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Abstract

A trust region-based optimization method has been
incorporated into the DAKOTA optimization soft-
ware toolkit. This trust region approach is designed
to manage surrogate models of the objective and con-
straint functions during the optimization process. In
this method, the surrogate functions are employed
in a sequence of optimization steps, where the origi-
nal expensive objective and constraint functions are
used to update the surrogates during the optimiza-
tion process. This sequential approximate optimiza-
tion (SAO) strategy is demonstrated on two test
cases, with comparisons to optimization results ob-
tained with a quasi-Newton method. For both test
cases the SAO strategy exhibits desirable convergence
trends. In the first test case involving a smooth func-
tion, the SAO strategy converges to a slightly better
minimum than the quasi-Newton method, although
it uses twice as many function evaluations. In the
second test case involving a function with many local
minima, the SAO strategy generally finds better lo-
cal minima than does the quasi-Newton method. The
performance of the SAO strategy on this second test
case demonstrates the utility of using this optimiza-
tion method on engineering optimization problems,
many of which contain multiple local optima.

1 Introduction

Many engineering analysis and optimization prob-
lems involve computationally expensive physics-

based simulation software. In some cases the com-
putational expense of a full-physics simulation may
be so great as to preclude the direct coupling of the
simulation code to numerical optimization software.
Another drawback to the use of optimization soft-
ware is the existence of numerical noise (nonsmooth
trends) in the output of the simulation software due
to sources such as poorly resolved computational
meshes, early termination of iterative solvers, and
software errors. This numerical noise in the objective
function and constraints inhibits traditional gradient-
based optimization, while the computational expense
of the simulation precludes gradient-free optimiza-
tion.

Engineering optimization methods are needed to
bridge the gap between gradient-based and gradient-
free techniques. One such method is multi-start local
optimization. Another more advanced approach is
the implicit filtering method of Gilmore and Kelley
[1]. A third approach is broadly classified as sequen-
tial approximate optimization (SAO) and has been
widely practiced in the engineering community. Sev-
eral types of SAO techniques are described by Haftka
and Gürdal [2].

A typical SAO strategy decomposes the optimiza-
tion process into a sequence of optimization subprob-
lems, where each subproblem is confined to a small re-
gion of the parameter space. Then, in each subregion,
the optimizer is given surrogate functions in place of
the computationally expensive, or nonsmooth, objec-
tive function and constraints. These surrogate func-
tions can take the form of surface fits to a small num-
ber of data samples, or the surrogates may be ob-
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tained from the physics simulation using a lower fi-
delity model. In the case where the surrogate models
are provided by surface fits, this sequential optimiza-
tion strategy is performed as follows:

1. compute the expensive and/or nonsmooth ob-
jective function and constraints at a small num-
ber of sample sites in the subregion,

2. construct surface fits to the objective function
and constraint data,

3. optimize within the subregion using the surface
fits as surrogates for the true objective function
and constraints,

4. compute the true objective function and con-
straints at the optimum identified in Step 3,

5. check for convergence,

6. move/shrink/expand the subregion according
to the accuracy of the approximation surfaces
compared to the true function and constraint
values, and

7. return to Step 1.

Various approaches have been developed in the en-
gineering community for implementing Steps 1-7
([3],[4]), but the convergence of these methods is
problem dependent.

In conjunction with the engineering SAO efforts,
there has been considerable research in the mathe-
matics community on SAO techniques that are prov-
ably convergent to a local optimum ([5], [6], [7], [8]).
These methods generally follow Steps 1-7, but with
a gradient-matching requirement in Step 2. That is,
the surface fits (or low fidelity models) must match
the value and the gradient of the original (high fi-
delity) functions at the center of the current subre-
gion. Thus, gradients are required for the original
functions during each pass through Steps 1-7. While
this approach is more expensive than a typical en-
gineering SAO strategy, it is less than, or at most
equal to, the expense of traditional gradient-based
optimization [7].

In an ongoing project we are developing an SAO
strategy that combines elements from a variety of
sources in the engineering and mathematics fields.
Our goal is to add an SAO capability to the DAKOTA
optimization software package that will permit the
user to choose between a provably convergent but
potentially computationally expensive strategy, and
a less reliable but possibly less computationally ex-
pensive strategy. This SAO strategy will augment the

existing capabilities in gradient-based and gradient-
free optimization methods in DAKOTA.

This paper describes the current status of this
project and is organized as follows. Section 2 provides
a brief overview of the capabilities in the DAKOTA
optimization toolkit. Section 3 describes our formu-
lation of an SAO strategy. Sections 4 and 5 demon-
strate our SAO strategy on Rosenbrock’s function
and on a quasi-sinusoidal test function, respectively.
Section 6 describes topics of future research and Sec-
tion 7 summarizes our current work.

