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Multilevel parallel optimization using
massively parallel structural dynamics*

M.S. Eldred, A.A. Giunta, and B.G. van Bloemen Waanders

Abstract A large-scale structural optimization of
an electronics package has been completed using a
massively parallel structural dynamics code. The
optimization goals were to maximize safety mar-
gins for stress and acceleration resulting from tran-
sient impulse loads, while remaining within strict
mass limits. The optimization process utilized non-
gradient, gradient, and approximate optimization
methods in succession to modify shell thickness and
foam density values within the electronics package.
This combination of optimization methods was suc-
cessful in improving the performance from an infea-
sible design which violated response allowables by
a factor of two to a completely feasible design with
positive design margins, while remaining within the
mass limits. In addition, a tradeoff curve of mass
versus safety margin was developed to facilitate the
design decision process. These studies employed the
ASCI Red supercomputer and utilized multiple lev-
els of parallelism on up to 2560 processors. In to-
tal, a series of calculations were performed on ASCI
Red in five days, where an equivalent calculation on
a single desktop computer would have taken greater
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than 12 years to complete. This paper conveys the
approaches, results, and lessons learned from this
large-scale production design application.
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1
Introduction

This report describes the design optimization of an
electronics package (EP) which is one component of
an atmospheric re-entry vehicle. The design study
was performed in the Spring of 2000 using massively
parallel, high-fidelity structural dynamics simula-
tions conducted on the Accelerated Strategic Com-
puting Initiative Option Red supercomputer (ASCI
Red) at Sandia National Laboratories.

During a five-day period, a block of up to 2560
processors on ASCI Red was employed to run up
to 10 concurrent structural dynamics simulations,
each employing 256 processors. Approximately 500
of these structural dynamics simulations were per-
formed, each of which involved a transient struc-
tural analysis for a 500,000 degree-of-freedom (DOF)
finite element model. The set of calculations per-
formed during this five-day period would have re-
quired more than twelve years of computation time
on a single desktop computer. While this use of
up to 2560 processors for twelve processor-years is
on the extreme end of what is feasible with cur-
rent computational resources, it is anticipated that
such large-scale design optimization studies will be-
come more commonplace as massively parallel com-
puters and scalable parallel simulation codes be-
come production computing tools in the aerospace,
automotive, and biomedical fields. Indeed, recently



published work performed for aerospace (Biros and
Ghattas (2000)) and automotive applications (Yang
et al. (2000); Sobieszczanski-Sobieski et al. (2001))
demonstrates that parallel computing is becoming
a standard tool in the vehicle design process. The
maxim of Computerized Parkinson’s Law (Thim-
bleby (1993)) states that simulation complexity tends
to increase to fill the available resources, and Ven-
kataraman and Haftka (2002) suggests that analy-
sis complexity and computing power have histori-
cally increased in direct proportion due to practical
requirements on analysis turnaround time. The au-
thors submit that this increasing appetite for higher
fidelity models naturally leads to massively parallel
simulation and multilevel parallel computing, the
subjects of this report.

Optimization problems of this complexity and
computational expense pose many technical chal-
lenges. For good computational efficiency, the sim-
ulation and optimization codes must be scalable
to large numbers of processors (order 10 — 10%).
For the simulation software, this entails the use of
specific numerical techniques that exploit both the
structure of the computational model (e.g., precon-
ditioned iterative linear solvers (Kelley (1995))) and
the hardware configuration of the parallel computer
(e.g., cache-optimized BLAS (Heath (1997))). For
the optimization software, multiple levels of paral-
lelism can and should be exploited and the paral-
lel scheduling within these levels should be robust
with respect to heterogeneities in the scheduled jobs
(Eldred et al. (2000)). In addition, the optimiza-
tion software should be adaptable to different super-
computer hardware configurations, be fault-tolerant
with respect to simulation and hardware failures,
and be robust to nonsmooth response variations
generated from complex, high-fidelity simulations.

This paper provides the details of a production
design effort and, as a result, has an application
emphasis. The intent is to investigate optimization
tools for a large-scale engineering application, to
convey lessons learned, and to provide verification
of research capabilities described in Eldred et al.
(2000) and Giunta and Eldred (2000). Over the course
of the study, nongradient-based, gradient-based, and
approximate optimization methods were applied in
an iterative, evolving process in order to improve
the design of the EP. The results of this study are
not intended to compare the performance of these
methods, as each new method built upon the results
from previous methods in seeking the best design
possible given the finite resources available. Rather,
the study demonstrates the use of a unique set of
high performance computing tools and the utility

of having a “toolbox” of algorithms from which one
can tailor the optimization procedures as more is
learned about the features of a particular applica-
tion.

Sections 2-5 provide background information on
the electronics package model, the Salinas struc-
tural dynamics software, the DAKOTA optimiza-
tion toolkit, and the ASCI Red supercomputer, re-
spectively. Section 6 describes the formulations, meth-
ods, and results in the EP design optimization prob-
lem, and Section 7 provides concluding remarks.

