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Abstract

This paper provides an overview of several approaches to formulating and solving optimization under 
uncertainty (OUU) engineering design problems. In addition, the topic of high-performance computing and 
OUU is addressed, with a discussion of the coarse- and fine-grained parallel computing opportunities in the 
various OUU problem formulations. The OUU approaches covered here are: sampling-based OUU, surro-
gate model-based OUU, analytic reliability-based OUU (also known as reliability-based design optimiza-
tion), polynomial chaos-based OUU, and stochastic perturbation-based OUU.
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1. Introduction
1.1 Overview

One of the criticisms of the traditional engineering design optimization process is that it often pro-
duces optimal designs that are not robust to perturbations in the design parameters or other uncertain pa-
rameters (e.g., manufacturing tolerances, atmospheric conditions, etc). An example of such an occurrence is 
shown in Figure 1 (Giunta, 2002a) where the objective function is highly sensitive to perturbations in de-
sign parameter x2. In this application, the optimization process found the design parameter values that 
maximized the objective function, but the resulting optimal design was not acceptable from an engineering 
standpoint, i.e., the optimal design was not robust.

While there are some post-optimality criteria that provide insight into the sensitivity of an optimal de-
sign to parameter perturbations (e.g., gradients and Hessians), these criteria only provide a local measure of 
sensitivity at the optimal design point. In many engineering system design applications, broader measures
of objective and constraint function sensitivity are often needed. Statistical measures, such as mean value, 
standard deviation, and probability of failure can provide such information. These statistical measures are 
available to the engineer through the various types of uncertainty quantification and reliability estimation 
software tools that are now available. Thus, it is a natural extension for engineers to incorporate statistical 
measures directly into the design optimization process. This has led to areas of study known as robust de-
sign, reliability-based design optimization, and optimization under uncertainty, among others. We have 
elected to use the optimization under uncertainty designation, as it reflects our interests in both design for 
robustness, which focuses on optimizing the mean response of a system, and design for reliability, which 
focuses on optimizing the extreme response of a system. 

The optimization under uncertainty approaches described in this paper combine optimization methods 
with uncertainty quantification and reliability estimation methods. As one might expect given the computa-
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tional burden that is created both in optimization alone and in uncertainty quantification alone when applied 
to realistic engineering applications, OUU becomes computationally expensive for all but the most trivial 
of problems (Trosset, 2000). For this reason, there is much research underway that is aimed at decreasing 
the computational expense of solving OUU problems. This paper provides an overview of some of these
research activities, along with a discussion of the opportunities for both coarse- and fine-grained parallel 
computing within OUU methods. Clearly, parallel computing must be exploited if OUU methods are to 
have an impact on simulation-based engineering design activities.

2. Background
Optimization under uncertainty is distinct from the field of stochastic programming (cf., Birge, 1997), 

since OUU problem formulations typically lack the specific mathematical structure often found in stochas-
tic programming (e.g., linear objective and constraint functions, future time recourse). In some sense, OUU 
can be thought of as nonlinear programming under uncertainty. That is, OUU problems often involve 
nonlinear implicit objective and constraint functions, where in a function evaluation may require the execu-
tion of a computationally expensive “black box” engineering simulation code.  However, OUU problem 
formulations differ from traditional nonlinear programming in that OUU problems contain non-
deterministic parameters as well as statistical measures in the objective function and/or constraint specifica-
tions. Since these statistical measures often cannot be integrated analytically due to the nonlinear, implicit 
nature of the response functions, they must be approximated numerically.

Note that this paper focuses on optimization problem formulations that contain uncertain parameters 
which are characterized with statistical probability distributions, i.e., aleatoric uncertainties. This paper
does not cover optimization problem formulations that contain non-probabilistic (e.g., epistemic, fuzzy or 
possibilistic) uncertain parameters. Ferson, et al., (2004) provides an overview of the state of the art in epis-
temic uncertainty propagation methods. The topic of optimization under non-probabilistic uncertainty is 
discussed in other sources (cf., Maglaras, et al., 1997).

