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Abstract physical systems they simulate. Often, it is desired to
use these simulations as virtual prototypes to obtain an
Single-level parallel optimization approaches, thoseacceptable or optimized design for a particular system.
in which either the simulation code executes in parallelThis enhances the utility of these computational
or the optimization algorithm invokes multiple methods by enabling their use for more than just point
simultaneous single-processor analyses, have beesolutions; simulation tools can be coupled with
investigated previously and been shown to be effectiveoptimization methods to automatically determine
in reducing the time required to compute optimal system performance improvements throughout the
solutions. However, these approaches have clegoroduct life cycle.
performance limitations which point to the need for Toward these ends, a general purpose iterator
multiple levels of parallelism in order to achieve peaktoolkit has been developed for the integration of
parallel performance. Managing multiple simultaneouscommercial and in-house analysis capabilities with
instances of massively parallel simulations is abroad classes of systems analysis tools. Written in C++,
challenging software undertaking, especially if thethe DAKOTA (Design Analysis Kit for OpTimizAtion)
implementation is to be flexible, extensible, and generalioolkit! is a flexible, extensible interface between
purpose. This paper focuses on the design for multilevehnalysis codes and iteration methods. In addition to
parallelism as implemented within the DAKOTA optimization methods and strategies, the DAKOTA
iterator toolkit. Various parallel programming models toolkit implements uncertainty quantification with direct
are discussed, although emphasis is given to a masteand sampling methods, parameter estimation with
slave implementation using the Message Passin@onlinear least squares solution methods, and sensitivity
Interface (MPI). A mathematical analysis is given onanalysis with general-purpose parameter study
achieving peak efficiency in multilevel parallelism by capabilities. By employing object-oriented design to
selecting the most effective processor partitioningimplement abstractions of the key concepts involved in
schemes. This analysis is verified in someiterative systems analyses, the DAKOTA toolkit

computational experiments. provides a flexible and extensible problem-solving
environment for current and future problems of interest.
Introduction Through DAKOTA, point solutions from simulation

codes can be used for answering more fundamental
Computational methods developed in fluid engineering questions, such as “what is the best
mechanics, structural dynamics, heat transfer, nonlineadesign?”, “how safe is it?”, or “how much confidence do
mechanics, and numerous other fields of engineering have in my answer?”.
can be an enormous aid to understanding the complex In addition to its role as a problem-solving
environment, the DAKOTA toolkit also provides a
platform for research and development of advanced
methodologies which focus on increasing the robustness
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Figure 1. Iterator and strategy class hierarchies within DAKOTA.

development of parallel processing approaches for ble parts of a single function evaluation, where a
massively parallel (MP) and distributed architectures,  function evaluation may contain multiple response

the focus of this paper. functions requiring multiple simulations. Examples
The opportunities for exploiting parallelism in include separate simulations for multiple objectives
optimization can be categorized into four main areas: and constraint functions, multiple disciplinary anal-
1. Algorithmic coarse-grained parallelisnThis paral- yses for MDO, etc.
lelism involves the exploitation of multiple inde- 4. Function evaluation fine-grained parallelisfihis
pendent function evaluations. Examples of involves parallelization of the solution steps within
optimization algorithms containing coarse-grained a single analysis code. Examples of Sandia-devel-
parallelism include: oped MP analysis codes include PRONT&3D
a.) Gradient-based algorithmdinite difference COYOTE, MPSals#&, ALEGRA PCTH4,
gradient evaluations, speculative optimizafion SIERRA, etc.
parallel line search, multiple-secant BFGS In both the algorithmic and function evaluation cases,
b.) Nongradient-based algorithmgenetic algo- coarse-grained parallelization requires very little inter-
rithms (GA's), coordinate pattern search (CPS), processor communication and is therefore essentially
parallel direct search (PDSMonte Carlo. “free,” meaning that there is little loss in parallel effi-

c.) Approximate methodstesign and analysis of  ciency due to communication as the number of proces-
computer experiments (DACE) evaluations for sors increases (assuming that there are enough separable
building response surfaces and training neural computations to utilize the additional processors). Fine-

networks. grained parallelism, on the other hand, involves much
d.) Multi-method strategiesoptimization under more communication among processors and care must
uncertainty, branch and bouidmulti-start be taken to avoid the case of inefficient machine utiliza-
local search island-model GA% GA's with tion in which the communication demands among pro-
periodic local searéh cessors outstrip the amount of actual computational

