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Abstract. An Object-Oriented (OO) framework called rSQP++ is currently being
developed for Successive Quadratic Programming (SQP). It is designed to support
many di�erent SQP algorithms and to allow for external con�guration of special-
ized application speci�c linear algebra objects such as matrices and linear solvers.
In addition, it is possible for a client to modify the SQP algorithms to meet oth-
er specialized needs without having to touch any of the source code within the
rSQP++ framework or even having to recompile existing SQP algorithms. Much
of this is accomplished through a set of carefully constructed interfaces to various
linear algebra objects such as matrices and linear solvers. The initial development of
rSQP++ was done in a serial environment and therefore issues related to the use of
massively parallel iterative solvers used in PDE constrained optimization have not
yet been addressed. In order to more e�ectively support parallelism, rSQP++ needs
the addition and integration of an abstract vector interface to allow more 
exibil-
ity in vector implementations. Encapsulating vectors away from algorithmic code
would allow fully parallel linear algebra, but could also greatly restrict the kinds
of operations that need to be performed. The diÆculty in developing an abstract
vector interface and a proposed design for a remedy are discussed.

1 Introduction

Nonlinear Programming (NLP) is an important tool in many areas of engi-
neering and design. Application areas where large scale NLPs arise include
DAE and PDE constrained optimization as well as many others. A standard
form for an NLP is

min f(x) (1)

s.t. c(x) = 0 (2)

xL � x � xU (3)

where: x; xL; xU 2 IR n, f(x) 2 IR n ! IR, c(x) 2 IR n ! IR m

A new object-oriented (OO) framework for building Successive Quadratic
Programming (SQP) algorithms, called rSQP++, is currently being imple-
mented in C++. The goals for rSQP++ are quite lofty. The rSQP++ frame-
work is being designed to incorporate many di�erent SQP algorithms and to
allow external con�guration of specialized linear algebra objects such as ma-
trices and linear solvers. Data-structure independence has been recognized as
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an important feature missing in current optimization software [12]. In addi-
tion, it is possible for the client to modify the SQP algorithms to meet other
specialized needs without having to touch any of the source code within the
rSQP++ framework.

SQP methods are attractive because they generally require fewer itera-
tions and function and gradient evaluations to solve a problem compared to
other methods. Another attractive property of SQP methods is that they can
be adapted to exploit the structure of an NLP. A variation of SQP, known
as Reduced Space SQP (rSQP), works well for NLPs where there are few
degrees of freedom and many constraints. Another advantage of rSQP is that
the decomposition used for the equality constraints only requires solves with
a basis of the Jacobian (and possibly its transpose) of the constraints (see
Section 3.1).

2 Motivation for developing specialized NLP solvers
and next generation optimization software

Much research has been, and continues to be, devoted to �nding eÆcient
methods to solve large-scale NLPs. Several methods have been proposed with
successful implementations: Generalized Reduced Gradient (GRG) (CONOP-
T), Successive Linearly Constrained (SLC) (MINOS), Sequential Augmented
Lagrangian (SAL) (LANCELOT), and Successive Quadratic Programming
(SQP) (SNOPT , SOCS) [12]. More recently, Interior Point (IP) method-
s have been investigated and show promise (e.g. NITRO, LOQO). Many of
these methods and even some implementations have been studied and re�ned
for more than a decade. Many users rely on them through the use of model-
ing environments like GAMS and AMPL and these solvers are also embedded
into many other applications.

With so many di�erent well re�ned implementations for NLP solvers avail-
able, why would anyone want to develop their own? It seems that the over-
riding motivation for developing specialized optimization software is a desire
to better exploit the properties of specialized classes of NLPs. For the most
part, all of the aforementioned NLP solvers can only exploit the general s-
parsity of an NLP and use direct linear solvers that require explicit nonzero
entries from the Jacobian and Hessian matrices. These solvers generally can
not take advantage of opportunities for problem speci�c specialized linear
algebra or possibly even parallelism. One example of such an application
area is DAE constrained optimization of chemical processes. In this type of
optimization problem the model, consisting of Di�erential and Algebraic E-
quations (DAEs), can be discretized over the time domain using orthogonal
collocation on �nite elements [4]. The Jacobian of the discretized equation-
s has a special structure that can be exploited to signi�cantly reduce the
runtime and storage compared to general solvers (see Section 5). Another
example of a specialized application area is PDE constrained optimization
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using the Finite Element Method (FEM). Large-scale simulation codes have
been developed for solving nonlinear PDEs with millions (even billions) of
discretized state variables. This has been made possible due to advances in
massively parallel iterative linear solvers and multi-processor computers [11].
Most current optimization software can not take advantage of this work.

