AIAA-2000-4818

MULTILEVEL PARALLELISM FOR OPTIMIZATION ON MP COMPUTERS:
THEORY AND EXPERIMENT

M. S. Eldred”, W. E. Hart™, B. D. Schimef, and B. G. van Bloemen Waandefs
Optimization and Uncertainty Estimation Department

Sandia National Laboratories!
Albuquerque, NM 87185

Abstract Intr oduction

Parallel optimization approaches which exploit Parallel computers within the Department of
only a single type of parallelism (e.g., a single simula-Energy national laboratories have exceeded three trillion
tion instance executes in parallel or an optimizationfloating point operations per second (3 TeraFLOPS,
algorithm manages concurrent serial analyses) havtheoretical peak) and are expected to achieve 100
clear performance limitations that prevent effective scal-TeraFLOPS by 2004. This performance is achieved

ing with the thousands of processors available in masthrough the use of massively parallel processing (&{10
sively parallel (MP) supercomputers. This motivated the104] processors). In order to harmess the power of these

development of a two-level paralielism capability in machines for performing design, parallel optimization

i i ipr r simula- .
which concurrent instances of multiprocessor simu aapproaches are needed which are scalable on thousands

t!qns_are coordlneted._The mo_st effective Processor parge processors. To better understand the possibilities, it is
titioning scheme in this case is the one that limits the

. ¢ llel simulati i f ¢ t instructive to first categorize the opportunities for
siz€ of parafie’ simulations I favor ot concurren eXecu'exploiting parallelism in optimization into four main
tion of multiple simulations. That is, if both coarse-

ined and fi ined leli b loit dareas [1] consisting of coarse-grained and fine-grained
grained and fine-grained paraflelism can be exploite ﬁjarallelism opportunities within algorithms and their

thern"pziefrirence should be given to the coarse-graine, nction evaluations:
pa alne tshi ' i two-level parallelism results are " Algorithmic coarse-grained parallelisnhis paral-

S paper, two-level paraflelis esults - lelism involves the concurrent execution of multiple
extended to the case of an arbitrary number of levels in independent function evaluations, where a function
order to maximize coarse-grained concurrency and evaluation is defined as a data request from an algo-

acrle\éedlmp:r?ved t_sclallngl on MPIt computers. Adn d rithm (which may involve multiple objective and con-
extended mathematical analysis results In recommended g iy evaluations). This parallelism can be exploited

processor partitienin_g ?Che”?e_s which maximize parallel in gradient-based algorithms (e.qg., finite differencing,
work_, thereby minimizing eff|C|ency_ losses due to_com- speculative optimization), nongradient-based algo-
munication ar_ld scheduling. Experimental validation of rithms (e.g., genetic algorithms, parallel direct
these results is presented for up to four_nes_ted levels of search), and approximate methods (e.g., design of
parallelism. While the two-level result is simple and computer experiments for building response sur-

intuiti i i for selectin .
Ln;:'rz\ée’ :251 erguggﬁ\éﬁlrrf:gm;nnfggat:ﬁzﬁi (I)e Iseevglcs an faces). This concept can also be extended to the con-
9 y 9 P current execution of multiple “iterators” (e.g.,

vary depending on scheduling approach and simulation optimization, uncertainty quantification) within a

duration heterogeneity. “strategy” (e.g., branch and bound, optimization
under uncertainty, collaborative/concurrent subspace
formulations for MDO [2]).

* Algorithmic fine-grained parallelisnifhis involves
computing the basic computational steps of an optimi-
zation algorithm (i.e., the internal linear algebra) in
parallel. This is primarily of interest in large-scale

“Principal Member of Technical Staff, Mail Stop 0847,

AIAA senior member. optimization problems and simultaneous analysis and
TPrincipal Member of Technical Staff, Mail Stop 1110. design (SAND) [3].
*Postdoctoral appointee, Mail Stop 0847. « Function evaluation coarse-grained parallelisithis
8Principal Member of Technical Staff, Mail Stop 0847. involves concurrent computation of separable parts of

YSandia is a multiprogram laboratory operated by Sandia Cor- a single function evaluation. This parallelism can be

poration, a Lockheed Martin Company, for the United States i i iacti -
Department of Energy under Contract DE-AC04-94AL85000. eXpI.OItEd When the e\./aluatlon. of quectlve and cen
This material is declared a work of the U.S. Governmentand is Straint functions requires multiple independent simu-

not subject to copyright protection in the United States. lations (e.g. multiple loading or operational

1
American Institute of Aeronautics and Astronautics

environments) or multiple dependent analyses whereoptimizations, respectively.

the coupling is applied at the optimizer level (e.g., the If multiple types of parallelism can be exploited, the
individual discipline feasible formulation [4]). question arises: how should the amount of parallelism at
» Function evaluation fine-grained parallelismihis each level be selected so as to maximize the overall

involves parallelization of the solution steps within a efficiency of the study? For two levels of parallelism, the
single analysis code. Sandia has developed MP code=lative parallel efficiencyE of a two-level parallel
in the areas of nonlinear mechanics, structural dynameptimizer onp processors, as a function of the spef
ics, chemically-reacting flows, thermal mechanics, multiprocessor simulations with is:
shock physics, and many others. .

g E(p) O

For similar classifications of parallelism sources in Y
optimization, refer to [5] and [6]. By definition, coarse- whereT(p) is the time required to run a multiprocessor
grained parallelism requires very little inter-processorsimulation [1]. For sublinear analysis speedup (the pre-
communication and is therefore “embarrassinglydominating case), the denominator is monotonically
pa_ra_llel," meaning that there is little loss in parallel increasing with p and E(p) is maximized at
efficiency due to communication as the number of | , , . -

processors increases. However, it is often the case thdt = Pmin: wherep,;, is the minimum number of pro-
there are not enough Separab|e Computations on eacdi¢sSsors on which a paraIIeI simulation can execute.
optimization cycle to utilize the thousands of processorst herefore, the size of fine-grained parallel simulations is
available on MP machines. This limitation was shown into be minimized by exploiting as much coarse-grained
a parallel coordinate pattern search optimization inParallelism as possible. Important practical consider-
which the maximum speedup exploitimnly coarse- ations and caveats are discussed in [10]. Computational
grained algorithmic parallelism was shown to be evidence for this conclusion is provided in [1] by dem-
severely limited by the size of the design problem [7] onstrating minimum run time fop' = p',,;, on clusters