Algorithmic fine-grained parallelisnithis involves ~ Work to be performed. The question arises, then, if mul-

computing the basic computational steps of an optitiple types of parallelism can be exploited, how should
mization algorithm (i.e., the internal linear algebra) the amount of parallelism at each level be selected so as

in parallel. This is primarily of interest in large- 10 maximize the parallel efficiency of the study?
scale optimization problems and simultaneous anal- ~ We begin by discussing our prior work with parallel
ysis and design (SAND). optimization approaches that utilize a single level of

Function evaluation coarse-grained parallelism:  parallelism (either parallel computation of independent
This involves simultaneous computation of separa- Simulations or parallel computation within a single
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simulation - Categories lor4d above). We then motivate Optimization efficiency comparison: Objective function vs. Time
the need for the application of tools that exploit ‘ ‘ ‘ ‘
parallelism at multiple levels and provide a
mathematical analysis of multilevel parallelism which _&s
seeks to answer the question of how to maximize
parallel efficiency. Following a description of parallel =
programming models, DAKOTAs implementation of a
master-slave paradigm using the Message Passin

Interface (MPI) standafél'” will be presented along
with the results from some computational experiments.s
This implementation is focused on both networks of% 4
workstations and the Intel TeraFLOPS supercomptiter §ss
The TeraFlops computer, also known as ASCI Red,
contains over 9000 Intel Pentium Pro processors and i
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Figure 2. Optimization history comparison: Best
Single-level Parallel Investigations objective function value vs. wall-clock time in hours

tightly converged and expensive analyses to enforce
smoothness on the order of its finite difference step size.
While pattern search optimizers may use of variety

Single-level approaches which exploit either
algorithmic coarse-grained parallelism or function
evaluation fine-grained parallelism have been : ;
investigated in previous wotk These approaches as ©f templates (e.g., PDF this particular pattern search
well as their observed limitations are summarized in thePtimizer executes 2 simulations in eactngfarameter

following paragraphs. The worst case fire applicationd'reCt'onS dynng an |Ferat|on. The end of an .lteratlon is
uses a parallel optimization algorithm which exploits a synchronization point for the parallel algorithm; thus,

algorithmic coarse-grained parallelism by invoking 2?] S|ml;llat|0ns. at most me}y be pltarlformed in p?rgllel.
multiple independent simulations of single-processor! "€N: the maximum possible parallel speedup relative to

codes, one per processor. The CVD reactor design studgelal CPS for the 3 parameter fire surety application
demonstrates  function  evaluation fine-grainedusmg single-processor analyses is 6. This shows clearly

parallelism through sequential optimization with an vp the limitation of this single-level approach in that paral-
simulation code. lel speedup is limited by the number of independent

evaluations on a particular optimization cycle. Addi-

Determination of Worst Case Fire Environments tional levels of parallelism are needed to extend this per-

Parallel coordinate pattern search (CPS) from th€formance.
SGQI?'P package was usedi for improving .efficiency iN c\VD Reactor Design
optimization of fire surety simulations. Individual ther-
mal simulations executed on nodes of the IBM Sp2 ~ Massively parallel simulations have been employed
using the native loadleveler software to select lightlyn gradient-based optimization studies to allow for expe-
loaded nodes, and multiple simulations executed simulditious analysis of high fidelity models of the chemi-
taneously. cally reacting flows within a CVD reactor. MPSalsa

Figure 2 shows the optimization wall clock histo- simulation$?2were executed on a partition of nodes on
ries for serial and parallel CPS. With 3 commercial Sandia’s 1840 node Intel Paragon.
QTRAN licenses, reductions in wall-clock time of a fac- A coarse mesh was used for initial optimization
tor of 3 for the parallel CPS optimization were observedstudies to efficiently locate promising areas of parameter
over that of serial CPS. With unlimited QTRAN space. An accurate fine mesh was then used to deter-
licenses, a factor of 6 savings would have been achievmine an optimal solution. Figures 3 and 4 show the opti-
able. These speedups reflect perfect parallel efficiencynization progression for the coarse and fine meshes,
as expected for this coarse-grained approach since therespectively. Each coarse mesh function evaluation took
is negligible communication overhead. When compare®-3 minutes on 256 Intel Paragon processors, while each
with serial nonlinear programming (NLP), relative sav- fine mesh function evaluation required 5-8 minutes on
ings with parallel CPS were a factor of 10 (3 licenses) or512 processors. For each problem size, there was a
20 (unlimited licenses) since NLP required use of moretrade-off between computational speed-up and interpro-
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which utilize single-level parallelism can have clear