While the desire to better exploit the properties of specialized NLPs is
clear, in practice general NLP solvers are often used instead. The reason
for this is simple. These general NLP solvers have been made very reliable
due to a lot of development work, testing and re�nement on many di�erent
optimization problems. The Herculean task of implementing a reliable spe-
cialized NLP solver is usually not worth the e�ort. There are many reasons
why developing an NLP solver is so diÆcult. While implementing the basic
computations for generating search directions, in SQP for instance, may be
fairly straightforward in some simpli�ed cases, more elaborate means are gen-
erally necessary. In addition, sophisticated globalization strategies are needed
to achieve convergence from remote starting points. Also, as with any numer-
ical code, special attention needs to be paid to �nite precision 
oating point
errors that are ampli�ed by ill conditioning. Another point is that every re-
�ned NLP implementation includes many potentially complex heuristics to
deal with exception conditions. Even for a conceptually simple algorithm, the
tasks of validating and debugging code are terribly diÆcult.

What is required is a di�erent approach to implementing the next genera-
tion of optimization software. Of paramount importance is the need to allow
a sophisticated user to specialize the algorithm to exploit \their" special class
of NLPs. This might include problem speci�c data structures, linear solvers
and even opportunities for parallelism. This might also include altering the
logic of the algorithm. But of course for this software to be useful it needs
to include those elements of an NLP solver that are, for the most part, inde-
pendent of a speci�c class of NLPs and are so hard to implement well. These
include such things as problem independent QP solvers, globalization meth-
ods (e.g. line searches, trust regions etc.), quasi-Newton methods as well as
many other re�nements (e.g. heuristics). Also, if users are going to be allowed
to specialize components in the algorithm, the optimization software need-
s to include optional, but yet relatively eÆcient, run-time tests to validate
the various computations. This includes validating functions and gradients,
linear solvers and every other major computation that has clear well de�ned
post conditions. Trying to determine why an algorithm fails to �nd a desired
solution without such built-in testing and validation is an extremely diÆcult
task even for an expert.

3 Successive Quadratic Programming (SQP)

Successive Quadratic Programming (SQP) has proven to be an attractive
framework for the development of specialized NLP algorithms. The main
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feature of an SQP algorithm is the solution of a Quadratic Programming
(QP) subproblem at each iteration such as:

min gT d+ 1=2d
TWd (4)

s.t. AT d+ c = 0 (5)

xL � xk � d � xU � xk (6)

where: d = xk+1 � xk 2 IR n g = rf(xk) 2 IR n

W = r2
xL(x

k ; �k) 2 IR n�n A = rc(xk) 2 IR n�m

Globalization methods are used to insure (given a few assumptions are
satis�ed) the SQP algorithm will converge to a local solution from remote s-
tarting points. The major classes of globalization methods include line search
and trust region [6]. Because SQP is similar to applying Newton's method
to the KKT optimality conditions, it can be shown to be quadratically con-
vergent near the solution of the NLP [5]. One diÆculty, however, is that in
order to achieve quadratic convergence the exact Hessian of the Lagrangian
W is needed which requires exact second order information for r2f(x) and
r2cj(x), j = 1 : : :m. For many NLP applications this information is not
readily available. Also, for large problems (4){(6) can be extremely expen-
sive, or nearly impossible, to solve directly. These and other diÆculties with
SQP have motivated the research of large-scale decomposition methods for
SQP. One class of these methods is Reduced Space SQP (rSQP).

3.1 Reduced Space Successive Quadratic Programming (rSQP)

In a rSQP method, (4){(6) is decomposed into two smaller subproblems that,
in many cases, are easier to solve. To accomplish this, �rst a range space /
null space decomposition is computed for A 2 IR n�m (assuming it is full
rank). This decomposition is de�ned by a null space matrix Z and range
space matrix Y with the following properties:

Z 2 IR n�(n�m); Y 2 IR n�m s.t. ATZ = 0;
�
Y Z

�
nonsingular (7)

By using (7), the search direction d can be broken down into d = Y py+Zpz,
where py 2 IR m and pz 2 IR n�m are the range space and null space steps
respectively. By substituting d = Y py+Zpz into (4){(6) we obtain the range
space (8) and null space (9){(10) subproblems.