(coordinate pattern search has at mastirtlependent of workstations for the case of a simple test simulator.
evaluations per cycle fordesign variables). A simplified depiction of the effect on scalability is
Fine-grained parallelism, on the other hand,given in Figure 1 in which the limitations of single-level
involves much more communication among processorgarallelism are shown along with the effect of combin-
and care must be taken to avoid the case of inefficiening the approaches into multilevel parallelism. By mini-
machine utilization in which the communication mizing p, we move as far back on the fine-grained
demands among processors outstrip the amount g, ajielism curve as possible, into the near-linear scal-

actual computational work to be performed. Thisjy, range And then we replicate this fine-grained paral-
limitation was illustrated for a chemically-reacting flow || performance with multiple coarse-grained instances.
simulation of fixed size in which it is shown that, while

simulation run time does monotonically decrease with
increasing number of processors, the relative parallel
efficiency E of the computation for fixed model size is
decreasing rapidly [1] (frort = 0.87 at 64 processors to
E = 0.39 at 512 processors). This is due to the fact that
the total amount of computation is approximately fixed,
whereas the communication demands are increasing
rapidly with increasing numbers of processors.
Therefore, there is an effective limit on the number of
processors that can be employed for fine-grained
parallel simulation of a particular model size, and only
for extreme model sizes (“heroic-scale”) can thousands These insights lead naturally to the desire to maxi-
of processors be efficiently utilized in optimization mize the available coarse-grained instances, since this
exploiting fine-grained parallelism alone. allows the replication of yet more linear fine-grained
These limitations point us to the exploitation of parallel performance and therefore improved overall
multiple levels of parallelism, in particular the scaling. We seek to maximize concurrency in this way
combination of coarse-grained and fine-grainedthrough the nesting of multiple parallelism levels. The
approaches. This concept is not without precedent. Twdollowing sections present an extended analysis for an
and three level parallel implementations are described imrbitrary number of levels, followed by implementation,
[8] and [9] for chemically reacting flow and aeroelastic computational experiments, and concluding discussion.

for some constar@ > 0

multilevel parallel:

algorithmic coarse-
grained & fn. eval.
fine-grained

Speedup
-

fn. evaluation
fine-grained only

Processors
Figure 1. Scalability for fixed model size.

2
American Institute of Aeronautics and Astronautics

Theory

This section analyzes the parallel performance
of an abstract multilevel optimization algorithm
(MOA). This analysis extends and refines our earlier
analysis of two-level parallel optimizers [1]. We con-
sider a MOA that has k levels of parallelism, which
has k — 1 levels that use a fixed scheduling policy
to distribute work to processor partitions, and a fi-
nal level of processor partitions that run an analy-
sis code. Our analysis will be particularly concerned
with multilevel algorithms for which the £ — 1 lev-
els define a parallel optimization process and the last
level is an expensive, parallel algorithm (e.g. a par-
allel simulation) whose solution time dominates the
computational costs of the entire MOA.

To define a MOA, let A; refer to the algorithm
running at level 4, and let 7; be the number of in-
dependent servers used by A;. Thus 7; defines the
number of partitions of processors that A; commu-
nicates with (in addition to its master process, if
it has one). If an algorithm at level ¢ is given p’;
processors, then it uses m; € {0,1} processors for
a master process and gives each partition at least
|(p’'; —m;)/ 7] processors. The remaining processors
are distributed amongst the partitions arbitrarily so
that the maximum number of processors in a parti-
tion is [(p'; — my)/Ti].

A standard measure of parallel performance is ef-
ficiency. The efficiency of a parallel algorithm is
E(p)=T(1)/(pT(p)), where T(p) is the time required
by the algorithm on p processors, and T'(1) is the time
required by the best known serial version of the al-
gorithm. When a serial version of an algorithm is
not available or when a problem is too large to be
run on a single processor (e.g. in terms of memory
requirements), an alternative measure of parallel per-
formance is relative efficiency. The relative efficiency
of an algorithm is

~ . E(p) o pminT(pmin)
B0 = By~ T0)

where pi, is the smallest number of processors to
which the algorithm can be applied.

Note that pyi, is typically large for engineering ap-
plications at Sandia, where the lowest level of par-
allelism is a parallel numerical simulation for which
the number of processors is constrained by the size
of the dataset. Thus we focus on the relative effi-
ciency of MOAs. We assume without loss of gener-
ality that a judicious choice of 7; has been made to
ensure that the MOA can fit onto p processors. The
numerator of E(p) is fixed, so maximizing relative ef-
ficiency is equivalent to minimizing the parallel work,
W = pT(p), of a parallel algorithm.

3

The parallel work of a multilevel algorithm includes
the work of each algorithm A; as well as the work
of scheduling algorithms used to distribute work to
the processor partitions at each level. The generic
nature of MOAs makes it extremely difficult to pro-
vide an exact performance analysis that is valid for a
broad range of MOAs. Instead, we make the following
simplifying assumptions that enable us to provide an
analysis of a class of algorithms that captures salient
features of most MOAs:

Communication: When a self-scheduling or dis-
tributed scheduling policy (see Section Scheduling
Within Levels) is used to distribute work to the
servers for A;, communication is needed to send the
results back and forth between A; ;. We assume that
the time required to communicate between A; and
Aj4q is a fixed constant T7°™", independent of the
size of the message or the underlying network topol-
ogy. These communication times are the same for all
A;.

