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Surrogate-based optimization methods have become established as effective techniques

for engineering design problems through their ability to tame nonsmoothness and reduce

computational expense. In recent years, supporting mathematical theory has been de-

veloped to provide the foundation of provable convergence for these methods. One of

the requirements of this provable convergence theory involves consistency between the

surrogate model and the underlying truth model that it approximates. This consistency

can be enforced through a variety of correction approaches, and is particularly essential in

the case of surrogate-based optimization with model hierarchies. First-order additive and

multiplicative corrections currently exist which satisfy consistency in values and gradi-

ents between the truth and surrogate models at a single point. This paper demonstrates

that first-order consistency can be insufficient to achieve acceptable convergence rates

in practice and presents new second-order additive, multiplicative, and combined correc-

tions which can significantly accelerate convergence. These second-order corrections may

enforce consistency with either the actual truth model Hessian or its finite difference,

quasi-Newton, or Gauss-Newton approximation.

Introduction

OPTIMIZATION methods employing approxima-
tion models originated in the 1970’s1 and have

proved extremely popular within the engineering com-
munity. Numerous surveys of these methods exist.2,3

However, many of these methods have been inherently
heuristic, lacking the mathematical rigor necessary to
have predictable performance. In particular, they per-
formed well on some problems, and failed to converge
to a minimum of the original model on others.
In recent years, supporting mathematical theory has

been developed to provide the foundation of provable
convergence for a broad class of approximation-based
optimization methods. The terms “surrogate-based
optimization” and “model management framework”
are used to describe these rigorous methods.4,5 Pro-
vided that one employs a sufficiently rigorous global-
ization approach (e.g., trust region management) and
satisfies first-order consistency between the surrogate
model and the underlying truth model, then conver-
gence of the surrogate-based optimization process to
the optimum of the high-fidelity model can be guaran-
teed (note: this discussion focuses on first-order model
management; provable convergence theory also exists
for zeroth-order model management based on pattern
search, but will not be discussed here).

∗Optimization and Uncertainty Estimation Department, Se-
nior Member AIAA.

†Validation and Uncertainty Quantification Processes De-
partment, Senior Member AIAA.

‡Sandia is a multiprogram laboratory operated by San-
dia Corporation, a Lockheed-Martin Company, for the United
States Department of Energy under Contract DE-AC04-
94AL85000

This paper is a work of the U.S. Government and is not subject
to copyright protection in the United States.

A number of surrogate model selections are possi-
ble. First, the surrogate may be of the “data fit”
type, which is a non-physics-based approximation typ-
ically involving interpolation or regression of a set of
data generated from the high-fidelity model. Data fit
surrogates can be further characterized by the num-
ber of data points used in the fit, where a local
approximation (e.g., Taylor series) uses data from a
single point, a multipoint approximation (e.g., two-
point adaptive nonlinear approximations) uses a small
number of data points often drawn from the previous
iterates of a particular algorithm, and a global approx-
imation (e.g., polynomial response surfaces, kriging,
neural networks, radial basis functions, splines) uses
a set of data points distributed over the domain of
interest (often generated using a design of computer
experiments). A completely different type of surrogate
is the model hierarchy type (also called multifidelity,
variable fidelity, variable complexity, etc.). In this
case, a model that is still physics-based but is of lower
fidelity (e.g., coarser discretization, looser convergence
tolerances, omitted physics) is used as the surrogate
in place of the high-fidelity model. Reduced-order
modeling techniques such as proper orthogonal de-
composition in computational fluid dynamics or modal
analysis in structural dynamics are also considered to
be in the model hierarchy family due to their physics
linkages.

When performing surrogate-based optimization
with local/multipoint/global data fit surrogates, it is
necessary to regenerate or update the data fit for each
new trust region. In the global data fit case, this can
mean performing a new design of experiments on the
original high-fidelity model for each trust region, which
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can effectively limit the approach to use on problems
with, at most, tens of variables. However, an impor-
tant benefit of the global sampling is that the global
data fits can tame poorly-behaved, nonsmooth, dis-
continuous response variations within the high-fidelity
model into smooth, differentiable, easily navigated sur-
rogates. When enforcing local consistency between a
global data fit surrogate and a truth model at a point,
care must be taken to balance this local consistency
requirement with the global accuracy of the surrogate.
In particular, performing a correction on an existing
global data fit in order to enforce local consistency
can skew the data fit and destroy its global accuracy.
A better approach is to include the consistency re-
quirement within the data fit process by constraining
the global data fit calculation (e.g., using constrained
least squares). This allows the data fit to satisfy the
consistency requirement while still addressing global
accuracy with its remaining degrees of freedom. Al-
ternatively, one can employ a surrogate that directly
enforces local consistency through its assumed form,
e.g., a second-order Taylor series with globally esti-
mated Hessian terms6 will inherently satisfy first-order
consistency.

When performing surrogate-based optimization
with model hierarchies, the low-fidelity model is nor-
mally fixed, requiring only a single high-fidelity eval-
uation to compute a new correction for each new
trust region (exception: one may wish to also update
the basis vectors in reduced-order modeling methods).
This renders the multifidelity surrogate-based opti-
mization technique more scalable to larger numbers of
design variables since the number of high-fidelity eval-
uations per iteration (assuming no finite differencing
for derivatives) is independent of the scale of the de-
sign problem. However, the ability to smooth poorly-
behaved response variations is lost, and the technique
becomes dependent on having a well-behaved low-
fidelity model. When applying corrections to the low
fidelity model, there is no global accuracy concern
to balance with the local consistency requirements.
Rather, there is only a single truth model evaluation at
the center of each trust region, and it is critical to use
the best correction possible on the low-fidelity model
in order to achieve rapid convergence rates to the opti-
mum of the high-fidelity truth model. The remainder
of the paper is focused on this issue.