2 DAKOTA Software Overview

The DAKOTA (Design and Analysis Kit for OpTi-
mizAtion) software [9] is an object-oriented suite of
analysis and optimization methods under develop-
ment at Sandia National Laboratories. DAKOTA
provides a flexible framework for conducting parame-
ter estimation, sensitivity analysis, uncertainty quan-
tification, design of experiments sampling, and op-
timization. Included in the optimization tools are
methods for solving continuous, discrete, and mixed
continuous-discrete problems. The analysis and op-
timization methods in DAKOTA are designed to ex-
ploit massively parallel computers (typically having
O[103 − 104] processors) which were developed un-
der the Department of Energy’s Accelerated Strategic
Computing Initiative (ASCI). While intended for MP
computers, DAKOTA also may be used on a single
workstation or on a cluster of workstations. To date,
DAKOTA has been ported to most common UNIX-
based workstations including Sun, SGI, DEC, IBM,
and LINUX-based PCs.

The DAKOTA software provides much of the in-
frastructure needed to implement an SAO strategy.
DAKOTA has a library of surrogate modeling meth-
ods including polynomial regression [10], artificial
neural networks [11], multivariate regression splines
[12], and kriging interpolation [13]. Data sampling
methods in DAKOTA include Latin hypercube sam-
pling [14], orthogonal array sampling [15], and pure
random sampling.

3 Trust Region Methods

3.1 Background

Consider a nonlinear inequality-constrained problem
(NLP) of the form

minimize f(x)
subject to gi(x) ≤ 0, i = 1, . . . ,m

xl ≤ x ≤ xu,
(1)
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where x ∈ <n is the vector of design variables, and xl
and xu are the lower and upper bounds, respectively,
on x.

In the SAO methods developed by Rodriguez,
et al [5] and Alexandrov, et al [7], the NLP is re-
cast into a simply constrained problem using an aug-
mented Lagrangian function that combines the objec-
tive, constraints, Lagrange multipliers, and various
penalty terms and/or slack variables. For this dis-
cussion, let L(x) represent a generic augmented La-
grangian function. Next, an approximate augmented
Lagrangian function is constructed using surrogates
for the objective and constraints. These surrogates
are denoted as f̂(x) and ĝi(x), and we let L̂(x) repre-
sent the approximate augmented Lagrangian function
constructed from the surrogates.

The generic SAO procedure outlined in Steps 1-7
(see Section 1) is performed in a sequence of k itera-
tions, where the optimizer is restricted to a subregion
of the design space (i.e., the trust region) during each
iteration. For the kth iteration the trust region is the
parameter space where the design variables, x, satisfy

‖ x− xkc ‖∞ ≤ ∆k, (2)

where xkc is the center point of the trust region, and
the initial value for ∆k at k = 0 is selected by the
user. A specific strategy for updating ∆k+1 is de-
scribed in Section 3.2.

One of the key elements in proving the conver-
gence of the SAO methods developed in [5] and [7]
is the enforcement of consistency conditions between
the original functions and the surrogates. Specifi-
cally, the following conditions must hold at xkc

L(xkc ) = L̂(xkc ), (3)

∇L(xkc ) = ∇L̂(xkc ). (4)

However, evaluating the term∇L(xkc ) can be com-
putationally expensive if finite difference methods are
used. Additional problems can occur in evaluating
∇L(xkc ) when there are nonsmooth trends in the ob-
jective and constraint values.

For these reasons, it would be advantageous to
have an SAO strategy that allows the user either
to enforce or not enforce the consistency conditions.
When gradients are easily evaluated and reliable, the
user will have the advantage of a provably conver-
gent SAO strategy. In cases where gradients cannot
be easily or reliably estimated, an SAO strategy can
still be employed, but without convergence guaran-
tees.