A notional deterministic optimization process is shown in Figure 2, where the objective func-
tion and constraint function evaluations obtain data through an execution of one or more simulation codes. 
A notional OUU process is shown in Figure 3, in which the objective/constraint function evaluation re-
quires the execution of an uncertainty quantification (UQ) procedure. In this case, the UQ procedure could 
be one of the many variants of Monte-Carlo sampling, or it could be one of the several types of analytic 
reliability estimation methods, or other uncertainty propagation approaches. The use of a UQ procedure to 
estimate statistical metrics within the optimization process often makes the OUU process computationally 
expensive. Hence, solving OUU problems often requires the use of parallel computing, both within the 
simulation code where possible and also within the UQ and optimization methods. This report describes 
some of the current approaches to OUU that are under investigation, along with the opportunities for paral-
lel computing in each approach.

2.1 OUU and High Performance Computing
The U.S. Department of Energy (DOE) currently operates numerous multi-teraflop (1 teraflop = 1 tril-

lion floating point operations per second) computing assets at various laboratory sites. As of mid-2004,
several of these assets have peak performance levels in the tens of teraflops. Near- and long-term DOE 
plans call for continued computing performance improvements in order to reach the 100 teraflop level and 
eventually the 1,000 teraflop (1 petaflop) level. As an example, currently under construction at Sandia Na-
tional Laboratories is a computer with 11,648 processors that should, by January 2005, perform calcula-
tions at a peak rate of 41.5 teraflops. This computer will be upgraded to achieve 100 teraflops in the 2005-
2006 timeframe (Sandia, 2004).

Historically, DOE computing needs have been based on a “capability model,” that is, the ability to 
execute a single simulation code job that performs fine-grained massively parallel calculations on hundreds 
or thousands of processors for days or weeks of run time. More recently, however, is a move within DOE 
to procure supercomputers that also support a “capacity model” of computing, that is, the ability to execute 
concurrently a large number of serial and/or small-scale parallel simulation code jobs. Typically, these jobs
run on tens or hundreds of processors for minutes or hours of run time. Current computational resources at 
the DOE laboratory sites are a mixture of capability computing machines and capacity computing ma-
chines, with some machines serving both roles.
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When optimization, UQ, and OUU methods are applied to real-world engineering applications, one 
often encounters computational bottlenecks unless both capacity and capability computing resources can be 
employed in the solution process. That is, coarse-grained parallel computing is exploited for aspects of the 
optimization/UQ/OUU methods that have inherent independence, and fine-grained parallel computing is 
exploited in solving the large system of state equations that occurs in many physics-based simulations. For 
example, coarse-grained computing could be used in an uncertainty quantification study that employs 
Monte Carlo sampling, since all of the simulation jobs are independent and could be executed concurrently. 
Similarly, in a gradient-based optimization study there is either n+1 (forward difference) or 2n+1 (central 
difference) independent simulation code jobs when estimating the terms in an n-dimensional gradient vec-
tor via finite difference methods. Fine-grained parallel computing is needed when the storage requirements 
for the state equations exceeds the memory available on a single computer processor. Hence, the system of 
state equations must be decomposed and solved in a distributed manner across multiple processors. 

The DAKOTA toolkit developed at Sandia National Laboratories (Eldred, et al., 2002a) has been ex-
tensively used for both routine and large-scale massively parallel optimization studies and UQ studies (El-
dred, et al., 2002a). In the past several years, DAKOTA’s methods for optimization and UQ have been cou-
pled to enable optimization under uncertainty studies. One of the key attributes of the DAKOTA toolkit 
that enables its use on high-performance computers is its capability for “multilevel parallelism” (Eldred et 
al., 2000).  In multilevel parallelism, the user exploits opportunities for parallel execution both within a 
physics simulation code and within an optimization algorithm or an uncertainty quantification method. For 
example, two-level parallelism is accomplished via concurrent execution of simulation code jobs that are 
needed for a finite difference gradient estimate (coarse-grained parallelism), with each simulation code job 
running on multiple processors (fine-grained parallelism).  Three-level parallelism is accomplished if, for 
example, multiple independent simulation codes are needed to compute the objective function. Four-level 
parallelism is accomplished if, for example, multiple optimization sub problems must be solved within an 
overall optimization strategy, as occurs in solving mixed integer nonlinear programming problems using a
branch-and-bound algorithm (Eldred, et al., 2002a). 