Correction approaches are closely related to data
fit surrogates. As with data fit surrogates, correction
approaches may be local, multipoint, or global. As
will be shown in Eqs. 8-9, local corrections are derived
by generating Taylor series approximations to the ra-
tio or difference between low and high-fidelity models.
A multipoint correction will be shown in Eqs. 29-30,
in which additive and multiplicative local corrections
are combined in such a way as to satisfy an addi-
tional matching condition at a previous design iterate.

Finally, global corrections use global data fit surro-
gates to model the relationship (difference or ratio)
between low and high-fidelity models at distributed
sets of points. A benefit to this latter approach is
that the relationship between two model fidelities can
tend to be more linear or well-behaved than the mod-
els themselves. However, the consistency enforcement
with global correction approaches is often zeroth-order
(e.g., kriging) or worse (e.g., polynomial regression),
which falls short of satisfying the requirements of the
provable convergence theory. For each of these cor-
rection approaches, the correction is applied to the
low-fidelity model to create an approximation to the
original high-fidelity model which is then interfaced
with the optimization algorithm for search over the
current trust region.
The simplest correction approaches are those that

enforce consistency in function values between the low
and high-fidelity models at a single point in parameter
space through use of a simple scalar offset or scaling
applied to the low-fidelity model. These zeroth-order
approaches cannot change the location of an uncon-
strained minimum for the low-fidelity model (∇flo(x)
will vanish at the same x), and therefore are very lim-
ited in their ability to morph the low-fidelity model
into providing a good surrogate for minimization of
the high-fidelity model. First-order corrections such
as the first-order multiplicative correction (also known
as beta correction7) and the first-order additive cor-
rection8 provide a much more substantial correction
capability and are sufficient for ensuring provable con-
vergence of the algorithm. However, the convergence
rates can be similar to those achieved by first-order op-
timization methods such as steepest-descent or sequen-
tial linear programming. More successful optimization
methods (such as sequential quadratic programming)
use at least approximate second-order information to
achieve super-linear or quadratic convergence rates in
the neighborhood of the minimum, and one would
expect the same principle to hold for correction ap-
proaches within surrogate-based optimization meth-
ods.
In the following sections, important features of the

surrogate-based optimization algorithm are described,
followed by derivation and discussion of surrogate cor-
rection approaches. These techniques are then applied
to several computational experiments and concluding
remarks are presented.

Surrogate-Based Optimization

Starting from a nonlinear programming problem of
the form

minimize f(x)

subject to xl ≤ x ≤ xu, (1)

where x ∈ <n is the vector of design variables, and
xl and xu are the lower and upper bounds, respec-
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tively, the surrogate-based optimization (SBO) algo-
rithm solves a sequence of k trust region optimization
subproblems of the form

minimize f̂k(x)

subject to xl ≤ x ≤ xu

‖ x− xk
c ‖∞ ≤ ∆k, (2)

where the surrogate model is denoted as f̂(x), xc is the
center point of the trust region, and the initial value
for ∆ at k = 0 is user-selected. In the multifidelity
context, solution of this subproblem involves optimiz-
ing the corrected low-fidelity model over the range of
the trust region. After each of the k iterations in the
SBO strategy, the predicted step is validated by com-
puting f(x∗) and the trust region ratio ρ is calculated
as

ρk =
f(xk

c )− f(xk
∗)

f̂(xk
c )− f̂(xk

∗)
, (3)

which is the ratio of the actual improvement to the
improvement predicted by optimization on the surro-
gate model. In the multifidelity context, this ratio
measures the performance of the corrected low-fidelity
model in finding new iterates that improve the high-
fidelity objective. The value for ρ then defines the
step acceptance and the next trust region size ∆k us-
ing logic similar to:

1. ρk ≤ 0 – The surrogates are inaccurate. Reject
the step and shrink the trust region by half to
improve surrogate accuracy.

2. 0 < ρk ≤ 0.25 – The surrogates are marginally
accurate. Accept the step but shrink the trust
region size by half.

3. 0.25 < ρk < 0.75 or ρk > 1.25 – The surro-
gates are moderately accurate. Accept the step
and maintain the current trust region size.

4. 0.75 ≤ ρk ≤ 1.25 – The surrogates are accurate.
Accept the step and increase the trust region size
by a factor of two.

For simplicity of presentation of the relevant SBO
concepts, we have omitted nonlinear inequality and
equality constraints gi(x) ≤ 0 and hi(x) = 0 and their

surrogates ĝi(x) and ĥi(x). Constraint management in
SBO can be approached in several different ways. One
approach is to use an augmented Lagrangian function
to combine the objective and nonlinear constraints.9,10

Penalty-free methods based on filter methods are also
under investigation which manage constraint relax-
ations within the trust regions using homotopy or
fraction of Cauchy decrease approaches.11

Surrogate Corrections
Computing local corrections

A variety of relationships between the high-fidelity
and low-fidelity models can be used in deriving correc-
tion approaches. The primary two of interest are

A(x) = fhi(x)− flo(x) (4)

B(x) =
fhi(x)

flo(x)
(5)

which correspond to the (exact) additive correction

fhi(x) = flo(x) +A(x) (6)

and to the (exact) multiplicative correction

fhi(x) = flo(x)B(x) (7)

We will not be computing the exact correction func-
tions, but rather approximating A(x) and B(x) as
α(x) and β(x). This approximation may involve a lo-
cal, multipoint, or global approximation. For the case
of a local approximation, consider the second-order
Taylor series expansions centered at xc:

α(x) = A(xc) +∇A(xc)
T (x− xc) +

1

2
(x− xc)

T∇2A(xc)(x− xc) (8)

