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Abstract

Single-level parallel optimization approaches, thos
in which either the simulation code executes in parall
or the optimization algorithm invokes multiple
simultaneous single-processor analyses, have b
investigated previously and been shown to be effecti
in reducing the time required to compute optima
solutions. However, these approaches have cle
performance limitations which point to the need fo
multiple levels of parallelism in order to achieve pea
parallel performance. Managing multiple simultaneou
instances of massively parallel simulations is
challenging software undertaking, especially if th
implementation is to be flexible, extensible, and gener
purpose. This paper focuses on the design for multilev
parallelism as implemented within the DAKOTA
iterator toolkit. Various parallel programming model
are discussed, although emphasis is given to a mas
slave implementation using the Message Pass
Interface (MPI). A mathematical analysis is given o
achieving peak efficiency in multilevel parallelism by
selecting the most effective processor partitionin
schemes. This analysis is verified in som
computational experiments.

Introduction

Computational methods developed in fluid
mechanics, structural dynamics, heat transfer, nonline
mechanics, and numerous other fields of engineeri
can be an enormous aid to understanding the comp
1
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physical systems they simulate. Often, it is desired
use these simulations as virtual prototypes to obtain
acceptable or optimized design for a particular syste
This enhances the utility of these computation
methods by enabling their use for more than just poi
solutions; simulation tools can be coupled wit
optimization methods to automatically determin
system performance improvements throughout t
product life cycle.

Toward these ends, a general purpose itera
toolkit has been developed for the integration o
commercial and in-house analysis capabilities wi
broad classes of systems analysis tools. Written in C+
the DAKOTA (Design Analysis Kit for OpTimizAtion)
toolkit1 is a flexible, extensible interface betwee
analysis codes and iteration methods. In addition
optimization methods and strategies, the DAKOT
toolkit implements uncertainty quantification with direc
and sampling methods, parameter estimation w
nonlinear least squares solution methods, and sensitiv
analysis with general-purpose parameter stu
capabilities. By employing object-oriented design t
implement abstractions of the key concepts involved
iterative systems analyses, the DAKOTA toolki
provides a flexible and extensible problem-solvin
environment for current and future problems of interes
Through DAKOTA, point solutions from simulation
codes can be used for answering more fundamen
engineering questions, such as “what is the be
design?”, “how safe is it?”, or “how much confidence d
I have in my answer?”.

In addition to its role as a problem-solving
environment, the DAKOTA toolkit also provides a
platform for research and development of advanc
methodologies which focus on increasing the robustne
and efficiency of systems analyses for computationa
complex engineering problems. The thrusts of th
research are currently (1) the development
sophisticated and adaptive “meta-level” strategies su
as multilevel hybrid optimization, sequentia
approximate optimization, optimization unde
uncertainty, and parallel branch and bound usin
algorithm libraries like DOT2, NPSOL3, OPT++4, and
SGOPT5 as building blocks (Figure 1), and (2) the
ronautics and Astronautics
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Figure 1. Iterator and strategy class hierarchies within DAKOTA.
development of parallel processing approaches for
massively parallel (MP) and distributed architectures,
the focus of this paper.

The opportunities for exploiting parallelism in
optimization can be categorized into four main areas:
1. Algorithmic coarse-grained parallelism: This paral-

lelism involves the exploitation of multiple inde-
pendent function evaluations. Examples of
optimization algorithms containing coarse-grained
parallelism include:
a.) Gradient-based algorithms: finite difference

gradient evaluations, speculative optimization6,
parallel line search, multiple-secant BFGS7.

b.) Nongradient-based algorithms: genetic algo-
rithms (GA’s), coordinate pattern search (CPS),
parallel direct search (PDS)8, Monte Carlo.

c.) Approximate methods: design and analysis of
computer experiments (DACE) evaluations for
building response surfaces and training neural
networks.

d.) Multi-method strategies: optimization under
uncertainty1, branch and bound9, multi-start
local search5, island-model GA’s5, GA’s with
periodic local search5.

2. Algorithmic fine-grained parallelism:This involves
computing the basic computational steps of an opti-
mization algorithm (i.e., the internal linear algebra)
in parallel. This is primarily of interest in large-
scale optimization problems and simultaneous anal-
ysis and design (SAND).