Serial Work: We assume that the time required
to execute the serial work of A;, Tre™a! is constant for
all problems.

Concurrency: We assume that the parallelism in
A; is the same regardless the task that it is comput-
ing. We can model the parallelism in A; in a generic
fashion by denoting the number of concurrent calls to
worker processes that are used by A;. Let n; ; denote
the number of concurrent calls to worker processes for
A; in the j-th phase of the algorithm, 7 =1,..., N;.
This assumption means that the values N; and n;;
are the same every time A; is run.

Given these assumptions, the time required for a
master process at the i-th level of an MOA to run on
p’ processors is

Ti(p)) = T3 4+ 4,207 ™ + 3, Ty 1 (L0 — mi) /7)),

where v; = Zj\;l [n;j/7:, which denotes how many
problems need to be computed in parallel on the A; 4
servers in order for A; to solve a problem. For k& > 1

it follows that

k—1 k—1

T() — 3 Mk Tl Y 2Tromnm_ o,
i=1 i=1
+ T (i) I i,

where 7 = 1, pi = p and p, =

| (Ph—y — Mb—1)/Th—1 |-

A general evaluation of W(p) is not possible be-
cause of the dependence of T'(p) on N; and n;;, which
are not generally known. However, for given values of
the ~; it is possible to evaluate the relative utility of
different MOA. In particular, we consider the choice

American Institute of Aeronautics and Astronautics

of the 7; variables for two scheduling policies: static
scheduling and self-scheduling. For self-scheduling,
we assume that a master process is used to execute
A; and A, is executed on the processor partitions.
If a static scheduling policy is used, then the execu-
tion of A; is replicated across all processors and no
master process is used. Since our analysis does not
consider the case where the execution times for the A4;
may differ, the difference between these two cases in
the following theoretical analysis are simply reflected
by whether or not a master process is used (i.e. by
the value of m;).

We assume that the work for A dominates the
computation of the MOA, so the first two terms in
T(p) are small compared to the last term of T'(p).
Further, in practice we can choose 7; such that pj ~
p/ Hi:lln. Thus we have

W(p) =~ pTi(p/TEZ})

The optimal values for the 7; are very dependent upon
how the v; vary with the 7;. For example, if there is
a wide range of n;; for A;, then the optimal value
of 7; will depend upon the characteristics of the dis-
tribution of n;;. However, we have observed that a
common case is when the n;; are constant with re-
spect to j. In this case, n;; = n; so v; = N; [n;/7;].

To simplify our analysis, we constrain ourselves to
solutions where n; is an integer multiple of 7; (which
is commonly done in practice). If w; = n;/7;, then
the parallel work can be rewritten as

W(p) = CpTi(p),
where p = p/II¥_!7; and C = TI'-! N;n;. Note that

k—1
i=1 Vi

i+1

min’

Phnin = M + Tip
where pi . is the minimum number of processors re-
quired for A;. It follows that

k—2
Prmin = P Ts + Z mip1 1y 75 + my.
i=1
Consequently, we can minimize the parallel work for
a given p by finding 7y, ..., 7} that solve the problem:

min-, pTx(p)
s.t. 1 S Ti S n;
k—2
P> Pl T+ Zmi+1H§':17_j +my
W;T; = Ny =
w; € Z,

where Z is the set of integers. The first constraint
reflects the fact that we can reasonably restrict 7; to

4

1 < 7; < ny, since otherwise there will always be idle
processors.

If we assume that T}, is monotonically decreasing
and that Aj, exhibits sublinear speedup, then pT}(p)
is monotonically increasing in p. Thus minimizing

pTi(p) is equivalent to minimizing —TI¥_!7;, so we
can solve the equivalent problem
min,, —I15= 17,
st. 1<7<n;
k—1 k—2 ;
P> Pl 7 + Dt il 75 +my (1)
W;Ty = Ny
w; € V4

For a given p, there may be no feasible solutions
to this problem because of the integrality constraint
on 7; (for example, consider the case when the n; are
large prime numbers). Appendix A analyzes the op-
timal solutions for this problem when we relax the
integrality constraint on 7;. To illustrate the range
of solutions to (1), consider the cases where all m;
values are one or zero. If the m; values are all one,
then a self-scheduling algorithm is used at all levels,
and dedicated processors are used for scheduling. In
this case, there exists i such that y = ... =7,_1 =1,
7; > 1 and 7; = nj for j > 4. These solutions max-
imize the number of simultaneous evaluations of Ay,
which effectively minimizes the number of processors
that Ay is run on. This intuitively makes sense be-
cause the parallel work of Aj is minimized when it
is Tun on p¥. processors. We expect that integral
solutions will be similarly biased towards minimizing
the number of processors.

The case where the m; values are all zero represents
a static scheduling policy, which does not use mas-
ter processes. If the n; values are sufficiently large,

then the optimal solution is when 7 = ... = 7,_1 =
(p pﬁﬂn)l/(kfl). This solution maximizes the prod-

uct of the 7;, and it is noteworthy that when integral
solutions do exist, they may not be unique. This can
happen, for instance, when the n; share common di-
visors. If n; = 12 and n; = 18, then a solution with
7; = 6 and 7; = 9 is equivalent to a solution with
7; = 3 and 7; = 18. Thus concurrency at different
levels is interchangable given prudent selections that
avoid idleness.

In the general case, an optimal solution to (1) be-
gins with zero or more 7, at their lower bound and
ends with zero or more 75, at their upper bound. Be-
tween these regions, is a set of consecutive indeces
{i} for which the values m;;; are zero, but within
that set the 7; are either at their upper bounds or at
a value that is the same for all other unconstrained
TL'S.

American Institute of Aeronautics and Astronautics

Implementation Level 3. Concurrent analyses within each function
evaluation:coarse-grained parallelism is exploited
when multiple separable simulations are performed
as part of evaluating the objective function(s) and
constraints.