β(x) = B(xc) +∇B(xc)
T (x− xc) +

1

2
(x− xc)

T∇2B(xc)(x− xc) (9)

where, by differentiating Eq. 4 twice, it can be shown
that

A(xc) = fhi(xc)− flo(xc) (10)

∇A(xc) = ∇fhi(xc)−∇flo(xc) (11)

∇2A(xc) = ∇2fhi(xc)−∇
2flo(xc) (12)

and, by differentiating Eq. 5 twice, it can be shown
that

B(xc) =
fhi(xc)

flo(xc)
(13)

∇B(xc) =
1

flo(xc)
∇fhi(xc)−

fhi(xc)

f2
lo(xc)

∇flo(xc) (14)

∇2B(xc) =
1

flo(xc)
∇2fhi(xc)−

fhi(xc)

f2
lo(xc)

∇2flo(xc) +

2fhi(xc)

f3
lo(xc)

∇flo(xc)∇f
T
lo(xc)−

1

f2
lo(xc)

(∇flo(xc)∇f
T
hi(xc) +

∇fhi(xc)∇f
T
lo(xc)) (15)

Additional correction formulations are easily derived
using this approach. For example, the following sub-
tractive and division-based corrections

fhi(x) = flo(x)− C(x) (16)

fhi(x) =
flo(x)

D(x)
(17)
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could be motivated in some instances and would in-
volve a simple swapping of high and low values in
Eqs. 10-15.

Applying local corrections

Correcting low-fidelity function values, gradients,
and Hessians with additive corrections involves

ˆfhiα(x) = flo(x) + α(x) (18)

∇ ˆfhiα(x) = ∇flo(x) +∇α(x) (19)

∇2 ˆfhiα(x) = ∇2flo(x) +∇
2α(x) (20)

and with multiplicative corrections involves

ˆfhiβ (x) = flo(x)β(x) (21)

∇ ˆfhiβ (x) = flo(x)∇β(x) + β(x)∇flo(x) (22)

∇2 ˆfhiβ (x) = flo(x)∇
2β(x) +∇β(x)∇fT

lo(x) +

∇flo(x)∇β
T (x) + β(x)∇2flo(x) (23)

where α(x) and β(x) are as defined in Eqs. 8 and 9
and

∇α(x) = ∇A(xc) +∇
2A(xc)(x− xc) (24)

∇β(x) = ∇B(xc) +∇
2B(xc)(x− xc) (25)

∇2α(x) = ∇2A(xc) (26)

∇2β(x) = ∇2B(xc) (27)

Applying multipoint corrections

A combination of additive and multiplicative correc-
tions can provide for additional flexibility in minimiz-
ing the impact of the correction away from the trust
region center. In other words, both additive and mul-
tiplicative corrections can satisfy local consistency, but
through the combination, global accuracy can be ad-
dressed as well. Notionally, this involves a combined
additive and multiplicative correction of the form:

fhi(x) = flo(x)B(x) +A(x) (28)

The derivation is simpler, however, using a weighted
sum of ˆfhiα and

ˆfhiβ

ˆfhiγ (x) = γ ˆfhiα(x) + (1− γ) ˆfhiβ (x) (29)

which ensures that ˆfhiγ retains the local consistency

properties of ˆfhiα and
ˆfhiβ . The γ parameter can be

selected to enforce an additional matching condition,
such as matching the high-fidelity function value at a
nearby point xp (e.g., the previous design point in the
case of a successful trust region cycle, or the previously
rejected iterate in the case of an unsuccessful trust
region cycle). This multipoint correction then provides
some control over the global accuracy of the correction.
It can be shown that the following value for γ

γ =
fhi(xp)− ˆfhiβ (xp)

ˆfhiα(xp)− ˆfhiβ (xp)
(30)

results in ˆfhiγ (xp) = fhi(xp). As ˆfhiα(xp) → fhi(xp)
(the additive correction is accurate), then γ → 1, and

as ˆfhiβ (xp)→ fhi(xp) (the multiplicative correction is
accurate), then γ → 0.

It is also possible to match higher order information
at xp by using a first- or second-order function γ(x).
However, this results in up to a fourth-order correction
in ˆfhiγ (x), which would likely introduce more difficul-
ties due to multimodality than it would help due to
increased accuracy.

Verifying local consistency

Zeroth, first, and second-order consistency at x =
xc (f̂hi(xc) = fhi(xc), ∇f̂hi(xc) = ∇fhi(xc),

and ∇2f̂hi(xc) = ∇2fhi(xc), respectively) can be
demonstrated for additive corrections by substituting
Eqs. 10-12 into Eqs. 8, 24, and 26, substituting the
resulting expressions into Eqs. 18-20, and then evalu-
ating at x = xc. Similarly, consistency for multiplica-
tive corrections can be demonstrated by substituting
Eqs. 13-15 into Eqs. 9, 25, and 27, substituting the
resulting expressions into Eqs. 21-23, and then evalu-
ating at x = xc.

Simplifications for lower order corrections

These derivations have shown the general case of full
second-order corrections. For first-order corrections,
one can simply take ∇2A(xc) and ∇

2B(xc) to be zero,
in which case only zeroth and first-order consistency
holds at x = xc (f̂hi(xc) = fhi(xc) and ∇f̂hi(xc) =
∇fhi(xc), respectively). For zeroth-order corrections,
one can additionally take ∇A(xc) and ∇B(xc) to be
zero, in which case only zeroth-order consistency holds
at x = xc (f̂hi(xc) = fhi(xc)).

Approximating derivatives

To use a second-order correction when second-order
information (∇2fhi(xc), ∇

2flo(xc), or both) is not
directly available, one can estimate the missing in-
formation using finite differences or approximate it
through use of quasi-Newton or Gauss-Newton approx-
imations. These procedures will often be needed to
make second-order corrections practical for engineer-
ing applications.