3.2 SAO Strategy Development

The initial SAO strategy implemented in DAKOTA
is a hybrid of the sequential quadratic programming
method developed by Alexandrov, et al [7], and the
trust region update methods employed by Rodriguez,
et al [5]. Rather than implementing an augmented
Lagrangian approach, we elected to retain separate
objective and constraint functions. Our SAO formu-
lation yields a sequence of k NLP trust region opti-
mization subproblems of the form

minimize f̂k(x)
subject to ĝki (x) ≤ 0, i = 1, . . . ,m

xl ≤ xkl ≤ x ≤ xku ≤ xu,
k = 0, 1, 2, ..., kmax,

(5)

where

xkl = xkc −∆k, (6)
xku = xkc + ∆k. (7)

The trust region update method used in this study
is similar to the approach employed in Reference [5].
After each of the k iterations in the SAO strategy the
trust region size, ∆k, is updated based on a measure
of the accuracy of the surrogate functions at the kth

optimum point, xk∗ . This measure of merit is desig-
nated ρk and is calculated using

ρk = min(ρkf , ρ
k
gi), for i = 1, ...,m, (8)

where

ρkf =
f(xkc )− f(xk∗)
f̂(xkc )− f̂(xk∗)

, (9)

and

ρkgi =
gi(xkc )− gi(xk∗)
ĝi(xkc )− ĝi(xk∗)

. (10)

Equations 9 and 10 are a measure of the actual
versus predicted change in the function values at the
kth optimum. This value for ρk is then used in up-
dating ∆k as follows:

∆k+1 = 0.25∆k, if ρk ≤ 0.25,
= ∆k, if 0.25 < ρk < 0.75,
= γ∆k, if ρk ≥ 0.75,

(11)

where
γ = 2, if‖ xk∗ − xkc ‖∞ = ∆k,

= 1, if‖ xk∗ − xkc ‖∞ < ∆k.
(12)

The starting point for the k + 1 SAO iteration is de-
termined by

xk+1
c = xk∗ , if ρk > 0,

= xkc , if ρk ≤ 0. (13)

The trust region updating procedure established
in Equations 8–13 can be summarized by the follow-
ing cases:
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1. ρk ≤ 0 – The surrogates are inaccurate. Reject
the kth optimum xk∗ and let xk+1

c = xkc . Shrink
the trust region by a factor of 0.25 to improve
surrogate function accuracy.

2. 0 < ρk ≤ 0.25 – The surrogates are marginally
accurate. Let xk+1

c = xk∗, but shrink the trust
region size for the k + 1 iteration.

3. 0.25 < ρk < 0.75 – The surrogates are moder-
ately accurate. Let xk+1

c = xk∗, and maintain
the current trust region size.

4. ρk ≥ 0.75 and ‖ xk∗ − xkc ‖∞ < ∆k – The surro-
gates are accurate and xk∗ lies inside the trust
region bounds. Let xk+1

c = xk∗ and maintain
the current trust region size.

5. ρk ≥ 0.75 and ‖ xk∗ − xkc ‖∞ = ∆k – The sur-
rogates are accurate and xk∗ lies on the trust
region bounds. Let xk+1

c = xk∗ and increase the
trust region size by a factor of two.

3.3 SAO Strategy Limitations

The current SAO strategy in DAKOTA does not en-
force the consistency conditions in Equations 3 and 4.
This is due to limitations in the design of experiments
sampling methods and the surrogate function meth-
ods. Thus we cannot guarantee that this SAO strat-
egy will converge to a local minimum. However, even
with these limitations this SAO strategy can be ap-
plied to optimization problems. This is demonstrated
below in an example problem involving Rosenbrock’s
function, and in a quasi-sinusoidal test problem that
mimics the nonsmooth trends that can occur in some
engineering optimization problems.

4 Rosenbrock Test Function

4.1 Background

Shown in Figure 1 is the well known Rosenbrock func-
tion

f(x1, x2) = 100(x2 − x2
1)

2 + (1− x1)2. (14)

The minimum of this function occurs at (x1∗, x2∗) =
(1, 1) where f(x1∗, x2∗) = 0.

To provide a basis of comparison, we first mini-
mized Rosenbrock’s function using the quasi-Newton
algorithm (with a BFGS Hessian update strategy)
available in the commercial optimizer DOT [16]. This
provides a control case for comparison with the SAO
optimization results. Both analytic gradients and fi-
nite difference gradients were used, with a step size of

0.0001 for the forward step finite difference method.
The starting point for all optimization cases was
(x1, x2) = (0, 0), where f(x1, x2) = 1.0.

For unconstrained optimization, the quasi-
Newton method in DOT was terminated if one of the
following three conditions was met

∇f(x1, x2) < 0.0001, (15)∣∣∣∣ (f j − f j−1)
f j−1

∣∣∣∣ < 0.0001 (16)∣∣(f j − f j−1)
∣∣ < 0.001, (17)

where j is the internal DOT iteration counter.
The SAO strategy uses DOT’s quasi-Newton

method to solve each of the k optimization problems
in Equation 5. For each of the k iterations a sur-
rogate model, f̂k(x), was created using a quadratic
polynomial of the form

f̂k(x1, x2) = c0 + c1x1 + c2x2 + c3x1x2 + c4x
2
1 + c5x

2
2.

