
MULTILEVEL PARALLELISM FOR OPTIMIZATION ON MP COMPUTERS:
THEORY AND EXPERIMENT

M. S. Eldred* , W. E. Hart†, B. D. Schimel‡, and B. G. van Bloemen Waanders§

Optimization and Uncertainty Estimation Department

Sandia National Laboratories¶

Albuquerque, NM 87185

f
on
S,
00
d

se
n
nds

t is
r

ed
ir

-
-
d
,

n-

e

i-

AIAA-2000-4818
Abstract
Parallel optimization approaches which explo

only a single type of parallelism (e.g., a single simula
tion instance executes in parallel or an optimizatio
algorithm manages concurrent serial analyses) ha
clear performance limitations that prevent effective sca
ing with the thousands of processors available in ma
sively parallel (MP) supercomputers. This motivated th
development of a two-level parallelism capability in
which concurrent instances of multiprocessor simul
tions are coordinated. The most effective processor p
titioning scheme in this case is the one that limits th
size of parallel simulations in favor of concurrent execu
tion of multiple simulations. That is, if both coarse
grained and fine-grained parallelism can be exploite
then preference should be given to the coarse-grain
parallelism.

In this paper, two-level parallelism results ar
extended to the case of an arbitrary number of levels
order to maximize coarse-grained concurrency a
achieve improved scaling on MP computers. A
extended mathematical analysis results in recommend
processor partitioning schemes which maximize paral
work, thereby minimizing efficiency losses due to com
munication and scheduling. Experimental validation o
these results is presented for up to four nested levels
parallelism. While the two-level result is simple an
intuitive, the multilevel recommendations for selectin
coarse-grained concurrency among multiple levels c
vary depending on scheduling approach and simulati
duration heterogeneity.
1
American Institute of Ae

*Principal Member of Technical Staff, Mail Stop 0847,
AIAA senior member.

†Principal Member of Technical Staff, Mail Stop 1110.
‡Postdoctoral appointee, Mail Stop 0847.
§Principal Member of Technical Staff, Mail Stop 0847.

¶Sandia is a multiprogram laboratory operated by Sandia C
poration, a Lockheed Martin Company, for the United State
Department of Energy under Contract DE-AC04-94AL85000
This material is declared a work of the U.S. Government and
not subject to copyright protection in the United States.

d

of

-

or-
s
.
is

it
-
n
ve
l-
s-
e

a-
ar-
e
-

-
d,
ed

e
in

nd
n
ed

lel
-
f
of

d
g
an
on

Intr oduction
Parallel computers within the Department o

Energy national laboratories have exceeded three trilli
floating point operations per second (3 TeraFLOP
theoretical peak) and are expected to achieve 1
TeraFLOPS by 2004. This performance is achieve

through the use of massively parallel processing (O[103-

104] processors). In order to harness the power of the
machines for performing design, parallel optimizatio
approaches are needed which are scalable on thousa
of processors. To better understand the possibilities, i
instructive to first categorize the opportunities fo
exploiting parallelism in optimization into four main
areas [1] consisting of coarse-grained and fine-grain
parallelism opportunities within algorithms and the
function evaluations:
• Algorithmic coarse-grained parallelism: This paral-

lelism involves the concurrent execution of multiple
independent function evaluations, where a function
evaluation is defined as a data request from an algo
rithm (which may involve multiple objective and con
straint evaluations). This parallelism can be exploite
in gradient-based algorithms (e.g., finite differencing
speculative optimization), nongradient-based algo-
rithms (e.g., genetic algorithms, parallel direct
search), and approximate methods (e.g., design of
computer experiments for building response sur-
faces). This concept can also be extended to the co
current execution of multiple “iterators” (e.g.,
optimization, uncertainty quantification) within a
“strategy” (e.g., branch and bound, optimization
under uncertainty, collaborative/concurrent subspac
formulations for MDO [2]).

• Algorithmic fine-grained parallelism: This involves
computing the basic computational steps of an optim
zation algorithm (i.e., the internal linear algebra) in
parallel. This is primarily of interest in large-scale
optimization problems and simultaneous analysis an
design (SAND) [3].

• Function evaluation coarse-grained parallelism:This
involves concurrent computation of separable parts
a single function evaluation. This parallelism can be
exploited when the evaluation of objective and con-
straint functions requires multiple independent simu
lations (e.g. multiple loading or operational
ronautics and Astronautics

e
at
all
e

or
e-
ly

te.
is
d
r-
nal
-

.

l
-

i-
d
al-
l-
s.

i-
his
d
ll
y
e
an
,
n.
environments) or multiple dependent analyses where
the coupling is applied at the optimizer level (e.g., the
individual discipline feasible formulation [4]).

• Function evaluation fine-grained parallelism: This
involves parallelization of the solution steps within a
single analysis code. Sandia has developed MP codes
in the areas of nonlinear mechanics, structural dynam-
ics, chemically-reacting flows, thermal mechanics,
shock physics, and many others.

For similar classifications of parallelism sources in
optimization, refer to [5] and [6]. By definition, coarse-
grained parallelism requires very little inter-processor
communication and is therefore “embarrassingly
parallel,” meaning that there is little loss in parallel
efficiency due to communication as the number of
processors increases. However, it is often the case that
there are not enough separable computations on each
optimization cycle to utilize the thousands of processors
available on MP machines. This limitation was shown in
a parallel coordinate pattern search optimization in
which the maximum speedup exploitingonly coarse-
grained algorithmic parallelism was shown to be
severely limited by the size of the design problem [7]
(coordinate pattern search has at most 2n independent
evaluations per cycle forn design variables).

Fine-grained parallelism, on the other hand,
involves much more communication among processors
and care must be taken to avoid the case of inefficient
machine utilization in which the communication
demands among processors outstrip the amount of
actual computational work to be performed. This
limitation was illustrated for a chemically-reacting flow
simulation of fixed size in which it is shown that, while
simulation run time does monotonically decrease with
increasing number of processors, the relative parallel
efficiencyÊ of the computation for fixed model size is
decreasing rapidly [1] (fromÊ = 0.87 at 64 processors to
Ê = 0.39 at 512 processors). This is due to the fact that
the total amount of computation is approximately fixed,
whereas the communication demands are increasing
rapidly with increasing numbers of processors.
Therefore, there is an effective limit on the number of
processors that can be employed for fine-grained
parallel simulation of a particular model size, and only
for extreme model sizes (“heroic-scale”) can thousands
of processors be efficiently utilized in optimization
exploiting fine-grained parallelism alone.