In order to maximize concurrency and achieve near-
linear scaling, we seek the simultaneous exploitation of
many different sources of parallelism by modularizing
the parallelism facilities into a reusable software compo-
nent and then nesting these facilities, one level withinkevel 4. Multiple processors for each analysfe-

the next, through recursive partitioning. MPI [11] pro- ~ grained parallelism is exploited when parallel anal-
vides a convenient mechanism for modularizing paral- ~ Ysis codes are available. For this level, no schedul-
lelism through the use of “communicators.” A ing by DAKOTA is required as the simulation code

communicator defines the context of processors over IS responsible for internally distributing work

which a message passing communication occurs. By —among the simulation processors.

providing mechanisms for subdividing existing commu-In terms of the classification of parallelism sources
nicators into new partitions and for sending messagegiven in thelntroduction Levels 1 and 2 are examples
within and between the new partitions, a lower level of of algorithmic coarse-grained parallelism, Level 3 is
parallelism can be created and managed with a new sétinction evaluation coarse-grained parallelism, Level 4
of subdivided communicators. And since each new comis function evaluation fine-grained parallelism, and algo-
municator can be further subdivided, multiple levels ofrithmic fine-grained parallelism is not supported in
parallelism can be nested, one within the other. In thisDAKOTA (the SAND approach is under investigation
way, massive parallelism can be achieved through theeparately). It is relatively rare for any given application
simultaneous exploitation of algorithmic coarse-to be able to exploit all four levels; rather each new
grained, function evaluation coarse-grained, and funcapplication selects as many as are applicable from the
tion evaluation fine-grained parallelism sources. toolset.

The DAKOTA toolkit [12] is a software framework This marks a significant increase in available con-
for systems analysis, encompassing optimizationcurrency from the two-level capability reported in [1] to
parameter estimation, uncertainty quantification, designhe four levels currently available. It is important to rec-
of computer experiments, and sensitivity analysis. Itognize that the effect on concurrency is not additive, but
interfaces with a variety of simulation codes from a rather multiplicative in nature. For example, if four con-
range of engineering disciplines, and it manages theurrent optimizations can be run within a strategy, each
complexities of a broad suite of capabilities through theoptimization having ten independent function evalua-
use of object-oriented abstraction, class hierarchies, angbons on each cycle, and each function evaluation having
polymorphism [13]. Through implementation in three independent analyses, then the fine-grained paral-
DAKOTA, the impact of investments in parallel code |elism available in the analysis can be augmented with
development can be maximized since capabilities develi20-fold coarse-grained parallelism.
oped for optimization also enable parallelism in uncer-
tainty quantification, parameter estimation, and otherPartitioning of levels

toolbox capabilities. In DAKOTA, each tier within the nested parallelism
] hierarchy can use either of two processor partitioning
Levels of parallelism models: a “dedicated master” partitioning in which a

While the theory in this paper covers an arbitrary single processor is dedicated to scheduling operations
number of parallelism levels, DAKOTA currently sup- and the remaining processors are split into server parti-
ports up to four levels of nested parallelism (which tions, or a “peer partition” approach in which the loss of
implies three levels of scheduling control). From top toa processor to scheduling is avoided. These models are
bottom, they are as follows: depicted in Figure 2. The peer partition is desirable
Level 1. Concurrent iterator strategiesoarse-grained ~ since it utilizes all processors for computation; however,

parallelism is realized through the concurrent exe- it requires either the use of sophisticated mechanisms

cution of multiple optimizations/quantifications for distributed scheduling or a problem for which static

within a high-level strategy such as parallel branch scheduling of concurrent work performs well (see

and bound, optimization under uncertainty, multi- Scheduling within levelselow). To recursively partition

start local search, island-model GAs, etc. the subcommunicators of Figure OMME/3 in the
dedicated master or peer partition case would be further
subdivided using the appropriate partitioning model for
the next lower level of parallelism.

Level 2. Concurrent function evaluations within each
iterator: coarse-grained parallelism is realized
through the concurrent execution of multiple func-
tion evaluations within each optimization.

5
American Institute of Aeronautics and Astronautics

COMM§ Master a single master) or for fault tolerance (avoiding a sin-

/ 3\ gle point of failure). However, it involves relatively

YTV ol [Covival [CoMa complicated logic and additional communication for

(e.9.,MPI_COMM_WORLD) spiit | Slave Slave Slave gueue status and job migration, and its performance is
> not always superior since a partition can become

work-starved if its peers are locked in computation

(a) Dedicated Master (Note: this logic can be somewhat simplified if a sepa-
SOV rate thread can be created for communication and
Peer migration of jobs).

(e.9.MPI_COMM_WORL each parallelism level with either dedicated master/self-
scheduling, peer partition/static scheduling, or peer par-

COMM2] COMM3 " - . X

Peer Peer tition/distributed scheduling. For example, Figure 3

initial COMM) sl / DAKOTA is designed to allow the freedom to configure
pli

> shows the common case in which a concurrent-opti-
mizer strategy employs peer partition/distributed sched-
uling at level 1, each optimizer partition employs

concurrent function evaluations in a dedicated master/

(b) Peer Partition

Figure 2. Communicator partitioning models. self-scheduling model at level 2, and each function eval-

uation partition employs concurrent multiprocessor

Scheduling within leels analyses in a peer partition/static scheduling model at
Several scheduling approaches are available withitevel 3. In this caseMPl_COMM_WORIiPsubdivided
Levels 1, 2, and 3: into optCOMM12/3/...it;, eachoptCOMMis further