2
Electronics Package Model

The motivation for the optimization study was to
help designers improve the structural integrity of a
new EP structural design concept. Since this EP de-
sign was a refurbishment for the re-entry vehicle, it
provided the opportunity to incorporate several new
components into the existing package. However, an
important requirement was to avoid changing the
flight characteristics of the re-entry vehicle, so a re-
striction of no more than 10% deviation from the
nominal EP mass was imposed. In order to add func-
tionality but maintain mass, the EP design concept
replaced some metallic support structure with rigid
support foam. Thus, the design problem is a chal-
lenging one in that an EP design concept with less
structural support must still survive high stresses
and accelerations from severe re-entry shock and
vibration environments. A solid model of the EP
design concept is shown in Figure 1.

Over time, the level of fidelity in structural dy-
namics analysis has increased significantly (Figure
2) as a result of more advanced computers and,
most recently, the availability of a massively parallel
structural dynamics code. This has allowed for the
inclusion of more geometric detail in the computa-
tional models, which results in more geometrically
accurate and predictive models, more numerically
converged finite element results, and a reduction
in the need for analysts to perform ad hoc model
simplifications (i.e., omitting geometric detail and
thereby introducing modeling assumptions and ap-
proximations). And since the EP contains a complex
assemblage of a variety of electronic parts, it pos-
sesses a rich set of geometric features and a need for
high modeling fidelity to faithfully represent them.

In this study, the EP geometry was discretized
using a finite element model having approximately
500,000 DOF. This model captures the salient de-
sign features of the EP and provides sufficient de-



Fig. 1 A CAD model of the electronics package.

tail for the optimization study. For parallel process-
ing, the EP finite element model underwent domain
decomposition to separate it into 256 subdomains,
one for each processor. These subdomains were se-
lected by the domain decomposition software based
on parallel load balancing considerations, and did
not in general correspond to any geometric subcom-
ponent boundaries in the EP. Using 256 processors
on ASCI Red, a single transient structural analy-
sis of this model required approximately 40 min-
utes. While larger finite element models of the EP
have been created (with more than 10 million DOF),
these large models approach the capability limits of
the machine and were impractical for use in this
optimization study. Thus, analyst judgment was in-
volved to select a model with sufficient fidelity to
capture the important design features, but not such
extreme fidelity as to preclude more than a handful
of simulations.

The 500,000 DOF finite element model was con-
structed using 55 geometric blocks where each block
corresponds to one or more subcomponents inside
the EP. Some of these blocks were structural shell
elements within the EP, while others were regions of
foam encapsulant used to cushion the EP subcom-
ponents. The design variables for this study were the
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Fig. 2 Historical progression of finite element model
fidelity for the electronics package.

shell thicknesses of a subset of the structural blocks,
and the density values for a subset of the foam en-
capsulant blocks. A parameter screening approach
based on a modal sensitivity analysis was used to
select the most influential parameters. This modal
sensitivity analysis identified those block thicknesses/-
densities having the largest impact on the first 100
frequencies (greatest number of frequency deriva-
tives exceeding a threshold). While modal analysis
is not directly relevant to this design problem, this
approach is nonetheless effective in identifying pa-
rameters which have global influence on model re-
sults, and the results were consistent with the engi-
neering judgment of the EP analysts.

The computational simulation models the effect
of a transient impulse loading event on the EP. Struc-
tural response was computed over a time duration of
three milliseconds using 300 equal time steps. Re-
sponse quantities of interest were the mass of the
EP, along with the maximum stress and accelera-
tion values within each of the 55 blocks (maximum
over all DOF in a block for all time steps). These
mass, stress, and acceleration quantities were used
in the objective function and constraints in order to
formulate the design problem.

3

Salinas: Massively Parallel Structural Dynamics

Salinas (Reese et al. (2000)) is a Sandia-developed,
general-purpose, finite element structural dynamics
code designed to be scalable on massively parallel
computers. Currently, the code offers static anal-
ysis, direct implicit transient analysis, eigenvalue
analysis for computing modal response, and modal
superposition-based frequency response and tran-



sient response. In addition, semi-analytical deriva-
tives of many response quantities with respect to
user-selected design parameters are available. Sali-
nas also includes an extensive library of standard
one-, two-, and three-dimensional elements, nodal
and element loading, and multipoint constraints.
Salinas solves systems of equations using an itera-
tive, multilevel solver, which is specifically designed
to exploit massively parallel computers.

The linear solver used by Salinas was selected
based on the criteria of robustness, accuracy, scal-
ability and efficiency. Neither direct methods (e.g.,
sparse Gaussian elimination) nor general purpose
iterative solvers (e.g., the preconditioned conjugate
gradient method with over-lapping Schwartz pre-

conditioner available in Aztec (Tuminaro et al. (1999)))

perform well for parallel solution of linear systems
obtained from the discretization of structures using
high order plate and shell elements. In this case,
the underlying partial differential equation is the
fourth order biharmonic equation for which spe-
cial purpose iterative solvers are necessary. This led
to the selection of a multilevel domain decompo-
sition method, Finite Element Tearing and Inter-
connect (FETI) (Farhat and Roux (1992)), that is
specifically targeted at the linear systems applicable
to structural mechanics. FETT is a mature solver,
with some versions used in commercial finite ele-
ment packages such as ANSYS (O’Neal and Murgie
(2002)). As shown in Figure 3, FETI is scalable
in the sense that, as the number of unknowns in-
creases and the number of unknowns per processor
remains constant, the time to solution does not in-
crease. Further, FETT is accurate in the sense that
the convergence rate does not deteriorate as the it-
erates converge.

