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Abstract
In this paper, several formulations for optimization

under uncertainty are presented. In addition to the direct
nesting of uncertainty quantification within optimiza-
tion, formulations are presented for surrogate-based
optimization under uncertainty in which the surrogate
model appears at the optimization level, at the uncer-
tainty quantification level, or at both levels. These surro-
gate models encompass both data fit and hierarchical
surrogates. The DAKOTA software framework is used
to provide the foundation for prototyping and initial
benchmarking of these formulations. A critical compo-
nent is the extension of algorithmic techniques for deter-
ministic surrogate-based optimization to these
surrogate-based optimization under uncertainty formu-
lations. This involves the use of sequential trust region-
based approaches to manage the extent of the approxi-
mations and verify the approximate optima. Two ana-
lytic test problems and one engineering problem are
solved using the different methodologies in order to
compare their relative merits. Results show that surro-
gate-based optimization under uncertainty formulations
show promise both in reducing the number of function
evaluations required and in mitigating the effects of non-
smooth response variations.

Introduction
Many optimization problems must be performed in

the presence of inherent variability (aleatory/irreducible
uncertainty) or uncertainty resulting from a lack of
knowledge (epistemic/reducible uncertainty). The
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challenge is to efficiently and reliably include these
uncertainties in the optimization procedures, so that
prescribed robustness or reliability can be achieved in
the optimal designs.

To perform optimization under uncertainty (OUU),
optimization techniques must be combined with
statistical uncertainty quantification (UQ) techniques.
Depending upon the specifics of this combination,
OUU formulations support both “Design for
Robustness” and “Design for Reliability.” The former is
generally regarded as a simpler problem, since the
mean performance is of interest (for which statistics are
less costly to compute and more reliable for small
sample sizes). In this case, some optimization
formulations presented in the literature neglect UQ
entirely, instead relying on local derivatives to assess
robustness. The authors do not advocate this approach,
as a local derivative is generally an insufficient metric
of robustness. In the latter case of design for reliability,
performance statistics in the tails of the distributions are
of interest. These statistics are more difficult to obtain
accurately, placing greater demands on the UQ portion
of the OUU study.

When combining optimization and UQ techniques
to perform OUU, the most direct approach is to nest the
iterative loops by performing a complete uncertainty
estimation (inner loop) for each optimization data
request (outer loop). This can be prohibitively
expensive, especially if sampling techniques are used
for the uncertainty estimation. For this reason,
techniques which can break this nested relationship and
reduce the overall expense are highly desirable. A
variety of such approaches exist and will be categorized
into three areas: sampling-based, analytic reliability-
based, and stochastic finite element-based.

Sampling-based OUU
When using sampling approaches to perform

uncertainty estimation within OUU, surrogate modeling
techniques naturally arise out of the desires to reduce
the computational expense associated with sampling
and to smooth out any noise in the variations of the
statistics generated from sampling. Possible
formulations for surrogate-based optimization under
uncertainty (SBOUU) can include approaches where
nautics and Astronautics



the surrogate model appears at the optimization level, at
the uncertainty quantification level, or at both levels.
These surrogate models encompass both data fit
surrogates (e.g., a polynomial response surface) and
hierarchical surrogates (e.g., an Euler CFD model used
in place of a Navier-Stokes CFD model). An important
direction of research is the extension of algorithmic
techniques for deterministic surrogate-based
optimization to these SBOUU formulations. This
involves the use of sequential trust region-based
approaches to manage the extent of the approximations
and verify the approximate optima. Whereas a predicted
optimum from an approximate optimization cycle can
be easily verified in deterministic surrogate-based
optimization, the introduction of statistical quantities in
SBOUU makes a rigorous verification in the absolute
sense unobtainable in general. What is needed to be
able to achieve provable-convergence is the ability to
verify improvements from a trust region cycle in a
relative sense, using adaptive UQ methods which allow
a statistical verification based on confidence bounds.

A related approach to these trust-region based
SBOUU methods is the stochastic approximation
approach [1]. Rather than performing a rigorous
verification on each optimization cycle, these methods
allow some erroneous trust region steps. By analyzing
the statistical form of the approximation errors and
bounding the number of erroneous steps, convergence
of these methods can still be verified using probabilistic
arguments.