While there has been significant recent interest in OUU algorithms and methods, there has been rela-
tively little discussion of the opportunities for parallel computing in the different OUU approaches. Since 
parallel computing can have a significant impact on the utility of an optimization or an uncertainty quanti-
fication approach, some consideration of the impact of parallel computing on OUU is warranted. The text 
below provides a description of various approaches to OUU, as well as a discussion of how parallel com-
puting can be applied to each approach in order to exploit opportunities for both coarse- and fine-grained 
parallel computing.

3. Description of OUU Methods
In this paper, OUU methods are separated into different categories based on the uncertainty quantifi-

cation approach that is employed. These categories are: sampling-based methods, surrogate modeling 
methods, analytic reliability methods, and polynomial chaos methods. Provided below is a limited technical 
description of each category of OUU method, along with a discussion of the opportunities for parallel com-
puting in that category of OUU method. 

For discussion purposes, we formulate a notional OUU problem as:

minimize: f(d,u), ( 1 )

where f( ) is the objective function, d is the vector of design parameters, and u is the vector of probabilistic 
uncertain parameters. In this formulation, the design parameters are those that can be controlled by the user, 
whereas the uncertain parameters are outside the control of the user. If the mean response of the objective 
function is of interest, then a robust design OUU formulation is:

minimize: E[f(d,u)], ( 2 )

where E[ ] denotes the expected value operator. If the extreme response (i.e., low probability response) of 
the objective function is of interest, then a reliability-based design OUU formulation is:

minimize: Prob[f(d,u) > f*], ( 3 )
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where Prob[ ] denotes an estimate of the probability that the objective function exceeds a critical threshold, 
f*.  The methods discussed below can be applied to both the robust design and reliability design variants of 
OUU.

3.1 OUU with Sampling Methods
Figure 5 illustrates the sampling-based OUU approach in which the uncertainty quantification process

is performed via Monte Carlo sampling or one of its variants (Giunta, et al., 2002). This is the simplest ap-
proach to OUU, in that the UQ sampling process is repeated over the uncertain variables for each vector of 
design parameters generated by the optimization algorithm. While this approach is attractive due to its sim-
plicity, it has numerous pitfalls. For example, a large number of samples must be taken in each UQ evalua-
tion in order to resolve low probability events. Given that the optimization algorithm may generate hun-
dreds or thousands of trial design variable vectors, the computational expense of this approach can quickly 
become intractable. 

Coarse-grained parallel computing can address some of the computational expense of this approach, 
since all of the objective function evaluations in each UQ process are independent and can be executed 
concurrently. In addition, there is opportunity for coarse-grained parallel computing in the optimization 
algorithm such as in finite difference gradient evaluations, line search points, genetic algorithm population 
members, or pattern search points.

3.2 OUU with Surrogate Models and Sampling Methods
Figure 4 shows the surrogate-based approach to OUU. In this approach, sampling is performed on 

some type of surrogate model, where the surrogate model is a low-cost alternative to the original simulation 
code. There is considerable flexibility in the form of the surrogate model. For instance, it can be a mathe-
matical model that is created by fitting a multidimensional surface function (e.g., low-order polynomials, 
neural networks, radial basis functions, etc.) to a set of simulation code data points (cf., Giunta, et al., 
2004). Alternatively, the surrogate model can be physics-based if it in some way neglects some of the detail 
or complexity that is modeled in the original simulation code (e.g., the surrogate can be a coarse finite ele-
ment model of the original simulation finite element model).