An eigensolver was selected for Salinas based on
these same criteria: robustness, accuracy, scalability
and efficiency. PARPACK (Maschhoff and Sorensen
(1996)) is a scalable Lanczos-based solver that was
selected because its memory usage is minimal, the
software is reliable, and the number of linear sys-
tems solved per mode is nearly minimized.

4
DAKOTA: Multilevel Parallel Optimization

The DAKOTA (Design Analysis Kit for Optimiza-
tion and Terascale Applications) toolkit (Eldred et
al. (2002a,b,c)) is an open source software frame-
work that provides a flexible interface between sim-
ulation codes and iterative systems analysis meth-
ods. DAKOTA contains algorithms for optimiza-

Millions of DOF
0 1 2 3 4 5

400
- S)oo o O o) le) 0]
353005
gzoopﬂﬂ m] m] a [m] 1]
oo
100; o Solver Time
I O Totd Time
07\\|\\\|\\\|\\\|\\\

0O 200 400 600 800 1000
Number of Processors

Fig. 3 Scalability for FETI (solver time) and Salinas
(total time).

tion with gradient- and nongradient-based methods;
uncertainty quantification with sampling, analytic
reliability, and stochastic finite element methods;
parameter estimation with nonlinear least squares
methods; and sensitivity /main effects analysis with
design of experiments and parameter study capa-
bilities. These capabilities may be used on their
own or as components within advanced strategies
such as surrogate-based optimization, mixed inte-
ger nonlinear programming, or optimization under
uncertainty. DAKOTA provides generic simulation
interfacing facilities which allow the use of a vari-
ety of engineering and physics simulation codes as
“function evaluations” within an iterative loop. DA-
KOTA manages the complexities of its analysis and
optimization capabilities through the use of object-
oriented abstraction, class hierarchies, and polymor-
phism (Stroustrup (1991)). The extensibility of the
framework allows for easy incorporation of the latest
algorithmic developments from a variety of areas.
Parallelism is an essential component of the DA-
KOTA framework. Particular emphasis has been given
to simultaneously exploiting parallelism at a vari-
ety of levels in order of achieve near-linear scaling
on massively parallel computers'. For example, DA-
KOTA can manage concurrent optimizations, each
with concurrent function evaluations, each with con-
current analyses, each utilizing multiple processors.

! In the term “multilevel parallel optimization,” mul-
tilevel refers to the parallelism and should not be con-
fused with multilevel optimization methods such as hi-
erarchical multidisciplinary optimization.



Eldred et al. (2000) provides guidance on how to se-
lect partitioning schemes and scheduling algorithms
within these levels in order to maximize overall par-
allel efficiency and to ensure robustness with respect
to heterogeneity (e.g., variability in simulation du-
ration). A common case is two levels of parallelism,
in which concurrent function evaluations each run
on multiple processors. In this study, DAKOTA em-
ployed two levels of parallelism by managing up to
10 concurrent Salinas invocations, each of which em-
ployed 256 compute nodes. Through this combina-
tion of coarse-grained and fine-grained parallel com-
puting, DAKOTA was able to effectively utilize up
to 2560 processors and achieve rapid turnaround on
this large-scale design study.

5
ASCI Red Supercomputer

For this optimization study, substantial computa-
tional resources were required. Within Sandia Na-
tional Laboratories, one of the primary production
computing platforms is the ASCI Red supercom-
puter (Mattson and Henry (1997); Tomkins (1996)).

5.1
Architecture

ASCI Red is a massively parallel, distributed mem-
ory, multiple input multiple data (MIMD) computer.
It was the first computer to exceed a TeraFLOP
(trillion floating point operations per second) in com-
puting speed and currently has a peak performance
of greater than three TeraFLOPS. It is designed so
that file input/output (I/O), memory, disk capacity,
and communication are scalable. Standard parallel
programming libraries, such as the Message Passing
Interface (MPI) (Snir et al. (1996)), make it rela-
tively straightforward to port parallel applications
to this system.

The processors in the ASCI Red supercomputer
are organized into four partitions: compute, service,
system, and I/O. Of these, the service partition pro-
vides support for interactive users, application de-
velopment, and system administration. This parti-
tion runs a full UNIX operating system. The par-
allel applications execute in the compute partition,
which contains nodes optimized for floating point
performance and for high bandwidth communica-
tion. This partition executes the Cougar operating

system (Greenberg et al. (1997)) which is a lightweight

kernel allowing only one process per processor. This

Table 1 Hardware and performance characteristics of
the ASCI Red supercomputer.

Compute Nodes 4510
Service Nodes 52
System and I/O Nodes 87
Total Processors 9298
System RAM (TeraBytes) 1.2
Compute Node Peak Performance | 666
(MegaFLOPS)
System Peak Performance 3.1
(TeraFLOPS)
System Linpack Performance 2.4
(TeraFLOPS)

operating system is designed to leave as much node
memory as possible available for the application.
Each compute node consists of two 333 MHz Intel
Pentium-IT Xeon Core processors with 256 MBytes
of RAM. In this study, only one processor per node
was used for computation while the other processor
was used for communication, although a new “vir-
tual node” capability allows the use of both node
processors for computation. The system hardware
and performance attributes of ASCI Red are sum-
marized in Table 1.