Range Space
Subproblem

py = �R�1cd (8)

Null Space (QP) Subproblem

min (gr + w)T pz + 1=2(p
z)T [ZTWZ]pz (9)

s.t. bL � Zpz � bU (10)

R � [ATY ] 2 IR m�m

gr � ZT g 2 IR n�m w � ZTWY py 2 IR n�m

bL � xL � xk � Y py 2 IR n bU � xU � xk � Y py 2 IR n
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Using this decomposition, the Lagrange multipliers � for (5) do not need to
be computed in order to compute the steps d = Y py + Zpz. However, it
is useful to compute these multipliers in the context of some globalization
methods and at the solution of the NLP since they represent sensitivities. An
expression for computing � can be derived by applying (7) to Y TrL(x; �; �)
to yield � = �R�TY T (g + �).

There are many details that need to be worked out in order to implement
an rSQP algorithm and there are opportunities for a lot of variability. Some
signi�cant decisions need to be made: how to compute the range/null space
decomposition that de�nes the matrices Z, Y and R, and how the reduced
Hessian ZTWZ and the cross term w in (9) are calculated (or approximated).

There are several di�erent ways to compute decomposition matrices Z
and Y that satisfy (7). Several choices for Z and Y have been investigated
that are appropriate for large-scale rSQP [8]. One class of decompostions is
based on a variable reduction. In a variable reduction decomposition, the vari-
ables are partitioned into dependent (basic) (xD) and independent (nonbasic)
(xI ) sets (xT = [(xD)T (xI )T ]) such that the Jacobian of the constraints AT

is partitioned (assuming some permutations) as shown below, where C is a
square nonsingular matrix known as the basis matrix. This partitioning is
used to de�ne a variable reduction null space matrix Z. Two choices for the
range space matrix Y are the coordinate and orthogonal and are shown below.

Variable Reduction

AT =
�
C N

�
where:

C 2 IR m�m

N 2 IR m�(n�m)

Coordinate

Z �

�
�C�1N

I

�

Y �

�
I
0

�
R = C

Orthogonal

D � �C�1N

Z �

�
D
I

�

Y �

�
I
�DT

�
R = C(I +DDT )

(11)

The orthogonal decomposition (ZTY = 0) is more numerically stable and has
other desirable properties in the context of rSQP [8]. However, the amount of
dense linear algebra required to compute the factorizations needed to solve
for linear systems with R is O((n �m)2m) 
oating point operations (
ops)
which can dominate the cost of the algorithm for larger (n�m). Therefore, for
larger (n�m), the coordinate decomposition (ZTY 6= 0) is preferred because
it is cheaper. The downside is that it is also more susceptible to problems
associated with a poor selection of dependent variables and ill conditioning
in the basis matrix C that can result in greatly degraded performance.

Another important decision is how the compute the reduced Hessian
B � ZTWZ. When quasi-Newton is used, limited memory as well as several
di�erent dense storage schemes are possible and the best choice depends on
the context. In some cases, computing the exact reduced Hessian B = ZTWZ
or using it implicitly in some manner is computationally feasible.
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In addition to variations that a�ect the convergence behavior of the rSQP
algorithm, such as range/null decompositions, approximations used for the
reduced Hessian and many di�erent types of merit functions and globalization
methods, there are also many di�erent implementation options. For example,
linear systems such as (8) can be solved using direct or iterative solvers, and
the reduced QP subproblem in (9){(10) can be solved using a variety of
methods (active set vs. interior point) and software [9].