These limitations point us to the exploitation of
multiple levels of parallelism, in particular the
combination of coarse-grained and fine-grained
approaches. This concept is not without precedent. Two
and three level parallel implementations are described in
[8] and [9] for chemically reacting flow and aeroelastic

optimizations, respectively.
If multiple types of parallelism can be exploited, th

question arises: how should the amount of parallelism
each level be selected so as to maximize the over
efficiency of the study? For two levels of parallelism, th
relative parallel efficiencyÊ of a two-level parallel
optimizer onp processors, as a function of the sizep' of
multiprocessor simulations withinp, is:

 for some constantC > 0

where is the time required to run a multiprocess
simulation [1]. For sublinear analysis speedup (the pr
dominating case), the denominator is monotonical

increasing with and is maximized at

, where is the minimum number of pro-

cessors on which a parallel simulation can execu
Therefore, the size of fine-grained parallel simulations
to be minimized by exploiting as much coarse-graine
parallelism as possible. Important practical conside
ations and caveats are discussed in [10]. Computatio
evidence for this conclusion is provided in [1] by dem
onstrating minimum run time for on clusters

of workstations for the case of a simple test simulator
A simplified depiction of the effect on scalability is

given in Figure 1 in which the limitations of single-leve
parallelism are shown along with the effect of combin
ing the approaches into multilevel parallelism. By min
mizing , we move as far back on the fine-graine
parallelism curve as possible, into the near-linear sc
ing range. And then we replicate this fine-grained para
lel performance with multiple coarse-grained instance

These insights lead naturally to the desire to max
mize the available coarse-grained instances, since t
allows the replication of yet more linear fine-graine
parallel performance and therefore improved overa
scaling. We seek to maximize concurrency in this wa
through the nesting of multiple parallelism levels. Th
following sections present an extended analysis for
arbitrary number of levels, followed by implementation
computational experiments, and concluding discussio

Ê p'() C
p'T p'()
------------------≅

T p'()

p' Ê p'()
p' p'min= p'min

p' p'min=

p'

Processors

S
pe

ed
up

fn. evaluation

multilevel parallel:

grained & fn. eval.
fine-grained

algorithmic

grained
only fine-grained only

coarse-

algorithmic coarse-

Figure 1. Scalability for fixed model size.
2
American Institute of Aeronautics and Astronautics

Wkhru|
Wklv vhfwlrq dqdo|}hv wkh sdudooho shuirupdqfh

ri dq devwudfw pxowlohyho rswlpl}dwlrq dojrulwkp
+PRD,1 Wklv dqdo|vlv h{whqgv dqg uh�qhv rxu hduolhu
dqdo|vlv ri wzr0ohyho sdudooho rswlpl}huv ^4`1 Zh frq0
vlghu d PRD wkdw kdv n ohyhov ri sdudooholvp/ zklfk
kdv n � 4 ohyhov wkdw xvh d �{hg vfkhgxolqj srolf|
wr glvwulexwh zrun wr surfhvvru sduwlwlrqv/ dqg d �0
qdo ohyho ri surfhvvru sduwlwlrqv wkdw uxq dq dqdo|0
vlv frgh1 Rxu dqdo|vlv zloo eh sduwlfxoduo| frqfhuqhg
zlwk pxowlohyho dojrulwkpv iru zklfk wkh n � 4 ohy0
hov gh�qh d sdudooho rswlpl}dwlrq surfhvv dqg wkh odvw
ohyho lv dq h{shqvlyh/ sdudooho dojrulwkp +h1j1 d sdu0
dooho vlpxodwlrq, zkrvh vroxwlrq wlph grplqdwhv wkh
frpsxwdwlrqdo frvwv ri wkh hqwluh PRD1
Wr gh�qh d PRD/ ohw Dl uhihu wr wkh dojrulwkp

uxqqlqj dw ohyho l/ dqg ohw �l eh wkh qxpehu ri lq0
ghshqghqw vhuyhuv xvhg e| Dl1 Wkxv �l gh�qhv wkh
qxpehu ri sduwlwlrqv ri surfhvvruv wkdw Dl frppx0
qlfdwhv zlwk +lq dgglwlrq wr lwv pdvwhu surfhvv/ li
lw kdv rqh,1 Li dq dojrulwkp dw ohyho l lv jlyhq s3l
surfhvvruv/ wkhq lw xvhv pl 5 i3> 4j surfhvvruv iru
d pdvwhu surfhvv dqg jlyhv hdfk sduwlwlrq dw ohdvw
e+s3l �pl,@�lf surfhvvruv1 Wkh uhpdlqlqj surfhvvruv
duh glvwulexwhg dprqjvw wkh sduwlwlrqv duelwudulo| vr
wkdw wkh pd{lpxp qxpehu ri surfhvvruv lq d sduwl0
wlrq lv g+s3l �pl,@�lh1
D vwdqgdug phdvxuh ri sdudooho shuirupdqfh lv hi0

�flhqf|1 Wkh h!flhqf| ri d sdudooho dojrulwkp lv
H+s, @ W +4,@+sW +s,,/ zkhuh W +s, lv wkh wlph uhtxluhg
e| wkh dojrulwkp rq s surfhvvruv/ dqg W +4, lv wkh wlph
uhtxluhg e| wkh ehvw nqrzq vhuldo yhuvlrq ri wkh do0
jrulwkp1 Zkhq d vhuldo yhuvlrq ri dq dojrulwkp lv
qrw dydlodeoh ru zkhq d sureohp lv wrr odujh wr eh
uxq rq d vlqjoh surfhvvru +h1j1 lq whupv ri phpru|
uhtxluhphqwv,/ dq dowhuqdwlyh phdvxuh ri sdudooho shu0
irupdqfh lv uhodwlyh h!flhqf|1 Wkh uhodwlyh h!flhqf|
ri dq dojrulwkp lv

aH+s, @
H+s,

H+splq,
@

splqW +splq,

sW +s,
>

zkhuh splq lv wkh vpdoohvw qxpehu ri surfhvvruv wr
zklfk wkh dojrulwkp fdq eh dssolhg1
Qrwh wkdw splq lv w|slfdoo| odujh iru hqjlqhhulqj ds0

solfdwlrqv dw Vdqgld/ zkhuh wkh orzhvw ohyho ri sdu0
dooholvp lv d sdudooho qxphulfdo vlpxodwlrq iru zklfk
wkh qxpehu ri surfhvvruv lv frqvwudlqhg e| wkh vl}h
ri wkh gdwdvhw1 Wkxv zh irfxv rq wkh uhodwlyh h!0
flhqf| ri PRDv1 Zh dvvxph zlwkrxw orvv ri jhqhu0
dolw| wkdw d mxglflrxv fkrlfh ri �l kdv ehhq pdgh wr
hqvxuh wkdw wkh PRD fdq �w rqwr s surfhvvruv1 Wkh
qxphudwru ri aH+s, lv �{hg/ vr pd{lpl}lqj uhodwlyh hi0
�flhqf| lv htxlydohqw wr plqlpl}lqj wkh sdudooho zrun/
Z @ sW +s,/ ri d sdudooho dojrulwkp1

Wkh sdudooho zrun ri d pxowlohyho dojrulwkp lqfoxghv
wkh zrun ri hdfk dojrulwkp Dl dv zhoo dv wkh zrun
ri vfkhgxolqj dojrulwkpv xvhg wr glvwulexwh zrun wr
wkh surfhvvru sduwlwlrqv dw hdfk ohyho1 Wkh jhqhulf
qdwxuh ri PRDv pdnhv lw h{wuhpho| gl!fxow wr sur0
ylgh dq h{dfw shuirupdqfh dqdo|vlv wkdw lv ydolg iru d
eurdg udqjh ri PRDv1 Lqvwhdg/ zh pdnh wkh iroorzlqj
vlpsoli|lqj dvvxpswlrqv wkdw hqdeoh xv wr surylgh dq
dqdo|vlv ri d fodvv ri dojrulwkpv wkdw fdswxuhv vdolhqw
ihdwxuhv ri prvw PRDv=
Frppxqlfdwlrq= Zkhq d vhoi0vfkhgxolqj ru glv0