5.2
DAKOTA/Salinas Implementation on ASCI Red

DAKOTA can be interfaced with simulation codes
in a variety of ways depending on the level of in-
trusiveness one is willing to support, on the de-
sired performance, and on the underlying compute
architecture. The simplest approach is the “black-
box” method, which employs process creation facil-
ities such as C system calls (Kernighan and Ritchie
(1988)) or UNIX forks (Glass (1993)) to create sep-
arate child processes for each simulation execution.
This is the least intrusive method in that the sim-
ulation can be used as is, with no modifications.
It is also the least efficient method since it incurs
the overhead of creating these separate processes for
the simulations. In practice, this overhead is usually
small relative to the expense of the simulations. A
more computationally efficient interface technique
is the “direct” method in which the simulation code
(e.g., Salinas) is linked into DAKOTA as a callable
function. This interface can be considered to be
semi-intrusive, as the simulation code (along with
any required pre- and post-processing tools for mesh
generation, domain decomposition and reconstitu-
tion, etc.) must be transformed to a subroutine and,
in the parallel case, made modular on an MPI com-



municator. And finally, a fully-intrusive approach
extends the direct interfacing concept by addition-
ally replacing the nonlinear solver technology in a
simulation using techniques of simultaneous analy-
sis and design (SAND; van Bloemen Waanders et
al. (2002)).

These interfacing approaches have additional dis-
tinctions when applied on massively parallel com-
puters which employ a service/compute node de-
sign. In particular, the black-box approach involves
the execution of DAKOTA on the service nodes
(since the compute nodes cannot support multiple
processes spawned with system calls or forks) where
it creates concurrent simulation driver processes on
the service nodes. Each of these simulation drivers
then launches a parallel simulation into the com-
pute node partition. DAKOTA must then contin-
uously monitor for the completion of these simu-
lations, again utilizing service node resources. The
semi-intrusive and fully-intrusive approaches, on the
other hand, involve the execution of a combined
executable on the compute nodes only. The man-
agement of any concurrent multiprocessor simula-
tions is performed internally using MPI communi-
cators. Consequently, these approaches places fewer
demands on the service partition than the black-box
approach.

For this study, a black-box approach using sys-
tem calls was employed, which minimized simula-
tion interface preparation time by allowing the use
of a separate, unmodified Salinas executable. In this
case, DAKOTA was run on the service node parti-
tion where it coordinated concurrent Salinas jobs
on the compute partition. This is depicted in Fig-
ure 4. A key component of conducting a study of this
type in a shared resource environment (i.e., in the
presence of NQS/PBS scheduling queues) was the
ability to make a single request for a large block of
processors (e.g., 2560 processors) and then use DA-
KOTA to schedule sets of smaller parallel jobs (e.g.,
10 concurrent jobs of 256 processors each) within
partitions of the larger allocation. This avoided the
repeated queue delays that would otherwise have
occurred if the smaller jobs were queued separately.
While DAKOTA was executed on a single service
node and each of the system calls to concurrent
Salinas drivers were initiated from this single ser-
vice node, a resident load spreading utility relocated
Salinas monitoring processes among the entire ser-
vice partition in order to distribute the application
load.

Pre- and post-processing tools were additionally
required for allowing communication between DA-
KOTA and Salinas. Values of the design variables

Service Nodes

ASCI| Red

Storage Disks

-

Compute Nodes

Fig. 4 A depiction of the DAKOTA /Salinas implemen-
tation on the ASCI Red supercomputer.

were written by DAKOTA to a file and then incor-
porated into the Salinas input file using a Sandia-
developed file parsing program. The output of Sali-
nas was post-processed to obtain the mass and safety
margin data values needed for the optimization stud-
ies. While the results from each domain-decomposed,
parallel simulation could be gathered into a single
file for post-processing, it was more expedient to
evaluate safety margins in parallel across separate
subdomain databases. This entire cycle was auto-
mated using a single C-shell driver script that was
invoked by DAKOTA for each function evaluation
requested by the optimizer.

5.3
Computational Issues

Optimization studies which create multiple simu-
lation processes impose different loads on super-
computers in comparison to a single parallel exe-
cution. In particular, the invocation, pre- and post-
processing, and monitoring of multiple concurrent
jobs put a much higher load on the service nodes
than the execution of a single parallel job. In the
case of this design study, the service nodes were
responsible for managing the optimization process
(running the optimizer and querying for job com-
pletion) as well as managing concurrent simulation
driver processes and parallel simulation monitoring
processes. These service node loads led to observed
system reliability problems in which Salinas jobs
would occasionally hang on initiation. This required
manual intervention to terminate the hung job and
restart DAKOTA. In the worst of these incidents, a



service node became overloaded and crashed, which
necessitated a full reboot of ASCI Red.