performance barriers. Parallel optimization of single-
processor simulations is limited by the number of
independent evaluations per cycle, and sequential
optimization of parallel analyses is limited by the

practical limit on processors that can be used for a single
parallel simulation before inter-process communication
dominates actual computational work.

These observations point clearly to the need for
multilevel parallelism, in which parallel optimization
strategies coordinate multiple simultaneous simulations
of multiprocessor codes. This approach is not new.
Reference® shows nearly linear speedup by evaluating
the objective functions on the minimum number of
processors and by performing several of these in parallel
as governed by the independent evaluations of the
parallel direct search (PDS) algorithm. For the purposes
of DAKOTA, a general implementation beyond the
specifics of any one algorithm is needed.

Mathematical Analysis

We motivate our investigation of multi-level
parallel optimization methods by analyzing the relative
efficiency of a simple, abstract multi-level optimizer.
The efficiency of a parallel algorithm is:

- I
B(P) = 570 1)

whereT(p) is the time required by the algorithm qn
processors, and(1) is the time required by the best
known serial version of the algorithm. The relative
efficiency of a parallel algorithm is

= _ E(p) _ PminT (Pmin)

P = Ep) ~ pT(D @
where py,in IS the smallest number of processors on
which the algorithm can be applied.

The efficiency of a multilevel optimizer must
encompass both the efficiency of the optimizer as well
as the efficiency of the parallelized function evaluation.
Suppose that each iteration of the optimizer requires
function evaluations and that each function evaluation
uses p' processors. For simplicity, we make the
llowing assumptions:

cessor communication overhead and these numbers 6‘?
processors achieved an effective balance for these prob-
lem sizes. This points clearly to the efficiency bottle-
neck in this approach. If, for a given problem size,
communication will eventually dominate computation
as the number of processors is increased, then the
speedup cannot scale with large numbers of processors
without introducing additional levels of parallelism.

Multilevel Parallelism

It has been shown that optimization approaches

4

The time required to communicate an evaluation
request from the master to a slave equals the com-
munication time required to communicate a
response from the slave to the master, and these
communication times are the same for all commu-
nication between master and slaves.

The time required to execute the function evalua-
tion is constant for all evaluations.

The overhead imposed on the master for managing
the communication requests and responses is negli-
gible.
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. Thatxﬂp—lj (i.e., the number of evaluations single-level master-slave algorithm with this few
p '

processors). A general evaluation &f(p) is not
per cycle is> the number of multiprocessor simula- possible because of the dependenceiokiowever, for
tion servers). a given value ofu it possible to evaluate the utility of
e Thatp= Lp;lj which indicates that whenis multilevel parallelism in a master-slave design.
K When applying a multilevel master-slave algorithm,

small compared tp - 1, p' is sufficiently large to  one generally has a value wfthat is determined by the
utilize the allocated processors. optimization algorithm, and the number of procesgors
Then the time required for a multilevel master-slaveis selected such tha = p',,+1. It remains, then, to

optimizer to optimize a particular problem wightotal determine the value ofy  for optimization. At one

processors is . . .
- extreme, p' = p—1 , so the algorithm is effectively
T(P) = Tseriar* ABy(2Tcomm™* T(P)) (3) single-level parallel using a single multiprocessor
where T(p) is the time required to execute a function _ 0 1|0
evaluation onp  ProcessorSymmis the time required  2Nalysis server. At the othep’ = Max] i LpTJD ’

t
to perform communication between the master and slave hich lso be sinale-level el usi il
ProcessorsTeeria iS the execution time of the serial WNICN May alSo be single-ievel parallel using muftiple

portion of the optimization algorithmy is the number single-processor serversply, =1 anép-1.
of cycles to convergence, and Now assume thaT(p) is a convex, monotonically
o = ( K (4) decreasing function ofp' ; this assumption is usually
Lp%lj satisfied by parallel algorithms. Also, assume that