wulexwhg vfkhgxolqj srolf| +vhh Vhfwlrq Vfkhgxolqj
Zlwklq Ohyhov, lv xvhg wr glvwulexwh zrun wr wkh
vhuyhuv iru Dl/ frppxqlfdwlrq lv qhhghg wr vhqg wkh
uhvxowv edfn dqg iruwk ehwzhhq Dl.41 Zh dvvxph wkdw
wkh wlph uhtxluhg wr frppxqlfdwh ehwzhhq Dl dqg
Dl.4 lv d �{hg frqvwdqw W frpp

l / lqghshqghqw ri wkh
vl}h ri wkh phvvdjh ru wkh xqghuo|lqj qhwzrun wrsro0
rj|1 Wkhvh frppxqlfdwlrq wlphv duh wkh vdph iru doo
Dl1
Vhuldo Zrun= Zh dvvxph wkdw wkh wlph uhtxluhg

wr h{hfxwh wkh vhuldo zrun ri Dl/ W vhuldo
l lv frqvwdqw iru

doo sureohpv1
Frqfxuuhqf|= Zh dvvxph wkdw wkh sdudooholvp lq

Dl lv wkh vdph uhjdugohvv wkh wdvn wkdw lw lv frpsxw0
lqj1 Zh fdq prgho wkh sdudooholvp lq Dl lq d jhqhulf
idvklrq e| ghqrwlqj wkh qxpehu ri frqfxuuhqw fdoov wr
zrunhu surfhvvhv wkdw duh xvhg e| Dl1 Ohw ql>m ghqrwh
wkh qxpehu ri frqfxuuhqw fdoov wr zrunhu surfhvvhv iru
Dl lq wkh m0wk skdvh ri wkh dojrulwkp/ m @ 4> = = = > Ql1
Wklv dvvxpswlrq phdqv wkdw wkh ydoxhv Ql dqg qlm
duh wkh vdph hyhu| wlph Dl lv uxq1
Jlyhq wkhvh dvvxpswlrqv/ wkh wlph uhtxluhg iru d

pdvwhu surfhvv dw wkh l0wk ohyho ri dq PRD wr uxq rq
s3 surfhvvruv lv

Wl+s
3, @ W vhuldo

l . �l5W
frpp
l . �lWl.4+e+s3 �pl,@�lf,>

zkhuh �l @
SQl

m@4 gqlm@�lh/ zklfk ghqrwhv krz pdq|
sureohpv qhhg wr eh frpsxwhg lq sdudooho rq wkh Dl.4

vhuyhuv lq rughu iru Dl wr vroyh d sureohp1 Iru n A 4
lw iroorzv wkdw

W +s, @
n�4[

l@4

�l�4
m@3�mW

vhuldo
l .

n�4[

l@4

5W frpp
l �l

m@4�m

.Wn+s
3

n,�
n�4
l@4 �l>

zkhuh �3 @ 4/ s34 @ s dqg s3n @�
+s3n�4 �pn�4,@�n�4

�
1

D jhqhudo hydoxdwlrq ri Z +s, lv qrw srvvleoh eh0
fdxvh ri wkh ghshqghqfh ri W +s, rq Ql dqg qlm / zklfk
duh qrw jhqhudoo| nqrzq1 Krzhyhu/ iru jlyhq ydoxhv ri
wkh �l lw lv srvvleoh wr hydoxdwh wkh uhodwlyh xwlolw| ri
gl�huhqw PRD1 Lq sduwlfxodu/ zh frqvlghu wkh fkrlfh

6
Dphulfdq Lqvwlwxwh ri Dhurqdxwlfv dqg Dvwurqdxwlfv

ri wkh �l yduldeohv iru wzr vfkhgxolqj srolflhv= vwdwlf
vfkhgxolqj dqg vhoi0vfkhgxolqj1 Iru vhoi0vfkhgxolqj/
zh dvvxph wkdw d pdvwhu surfhvv lv xvhg wr h{hfxwh
Dl dqg Dl.4 lv h{hfxwhg rq wkh surfhvvru sduwlwlrqv1
Li d vwdwlf vfkhgxolqj srolf| lv xvhg/ wkhq wkh h{hfx0
wlrq ri Dl lv uhsolfdwhg dfurvv doo surfhvvruv dqg qr
pdvwhu surfhvv lv xvhg1 Vlqfh rxu dqdo|vlv grhv qrw
frqvlghu wkh fdvh zkhuh wkh h{hfxwlrq wlphv iru wkh Dl

pd| gl�hu/ wkh gl�huhqfh ehwzhhq wkhvh wzr fdvhv lq
wkh iroorzlqj wkhruhwlfdo dqdo|vlv duh vlpso| uh hfwhg
e| zkhwkhu ru qrw d pdvwhu surfhvv lv xvhg +l1h1 e|
wkh ydoxh ri pl,1
Zh dvvxph wkdw wkh zrun iru Dn grplqdwhv wkh

frpsxwdwlrq ri wkh PRD/ vr wkh �uvw wzr whupv lq
W +s, duh vpdoo frpsduhg wr wkh odvw whup ri W +s,1
Ixuwkhu/ lq sudfwlfh zh fdq fkrrvh �l vxfk wkdw s3n �
s@�n�4

l@4 �l1 Wkxv zh kdyh

Z +s, � sWn+s@�
n�4
l@4 �l,�

n�4
l@4 �l=

Wkh rswlpdo ydoxhv iru wkh �l duh yhu| ghshqghqw xsrq
krz wkh �l ydu| zlwk wkh �l1 Iru h{dpsoh/ li wkhuh lv
d zlgh udqjh ri qlm iru Dl/ wkhq wkh rswlpdo ydoxh
ri �l zloo ghshqg xsrq wkh fkdudfwhulvwlfv ri wkh glv0
wulexwlrq ri qlm 1 Krzhyhu/ zh kdyh revhuyhg wkdw d
frpprq fdvh lv zkhq wkh qlm duh frqvwdqw zlwk uh0
vshfw wr m1 Lq wklv fdvh/ qlm @ ql vr �l @ Ql gql@�lh1
Wr vlpsoli| rxu dqdo|vlv/ zh frqvwudlq rxuvhoyhv wr

vroxwlrqv zkhuh ql lv dq lqwhjhu pxowlsoh ri �l +zklfk
lv frpprqo| grqh lq sudfwlfh,1 Li zl @ ql@�l/ wkhq
wkh sdudooho zrun fdq eh uhzulwwhq dv

Z +s, � F�Wn+�,>

zkhuh � @ s@�n�4
l@4 �l dqg F @ �n�4

l@4Qlql1 Qrwh wkdw

slplq @ pl . �ls
l.4
plq>

zkhuh slplq lv wkh plqlpxp qxpehu ri surfhvvruv uh0
txluhg iru Dl1 Lw iroorzv wkdw

splq @ snplq�
n�4
l@4 �l .

n�5[

l@4

pl.4�
l
m@4�m .p4=

Frqvhtxhqwo|/ zh fdq plqlpl}h wkh sdudooho zrun iru
d jlyhq s e| �qglqj �4> = = = > �n wkdw vroyh wkh sureohp=

plq�l �Wn+�,

v=w= 4 � �l � ql

s � snplq�
n�4
l@4 �l .

n�5[

l@4

pl.4�
l
m@4�m .p4

zl�l @ ql

zl 5]>

zkhuh] lv wkh vhw ri lqwhjhuv1 Wkh �uvw frqvwudlqw
uh hfwv wkh idfw wkdw zh fdq uhdvrqdeo| uhvwulfw �l wr

4 � �l � ql/ vlqfh rwkhuzlvh wkhuh zloo dozd|v eh lgoh
surfhvvruv1
Li zh dvvxph wkdw Wn lv prqrwrqlfdoo| ghfuhdvlqj

dqg wkdw Dn h{klelwv vxeolqhdu vshhgxs/ wkhq �Wn+�,
lv prqrwrqlfdoo| lqfuhdvlqj lq �1 Wkxv plqlpl}lqj
�Wn+�, lv htxlydohqw wr plqlpl}lqj ��n�4

l@4 �l/ vr zh
fdq vroyh wkh htxlydohqw sureohp

plq�l ��n�4
l@4 �l

v=w= 4 � �l � ql
s � snplq�

n�4
l@4 �l .

