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Abstract

In reliability-based design optimization (RBDO) the evaluation of the reliability constraints involve

the solution of an optimization problem. This bi-level nature of most RBDO formulations can be

too expensive to be implemented in some practical optimization problems, where a single function

evaluation can range from minutes to hours or even days. An interesting approach replaces the

optimization problem required to evaluate each reliability constraint with its corresponding first-

order optimality conditions. As a result the dimensionality of the problem suffers an increment in

the number of design variables and equality constraints. This structure holds much similarity to

the one that arises in a simultaneous analysis and design (SAND) formulation for optimization of

problems governed by PDEs. In this paper, ideas from research on reduced-Hessian methods for

SAND are applied for the solution of the unilevel reliability optimization formulation. The reduced

approach is applied to both SQP-like and response surface based-like approaches A discussion of the

appropriate formulation for this treatment and some numerical examples are presented.

Introduction

In general nonlinear optimization, a general inequality constraint can be given by

gi(x) ≥ 0, (1)

where x is the vector of design variables. Some of this quantities may have uncertain-
ties associated with them, and can be associated in the vector of random variables r.
The random quantities r can be transformed to the standard-normal space u = T(r).

In reliability analysis, the constraints are formulated such that the probability of a
given constraint to be violated is less than a required value.
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1 − P (gi(x) ≥ 0) ≤ Preq. (2)

Using a FORM formulation, the probability of failure can be related to the reliability
index β. The deterministic constraint (1) is replaced by a reliability constraint. The
reliability constraint can be formulated based on the reliability index approach (RIA)
or the performance measure approach (PMA) (see (Tu et al., 1999)). In a PMA
formulation the reliability constraint is

gri(x,T−1(u∗)) ≥ 0, (3)

where u∗ is the solution to the inverse reliability problem

minimize Gri(x,u) = gri(x, r)

subject to uTu = β2

req. (4)

Note that for each constraint, a different instance of u∗ exists. In the unilevel PMA
approach, the reliability constraint (3) is substituted by the first order KKT conditions
of problem (4).

The formulation for the single-level RBDO approach in (Agarwal et al., 2004b) re-
places problem (4) with its corresponding first order KKT equations. A manipulation
of the equations reduces the system to two equations, independent of the number of
uncertain quantities.

In this paper, however, a more convenient form of the equations is presented.

hri(x,ui) =
∇Gri

||∇Gri||
) +

ui

βreq
. (5)

Each system i has m equations for the same number of reliability variables ui. It can
be solved for ui for a given value of the deterministic quantities using Newton steps.

Structure of the unilevel reliability optimization problem

The unilevel optimization problem takes the form:

Minimizex,u f(x),
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s.t. g(x) ≥ 0,

Gr(x,u) ≥ 0, (6)

hr(x,u) = 0,

Where hr(x,u) is the system of equations derived from the KKT conditions for each
reliability constraint.

The Jacobian of the equality constraints is given by

Ah =
[

Ahru Ahrx

]

. (7)

Note that the Jacobian with respect to the design variables Ahrx is a dense matrix,
but Ahru is sparse. Furthermore, the structure of Ahru is known since

hr(x,u) =













hr1(x,u1)
hr2(x,u2)

...
hrp(x,up)













. (8)

So the Jacobian of the system with respect to the reliability variables u is

Ahru =















∂hr1

∂u1

0 . . . 0

0 ∂hr2

∂u2

. . . 0
...