4 An object-oriented approach to SQP (rSQP++)

Most numerical software (optimization, non-linear equation solvers etc.) con-
sists of an iterative algorithm that primarily involves simple and common
linear algebra operations. Mathematicians use a precise notation for these
linear algebra operations when they describe an algorithm. For example,
y = Ax denotes matrix-vector multiplication irrespective of the special prop-
erties of the matrix A or the vectors y and x. Such elegant and concise
abstractions are usually lost, however, when the algorithm is implemented in
most programming environments and implementation details such as sparse
data structures obscure the conceptual simplicity of the operations being
performed. Modern software engineering modeling and development meth-
ods, collectively known as Object-Oriented Technology (OOT), can provide
powerful abstraction tools for dealing with these types of issues [1], [7]. In
addition to abstracting dense linear algebra operations, Object-Oriented Pro-
gramming (OOP) languages like C++ can be used to abstract any special
type of quantity and operation. Also OOT can be used to abstract larger
chunks of an algorithm and provide for greater reuse. There are primarily
two advantages to using data abstraction: it improves the clarity of the pro-
gram, and it allows the implementation of the operations to be changed and
optimized without a�ecting the design of the application or even requiring
recompilation of much of the code.

There are many types of challenges in trying to build a framework for
SQP (as well as for many other methods) that allows for maximal sharing
of code, and at the same time is understandable and extendible. Speci�cal-
ly, three types of variability are discussed: (a) Algorithmic variability, (b)
implementation variability and (c) NLP speci�c specializations.

(a) First, we need to come up with a way of modeling and implementing
iterative algorithms that will allow for steps to be reused between related al-
gorithms and for existing algorithms to be extended. This type of higher level
algorithmic modeling and implementation is needed to make the steps in our
rSQP algorithms more independent so that they are easier to maintain and
to reuse. A framework called GeneralIterationPack has been developed for
these types of iterative algorithms and serves as the backbone for rSQP++.

(b) The second type of variability is in allowing for di�erent implemen-
tations of various parts of the rSQP algorithm. There are many examples
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where di�erent implementation options are possible and the best choice will
depend on the properties of the NLP being solved. One example is whether
to represent D = �C�1N in (11) explicitly or implicitly. Another example
is the implementation of the Quasi-Newton reduced Hessian B � ZTWZ.
The choice for whether to store B directly or its factorization (and in what
form) or both depends on the choice of QP solver used to solve (9){(10). Yet
another example is allowing di�erent implementations for the QP solver.

(c) A third source of variability is in how to allow users to exploit the spe-
cial properties of an application area. Abstract interfaces to matrices have
been developed that serve as the foundation for facilitating the type of im-
plementation and NLP speci�c linear algebra variability described above.
In addition, these abstract interfaces help manage some of the algorithmic
variability such as the choice of di�erent range/null space decompositions.

aClient

: NLP

: rSQPAlgorithm

: rSQPState : rSQPStep

: IterQuantity

: rSQPClientInterface

: DecompositionSystem

arSQPAlgoConfiguration

External entity requiring
optimization services

- Calculates:
   f(x), c(x), ∇ f(x), ∇c(x)
- Basis manipulation
- Other services

Specialization of
GeneralIterationPack
for rSQP

Configures and initializes a
specific rSQP algorithm

Abstracts the choice of the
Range / Null Space
decomposition

- External interface to rSQP++
- Set the NLP to be solved
- Solve the NLP

Fig. 1. UML Object Diagram: Coarse grained object diagram for an rSQP++
algorithm con�gured and ready to solve an NLP

Figure 1 shows a coarse grained UML [1] object diagram for a rSQP++
algorithm con�gured and ready to solve an NLP. At the core is a set of al-
gorithmic objects. The rSQPAlgorithm object acts as the center hub for the
algorithm and its main job is to �re o� a set of steps in sequential order
and perform major loops. One or more rSQPStep objects perform the actual
computations in the algorithm. The rSQPStep objects operate on iteration
quantity objects (IterQuantity) that are stored in the rSQPState object. In
addition to simple linear execution of an algorithm, more sophisticated con-
trol strategies can be performed. This design allows step classes to be shared
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in many di�erent related algorithms and also provides for modi�cations of the
algorithm by adding, removing and replacing rSQPStep and IterQuantity

objects. In other words, the behavior of the algorithms is not �xed and can
be modi�ed at runtime. In this way, users can modify the rSQP algorithms
without touching any of the base source code in rSQP++.