Sn�5
l@4 pl.4�l

m@4�m .p4

zl�l @ ql
zl 5]

+4,

Iru d jlyhq s/ wkhuh pd| eh qr ihdvleoh vroxwlrqv
wr wklv sureohp ehfdxvh ri wkh lqwhjudolw| frqvwudlqw
rq �l +iru h{dpsoh/ frqvlghu wkh fdvh zkhq wkh ql duh
odujh sulph qxpehuv,1 Dsshqgl{ D dqdo|}hv wkh rs0
wlpdo vroxwlrqv iru wklv sureohp zkhq zh uhod{ wkh
lqwhjudolw| frqvwudlqw rq �l1 Wr looxvwudwh wkh udqjh
ri vroxwlrqv wr +4,/ frqvlghu wkh fdvhv zkhuh doo pl

ydoxhv duh rqh ru }hur1 Li wkh pl ydoxhv duh doo rqh/
wkhq d vhoi0vfkhgxolqj dojrulwkp lv xvhg dw doo ohyhov/
dqg ghglfdwhg surfhvvruv duh xvhg iru vfkhgxolqj1 Lq
wklv fdvh/ wkhuh h{lvwv l vxfk wkdw �4 @ = = = @ �l�4 @ 4/
�l A 4 dqg �m @ qm iru m A l1 Wkhvh vroxwlrqv pd{0
lpl}h wkh qxpehu ri vlpxowdqhrxv hydoxdwlrqv ri Dn/
zklfk h�hfwlyho| plqlpl}hv wkh qxpehu ri surfhvvruv
wkdw Dn lv uxq rq1 Wklv lqwxlwlyho| pdnhv vhqvh eh0
fdxvh wkh sdudooho zrun ri Dn lv plqlpl}hg zkhq lw
lv uxq rq snplq surfhvvruv1 Zh h{shfw wkdw lqwhjudo
vroxwlrqv zloo eh vlploduo| eldvhg wrzdugv plqlpl}lqj
wkh qxpehu ri surfhvvruv1
Wkh fdvh zkhuh wkhpl ydoxhv duh doo }hur uhsuhvhqwv

d vwdwlf vfkhgxolqj srolf|/ zklfk grhv qrw xvh pdv0
whu surfhvvhv1 Li wkh ql ydoxhv duh vx!flhqwo| odujh/
wkhq wkh rswlpdo vroxwlrq lv zkhq �4 @ = = = @ �n�4 @�
s@snplq

�4@+n�4,
1 Wklv vroxwlrq pd{lpl}hv wkh surg0

xfw ri wkh �l/ dqg lw lv qrwhzruwk| wkdw zkhq lqwhjudo
vroxwlrqv gr h{lvw/ wkh| pd| qrw eh xqltxh1 Wklv fdq
kdsshq/ iru lqvwdqfh/ zkhq wkh ql vkduh frpprq gl0
ylvruv1 Li ql @ 45 dqg qm @ 4;/ wkhq d vroxwlrq zlwk
�l @ 9 dqg �m @ < lv htxlydohqw wr d vroxwlrq zlwk
�l @ 6 dqg �m @ 4;1 Wkxv frqfxuuhqf| dw gl�huhqw
ohyhov lv lqwhufkdqjdeoh jlyhq suxghqw vhohfwlrqv wkdw
dyrlg lgohqhvv1
Lq wkh jhqhudo fdvh/ dq rswlpdo vroxwlrq wr +4, eh0

jlqv zlwk }hur ru pruh �n dw wkhlu orzhu erxqg dqg
hqgv zlwk }hur ru pruh �n dw wkhlu xsshu erxqg1 Eh0
wzhhq wkhvh uhjlrqv/ lv d vhw ri frqvhfxwlyh lqghfhv
ilj iru zklfk wkh ydoxhv pl.4 duh }hur/ exw zlwklq
wkdw vhw wkh �l duh hlwkhu dw wkhlu xsshu erxqgv ru dw
d ydoxh wkdw lv wkh vdph iru doo rwkhu xqfrqvwudlqhg
�n*v1

7
Dphulfdq Lqvwlwxwh ri Dhurqdxwlfv dqg Dvwurqdxwlfv

d

l-
l-

s

s
4

o-
n

n
w
the

n-

-
ut
-
ch
a-
ng
ral-
ith

g
a
ns

rti-
f
are
le
r,

ms
c
e

er
r

Implementation
In order to maximize concurrency and achieve near-

linear scaling, we seek the simultaneous exploitation of
many different sources of parallelism by modularizing
the parallelism facilities into a reusable software compo-
nent and then nesting these facilities, one level within
the next, through recursive partitioning. MPI [11] pro-
vides a convenient mechanism for modularizing paral-
lelism through the use of “communicators.” A
communicator defines the context of processors over
which a message passing communication occurs. By
providing mechanisms for subdividing existing commu-
nicators into new partitions and for sending messages
within and between the new partitions, a lower level of
parallelism can be created and managed with a new set
of subdivided communicators. And since each new com-
municator can be further subdivided, multiple levels of
parallelism can be nested, one within the other. In this
way, massive parallelism can be achieved through the
simultaneous exploitation of algorithmic coarse-
grained, function evaluation coarse-grained, and func-
tion evaluation fine-grained parallelism sources.

The DAKOTA toolkit [12] is a software framework
for systems analysis, encompassing optimization,
parameter estimation, uncertainty quantification, design
of computer experiments, and sensitivity analysis. It
interfaces with a variety of simulation codes from a
range of engineering disciplines, and it manages the
complexities of a broad suite of capabilities through the
use of object-oriented abstraction, class hierarchies, and
polymorphism [13]. Through implementation in
DAKOTA, the impact of investments in parallel code
development can be maximized since capabilities devel-
oped for optimization also enable parallelism in uncer-
tainty quantification, parameter estimation, and other
toolbox capabilities.

Levels of parallelism

While the theory in this paper covers an arbitrary
number of parallelism levels, DAKOTA currently sup-
ports up to four levels of nested parallelism (which
implies three levels of scheduling control). From top to
bottom, they are as follows:

Level 1. Concurrent iterator strategies:coarse-grained
parallelism is realized through the concurrent exe-
cution of multiple optimizations/quantifications
within a high-level strategy such as parallel branch
and bound, optimization under uncertainty, multi-
start local search, island-model GAs, etc.

Level 2. Concurrent function evaluations within each
iterator: coarse-grained parallelism is realized
through the concurrent execution of multiple func-
tion evaluations within each optimization.

Level 3. Concurrent analyses within each function
evaluation:coarse-grained parallelism is exploited
when multiple separable simulations are performe
as part of evaluating the objective function(s) and
constraints.