Another approach for OUU with sampling-based
UQ involves the use of nongradient-based optimization
techniques, e.g., pattern search [2]. The motivation for
nongradient-based techniques is similar to that of
surrogate-based approaches, i.e., they tend to be more
tolerant of noise in the variations of the statistics
generated from sampling.

A final sampling-based concept targeted at
addressing OUU expense involves the blurring of
boundaries between optimization and uncertainty
quantification (UQ) through the leveraging of the same
simulation data by both components of the OUU
process [3]. For example, certain types of optimization
algorithms (e.g., genetic algorithms) may be able to
utilize sampling data from the uncertainty analysis to
accelerate the optimization search (assuming some
crossover between design and uncertain variables).

Exploiting analytic reliability structure
Another approach is to exploit the structure of

analytic reliability techniques such as AMV/AMV+/
FORM/SORM [4]. This can involve accelerating a
gradient-based optimization through reuse of the

gradient of the reliability index, use of a “cross-
iterated” approach [5], or use of a combined
optimization/most probable point (MPP) search [6].
The former approach simply makes use of gradient data
available from the MPP search at the UQ level to avoid
having to finite difference at the optimization level. In
the cross-iterated approach, the nested relationship is
broken by iterating back and forth between
deterministic design and analytic reliability-based UQ.
Based on statistics from the UQ analysis, the safety
factors on the deterministic design constraints can be
adjusted in order to exchange performance for higher
reliability, and the iterative process is continued until
the desired reliability is obtained. In the combined
optimization/MPP search approach, analytic
relationships between the MPP and the design variables
are exploited to form a single-level combined
optimization problem.

Each of these approaches can provide an efficient
means for solving OUU problems. The weakness is that
each of the analytic reliability UQ methods employs a
set of approximating assumptions. Thus, it is essential
that the validity of these assumptions for a particular
problem domain be understood before employing these
techniques.

SFE/SAND
Finally, it is anticipated that the combination of

simultaneous analysis and design (SAND) methods [7]
and stochastic finite element (SFE) techniques [8] will
be fruitful. These two techniques use intrusive
approaches to couple design optimization and stochastic
analysis, respectively, with simulation. In the SFE
approach for nonlinear systems, a set of coupled, block-
structured equations is created for each design point,
where each block is the size of the original
deterministic system. Applying these equations as
equality constraints in SAND optimization formulations
results in very large-scale optimization problems.
Stochastic objectives and constraints can either be
formulated from statistics generated from the
polynomial chaos representations or from the
polynomial chaos coefficients themselves [9].
Developing the capability to converge the SFE and
design optimality conditions simultaneously on large
parallel computers is a future direction that could result
in considerable efficiency gains for OUU problems.

OUU Formulations
Four optimization under uncertainty (OUU)

approaches are of primary interest in this paper. In
addition to the direct nesting formulation, surrogate-
based approaches are presented where the surrogate
2
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model appears at the optimization level, at the
uncertainty quantification level, or at both levels. These
surrogate models encompass both data fit surrogates
and hierarchical surrogates. Each of these formulations
is equally applicable to uncertainty of optima (UOO)
problems, which involve an inversion of the nested
loops is order to compute statistical data on optimal
solutions. For clarity, only the OUU approaches are
presented and the “optional interface” portions (see
Implementation section) are omitted.

Formulation 1: Nested. Optimization is performed
directly on the UQ results, and the UQ analyses are
performed directly on the simulation code. This
involves use of a nested model (see Implementation
section) without any surrogates where d are the
design variables, u are the uncertain variables char-
acterized by probability distributions, ru(d,u) are
the response functions from the simulation, and
su(d) are the statistics generated from the uncer-
tainty quantification on these response functions.

Formulation 2: Layered/Nested. Optimization is
performed on a data fit surrogate (e.g., polynomial
response surface) which fits statistical data su
generated from a set of UQ analyses performed
over the range of d (approximate quantities marked
with ^).