3. Function evaluation coarse-grained parallelism:
This involves simultaneous computation of separa-

ble parts of a single function evaluation, where a
function evaluation may contain multiple response
functions requiring multiple simulations. Examples
include separate simulations for multiple objective
and constraint functions, multiple disciplinary ana
yses for MDO, etc.

4. Function evaluation fine-grained parallelism: This
involves parallelization of the solution steps within
a single analysis code. Examples of Sandia-deve
oped MP analysis codes include PRONTO3D10,
COYOTE11, MPSalsa12, ALEGRA13 PCTH14,
SIERRA15, etc.

In both the algorithmic and function evaluation cases,
coarse-grained parallelization requires very little inter-
processor communication and is therefore essentially
“free,” meaning that there is little loss in parallel effi-
ciency due to communication as the number of proce
sors increases (assuming that there are enough separ
computations to utilize the additional processors). Fin
grained parallelism, on the other hand, involves much
more communication among processors and care mu
be taken to avoid the case of inefficient machine utiliz
tion in which the communication demands among pro
cessors outstrip the amount of actual computational
work to be performed. The question arises, then, if mu
tiple types of parallelism can be exploited, how should
the amount of parallelism at each level be selected so
to maximize the parallel efficiency of the study?

We begin by discussing our prior work with paralle
optimization approaches that utilize a single level o
parallelism (either parallel computation of independe
simulations or parallel computation within a single
2
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simulation - categories 1 or 4 above). We then motivate
the need for the application of tools that exploit
parallelism at multiple levels and provide a
mathematical analysis of multilevel parallelism which
seeks to answer the question of how to maximize
parallel efficiency. Following a description of parallel
programming models, DAKOTA’s implementation of a
master-slave paradigm using the Message Passing

Interface (MPI) standard16,17 will be presented along
with the results from some computational experiments.
This implementation is focused on both networks of
workstations and the Intel TeraFLOPS supercomputer18.
The TeraFlops computer, also known as ASCI Red,
contains over 9000 Intel Pentium Pro processors and is
currently the fastest computer in the world with a peak
speed of 1.8 trillion floating point operations per second.

Single-level Parallel Investigations

Single-level approaches which exploit either
algorithmic coarse-grained parallelism or function
evaluation fine-grained parallelism have been
investigated in previous work20. These approaches as
well as their observed limitations are summarized in the
following paragraphs. The worst case fire application
uses a parallel optimization algorithm which exploits
algorithmic coarse-grained parallelism by invoking
multiple independent simulations of single-processor
codes, one per processor. The CVD reactor design study
demonstrates function evaluation fine-grained
parallelism through sequential optimization with an MP
simulation code.

Determination of Worst Case Fire Environments

Parallel coordinate pattern search (CPS) from the
SGOPT5 package was used for improving efficiency in
optimization of fire surety simulations. Individual ther-
mal simulations executed on nodes of the IBM SP2
using the native loadleveler software to select lightly
loaded nodes, and multiple simulations executed simul-
taneously.

Figure 2 shows the optimization wall clock histo-
ries for serial and parallel CPS. With 3 commercial
QTRAN licenses, reductions in wall-clock time of a fac-
tor of 3 for the parallel CPS optimization were observed
over that of serial CPS. With unlimited QTRAN
licenses, a factor of 6 savings would have been achiev-
able. These speedups reflect perfect parallel efficiency
as expected for this coarse-grained approach since there
is negligible communication overhead. When compared
with serial nonlinear programming (NLP), relative sav-
ings with parallel CPS were a factor of 10 (3 licenses) or
20 (unlimited licenses) since NLP required use of more

tightly converged and expensive analyses to enfor
smoothness on the order of its finite difference step siz

While pattern search optimizers may use of varie
of templates (e.g., PDS8), this particular pattern search
optimizer executes 2 simulations in each ofn parameter
directions during an iteration. The end of an iteration
a synchronization point for the parallel algorithm; thus
2n simulations at most may be performed in paralle
Then, the maximum possible parallel speedup relative
serial CPS for the 3 parameter fire surety applicatio
using single-processor analyses is 6. This shows clea
the limitation of this single-level approach in that para
lel speedup is limited by the number of independe
evaluations on a particular optimization cycle. Add
tional levels of parallelism are needed to extend this pe
formance.