Level 4. Multiple processors for each analysis: fine-
grained parallelism is exploited when parallel ana
ysis codes are available. For this level, no schedu
ing by DAKOTA is required as the simulation code
is responsible for internally distributing work
among the simulation processors.

In terms of the classification of parallelism source
given in theIntroduction, Levels 1 and 2 are examples
of algorithmic coarse-grained parallelism, Level 3 i
function evaluation coarse-grained parallelism, Level
is function evaluation fine-grained parallelism, and alg
rithmic fine-grained parallelism is not supported i
DAKOTA (the SAND approach is under investigation
separately). It is relatively rare for any given applicatio
to be able to exploit all four levels; rather each ne
application selects as many as are applicable from
toolset.

This marks a significant increase in available co
currency from the two-level capability reported in [1] to
the four levels currently available. It is important to rec
ognize that the effect on concurrency is not additive, b
rather multiplicative in nature. For example, if four con
current optimizations can be run within a strategy, ea
optimization having ten independent function evalu
tions on each cycle, and each function evaluation havi
three independent analyses, then the fine-grained pa
lelism available in the analysis can be augmented w
120-fold coarse-grained parallelism.

Partitioning of levels

In DAKOTA, each tier within the nested parallelism
hierarchy can use either of two processor partitionin
models: a “dedicated master” partitioning in which
single processor is dedicated to scheduling operatio
and the remaining processors are split into server pa
tions, or a “peer partition” approach in which the loss o
a processor to scheduling is avoided. These models
depicted in Figure 2. The peer partition is desirab
since it utilizes all processors for computation; howeve
it requires either the use of sophisticated mechanis
for distributed scheduling or a problem for which stati
scheduling of concurrent work performs well (se
Scheduling within levelsbelow). To recursively partition
the subcommunicators of Figure 2,COMM1/2/3 in the
dedicated master or peer partition case would be furth
subdivided using the appropriate partitioning model fo
the next lower level of parallelism.
5
American Institute of Aeronautics and Astronautics

-

is

a-

e
lf-
ar-
3
ti-
d-
s
er/
l-
r
at

f

on
d-
as-

-

.

Scheduling within levels

Several scheduling approaches are available within
Levels 1, 2, and 3:

• Self-scheduling: in the dedicated master model, the
master processor manages a single processing queue
and maintains a prescribed number of jobs (usually
one) active on each slave. Once a slave server has
completed a job and returned its results, the master
assigns the next job to this slave. Thus, the slaves
themselves determine the schedule through their job
completion speed. Heterogeneous processor speeds
and/or job lengths are naturally handled, provided
there are sufficient instances scheduled through the
servers to balance the variation.

• Static scheduling: if scheduling is statically deter-
mined at start-up, then no master processor is needed
to direct traffic and a peer partitioning approach is
applicable. If the static schedule is a good one (ideal
conditions), then this approach will have superior per-
formance. However, heterogeneity, when not knowna
priori , can very quickly degrade performance since
there is no mechanism to adapt.

• Distributed scheduling: in this approach, a peer parti-
tion is used and each peer maintains a separate queue
of pending jobs. When one peer’s queue is smaller
than the other queues, it requests work from its peers
(hopefully prior to idleness). In this way, it can adapt
to heterogeneous conditions, provided there are suffi-
cient instances to balance the variation. Each partition
performs communication between computations, so
no processors are dedicated to scheduling. Further-
more, it distributes scheduling load beyond a single
processor, which can be important for large numbers
of concurrent jobs (whose scheduling might overload

a single master) or for fault tolerance (avoiding a sin
gle point of failure). However, it involves relatively
complicated logic and additional communication for
queue status and job migration, and its performance
not always superior since a partition can become
work-starved if its peers are locked in computation
(Note: this logic can be somewhat simplified if a sep
rate thread can be created for communication and
migration of jobs).

DAKOTA is designed to allow the freedom to configur
each parallelism level with either dedicated master/se
scheduling, peer partition/static scheduling, or peer p
tition/distributed scheduling. For example, Figure
shows the common case in which a concurrent-op
mizer strategy employs peer partition/distributed sche
uling at level 1, each optimizer partition employ
concurrent function evaluations in a dedicated mast
self-scheduling model at level 2, and each function eva
uation partition employs concurrent multiprocesso
analyses in a peer partition/static scheduling model
level 3. In this case,MPI_COMM_WORLDis subdivided
into optCOMM1/2/3/.../τ1, each optCOMM is further
subdivided into evalCOMM0 (master) and
evalCOMM1/2/3/.../τ2 (slaves), and each slaveeval-

COMM is further subdivided intoanalCOMM1/2/3/.../τ3.

Experiments
Two types of computational experiments are o

interest:

Investigation of usage models:The mechanisms used to
manage concurrent multiprocessor simulations
MP computers are of high importance. These stu
ies compare nonintrusive approaches (asynch, m
ter-slave, and hybrid) with the goal of
approximating the performance of the direct, intru
sive approach.

Investigation of partitioning schemes:The τi recom-

COMM1 COMM3

COMM0 Master

Slave Slave

Figure 2. Communicator partitioning models.

Split

COMM2
Slave

initial COMM

Split

COMM1

COMM3

Peer

Peer
COMM2
Peer

(a) Dedicated Master

(b) Peer Partition

(e.g.,MPI_COMM_WORLD)

initial COMM
(e.g.,MPI_COMM_WORLD)

Figure 3. Recursive partitioning for nested parallelism

evalCOMM’s:

0

Level 1 Level 2

MPI_COMM_WORLD

Level 3

optCOMM’s:

1 2 3

τ1...

optCOMM3

1 2 3

τ2

evalCOMM3

analCOMM’s:

1 2 3

τ3...

...
6
American Institute of Aeronautics and Astronautics

ly
ch
nt

e
for
.

ce
es
he
on
nd
mendations from the mathematical analysis will be
demonstrated by fixing the total processor alloca-
tion (p), varyingτi within p, and measuring relative
performance.

Usage model computational experiments

Usage model studies are being explored on Sandia’s

computational plant (CplantTM) architecture [14], a
tightly-connected cluster of DEC alphas running
LINUX [15]. This computer, as well as all other Sandia
MP computers, uses a service/compute node distinction.
Service nodes run full UNIX and are used for job initia-
tion and management. Compute nodes run a minimal
operating system (no system calls, forks, or multithread-
ing) whose small footprint leaves as much memory as
possible for the application. In this environment, the
most computationally efficient way to perform parallel
optimization using simulation codes in a nested analysis
and design (NAND) approach is to perform a “direct”
interface which links the simulation into the optimiza-
tion software. The combined executable is then executed
on the compute nodes where it employs MPI communi-
cator partitions to manage embedded multiprocessor
simulations. Unfortunately, this approach is often
impractical due to the required intrusiveness into the
simulation code (modification to a callable subroutine
and MPI communicator modularity required). For this
reason, these studies are benchmarking nonintrusive
interfacing techniques (no simulation modifications
required) which have the goal of approximating the per-
formance of the direct interface. This involves the com-
bined usage of service nodes, where the parallel
optimization executes, and compute nodes, where the
parallel simulations execute.