Formulation 3: Nested/Layered. Optimization is
performed directly on the UQ results, and UQ
analyses are performed on either a data fit
surrogate built over d and u or a hierarchical
surrogate [10] for which a correction is applied at d

and mean u. Note that there are several possibilities
for the data used to build data fit surrogates at the
UQ level. The data fit can be performed:
(1) once covering the full range of d and u, or
(2) over the range of u only for each d instance.
In the latter case, there may be a reduction in the
total number of samples from not populating the
full interactions. In addition, the form of the fit
could be influenced; that is, breaking u and d apart
could simplify the form of the surrogate model
over u, e.g., a quadratic model over u might be
sufficient if decoupled from d, whereas a higher
order model would be best if fit over both u and d
[2].

Formulation 4: Layered/Nested/Layered. Optimization
is performed on a data fit surrogate which fits
statistical data su generated from a set of UQ
analyses performed over the range of d. UQ
analyses are performed on either a data fit
surrogate built over d and u or a hierarchical
surrogate for which a correction is applied at d and
mean u (formulations 2 and 3 combined). In this
formulation, there is an additional possibility for
the data used to build data fit surrogates at the UQ
level beyond the two listed in formulation 3:
(3) periodically over u and a restricted range of d
for each new design trust region.
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For this paper, formulation 3 will employ the first UQ
surrogate approach of generating a single data fit cover-
ing the full range of d and u, and formulation 4 will
employ the third UQ surrogate approach of regenerating
data fits over u and a restricted range of d for each new
design trust region.

Implementation
The DAKOTA toolkit [11], [13], [14] is an open

source software framework for systems analysis,
encompassing optimization, parameter estimation,
uncertainty quantification, design of computer experi-
ments, and sensitivity analysis. It interfaces with a vari-
ety of simulation codes from a range of engineering
disciplines, and it manages the complexities of a broad
suite of capabilities through the use of object-oriented
abstraction, class hierarchies, and polymorphism [15].
Through implementation of OUU approaches in
DAKOTA, the latest capabilities for

• optimization (e.g., gradient and nongradient, mixed

integer, simultaneous analysis and design) [16],

• uncertainty quantification (e.g., sampling, analytic

reliability, and stochastic finite element) [17],

• surrogate modeling (e.g., polynomial regression,

kriging, neural networks, splines) [18], and

• parallel processing (e.g., multilevel parallelism for

massively parallel architectures) [19]

can be brought together to perform SBOUU for engi-
neering applications using complex, high-fidelity simu-
lations on high performance computers.

Supporting Model Class Hierarchy
The DakotaModel class hierarchy shown in Figure

1 provides a new set of software components that allow
both the nesting of iterative studies and the layering of
approximations. The Single model class preserves
previous functionality for a standard parameter to
response mapping through a single interface. The
Nested model provides a capability for executing a
complete iterative study as part of every evaluation

performed on this model. Examples of studies which
can employ nested models include:

• optimization under uncertainty (a full UQ on every
optimization function evaluation)

• uncertainty of optima (a full optimization on every
UQ function evaluation)

• Multi-start optimization for global optimization (an
optimization nested within stratified sampling)

• Pareto-frontier mapping for multiobjective
optimization (an optimization nested within a
parameter study)

Components of the Nested model include:
• a subordinate iterator/model pair which is used to

perform the inner iterative study. An essential
feature of the subordinate model is that it is of
arbitrary type, i.e., it can be of any of the derived
classes shown in Figure 1. Thus, a nested model
may contain a layered model, and so on.

• an optional interface for evaluating non-nested
portions of the parameter to response mapping. In
the case of OUU, this interface provides the
deterministic data that is combined with statistical
data from the subordinate iterator/model pair (see
OUU Mappings).

The next model type is the Layered model, which like
the Nested model, contains internal iterators and
models. However, these internal iterators and models
are not used on every function evaluation in a nested
process; rather, they are used periodically for update
and verification. Layered model has two derived class
implementations. The first of these is the Data Fit
Surrogate model, which uses an inexpensive, data fit
approximation as a surrogate for an actual, expensive
model. Examples of data fit approximations include:

• global approximation surrogates (kriging, splines,
neural networks, polynomial regression)

• local approximation surrogates (Taylor series:
direct, reciprocal, intermediate)

• multipoint approximation surrogates (e.g., two-
point adaptive nonlinear approximation (TANA))

Components of the Data Fit Surrogate model include:
• an approximation interface which contains the data

fit that approximates the actual parameter to
response mapping.