The observed reliability problems stemmed more
from the closely synchronized nature of concurrent
simulation invocation than from the total amount of
work being performed. In this study, it was found
that staggering the Salinas job initiations by a few
seconds allowed the load spreading utility sufficient

time to spread the Salinas monitoring processes among

the service nodes, which resulted in improved reli-
ability. In addition, feedback to the ASCI Red sys-
tem administration team since the conclusion of this
study has resulted in several service partition reli-
ability enhancements, including an increase in the
number of service nodes from 16 (at the time of the
study) to 52 (current number shown in Table 1).

6

Optimization Results

The objective of the optimization study was to sat-

isfy safety margin requirements while remaining within

a strict mass budget. These goals were achieved
through an iterative, evolving process in which a to-
tal of four different optimization algorithms and two
different optimization problem formulations were em-
ployed. Changes in method selection and problem
formulation occurred as additional features of the

problem became apparent. Comparisons between meth-

ods were not attempted as each study built on re-
sults obtained from previous studies. This approach
is not uncommon in a results-driven application con-
text for which problem characteristics are not known
a priori. Having a toolbox of approaches available,
as in DAKOTA, facilitates this type of evolving in-
vestigation.

6.1

Phase 1: Nongradient and Gradient-Based
Optimization

The initial phase of the optimization study focused
on the application of traditional nongradient- and
gradient-based optimization algorithms. These al-
gorithms were provided in the SGOPT, NPSOL,
and DOT optimization libraries available within the
DAKOTA toolkit.

6.1.1
Coordinate Pattern Search Algorithm

The initial optimization formulation for the EP re-
design was to maximize the minimum safety mar-
gin (SM), subject to constraints on the EP mass.
A safety margin function was defined for each of
the 55 blocks in the finite element model using the
maximum response over all degrees of freedom in
the block and over all 300 time steps in the transient
simulation. Four shell thickness parameters and one
foam density parameter from the EP model were
selected as design variables for this optimization
case. These five parameters were the most influen-
tial based on the modal sensitivity analysis study
described in Section 2.

This optimization problem was formulated in
DAKOTA as follows:

maximize SM,in
subject to 0.9Mpom < M < 1.1Mom (1)
xr < x <Xy

where SM,,;, is the minimum over all 55 safety
margin values, M is the current mass of the EP,
M0m is the nominal mass of the EP, and x is the
vector of five design variables with lower and upper
bounds x1, and xy, respectively. The safety margin
values were computed for the EP internal compo-
nents based on either a stress allowable value or
an acceleration allowable value. The safety margins
based on stress values were computed as
U.ﬂ

SM; =+ —1,fori=1,...,42 (2)

4

where o¢ is the allowable stress for the it block and
o; is the computed maximum stress for all DOF
in the it* block for all time steps. Similarly, the
safety margins based on acceleration values were
computed as:

a
SM; =% 1 fori=43,...,55 (3)

9i

where g¢ is the allowable acceleration level for the
it" block and g; is the computed maximum acceler-
ation level for all DOF in the i*" block for all time
steps. In both of these SM definitions ((2) and (3)),
the fractional term is called the safety factor.

For this problem, o} was taken to be the yield
stress for the particular material block and g was
fixed at a constant value for all relevant material
blocks. The nominal EP design had SM,,;, = —0.48,
which indicates that some part of the EP was being



exposed to twice the allowable stress/acceleration
and was subject to failure.

Since the optimization formulation in (1) was
expected to be nonsmooth due to switching among
various blocks with the lowest safety margin, a non-
gradient-based method was selected for the initial
optimization of the EP. This method was the co-
ordinate pattern search method (CPS) contained
in the Stochastic Global Optimization (SGOPT)
software package (Hart (2001)). To incorporate the
mass constraint, a simple penalty function was used,
although this proved unimportant since the mass
constraint never became active during the CPS it-
erations.

A single Salinas function evaluation required ap-
proximately 40 minutes on 256 processors of ASCI
Red. Using the two-level parallel capabilities in DA-
KOTA, 10 instances of Salinas were executed con-
currently. This completed a full optimization cycle
of the CPS algorithm in one pass since CPS re-
quires 2n function evaluations on each cycle (i.e.,
10 Salinas jobs performed concurrently for n = 5
variables). The CPS method was able to improve
the minimum safety margin from the nominal value
of —0.48 to —0.21 with a mass increase of 5.4%, us-
ing a total of 171 function evaluations (Table 2). The
pattern search made good progress until three sepa-
rate margin functions were near the same minimum
value (i.e., were active in defining SM,,;,) for the
current design. This occurrence adversely affected
the convergence rate of the pattern search method,
as it was difficult to generate a step which simulta-
neously improved all three safety margins from the
restricted set of coordinate search directions.