Implements Coordinate

decomposition                Y =

Solves: x = op([AT
 Y])-1 y = op(C) -1 y

DecompositionSystem

DecompositionSystem-
VarReduct

DecompositionSystem-
VarReductCoordinate

BasisSystem

Interface for constructing decomposition of AT

    Z  : ATZ = 0                      (MatrixWithOp )

    Y : [ Y  Z ] nonsingular      (MatrixWithOp )

    Solves systems: x = op([AT
 Y]) -1 y

Node class implementing variable reduction Z
matrix

    AT = [ C  N ] using BasisSystem, C nonsingular

    Z =                      where:  D = -C -1 N
D
I







I
0







DecompositionSystem-
VarReductOrthogonal

Implements Orthogonal

decomposition                Y =

Solves: x = op([AT
 Y])-1 y = op((I +D DT ) -1 C -1) y

I
DT−







Finds nonsingular basis C

    AT → AT P → [ C  N ]

    Solves systems:  x = op(C) -1 y

* Structure of A, C and N

    abstracted (MatrixWithOp )

Fig. 2. UML Class Diagram: Range/null decomposition system classes

Also shown in Figure 1 are DecompositionSystem and NLP objects. These
objects provide the keys to specializing the linear algebra for a particular
NLP. The DecompositionSystem interface (Figure 2) abstracts the choice for
the range/null space decomposition away from the optimization algorithm.
The DecompositionSystemVarReduct node subclass is for variable reduction
decompositions. A BasisSystem object is used to abstract the variable reduc-
tion matrices including the basis matrix C. The DecompositionSystemVar-
ReductOrthogonal and DecompositionSystemVarReductCoordinate sub-
classes implement the orthogonal and coordinate decompositions. The NLP

interface (Figure 3) is used to abstract the application. The base NLP inter-
face provides basic information such as variable bounds and the initial guess
and computes f(x) and c(x). The NLPFirstOrderInfo specialization is for
NLPs that can compute rf(x) and rc(x). The matrix A = rc(x) is repre-
sented as an abstract matrix object of type MatrixWithOp and can therefore
be implemented by any appropriate means. Through this matrix interface,
the optimization algorithm can perform only simple operations like matrix
vector multiplication v = op(A)u. It is only in conjunction with a compatible
BasisSystem object that the algorithm can perform all the needed computa-
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n ,  m
x l ,  x u ,  x _ i n i t

NLPInterfacePack

N L P

c a lc _ f  ( x )
c a lc _ c  ( x )

N L P F i rs tO r d e r In fo

c a lc _ G f  ( x )
c a lc _ G c  ( x )

Base NLP interface for:

min  f(x)
s.t .   c(x) = 0
        xl <= x <= xu
        n = size(x), m = size(c)

N L P S e c o n d O rd e r In f o

c a lc _ H L  ( x , l a m b d a )

Adds Second Order Info:

- HL = ∇²f(x) + Σ  λ j ∇²cj(x)
   (MatrixWithOp )

Adds First Order Info:

- Gf = ∇ f(x)
- Gc = ∇c(x)  (MatrixWithOp )

ReducedSpaceSQPPack

N L P rS Q P T a i lo re d A p p ro a c h

c a lc _ p o in t ( x , f , c , G f , p y ,D )

Tailored Approach Interface:

For:             ∇c(x) = [ C  N ]

Compute:    f = f(x)
                  c = c(x)
                  Gf = ∇ f(x)
                  py = - inv(C) c
                  D = -inv(C) N

Fig. 3. UML Class Diagram: Interfaces to Nonlinear Programs (NLPs)

tions. The NLPSecondOrderInfo interface is for NLPs that can compute the
Hessian of the Lagrangian r2L which is also abstracted as a MatrixWithOp

object. In this way the core rSQP++ code is independent of the specialized
data-structures and solvers for an NLP. By con�guring the algorithm with
NLP and BasisSystem objects and MatrixWithOp objects for rc(x) and pos-
sibly r2L, specialized data structures and linear algebra for an NLP can be
accommodated.

The NLPFirstOrderInfo interface assumes that matrix vector multiplica-
tions with A = rc(x) and its transpose can be performed. The BasisSystem
interface assumes that linear systems involving the basis matrix C and its
transpose can be solved for arbitrary right hand sides. For many application-
s, these requirements can not be met. For these applications, the NLPrSQP-

TailoredApproach interface (Figure 3) is de�ned and it is used by the al-
gorithm to extract the bare minimum information (i.e. rf(x), py = �C�1c
and D = �C�1N). With this information, the coordinate and orthogonal
range/null decompositions can both be used. A more detailed introduction
to rSQP++ can be found in [2].