(18)
The coefficients, c0, ..., c5, were found using a least
squares fit with six data samples taken inside each
trust region. A six-level Latin hypercube method was
used to generate the samples. The SAO strategy was
terminated if either of the following conditions was
satisfied ∣∣∣∣ (fk − fk−1)

fk−1

∣∣∣∣ < 0.0001, (19)∣∣(fk − fk−1)
∣∣ < 0.001. (20)

4.2 Optimization Results

Table 1 lists the optimization results for Rosenbrock’s
function using DOT’s quasi-Newton method and the
SAO strategy. The DOT method with analytic gra-
dients finds the minimum of this function, while the
DOT-finite difference method and the SAO strat-
egy terminate prior to reaching the minimum. Fig-
ure 2 shows the convergence history for the DOT-
finite difference method and the SAO strategy. Both
methods make good progress toward the minimum,
with the SAO strategy taking a few more iterations
before terminating. It is clear from the results in
Table 1 and Figure 2 that the SAO strategy per-
forms more function evaluations than the DOT quasi-
Newton method. This behavior is expected since the
SAO strategy does not use any gradient information.
That is, the consistency condition in Equation 4 is
not enforced with the quadratic polynomial used for
f̂k(x1, x2). Even though the convergence is slow, the
intent of this test problem is to demonstrate that the
SAO strategy exhibits the correct convergence trends.
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5 Quasi-sinusoidal Test Func-
tion

5.1 Background

Another demonstration of the SAO strategy is per-
formed on the quasi-sinusoidal test function devel-
oped in Reference [13]

f(xi) =
∑nv
i=1[

3
10 + sin(16

15xi −
7
10 )+

sin2(16
15xi −

7
10 )+

1
50 sin(40(16

15xi −
7
10 )) ].

(21)

This sine test function is shown in Figure 3 for two
parameters, x1 and x2. A contour plot of this sur-
face is shown in Figure 4, and a cut through this
surface at x2 = 0 is shown in Figure 5. The global
minimum for this function on the range [−1, 1]2 is
(x1∗, x2∗) = (0.177, 0.177) where f(x1∗, x2∗) = 0.060.

The last term on the right side of Equation 21 cre-
ates a high frequency, low amplitude variation in the
test function. This high frequency term simulates the
nonsmooth behavior that occurs in many engineering
analyses by creating many local minima in the test
function (although real-world nonsmooth trends are
seldom this well-behaved). In such situations there
often is a clear global trend, but gradient-based opti-
mizers are easily trapped in a local minimum close to
their starting point. The SAO strategy is well-suited
to this type of problem, since a surrogate model will
smooth out the high-frequency variations.

5.2 Optimization Results

Table 2 lists the optimization results obtained with
DOT’s quasi-Newton method, with various finite dif-
ference step sizes ranging from 0.0001 to 0.5 (i.e.,
0.01% to 50%). All optimization cases were started
from the point (−0.3,−0.3), where f(x1, x2) = 0.346.
All of the optimization cases terminated at approx-
imately the same point (x1, x2) = (−0.253,−0.253),
which is the nearest local minimum to the starting
point.

Table 3 lists the optimization results for the SAO
strategy, using various initial trust region sizes. Here
the initial trust region size is expressed as a percent-
age of the global bounds. For example, an initial trust
region size of 20 percent gives bounds of [−0.7, 0.1]
around x1 = −0.3 and x2 = −0.3. For small trust
region sizes the SAO strategy performs like a tradi-
tional gradient-based optimizer and locates the near-
est local minimum. As the initial trust region size
increases, the SAO strategy generally moves further

away from the starting point and finds another lo-
cal minimum, including several points at or near the
global minimum. Note that the one case that did not
converge was terminated prematurely when the first
two SAO iterations were rejected.

The results in Tables 2 and 3 demonstrate the util-
ity of using SAO methods over traditional gradient-
based methods in situations where multiple local min-
ima exist. While not guaranteed to find a global
minimum, the SAO strategy permits the optimizer to
move outside of the immediate vicinity of the start-
ing point, and avoids becoming trapped in the nearest
local minimum.

6 Future Work

The initial SAO capability in DAKOTA described in
this paper will be extended in several areas. The first
area of improvement focuses on satisfying the con-
sistency conditions in Equations 3 and 4. This will
involve changes to the design of experiments sampling
methods and to the surrogate modeling methods in
DAKOTA. Once the consistency conditions can be
satisfied, we will explore a convergence proof for the
SAO strategy described in Equation 5. It is likely
that this convergence proof will necessitate changes
to the convergence criteria that currently are used,
especially when considering constrained optimization
problems where the Karush-Kuhn-Tucker conditions
must be met.