The valuep is the maximum number of function T(p-1), the s_,mallesfr(p) 1S Iz_alrge rela_tlve RQomm _
evaluations that any slave performs in each iteration of"d Tseria: Since we are particularly interested in
the optimization algorithm. This value provides a worst- Simulation-based optimization, this assumption is
case picture of how many function evaluations need tg€asonable. ~Given these assumptions, we can
be computed on a server during a cycle, given thatpproximateE(p) as

Lp;lj function evaluations are being computed (P'mint DKT(P min)

p E(p) = BE) (6)
simultaneously as long as contains enough jobs to P
keep the servers busy and that some servers may be idle _ (P min* DKT(P min) %
towards the end of a cycle. Note that the analysis o[ X |T(p)
assumes for simplicity that the remaining Lp—lJ
p—1—p'Lp;'1J processors are left idle, although in P B

p a _ (plmin+ 1)(p_1)T(p'm|n) 8

practice, one might take the idle processors and run E(p) = ppT(p) (8)
another simulation (which might lead to improved As a function ofo’ . this is a function of the form
efficiency overall wherx is large). DAKOTAs design b
divides the remainder of processors among each of the f(p) = I,C . 9)
servers. PT(P)

Suppose that the minimum number of processors ofof some  constant C > 0. It follows for
which a function evaluation can be executedpis;, P O{P i --» P—1} that E(p) is maximized at either
Then for a multilevel master-slave optimization 0 _110 df
algorithm, it follows that ma)% pmin, LpTJEOT atdp, = 0. Note, however, thét
E _ (plmin"'l)T(plmin"'l) T

(p) = pT(P) is monotonically decreasing, since'T(p) will be
(Pmin* D (Tseriar* KT comm* T(Pmin) ®) monotonically increasing unless  exhibits superlinear
- P(Tserial* ABp(2Tcomm* T(P))) speedup. Thus in practice, the maximum valueop)
forp= p\,,+1. We have usef,j, = p',,+ 1 because

. 0 g . .
is at maxgppip LP_IJD' Figure 5 illustrates two
this is the smallest number of processors on which the 0 K 10

master-slave algorithm can run (even though this is gyamples, one with sublinear speedup (generally seen in
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1 : : : : : : approximation in Equation 8 will not be particularly
accurate when the floor or ceiling operations round off
. - . the fractions inB,, significantly. Note that in a practical
e T(p) = —1 (sublinear) P Sid y _ P _
e log(p' +1) context,p would be chosen to be a multiple of  with
508 T(o) = 1 i 1 one processor added for the master so as to eliminate the
< (p) = llog(p' + 1)]2 (superlinear) processor remainder. Thus we are primarily concerned
Fo.4 with the error introduced by the ceiling operation, which
; involves the previously mentioned issue of idle servers
o towards the end ok evaluations in a cycle. Figure 6
illustrates this effect with a run-time curve taken from
Shadid and Tuminaté Figure 6a shows the run-time of
° 0 20 3 o5 6 the simulation code, along with the curve fitted through
unerof P"’“SS‘&)“” Simtation (p) these points. Figure 6b shows the curves for Equations 7
and 8 for ¢ = 1000, p',,;, = 10 , andk = 1000). Note
' that the values for Equation 7 are always lower than the
curve for Equation 8, and for low values pf , Equation
o° 7 is strictly below Equation 8 because Equation 7 is only
) =, 1
1) = iogtp+ D)
= = 1
. T(p) = — 600
Zoa [log(p + 1)] .
g 500 . = experiments
o £400 — = least squares fit: 37+10854/p'
F
é300
05 10 20 30 0 50 80
Nunmber of Processors per Sinulation (p') 200
(b)
100
Figure 5. lllustration of multilevel optimizer
performance: (a) run time and (b) relative efficiency ory %0 60 %0 760 %0
for different numbers of processors per simulation. Nurtber of( Psocessurs
a
practice, E(p) maximized atp',,, ) and one with
superlinear speedup for smatl  (rare in practiégp) !
maximized alg—;, =0 ). 508
This result demonstrates the utility of multilevel %0 .
parallelism in a master-slave design. Whey,;,>1 ,am
multilevel parallel master-slave algorithm is always =, ,
more efficient than the single-level master-slaveg
algorithm which uses all processors to compute each o
function evaluation. Furthermore, everplf,,, =1 ,itis
common to havep' > p',;,  because of the lower bound L, o - - . o
on p' imposed bx. While the relative efficiency would Nunber - of Pf°°e35°('g)pef Simlation (p')