In the finite difference case, numerical Hessians are
commonly computed using either first-order forward
differences of gradients using

∇2f(x) ∼=
∇f(x+ hei)−∇f(x)

h
(31)

to estimate the ith Hessian column when gradients are
analytically available, or second-order differences of
function values using

∇2f(x) ∼=
f(x+hei+hej)−f(x+hei−hej)−f(x−hei+hej)+f(x−hei−hej)

4h2

(32)
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to estimate the ijth Hessian term when gradients are
not directly available. This approach has the advan-
tage of locally-accurate Hessians for each point of in-
terest (which can lead to quadratic convergence rates
in discrete Newton methods), but has the disadvan-
tage that numerically estimating each of the matrix
terms can be expensive.
Quasi-Newton approximations, on the other hand,

do not reevaluate all of the second-order information
for every point of interest. Rather, they accumulate
approximate curvature information over time using se-
cant updates. Since they utilize the existing gradient
evaluations, they do not require any additional func-
tion evaluations for evaluating the Hessian terms. The
quasi-Newton approximations of interest include the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) update

Bk+1 = Bk −
Bksks

T
k Bk

sT
k Bksk

+
yky

T
k

yT
k sk

(33)

and the Symmetric Rank 1 (SR1) update

Bk+1 = Bk +
(yk −Bksk)(yk −Bksk)

T

(yk −Bksk)T sk

(34)

whereBk is the k
th approximation to the Hessian∇2f ,

sk = xk+1 − xk is the step and yk = ∇fk+1 −∇fk is
the corresponding yield in the gradients. An initial
scaling of yT

k yk/y
T
k skI is used for B0 prior to the first

update.12 Both the BFGS and SR1 updates require
safeguarding against numerical failures. A common
safeguard for BFGS is to use the damped BFGS ap-
proach when the curvature condition yT

k sk > 0 is
(nearly) violated.12 However, while this is appropriate
for Newton-like optimization algorithms, numerical
experience indicates that the damped BFGS update
significantly degrades second-order correction perfor-
mance in multifidelity surrogate-based optimization,
since the steps generated by the trust region cycles are
not generally Newton-like and can frequently violate
the curvature condition. A more effective approach
has been to ignore the curvature condition and sim-
ply safeguard against small denominators in Eq. 33,
skipping the update if |yT

k sk| < 10
−6sT

k Bksk. In the
SR1 case, the update is similarly skipped when the
denominator in Eq. 34 is small, in particular when
|(yk −Bksk)

T sk| < 10
−6||sk||2||yk −Bksk||2.

The finite difference Hessian and quasi-Newton Hes-
sian approximation approaches are applicable to gen-
eral optimization problems. In the case of a nonlinear
least squares problem, the Gauss-Newton approxima-
tion

∇2f(x) ∼= J(x)T J(x) (35)

provides a third possibility where J = ∇RT is the
Jacobian of the residual vector R. In this case, the
Hessian approximation is instantaneous (i.e., does not
require accumulation of information over time) and
will improve as the residuals are driven toward zero.

Similar approaches may be used when first-order in-
formation (∇fhi(xc), ∇flo(xc), or both) is not directly
available. To estimate gradients with finite differences,
standard forward difference

∇f(x) ∼=
f(x+ hei)− f(x)

h
(36)

or central difference approaches

∇f(x) ∼=
f(x+ hei)− f(x− hei)

2h
(37)

are employed to estimate the ith component of the
gradient vector. It is also possible to approximate gra-
dients over time using a secant approximation such as
Broyden’s update13

Ak+1 = Ak +
(yk −Aksk)s

T
k

sT
k sk

(38)

where Ak is the kth approximation to the Jacobian
∇fT , sk is the step as before and yk = fk+1− fk is now
the corresponding yield in the values of one or more
functions. However, while this secant update approach
can be effective in the solution of nonlinear equations,
it is not normally recommended for optimization since
local gradient accuracy is more critical in this case.

Developing physical intuition

Additive corrections add a scalar (zeroth-order),
a linear function (first-order), or a quadratic func-
tion (second-order) to the low-fidelity function. This
equates to a uniform translation in the zeroth-order
case, a translation and rotation in the first-order case,
and a translation, rotation, and uniform “bending” or
“rounding” (inclusion of constant curvature) in the
second-order case. Multiplicative corrections, con-
versely, multiply the low-fidelity function by a scalar
(zeroth-order), a linear function (first-order), or a
quadratic function (second-order). These corrections
typically induce more skewing of the low-fidelity con-
tours.
For example, Figure 1 shows a region of the high

and low-fidelity functions taken from Example 1.1 in
the Computational Experiments section (Eqs. 39-40).
Correcting the low-fidelity function at the center of
the region using zeroth, first, and second-order addi-
tive corrections results in Figure 2, whereas correcting
the low-fidelity function using multiplicative correc-
tions results in Figure 3. It is evident for this example
that the first and second-order additive corrections re-
sult in good agreement with the high-fidelity model
over the full region, whereas the accuracy of the mul-
tiplicative corrections degrades rapidly away from the
center of the region. Clearly, the additional skewing of
a multiplicative correction is undesirable in this exam-
ple where the form of the low and high-fidelity models
are relatively similar (i.e., the orders of the polynomial
forms are identical, but the coefficients differ).
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Fig. 1 Correction example 1: high and low-fidelity

functions.