7 Conclusions

A sequential approximate optimization strategy has
been developed and implemented in the DAKOTA
optimization software toolkit. The two test problems
examined in this study demonstrate the utility of this
SAO strategy.

In the Rosenbrock test problem the SAO strategy
converges to a point near the global minimum, but
does so using twice as many function evaluations as a
quasi-Newton method. This slow convergences is ex-
pected since the SAO strategy does not use gradient
information to guide it to convergence.

For the quasi-sinusoidal test problem the SAO
strategy avoids the nearby local minima that trap the
quasi-Newton method. As a result, the SAO strategy
generally finds better local minima than the quasi-
Newton method. As expected, the performance of
the SAO strategy depends on the initial size of the
trust region search space.

This SAO strategy fills a need for a capability be-
tween local gradient-based optimization and global
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gradient-free optimization. While the SAO strategy
developed in this paper lacks a proof of convergence,
it is a useful technique for engineering optimization
problems, many of which exhibit nonsmooth data
trends. Future development of a convergence proof
will promote confidence in the use of this SAO strat-
egy.
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Table 1: Optimization results for Rosenbrock’s function using DOT-BFGS and sequential approximate
optimization. The starting point was (x1, x2) = (0, 0).

Num. Num. Stopping
f(x1,x2) f̂ (x1,x2) Point Num.

Optimizer Evals. Evals. (x1∗,x2∗) Iterations f(x1∗,x2∗)
DOT-BFGS(analytic grad.) 93 N/A (0.999, 0.998) 23 0.000

DOT-BFGS(finite diff. grad.) 116 N/A (0.923, 0.852) 18 0.006
SAO 208 906 (0.935, 0.873) 25 0.004

Table 2: Optimization results for the quasi-sinusoidal test function using DOT’s quasi-Newton method with
BFGS update and finite difference gradients. The starting point was (x1, x2) = (−0.3,−0.3).

Num. Stopping
Finite Diff. f(x1,x2) Point Num.
Step Size Evals. (x1∗,x2∗) Iterations f(x1∗,x2∗)

0.01% 24 (−0.253,−0.253) 4 0.275
0.1% 21 (−0.253,−0.253) 4 0.275
1.0% 21 (−0.253,−0.253) 4 0.275
10.0% 15 (−0.255,−0.255) 3 0.275
50.0% 25 (−0.253,−0.253) 4 0.275

Table 3: Optimization results for the quasi-sinusoidal test function using the SAO strategy with various
initial trust region sizes. The starting point was (x1, x2) = (−0.3,−0.3).

Num. Num. Stopping
Initial Trust f(x) f̂(x) Point Num.
Region Size Evals. Evals. (x1∗,x2∗) Iterations f(x1∗,x2∗)

0.1% 80 152 (−0.252,−0.254) 10 0.276
1.0% 32 45 (−0.251,−0.253) 4 0.276
5% 72 148 (−0.107,−0.253) 9 0.221
10% 32 66 (−0.107,−0.108) 4 0.167
20% 72 143 (0.177, 0.036) 9 0.074
30% 48 113 (0.316,−0.551) 9 0.295
40% 80 195 (0.177, 0.455) 10 0.148
50% 64 134 (0.036,−0.108) 8 0.127
60% 72 158 (0.036,−0.551) 9 0.287
70% 16 27 (−0.300,−0.300)∗ 2 0.346
80% 80 155 (0.177, 0.036) 10 0.074
90% 40 62 (0.177, 0.177) 5 0.060
100% 64 148 (0.177, 0.177) 8 0.060

(∗ did not converge)
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Rosenbrock’s Function
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Figure 1: Rosenbrock’s function plotted versus x1

and x2. The global minimum is at the point (1,1).
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Figure 2: Convergence history for minimizing Rosen-
brock’s function using DOT’s quasi-Newton method
(with finite difference gradients) and sequential ap-
proximate optimization.
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Figure 3: The quasi-sinusoidal test function plotted
versus x1 and x2. The global minimum is at the point
(0.177,0.177).
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Figure 4: Contours of the quasi-sinusoidal test func-
tion, with the x1 axis along the bottom of the figure.

-1.0 -0.5 0.0 0.5 1.0
0.00

0.20

0.40

0.60

0.80

1.00

x1

f(
x1

)

Figure 5: A cut through the quasi-sinusoidal test
function with x2 = 0.

8
American Institute of Aeronautics and Astronautics


