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Extended Parallelism Models For Optimization On Massively Parallel Computers

M.S. Eldred and B.D. Schimel

Sandia National Laboratories‡

Albuquerque, NM 87185

1. Abstract

Single-level parallel optimization approaches, those in which either the simulation code executes in parallel or the op
tion algorithm invokes multiple simultaneous single-processor analyses, have been investigated previously and have been
be effective in reducing the time required to compute optimal solutions. However, these approaches have clear performanc
tions that prevent effective scaling with the thousands of processors available in massively parallel supercomputers. In mor
work, a capability has been developed for multilevel parallelism in which multiple instances of multiprocessor simulations
coordinated simultaneously. This implementation employs a master-slave approach using the Message Passing Interface
within the DAKOTA software toolkit. Mathematical analysis on achieving peak efficiency in multilevel parallelism has shown
the most effective processor partitioning scheme is the one that limits the size of multiprocessor simulations in favor of con
execution of multiple simulations. That is, if both coarse-grained and fine-grained parallelism can be exploited, then prefee
should be given to the coarse-grained parallelism. This analysis was verified in multilevel parallel computational experimen
networks of workstations (NOWs) and on the Intel TeraFLOPS massively parallel supercomputer.

In current work, methods for exploiting additional coarse-grained parallelism in optimization are being investigated so
fine-grained efficiency losses can be further minimized. These activities are focusing on both algorithmic coarse-grained l-
ism (multiple independent function evaluations) through the development of speculative gradient methods and concurren
strategies, and on function evaluation coarse-grained parallelism (multiple separable simulations within a function evalua
through the development of general partitioning and nested synchronization facilities. The net result is a total of four sepate lev-
els of parallelism which can minimize efficiency losses and achieve near linear scaling on massively parallel computers.

2. Keywords

parallel optimization, multilevel parallelism, massively parallel computing

3. Introduction

The opportunities for exploiting parallelism in optimization can be categorized into four main areas[1]:
• Algorithmic coarse-grained parallelism: This parallelism involves the concurrent execution of multiple independent funct

evaluations and can be exploited in gradient-based algorithms (e.g., finite difference gradient evaluations, speculativ
zation), nongradient-based algorithms (e.g., genetic algorithms, parallel direct search), approximate methods (e.g., d
computer experiments for building response surfaces), and concurrent iterator strategies (e.g., branch and bound, is
model genetic algorithms).

• Algorithmic fine-grained parallelism: This involves computing the basic computational steps of an optimization algorith
(i.e., the internal linear algebra) in parallel. This is primarily of interest in large-scale optimization problems and simu-
neous analysis and design (SAND).

• Function evaluation coarse-grained parallelism:This involves concurrent computation of separable parts of a single funct
evaluation. This parallelism can be exploited when the evaluation of objective and constraint functions requires multipl
pendent simulations, e.g. multiple load cases, multiple uncoupled disciplinary analyses, etc.

• Function evaluation fine-grained parallelism:This involves parallelization of the solution steps within a single analysis cod
Sandia-developed MP analysis codes include PRONTO, MPSalsa, COYOTE, ALEGRA, CTH, and many others.

By definition, coarse-grained parallelism requires very little inter-processor communication and is therefore esse
“free,” meaning that there is little loss in parallel efficiency due to communication as the number of processors increases. H
it is often the case in optimization that there are not enough separable computations on each cycle to utilize the thou
processors available on MP machines. This limitation was illustrated in reference [2], in which a parallel coordinate pattern
optimization exploiting only coarse-grained algorithmic parallelism was shown to have a maximum parallel speedup of six
the coordinate pattern search algorithm has 2n independent evaluations per cycle, the implementation could only utilize at mos
processors for a problem size ofn=3 design variables.

