LINUX operating
system.’ Currently, the Cplant™ cluster is
comprised of over 1000 compute nodes,
each of which is a 500 MHz Compag Alpha
21164 processor with 2 MB of level-3 cache

[ B+
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Figure 3. An illustration of the surrogate-based
optimization agorithm used to minimize the
Rosenbrock function.

Figure 3 depicts atypical application of
the SBO agorithm to an optimization prob-
lem, where the contours correspond to those
of the Rosenbrock function.”® The squares
denote the trust region of each optimization
problem that is solved during SBO. The
cross marks denote data samples (i.e., func-
tion evaluations) taken inside each trust re-
gion. The data samples are used to generate
local surrogate models, and then the optimi-
zation agorithm operates on the surrogate
modelsin lieu of the original functions.

6. Engineering Design Application

This engineering design case study
demonstrates the use of the statistical sam-
pling methods, surface fitting methods, and
surrogate-based optimization capabilities of
DAKOQOTA.
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memory and 192 MB of main memory.

The Cplant™computer system is com-
prised of a service partition and a compute
partition. Userslog on to one of the nodesin
the service partition to compile software and
to submit jobs that execute on the nodes in
the compute partition. For this study, the
DAKOTA software was configured to exe-
cute on the service partition nodes with the
capability to run multiple concurrent CM
jobsin the compute partition.

Figure 4 shows the results of a parallél
performance study running the CM code on
Cplant™, where the number of processors
per CM job was varied from one to 40, and
the size of the computational mesh was held
constant. Thus, as the number of processors
increased, inter-processor communication
began to dominate the total wall-clock time.
Based on the trend shown in Figure 4, it was
decided to use 16 processors per CM job as
a compromise between fast execution and
parallel efficiency.
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Figure 4. Parallel execution time of the compu-

tational simulation code “CM” for a varying

number of processors on Cplant™.

6.3 Design Problem Formulation

Several optimization problems were
solved during this study, with the number of
design parameters ranging from two to
seven. For ease of discusson, a two-
parameter, unconstrained  optimization
problem will be presented here. The formu-
lation of this optimization problemis

maximize: f(x) = f( fy(x), f2(X) ) (@)
subject to: X, =X <Xy

where X = (X3, X). This two-parameter
problem formulation permits the viewing of
contours of the objective function and will
be used to show the optimization results of
the SBO algorithm.

6.4 Parameter Studies

Prior to performing optimization on
the CM, single-variable parameter studies
were performed to assess the level of
nonsmooth trends in objective function due
to perturbations in the design parameters.
Figure 5 shows the results of one of these
parameter studies for variable x;. In this
case, two response gquantities, f; and f,, were
computed. Both response functions show
nonsmooth trends over the variations in X;.
Similar nonsmooth trends were observed for
X2. These resultsindicate that there are likely

to be multiple local minimain the parameter
space.

Fine-scale parameter studies were
performed to examine the nonsmooth trends
at the scale of finite-difference step sizes.
The results from one of these studies are
shown in Figure 6. Because of both the
large-scale and small-scale nonsmoothness
in the response functions, this optimization
problem is well suited for surrogate-based
optimization.
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Figure 5. Nonsmooth output of the computa-
tional simulation code due to variations in vari-
able x.
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Figure 6. A fine-scale parameter study in X
showing numerical noise at the scale of the finite
difference step size.
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6.5 DAKQOTA and CM Code Setup

For this study, DAKOTA and the CM
code were coupled using the “black-box”
approach shown in Figure 1, with a collec-
tion of pre- and post-processing software
and UNIX scripts to pass data between the
two codes. The pre-processing step con-
sisted of transferring the values>afandx,
from DAKOTA’s parameters file to the in-
put file for the CM code, plus the execution
of the grid generation code that creates the
computational model for the CM code. The
post-processing step consisted of a For-
tran77 code that extracted valued,cndf,
from the output files of the CM code, com-
puted the value of the objective function,
and wrote the data to DAKOTA's results
file.

All of the pre- and post-processing
commands, plus the command to execute the
CM code, were bundled into one UNIX
script that was executed by DAKOTA using
the UNIX syst em command. Thus, the
entire loop depicted in Figure 1 was auto-
mated.