CVD Reactor Design

Massively parallel simulations have been employe
in gradient-based optimization studies to allow for exp
ditious analysis of high fidelity models of the chemi
cally reacting flows within a CVD reactor. MPSalsa

simulations21,22 were executed on a partition of nodes o
Sandia’s 1840 node Intel Paragon.

A coarse mesh was used for initial optimizatio
studies to efficiently locate promising areas of parame
space. An accurate fine mesh was then used to de
mine an optimal solution. Figures 3 and 4 show the op
mization progression for the coarse and fine mesh
respectively. Each coarse mesh function evaluation to
2-3 minutes on 256 Intel Paragon processors, while ea
fine mesh function evaluation required 5-8 minutes o
512 processors. For each problem size, there was
trade-off between computational speed-up and interp
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Optimization efficiency comparison: Objective function vs. Time

Figure 2. Optimization history comparison: Best
objective function value vs. wall-clock time in hours
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3
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cessor communication overhead and these numbers of
processors achieved an effective balance for these prob-
lem sizes. This points clearly to the efficiency bottle-
neck in this approach. If, for a given problem size,
communication will eventually dominate computation
as the number of processors is increased, then the
speedup cannot scale with large numbers of processors
without introducing additional levels of parallelism.

Multilevel Parallelism

It has been shown that optimization approaches

which utilize single-level parallelism can have clea
performance barriers. Parallel optimization of single
processor simulations is limited by the number o
independent evaluations per cycle, and sequen
optimization of parallel analyses is limited by the
practical limit on processors that can be used for a sing
parallel simulation before inter-process communicatio
dominates actual computational work.

These observations point clearly to the need f
multilevel parallelism, in which parallel optimization
strategies coordinate multiple simultaneous simulatio
of multiprocessor codes. This approach is not ne
Reference23 shows nearly linear speedup by evaluatin
the objective functions on the minimum number o
processors and by performing several of these in para
as governed by the independent evaluations of t
parallel direct search (PDS) algorithm. For the purpos
of DAKOTA, a general implementation beyond the
specifics of any one algorithm is needed.

Mathematical Analysis

We motivate our investigation of multi-level
parallel optimization methods by analyzing the relativ
efficiency of a simple, abstract multi-level optimizer
The efficiency of a parallel algorithm is:

                             (1)

whereT(p) is the time required by the algorithm onp
processors, andT(1) is the time required by the bes
known serial version of the algorithm. The relativ
efficiency of a parallel algorithm is

                (2)

where pmin is the smallest number of processors o
which the algorithm can be applied.

The efficiency of a multilevel optimizer must
encompass both the efficiency of the optimizer as w
as the efficiency of the parallelized function evaluatio
Suppose that each iteration of the optimizer requiresκ
function evaluations and that each function evaluatio
uses processors. For simplicity, we make th
following assumptions:
• The time required to communicate an evaluation

request from the master to a slave equals the com
munication time required to communicate a
response from the slave to the master, and these
communication times are the same for all commu
nication between master and slaves.

• The time required to execute the function evalua-
tion is constant for all evaluations.

• The overhead imposed on the master for managin
the communication requests and responses is ne
gible.

Figure 3. Objective function history for a 3 param-
eter CVD reactor optimization on a coarse mesh.

Figure 4. Objective function history for CVD reac-
tor optimization on the fine mesh with initial guess
from the coarse mesh converged solution.

E p( ) T 1( )
pT p( )
----------------=

Ê p( ) E p( )
E pmin( )
--------------------

pminT pmin( )
pT p( )

--------------------------------= =

p'
4
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• That  (i.e., the number of evaluations

per cycle is≥ the number of multiprocessor simula-
tion servers).

• That  which indicates that whenκ is

small compared top - 1,  is sufficiently large to
utilize the allocated processors.