• an optional iterator/model pair which is used to
perform design and analysis of computer
experiments (DACE) in order to generate the data
to build the approximation. Again, an essential
feature of the DACE model is that it is of arbitrary
type, i.e., it can be of any of the derived classes
shown in Figure 1. Thus, a layered model may
contain a nested model, and so on. These
components are optional since a surrogate can be

DakotaModel

NestedLayeredSingle

Data Fit Surrogate

Figure 1. DakotaModel class hierarchy.

Hierarchical Surrogate
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built with restart data, new data (from DACE), or
both. Also, these components are only relevant for
global approximations (not local or multipoint).

The second layered model is the Hierarchical
Surrogate model, which uses a low fidelity model
(with correction) as an approximation to a high fidelity
model. Examples of hierarchical modeling fidelity [20]
include:

• variable fidelity physics (e.g., aerodynamics using
panel methods vs. Euler equations vs. Navier-
Stokes equations; could be different codes or the
same code with different physics options active)

• variable resolution (same code/physics, different
mesh)

• variable accuracy (same code/physics, same mesh,
different simulation convergence controls)

• reduced basis/order (modal coordinates, proper
orthogonal decomposition)

The Hierarchical Surrogate model contains:
• a low fidelity interface which provides parameter

to response mappings that are much less expensive
than would be available directly from the high
fidelity model.

• a high fidelity model which is used to provide
corrections to the low fidelity approximation as
well as verifications of actual improvement. Again,
an essential feature of this model is that it is of
arbitrary type, so that model classes can be used in
recursive fashion.

A future extension to these layered model capabilities
would involve the ability to use a data fit surrogate to
fit the response ratios between low and high fidelity
models [2]. This would combine the Data Fit
Surrogate and Hierarchical Surrogate capabilities.

OUU Mappings
As mentioned previously, Nested models support

an optional interface in addition to the subordinate
iterator/model pair. This permits evaluation of
deterministic components (e.g., weight) in addition to
stochastic components (e.g., probability of failure)
within the top level response computation.

First consider the usual nonlinear programming
formulation of

Minimize f(d)

Subject to gl ≤ g(d) ≤ gu

h(d) = ht

dl ≤ d ≤ du

where f, g, and h are deterministic objective functions,
inequality constraints, and equality constraints,
respectively, defined over the design variables d.
Extending this formulation for OUU problems, a linear

mapping for combining deterministic and stochastic
components is:

Minimize f(d) + Wsu(d)

Subject to gl ≤ g(d) ≤ gu

h(d) = ht

al ≤ Aisu(d) ≤ au

Aesu(d) = at

where the optional interface provides f, g, and h, the
subordinate iterator/model provides su (statistics
including mean µ, standard deviation σ, and probability
of failure pfail), and the user specifies the constraint
bounds and targets gl, gu, ht, al, au, and at and the
coefficient matrices W and A (Ai and Ae are sub-
matrices of A for inequality and equality constraints,
respectively). Note that multiobjective optimization is
supported, and f and Wsu may be of different lengths to
accommodate purely deterministic objective functions,
purely stochastic objective functions, or any
combination. It is currently assumed that there is no
need to combine deterministic and stochastic
constraints, although this could be easily
accommodated if the need arises.

Computational Experiments
Computational experiments have been performed

with several test problems in order to compare the pro-
posed OUU formulations. In each of these examples, the
UQ analyses are performed using sampling techniques.

Test Problem 1: DAKOTA test functions
This analytic test problem is formulated as follows:

Minimize f + pfail_r1 + pfail_r3

Subject to gi ≤ 0, for i = 1,2,3

µr2 + 3σr2 ≤ 1.6e5

1.5 ≤ d1 ≤ 2.164
0.0 ≤ d2 ≤ 4.0
normal: u1,u2; uniform: u3,u4; weibull: u5,u6

where u1 and u2 have means of 248.89 and 593.33 and

standard deviations of 12.4 and 29.7, respectively; u3

and u4 have lower bounds of 199.3 and 474.63 and

upper bounds of 298.5 and 712.0, respectively; and u5

and u6 have alpha parameters of 12. and 30. and beta

parameters of 250. and 590., respectively. All six

uncertain variables are independent. The f and gi are

deterministic functions defined by the DAKOTA
5
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“cylinder head” analytic regression test problem [12].