be higher in this case ip were decreased ta + 1,

requirements on turn around time will often preclude Figure 6. Evaluation of round off error: (a) an

this possibility Finally, note that this analysis is not idealized curve for a numerical simulation and (b) a

affected by the value ok except for providing this  comparison between the efficiencies of Equation 8

lower bound ornp' . (the top curve) and Equation 7 (the bottom curve),
A final caveat for this analysis is that the which includes the exact formulafﬁg
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evaluated for integral values op' . However, the use of multithreading to accomplish multiple simulta-
discretization error is less pronounced for small ,N€ouUs simulations.
which have the highest efficiencies. Thus, Equation 8Single-processor DAKOTAThe asynchronous map-
offers a reasonable approximation. pings of theDirectFn and SysCall simulation interfac-
ing classes can be used to accomplish algorithmic
. . _ coarse-grained parallelism even when the DAKOTA
Th? _DAK_OTA (Des'gn _Analy3|_s K't_ for process is running on a single processor. In this case,
OpTimizAtion) iterator toolkit utilizes object-oriented some additional mechanism external to DAKOTA will
design with C+# to achieve a flexible, extensible g,ally be desired to distribute the asynchronous jobs
interface between analysis codes and system-levelyong processors, since multitasking on a single pro-
iteration methods. This interface is intended to be VerYcessor is generally slower than running the jobs sequen-
general, encompassing broad classes of numericgl|ly. For the asynchronous system call case, network

methods which have in common the need for repeateghaq |eveling software (as in the worst case fire applica-
execution of simulation codes. DAKOTA's capabilities tign on the SP2) or compute server job queues can pro-

for mapping parameters into responses are encompassgfle this mechanism, and in the asynchronous direct

in an interface abstraction which includes simulationfnction case. thread schedulers can be used (e.g., to
interfacing through system calls or direct function calls, sgject nodes within an SMP architecture).

use of approximations such as neural networks and o accomplish multilevel parallelism in this con-
response surfaces, use of internal testing functions, angy: one could configure DAKOTA to submit multiple
many other techniques. DAKOTA provides a framework myjtiprocessor jobs to the queues of a parallel compute
for the implementation of these techniques within thegeryer. While swamping the queues with multiple jobs is

Dakotalnterface class hierarchy shown in Figure 7, forhidden in the good citizen rules of the TeraFLOPS
where SysCall and DirectFn provide mechanisms for achine, it is allowable to allocate a large number of

interfacing with simulation codes through system callspgcessors to a single script which in turn allocates mul-
and direct invocations, respectively, aANN, RSM,  ple jobs on partitions of this total processor allocation

and MPA provide mechanisms for interfacing with (s is allowable since the larger jobs do not execute at
artificial .nel_JraI netwc_)rks,. response s_urface methodsyhe same priority as the smaller jobs). This is in fact
and multipoint approximations, respectively. mimicking the communicator partitioning capabilities

of MPI within sophisticated scripting. While this has the

advantages of simplifying the automation of pre- and
post-processing and minimizing analysis code modifica-
Applicationinterface Approximationinterface tions, it has the strong disadvantage of being highly spe-
cific to the job submission software of a particular

parallel machine and is therefore not particularly flexi-

SyscCall | | DirectFn ANN | | RSM| | MPA ble or extensible.

Multiprocessor DAKOTAWhen executing DAKOTA
Figure 7. Interface class hierarchy within DAKOTA.  in multiprocessor mode using message passing, the syn-

chronous and asynchronous operations ofDirectFn

Of particular importance to the parallel optimiza- and SysCall simulation interfacing classes are issues

tion discussion are the operations of ectFn and  that are local to a processor. Layered on top of these
SysCall simulation interfacing classes. Each of thesejocal interfacing capabilities is the software which man-
classes has member functions for SynChronOUS angges message passing for assignment of work among
asynchronous parameter to response mappings. For thgocessors. This design allows flexibility in handling
system call variant, synchronous operation amounts t@ocal evaluation mechanisms independently from the
spawning the system call in the foreground and waitingparticular form of the global message passing model.
for its completion, while asynchronous operation For example, within the global context of a master-slave
involves Spawning the System call in the baCkgrOUnd,approach in which the mastera'synchronousiﬁssign_
Continuing with other tasks (e.g., other simulation SyS'ing iobs and retrieving results using message passing
tem calls), periodically checking for process comple-yith slave servers, it is common for the slave servers to