Three nonintrusive approaches have been explored
on Cplant (Figure 4). In all cases, DAKOTA runs on one
or more service nodes and launches simulations on the
compute nodes using a job initiation utility. The first
approach, called “asynch,” involves the execution of
DAKOTA on a single service-node processor. DAKOTA
uses its asynchronous job initiation (e.g., background
system call, nonblocking fork) to manage multiple con-
current jobs. The second approach, called “master-
slave,” involves the execution of DAKOTA in parallel
across multiple service-node processors. Each slave ser-
vice node uses a synchronous job initiation method
(foreground system call, blocking fork) to manage a sin-
gle job per service node. The third approach, called
“hybrid,” combines the first two approaches in manag-
ing multiple asynchronous jobs on each slave service
node. This latter approach was motivated by the obser-
vation that spreading application load across service
nodes is beneficial, but the concurrency achievable in

the master-slave approach is limited by the (relative
small) number of service nodes. The hybrid approa
spreads the application load and still allows significa
capacity beyond the number of service nodes.

In a design application employing the ALEGRA
simulation code, Figure 5 shows the timing for th
asynch, master-slave, and hybrid approaches
increasing number of concurrent ALEGRA simulations
Each simulation writes data to a disk local to the servi
node launching the simulation. Ideally, these curv
would all have zero slope since the simulations are t
same size and run concurrently. However, competiti
for service node resources has a detrimental effect, a

Figure 4. Nonintrusive DAKOTA options.

single-proc.
DAKOTA

job1 & job2 & job3 & job4 &

master

job1 job3 job4

slave slaveslaveslave

job2

master

jobs &

slave slaveslaveslave

jobs & jobs & jobs &

(a) asynch

(b) master-slave

(c) hybrid

0 5 10 15 20 25 30
15

16

17

18

19

20

21

22

23

Concurrent Simulations

T
im

e
(m

in
)

asynch

asynch (raid)

master−slave

hybrid

Figure 5. Cplant execution times for serial ALEGRA
7
American Institute of Aeronautics and Astronautics

e
rs
d
a

n

in
el
l

at

or
st
e
he
er

1/
e
or
s
he

ld

a
he
.

an
,

on
ear
n,
ds
on
y
e

wer
in

g
ated
cy
.
in
e

a))

e
m.
),
nd
spreading the load across multiple service nodes is
clearly beneficial. It is evident that the hybrid method
provides a natural continuation of the master-slave
approach and provides superior performance for larger
numbers of concurrent jobs.

Partitioning scheme computational experiments

Given a high performing usage model, the
partitioning schemes recommended by the mathematical
analysis can be explored. Since performing large-scale
verifications is extremely expensive and must have
strong mission ties to be justified, a run time simulator
has been developed to compare the numerousτi

configurations that are possible when four levels of
parallelism are considered. The simulator is based on
the equation forT(p). Wall clock time required for a
multiprocessor analysis code (Tk()) is modeled using

experimental data from a series of MP structural
dynamics simulations, and since this time dominates in

practice,Ti
serialandTi

commare taken to be zero. Figure 6

shows efficiency results from the simulator for fixing th
total number of processors at 128 plus maste
(including a varying number of masters within a fixe
total would cause heterogeneous partitions within
level and would not be done in practice), fixing
maximum concurrencies atn1=1 andn2=n3=32, setting

to 4, 8, and 16 processors per simulatio

(corresponding to 32, 16, and 8 total concurrency
simulations, respectively), and varying the lowest lev
concurrency . In all cases, any of the tota

concurrency not present in appears in such th

the product is constant for each curve. It is evident f
the self-scheduling case (Figure 6(a)) that highe
efficiencies are achieved for minimum simulation siz
(4 processors) and for maximized concurrency at t
lowest level (32 instances), since this equates to few
processors dedicated to scheduling (3 masters for theτ1/
τ2/τ3 = 1/1/32 configuration versus 34 masters for the
32/1 configuration). For the static scheduling cas
(Figure 6(b)), highest efficiencies are again achieved f
minimum simulation size, but the concurrencie
between and are interchangeable. Thus, t

recommendations from the mathematical analysis ho
exactly in the deterministic simulation duration case.

However, Figure 7 shows a different trend for
stochastic case in which a 10% variation is added to t
simulation duration using an exponential distribution
This is motivated by the fact that some applications c
have considerable variability in simulation duration
particularly when the event of interest is dependent
the design variables (e.g., see heat transfer and nonlin
mechanics applications in [16]). For each configuratio
1000 experiments are run with different random see
and the results are averaged. It is evident that variati
in simulation duration is most detrimental to efficienc
at the higher concurrencies, which is intuitive sinc

this equates to fewer passes through the servers (lo
) and fewer opportunities to balance heterogeneity

job length. Thus, a trade-off between minimizin
masters and the need to balance heterogeneity is cre
in the self-scheduling case (Figure 7(a)) and efficien
is actually maximized in the interior of the curves
Additional experimentation has found that the slope
the large region transitions between positive slop

(e.g., Figure 6(a)) and negative slope (e.g., Figure 7(
at 1% variability in simulation duration. This can be
considered to be the boundary of validity of th
assumptions in the theoretical analysis for this proble
In the static scheduling case (Figure 7(b)
concurrencies are no longer interchangeable a

p'k

0 5 10 15 20 25 30 35 40
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

concurrency at level k−1

re
la

tiv
e

ef
fic

en
cy

4 processors/simulation

8 processors/simulation

16 processors/simulation

0 5 10 15 20 25 30 35 40
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

concurrency at level k−1

re
la

tiv
e

ef
fic

en
cy

4 processors/simulation

8 processors/simulation

16 processors/simulation

Figure 6. Deterministic simulation duration

(a) self-scheduling

(b) static scheduling

p'k

τ3

τ3 τ2

τ2 τ3

τ3

γ3

τ3
8
American Institute of Aeronautics and Astronautics

a-
by

s-
is

ed
d
-

n.
as

ts.
t
al-
l-

ation
maximizing instead of is preferred. Presumably,

with any variability in simulation duration, this static
scheduling conclusion would hold.

Figure 8 shows a large-scale case with an identical
set-up to Figure 7(a) except that 128, 256, and 512
processors per simulation are used instead of 4, 8, and
16. This corresponds to a total of 4096 processors plus
masters. In this case, the effect of a variable number of
masters can be seen to be much lower relative to Figure
7(a). That is, large simulation sizes can mask variations
in the number of masters, making this concern
secondary to the concern of balancing heterogeneity.

Figure 9 shows another large-scale, self-scheduling,
stochastic duration case in which the size of is fixed

at 128 processors per simulation,p is fixed at 4096 (32
total simulation concurrencies) plus masters, and maxi-
mum concurrencies are fixed atn1=n2=n3=8. All combi-
nations of τ1/τ2/τ3 resulting in 32 concurrencies are

shown with curves drawn for fixed values ofτ1. It is evi-
dent that maximum efficiency occurs forτ1/τ2/τ3 = 8/4/
1, or maximized concurrencies at thehigher levels (the
exact opposite of the theory prediction). This configur
tion results in less replication of the idleness caused
heterogeneity.