After insertion of constants, these functions simplify to:

Each of the statistics (pfail_r1, pfail_r3, µr2, and σr2) are

computed from an uncertainty estimation performed on

the DAKOTA “textbook OUU” regression test problem

[12]. These three response functions are defined as:

with the associated failure probabilities defined as
 and . These two regression

test problems are not naturally related and the combined
problem does not have a physical interpretation; rather
these functions were chosen to test the overlaying of
deterministic and stochastic data in the OUU mappings.

For formulations involving surrogates, quadratic
polynomials are used and are built using the minimum
amount of data required. For a data fit over 2 design
variables, this equates to 6 samples; and for a data fit

over 2 design variables and 6 uncertain variables, this
equates to 45 samples. Uncertainty estimations are per-
formed using either 50 Latin hypercube samples, in the
cases where sampling is interfaced directly with the
simulation (formulations 1 and 2), or 5000 Latin hyper-
cube samples, in the cases where sampling is interfaced
with the data fit surrogate (formulations 3 and 4). Ran-
dom number seeds are reused on each sample genera-
tion. This is critical, since it guarantees similar/identical
stencils of samples between design changes and allows
for much smoother variation of statistical quantities with
respect to the design parameters.

OUU without trust regions

Table 1 shows results for the four OUU formula-
tions and some basic trends are evident. In general, use
of surrogate models was successful for this problem,
reducing the expense by up to a factor of 20 from the
best nested run using DOT’s sequential quadratic pro-
gramming (SQP) method [21] (NPSOL SQP [22] was
much more expensive at 5500 UQ plus 110 optional
interface evaluations due to its inability to verify opti-
mality and terminate in the presence of under-resolved
pfail statistics). The four solutions are all comparable,
with formulations 1 and 3 finding a slightly better solu-
tion [(d1, d2) ≈ (1.98, 1.77)] than formulations 2 and 4
[(d1, d2) ≈ (1.75, 1.77)]. This is expected, since a single
global data fit using only six samples over the two
design variables will have some inaccuracy. Each of the
approximate solutions (marked with “*”) has been veri-
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Table 1: Test problem 1 results for the four OUU formulations.

OUU
Formulation

Function
Evaluations

Objective
Function

Constraint
Violation

Qualitative Comments

1 (nested) 900 UQ + 18
deterministic

-2.237 0.0 optimization gradients are somewhat inaccurate/
noisy due to under-resolved sampling (DOT does
well, NPSOL takes much longer to terminate).

2 (layered/
nested)

300 UQ + 6
deterministic

-2.004*
(verified:
-2.139)

9.6e-15*
(verified: 0.0)

Advantages: smooth NPSOL navigation, amena-
ble to trust-region techniques, deterministic data
easily incorporated into surrogates.
Disadvantages: sampling must be under-resolved
(accurate pfail difficult), verification is critical.

3 (nested/
layered)

45 UQ + 18
deterministic

-2.250*
(verified:
-2.243)

0.0*
(verified:
0.007)

Advantages: UQ sampling can be extensive
Disadvantages: opt. gradients potentially noisy,
although extensive sampling may partially miti-
gate. Deterministic data outside surrogate loop.

4 (layered/
nested/
layered)

45 UQ + 6
deterministic

-2.002*
(verified:
-2.139)

0.0*
(verified: 0.0)

Advantages: least expensive. Combines
advantages of approaches 2 and 3.
Disadvantages: verification is critical.



fied and the actual objective function and constraint vio-
lation are shown (marked with “verified:”).

In other runs of this test problem with alternate
OUU mapping data combinations (not shown), inaccu-
racy of the surrogates at the design level had a much
more severe effect. In this case, formulations 1 and 3
generated completely different solutions for (d1, d2)
from formulations 2 and 4. Upon verification, the con-
straints were badly violated by formulations 2 and 4.
Again, this is not surprising for a quadratic polynomial
fit over the entire parameter range using the minimum
number of data points, and it highlights the need for
restricting the steps in the approximate optimizations
and the need for regular verifications, both of which are
central features of trust-region approaches.