6.6 Surrogate-Based Optimization

This application of SBO employed
the Latin hypercube sampling method pro-
vided in the DDACE package. Six Latin
hypercube samples were generated inside
each trust region created by the SBO algo-
rithm. A different random number seed was
used for generating each set of samples. This
ensured that the samples would have differ-
ent spatial locations in each trust region.

A guadratic polynomial was used as
the surrogate model type during the SBO
iterations. For a quadratic polynomial with
two variables, there are six unknown poly-
nomial coefficients. Thus, the six Latin hy-
percube samples are the minimum needed to
fit the surrogate model.

DAKOTA has the capability to re-
use some or all of the previously generated
samples when constructing the surrogate
models during iterations of the SBO algo-
rithm. Past experience has shown that this
can lead to premature convergence of the
SBO iterations, and it can cause ill-
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conditioning in the linear algebra used to
build some of the surrogate model types in
DAKOTA. In general, the option to reuse
some or all of the samples is exercised only
when the cost of generating the samples is
expensive and when only a few iterations of
the SBO algorithm will be attempted.

In SBO, the user controls the location
and size of the first trust region, and then
relies on the SBO algorithm to move and
resize the trust region during the optimiza-
tion process. On test problems that are
smooth, differentiable, and have a unique
minimum, the size of the initial trust region
has little impact on the optimization result.
In contrast, for real-world optimization
problems that are nonsmooth and have mul-
tiple local minima, the choice of the trust
region greatly affects the final outcome; too
small of a starting trust region and SBO
converges to the nearest local minimum.
Based on previous experience with SBO,
and on the nonsmooth response trends
shown in the parameter studies of Figure 5
and Figure 6, the initial trust region size was
selected to be 100% of the size of the global
bounds orx; andx..

The user also controls the scaling fac-
tors that are applied to resize the trust region
during the SBO iterations. After a successful
SBO iteration, the trust region bounds can
either be retained or expanded, depending
on the results of logic in the SBO algorithm.
An unsuccessful SBO iteration results in a
shrinking of the trust region bounds. For this
study, the expansion and contraction factors
on the trust region size were 2.0 and 0.25,
respectively. Note that the trust region
bounds are not allowed to grow beyond the
original global bounds on the design pa-
rameters.

Each iteration of the SBO algorithm
requires the solution to an optimization
problem inside the current trust region. The
unconstrained quasi-Newton BFGS update
algorithm in the DOT commercial optimiza-
tion software packade was used in this
study, where DOT is one of the numerous
optimization packages that have been cou-
pled into DAKOTA.
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Table 1. The initial design point and three opti-
mal design points found using surrogate-based
optimization.

Initial | Opt.1| Opt.2 | Opt.3
X1 | 061 0.54 0.58 0.76
X | 0.40 0.74 0.75 0.75
f(x) | 0.80 1.00 1.00 1.00

6.7 Optimization Results

Due to the random nature of the Latin
hypercube sampling method coupled with
the known existence of multiple loca
maxima in this design problem, each execu-
tion of the SBO agorithm was expected to
generate a different optimal design. For this
reason, three runs of the SBO algorithm
were conducted on this design problem, all
of which were started from the same initial
design point. The results of these three SBO
runs are shown in Table 1. All three optima
have an objective function of 1.0, but are in
different locations in the parameter space.

Optimization trial #1 required six it-
erations of the SBO algorithm to converge.
The iteration history of trial #1 is listed in
Table 2 and provides the size of the trust
region bounds, along with the SBO algo-
rithm’s decision to accept or reject the can-
didate optimum. The SBO algorithm termi-
nated after six iterations due to lack of prog-
ress in maximizing the objective function. In
this case, two design points were found with
identical objective function values.

Trial #1 required a total of 48 runs of
the CM code, four of which were duplicate
design points. DAKOTA detected the dupli-
cate points and did not re-run the corre-
sponding CM cases. Instead, data were re-
used from DAKOTA'’s internal database.
Six CM code runs were used at each step of
the SBO algorithm to provide data to build
the surrogate model of the objective func-
tion. The remaining CM code runs were
needed by the SBO algorithm to test the
candidate optimum design points generated
after each SBO iteration. Optimization trials
#2 and #3 required approximately the same
number of SBO iterations and CM code runs
as did trial #1.
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The optimal design points in optimi-
zation trials #1 and #2 are close to each
other, and trial #3 has a similar value for
but a different value fox;. This prompted a
post-optimality parameter study to further
investigate the characteristics of the objec-
tive function.