Then the time required for a multilevel master-slave
optimizer to optimize a particular problem withp total
processors is

        (3)

where is the time required to execute a function

evaluation on processors,Tcommis the time required
to perform communication between the master and slave
processors,Tserial is the execution time of the serial
portion of the optimization algorithm,α is the number
of cycles to convergence, and

                            (4)

The valueβ is the maximum number of function
evaluations that any slave performs in each iteration of
the optimization algorithm. This value provides a worst-
case picture of how many function evaluations need to
be computed on a server during a cycle, given that

function evaluations are being computed

simultaneously as long asκ contains enough jobs to
keep the servers busy and that some servers may be idle
towards the end of a cycle. Note that the analysis
assumes for simplicity that the remaining

processors are left idle, although in

practice, one might take the idle processors and run
another simulation (which might lead to improved
efficiency overall whenκ is large). DAKOTA’s design
divides the remainder of processors among each of the
servers.

Suppose that the minimum number of processors on
which a function evaluation can be executed is .

Then for a multilevel master-slave optimization
algorithm, it follows that

(5)

for p ≥ . We have usedpmin = because

this is the smallest number of processors on which the
master-slave algorithm can run (even though this is a

single-level master-slave algorithm with this few

processors). A general evaluation of is no
possible because of the dependence onα. However, for
a given value ofα it possible to evaluate the utility of
multilevel parallelism in a master-slave design.

When applying a multilevel master-slave algorithm
one generally has a value ofκ that is determined by the
optimization algorithm, and the number of processorsp
is selected such thatp ≥ . It remains, then, to

determine the value of for optimization. At one

extreme, , so the algorithm is effectively
single-level parallel using a single multiprocesso

analysis server. At the other, ,

which may also be single-level parallel using multipl
single-processor servers if  andκ ≥ p - 1.

Now assume that is a convex, monotonicall

decreasing function of ; this assumption is usual
satisfied by parallel algorithms. Also, assume th

, the smallest , is large relative toTcomm

and Tserial. Since we are particularly interested in
simulation-based optimization, this assumption
reasonable. Given these assumptions, we c

approximate  as

                  (6)

                     (7)

             (8)

As a function of , this is a function of the form

                           (9)

for some constant C > 0. It follows for

that is maximized at either

or at . Note, however, thatf

is monotonically decreasing, since will be

monotonically increasing unless exhibits superline

speedup. Thus in practice, the maximum value of

is at . Figure 5 illustrates two

examples, one with sublinear speedup (generally seen

κ p 1–
p'

------------≥

p' p 1–
κ

------------≥

p'
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 
 
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superlinear speedup for small (rare in practice,

maximized at ).

This result demonstrates the utility of multilevel
parallelism in a master-slave design. When , a

multilevel parallel master-slave algorithm is always
more efficient than the single-level master-slave
algorithm which uses all processors to compute each
function evaluation. Furthermore, even if , it is

common to have because of the lower bound

on imposed byκ. While the relative efficiency would
be higher in this case ifp were decreased toκ + 1,
requirements on turn around time will often preclude
this possibility. Finally, note that this analysis is not
affected by the value ofκ except for providing this
lower bound on .

A final caveat for this analysis is that the

approximation in Equation 8 will not be particularly
accurate when the floor or ceiling operations round o
the fractions in significantly. Note that in a practica

context,p would be chosen to be a multiple of with
one processor added for the master so as to eliminate
processor remainder. Thus we are primarily concern
with the error introduced by the ceiling operation, whic
involves the previously mentioned issue of idle serve
towards the end ofκ evaluations in a cycle. Figure 6
illustrates this effect with a run-time curve taken from
Shadid and Tuminaro19. Figure 6a shows the run-time of
the simulation code, along with the curve fitted throug
these points. Figure 6b shows the curves for Equation
and 8 for (p = 1000, , andκ = 1000). Note

that the values for Equation 7 are always lower than t
curve for Equation 8, and for low values of , Equatio
7 is strictly below Equation 8 because Equation 7 is on
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Figure 5. Illustration of multilevel optimizer
performance: (a) run time and (b) relative efficiency
for different numbers of processors per simulation.
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Figure 6. Evaluation of round off error: (a) an
idealized curve for a numerical simulation and (b) a
comparison between the efficiencies of Equation 8
(the top curve) and Equation 7 (the bottom curve),
which includes the exact formula for .βp
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evaluated for integral values of . However, the

discretization error is less pronounced for small ,
which have the highest efficiencies. Thus, Equation 8
offers a reasonable approximation.