« Self-schedulingin the dedicated master model, the ~Subdivided into evalCOMMO (master) and
master processor manages a single processing queu8alCOMMY2/3/...it; (slaves), and each slaewal-
and maintains a prescribed number of jobs (usually COMN further subdivided intanal COMMY2/3/...k3.
one) active on each slave. Once a slave server has Level1 Level 2 Level 3
completed a job and returned its results, the master [wa comvm worlo
assigns the next job to this slave. Thus, the slaves -
themselves determine the schedule through their job
completion speed. Heterogeneous processor speeds
and/or job lengths are naturally handled, provided
there are sufficient instances scheduled through the
servers to balance the variation. OptCOMM’s: evalCOMM's: analCOMM’s:
Static schedulingif scheduling is statically deter- 2 0n
mined at start-up, then no master processor is needed >

to direct traffic and a peer partitioning approach is I:l I:l I:l I:l

applicable. If the static schedule is a good one (ideal p TI=
conditions), then this approach will have superior per- L] - L0 [l
formance. However, heterogeneity, when not knawn
priori, can very quickly degrade performance since
there is no mechanism to adapt.
Distributed schedulingin this approach, a peer parti-

optCOMM3 evalCOMM3

Figure 3. Recursive partitioning for nested parallelism.

tion is used and each peer maintains a separate queue Experiments
of pending jobs. When one peer’s queue is smaller Two types of computational experiments are of

than the other queues, it requests work from its peergnterest:

(hopefully prior to idleness). In this way, it can adapt |, estigation of usage modef§he mechanisms used to
to heterogeneous conditions, provided there are suffi- manage concurrent multiprocessor simulations on
cientinstances to balance the variation. Each partiton \;p computers are of high importance. These stud-

performs communlcatlc_)n between computatlons, o) ies compare nonintrusive approaches (asynch, mas-
no processors are dedicated to scheduling. Further- ter-slave, and hybrid) with the goal of

more, it distrib_utes sched_uling load beyond a single approximating the performance of the direct, intru-
processor, which can be important for large numbers sive approach

of concurrent jobs (whose scheduling might overload N L
Investigation of partitioning schemedhe t1; recom-

6
American Institute of Aeronautics and Astronautics

mendations from the mathematical analysis will be
demonstrated by fixing the total processor alloca-
tion (p), varyingT; within p, and measuring relative
performance.

single-proc.
DAKOTA

Usage model computationaiperiments jobl & job2 & job3 & job4 &
Usage model studies are being explored on Sandia’s
computational plant (Cplaft!) architecture [14], a

tightly-connected cluster of DEC alphas running <s|ave><slave>(slave><slave>

(a) asynch

LINUX [15]. This computer, as well as all other Sandia
MP computers, uses a service/compute node distinction.
Service nodes run full UNIX and are used for job initia-
tion and management. Compute nodes run a minimal
operating system (no system calls, forks, or multithread-
ing) whose small footprint leaves as much memory as (b) master-slave
possible for the application. In this environment, the

most computationally efficient way to perform parallel
(slave > (slave) (slave > (slave)

optimization using simulation codes in a nested analysis

and design (NAND) approach is to perform a “direct”
interface which links the simulation into the optimiza-
tion software. The combined executable is then executed jobs& jobs & jobs& jobs &
on the compute nodes where it employs MPI communi-

cator partitions to manage embedded multiprocessor
simulations. Unfortunately, this approach is often

impractical due to the required intrusiveness into theihe master-slave approach is limited by the (relatively
simulation code (modification to a callable subroutinegmgaly number of service nodes. The hybrid approach
and MPI communicator modularity required). For this spreads the application load and still allows significant
reason, these studies are benchmarking nonintrusivgapacity beyond the number of service nodes.
interfacing techniques (no simulation modifications In a design application employing the ALEGRA
required) which have the goal of approximating the per-simulation code, Figure 5 shows the timing for the
formance of the direct interface. This involves the com-agynch, master-slave, and hybrid approaches for
bined usage of service nodes, where the parallejycreasing number of concurrent ALEGRA simulations.
optimization executes, and compute nodes, where the,ch simulation writes data to a disk local to the service
parallel simulations execute. node launching the simulation. Ideally, these curves
Three nonintrusive approaches have been exploregioy|d all have zero slope since the simulations are the
on Cplant (Figure 4). In all cases, DAKOTA runs on oné same size and run concurrently. However, competition

or more service nodes and launches simulations on thgy service node resources has a detrimental effect, and
compute nodes using a job initiation utility. The first

approach, called “asynch,” involves the execution of
DAKOTA on a single service-node processor. DAKOTA 2 .
uses its asynchronous job initiation (e.g., background
system call, nonblocking fork) to manage multiple con-
current jobs. The second approach, called “master
slave,” involves the execution of DAKOTA in parallel _
across multiple service-node processors. Each slave seéwf
vice node uses a synchronous job initiation method*
(foreground system call, blocking fork) to manage a sin- **r
gle job per service node. The third approach, called ol

“hybrid,” combines the first two approaches in manag- k,/{m'
ing multiple asynchronous jobs on each slave service | |
node. This latter approach was motivated by the obser
vation that spreading application load across service s, L m = - = ©

nodes is beneficial, but the concurrency achievable in concurrent Simuations
Figure 5. Cplant execution times for serial ALEGRA

jobl job2 job3 job4

(c) hybrid
Figure 4. Nonintrusive DAKOTA options.

211
asynch

20 asynch-(raid)

hybrid

7
American Institute of Aeronautics and Astronautics

spreading the load across multiple service nodes ishows efficiency results from the simulator for fixing the
clearly beneficial. It is evident that the hybrid method total number of processors at 128 plus masters
provides a natural continuation of the master-slavg(including a varying number of masters within a fixed
approach and provides superior performance for largetotal would cause heterogeneous partitions within a
numbers of concurrent jobs. level and would not be done in practice), fixing
maximum concurrencies a=1 andny,=n3=32, setting

p, to 4, 8 and 16 processors per simulation

legn a high performing "usage model, th.eéf;orresponding to 32, 16, and 8 total concurrency in
partitioning schemes recommended by the mathematical: . ; .
simulations, respectively), and varying the lowest level

analysis can be explored. Since performing large-scalé | I ¢ the total
verifications is extremely expensive and must havetoncurrency ;. In allcases, any o € lota

strong mission ties to be justified, a run time simulatorconcurrency not present i, appearstin such that
has been developed to compare the numerous the product is constant for each curve. It is evident for
configurations that are possible when four levels ofthe self-scheduling case (Figure 6(a)) that highest
parallelism are considered. The simulator is based owfficiencies are achieved for minimum simulation size
the equation forT(p). Wall clock time required for a (4 processors) and for maximized concurrency at the
multiprocessor analysis cod&(p',)) is modeled using lowest level (32 instances), since this equates to fewer
experimental data from a series of MP structuralProcessors dedicated to scheduling (3 masters forjthe

dynamics simulations, and since this time dominates irf2/T3 = 1/1/32 configuration versus 34 masters for the 1/
practice T;3¢"@ andT,°°™Mare taken to be zero. Figure 6 32/1 configuration). For the static scheduling case
11 : : (Figure 6(b)), highest efficiencies are again achieved for