Figure 7. A contour plot of the objective function
over a portion of the parameter space in x; and
X2. The location of the initial design point “I” and
the three optima are shown.

6.8 Post-optimization Parameter Study
Following the optimization runs, a pa-
rameter study in x; and X, was performed.
This study used a 21 x 21 grid in a portion
of the parameter space to generate a detailed
contour map of the objective function. This
parameter study was only practical due to
the relatively low computational expense of
running the CM code, plus the low dimen-
sion of the parameter space. A two-
dimensional view of the objective function
contours is shown in Figure 7. The initia
design point for all three SBO runs is indi-
cated by the point labeled “I". The optimal
design points from the three SBO runs are
also shown in the figure. Note the large
change in the objective function that occurs
near the line,=0.8. The three optima lie on
this steeply-sided ridge. Thus, while all three
optimization trials produced local maxima,
these optimal design points are not robust
with respect to variations ixp.
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The contours of the objective function
illustrate the nonsmooth features of this op-
timization problem that has multiple local
maxima and slope discontinunities. Figure 8
provides a three-dimensiona view of the
objective function contours, and clearly
shows the plateau regions in the parameter
space and the local maxima that create diffi-
culties when applying traditional gradient-
based optimization to this problem. In fact,
when gradient-based optimization was at-
tempted on this problem, no progress was
made from the initial design point. This oc-
curred because the initial point is located on
one of the plateau regions where the gradi-
ent of the objective function with respect to
both design parametersis zero.

Figure 8. A three-dimensional view of the objec-
tive function contours. Note the plateau regions
on the upper |eft side of the plot.

6.9 Computational Expense and Pardlle

Computing
When running the optimization trias

on Cplant™, each CM job was allocated 16
processors (fine-grained parallelism via do-
main decomposition). A maximum number

of six concurrent CM jobs could have been
executed during the SBO iterations, where
the six jobs correspond to the six Latin hy-
percube samples that were needed to build
the surrogate model of the objective func-
tion. At best, the optimization trials could
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have used 96 processors (six CM jobs, each
running on 16 processors). The best possible
wall-clock timing for optimization trial #1
would have been approximately 2.3 hours.
In contrast, complete serial execution of trial
#1 (serial CM, no concurrent CM job exe-
cutions) would have required approximately
22 wall-clock hours.

During this study it was not always
possible to gain access to 96 processors on
Cplant™ due to the heavy use of the com-
puter. Thus, optimization trials #1-3 were
run with a varying number of processors per
CM job and as few as three concurrent CM
jobs. A typical optimization trial used 48
processors (three concurrent 16-processors
CM jobs) and required about 3.3 wall-clock
hours. A similar pragmatic scheduling ap-
proach was used to reduce the wall-clock
time of the 441 CM jobs needed for the pa-
rameter study.

7. Summary

This study demonstrates the use of
Latin hypercube data sampling methods,
response surface approximation methods,
and numerical optimization capabilities to
solve an engineering design problem. A sur-
rogate-based optimization algorithm has
been developed which combines the above-
mentioned methods, and has been imple-
mented in the DAKOTA toolkit. The engi-
neering design problem presented here il-
lustrates the effectiveness of the surrogate-
based optimization algorithm on design
problems that have nonsmooth trends and
multiple local optima; features that are
common in engineering practice, but which
pose difficulties for traditional gradient-
based optimization methods.

Parallel computing was an integral as-
pect of this study, which exploited fine-
grained parallelization in the computational
simulation code and coarse-grained paralle-
lization in the data sampling portion of the
SBO algorithm. The use of parallel com-
puting reduced the completion time of an
optimization study from approximately 22
hours to less than four hours.
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Table 2. Iteration history of surrogate-based optimization trial #1.

SBO X1* Xo* f(x*) X1 Trust Region X, Trust Region | Accept x*
Iter. # Bounds Bounds (Yes/No)

0 0.61 0.40 0.8

1 0.54 0.73 1.0 [0,1] [0,1] Yes

2 0.00 1.00 0.3 [0,1] [0,1] No

3 0.80 0.70 0.9 [0.30, 0.80] [0.48, 0.98] No

4 0.60 0.80 0.4 [0.48, 0.60] [0.67, 0.80] No

5 0.56 0.74 0.9 [0.53, 0.56] [0.72, 0.75] No

6 0.54 0.74 1.0 [0.54, 0.55] [0.73, 0.74] Yes
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