In cases where the form of the low and high-fidelity
models are sufficiently different, then the additional
skewing provided by multiplicative corrections may
be desirable. For example, if the order of the high-
fidelity model is greater than the low-fidelity model
as in Example 2 from the Computational Experiments
section (Eqs. 43-44), then one might expect better per-
formance from a multiplicative correction. Figure 4
shows a region of these high and low-fidelity functions,
Figure 5 shows the low-fidelity function with additive
corrections applied, and Figure 6 shows the low-fidelity
function with multiplicative corrections applied. The
relative performance of the multiplicative corrections
is indeed improved, and the zeroth and first-order
multiplicative corrections shown in Figure 6(a,b) are
noticeably more accurate than the zeroth and first-
order additive corrections shown in Figure 5(a,b).

Thus, if considerable information is known about
the form of the low and high-fidelity models, then it
is possible to select a correction that is optimized for
a particular problem. Without detailed information
however, the additive corrections appear to be less sus-
ceptible to large scale inaccuracies and more consistent
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Fig. 2 Correction example 1: low-fidelity with

additive corrections.
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Fig. 3 Correction example 1: low-fidelity with

multiplicative corrections.
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Fig. 4 Correction example 2: high and low-fidelity

functions.

in their quality.

Computational Experiments

The following computational experiments are per-
formed using the trust-region surrogate-based opti-
mization implementation5 in the DAKOTA open-
source software toolkit.14 The intent is to compare the
performance of additive and multiplicative corrections
of different orders for both simple analytic functions
as well as actual engineering problems.

Example 1. Rosenbrock’s function

Experimentation with Rosenbrock’s function pro-
vided the initial motivation for the development of
higher-order corrections, as first-order corrections are
insufficient to achieve acceptable convergence charac-
teristics (Rosenbrock’s function is particularly difficult
to solve with first-order optimization methods).
Using the standard Rosenbrock function as the

“high-fidelity” function

fhi(x) = 100(x2 − x2
1)

2 + (1− x1)
2 (39)

−2 ≤ x ≤ 2

with a minimum at x = (1, 1), one can define several
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Fig. 5 Correction example 2: low-fidelity with

additive corrections.
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“low-fidelity” Rosenbrock functions for use as inexpen-
sive correction approach testers.

Example 1.1 Low-fidelity with offsets

This low-fidelity Rosenbrock function has ±0.2 off-
sets from the true function within the squared terms:

flo(x) = 100(x2 − x2
1 + .2)2 + (0.8− x1)

2 (40)

with a low-fidelity minimum at x = (0.8, 0.44). This
modification is sufficient for the value, gradient, and
Hessian of the low-fidelity function to differ from the
high-fidelity values.
Table 1 displays the SBO results for each of the cor-

rections applied to the low-fidelity Rosenbrock func-
tion starting from the point x = (−1.2, 1.0) with an
initial trust region size of 10% of the global bounds.
Duplicate function evaluations are excluded from the
totals. The second-order approaches achieve hard
convergence and their trust regions grow for several
consecutive cycles prior to convergence. The first-
order approaches terminate through a soft convergence
criterion, specifically when their minimum trust re-
gion bounds are reached after a series of trust re-
gion reductions. The zeroth-order additive approach
converges to the optimum of the low-fidelity model
x = (0.8, 0.44), as would be expected with only a
scalar offset, whereas the zeroth-order multiplicative
approach stalls out (minimum trust region bounds
are reached) short of the optimum of the low-fidelity
model. This stalling behavior can occur since trust
region steps taken in the direction of the optimum
of the low-fidelity model (due to the poor correction)
must also satisfy simple decrease in the high-fidelity
model (due to the SBO step verifications). The com-
bined/multipoint corrections do not appear to improve
upon the best performing local correction, but do ap-
pear to do an acceptable job of selecting from among
the local corrections (mirrors additive for zeroth-order
and all second-order), although this is not always the
case (mirrors multiplicative for first-order).
Figure 7 displays the convergence rates for the ze-

roth, first, and second-order additive and multiplica-
tive correction approaches. The combined correction
cases are not plotted, since they mostly overlap other
existing curves. In Figure 7(a), quadratic convergence
rates are evident in the second-order correction ap-
proaches, and additive corrections significantly outper-
form their multiplicative counterparts for all correction
orders. Figures 7(b) and 7(c) compare the conver-
gence rates for the finite difference, BFGS quasi, and
SR1 quasi second-order corrections to the first-order
and full second-order corrections for additive and mul-
tiplicative cases. The finite difference second-order
convergence rate closely follows that of full second-
order. The quasi-2nd-order convergence curves are
delayed, exhibiting performance similar to first-order
approaches early on, until sufficient curvature infor-

Table 1 SBO correction results, low-fidelity

Rosenbrock with offsets.

Correction SBO Fn Evals HF Obj
Approach Iters (LF/HF) Function
0th add 27 74/12 4.04
0th mult 22 125/23 4.76
0th comb 25 70/9 4.04
1st add 98 1124/195 9.29e-10
1st mult 7398 7448/12955 1.31e-05
1st comb 6995 27500/12145 5.68e-05
Full 2nd add 5 68/11 1.24e-15
Full 2nd mult 31 255/59 8.96e-15
Full 2nd comb 5 83/11 1.24e-15
FD 2nd add 5 85/23 1.53e-10
FD 2nd mult 34 303/124 3.18e-10
FD 2nd comb 5 75/23 8.27e-11
BFGS 2nd add 41 261/75 2.53e-07
BFGS 2nd mult 43 310/84 1.13e-13
BFGS 2nd comb 41 242/73 3.52e-07
SR1 2nd add 23 158/42 8.29e-15
SR1 2nd mult 93 389/151 1.61e-09
SR1 2nd comb 23 148/42 4.73e-15

mation is accumulated to attain improved convergence
rates. Relative performance of the updates is mixed:
SR1 updating outperforms BFGS updating in one
case, and BFGS outperforms SR1 in the other.
The initial trust region size is fixed for all meth-

ods to provide a consistent comparison. However,
with a larger initial trust region of 50%, the multi-
fidelity SBO approach with second-order additive cor-
rection converges in as few as three high-fidelity func-
tion value/gradient/Hessian evaluations. Compared
to a single-fidelity full-Newton optimization of Rosen-
brock’s function, the number of high-fidelity evalua-
tions is reduced by approximately an order of mag-
nitude. Therefore, if the low-fidelity evaluations were
significantly less expensive than the high-fidelity eval-
uations, the multifidelity SBO approach would have
significant savings over the single-fidelity approach.