...
. . . 0

0 0 0 ∂hrp

∂up















(9)

Both Ahru and Ahrx can be easily derived from (5):

∇uhri =
∇2

ui
Gri

(∇ui
GrT

i ∇ui
Gri)1/2

− ∇ui
Gri∇ui

GrT
i ∇2

ui
Gri

(∇ui
GrT

i ∇ui
Gri)3/2

+
I

βreq
, (10)

∇xhri =
∂2Gri

∂x∂ui

(∇ui
GrT

i ∇ui
Gri)1/2

−
∇ui

Gri∇ui
GrT

i
∂2Gri

∂x∂ui

(∇ui
GrT

i ∇ui
Gri)3/2

. (11)

Note that this system of equations can be treated as p independent systems, with
dense matrices, and its solution can be parallelize.
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A reduced Hessian approach

In (Orozco and Ghattas, 1997) a reduced-space SQP framework is presented that can
be applied to the solution of the unilevel RBDO problem. In the unilvevel reliability
optimization problem (6) the vector of design variables is w = {x,u}. A step pw can
be decomposed as:

pw = Zpz + Ypy. (12)

Following (Orozco and Ghattas, 1997),

Z =

[

−A−1

hru
∂hr

∂x

I

]

, (13)

Y =

[

I

0

]

. (14)

Note that AhruZ = 0 and Y spans the range space of AT
hru.

A quadratic approximation for a function g is given by:

g̃ = g0 + ∇gT
0 pw + pT

wHpw, (15)

where pw = w − w0 and the subindex 0 refers to the values at the current design
point.

Substituting pw from (12), the quadratic approximation is given by:

g̃(pz, py) = g0 + ∇ug
T
0 py + pT

y Hypy + . . .

(∇xg
T
0 −∇ug

T
0 A−1

hru

∂h

∂x
+ pT

y YT HwZ)pz + pT
z Hzpz, (16)

where Hz is an approximation to the reduced Hessian ZT HwZ and Hy = YT HwY =
∇2

ug. The cross Hessian term YT HwZ is difficult to evaluate and is commonly ne-
glected. For a given value of the step py, this is only a function of pz.

Note that pT
y Hypy = 0 for the objective function and all the deterministic constraints,

and pT
y Hypy = uT

i ∇2
ui

Griui for the reliability constraints.
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The reduced-Hessian Hz of the approximation, can be computed either by a quasi-
Newton approximation, or as a response surface approximation by sampling the local
region.

The reduced-space quadratic approximation (16) can be used to implement an rSQP
or a reduced sequential approximate optimization (rSAO) approach, depending how
the reduced-Hessian Hz of the approximation is computed. In rSQP a quasi-Newton
update formula as BFGS or SR1 is used, while in rSAO the Hessian is computed
by response surface techniques, sampling the region surrounding the current design
point.

In either case, the general minimization subproblem in the reduced space, subject to
a trust region is:

Minimizex θ̃(pz),

s.t. g̃(pz) ≥ 0,

G̃r(pz, py) ≥ 0, (17)

pz = x − x0,

||pz|| ≤ ∆, (18)

where ∆ is the trust region radius and py is previously computed by solving

Ahrupy = −h0 (19)

Once both steps have been computed, one can update all the design variables by

xk+1 = xk + pz, (20)

uk+1 = uk + py + A−1

hru

∂h

∂x
pz

An rSQP formulation

In SQP, a sequence of quadratic programming problems is solved with a quadratic
approximation to the Lagrangian as the objective function and linearized constraints.
The Hessian of the Lagrangian is computed by using quasi-Newton approximations.
The minimization subproblem (18) is solved with θ as the Lagrangian and the second
order terms in the constraints neglected. The Hessian of the Lagrangian is computed
using a quasi-Newton update formula.
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A rSAO formulation

In (Pérez et al., 2002; Pérez et al., 2003) an optimization problem is solved by the
use of sequential quadratic approximations. A similar procedure could be employed
for solving the single level RBDO problem. However in SAO the number of design
variables affects the overall performance of the algorithm as the Hessian of the approx-
imations is built by sampling the design space. Applying a reduced Hessian approach
would make SAO a viable option for this problems.

In SAO the approximate minimization subproblem requires a quadratic approxima-
tion of the objective function and constraints. The minimization subproblem (18) is
solved with θ as the Lagrangian and the constraints are approximated by quadratic
functions as (16). Note that the major difference with respect to SQP is the way the
Hessian of the approximation is computed. A quasi-Newton update approximates
the Hessian at the current design point x0, while a response surface based Hessian,
computes the Hessian of an approximation over a region around x0.