Underlying Software Design

The DAKOTA (Design Analysis Kit for
OpTimizAtion) iterator toolkit1 utilizes object-oriented
design with C++24 to achieve a flexible, extensible
interface between analysis codes and system-level
iteration methods. This interface is intended to be very
general, encompassing broad classes of numerical
methods which have in common the need for repeated
execution of simulation codes. DAKOTA’s capabilities
for mapping parameters into responses are encompassed
in an interface abstraction which includes simulation
interfacing through system calls or direct function calls,
use of approximations such as neural networks and
response surfaces, use of internal testing functions, and
many other techniques. DAKOTA provides a framework
for the implementation of these techniques within the
DakotaInterface class hierarchy shown in Figure 7,
whereSysCall and DirectFn provide mechanisms for
interfacing with simulation codes through system calls
and direct invocations, respectively, andANN, RSM,
and MPA provide mechanisms for interfacing with
artificial neural networks, response surface methods,
and multipoint approximations, respectively.

Of particular importance to the parallel optimiza-
tion discussion are the operations of theDirectFn and
SysCall simulation interfacing classes. Each of these
classes has member functions for synchronous and
asynchronous parameter to response mappings. For the
system call variant, synchronous operation amounts to
spawning the system call in the foreground and waiting
for its completion, while asynchronous operation
involves spawning the system call in the background,
continuing with other tasks (e.g., other simulation sys-
tem calls), periodically checking for process comple-
tion, and finally retrieving the results. In the direct
function invocation case, synchronous operation
involves a standard procedure call to a simulation linked
within the code. Asynchronous operation involves the

use of multithreading to accomplish multiple simulta
neous simulations.

Single-processor DAKOTA.The asynchronous map-
pings of theDirectFn andSysCall simulation interfac-
ing classes can be used to accomplish algorithm
coarse-grained parallelism even when the DAKOT
process is running on a single processor. In this ca
some additional mechanism external to DAKOTA wil
usually be desired to distribute the asynchronous jo
among processors, since multitasking on a single p
cessor is generally slower than running the jobs sequ
tially. For the asynchronous system call case, netwo
load leveling software (as in the worst case fire applic
tion on the SP2) or compute server job queues can p
vide this mechanism, and in the asynchronous dire
function case, thread schedulers can be used (e.g.
select nodes within an SMP architecture).

To accomplish multilevel parallelism in this con-
text, one could configure DAKOTA to submit multiple
multiprocessor jobs to the queues of a parallel compu
server. While swamping the queues with multiple jobs
forbidden in the good citizen rules of the TeraFLOP
machine, it is allowable to allocate a large number
processors to a single script which in turn allocates mu
tiple jobs on partitions of this total processor allocatio
(this is allowable since the larger jobs do not execute
the same priority as the smaller jobs). This is in fa
mimicking the communicator partitioning capabilities
of MPI within sophisticated scripting. While this has th
advantages of simplifying the automation of pre- an
post-processing and minimizing analysis code modific
tions, it has the strong disadvantage of being highly sp
cific to the job submission software of a particula
parallel machine and is therefore not particularly flex
ble or extensible.

Multiprocessor DAKOTA.When executing DAKOTA
in multiprocessor mode using message passing, the s
chronous and asynchronous operations of theDirectFn
and SysCall simulation interfacing classes are issue
that are local to a processor. Layered on top of the
local interfacing capabilities is the software which man
ages message passing for assignment of work amo
processors. This design allows flexibility in handlin
local evaluation mechanisms independently from th
particular form of the global message passing mod
For example, within the global context of a master-slav
approach in which the master isasynchronouslyassign-
ing jobs and retrieving results using message pass
with slave servers, it is common for the slave servers
locally execute their simulations using thesynchronous
DirectFn or SysCall protocols.