Fine-grained parallelism, on the other hand, involves much more communication among processors and care must be
avoid the case of inefficient machine utilization in which the communication demands among processors outstrip the am
actual computational work to be performed. This limitation was illustrated in reference [1] for a representative MPSalsa sim
in which it is shown that, while simulation run time does monotonically decrease with increasing number of processo
relative parallel efficiency of the computation for fixed model size is decreasing rapidly (fromÊ = 0.87 at 64 processors toÊ = 0.39
‡Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Depart-
ment of Energy under Contract DE-AC04-94AL85000. This paper is declared a work of the U.S. Government and is not subject to
copyright protection in the United States
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at 512 processors). This is due to the fact that the total amount of computation is approximately fixed, whereas the commu
demands are increasing rapidly with increasing numbers of processors. Therefore, there is an effective limit on the nu
processors that can be employed for fine-grained parallel simulation of a particular model size, and only for extreme mod
can thousands of processors be efficiently utilized in optimization exploiting fine-grained parallelism alone.

These limitations point us to the exploitation of multiple levels of parallelism, in particular the combination of coarse-gr
and fine-grained approaches. The question arises, then, if multiple types of parallelism can be exploited, how should the a
parallelism at each level be selected so as to maximize the parallel efficiency of the study? Reference [1] answers this qu

showing that the relative parallel efficiency of a multilevel parallel optimizer onp processors, as a function of the sizep' of
multiprocessor simulations withinp, is:

 for someC > 0 (1)

where is the time required to run a multiprocessor simulation. For sublinear analysis speedup, the denominator is m

ically increasing with  and  is maximized at . Therefore, the size of fine-grained parallel simulations is 

minimized by exploiting as much coarse-grained parallelism as possible. Important practical considerations and caveats 
• Time spent in serial operations (Tserial) and in master-slave optimization communication (Tcomm) is assumed to be negligible

in comparison to (see [1] for derivation). The effect of nonnegligibleTserial andTcommwill be quantified in future work

(with reference to Amdahl’s law).
• Maximizing parallel efficiency and minimizing run time are not equivalent. Sometimes efficiency must be sacrificed for s

( ) in the case where additional processors are available. The analysis still provides useful guidance in this 

• Transitory superlinear speedups can be caused by cache effects (as processor count increases, model partitions de

size and, at some point fit, may fit entirely in cache memory). In this case, maximum  occurs at .

• For “heroic” scale problems,  can stretch the limits of processor availability. In this case, coarse-grained paralle

cannot be used and the most effective usage must be made of the fine-grained parallelism (parallel SAND approache
appear very promising).

Reference [1] also provides computational evidence for this

conclusion by demonstrating minimum run time for  on

clusters of workstations and on the Intel TeraFLOPS MP compute
The effect on scalability can be visualized as shown in Figure

in which the limitations of single-level parallelism are depicted alon
with the effect of combining the approaches into multilevel paralle

ism. By minimizing , we move as far back on the fine-grained pa
allelism curve as possible, into the near-linear scaling range. And
then we replicate this fine-grained parallel performance with mult
ple coarse-grained instances.

These insights have inspired current activities which are seeki
to exploit additional coarse-grained parallelism within algorithms
and function evaluations, as described in the following sections.

4. Algorithmic coarse-grained parallelism.

Parallel and speculative-parallel gradient-based methods

Quasi-Newton optimization algorithms often have a general structure consisting of a search direction computation, a
based line search at one or more trial points in this direction for a sufficient decrease in the objective function, a gradient evalua-
tion, an update to the Hessian approximation, and a convergence check. For these types of optimization algorithms, a loa-
ance often occurs between the line search and gradient evaluations. For instance, for an optimization problem withn design
variables using central finite difference gradients,2n+1 independent evaluations are needed to determine the function and ap
imate gradient values at a point, whereas only one independent evaluation exists when determining the function value du
value-based line search. Thus, a parallel implementation will have poor performance since most processors will be idle du
line search. A technique that addresses this imbalance, for the case of a value-based line search, is the speculative optimion
approach [5]. By speculating that the current line search trial point will be successful, and thus the gradient information ass
with the trial point will be needed directly afterwards, coarse grained parallelism can be introduced into the line search by c
ing the gradient information in parallel with the function value. Then the exact same number of independent evaluations eur-
ing the gradient and line search phases and parallel implementations can be load balanced.