A — minimum simulation size, but the concurrencies

S betweent, andt; are interchangeable. Thus, the

Partitioning scheme computationadperiments

1 recommendations from the mathematical analysis hold
8 processorsisimulation exactly in the deterministic simulation duration case.

‘ However, Figure 7 shows a different trend for a
stochastic case in which a 10% variation is added to the
simulation duration using an exponential distribution.
This is motivated by the fact that some applications can
have considerable variability in simulation duration,
osF 1 particularly when the event of interest is dependent on
oo 0 Ioprocessarismaton the design variables (e.g., see heat transfer and nonlinear
I mechanics applications in [16]). For each configuration,
o3k ‘ ‘ ‘ ‘ 1000 experiments are run with different random seeds

I I I
5 10 15 20 25 30 35 40

o
S
T
L

relative efficency

=3

>
T
I

0.4

concurtency at evel k-1 and the results are averaged. It is evident that variation
(a) self-scheduling in simulation duration is most detrimental to efficiency
11 ‘ ‘ at the higherty; concurrencies, which is intuitive since

4 processors/simulation

this equates to fewer passes through the servers (lower
y3) and fewer opportunities to balance heterogeneity in

job length. Thus, a trade-off between minimizing
masters and the need to balance heterogeneity is created
in the self-scheduling case (Figure 7(a)) and efficiency
is actually maximized in the interior of the curves.
Additional experimentation has found that the slope in
the larget,; region transitions between positive slope

8 processc imulation

o
@
T
I

o
3
T
L

relative efficency

=3

o
T
I

osf 1 (e.g., Figure 6(a)) and negative slope (e.g., Figure 7(a))
Ge—e———0 16 processorsisimulation at 1% variability in simulation duration. This can be
o4r] considered to be the boundary of validity of the
ol ‘ ‘ ‘ ‘ ‘ ‘ ‘ assumptions in the theoretical analysis for this problem.
0 s 10 B curreneattevel koL % 3 40 In the static scheduling case (Figure 7(b)),
(b) static scheduling concurrencies are no longer interchangeable and

Figure 6. Deterministic simulation duration

8
American Institute of Aeronautics and Astronautics

11 11

4 processors/simulation 128 processors/simulation

—
256 processors/simulation

o
3
T
L

o

®

T

F Q

|
o
®

T ‘

/ /
1
I

8 processors/simulation —

relative efficency
o <
3
T
relative efficency

o
)
T
I
o
o
T
L

0.5 q 0.5 B

L@ ~O——— 16 processors/simulation 9“9\@\0 512 processors/simulation

0.4 ~ 0.4 B

I I I I I 0.3 I I I I I I I
5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
concurrency at level k-1 concurrency at level k-1

() self-scheduling Figure 8. Large-scale, self-scheduling, stochastic duration

11 1

T 095t Tl:8 4

09+ T .

4 processors/simulation

54
©
T

T
8 processors/simulation

o
©
T

/]

relative efficency
o
3
T
|
relative efficency

o
o
T
L
e
©
a
T

0.5 *

0.8~
Gﬂ\s\@ 16 processors/simulation

0.4 B

0.3 I I I I I I I 0.75 I I I I I L L L L
0 5 10 15 20 25 30 35 40 0 1 2 3 4 5 6 7 8 9 10

concurrency at level k-1 concurrency at level k-1

(b) static scheduling Figure 9. Large-scale, self-scheduling, stochastic
Figure 7. Stochastic simulation duration duration for fixed values af

maximizing y; instead ofi; is preferred. Presumably, shown with curves drawn for fixed valueswf It is evi-

with any variability in simulation duration, this static dent that maximum efficiency occurs foj/t,/t13 = 8/4/

scheduling conclusion would hold. 1, or maximized concurrencies at thgyher levels (the
Figure 8 shows a large-scale case with an identicaéxact opposite of the theory prediction). This configura-

set-up to Figure 7(a) except that 128, 256, and 512ion results in less replication of the idleness caused by

processors per simulation are used instead of 4, 8, ankleterogeneity.

16. This corresponds to a total of 4096 processors plus

masters. In this case, the effect of a variable number of Conclusions

masters can be seen to be much lower relative to Figure

7(a). That is, large simulation sizes can mask variationsSors

in the number of masters, making this concern

secondary to the concern of balancing heterogeneity.