For multiprocessor DAKOTA, multilevel parallel-
ism is accomplished by internally managing partition

p'

p'

DakotaInterface

ApproximationInterfaceApplicationInterface

DirectFnSysCall RSMANN MPA

Figure 7. Interface class hierarchy within DAKOTA.
7
American Institute of Aeronautics and Astronautics



AIAA-98-4707

-
n
s

a-

r

o
l

e

er
m

-
s-
e

le
le

e
es
ts

to
-
ia-
s

e

es

g

of the total processor allocation using MPI communica-
tors. This is described in detail in the “TeraFLOPS
Implementation with MPI” section to follow.

Parallel Programming Models

Several parallel programming models have been
considered for DAKOTA implementation. Important
issues in evaluating these models have been:
1. the need to minimize modifications to analysis

codes to avoid problems with commercial software
and to avoid creating special-purpose, unsupported
versions of in-house codes

2. the need to minimize contention for I/O resources
3. operating system facilities for multitasking, multi-

threading, and allocating and/or managing comput-
ing resources

4. support of heterogeneous executables (MPMD)
and/or dependence on standards which are not yet
commonly available (e.g., MPI-226)

where MPMD denotes “Multiple Program, Multiple
Data,” which means that heterogeneous executables may
be used on different processors using different data.
Conversely, SPMD denotes “Single Program, Multiple
Data” which is the more common case in which each
processor executes the same program, even though the
data on each processor may be different.

On MP architectures with lightweight operating
systems (e.g., the Cougar OS on the Intel TeraFLOPS25),
it is common for only one process (and a single thread
of execution within the process) to be allowed per pro-
cessor. That is, there are severe limitations in operating
system facilities (issue 3 above) which eliminate the
possibilities of system calls and multithreading. In this
case, either a.) the analysis code must be modified into a
linkable library (issue 1) for use with the synchronous
direct function interface, b.) the analysis must be modi-
fied to receive messages directly from DAKOTA (issue
1) so that it can be loaded in an MPMD model (issue 4),
or c.) the parallel analysis must be created dynamically
using facilities from MPI-2 (issue 4). Thus, it can be
seen that “lean and mean” MP operating systems, while
sufficient for a single application code, can impose sig-
nificant challenges on optimization software seeking to
make use of existing analysis codes. For this reason, a
multipurpose parallel design is being implemented
within DAKOTA which will run under Cougar restric-
tions but can exploit the additional capabilities of other
environments as well as new OS and message passing
capabilities (e.g., MPI-2) as they come on line.

Given these issues, three primary models for paral-
lel optimization have been considered. They are listed in
order of increasing sophistication:
1. Peer-Master SPMD - In this model, each processor

replicates the basic execution of all of the sequen-

tial calculations in DAKOTA. The simultaneous
execution of multiple simulations is coordinated in
the innermost-loop of the iterator. Under Cougar,
the analysis code must be linked directly into the
DAKOTA executable which is the same for all pro
cessors. This model can have resource contentio
issues unless care is taken to prevent I/O conflict
among the processors. This model was imple-
mented on the TeraFLOPS as an initial demonstr
tion of a multiprocessor DAKOTA with single-level
parallelism; however its contention for I/O led to
the implementation of a master-slave model.

2. Master-slave SPMD - In this model, one processo
is the master in charge of executing the iterator,
while the other processors are slaves responsible
only for executing simulations. The master can als
execute simulations if the parallelism is single-leve
algorithmic (although this may introduce a bottle-
neck if the slaves are waiting for work while the
master executes a long simulation), however in th
multilevel parallelism case, only the slave servers
can execute multiprocessor simulations. The mast
and slave processors still execute the same progra
which, in the case of Cougar, must contain both
DAKOTA and the analysis code linked together.
Unlike the peer-master model, however, they exe
cute different parts of the combined code; the ma
ter executes iterator code while the slaves execut
function evaluation code. This model eliminates
resource contention since the master is responsib
for all I/O. Since the slave executable is responsib
for little other than coordinating an analysis, it is a
small step to an MPMD implementation in which
much or all of DAKOTA is removed from the slave
executable.