5 Tailored linear algebra for specialized NLPs

Figure 4 shows the special structure of a DAE system discretized using or-
thogonal collocation on �nite elements. A specialized implementation of the
basis matrix C for this structure called the elemental decomposition [4] was
compared to a generic implementation using a general sparse linear solver
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(MA28). The Tennessee Eastman challenge problem was used as the exam-
ple with 80 �nite elements for a total NLP size of n = 43; 950, n�m = 2; 640
[3]. Figure 4 shows a dramatic reduction of the average CPU time for an
rSQP iteration. In addition, storage savings using the elemental decompo-
sition allowed the solution of larger problems. The elemental decomposition
was implemented by externally con�guring the rSQP++ algorithm with spe-
cialized BasisSystem, MatrixWithOp (for rc(x)) and NLP objects.

ΑT =

C N

I

I

I

I

nonsingular

0

50

C
P

U
 (

se
co

nd
s) MA28, unknown basis

MA28, u as indep.

Elemental Decomp.

Average iteration time

Fig. 4. Tennessee Eastman example: Tailored linear algebra for DAE optimization

A \Tailored Approach" interface (NLPrSQPTailoredApproach) has al-
so been implemented for MPSalsa1 which uses Aztec2 as the linear alge-
bra library. This interface was used to optimize a CVD reactor model with
m = 31; 995 discretized state variables and n�m = 1 decision variables. The
rSQP++/MPSalsa implementation converged3 with the solution in 1.56 hrs
while a non-invasive \black box" approach took 22 hrs [10]. In this imple-
mentation, multiple processors where also utilized with fair results.

6 Moving from serial to distributed memory: vector
interfaces

There are many di�erent types of objects provided by a numerical linear al-
gebra library such as vectors, matrices and linear solvers. We contend that
vectors are what primarily \glue" optimization software to the specialized
implementations of higher level linear algebra components (e.g. matrices, lin-
ear solvers) as well as to other types of objects. For example, in a NLP solver,
vector objects represent the estimate of the unknown variables xk 2 IRn, the
residual of the nonlinear constraints c(xk) 2 IRm, the gradient of the ob-
jective or other functions rf(xk) 2 IRn as well as many other intermediate

1 http://www.cs.sandia.gov/CRF/MPSalsa
2 Aztec, http://www.cs.sandia.gov/CRF/aztec1.html
3 Single Intel PIII 500 MHz processor, RedHat Linux 6.1
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vectors (i.e. search directions, Lagrange multipliers etc.). Many of these vec-
tors are passed around by the optimization code to various other objects to
be used to transform other objects. For instance, vectors are passed to an
NLP interface to compute function (scalar f(xk) and vector c(xk)) and gra-
dient (vector rf(xk) and matrix rc(xk)) values. Right hand side vectors are
passed to linear solvers to compute solution vectors. In addition to having
the optimization software just shu�e vector objects around to other objects
so they can be operated on or transformed, the algorithm also needs to per-
form various reduction (e.g. norms, dot products etc.) and transformation
(e.g. vector addition, scaling etc.) operations with these vectors. If all of the
linear algebra operations are implemented in a shared memory environment,
then simple Fortran style arrays for dense and sparse vectors could be used,
and the optimization software can trivially and cheaply access any arbitrary
vector element. For the most part, utilizing parallelism in a shared memo-
ry environment is relatively easy if the optimization software calls standard
packages like the BLAS and LAPACK. Multiple processors can be utilized
by simply linking the object code to multi-threaded libraries. This is possible
partly because the optimization software can communicate with these various
implementations using simple serial Fortran style arrays.

The diÆculty arises, however, when we move to a distributed memory
environment. Now we can no longer deal with simple Fortran style serial
arrays and instead have to consider distributed data structures and com-
munication mechanisms. This can be seen in several di�erent packages for
distributed memory numerical linear algebra (ScaLAPACK4, Aztec, PETSc5

, SuperLU6 etc.). In such a distributed environment, direct and cheap access
to every vector element is no longer a luxury an optimization code can enjoy.
Trying to maintain an optimizer for every di�erent distributed linear algebra
library and 
avor of parallelism (i.e. library based MPI7, PVM8 or compil-
er generated PGHPF9, MPC++10) and also deal with serial vectors as well
as other o�-the-wall implementations (i.e. out-of-core) is an impossible task.
What is needed is a set of abstract vector interfaces that can encapsulate
these details away from the optimization algorithm, so that the implementa-
tions of the library and algorithm can be varied independently.