Parallel optimization on large numbers of proces-
has been investigated. Nested parallelism is
employed to maximize the number of coarse-grained

Fiaure 9 shows another large-scale. self-schedulin instances, which allows the execution of fine-grained
Y 9 ' gparallel simulations on minimal partitions where com-

stochastic duration case in which the sizepgf is fixedy tation could far predominate over communication.
at 128 processors per simulatignis fixed at 4096 (32 This preference of coarse-grained over fine-grained has
total simulation concurrencies) plus masters, and maxibeen consistently verified in computational experiments.
mum concurrencies are fixedmgn,=n;=8. All combi- A more subtle point is preference among different
nations of 14/1,/15 resulting in 32 concurrencies are sources of coarse-grained parallelism. Theoretical anal-
ysis has shown the optimal partitioning schemes in mul-

9
American Institute of Aeronautics and Astronautics

tilevel optimization algorithms for idealized self- [5]Schnabel, R.B., “A View of the Limitations,
scheduling and static scheduling cases. In the selfOpportunities, and Challenges in Parallel Nonlinear
scheduling case, it is recommended to give preference t@ptimization,” Parallel Computing Volume 21, 1995,
the lower level concurrencies since this minimizes thepp. 875-905.
number of processors lost to scheduling operations. In [6]Biedron, R.T., Mehrotra, P., Nelson, M.L., Pre-
the static scheduling case, it is shown that little differ-ston, F.S., Rehder, J.J., Rogers, J.L., Rudy, D.H.,
ence exists between the scheduling levels and that theBobieski, J., and Storaasli, O.0., “Compute as Fast as
concurrencies may be interchangeable. These reconthe Engineers Can Think!,” NASA/TM-1999-209715,
mendations were verified in computational experimentsSeptember 1999.
for the case where simulation duration is fixed. With [7]EIdred, M.S., Hart, W.E., Bohnhoff, W.J.,
variability in simulation duration, however, the simplify- Romero, V.J., Hutchinson, S.A., and Salinger, A.G.,
ing assumptions in the analysis become violated, and th&Jtilizing Object-Oriented Design to Build Advanced
need to balance heterogeneity (whether due to simula®©ptimization Strategies with Generic Implementation,”
tion length, processor speed, or other factors) campaper AIAA-96-4164 inProceedings of the 6th AIAA/
become more of a dominant concern than minimizingUSAF/NASA/ISSMO Symposium on MA&BEllevue,
the number of scheduling processors. In this case, the&VA, Sept. 4-6, 1996, pp. 1568-82.
opposite recommendations hold, that is, maximizing [8]Hutchinson, S.A., Shadid, J.N., Moffat, H.K.,
concurrencies at the higher levels. and Ng, K.T., “A Two-Level Parallel Direct Search
Future extensions to the mathematical analysis willlmplementation for Arbitrarily Sized Objective Func-
focus on the issue of simulation duration heterogeneitytions,” Proceedings of the Colorado Conference on lIter-
since this has been shown to be a dominant concern faative MethodsBreckenridge, Colorado, 1994.
large scale applications. Future DAKOTA development [91Guruswamy, G.P., “User's Manual for HIMAP:
will seek to minimize efficiency losses due to replicatedA Portable Super Modular 3-Level Parallel Multidisci-
scheduling processors by emphasizing static angblinary Analysis Process,” NASA/TM-1999-209578,
distributed scheduling approaches over self-schedulineptember 1999.
approaches, particularly at the lower parallelism levels [10]Eldred, M.S., and Schimel, B.D., “Extended
where dedicated scheduling processors are modRarallelism Models For Optimization On Massively Par-
replicated. This will allow DAKOTA partitioning logic allel Computers,” paper 16-POM-2 iRroceedings of
to fully endorse maximized concurrency at the higherthe 3rd World Congress of Structural and Multidisci-
levels and lead to high performing configurations whichplinary Optimization Buffalo, NY, May 17-21, 1999.

are robust in the presence of heterogeneity. [11]Snir, M., Otto, S., Huss-Lederman, S., Walker,
D., and Dongarra, JMPI: The Complete Reference
References MIT Press, Cambridge, MA, 1996.

“Mac 12]Eldred, M.S, Bohnhoff, W.J., and Hart, W.E.
[1]Eldred, M.S. and Hart, W.E., “Design And [P ' ' o
Implementation Of Multilevel Parallel Optimization On (I)D ;ﬁilfnci);:';i’oAnn Igabrf;tégrlegstggngtrizz]eévgr:l;ig\)/ :t)?iiglr;/
The Intel Teraflops,” paper AIAA-98-4707 iRroceed- . T e . .
ings of the 7th KIAAF}UpSAF/NASA/ISSMOI Symposiurrgs’ and Uncertainty Quantification,” Sandia Technical
C : S eport SANDOQO-XXXX, In preparation. Draft available
on Multidisciplinary Analysis and Optimization from http://endo.sandia.aov/DAKOTA/babers/
(MAO), St. Louis, MO, Sept. 2-4, 1998, pp. 44-54. 1OR gf- : -9 pap
[2]Kroo, I., “MDO for Large-Scale DesignMulti- [13]_Strous'£u ' B.The C++ Proaramming Lan-
disciplinary Design Optimization State of the Addex- age 2nd ed Ag,d'sgn—Wesle Ne gYork 15“]91
androv, N.M., and Hussaini, M.Y., eds., Society for guage N : Y, New ' '

: : . . - 14]Eldred, M.S., Schimel, B.D., van Bloemen
Industrial and Applied Mathematics, Philadelphia, [! iy ' Lo ;
199u7 FIJp 22-44 i I I P! Waanders, B.G., and Giunta, A.A., “Optimization with

[3]0rozco, C.E., and Ghattas, O.N., “A Reduced DAKOTA on Cplant,” internal report, January 2000.
SAND Method for Optimal Design of Non-linear Struc- [15]http:/www.cs.sandia.gov/cplant/

tures,” International Journal for Numerical Methods in [16]Eldred, M.S., Outka, D.E., Bohnhoff, W.J.,

. . Witkowski, W.R., Romero, V.J., Ponslet, E.R., and
Engineering Volume 40, 1997, pp. 2759-2774. ’ N ’ ' o
gl[4]Delngis JUE and Lewis pRE)M “Problem Eormu- Chen, K.S., “Optimization of Complex Mechanics Sim-

lations and Other Optimization Issues in Multidisci- ulations With_ Object—O_riente_d S_oftwart_a Des_igﬁ;bm-
plinary Optimization,” AIAA Paper 94-2196AIAA puter Modeling and Simulation in Engineeringol. 1,

Symposium on Fluid Dynamic€olorado Springs, CO, No. 3, August 1996.
June 1994.