Example 1.2. Low-fidelity with scalings

This low-fidelity Rosenbrock function has 1.25 scal-
ings from the true function within the squared terms:

flo(x) = 100(1.25x2 − x2
1)

2 + (1− 1.25x1)
2 (41)

with a low-fidelity minimum at x = (0.8, 0.512). The
purpose of this example is to explore a modification
which is more multiplicative in nature (for which mul-
tiplicative corrections may be more competitive).
Table 2 displays SBO results for the same cases

investigated in Example 1.1. The second-order ap-
proaches again achieve hard convergence, the first-
order approaches again terminate through the mini-
mum trust region soft convergence criterion, and the
zeroth-order approaches stall out (minimum trust re-
gion bounds are reached) short of the optimum of
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Fig. 7 Convergence comparison for zeroth, first,

and second-order corrections to the low-fidelity

Rosenbrock function with offsets.

Table 2 SBO correction results, low-fidelity

Rosenbrock with scalings.

Correction SBO Fn Evals HF Obj
Approach Iters (LF/HF) Function
0th add 25 134/26 0.468
0th mult 26 161/27 0.461
0th comb 25 153/26 0.468
1st add 861 11347/1620 7.58e-08
1st mult 7252 7404/12713 1.22e-05
1st comb 5439 14564/9505 3.62e-03
Full 2nd add 17 183/34 1.82e-09
Full 2nd mult 42 331/76 2.59e-12
Full 2nd comb 56 603/96 3.65e-09
FD 2nd add 17 187/68 4.58e-09
FD 2nd mult 45 369/153 7.59e-10
FD 2nd comb 30 272/99 2.67e-09
BFGS 2nd add 74 1472/133 5.47e-10
BFGS 2nd mult 87 396/154 1.38e-13
BFGS 2nd comb 292 1381/514 1.68e-14
SR1 2nd add 207 1560/343 2.27e-07
SR1 2nd mult 102 467/176 4.25e-11
SR1 2nd comb 224 1059/375 7.26e-05

the low-fidelity model (due to the SBO verifications
for decrease in the high-fidelity model). The com-
bined/multipoint corrections are not as effective in this
problem as for Example 1.1, and are outperformed by
both local corrections in the majority of the cases.
Figure 8 displays the convergence rates for the ze-

roth, first, and second-order additive and multiplica-
tive corrections. In Figure 8(a), superior convergence
rates are again evident in the second-order correc-
tion approaches. While the multiplicative corrections
are slightly more competitive relative to Example 1.1,
they are still outperformed by the additive corrections.
Figures 8(b) and 8(c) show similar performance as in
Example 1.1. The finite difference second-order con-
vergence rate again mirrors the full second-order rate,
and the quasi second-order corrections outperform the
first-order but display a lag relative to second-order.
For this problem, BFGS updating outperforms SR1
updating.

Example 1.3. Constant low-fidelity

This low-fidelity Rosenbrock function is a constant:

flo(x) = 100 (42)

with no unique minimum. The purpose of this example
is to provide insight into the relative importance of
capturing representative features of the high-fidelity
problem within the low-fidelity model by examining a
poor low-fidelity model.
It can be shown that, for ∇flo(x) = ∇2flo(x) =

0 and flo(x) = flo(xc), the additive corrections
in Eqs. 18-20 and the multiplicative corrections in
Eqs. 21-23 simplify to identical expressions, those cor-
responding to a second-order Taylor series of fhi(x)
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Fig. 8 Convergence comparison for zeroth, first,

and second-order corrections to the low-fidelity

Rosenbrock function with scalings.

Table 3 SBO correction results, constant low-

fidelity Rosenbrock.

Correction SBO Fn Evals HF Obj
Approach Iters (LF/HF) Function
0th 17 2/1 24.2
1st 7363 7388/12891 1.28e-05
Full 2nd 24 135/45 3.32e-12
FD 2nd 26 171/95 2.31e-10
BFGS 2nd 59 284/104 2.06e-11
SR1 2nd 121 383/211 1.12e-10

centered at xc. Thus, the additive and multiplica-
tive correction results are identical for this example
and correspond to the performance of a single-fidelity
SBO based solely on high-fidelity data. The combined
correction is not well-defined in this case (Eq. 30), so
numerical safeguarding selects γ to be unity (an addi-
tive correction).

Table 3 displays the SBO results for each of the
correction approaches with additive, multiplicative,
and combined corrections collapsed to a single entry.
Second-order correction again achieves hard conver-
gence, first-order correction again terminates through
the minimum trust region soft convergence criterion,
and zeroth-order correction fails to make any progress
since each approximate optimization cycle terminates
immediately with zero gradients (which terminates the
zeroth-order SBO process through a soft convergence
criterion after a sequence of consecutive failures).

Figure 9 displays the convergence rates for the ze-
roth, first, and second-order correction approaches.
In Figure 9(a), a superior convergence rate is again
evident for second-order correction. Figure 9(b) com-
pares the convergence rates for the finite difference
and quasi-second-order correction variants to the first-
order and full second-order corrections. The finite
difference second-order convergence rate again mirrors
the full second-order rate, and the quasi second-order
corrections again outperform the first-order while dis-
playing a lag relative to second-order. BFGS updating
again outperforms SR1 updating.