Because rSQP++ was developed initially to use serial direct solvers, is-
sues related to the use of massively parallel iterative solvers used in PDE
constrained optimization were not addressed. In order to e�ectively support
parallelism, rSQP++ needs the addition and integration of an abstract vector

4 Scalable LAPACK, http://www.netlib.org/scalapack/index.html
5 Portable Extendable Toolkit for Scienti�c Computaion,
http://www.mcs.anl.gov/petsc

6 Supernodal LU, http://www.nersc.gov/~xiaoye/SuperLU
7 Message Passing Interface, http://www.mpi-fourm.org/docs/docs.html
8 Parallel Virtual Machine, http://www.epm.ornl.gov/pvm/pvm home.html
9 Portland Group High Performance Fortran, http://www.pgroup.com

10 Massively Parallel C++, http://pdswww.rwcp.or.jp/mpc++
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interface. Encapsulating vector implementations away from the core rSQP++
algorithmic code would allow for fully parallel linear algebra but could also
greatly restrict the kinds of vector operations that could be performed. The
primary goal of this discussion is to present a new strategy for implementing
abstract vector interfaces that will allow an optimization developer to de�ne
and implement arbitrary vector reduction and transformation operations in
a way that does not require vectors to reveal how they are implemented
(parallel or serial, out-of-core etc.).

Perhaps the primary distinction between vectors and other linear alge-
bra objects is the large number of operations that need to be performed
with them. In addition to the 15 operations that are part of the Basic Linear
Algebra Subroutines (BLAS), many other types of operations need to be per-
formed as well. For example, in addition to many of the standard BLAS like
operations, some of the other vector reduction and transformation operations
that the interior-point QP solver OOQP11 must perform are shown below.

yi  

8<
:
ymin � yi if yi < ymin

ymax � yi if yi > ymax

0 if ymin � yi � ymax
for i = 1:::n (12)

� fmax � j x+ �d � �g (13)

Some examples of other non-standard vector reduction operations that may
be performed in rSQP++ include the following.


  dmax +
1

�
ln

(
1

n

nX
i=1

exp
�
�
�
(xi � bi)� dmax

�	)
(14)


  max

�
jdij

1 + jxij
; i = 1:::n

�
(15)

fyk; kg  max fyi; i = 1:::ng (16)

Many of these operations are not really vector operations in the mathematical
sense. They are more array-type operations that are used to implement other
types of computations and are therefore no less useful.

It seems that the most common approach taken by developers of linear
algebra libraries has been to provide a large set of primitive vector opera-
tions, and then the user can perform more complex operations by stringing
together a set of primitives. For most vector operations this is feasible as
long as the vector interface includes the needed primitives. For example, the
vector reduction operation (15) could be performed with two temporary vec-
tors u; v 2 IRn and �ve primitive vector operations as jdij ! ui; jxij !
vi; vi + 1 ! vi; ui=vi ! ui; max fuig ! 
. Many of the other exam-
ple vector operations shown above can be performed using primitives. It is

11 http://www-unix.mcs.anl.gov/~wright/ooqp/
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diÆcult to see how (12) and (13) could be implemented with general prim-
itive vector operations though. Perhaps it is possible but at the very least
it would take a number of temporary vectors and several operations. The
number of primitive operations that need to be included in a vector inter-
face in order to implement most of the needed vector operations is very
large. For example, the HCL12 vector interface contains more than 50 op-
erations and still can not accommodate some of the above operations. In
addition, using these non-overlapping operations can result in a performance
bottleneck in a parallel application. For example, in ISIS++13 the the op-
eration Dist Vector::QMR3norm2dot(...) which performs f�,
,�,�,�g  
f(xTx)1=2,(vT v)1=2,(wTw)1=2,wT v,vT tg was added to the base vector class
to overcome a bottleneck in the QMR solver14.

Before a new approach to implementing vector interfaces is presented
note that the majority of vector implementations store and manipulate vec-
tor elements in continuous chunks (sub-vectors). For instance, most serial
vectors are stored and manipulated as a whole 1-D array. For a parallel vec-
tor, elements are distributed between a set of processors and operations are
performed in parallel on the local sub-vectors. In an out-of-core vector, the
elements are stored in a set of �les and the elements are read into RAM as
sub-vectors in order to participate in vector operations. For eÆcient imple-
mentation in all of these cases, these sub-vectors must be of reasonably large
size (i.e. hundreds to thousands of elements) so that the low level numeric
operations performed with these elements dominate the runtime cost.