10
American Institute of Aeronautics and Astronautics

Appendix A

This appendix describes the optimal solutions to
problem (1). Consider the following reformulation of
problem (1), which puts all constraints in a common
form:

min,, —IIF- 7
s.t. —12>0
—Ti+n; >0 (2)

ko oprk—1
P— Prinllizi Ti

—in1 mi+1H§':17'j —my > 0.
The Lagrangian for this problem is

2k—1
L(?,X) = *Hf;llﬁ — Z)‘ici(?)a
i=1

where ¢; refers to the i-th constraint in Equation (2).
A mnecessary condition for the optimality of a point
T* is that there exists A such that

oL _, ~

— (T2)=0

87-i ())
and A\ >0fori=1,...,2k—1 (e.g. see Gill, Murray
and Wright [11]). The following lemma proves the
basic fact needed to characterize 7*.
Lemma 1 Let 1 <r < s < k—1, and suppose that
7% > 1. If there exists m; =1 fori e {r+1,...,s},
then 77 = ns. Otherwise if T} # 1) then either 7,7 =
Ny < TS, o7 T > TF = .

Proof. Note that the A} have the property that if
constraint ¢ is not tight then A\j = 0. Thus if 7" > 1
then A\ = 0 and A7, ; > 0. Consider the case
where there exists m; =1 for i € {r+1,...,s}, and
assume towards a contradiction that 7 < ng. This
implies that AZ > 0 and)\:+k*1 = 0. Because of the
optimality of 7", we have

—x N F H,I-‘.:l L*
GE(T X)) = — T SN A
. k—1_x k=2 i HL, ¥
+)‘§k71 (pmmgil T + Zi:‘,. ":::l =175) -0
and
OL (=« ¥\ __ Hfzill"'i* * *
o (THA) = == = AT+ Al
. k—1_x k=2 i HL, *
+)‘§k_1 (pmmgil i + Zi:s ":j:l =17) —0.
Now A7 =0 and A, ,_; =0, so we can rewrite these
equations as
—a+ AT+ Ay b 0 (3)
—a— T A Ne = 0, (4)

11

where a > 0 and b > ¢ > 0 since we have m; = 1 for
some i € {r+1,...,s}. Now from Equation (4) we
can conclude that A5, ; > 0, since the first term is
negative and the second term is nonpositive. Com-
bining Equations (3) and (4), we get

Nkt Tr T ATE + X541 (b—¢) = 0.

Since b > ¢, all of the terms in this equation are
positive. Thus this can only be satisified if A}, | =
Ay = A3, 1 = 0. But this gives a contradiction since
ASi_1 > 0, so we can conclude that 7} = n;.
Consider the case where there exists m; = 0 for
i€ {r+1,...,s}, and suppose that 7 < 7. Let
T = ot). Since 7, and 75 are always multiplied
together in the last constraint, this constraint
becomes less tight as o approaches one. Further,
the objective is minimized as o approaches one. It
follows that o must be bounded from above by the
upper bound on 7;, so this bound is tight. The same
argument applies when 7 > 7. [

American Institute of Aeronautics and Astronautics

	MULTILEVEL PARALLELISM FOR OPTIMIZATION ON MP COMPUTERS: THEORY AND EXPERIMENT
	Abstract
	Introduction
	Implementation
	Levels of parallelism
	Level 1. Concurrent iterator strategies: coarse-grained parallelism is realized through the concu...
	Level 2. Concurrent function evaluations within each iterator: coarse-grained parallelism is real...
	Level 3. Concurrent analyses within each function evaluation: coarse-grained parallelism is explo...
	Level 4. Multiple processors for each analysis: fine- grained parallelism is exploited when paral...

	Partitioning of levels
	Scheduling within levels
	Experiments
	Usage model computational experiments
	Partitioning scheme computational experiments
	Conclusions
	References
	[1] Eldred, M.S. and Hart, W.E., “Design And Implementation Of Multilevel Parallel Optimization O...
	[2] Kroo, I., “MDO for Large-Scale Design,” Multidisciplinary Design Optimization State of the Ar...
	[3] Orozco, C.E., and Ghattas, O.N., “A Reduced SAND Method for Optimal Design of Non-linear Stru...
	[4] Dennis, J.E., and Lewis, R.M., “Problem Formulations and Other Optimization Issues in Multidi...
	[5] Schnabel, R.B., “A View of the Limitations, Opportunities, and Challenges in Parallel Nonline...
	[6] Biedron, R.T., Mehrotra, P., Nelson, M.L., Preston, F.S., Rehder, J.J., Rogers, J.L., Rudy, D...
	[7] Eldred, M.S., Hart, W.E., Bohnhoff, W.J., Romero, V.J., Hutchinson, S.A., and Salinger, A.G.,...
	[8] Hutchinson, S.A., Shadid, J.N., Moffat, H.K., and Ng, K.T., “A Two-Level Parallel Direct Sear...
	[9] Guruswamy, G.P., “User’s Manual for HiMAP: A Portable Super Modular 3-Level Parallel Multidis...
	[10] Eldred, M.S., and Schimel, B.D., “Extended Parallelism Models For Optimization On Massively ...
	[11] Snir, M., Otto, S., Huss-Lederman, S., Walker, D., and Dongarra, J., MPI: The Complete Refer...
	[12] Eldred, M.S, Bohnhoff, W.J., and Hart, W.E., “DAKOTA, An Object-Oriented Framework for Desig...
	[13] Stroustrup, B., The C++ Programming Language, 2nd ed., Addison-Wesley, New York, 1991.
	[14] Eldred, M.S., Schimel, B.D., van Bloemen Waanders, B.G., and Giunta, A.A., “Optimization wit...
	[15] http://www.cs.sandia.gov/cplant/
	[16] Eldred, M.S., Outka, D.E., Bohnhoff, W.J., Witkowski, W.R., Romero, V.J., Ponslet, E.R., and...

	Theory
	Theory (cont.)