Trust-region SBOUU

Trust-region approaches to surrogate-based optimi-
zation manage the extent of the approximations and per-
form periodic verifications to maintain the quality of
results [18]. Table 2 shows results for formulations 2
and 4 since they are amenable to the application of trust
regions for surrogates at the optimization level. In for-
mulation 4, surrogate fits at the UQ level are regenerated
for each new trust region at the design level.

With the addition of trust region verifications, for-
mulations 2 and 4 now find the better solution at [(d1,
d2) ≈ (1.98, 1.77)]. However, the cost of rebuilding the
design surrogate for each trust region has increased the
expense by approximately an order of magnitude over
the corresponding approaches from Table 1. Formula-
tion 4 with trust regions is half the expense of the nested
approach (formulation 1 from Table 1). In general, opti-
mizer navigation over d appears to be sufficiently reli-
able without surrogates for this analytic problem; trust-
region surrogate approaches are more strongly moti-
vated in engineering applications where there may be
inherent nonsmoothness in the variation of response
functions over d.

Test Problem 2: Cantilever beam
The next OUU test problem involves the simple
uniform cantilever beam [5],[23] shown in Figure 2.

The design problem is to minimize the weight (or,
equivalently, the cross-sectional area) of the beam
subject to a displacement constraint and a stress
constraint. Random variables in the problem include the
yield stress R of the beam material, the Young’s
modulus E of the material, and the horizontal and
vertical loads, X and Y, which are modeled with normal
distributions using N(40000, 2000), N(2.9E7, 1.45E6),
N(500, 100), and N(1000, 100), respectively. The
constraints have the following analytic form:

or when scaled:

When seeking a 3-sigma reliability level (probability of
failure = 0.00135 if normally-distributed) on these
scaled constraints, the design problem can be
summarized as follows:

Minimize wt
Subject to µD + 3σD ≤ 0

µS + 3σS ≤ 0

1.0 ≤ w ≤ 4.0
1.0 ≤ t ≤ 4.0
normal: E, R, X, Y

If the random variables are fixed at their means, the

resulting deterministic design problem has the solution

(w, t) = (2.35, 3.33) with an objective function of 7.82.

For the OUU solutions, quadratic polynomials are again
used as the surrogate models and are built using the
minimum amount of data required. For 2 design
variables, this equates to 6 samples; and for 2 design
variables plus 4 uncertain variables, this equates to 28
samples. Uncertainty estimations are performed using
either 50 Latin hypercube samples (when sampling on
the simulation in formulations 1 and 2), or 5000 Latin
hypercube samples (when sampling on the data fit

Table 2: Trust-region SBOUU results, test problem 1.

OUU
Formu-
lation

Fn. Evals. Obj. Fn.
Constraint
Violation

2 + trust
regions

2150 UQ +
43 deter-
ministic

-2.237 6.2e-11

4 + trust
regions

405 UQ +
64 deter-
ministic

-2.200*
(verified:
-2.224)

0.0*
(verified:
0.0)

Figure 2. Cantilever beam test problem.
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surrogate in formulations 3 and 4), and random number
seeds are again reused on each sample generation. A
separate interface for deterministic data is not required
for this problem, so function evaluation counts only
involve simulations performed at the UQ level.

OUU without trust regions

Solutions to the cantilever beam problem for the
four OUU formulations are shown in Table 3. The solu-
tion for formulation 1 is (w, t) = (2.53, 3.69), which has

a slightly lower objective function than solutions from

the literature [5],[23]. The solution differences are likely

attributable to the differences between sampling-based

and analytic reliability-based approaches.

Formulations 2, 3, and 4 are showing significant
inaccuracy in the constraint surrogates, again not sur-
prising due to a quadratic polynomial fit over the entire
parameter range using the minimum number of data
points. Formulation 2 underpredicts the constraints, and
formulations 3 and 4 overpredict the constraints. Trust
region restriction of steps and regular verifications of
approximate optima are needed.