Conclusions
Parallel optimization on large numbers of proce

sors has been investigated. Nested parallelism
employed to maximize the number of coarse-grain
instances, which allows the execution of fine-graine
parallel simulations on minimal partitions where com
putation could far predominate over communicatio
This preference of coarse-grained over fine-grained h
been consistently verified in computational experimen

A more subtle point is preference among differen
sources of coarse-grained parallelism. Theoretical an
ysis has shown the optimal partitioning schemes in mu

γ3 τ3

0 5 10 15 20 25 30 35 40
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

concurrency at level k−1

re
la

tiv
e

ef
fic

en
cy

4 processors/simulation

8 processors/simulation

16 processors/simulation

0 5 10 15 20 25 30 35 40
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

concurrency at level k−1

re
la

tiv
e

ef
fic

en
cy

4 processors/simulation

8 processors/simulation

16 processors/simulation

Figure 7. Stochastic simulation duration

(a) self-scheduling

(b) static scheduling

p'k

0 5 10 15 20 25 30 35 40
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

concurrency at level k−1

re
la

tiv
e

ef
fic

en
cy

128 processors/simulation

256 processors/simulation

512 processors/simulation

Figure 8. Large-scale, self-scheduling, stochastic dur

0 1 2 3 4 5 6 7 8 9 10
0.75

0.8

0.85

0.9

0.95

1

concurrency at level k−1

re
la

tiv
e

ef
fic

en
cy

Figure 9. Large-scale, self-scheduling, stochastic
duration for fixed values ofτ1

τ1=8

τ1=4

τ1=2

τ1=1
9
American Institute of Aeronautics and Astronautics

ar

-
.,
as
,

.,

,”

-
r-

-
,

r-

-

r,

,

-
al

/

d
-

tilevel optimization algorithms for idealized self-
scheduling and static scheduling cases. In the self-
scheduling case, it is recommended to give preference to
the lower level concurrencies since this minimizes the
number of processors lost to scheduling operations. In
the static scheduling case, it is shown that little differ-
ence exists between the scheduling levels and that their
concurrencies may be interchangeable. These recom-
mendations were verified in computational experiments
for the case where simulation duration is fixed. With
variability in simulation duration, however, the simplify-
ing assumptions in the analysis become violated, and the
need to balance heterogeneity (whether due to simula-
tion length, processor speed, or other factors) can
become more of a dominant concern than minimizing
the number of scheduling processors. In this case, the
opposite recommendations hold, that is, maximizing
concurrencies at the higher levels.

Future extensions to the mathematical analysis will
focus on the issue of simulation duration heterogeneity,
since this has been shown to be a dominant concern for
large scale applications. Future DAKOTA development
will seek to minimize efficiency losses due to replicated
scheduling processors by emphasizing static and
distributed scheduling approaches over self-scheduling
approaches, particularly at the lower parallelism levels
where dedicated scheduling processors are most
replicated. This will allow DAKOTA partitioning logic
to fully endorse maximized concurrency at the higher
levels and lead to high performing configurations which
are robust in the presence of heterogeneity.

References
[1]Eldred, M.S. and Hart, W.E., “Design And

Implementation Of Multilevel Parallel Optimization On
The Intel Teraflops,” paper AIAA-98-4707 inProceed-
ings of the 7th AIAA/USAF/NASA/ISSMO Symposium
on Multidisciplinary Analysis and Optimization
(MA&O), St. Louis, MO, Sept. 2-4, 1998, pp. 44-54.

[2]Kroo, I., “MDO for Large-Scale Design,”Multi-
disciplinary Design Optimization State of the Art, Alex-
androv, N.M., and Hussaini, M.Y., eds., Society for
Industrial and Applied Mathematics, Philadelphia,
1997, pp. 22-44.

[3]Orozco, C.E., and Ghattas, O.N., “A Reduced
SAND Method for Optimal Design of Non-linear Struc-
tures,” International Journal for Numerical Methods in
Engineering, Volume 40, 1997, pp. 2759-2774.

[4]Dennis, J.E., and Lewis, R.M., “Problem Formu-
lations and Other Optimization Issues in Multidisci-
plinary Optimization,” AIAA Paper 94-2196,AIAA
Symposium on Fluid Dynamics, Colorado Springs, CO,
June 1994.

[5]Schnabel, R.B., “A View of the Limitations,
Opportunities, and Challenges in Parallel Nonline
Optimization,” Parallel Computing, Volume 21, 1995,
pp. 875-905.

[6]Biedron, R.T., Mehrotra, P., Nelson, M.L., Pre
ston, F.S., Rehder, J.J., Rogers, J.L., Rudy, D.H
Sobieski, J., and Storaasli, O.O., “Compute as Fast
the Engineers Can Think!,” NASA/TM-1999-209715
September 1999.

[7]Eldred, M.S., Hart, W.E., Bohnhoff, W.J.,
Romero, V.J., Hutchinson, S.A., and Salinger, A.G
“Utilizing Object-Oriented Design to Build Advanced
Optimization Strategies with Generic Implementation
paper AIAA-96-4164 inProceedings of the 6th AIAA/
USAF/NASA/ISSMO Symposium on MA&O, Bellevue,
WA, Sept. 4-6, 1996, pp. 1568-82.

[8]Hutchinson, S.A., Shadid, J.N., Moffat, H.K.,
and Ng, K.T., “A Two-Level Parallel Direct Search
Implementation for Arbitrarily Sized Objective Func
tions,” Proceedings of the Colorado Conference on Ite
ative Methods, Breckenridge, Colorado, 1994.

[9]Guruswamy, G.P., “User’s Manual for HiMAP:
A Portable Super Modular 3-Level Parallel Multidisci
plinary Analysis Process,” NASA/TM-1999-209578
September 1999.

[10]Eldred, M.S., and Schimel, B.D., “Extended
Parallelism Models For Optimization On Massively Pa
allel Computers,” paper 16-POM-2 inProceedings of
the 3rd World Congress of Structural and Multidisci
plinary Optimization, Buffalo, NY, May 17-21, 1999.

[11]Snir, M., Otto, S., Huss-Lederman, S., Walke
D., and Dongarra, J.,MPI: The Complete Reference,
MIT Press, Cambridge, MA, 1996.

[12]Eldred, M.S, Bohnhoff, W.J., and Hart, W.E.
“DAKOTA, An Object-Oriented Framework for Design
Optimization, Parameter Estimation, Sensitivity Analy
sis, and Uncertainty Quantification,” Sandia Technic
Report SAND00-XXXX, In preparation. Draft available
from http://endo.sandia.gov/DAKOTA/papers
Dakota_online.pdf.

[13]Stroustrup, B.,The C++ Programming Lan-
guage, 2nd ed., Addison-Wesley, New York, 1991.

[14]Eldred, M.S., Schimel, B.D., van Bloemen
Waanders, B.G., and Giunta, A.A., “Optimization with
DAKOTA on Cplant,” internal report, January 2000.

[15]http://www.cs.sandia.gov/cplant/
[16]Eldred, M.S., Outka, D.E., Bohnhoff, W.J.,

Witkowski, W.R., Romero, V.J., Ponslet, E.R., an
Chen, K.S., “Optimization of Complex Mechanics Sim
ulations with Object-Oriented Software Design,”Com-
puter Modeling and Simulation in Engineering, Vol. 1,
No. 3, August 1996.
10
American Institute of Aeronautics and Astronautics

Dsshqgl{ D

Wklv dsshqgl{ ghvfulehv wkh rswlpdo vroxwlrqv wr
sureohp +4,1 Frqvlghu wkh iroorzlqj uhirupxodwlrq ri
sureohp +4,/ zklfk sxwv doo frqvwudlqwv lq d frpprq
irup=

plq�l ��n�4
l@4 �l

v=w= �l � 4 � 3
��l . ql � 3

s� snplq�
n�4
l@4 �l

�Sn�5

l@4 pl.4�
l
m@4�m �p4 � 3=

+5,

Wkh Odjudqjldq iru wklv sureohp lv

O+�> �, @ ��n�4
l@4 �l �

5n�4[
l@4

�lfl+�,>

zkhuh fl uhihuv wr wkh l0wk frqvwudlqw lq Htxdwlrq +5,1
D qhfhvvdu| frqglwlrq iru wkh rswlpdolw| ri d srlqw
�� lv wkdw wkhuh h{lvwv �

�

vxfk wkdw

CO

C�l
+��> �

�

, @ 3

dqg ��l � 3 iru l @ 4> = = = > 5n�4 +h1j1 vhh Jloo/ Pxuud|
dqg Zuljkw ^44`,1 Wkh iroorzlqj ohppd suryhv wkh
edvlf idfw qhhghg wr fkdudfwhul}h ��1

Ohppd 4 Ohw 4 � u ? v � n � 4/ dqg vxssrvh wkdw
��u A 41 Li wkhuh h{lvwv pl @ 4 iru l 5 iu . 4> = = = > vj/
wkhq ��v @ qv1 Rwkhuzlvh li ��v 9@ ��u wkhq hlwkhu ��u @
qu ? ��v / ru ��u A ��v @ qv1

Surri1 Qrwh wkdw wkh ��l kdyh wkh surshuw| wkdw li
frqvwudlqw l lv qrw wljkw wkhq ��l @ 31 Wkxv li ��u A 4
wkhq ��u @ 3 dqg ��u.n�4 � 31 Frqvlghu wkh fdvh
zkhuh wkhuh h{lvwv pl @ 4 iru l 5 iu . 4> = = = > vj/ dqg
dvvxph wrzdugv d frqwudglfwlrq wkdw ��v ? qv1 Wklv
lpsolhv wkdw ��v � 3 dqg ��v.n�4 @ 31 Ehfdxvh ri wkh
rswlpdolw| ri ��/ zh kdyh

CO
C�u

+��> �
�

, @ ��
n�4

l@4
��l

��u
� ��u . ��u.n�4

.��5n�4

�
splq�

n�4

l@4
��l

��u
.

S
n�5

l@u
pl.4�

l
m@4�

�

m

��u

�
@ 3

dqg

CO
C�v

+��> �
�

, @ ��
n�4

l@4
��l

��v
� ��v . ��v.n�4

.��
5n�4

�
splq�

n�4

l@4
��l

��v
.

S
n�5

l@v
pl.4�

l
m@4�

�

m

��v

�
@ 3=

Qrz ��u @ 3 dqg ��v.n�4 @ 3/ vr zh fdq uhzulwh wkhvh
htxdwlrqv dv

�d. ��u.n�4�
�

u . ��5n�4e @ 3 +6,

�d� ��v�
�

v . ��5n�4f @ 3> +7,

zkhuh d A 3 dqg e A f A 3 vlqfh zh kdyh pl @ 4 iru
vrph l 5 iu . 4> = = = > vj1 Qrz iurp Htxdwlrq +7, zh
fdq frqfoxgh wkdw ��

5n�4 A 3/ vlqfh wkh �uvw whup lv
qhjdwlyh dqg wkh vhfrqg whup lv qrqsrvlwlyh1 Frp0
elqlqj Htxdwlrqv +6, dqg +7,/ zh jhw

��u.n�4�
�

u . ��v�
�

v . ��5n�4+e� f, @ 3=

Vlqfh e A f/ doo ri wkh whupv lq wklv htxdwlrq duh
srvlwlyh1 Wkxv wklv fdq rqo| eh vdwlvl�hg li ��u.n�4 @
��v @ ��

5n�4 @ 31 Exw wklv jlyhv d frqwudglfwlrq vlqfh
��5n�4 A 3/ vr zh fdq frqfoxgh wkdw ��v @ qv1
Frqvlghu wkh fdvh zkhuh wkhuh h{lvwv pl @ 3 iru

l 5 iu . 4> = = = > vj/ dqg vxssrvh wkdw ��u ? ��v 1 Ohw
��u @ ���v 1 Vlqfh �u dqg �v duh dozd|v pxowlsolhg
wrjhwkhu lq wkh odvw frqvwudlqw/ wklv frqvwudlqw
ehfrphv ohvv wljkw dv � dssurdfkhv rqh1 Ixuwkhu/
wkh remhfwlyh lv plqlpl}hg dv � dssurdfkhv rqh1 Lw
iroorzv wkdw � pxvw eh erxqghg iurp deryh e| wkh
xsshu erxqg rq ��u / vr wklv erxqg lv wljkw1 Wkh vdph
dujxphqw dssolhv zkhq ��u A ��v 1

44
Dphulfdq Lqvwlwxwh ri Dhurqdxwlfv dqg Dvwurqdxwlfv

	MULTILEVEL PARALLELISM FOR OPTIMIZATION ON MP COMPUTERS: THEORY AND EXPERIMENT
	Abstract
	Introduction
	Implementation
	Levels of parallelism
	Level 1. Concurrent iterator strategies: coarse-grained parallelism is realized through the concu...
	Level 2. Concurrent function evaluations within each iterator: coarse-grained parallelism is real...
	Level 3. Concurrent analyses within each function evaluation: coarse-grained parallelism is explo...
	Level 4. Multiple processors for each analysis: fine- grained parallelism is exploited when paral...

	Partitioning of levels
	Scheduling within levels
	Experiments
	Usage model computational experiments
	Partitioning scheme computational experiments
	Conclusions
	References
	[1] Eldred, M.S. and Hart, W.E., “Design And Implementation Of Multilevel Parallel Optimization O...
	[2] Kroo, I., “MDO for Large-Scale Design,” Multidisciplinary Design Optimization State of the Ar...
	[3] Orozco, C.E., and Ghattas, O.N., “A Reduced SAND Method for Optimal Design of Non-linear Stru...
	[4] Dennis, J.E., and Lewis, R.M., “Problem Formulations and Other Optimization Issues in Multidi...
	[5] Schnabel, R.B., “A View of the Limitations, Opportunities, and Challenges in Parallel Nonline...
	[6] Biedron, R.T., Mehrotra, P., Nelson, M.L., Preston, F.S., Rehder, J.J., Rogers, J.L., Rudy, D...
	[7] Eldred, M.S., Hart, W.E., Bohnhoff, W.J., Romero, V.J., Hutchinson, S.A., and Salinger, A.G.,...
	[8] Hutchinson, S.A., Shadid, J.N., Moffat, H.K., and Ng, K.T., “A Two-Level Parallel Direct Sear...
	[9] Guruswamy, G.P., “User’s Manual for HiMAP: A Portable Super Modular 3-Level Parallel Multidis...
	[10] Eldred, M.S., and Schimel, B.D., “Extended Parallelism Models For Optimization On Massively ...
	[11] Snir, M., Otto, S., Huss-Lederman, S., Walker, D., and Dongarra, J., MPI: The Complete Refer...
	[12] Eldred, M.S, Bohnhoff, W.J., and Hart, W.E., “DAKOTA, An Object-Oriented Framework for Desig...
	[13] Stroustrup, B., The C++ Programming Language, 2nd ed., Addison-Wesley, New York, 1991.
	[14] Eldred, M.S., Schimel, B.D., van Bloemen Waanders, B.G., and Giunta, A.A., “Optimization wit...
	[15] http://www.cs.sandia.gov/cplant/
	[16] Eldred, M.S., Outka, D.E., Bohnhoff, W.J., Witkowski, W.R., Romero, V.J., Ponslet, E.R., and...

	Theory
	Theory (cont.)