A common variation to the above optimization algorithm incorporates the use of a gradient-based line search. The accu

Ê

Ê p'( ) C
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Figure 1. Scalability for fixed model size
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this type of line search is often enhanced through the use of a cubic approximation to the merit function, in place of the liar or
quadratic approximations used in value-based line searches (note that these approximations are only used when the init
point is not a sufficient decrease). For the gradient-based line search, the gradient computation is no longer speculative s this
information will always be requested, but the same load-balanced parallel implementation can be used. These parallel m
have been incorporated into DAKOTA [6] for several optimizer libraries capable of constrained nonlinear local optimizatio
coding changes were necessary within the libraries, as it was sufficient to augment evaluation requests based on speculaic
within the wrapper classes.

Table 1 shows example parallel speedup and efficiency results for DAKOTA optimizations conducted on a network-con
workstation cluster. The OPT++ quasi-Newton vendor optimization algorithm [7] was used for this analysis to explore value
load-imbalanced, value-based speculative, and gradient-based line searches. The results were generated using an algeb
ear unconstrained Rosenbrock function [8], which was combined with a time delay of five seconds to simulate expensive fu
evaluations. The first two rows show results for the value-based line search in load imbalanced and speculative parallel m
respectively. The value-based load-imbalanced approach requires one fewer processor than do the value-based speculativ
dient-based approaches because only a gradient computation is performed following the line search (the function value iy
available). However the performance of the value-based load-imbalanced line search is much lower, as measured by spe

(2)

where  and  are the wall clock times required for serial and parallel solutions, respectively, and efficiency

(3)

where  is the total number of processors.

In parallel mode, the value-based speculative and gradient-based line search approaches offer much better perform
this sample problem, the gradient-based line search offered the best overall performance, probably due to increased acc
obtained by using a cubic approximation. This is evidenced by a faster parallel analysis time,Tp, resulting from fewer overall line

search iterations,il. However, there are situations where the speculative line search can outperform the gradient-based line

This can typically occur when the number of processors,p, is less than the number needed to compute all function and gradie
related function evaluations in one step,pfg, wherepfg = 2n + 1 for central finite differencing. For these cases, when using a spe

lative value-based line search, any function and gradient-related function evaluations in excess ofp can be terminated if the trial
point is not accepted. Thus, if only a single processor is available, the series of function and gradient-related function evauations
observed for a value-based speculative line search reverts to what is observed for the standard value-based line search cing
the load-imbalance (thus,Ts for load-imbalanced and speculative value-based line searches are equivalent). For a gradient-

line search, it will usually be necessary to compute allpfg > p evaluations at every trial point, which must be done in multiple step

and can often lead to longer overall solution times,Tp. Also, it should be cautioned that while it offers certain theoretical advan

tages in parallel mode over the value-based speculative line search, in practice the use of a gradient-based line search wot
always show improved speedup performance, even ifpfg processors are available.

Concurrent iterator strategies

Additional coarse-grained parallelism on the algorithmic side can also be realized through the concurrent execution 
ple optimizations within a high-level strategy such as parallel branch and bound, multi-start local search, island-model gec
algorithms, etc. This requires development of an extended parallelism model in which we modularize the master-slave par
of an optimization scheduling function evaluations, such that multiple instances of this parallelism can be coordinated in agher
level master-strategy, slave-optimization approach. One can consider this design a multi-tiered master-slave: the strategy mas-
ter to several slave optimization servers, each of which is a master to several slave function evaluation servers.

MPI [9] provides a convenient mechanism for modularizing parallelism through the use of communicators. A commun
defines the context of processors over which a message passing communication occurs. By providing mechanisms for sub
existing communicators into new partitions and for sending messages between the new partitions, each level of parallelism

Table 1: DAKOTA/OPT++ speedup and efficiency results

Line Search Type p il Ts (sec.) Tp (sec.) Sp E(p)

value-based, load-imbalanced 4 45 986 435 2.27 0.57

value-based, speculative 5 45 986 239 4.12 0.83

gradient-based 5 40 1022 213 4.80 0.96

Sp

Ts

Tp
------=

Ts Tp

E p( )
Sp

p
-----=

p
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managed with its own set of communicators independently from any other operations. And each of these new communica
be further subdivided into additional partitions to nest multiple levels of parallelism, one within the other.