3. Master DAKOTA-slave analysis MPMD - In this
case, only one master processor is executing
DAKOTA, and the slave processors execute
instances of the analysis code. In some cases, th
analysis code can be modified to receive messag
containing the parameter data and function reques
and return messages containing the simulation
results. If these modifications are not performed,
then DAKOTA will need to utilize data files to com-
municate with the analysis codes, which can lead
I/O contention on machines with thousands of pro
cessors but tens of file devices. There are two var
tions of this model that reflect how the slave proces
is initiated. Aserver model would have the slave
process running a main loop continuously to servic
simulation requests from the master. Adynamic
model would have the master spawn slave process
at run time, using a process-creation utility pro-
vided by the operating system or message-passin
8
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library (e.g., MPI-2).
Thus far, the discussion on parallel models has been lim-
ited to the case of 2-level parallelism in which a single
parallel optimization algorithm invokes multiple
instances of multiprocessor simulations. An interesting
extension to this is the 3-level parallel master-slave
design in which the master executes a strategy and the
slaves execute sub-iterators, which may themselves be
2-level parallel. Examples of this type of strategy
include optimization under uncertainty, parallel branch
and bound, multi-start local search, multiple genetic
algorithms with population sharing, and genetic algo-
rithms employing periodic local search.

Parallel Environment Issues

Given the wide range of parallel architectures, it is
not surprising that different parallel environments
impose different requirements on parallel software. One
issue that is particularly relevant to DAKOTA is whether
system shells can be used to manage the execution of
analysis codes along with their associated pre- and post-
processing routines since this is the principle model
used to run analysis codes on single workstations. Paral-
lel environments that use the Unix operating system
(e.g. the IBM SP2 and networks of workstations) pro-
vide system calls that enable analysis codes to be exe-
cuted through system shells. Unfortunately, this
capability is not widely available on MP architectures
due to the desire to have an operating system that is
small and fast and provides just those basic features
needed by a computation25. Even the MPI-2 standard26,
which provides a facility for dynamic spawning of exe-
cutables, will not allow invocation of system shells.

Another basic issue is whether processes can be
spawned dynamically. Parallel environments that use the
Unix operating system and SMP machines like the SGI
Origin 2000 provide the capability to spawn processes
from independent executables. This capability may
become more widely available on MP machines as
implementations of the MPI-2 standard are developed.
MPI-2 may also enable MPMD parallel models in
which an analysis can be used completely unmodified as
an “off-the-shelf” simulation. Unfortunately, the mas-
sively parallel computers at Sandia do not yet support
MPI-2. On both the Intel Paragon and Intel TeraFLOPS
machines, processes are statically allocated to proces-
sors when the processors are allocated to the user. How-
ever, static allocation does provide for different
executables to be allocated together. Consequently, we
expect that the Master DAKOTA/Server Slave model
will eventually be feasible on these machines (although
at this time, statically allocated heterogeneous executa-
bles have separateMPI_COMM_WORLDs which do not
permit intercommunication within a global context).

Finally, it is worth noting that pre- and post-pro
cessing in a parallel environment with restricted O
facilities is another significant challenge. If additiona
tools are required for automated model regeneration a
response recovery, then these tools may have to
linked into a combined executable as well. It is hope
that the majority of these operations can be handled w
MPI gather, scatter, and reduce operations within t
analysis, although this will largely depend on the natu
of the parameters being designed and the respon
being controlled.

In summary, the currently available MPI-1 imple
mentation on the Intel TeraFLOPS will allow master
slave SPMD multilevel parallelism. It will also permit a
basic master DAKOTA-slave analysis MPMD multi-
level parallel capability that relies on communicatio
through files (since there is no global context for me
sage-passing intercommunication). We expect that MP
2 will admit a much improved MPMD environment.

TeraFLOPS Implementation with MPI

The environment provided by the MPI-1 standard
well-suited for the master-slave SPMD model for bot
single-level and multilevel parallelism. In particular, th
global MPI communicator (MPI_COMM_WORLD) can
directly provide the context needed for single-level pa
allelism, or for multilevel parallelism, it can be parti-
tioned into new intra-communicators which delinea
the set of processors to be used for each multiproces
analysis. Since these intra-communicators can be pas
into a simulation for use as the simulation’s comput
tional context, the use of communicators enables t
analysis routines to be provided as a generic library ut
ity that can be run on an arbitrary set of processo
(which was one of the goals of the MPI standard).