6.1.2
NPSOL SQP Algorithm

At this stage of the optimization, it was clear that
obtaining a feasible design would be difficult with
the CPS algorithm. Consequently, the problem for-
mulation was changed to one that would be more
amenable to gradient-based methods. In addition,
more design freedom was added by introducing four
new design parameters into the optimization prob-
lem. This new formulation of the optimization prob-
lem was

minimize M
subject to SM; > SMygrget,fori=1,...,55 (4)
xL < x <Xy

where SMigrget = 0, and x now contains 9 de-
sign variables. This formulation reduces nonsmooth-

ness by eliminating the possibility of switching in
the minimum safety margin function, as it allows
the optimizer to track each of the 55 margin func-
tions independently in the constraints. This does
not eliminate all sources of nonsmoothness, how-
ever, since switching in space and time of the crit-
ical response within the context of a single mar-
gin function is still possible. Eliminating this final
switching would have required separate constraints
for each degree of freedom for each time step, or
150 million constraints. This was not practical for
the optimization algorithms of interest.

The sequential quadratic programming (SQP)
method in NPSOL (Gill et al. (1986)) was config-
ured to use DAKOTA’s parallel central finite differ-
encing. For n = 9 variables, this gives a maximum
concurrency of 2n + 1 = 19 function evaluations.
Given 10 concurrent Salinas executions on ASCI
Red, the 19 jobs could be completed in two passes.
Since NPSOL uses a gradient-based line search pro-
cedure (in user-supplied gradient mode), NPSOL
avoids load imbalances in the line search phase. Start-
ing from the best CPS design, NPSOL was able to
improve the minimum safety margin from —0.21 to
—0.15 and reduce the total mass to 4.4% over nomi-
nal, using a total of 114 function evaluations. Unfor-
tunately, NPSOL was not able to run more than a
few cycles before one of the Salinas jobs hung. This
coincided with the expiration of the special allot-
ment of 2560 ASCI Red processors that had been
dedicated to this study.

6.1.3
DOT MMFD Algorithm

The optimization process was continued using 256
ASCI Red processors, i.e., a single Salinas func-
tion evaluation at a time. The decision was made
to switch from NPSOL’s SQP algorithm to DOT’s
Modified Method of Feasible Directions (MMFD)
(Vanderplaats Research and Development (1995))
algorithm for two reasons. First, the DOT MMFD
algorithm emphasizes finding a feasible point from
the beginning of execution. In contrast, the NPSOL
SQP algorithm is an infeasible method using an aug-
mented Lagrangian merit function that will only
satisfy the constraints at convergence. Second, the
parallel load imbalance of DOT’s value-based line
search is not a hindrance when limited to a single
Salinas function evaluation at a time.

Starting from the NPSOL best design point, the
DOT MMFD algorithm improved the minimum safety
margin value from —0.15 to —0.059, although it did



Table 2 The sequence of optimization results for the electronics package.

Design Design Mass SM Worst Function Total
Variables (kg) Violations SM Evaluations | Processors
Nominal 11.143 8 -0.480
SGOPT CPS 5 11.747 4 -0.214 171 2560
NPSOL SQP 9 11.629 4 -0.147 114 2560
DOT MMFD 9 11.739 4 -0.0587 96 256
AO Verified 7 11.997 0 +0.0603 122 1024
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Fig. 5 Nonsmooth variations for constraint 29.

not find a feasible design point. The mass increased
to 5.3% over nominal. The DOT MMFD algorithm
used 96 Salinas function evaluations before it was
terminated.

The reason for termination of the DOT MMFD
algorithm was that a subset of the safety margin
constraint functions were exhibiting considerable non-
smoothness. Parameter study results for three of the
nonsmooth functions are shown in Figures 5, 6, and
7. One of these nonsmooth functions was active at
the DOT MMFD solution and was inhibiting fur-
ther progress.

6.1.4
Summary of Phase 1

Table 2 shows the progression of the optimization
results for this study. The nongradient-based algo-
rithm (SGOPT CPS) and the two gradient-based
algorithms (NPSOL SQP and DOT MMFD) com-
bined to move the infeasible nominal EP design to
an improved infeasible design. The worst case safety
margin violation had been reduced by approximately

Fig. 6 Nonsmooth variations for constraint 52.
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Fig. 7 Nonsmooth variations for constraint 55.
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an order of magnitude, at a cost of a 5.3% increase
in the mass of the EP. Figure 8 compares SM con-
tours for the time step with the largest contrast be-
tween the nominal design and the best Phase 1 de-
sign. Compared to the “hot spots” on the left, it is
evident that the phase 1 design on the right has im-
proved considerably. In addition, it is evident that
the improvements are broadly-based and are not re-
stricted to only reducing the peak response occur-
rences.

At this point in the study, DAKOTA had con-
trolled up to 10 concurrent Salinas jobs, each of
which used 256 processors. This use of up to 2560
processors was successful in compressing the dura-
tion of Phase 1 to four days. Without the use of
parallel computing, equivalent calculations using se-
rial optimization and serial simulation would have
required in excess of 10 years to complete.

6.2
Phase 2: Optimization using Approximate
Models

The second phase of this study was motivated by the
presence of nonsmooth constraint functions which
were impeding further progress in the gradient-based
optimization methods. To mitigate this difficulty,
the decision was made to switch to an approximate
optimization strategy that used surrogate models to
smooth the noisy safety margin variations.

The approximate optimization (AO) strategy used
in this study is a simplified version of the surrogate-
based optimization strategy described in Giunta and
Eldred (2000). This AO strategy is divided into the
following steps: (1) move limit (bounds) selection,
(2) data sampling, (3) surface fitting to produce sur-
rogate models, (4) optimization using the surrogate
models, and (5) verification of the predicted optima.
These steps are described below.