Trust-region SBOUU

Adding trust regions to formulations 2 and 4 gener-
ates the results shown in Table 4. In formulation 4, sur-
rogate fits at the UQ level are regenerated for each new
trust region at the design level. It is evident that, relative
to the Table 3 results, the trust regions maintain the
quality of results but the cost of rebuilding surrogates
for each trust region has increased the expense by
approximately an order of magnitude. It is also impor-
tant to note that the results for formulation 4 were sensi-
tive to the initial seed and a representative result is
shown. Increasing the number of samples at the UQ
level from 28 samples (the minimum) to 42 samples
(50% overfit) improved the reliability of the formulation
4 runs with a modest increase in expense.

For this test problem, formulation 2 with trust
regions is competitive with the direct nested approach
(formulation 1), and formulation 4 with trust regions is
much less expensive. This shows improvement in the
important metric of computational expense, but an
equally important metric is robustness. As for test prob-
lem 1, optimizer navigation over d appears to be suffi-
ciently reliable without surrogates for this analytic
problem; the strongest motivation for surrogate
approaches is in addressing noisy response variations in
real engineering problems. For this reason, the final test
problem performs OUU using an engineering simula-
tion code.

Test Problem 3: ICF capsule robust design
The final OUU test problem is an engineering design
problem which seeks an inertial confinement fusion
(ICF) capsule design that is robust with respect to
manufacturing variability [10]. It uses a large finite
element code to simulate the shock physics involved in
imploding the capsule. The simple capsule design

shown in Figure 3 has an outer layer of plastic ablator

material and an inner core of hydrogen fuel. The ablator

material absorbs the radiation pulse, vaporizes and

blows off at very high velocities (ablates), and

consequently compresses the fuel through momentum

reaction forces.

Table 3: OUU results, test problem 2

OUU
Formul-

ation

Fn.
Evals.

Obj. Fn.
Constraint
Violation

1 3250 9.32 1.79e-10

2 300 7.49*
(verified: 7.49)

3.4e-10*
(verified: 3.72)

3 28 30.1*
(verified: 30.1)

8.22*
(verified: 0.0)

4 28 34.7*
(verified: 34.7)

8.09*
verified: 0.0)

Table 4: Trust-region SBOUU results, test problem 2

OUU
Formul-

ation

Fn.
Evals.

Obj. Fn.
Constraint
Violation

2 + trust
regions

3550 9.32 0.0

4 + trust
regions

392 9.36*
(verified: 9.38)

0.0*
(verified: 0.0)

Figure 3. Cross-section of a spherical ICF capsule
showing the fuel and ablator layers.

Ablator

Fuel

Outward
radial

direction

rfuel = 0.100 cm
design variable r
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This problem was previously formulated in [10] using
probability of failure metrics since this was the
information provided by the UQ methods at that time.
The problem can now be formulated using a more

natural standard deviation metric as follows:

Minimize V(r)

Subject to σV(r) ≤ 1.e6 cm/s

0.105 cm ≤ r ≤ 0.135 cm

uniform: u = [-0.005 cm, 0.005 cm]

where r is the outer radius of the ablator layer, u is a

uniformly distributed uncertain perturbation on r, V(r)

is the implosion velocity of the capsule at the ablator/

fuel interface, and σV(r) is the standard deviation of the

implosion velocity computed using 10 Latin hypercube

samples over u for each fixed value of r. Prior to

performing the OUU problem, a parameter study was

performed to assess the variability in V and σV. The

results of this study are shown in Figures 4 and 5. Note

that the sign on the velocity value is negative due to the

orientation of the coordinate axes in the physics

simulation code. Thus, minimizing the objective

function is equivalent to maximizing the absolute value

of the implosion velocity. In addition, local

nonsmoothness is evident. This behavior is a common

occurrence in engineering problems and provides a

primary motivation for surrogate-based techniques.

Figure 4 shows that the objective function has a global

minimum at r=0.106 cm and a local minimum at

r=0.129 cm. However, the local minimum is more

robust to perturbations in r than is the global minimum

point. In some engineering design problems, a more

robust local optimum is preferred to a less robust global

optimum. This OUU problem has been formulated to

duplicate such a scenario by constraining the standard

deviation of the velocity to be less than 1.0e6 cm/s.