Note that a variant of the rSQP formulation could use quadratic approximations in
the constraints (and use a nonlinear solver for each minimization subproblem) and
likewise the rSAO formulation may solve the problem with linearized constraints.

Procedure

In the present paper the reduced space approach is used within the interior-point,
trust-region, sequential approximate optimization framework (IP-TR-SAO) devel-
oped by (Pérez et al., 2003). The framework solves an optimization problem by
constructing quadratic approximations of the objective function and constraints that
are valid within a local region. The IP-TR-SAO framework is similar to a trust-region
SQP algorithm except that the constraints are approximated by quadratic polynomi-
als, instead of being linearized, and the second order information is approximated by
sampling the design space instead of using quasi-Newton approximations (BFGS or
SR1, for example).

The algorithm:

1. Initialize x0, u0, ∆x

2. Compute f0, g0, h0, ∇xg0, ∇ug0,
∂h
∂x

, Ahru = ∂h
∂u

.

3. Solve for py as in Eq. (19).

4. Sample the design space in x and compute the Hessian matrices for f̃ and g̃.

5. Solve the approximate optimization problem (18), obtain new design x.

6. Compute f , g, h, ∇xg, ∇ug, ∂h
∂x

, Ahru = ∂h
∂u

for x.
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7. Accept/reject point, update trust region size.

8. Update design variables according to (20).

9. Check convergence.

• If converged, stop

• else, go to 3.

Numerical experiments

A simple numerical problem is implemented to demonstrate the procedure. This
analytical problem was presented in (Agarwal et al., 2004a) and consists of two design
variables, two random parameters and two reliability constraints. The problem is
given by

In the unilevel reliability formulation, the problem has 6 design variables, 2 inequality
constraints and 4 equality constraints. In mathematical form the problem is:

Minimize: x2

1 + 10x2

2 + y1,

subject to: g1 = y1/8 − 1 ≥ 0,

g2 = 1 − y2/5 ≥ 0,

−10 ≤ x1 ≤ 10,

0 ≤ x2 ≤ 10,

y1(x,p) = x2

1 + x2 − 0.2y2 + p1,

y2(x,p) = x1 − x2

2 +
√

y1 + x2.

Both parameters p1 and p2 are random quantities with a uniform distribution over
the intervals [−1, 1] and [−0.75, 0.75]. Using the reliability index β as a measure of
failure (FORM formulation), both inequalities can be substituted by either a PMA
or RIA formulation. In the PMA formulation (inverse reliability) the values of p1

and p2 correspond to those of the MPP point for a given reliability index. Their
correspondent values in the standard normal space u1 and u1 can be used.

Applying the single level formulation described before, the problem has 6 design
variables, 2 inequality constraints and 4 equality constraints.

The system of 4 equality constraints can be used to solve for the reliability variables
u1 − u4 given values for the deterministic d. v. x1, x2. As pointed out in the paper,
this system is formed by two systems of equations that can be solved separately.

The RBDO problem is solved using two different approaches. A full space unilevel
approach and the proposed reduced-space unilvel approach.
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In the full-space unilevel approach, the optimizer controls both the deterministic
design variables and the reliability variables at the same time and no distinction
is made in the way it solves for either group. In the reduced-space approach, the
optimizer controls the deterministic design variables, while the values of the reliability
variables are updated at each iteration as described above.

Results for the rSQP method

The results presented in Table 1 show the number of iterations and the number of
function calls for each approach. The reduced Hessians are computed using a rank
one quasi-Newton update formula (SR1). No positive definite Hessian is required due
to the use of a trust region method as globalization strategy. In SQP the constraints
are linearized, and in QSQP, quadratic approximations are used.

