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Abstract 

This report describes an initial investigation into the error convergence trends in sampling-based 
uncertainty quantification (UQ) studies performed both with and without response surface approximations. 
The data provided by this limited study indicate that RS-based UQ methods exhibit error trends that are as 
good or better (converging faster to zero) when compared to conventional sampling-based UQ methods.    

Introduction 

An uncertainty quantification (UQ) study using traditional sampling-based approaches 
(e.g., Monte Carlo sampling and its variants) can be prohibitively expensive when 
applied to a high-fidelity simulation code that requires hours of supercomputer time for a 
single code execution. One approach to this problem is to employ response surface (RS) 
approximation methods to create a mathematical model of the high fidelity simulation 
code output data, and then perform UQ sampling on the computationally inexpensive 
mathematical model. While this approach is useful, it is important to note that it 
introduces additional error in the estimation of the UQ statistical metrics beyond the error 
created by traditional sampling. There are numerous choices for the sampling method that 
is used to generate the data for the RS approximation, as well as numerous choices for the 
mathematical form of the RS approximation. There are no clear guidelines in the 
statistical literature on how to best choose the sampling method and the RS 
approximation type. This study is an initial attempt to gain insight into when the RS-
based UQ approach is more accurate than direct Monte Carlo sampling, and which 
combination of sampling method and RS approximation method yields the most accurate 
UQ results. 

This study investigates three types of sampling methods to generate data to build the RS 
approximations: Monte Carlo (MC) sampling, Latin hypercube (LH) sampling, and 
orthogonal array (OA) sampling, along with two types of RS approximation methods: 
kriging interpolation and multivariate adaptive regression splines (MARS). A single test 
function is used in this study to provide some insight into the utility of the RS-based UQ 
approach. More extensive testing will follow to provide more definitive results.  

                                                 

* Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for 
the United States Department of Energy’s National Nuclear Security Administration under Contract DE-
AC04-94AL85000. 
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It is expected that for a low number of data samples the RS-based UQ sampling methods 
will provide more accurate estimates of the test function mean value than direct sampling 
of the test function. As the number of samples increases, it is expected that there will be 
less of an advantage of the RS-based UQ approach over direct sampling. 

Technical Approach 

Test Function 

Figure 1 shows a plot of the Rosenbrock function (Gill et al, 1981) that is used in this 
study since it provides an algebraic, nonlinear response function that exhibits some of the 
nonlinear trends often found in data from computationally expensive engineering 
simulation codes. The Rosenbrock function is: 

    f(x1,x2) = 100(x2-x1
2)2 + (1-x1)2,   (1) 

where, for the purposes of this UQ study,  x1 and x2 are independent and uniformly 
distributed on the interval [-2, 2]. The mean value of f(x1,x2) over the region [-2, 2]2 is 
455.667, and can be obtained analytically. When an explicit response function is not 
available, the mean value of the function can be estimated using data values via: 
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where N is the number of samples. When the mean value is estimated using samples 
taken from the RS approximation, the mean value is denoted as: 

ˆˆ ( , )M

i
f x x

M
µ

=
= ∑ 1 21

1 ,    (3) 

where f̂ is the surface approximation function computed from N data points, and the 
mean value is estimated by sampling the approximation function at M points (M>>N). 

Sampling Methods 

Monte Carlo, Latin hypercube (McKay et al, 1979), and orthogonal array (Koehler and 
Owen, 1996) sampling methods involve an element of random sampling. However, the 
LH and OA sampling methods partition the parameter space into bins of equal 
probability, with the goal of attaining a more even distribution of sample points in the 
parameter space than typically occurs with MC sampling. Given N sample points to 
locate in an n-dimensional parameter space, LH sampling partitions the parameter space 
into an Nn grid of bins, with N bins along each axis. Then, sample points are distributed 
such that all one-dimensional projections of the samples yield one sample per bin. The 
OA sampling method is similar to the LH sampling approach, but in OA sampling the 
parameter space is partitioned into a ( )n

t N grid of bins, and the samples are distributed 
such that all t-dimensional projections (t<n) of the samples yield at least one sample per 
bin. For the test function used in this study, the “strength 2” (i.e., t=2) OA method places 
one sample in each bin in the parameter space. However, this would not be the case for a 
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general n-dimensional test function. See the paper by Giunta et al. (2003) for additional 
detail on LH and OA sampling methods. 
 

Surface Approximation Methods 

Kriging interpolation (Cressie, 1991) and MARS (Friedman, 1991) are approximation 
methods that are intended to model arbitrary surfaces. Thus, they are well suited for 
modeling the nonlinear trends in the Rosenbrock function. The kriging method employs 
Gaussian basis functions, with all correlation parameters set to a value of unity. The 
kriging surface approximation model exactly interpolates all data points. The MARS 
method employs a combination of regression functions and cubic splines. It is not 
guaranteed to identically interpolate the data points, but in practice, the MARS surface 
approximation is very close to the data. The kriging and MARS surface approximation 
methods used in this study are those available in the DAKOTA version 3.1 software 
toolkit (Eldred et al, 2001). 

Results and Discussion 

Figure 2 illustrates the convergence of the estimated mean value of the function, as the 
number of samples increases. Note that the MC and LH sample sizes were 10, 25, 50, 75, 
100, and 121, while the OA sample sizes were 9, 25, 49, and 121. The special bin 
structure required by the OA limits the sample sizes that can be generated with this 
method. Equation 2 was used to compute the mean values in this plot. In Figure 2, there 
are 10 replicates for each mean value estimate. The data points for the MC, LH, and OA 
methods have been slightly shifted along the horizontal axis to facilitate viewing of the 
data. Overall, the trend shown in Figure 2 is exactly as expected, i.e., that the LH and OA 
methods converge more quickly to the true mean value of the test function than MC 
sampling. Qualitatively, it appears that the OA data have as good or better (i.e., lower) 
dispersion than the LH data, but this trend is not pronounced until reaching 121 samples. 