Within DAKOTA, new intra-communicators are
created with theMPI_Comm_split routine. In order
for the master to send messages to the new intra-co
municators, inter-communicators are created with ca
to MPI_Intercomm_create . Once the new commu-
nicators are created, the single-level and multilevel alg
rithms for scheduling jobs from the master are virtuall
identical (in fact, the single-level case could be handle
as a special case of the multilevel case, but t
DAKOTA design opted to maintain separate algorithm
and avoid the overhead of additional communicators f
the single-level case). In addition, communicator par
tions can be reallocated multiple times. This enabl
dynamic repartitioning ofMPI_COMM_WORLDfor each
simulation interface within a strategy that manages m
tiple models (e.g., four 256 processor servers for
coarse model followed by two 512 processor servers
a fine model). This is conveniently managed by alloca
ing a particular communicator partitioning scheme
9
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the constructor of each interface object.
Implementing the master-slave model within a sin-

gle executable entails a division of iterator code (master)
from function evaluation code (slave). This is accom-
plished within DAKOTA at the strategy layer1. In the
strategy constructor, the master processor instantiates
the required iterators and models whereas the slave pro-
cessors instantiate only the required models. When the
strategy is executed, the master executes the current iter-
ator and sends analysis requests for the current model to
the slaves which run server code bound to the current
model. When the master completes iteration on the cur-
rent model, it sends a termination message to the slaves
which then exit the current model. If additional work
remains within the strategy, then the process repeats for
the next iterator and model. Additional features include:
(1) use of a self-scheduling design (also known as a task
pool design) to load balance the slave servers in which
the first server to return results from the current set of
jobs is allocated the next job, (2) the use of buffer pack-
ing which allows for send/receive of a heterogeneous set
of data within a single message, and (3) use of a Paral-
lelLibrary class hierarchy which encapsulates the spe-
cific syntax of message passing operations for particular
message passing libraries.

Computational Experiments with DAKOTA

Preliminary timing results are shown in Figure 8 for
a cluster of 13 workstations. Minus the master proces-
sor, the 12 slave processors can be evenly partitioned
into analysis servers containing 2, 3, 4, 6, or 12 proces-
sors. The method employed is a parallel parameter study
which performs centered one-dimensional parameter
studies (11 evaluations each) for each of 50 design vari-
ables, giving a total of 550 function evaluations for each

run. Each function evaluation involves an internal mult
processor test simulation which, while not nearly a
computationally intensive as an engineering simulatio
does reproduce the basic performance issues of inter
It can be seen that total run time is minimized (and ef
ciency is maximized) for processors per ana

ysis.

Conclusions

Single-level parallel optimization investigations
have been reviewed and both mathematical and com
tational motivation for multilevel parallelism has bee
given. Various possible designs for parallel optimizatio
on MP computers have been presented. The DAKOT
software has implemented a self-scheduling mast
slave SPMD model using MPI message-passing whi
performs multilevel parallel optimization on worksta
tion clusters and the Intel TeraFLOPS supercomput
This implementation will continue to evolve as it seek
to minimize the need for analysis code modification
and to simplify model regeneration and response reco
ery in the MP environment. These extensions w
involve exploiting MPMD capabilities and emerging
message passing standards (MPI-2) as they come
line.

In addition, the DAKOTA implementation will be
seeking to exploit additional levels of parallelism
beyond the two presented. By developing a master-sla
design in which the master runs a strategy and sla
servers execute sub-iterators (instead of analysis se
ers), additional algorithmic coarse-grained parallelis
can be exploited. Examples of this type of strateg
include optimization under uncertainty, parallel branc
and bound, multi-start local search, multiple genet
algorithms with population sharing, and genetic algo
rithms employing periodic local search. This additiona
level of parallelism can be used to further extend utiliz
tion possibilities for very large parallel machines.
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