6.2.1
Move Limits

The best set of design variables found using DOT
MMFD served as the starting design for the ap-
proximate optimization phase. An analysis of the
previous optimization data showed that two of the
variables did not strongly interact with the opti-
mizer. Thus, these two variables were converted to
constants, each having the optimal value obtained
from the DOT MMFD results. The upper and lower
bounds on each of the remaining seven variables

were reduced to between 18% and 43% of the origi-
nal bounds based on engineering judgment and the
desire to balance the needs of sufficient design free-
dom and sufficient sampling density. In a formal
trust region approach (Giunta and Eldred (2000)),
the same upper and lower bound offsets would have
been used for each variable; however, for a single AO
cycle, custom bounds could be employed. For the re-
mainder of this report, these bounds are referred to
as the move limits of the approximate optimization.

6.2.2
Latin Hypercube Sampling

Next, the Latin hypercube sampling (LHS) method
(McKay et al. (1979)) provided by the DDACE pack-
age (Martinez-Canales (2002)) within DAKOTA was
used to generate 200 independent sample locations
within the move limits. Salinas was used to evalu-
ate as many of these EP designs as possible using
the remainder of the computational budget devoted
to this project. This DAKOTA /Salinas calculation
again used two-level parallel computing, with four
concurrent Salinas jobs each using 256 processors
(1024 total processors).

Unfortunately, only 104 of the LHS design points
were evaluated during the allocated ASCI Red com-
puter time. While the 104 samples did not com-
prise a true LHS data set, this still provided suffi-
cient sampling density to build the surrogate mod-
els. For example, 104 samples is sufficient to over-
fit a 7-dimensional quadratic polynomial (having 36
terms) by almost a factor of three. In addition, a
statistical analysis was performed in order to check
the distribution of the 104 samples in the design
space. This analysis did not indicate any correlation
or bias among the samples that would have reduced
the utility of the data set.

Of these 104 samples, only one was feasible with

respect to all 55 safety margin constraints (for SMiarger =

0). Combining this information with the data from
Figures 5, 6, and 7, one can infer that a feasible
region does exist within the move limits, but it is
likely small and nonconvex.

6.2.3
Surrogate Model Construction

DAKOTA provides four global surrogate modeling
techniques:

1. kriging spatial interpolation (Cressie (1991); Giunta

and Watson (1998));
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Safety Margin

1.05

Fig. 8 A comparison of safety margin levels in the original electronics package model (left) and the optimized model
from Phase 1 (right). The brighter colors indicate lower safety margins.

2. linear/quadratic/cubic polynomial regression (My-

ers and Montgomery (1995));

3. multivariate adaptive regression splines (MARS)
(Friedman (1990)); and

4. stochastic layered perceptron artificial neural net-
works (ANN) (Zimmerman (1996)).

The kriging, MARS, and ANN methods do not
assume a particular trend in the data. That is, these
three surrogate modeling methods can capture ar-
bitrary variations in a given data set. In contrast,
linear, quadratic, and cubic polynomial regression
models assume that the data trends can be modeled
using first-, second-, or third-order functions, re-
spectively. Thus, while all of these surrogate models
provide a smooth functional form that is amenable
to gradient-based optimization, the polynomial sur-
rogate models enforce additional smoothing by na-
ture of their assumed forms.

6.2.4
Optimization with Surrogate Models

The results from the 104 Salinas jobs provided a
set of mass and safety margin data which was used

by DAKOTA to build 56 separate surrogate mod-
els. These surrogate models approximate the func-
tional relationships between the objective and con-
straint functions (mass and 55 safety margins) and
the seven EP design parameters. The surrogate mod-
els were used in the optimization problem in place
of the Salinas simulations, thereby allowing multiple
approximate optimizations to be performed at very
low cost. The drawback is that the surrogate mod-
els can be inaccurate, particularly if the optimizer
pushes the EP design near the move limit bound-
aries, where the surrogate models begin to extrap-
olate the data trends.

The first surrogate model type used in this study
was quadratic polynomial regression (QuadPoly).
That is, the problem defined in (4) was solved using
second-order polynomial surrogate models for mass
and each of 55 constraints. For the initial approx-
imate optimization case, the value of SMyypger in
(4) was set to —0.05. Since these surrogate models
allow for very inexpensive evaluations, Monte Carlo
sampling studies were performed in order to iden-
tify good starting points (even though each function
is unimodal, their intersections can produce multi-
ple constrained minima), and then gradient-based
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Fig. 9 Mass vs. safety margin tradeoff curves generated
using various surrogate model types.

optimizations were performed from these starting

points. The bound constraints for both the Monte

Carlo sampling and the gradient-based optimiza-

tions were identical to the move limit bounds used

in the surrogate model construction. Next, S My get

was increased to 0.0 and the optimization was per-

formed again. This sequence was continued with

SMiarget values of 0.05, 0.10, and 0.15. This was

done to generate the mass versus safety margin trade-
off plot shown in Figure 9.