The key aspect of the surrogate-based OUU approach is that use of a surrogate model trades accuracy 
for efficiency in the UQ portion of the OUU algorithm. That is, the surrogate model is cheap to evaluate but 
it is less accurate than the original model. In previous studies by Eldred, et al. (2002b), it was found that a 
trust-region optimization algorithm was needed to prevent the optimizer from exploiting inaccuracies of the 
surrogate model. On a series of test problems investigated in this study, surrogate-based OUU approach 
provided a 2x-10x savings in the number of function evaluations versus a sampling-based OUU approach.

Coarse-grained parallel computing opportunities in the surrogate-based OUU approach depend on the 
form of the surrogate model. For surface fit surrogate models, relatively few samples are needed from the 
original simulation code (e.g., O(n to n2) samples for an n-dimensional vector d).  Once the surface fit sur-
rogate model is constructed, the UQ samples usually can be evaluated at virtually no cost, so parallel exe-
cution of the UQ samples is usually not an issue. For physics-based surrogate models, the cost of the UQ 
samples may or may not be negligible. Thus, the user must decide if coarse-grained parallel execution of 
the samples is warranted.

3.3 OUU with Analytic Reliability Methods
Figure 6 depicts the use of analytic reliability methods (Haldar and Mahadevan, 2000) within OUU.

The acronyms in the figure are: MV - mean value method, AVM - advanced mean value method, AMV+ -
iterated advanced mean value methods, FORM - first-order reliability method, and SORM - second-order 
reliability method. The primary distinguishing feature of these UQ methods versus the sampling-based UQ 
methods is that the analytic reliability methods employ either first- or second-order approximations of the 
limit state function. Thus, the statistical metrics needed for the objective/constraint function values are 
computed analytically from the approximate state function, i.e., sampling of the state function is not used. 
With the exception of the MV method, all of the analytic reliability methods employ an iterative process to 
locate the most-probable-point (MPP) on the limit state function. This requires an optimization sub problem
to be solved each time the UQ portion of Figure 6 is evaluated. For additional information on the various 
forms of the analytic reliability methods and reliability-based design optimization (RBDO) examples, see 
the work of Eldred, et al. (2004b).
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The analytic reliability OUU method (a.k.a. RBDO) offers opportunities for coarse-grained parallel 
computing in both the construction of the analytic approximation of the limit state function and in the solu-
tion of the MPP optimization sub problem. For example, if the optimizer generates k trial design parameter 
vectors, d1,…,dk, then the gradient terms /f d∂ ∂  can be evaluated via finite differences in parallel, and the 

subsequent k MPP searches can be performed in parallel.

3.4 OUU with Polynomial Chaos Methods
Figure 7 illustrates the use of polynomial chaos expansion (PCE) methods (Ghanem and Spanos, 

1991; Ghanem and Red-Horse, 1999; Walters, 2003) in the OUU process. This is a fundamentally different 
approach than either the sampling-based or analytic reliability OUU methods. In the PCE-based approach 
to OUU, the statistical properties of the uncertain parameters, u, are decomposed using spectral expansion 
methods, in a manner analogous to the use of eigenvalues and eigenvectors to decompose the displace-
ments and vibration modes of a structural system. The PCE decomposition process generates a large system 
of coupled state equations. When this system is solved, the resulting data can be aggregated, using the PCE 
basis functions, to produce statistical metrics on the response function.

For example, consider a system of state equations of the form Ax=b, where the x-vector is unknown, 
and where the uncertain parameters, u, only affect the coefficients in A. If the PCE approach employs m
basis functions, then a single large-scale linear system can be formed, A’x’=b’, where A’ is an m-by-m
block matrix that contains the terms generated by the PCE method. Once this system is solved, the terms in 
the solution vector, x’, and the PCE basis functions are used to approximate the statistical metrics that are 
needed as objective/constraint data in the OUU problem.

The opportunity for parallel computing with the PCE-based OUU occurs in solving the large-scale 
system of coupled state equations. In this case, fine-grained parallel computing is necessary to solve 
A’x’=b’, since A’ is likely to be extremely large (O(105 – 107) terms) and sparse. Note that this PCE-based 
approach to OUU is the only approach, beyond that of a parallel simulation, for which fine-grained parallel 
computing can be exploited within the UQ process.