In DAKOTA, each tier within the nested par-
allelism hierarchy can use either of two processo
partitioning models: a “dedicated master” parti-
tioning in which a single processor is dedicated to
scheduling operations and the remaining proces
sors are split into server partitions, or a “peer pa
tition” approach in which the loss of a processor
to scheduling is avoided. These models are
depicted in Figure 2. The peer partition is pre-
ferred since it avoids any idle time on a dedicate
master; however it requires the use of either
sophisticated mechanisms for distributed schedu
ing (to avoid work starved slaves) or a static part
tioning of concurrent work for which scheduling
is unnecessary.

Implementation of a concurrent iterator strat
egy within DAKOTA has focused on a parallel
branch and bound strategy for optimizing nonlin-
ear applications with mixed continuous-discrete
variables. It employs the PICO branching engine
[10] for scalable mixed integer programming
combined with DAKOTA’s nonlinear optimizers
and multilevel parallelism facilities. Since PICO is
capable of distributed scheduling, the peer parti-

tion model is used to manage the concurrent nonlinear programming optimizations within the strategy. To demonstrate th
bility, the following mixed integer nonlinear programming problem is solved:

minimize (4)

subject to (5)

(6)

(7)

(8)

Since the evaluation of these functions is inexpensive, additional computational work (easily separable among processore
multiprocessor simulation cases) is performed on each function evaluation so that the timings are more computation drive
communication driven. Preliminary results are provided in Table 2 where “itersrv” denotes the number of concurrent iterator serv

ers, “fevsrv” denotes the number of concurrent function evaluation servers used by each iterator, “ppe” denotes the numbe

Table 2: DAKOTA/PICO speedup and efficiency results

Levels of parallelism p (itersrv, fevsrv, ppe) NLPs solved T (sec.) Sp E(p)

0 (serial) 1 (1,1,1) 5 430.51 N/A N/A

1 2 (2,1,1) 7 371.17 1.16 0.58

2 12 (2,5,1) 5 80.96 5.32 0.44

3 22 (2,5,2) 6 51.04 8.43 0.38

1 14 (1,13,1) 5 40.32 10.68 0.76

2 15 (1,7,2) 5 44.33 9.71 0.65

COMM1 COMM3

COMM0 Master

Slave Slave

Figure 2. Communicator partitioning models
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cessors per function evaluation, “NLPs solved” denotes the total number of nonlinear programming optimizations perform
the branch and bound strategy,T denotes the solution time for both serial (as marked) and parallel runs, andp, Sp, andE(p) are as

defined previously. When using the peer partition model in the strategy and the dedicated master model for each iterator,

 for  (parallel iterator) and  for  (serial iterator).

To fully understand the Table 2
comparisons, one must first consider
the branching tree for this problem as
shown in Figure 3, since the NLPs
solved during the branch and bound
process are dependent on parallelism
and race conditions. For serial branch
and bound, five NLPs are solved in
the order numbered (NLP2 is sub-
branched before NLP3 because its
solution is better), and the solution to
NLP4 allows pruning of the NLP3
branch, avoiding solution of NLP6
and NLP7 (note that this pruning is
heuristic in the general nonlinear
case since it would be possible for
NLP6 or NLP7 to generate a better
solution than NLP3 if the problem
was multimodal, discontinuous, etc.).
In parallel branch and bound with

two concurrent iterators, the number of NLPs solved can be as high as seven since NLP2 and NLP3 are performed conc
NLP2 is followed by NLP4 and then NLP5 on one server, and NLP3 is followed by NLP6 and then NLP7 on the other ser
achieve scalable performance, the scheduling of NLPs is asynchronous and, if NLP4 on the first server is not completed 
the initiation of NLP7 on the second server, then all seven NLPs will be performed. Thus, the solution of additional NLPs e
parallel case, as well as the fact that one server is idle during the solution of NLP1, yield poorer than desired parallel efficiencies
for the itersrv=2 cases in Table 2 (rows 2, 3, and 4). Both of these effects would be less dominating for problems with more d

variables resulting in a larger number of branches and NLP solutions. In the final rows of Table 2, serial branch and boun
(itersrv=1) is combined with parallel optimization (fevsrv=13 in row 5, fevsrv=7 in row 6) and multiprocessor function evaluations