Figure 3 compares the convergence trends of the mean value computed using LH 
sampling on the test function (i.e., Equation 2) versus sampling on the surface 
approximation (i.e., Equation 3). In the case of the kriging and MARS data, the surface 
approximation was constructed using the number of samples listed on the horizontal axis, 
and then the mean value was computed from 10,000 LH samples of the approximation 
function. Clearly, using a kriging surface or a MARS surface provides a more accurate 
mean value estimate than can be obtained from the LH samples alone. The convergence 
rate of the kriging and MARS data points appears to be roughly the same. 

Figure 4 shows the convergence trend of the OA sampling method versus the trends of 
the kriging and MARS surface approximations. As was seen for the LH data in Figure 3, 
in Figure 4 there is equivalent or lower dispersion in the mean value computed from the 
kriging and MARS surface approximations than from the OA samples alone. [Note that 
MARS-OA data is not available for N=9 samples due to a software problem.] 
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Figures 5 and 6 examine the interaction between the sampling methods and the surface 
approximation methods. In the MARS data shown in Figure 5, the OA sampling method 
appears to have slightly lower dispersion than the LH sampling method. However, the 
differences may not be statistically significant. The kriging data shown in Figure 6 are 
even more ambiguous in that the OA data points and LH data points have little or no 
discernable variation in convergence trend.  

Summary 

This study provides some initial insight into the tradeoffs among the choices for sampling 
methods and surface approximation methods in RS-based uncertainty quantification. 
While it would be premature to draw conclusions on the basis of a single low-
dimensional test problem, it is worth noting the trends that were observed in these tests. 

1. Using test function sample data to first build a response surface approximation 
(either kriging or MARS) and then sampling the surface, produced as good or 
lower errors in mean value estimates versus using the original sample data alone.  

2. Not surprisingly, the OA sampling method generated slightly lower errors than 
did LH sampling. This trend was more pronounced when the original MC, LH, 
and OA mean value data were compared, while the trend was less pronounced 
when response surface approximations were constructed from the data prior to 
sampling. The advantage of OA sampling over MC and LH sampling will 
increase as the dimensionality of the test problem grows. However, the OA 
sample size rules place limits on the utility of the OA method. 

Future work will expand on this initial study to include test problems having dimension 
size n>2. In addition, other sampling techniques, such as quasi-Monte Carlo methods, 
will be investigated, along with other response surface approximation methods, such as 
radial basis functions and artificial neural networks. 

References 

Cressie, N. (1991), Statistics of Spatial Data, John Wiley and Sons, New York, NY. 

Eldred, M.S., Giunta, A.A., van Bloemen Waanders, B.G., Wojtkiewicz, S.F., Jr., Hart, W.E. and Alleva, 
M.P. (2001), DAKOTA Users Manual: Version 3.1, Sandia Technical Report SAND2001-3796, Sandia 
National Laboratories, Albuquerque, NM. (http://endo.sandia.gov/DAKOTA/software.html) 

Friedman, J.H. (1991), ‘‘Multivariate Adaptive Regression Splines,’’ Annals of Statistics, Vol. 19, No. 1, 
pp. 1-141. 

Gill, P.E., Murray, W., and Wright, M.H. (1981), Practical Optimization, Academic Press, San Diego, CA. 

Giunta, A.A., Wojtkiewicz, S.F., Jr., and Eldred, M.S. (2003), ''Overview of Modern Design of 
Experiments Methods for Computational Simulations,'' paper AIAA-2003-0649 in Proceedings of the 
41st AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV. 

Koehler, J.R., and Owen, A.B. (1996) “Computer Experiments,” in Handbook of Statistics (eds. S. Ghosh 
and C.R. Rao), Vol. 13, Elsevier-Science, pp. 261-308. 

Giunta, A. A., Eldred, M. S., and Castro, J. P. 4



 

McKay, M.D., Beckman, R.J., and Conover, W.J. (1979), “A Comparison of Three Methods for Selecting 
Values of Input Variables in the Analysis of Output from a Computer Code,” Technometrics, Vol. 21, 
No. 2, pp. 239-245. 

-2
-1

0
1

2

x1
-2

-1

0

1

2

x2
0

1000

2000
fHx1,x2L

2
-1

0
1x1

Figure 2. Rosenbrock's function. 
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Figure 1. Convergence rate comparison in mean value estimation of Rosenbrock’s
function using Monte Carlo, Latin Hypercube, and Orthogonal Array sampling. 
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Figure 3. Convergence rate comparison of LH sampling of the Rosenbrock function versus 
LH sampling of response surface approximations to the Rosenbrock function. 
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Figure 4. Convergence rate comparison of OA sampling of the Rosenbrock function 
versus OA sampling of response surface approximations to the Rosenbrock function. 

Giunta, A. A., Eldred, M. S., and Castro, J. P. 6



 

0.0

100.0

200.0

300.0

400.0

500.0

600.0

700.0

0 20 40 60 80 100 120 140

Number of Samples

Es
t. 

M
ea

n 
Va

lu
e

mars OAS
mars LHS

Figure 5. Convergence rate comparison using the MARS surface approximation method, 
with the MARS surface constructed using either OA or LH samples. 
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Figure 6. Convergence rate comparison using the kriging surface approximation method, 
with the kriging surface constructed using either OA or LH samples. 
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