3.5 Other OUU Methods of Interest
An OUU method that merits discussion here, but one with which the authors have little experience, is 

the stochastic search and optimization methods of Spall (2003). These methods are specifically intended for 
use in design-for-robustness applications (see Equation 2). Interestingly, this OUU approach has the struc-
ture of a deterministic optimization approach (Figure 2) since it does not include a specific procedure for 
uncertainty quantification. The key aspects of Spall’s OUU approach is the use of stochastic finite-
difference approximations in which the n gradient terms for the objective function, /f d∂ ∂ , are computed

by employing a random vector of design parameter perturbations, ∆d. In Spall’s simultaneous perturbation 
stochastic approximation (SPSA) optimization method, /f d∂ ∂ is estimated via finite differences using two

objective function evaluations. Following the notation used in this paper (and omitting the “gain” terms 
shown in Spall’s text), /f d∂ ∂  is estimated as:

1

( , ) ( , )

2

( , ) ( , )

2 n

f d d u f d d u

d
f

d
f d d u f d d u

d

+ ∆ − −∆ 
 ∆ ∂

≈  
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 ∆ 

M ( 4 )

where u is a randomly selected vector of uncertain parameters that is different in each of the f(d+∆d, u) and 
f(d-∆d, u) evaluations. In performing this approximation, the SPSA approach makes a tradeoff between 
gradient accuracy and optimization method convergence. That is, the SPSA optimization algorithm exhibits 
convergence only in the limit as the number of optimization algorithm iterations goes to infinity. A com-
parison of the SPSA approach versus some of the other OUU approaches described in this paper is planned 
in our future work.
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The SPSA optimization algorithm is primarily a serial process, as there is not a line search or trust 
region search phase in the algorithm that would provide an opportunity to exploit coarse-grained parallel 
computing. However, coarse-grained parallel computing can be employed in evaluating the two function 
needed to estimate the SPSA gradient. The finite-difference stochastic approximation (FDSA) algorithm, 
which is a variant of SPSA, is more amenable to coarse-grained parallel computing since FDSA gradient 
estimates require 2n function evaluations. 

4. Summary
This paper has provided an overview of several approaches to optimization under uncertainty, along 

with a description of the parallel computing opportunities that are afforded in each OUU approach. Due to 
the computational expense of coupling non-deterministic uncertainty quantification methods with nonlinear 
optimization algorithm and high-fidelity physics-based simulations, high-performance parallel computing 
assets must be employed when OUU methods applied to engineering design activities.
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Figure 1. Parameter study data from Giunta (2002a), showing a steep-walled cliff adjacent to the maximum 
values (dark/red region) of the objective function, f(x1,x2). The global maxima are not robust to perturba-
tions in x2.

Figure 2. A notional optimization loop between an optimization algorithm and a simulation code. 
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Figure 3. A notional optimization under uncertainty problem formulation, with an uncertainty quantifica-
tion (UQ) method embedded inside an optimization loop.

Optimizer

Objective & Constraint 
Function Evaluation

Uncertainty Quantification 
Method

Simulation Code

Optimizer

Objective & Constraint 
Function Evaluation

Uncertainty Quantification 
Method: Sampling

Simulation Code

Figure 5. Optimization under uncertainty with a surro-
gate-based sampling-based method for uncertainty 
quantification.
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Figure 4. Optimization under uncertainty with a 
sampling-based method for uncertainty quantifi-
cation.



10
American Institute of Aeronautics and Astronautics

Optimizer

Objective & Constraint 
Function Evaluation

Uncertainty Quantification 
Method: Analytic Reliability

MPP Search via: MV, AMV, 
AMV+, FORM, SORM

Simulation Code

Figure 6. Optimization under uncertainty with an analytic reliability method for uncertainty quantification.

Figure 7. Optimization under uncertainty with a polynomial chaos representation of uncertainty.
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