tion, and finally retrieving the results. In the direct |ocally execute their simulations using tegnchronous
function invocation case, SynChronous OperauonDirectFn or SysCa”protocoiS'

involves a standard procedure call to a simulation linked  For multiprocessor DAKOTA, multilevel parallel-
within the code. Asynchronous operation involves thejsm is accomplished by internally managing partitions

Underlying Software Design

Dakotalnterface

7
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of the total processor allocation using MPI communica-
tors. This is described in detail in the “TeraFLOPS
Implementation with MPI” section to follow.

Parallel Programming Models

Several parallel programming models have been
considered for DAKOTA implementation. Important
issues in evaluating these models have been:

1. the need to minimize modifications to analysis
codes to avoid problems with commercial software
and to avoid creating special-purpose, unsupported
versions of in-house codes
the need to minimize contention for I/O resources 5
3. operating system facilities for multitasking, multi-
threading, and allocating and/or managing comput-
ing resources
4. support of heterogeneous executables (MPMD)
and/or dependence on standards which are not yet
commonly available (e.g., MPFQ
where MPMD denotes “Multiple Program, Multiple
Data,” which means that heterogeneous executables may
be used on different processors using different data.
Conversely, SPMD denotes “Single Program, Multiple
Data” which is the more common case in which each
processor executes the same program, even though the
data on each processor may be different.

On MP architectures with lightweight operating
systems (e.g., the Cougar OS on the Intel TeraFLO)PS
it is common for only one process (and a single thread
of execution within the process) to be allowed per pro-
cessor. That is, there are severe limitations in operating
system facilities (issue 3 above) which eliminate the
possibilities of system calls and multithreading. In this
case, either a.) the analysis code must be modified into a
linkable library (issue 1) for use with the synchronous
direct function interface, b.) the analysis must be modi-3.
fied to receive messages directly from DAKOTA (issue
1) so that it can be loaded in an MPMD model (issue 4),
or c.) the parallel analysis must be created dynamically
using facilities from MPI-2 (issue 4). Thus, it can be
seen that “lean and mean” MP operating systems, while
sufficient for a single application code, can impose sig-
nificant challenges on optimization software seeking to
make use of existing analysis codes. For this reason, a
multipurpose parallel design is being implemented
within DAKOTA which will run under Cougar restric-
tions but can exploit the additional capabilities of other
environments as well as new OS and message passing
capabilities (e.g., MPI-2) as they come on line.

Given these issues, three primary models for paral-
lel optimization have been considered. They are listed in
order of increasing sophistication:

1. Peer-Master SPMD - In this model, each processor
replicates the basic execution of all of the sequen-

n
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tial calculations in DAKOTA. The simultaneous
execution of multiple simulations is coordinated in
the innermost-loop of the iterator. Under Cougar,
the analysis code must be linked directly into the
DAKOTA executable which is the same for all pro-
cessors. This model can have resource contention
issues unless care is taken to prevent I/O conflicts
among the processors. This model was imple-
mented on the TeraFLOPS as an initial demonstra-
tion of a multiprocessor DAKOTA with single-level
parallelism; however its contention for 1/O led to

the implementation of a master-slave model.
Master-slave SPMD - In this model, one processor
is the master in charge of executing the iterator,
while the other processors are slaves responsible
only for executing simulations. The master can also
execute simulations if the parallelism is single-level
algorithmic (although this may introduce a bottle-
neck if the slaves are waiting for work while the
master executes a long simulation), however in the
multilevel parallelism case, only the slave servers
can execute multiprocessor simulations. The master
and slave processors still execute the same program
which, in the case of Cougar, must contain both
DAKOTA and the analysis code linked together.
Unlike the peer-master model, however, they exe-
cute different parts of the combined code; the mas-
ter executes iterator code while the slaves execute
function evaluation code. This model eliminates
resource contention since the master is responsible
for all I/O. Since the slave executable is responsible
for little other than coordinating an analysis, it is a
small step to an MPMD implementation in which
much or all of DAKOTA is removed from the slave
executable.