Hence, the global optimum point at r = 0.106 cm is

infeasible in this OUU problem formulation. Due to
computational expense, all problem formulations were
not able to be investigated. Rather, formulation 1 and

formulation 2 augmented with trust regions were

applied to the problem.

OUU without trust regions

Formulation 1 used DOT’s Modified Method of

Feasible Directions [21] with central finite difference

gradients estimated using a relative step size of 0.01.

The starting point for the optimizer was r=0.112 cm.

The results of this optimization case are shown in Table

5. The optimizer was successful in moving from the

initially infeasible point at r=0.112 cm to the local

optimum point at approximately r=0.129 cm using 242

function evaluations.

Trust-region SBOUU

Next, OUU problem formulation 2 with trust

regions was applied to the problem with the expectation

Ablator Outer Radius (cm)

M
ax

im
um

Im
pl

os
io

n
V

el
oc

ity
(c

m
/s

)

0.10 0.11 0.12 0.13 0.14
-3.0E+07

-2.5E+07

-2.0E+07

-1.5E+07

-1.0E+07

-5.0E+06

0.0E+00

Figure 4. Capsule implosion velocity, V(r), versus
ablator radius, r (radius perturbation, u, held at zero).

Table 5: OUU results, test problem 3

OUU
Formul-

ation

Fn.
Evals.

Obj. Fn.
Constraint
Violation

1 242 -8.713e6 cm/s 0.0 (σV =
5.39e4 cm/s)

2 + trust
regions

363 -8.712e6 cm/s 0.0 (σV =
3.94e4 cm/s)

Ablator Outer Radius (cm)
S

td
.D

ev
.I

m
pl

os
io

n
V

el
oc

ity
(c

m
/s

)
0.10 0.11 0.12 0.13 0.14

0.0E+00

1.0E+06

2.0E+06

3.0E+06

4.0E+06

5.0E+06

6.0E+06

7.0E+06

Figure 5. Standard deviation of the implosion veloc-
ity, σV(r), (computed using 10 samples over radius
perturbation, u) versus ablator radius, r.
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that the use of surrogate functions for V and σV would

improve performance in the presence of nonsmooth

response variations. This formulation creates a

sequence of quadratic polynomial approximations for V
and σV, each of which is built using three data points in

the current trust region. The initial trust region size was

set to coincide with the bounds on the ablator radius, r,

i.e., from 0.105 cm to 0.135 cm. Subsequent iterations

of the SBOUU algorithm resized the trust region to

maintain accurate surrogate models. The results of this

study are also shown in Table 5.

The optimization history of the objective and

constraint functions is shown for the OUU and SBOUU

formulations in Figures 6 and 7, respectively. Note that

the horizontal axis on both figures has been truncated to

300 function evaluations to focus on the initial

convergence behavior of both formulations. The

optimization history results show that the SBOUU

algorithm found a feasible design point in a single cycle

compared to several cycles for the OUU algorithm.

That is, it was successful in smoothing the noisy

response variations and jumping to the vicinity of the

optimal solution in a single step. However, the SBOUU

algorithm required more iterations to terminate than did

the OUU algorithm. This is typical of SBOUU

algorithms using “soft” convergence criteria, and more

work is needed on refining these criteria.

Conclusions
 This paper explores a variety of formulations for

optimization under uncertainty, with an emphasis on
surrogate-based approaches. Preliminary work points to
the utility of surrogate fits to statistical data generated
from sampling-based uncertainty quantification, both in
terms of reducing computational expense and mitigating
the effects of nonsmooth response variations. However,
without restricting and rigorously verifying the steps in
the approximate optimization cycles, weaknesses in the
data fits can be exploited and poor solutions may be
obtained. It is clear that trust-region approaches to sur-
rogate-based optimization under uncertainty maintain
the quality of results in these classes of problems and
provide an effective alternative to direct nested
approaches.

In future work, the verification steps in trust-region
SBOUU can be extended to be more rigorous. Tech-
niques like ordinal optimization [24] can be used for rig-
orous selection among stochastic alternatives by non-
overlapping the confidence bounds (for a user-selected
confidence level) on the statistics of the distributions.
This is an important component of achieving provable
convergence in trust-region surrogate-based optimiza-
tion under uncertainty algorithms.
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