When comparing Figure 7(a) and Figure 8(a) from
the first two examples with Figure 9(a) in this ex-
ample, it is evident that the additive corrections do
benefit from the capture of high-fidelity features in
the low-fidelity model. The trend is less conclusive
with the multiplicative corrections. This provides
a measure of validation for the use of multi-fidelity
surrogate-based optimization approaches as opposed
to using single-fidelity surrogate-based optimization
approaches based solely on approximations of the high-
fidelity model.

Example 2. Polynomial product

The purpose of this example is to explore whether
multiplicative corrections may outperform additive
corrections when the high-fidelity model (Eq. 44) is
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Fig. 9 Convergence rates for zeroth, first, and

second-order corrections to the constant low-

fidelity Rosenbrock function.

of higher order than the low-fidelity model (Eq. 43).

flo(x) = x2
1 −

x2

2
(43)

fhi(x) = (x1 +
x2

2

2
)flo(x) (44)

−5 ≤ x ≤ 5

The high-fidelity global minimum occurs at x =
(−5.,−.0997) and the low-fidelity minimum occurs at
x = (0., 5.).
Table 4 displays the SBO results for each of the cor-

rections applied to the low-fidelity function starting
from the point x = (−2., 1.) with an initial trust region
size of 10% of the global bounds (Figures 4-6 display
the high-fidelity, low-fidelity, and corrected low-fidelity
functions for this initial trust region). For this case,
specifically tailored for multiplicative corrections, the
multiplicative corrections do generally outperform the

Table 4 SBO correction results, polynomial prod-

uct test problem.

Correction SBO Fn Evals HF Obj
Approach Iters (LF/HF) Fn Residual
0th add 5 7/6 120.
0th mult 20 21/20 47.1
0th comb 5 7/6 120.
1st add 17 18/24 1.07e-07
1st mult 15 15/21 9.83e-06
1st comb 10 15/19 1.78e-12
Full 2nd add 6 21/13 2.84e-14
Full 2nd mult 4 18/9 2.84e-14
Full 2nd comb 4 18/9 2.84e-14
FD 2nd add 6 29/27 2.84e-14
FD 2nd mult 5 28/23 2.84e-14
FD 2nd comb 5 28/23 2.84e-14
BFGS 2nd add 9 20/19 7.18e-12
BFGS 2nd mult 9 25/19 1.59e-12
BFGS 2nd comb 9 24/19 2.84e-14
SR1 2nd add 9 22/19 2.84e-14
SR1 2nd mult 8 25/17 7.11e-14
SR1 2nd comb 8 22/17 2.84e-14

additive corrections, although not by a large mar-
gin. The second-order approaches are successful and
terminate through hard convergence, the first-order
approaches are successful and terminate through soft
convergence criteria, and the zeroth-order approaches
are unsuccessful. The combined/multipoint correc-
tions mirror the effective multiplicative corrections,
and even outperform both the additive and multiplica-
tive corrections in the first-order case. The initial trust
region size is set consistently for each of the methods,
but is too restrictive for the second-order correction
methods. With a larger initial trust region, additive
second-order will converge in as few as 4 iterations and
multiplicative second-order will converge in only 1 it-
eration (exact for this problem).

Figure 10 displays the convergence rates for the
zeroth, first, and second-order additive and multiplica-
tive correction approaches. In Figure 10(a), superior
convergence rates are again evident in the second-order
correction approaches. Figures 10(b) and 10(c) com-
pare the convergence rates for the finite difference,
BFGS quasi, and SR1 quasi second-order corrections
to the first-order and full second-order corrections.
The finite difference second-order convergence rates
again mirror the full second-order rates (their iteration
histories in Figure 10(b) are identical), and the quasi
second-order corrections outperform the first-order but
display a lag relative to second-order. For this prob-
lem, SR1 updating slightly outperforms BFGS updat-
ing.

Example 3. Burgers Boundary Control

In this example, the SBO approach is applied to a
model, nonlinear PDE constrained optimization prob-
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Fig. 10 Convergence comparison for zeroth, first,

and second-order corrections to the polynomial

product test problem.

lem. The PDE is the transient, viscous Burgers equa-
tion

y,t + (y
2/2),x − (νy,x),x = 0 (45a)

for (t, x) ∈ (0, 1] × [0, 1] subject to the boundary con-
ditions

νy,x + y = 0 at x = 0 (45b)

νy,x − y = u at x = 1 (45c)

and with initial condition

y(0, x) = sin(π tan(cs(2x− 1))/ tan(cs)) . (45d)

For the examples shown here, ν = 0.01, cs = 1.3, and
u is the design (control) variable at the right boundary.
The objective functional is

J(u, y) = α
u2

2
+

∫ 1

0

∫ 1

0

1

2
(y(t, x)− ŷ(x)) dx dt (46)

where the penalty on the magnitude of the control is
α = 1/1000 and the target solution ŷ(x) = y(0, x).
The optimization problem is then

min
u∈U

J(u, y) (47)

such that y(t, x) satisfies (Eq. 45) and U = IR. Ob-
viously, this model problem is far simpler than the
large-scale target applications for which an SBO ap-
proach is appropriate. However, the small size of this
one-dimensional PDE allows us to explore the per-
formance of the SBO approaches while still retaining
some of the salient features — nonlinearity and tran-
sients — typical of many large-scale applications.