Master DAKOTA-slave analysis MPMD - In this
case, only one master processor is executing
DAKOTA, and the slave processors execute
instances of the analysis code. In some cases, the
analysis code can be modified to receive messages
containing the parameter data and function requests
and return messages containing the simulation
results. If these modifications are not performed,
then DAKOTA will need to utilize data files to com-
municate with the analysis codes, which can lead to
I/0 contention on machines with thousands of pro-
cessors but tens of file devices. There are two varia-
tions of this model that reflect how the slave process
is initiated. Aservermodel would have the slave
process running a main loop continuously to service
simulation requests from the masterdynamic

model would have the master spawn slave processes
at run time, using a process-creation utility pro-
vided by the operating system or message-passing
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library (e.g., MPI-2). Finally, it is worth noting that pre- and post-pro-
Thus far, the discussion on parallel models has been limeessing in a parallel environment with restricted OS
ited to the case of 2-level parallelism in which a singlefacilities is another significant challenge. If additional
parallel optimization algorithm invokes multiple tools are required for automated model regeneration and
instances of multiprocessor simulations. An interestingresponse recovery, then these tools may have to be
extension to this is the 3-level parallel master-slavelinked into a combined executable as well. It is hoped
design in which the master executes a strategy and thehat the majority of these operations can be handled with
slaves execute sub-iterators, which may themselves bIPI gather, scatter, and reduce operations within the
2-level parallel. Examples of this type of strategy analysis, although this will largely depend on the nature
include optimization under uncertainty, parallel branchof the parameters being designed and the responses
and bound, multi-start local search, multiple geneticbeing controlled.
algorithms with population sharing, and genetic algo- In summary, the currently available MPI-1 imple-
rithms employing periodic local search. mentation on the Intel TeraFLOPS will allow master-
slave SPMD multilevel parallelism. It will also permit a
) ) ) .. basic master DAKOTA-slave analysis MPMD multi-

Given the wide range of parallel architectures, it iS|gyg| parallel capability that relies on communication
not surprising that different parallel environments y,,gh files (since there is no global context for mes-

impose different requirements on parallel software. Ongsage_nassing intercommunication). We expect that MPI-
issue that is particularly relevant to DAKOTA is whether 5 \ il 5 4mit a much improved MPMD environment.

system shells can be used to manage the execution of . ]
analysis codes along with their associated pre- and posteraFLOPS Implementation with MPI
processing routines since this is the principle model  The environment provided by the MPI-1 standard is
used to run analysis codes on single workstations. Paralvell-suited for the master-slave SPMD model for both
lel environments that use the Unix operating systemsingle-level and multilevel parallelism. In particular, the
(e.g. the IBM SP2 and networks of workstations) pro-global MPI communicator MPI_COMM_WOR).Dan
vide system calls that enable analysis codes to be exelirectly provide the context needed for single-level par-
cuted through system shells. Unfortunately, thisallelism, or for multilevel parallelism, it can be parti-
capability is not widely available on MP architectures tioned into new intra-communicators which delineate
due to the desire to have an operating system that ithe set of processors to be used for each multiprocessor
small and fast and provides just those basic featureanalysis. Since these intra-communicators can be passed
needed by a computati#n Even the MPI-2 standaf§l  into a simulation for use as the simulation’s computa-
which provides a facility for dynamic spawning of exe- tional context, the use of communicators enables the
cutables, will not allow invocation of system shells. analysis routines to be provided as a generic library util-
Another basic issue is whether processes can bigy that can be run on an arbitrary set of processors
spawned dynamically. Parallel environments that use théwhich was one of the goals of the MPI standard).
Unix operating system and SMP machines like the SGI  Within DAKOTA, new intra-communicators are
Origin 2000 provide the capability to spawn processesreated with theMPI_Comm_split routine. In order
from independent executables. This capability mayfor the master to send messages to the new intra-com-
become more widely available on MP machines agmunicators, inter-communicators are created with calls
implementations of the MPI-2 standard are developedto MPI_Intercomm_create . Once the new commu-
MPI-2 may also enable MPMD parallel models in nicators are created, the single-level and multilevel algo-
which an analysis can be used completely unmodified agithms for scheduling jobs from the master are virtually
an “off-the-shelf” simulation. Unfortunately, the mas- identical (in fact, the single-level case could be handled
sively parallel computers at Sandia do not yet supporis a special case of the multilevel case, but the
MPI-2. On both the Intel Paragon and Intel TeraFLOPSDAKOTA design opted to maintain separate algorithms
machines, processes are statically allocated to procesnd avoid the overhead of additional communicators for
sors when the processors are allocated to the user. Howhe single-level case). In addition, communicator parti-
ever, static allocation does provide for differenttions can be reallocated multiple times. This enables
executables to be allocated together. Consequently, waynamic repartitioning oMPI_COMM_WORIi@r each
expect that the Master DAKOTA/Server Slave modelsimulation interface within a strategy that manages mul-
will eventually be feasible on these machines (althougHiple models (e.g., four 256 processor servers for a
at this time, statically allocated heterogeneous executasoarse model followed by two 512 processor servers for
bles have separatdPl_COMM_WOR&Bvhich do not a fine model). This is conveniently managed by allocat-
permit intercommunication within a global context). ing a particular communicator partitioning scheme in