A similar sequence of approximate optimizations
was performed for each of the other three surro-
gate model types: kriging, MARS, and ANN. In
cases where the safety margin targets were not met,
the target was reduced in an iterative fashion until
a final maximized safety margin for the surrogate
model was achieved. The EP mass versus safety
margin tradeoff curves for these surrogate model
types also are shown in Figure 9.

There are several interesting features to note
about the trends in Figure 9. First, the ANN curve
does not follow the same trends as the other three
methods. This prompted an examination of the ANN
algorithm in DAKOTA, and refinements to the ANN
algorithm are planned. Second, the kriging and ANN
tradeoff curves show kinks that result in an increased
slope in mass versus SM. This behavior was traced
to the optimizer bumping up against one or more of
the move limit bounds, with a loss in design freedom
resulting in a steeper mass versus SM trend.

6.2.5
Verification of Approximate Optima

The final step in the approximate optimization pro-
cess was to run Salinas verification analyses for the
EP designs identified in the approximate optimiza-
tions from the previous step. The best agreement
between a predicted EP optimum and its Salinas
verification analysis occurred for one of the designs
predicted using the kriging surrogates. In this case,
the actual mass was predicted very accurately (ac-
tual and predicted both 11.997 kg), and the actual
worst case safety margin value was +0.060 (pre-
dicted to be 40.078). The mass and worst case safety
margin data for this AO verified design are listed in
Table 2.

However, not all of the approximate optima were
in such good agreement with the Salinas verifica-
tions. In some cases, an approximate optimum had
predicted a positive worst case safety margin, whereas
the Salinas verification analysis yielded a negative
worst case safety margin. To obtain an accurate
worst-case safety margin, all 55 of the constraint
function approximations have to be sufficiently pre-
dictive of the underlying nonsmooth functions. It
only takes a single inaccurate constraint function
approximation to yield significant discrepancy in
the worst case. This observation leads to a prob-
able explanation for the improved performance of
kriging relative to the other surrogates. Since krig-
ing is interpolatory in nature, it will tend to be more
locally accurate than a regression approach such as
MARS or QuadPoly which emphasize the extrac-
tion of global trends at the sake of local accuracy.
When modeling nonsmooth constraints near their
feasibility boundaries, the importance of local accu-
racy can dominate other concerns.

Had sufficient computational resources been avail-
able, this process would have been continued using
a traditional trust-region surrogate-based optimiza-
tion strategy (Giunta and Eldred (2000)) with ad-
ditional rounds of sampling, fitting, optimizing, and
verifying. This would mitigate the verification errors
observed previously when only a single approximate
optimization cycle is performed.

6.2.6
Summary of Phase 2

Phase 2 of the optimization study required 104 Latin
hypercube samples and 18 verification analyses, for
a total of 122 Salinas simulations. The use of up
to 1024 processors to complete these analyses was



successful in compressing the duration of Phase 2
to one additional day. Without the use of parallel
computing, equivalent calculations on a single pro-
cessor would have required an additional 2 years to
complete.

7
Conclusions

This paper presents the results of a high-fidelity
electronics package design study using a massively
parallel structural dynamics code and a multilevel
parallel optimization framework.

From the applications perspective, this study demon-

strates the utility of having a toolbox of algorithms
from which to tailor the optimization procedure as
experience with a particular application increases.
Through the combination of nongradient, gradient,
and approximate optimization methods, the elec-
tronics package design was improved from an infea-
sible design which violated response allowables by
a factor of two to a completely feasible design with
positive design margins, while still remaining within
strict mass targets. In retrospect, the nongradient-
based pattern search method suffered from insuf-
ficient search direction freedom in the presence of
multiple competing safety margins, and the gradient-
based methods faltered in the presence of nonsmooth

constraints. The approximate optimization techniques,

on the other hand, appeared to be the most effective
in extracting the necessary trends from nonsmooth
simulation results and would likely have reduced the
overall computational expense if used from the be-
ginning. In addition, these approximate techniques
enabled the extraction of a design tradeoff curve of
mass versus safety margin which proved useful in
facilitating the design decision process.

From the parallel computing perspective, this
paper validates the multilevel parallelism procedures
in DAKOTA for a large-scale application and demon-
strates the effectiveness of massively parallel com-
puting in reducing the time to solve an actual en-
gineering design problem. During the course of the
EP study, a series of DAKOTA runs employed up to
2560 processors in a combination of coarse-grained
and fine-grained parallel processing. Both phases of
the study were completed in five days, where equiva-
lent calculations on a single desktop computer would
have required in excess of 12 years. Clearly, the ef-
fective use of massively parallel computing was a
critical enabler in allowing a study of this magni-
tude.
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While certain aspects of current-generation cus-
tom supercomputers do not yet lend themselves to
routine studies of this type, several directions for
improvement have been identified. In particular, ex-
ploiting tighter couplings between the optimization
and simulation software will streamline process man-
agement and reduce the load on key supercomputer
components. It is expected that advances in opti-
mization and supporting parallel software will be
successful in making high-fidelity studies of this type
a standard component of modeling and simulation
activities within the Department of Energy, and with
the advent of affordable cluster computing in in-
dustry, methodologies initially restricted to custom
massively parallel architectures will continue to mi-
grate into mainstream computing.
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