(ppe = 2 in row 6) to yield more desirable speedup and parallel efficiencies. Thus, it can be concluded that implementing a
branch and bound which is scalable in the number of concurrent bounding operations is quite challenging and more work r
in tuning the use of PICO for solving nonlinear engineering applications with DAKOTA. Lastly, in all cases, the solution of s
or fewer NLPs compares well with the 25 solutions that would be required for simple enumeration of the discrete variable.

5. Function evaluation coarse-grained parallelism

Within a single function evaluation, coarse-grained parallelism can be exploited if multiple separable simulations mus
performed as part of evaluating the objective function(s) and constraints. This situation commonly arises in optimization w
evaluation of the objectives and constraints involves simulations from multiple uncoupled disciplines (e.g., impact and fireviv-
ability analyses), from multiple load cases or operating conditions (e.g., pull up and roll maneuvers), or from evaluating dgn
robustness and insensitivity across parameter ranges.

In exploiting this type of coarse-grained parallelism, a third tier can be added to the two described above in which a fu
evaluation is a master to several multiprocessor slave analysis servers. DAKOTA is implementing this capability by provid
extended interface specification with an initial serial analysis portion for preprocessing (if required), followed by a set of concur-
rent analysis portions, followed by a final serial analysis portion for postprocessing (if required). The synchronization functi
these analysis portions will be nested within the outer synchronization for concurrent function evaluations, such that a tesor
completion in the outer synchronize (on one of the concurrent function evaluations) will not complete successfully unless al
analysis portions in the inner synchronize have completed.

With regards to the selection of a dedicated master or peer partition model, DAKOTA determines this at run time. If a
cient allocation of processors is available to handle each of the concurrent analysis portions, then no scheduling is requir(Nserv-

ers = Njobs) and the more efficient peer partition model is used. If, however, not enough servers can be created to handle a

concurrent multiprocessor analyses simultaneously (Nservers < Njobs), then the dedicated master model is used so that each of 

analyses can be self-scheduled through the servers without potential for work starvation.

6. Conclusions

Combining the extended parallelism concepts described in this paper result in a total of three nested tiers of master-sl

p itersrv fevsrvppe 1+( )= fevsrv 1> p itersrvfevsrvppe= fevsrv 1=

Figure 3. Branching for example problem
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trol and four levels of parallelism. These extensions are depicted graphically in Figure 4. It is important to recognize that the
is not additive, but rather multiplicative in nature. For example, if four concurrent optimizations can be run within a strategy

optimization having ten independent function evaluations on each cycle, and each function evaluation having three indep
analyses, then the fine-grained parallelism available in the analysis can be augmented with 120-fold coarse-grained para
The net effect of this additional coarse-grained parallelism is to further improve upon the multilevel parallel scaling of Figur
shown in Figure 5.

In addition to continuing development of parallel branch and bound and concurrent analyses within a function evalua
current work is addressing the practical realities of parallel optimization using shared massively parallel computing resou.
Shared systems generally employ queuing software (e.g., NQS) which can have the detrimental effect of causing repeate
(often hours, sometimes days) oneachoptimization cycle if they are used for queuing function evaluations. Alternative approac
of linking the simulation into the optimization code or ganging jobs together within special-purpose server scripts avoid th
repeated delays, but suffer from other shortcomings (requiring modification to analysis codes or replication of already exist
management facilities in specialized scripting, respectively). Each of these approaches is currently under investigation forge-
scale applications on the ASCI machines, the most fruitful of which will be selected for further refinement.
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