Equation (45a) is discretized using a discontinuous
Galerkin (DG) method in space with fourth-order ex-
plicit Runge-Kutta in time.15 In addition to providing
a robust, stable, and high-order accurate method for
solving conservation laws, DG also readily allows for
multi-fidelity modeling where low-order models can
be constructed for the same mesh topology by re-
ducing the local polynomial order on each element.
In this example, our high-fidelity model is based on
a 40 element discretization using quadratic polyno-
mial (p = 2) representations on each element while
the low-order models use the same mesh, but with
p = 1 or p = 0 polynomials on each element and with
larger time-steps commensurate with the stability lim-
its of RK-4. Figure 11 shows the variation, with u,
of the objective function value, gradient, and Hessian
for each model. The objective function value for the
p = 1 model is nearly indistinguishable from that of
the p = 2 “truth” model although there are observable
differences between the two models for the gradient
and Hessian. However, the lower-fidelity model con-
structed of a p = 0 (i.e. piecewise constant) solution
representation shows differences even in the objective
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Fig. 11 Comparison of objective function, gradi-

ent, and Hessian values for Burgers equation multi-

fidelity models

function value, including the value and location of the
minimum.∗

From the structure of the optimality landscape in
Fig. 11, we have applied the additive SBO correction
approach using 0th, 1st, and 2nd order corrections. All
gradient and Hessian evaluations were performed using
finite difference approximations (first-order forward for
the gradient and second-order central for the Hessian).

SBO with p = 0 model

With the p = 0 model, Fig. 11 shows that the mini-
mum is clearly shifted with respect to the high-fidelity
model p = 2. This indicates that the 0th-order SBO
model will not be effective and this is confirmed by
the SBO results. Zeroth order correction with the
p = 0 model was only able to perform one useful up-
date (i.e. it found the optimal solution to the p = 0
model) but was then unable to further improve the
solution of the high-fidelity model. Using 1st-order
additive SBO corrections allowed for three successful
SBO iterations with a final high-fidelity gradient of
O(10−4). However, further SBO iterations with the
1st-order correction make no further improvement in
the solution of the high-fidelity problem. Finally, with
2nd-order corrections, the gradient of the high-fidelity
model converges to O(10−6), our convergence toler-
ance, in four iterations.

SBO with p = 1 model

We now consider the p = 1 model which provides
a more accurate prediction of the objective function,
although there are still noticeable differences in the
gradient and Hessian (see Fig. 11). For this model with
0th-order additive corrections, two useful iterations

∗Note the small oscillations in the p = 0 Hessian are due to
the use of the Lax-Freidrichs flux in our DG method which is
not differentiable at y = 0. Using a smoothed flux, such a Roe
with entropy fix, would prevent such oscillations.

were performed with a slightly better final solution
than using the p = 0 model. The performance of the
1st-order additive correction for the p = 1 model was
similar to that achieved with the p = 0 model with the
gradient error in the high-fidelity solution saturating
at O(10−4). However, with 2nd-order corrections, the
added fidelity of the p = 1 model resulted in O(10−6)
convergence in only two iterations.

Summary

We conclude the discussion of our SBO results for
Burgers equation with the caveat that the optimiza-
tion problem (Eq. 47) is too “easy” to see a dramatic
difference in the number of function evaluations or
iterations required for the different SBO corrections.
This is primarily due to the fact that there is only one
control variable u and the objective function is nearly
quadratic (see Fig. 11). Nevertheless, this example
does highlight several important issues:

• The flexibility of DG methods provides a conve-
nient means of constructing discretization-based
low-order models through p de-refinement with-
out requiring changes to the mesh topology.

• For this problem, additive 1st-order corrections
within the SBO framework provide solutions
within O(10−4) for the high-fidelity problem in
only 3 iterations. While further improvement in
the solution was not possible, this may be suffi-
ciently converged for many engineering applica-
tions.

• With 2nd-order corrections, the SBO framework
was able to compute accurate solutions within
2–4 SBO iterations (depending on the fidelity
of the model). However, this comes at the ex-
pense of requiring Hessian information, which we
computed using finite-differencing of the finite-
difference gradient. This approach is only practi-
cal for very small control spaces and more complex
problems will require either finite differencing of
adjoint-based gradients or quasi-Newton approx-
imations for second-order information.

We plan to explore these issues further and extensions
of this problem to include multiple control variables
(e.g. a polynomial parameterization of an unsteady
control) are currently underway.

Conclusions

This paper has demonstrated that second-order cor-
rections can lead to more desirable convergence charac-
teristics in model-hierarchy surrogate-based optimiza-
tion than the currently popular first-order correction
approaches. Additive corrections are shown to be
preferable to multiplicative corrections in almost all
cases. For a test problem specifically constructed for
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the benefit of multiplicative corrections, the multi-
plicative corrections do demonstrate a slight advan-
tage, but not by a significant amount.
Multipoint corrections, which combine additive and

multiplicative corrections in an adaptive way, are
shown to be marginally effective when an additional
matching condition of the previous design iterate is
chosen. While the information from the previous de-
sign iterate is freely available, this is likely not the best
choice as it biases the global accuracy of the correc-
tion in the direction the algorithm has already been,
not where it is going. Forward-looking matching con-
ditions, while not freely available, will likely be more
effective.
Since full second-order information is not commonly

available, finite difference and quasi-Newton second-
order corrections have also been developed and demon-
strated. The finite difference second-order corrections
require additional function evaluations to estimate the
second derivatives, but the convergence characteristics
closely follow that of the full second-order corrections.
The quasi-Newton second-order corrections do not re-
quire any additional function evaluations and consis-
tently outperform the first-order corrections. They do
however exhibit a convergence lag relative to the full
and finite difference second-order corrections as they
accumulate curvature information from the sequence
of gradients. Both the BFGS and SR1 quasi-Newton
updates were effective, with BFGS exhibiting a slight
performance advantage over SR1 on average.
Overall, the introduction of new full, finite differ-

ence, and quasi-second-order correction approaches
should assist in extending the performance of multi-
fidelity surrogate-based optimization algorithms and
improve their relative performance with respect to
competing single-fidelity approaches.
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