Parallel Environment Issues
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the constructor of each interface object. run. Each function evaluation involves an internal multi-
Implementing the master-slave model within a sin-processor test simulation which, while not nearly as
gle executable entails a division of iterator code (masterromputationally intensive as an engineering simulation,
from function evaluation code (slave). This is accom-does reproduce the basic performance issues of interest.
plished within DAKOTA at the strategy layerin the It can be seen that total run time is minimized (and effi-
strategy constructor, the master processor instantiategency is maximized) fop';, = 2 processors per anal-
the required iterators and models whereas the slave PrQsis,
cessors instantiate only the required models. When the
strategy is executed, the master executes the current iter-
ator and sends analysis requests for the current model to
the slaves which run server code bound to the current Single-level parallel optimization investigations

model. When the master completes iteration on the Curpye heen reviewed and both mathematical and compu-
rent model, it sends a termination message to the slavggional motivation for multilevel parallelism has been
whlch ther_w exit the current model. If additional work given. Various possible designs for parallel optimization
remains within the strategy, then the process repeats fq§,, \p computers have been presented. The DAKOTA
the next iterator and model. Additional features include:gofivare has implemented a self-scheduling master-

(1) use of a self-scheduling design (also known as a taskjaye SPMD model using MPI message-passing which
pool design) to load balance the slave servers in whichyerforms multilevel parallel optimization on worksta-

the first server to return results from the current set ofjoy clusters and the Intel TeraFLOPS supercomputer.
jobs is allocated the next job, (2) the use of buffer pack-rjs implementation will continue to evolve as it seeks
ing which allows for send/receive of a heterogeneous sefy minimize the need for analysis code modifications
of data within a single message, and (3) use of a Paralynq to simplify model regeneration and response recov-
lelLibrary class hierarchy which encapsulates the spegry in the MP environment. These extensions will
cific syntax of message passing operations for particulaj,olve exploiting MPMD capabilities and emerging
message passing libraries. message passing standards (MPI-2) as they come on

Computational Experiments with DAKOTA line.
In addition, the DAKOTA implementation will be

Preliminary timing results are shown in Figure 8 for . ) - )
a cluster of 13 workstations. Minus the master procesS€€king to exploit additional levels of parallelism
sor, the 12 slave processors can be evenly partitionef€Yond the two presented. By developing a master-slave

into analysis servers containing 2, 3, 4, 6, or 12 procesd€sign in which the master runs a strategy and slave

sors. The method employed is a parallel parameterstud@ervers execute sub-iterators (instead of analysis serv-

which performs centered one-dimensional paramete?rs)* additional algorithmic coarse-grained parallelism

studies (11 evaluations each) for each of 50 design varica Pe exploited. Examples of this type of strategy

ables, giving a total of 550 function evaluations for eachiNclude optimization under uncertainty, paraliel branch
and bound, multi-start local search, multiple genetic

algorithms with population sharing, and genetic algo-
rithms employing periodic local search. This additional
i level of parallelism can be used to further extend utiliza-
tion possibilities for very large parallel machines.

Conclusions

Multilevel parallel timing with DAKOTA on 13 processors
24 T T T T
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