Full-space Reduced-space
SQP 13/42 13/48

QSQP 8/27 19/62

Table 1: Comparison of full vs. reduced space in SQP

As expected, the full-space approach performs better than the reduce-space one, The
use of quadratic approximations to the constraints, contributed to a significant im-
provement in the full-space, while increasing the cost in the reduced space. Analyzing
the iteration history for the reliability variables the problem is identified. The New-
ton step quadratically convergent close to the actual value of the variables, but away
from it may create oscillations or diverge. In this case it is oscillating and converging
very slowly, as shown in Figure 1.

A way to avoid this problem is to implement a globalization technique in the Newton
step. We implemented a simple backtracking technique. If the Newton step py is
too large (py > a) the algorithm checks if a reduction in the value of the equality
KKT constrains is observed. If not, the algorithm takes only a fraction of the step
γpy. Note that this simple approach does not guarantee convergence from points far
away, as does not perform a proper line search, but at least reduces the probability
of divergence for large steps. For the test problem we used a = 1, γ = 0.7.

Once the backtracking is applied, the reduced-space approach required only 8 itera-
tions and 31 function evaluations to converge. This is comparable to the full-space
approach. Only one iteration (the first one) opted for the backtracking option. Most
important, the reliability variables converged to their actual value without oscillations
as shown in Figure 1.

reduced Sequential Approximate Optimization results

The reduced-space technique was also applied to the SAO framework as discussed
above. Constructing the quadratic approximation requires at least n(n+1)/2 function
evaluations. As with the SQP approach, two versions were tested. One with the
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Figure 1: Oscillations in u1

linearized constraints in the minimization subproblem (lSAO) and the other with
quadratic approximations to the constraints (SAO). For sampling in the full space,
an I-optimal array with 27 designs generated by the software Gosset(Hardin and
Sloane, n.d.) was used. The results are shown in Table 2

Full-space Reduced-space Reduced w/backtracking
lSAO 13/1095 21/360 17/296
SAO 8/675 15/258 5/92

Table 2: Comparison of full vs. reduced space in SAO

In the case of the SAO implementation, the reduced-order approach shows consider-
able savings due to the reduction in the number of designs to be sampled at every
iteration. This result was expected as one of the important issues in SAO is the
curse of dimensionality. Also it is noted that the use of quadratic approximations in
the minimization subproblem reduces the number of iterations required to converge,
as was observed in the SQP approach. The use of the simple backtracking scheme
again avoided oscillation of the reliability variables in the reduced-space technique,
improving the convergence of the algorithm.

Concluding remarks

A unilevel implementation of the reliability-based optimization problem presents sev-
eral advantages over its bi-level counterpart. Its structure, suggests the use of reduced
order methods for its solution when large number of random quantities and reliability
constraints occur. In this paper an implementation of a reduced-space SQP method
was applied to the solution of this type of problems. The paper analysis the structure
of the problem and the reduced-space formulation. The formulation was applied to an
SQP and an SAO formulations. The standard SQP formulation was complemented
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with optional explicit quadratic approximations to the constraints. A simple test
problem demonstrates the behavior of the rSQP applied to the unilevel reliability-
based optimization formulation.

The results demonstrate the ability of the reduced-space approach to converge under
certain circumstances. It is noted that a simple Newton step may fail to converge the
reliability variables if it is not accompanied by a globalization technique. A simple
selective backtracking method was used with success.

The behavior of the problem is as expected with a reduced-Hessian implementation.
In general is more expensive in the number of function evaluations, but allows the
optimizer to handle only a small portion of the variables. In the rSAO approach,
however, the number of function evaluations grows quadratically with the number
of design variables. The use of a reduced space, improves the performance of the
algorithm significantly.

One interesting observation is that in the reduced-space formulation, convergence on
the reliability variables u is indirectly enforced through the constraints. As a result,
the method computes the reliability variable u up to the necessary precision, while
solving the full system would enforce convergence to the same precision in both the
design variables and the reliability variables.
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