6.1 Vector reduction/transformation operators

A new approach is to allow clients of abstract vector objects to de�ne an oper-
ator object, give it to a vector object through an abstract vector interface and
then have the vector implementation apply the operator through an abstract
operator interface. The idea is to allow a client to create a vector reduc-
tion/transformation operator that is equivalent to the following element-wise
operators.

op(i; v1i : : : v
p
i ; z

1
i : : : z

q
i )! z1i : : : z

q
i (17)

op(i; v1i : : : v
p
i ; z

1
i : : : z

q
i )! � (18)

op(�1; �2)! �2 (19)

where v1 : : : vp 2 IRn are a set of p non-mutable input vectors (p = 0 allowed),
z1 : : : zq 2 IRn are a set of q mutable input/output vectors (q = 0 allowed)
and � is a reduction target object which may be a simple scalar, a more
complex non-scalar (i.e. f�; 
; �; �; �g) or NULL. In the most general case

12 Hilbert Class Library,
http://www.trip.caam.rice.edu/txt/hcldoc/html/index.html

13 ISIS++, http://z.ca.sandia.gov/isis
14 Example provided by Ben Allan, baallan@california.sandia.gov
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the client can de�ne an operator that will simultaneously perform multiple
reduction and transformation operations involving a set of vectors. Simpler
operations can be formed by setting p = 0, q = 0 or � = NULL. For example,
reduction operations over one vector argument such as vector norms (jjvjj)
are de�ned with p = 1, q = 0 and � = fscalarg. With this design, all of
the standard BLAS operations, all of the example vector operations in (12){
(16) and many many more vector operators can all be expressed. The key to
optimal performance is that the vector implementation applies a user de�ned
operator not element-wise as shown above, but instead on an entire set of
sub-vectors (for elements i = a : : : b) at once

op(a; b; v1a:b : : : v
p
a:b; z

1
a:b : : : z

q
a:b; �)! z1a:b : : : z

q
a:b; � (20)

In this way, as long as the size of the sub-vectors is suÆciently large, the
cost of performing a function call to invoke the operator will be insigni�cant
compared to the cost of performing the computations within the operator.
In a parallel distributed vector, op(: : :) is applied to the local sub-vectors
on each processor (no communication). The only communication between
processors is to reduce the intermediate reduction objects op(�1; �2) ! �2

(unless � = NULL then no communication is required). A prototype imple-
mentation called RTOP for these operator iterfaces has been developed in C.
A paper and a set of html documentation describing this design in much
more detail can be found at the web site15. Support of more sophisticated
client/server runtime con�gurations and other issues are discussed as well.

This design provides a more feasible means by which unusual vector op-
erations can be eÆciently implemented. The developers of vector implemen-
tations only need to implement a single apply(op,...)method that accepts
user de�ned reduction/transformation operator objects. It is then the opti-
mization algorithm developers' responsibility to implement strange or spe-
cialized vector operators, but they can do so in a way that is independent of
any particular vector implementation.

7 Summary and future work

Many application areas give rise to large-scale NLPs with specialized proper-
ties that can not be exploited by most of the current generation of optimiza-
tion software. Noted examples include DAE and PDE constrained optimiza-
tion. The next generation of optimization software needs to allow these spe-
cializations but also include those components of successful implementations
that are so important for reliability and eÆciency. The rSQP++ framework
is being developed in an attempt to address these needs in the context of
SQP. With rSQP++ the user can externally con�gure the algorithm with
specialized linear algebra objects and can perform other modi�cations with-
out having to recompile any of the base rSQP++ source code.
15 http://dynopt.cheme.cmu.edu/roscoe/RTOp
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In order for rSQP++ to fully exploit parallelism (i.e. PDE constrained
optimization), an abstract vector interface must be developed and incorpo-
rated. A new design for abstract vector interfaces based on vector reduc-
tion/transformation operators would allow developers of optimization algo-
rithms to eÆciently implement specialized vector operations, while also al-
lowing great 
exibility in the implementation of vectors (i.e. serial, parallel,
out-of-core, etc.).
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