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Abstract 
 

This document is a reference guide for the UNIX Library/Standalone version of the Latin 

Hypercube Sampling Software.  This software has been developed to generate Latin hypercube 

multivariate samples.  This version runs on Linux or UNIX platforms.  This manual covers the use 

of the LHS code in a UNIX environment, run either as a standalone program or as a callable library. 

 The underlying code in the UNIX Library/Standalone version of LHS is almost identical to the 

updated Windows version of LHS released in 1998 (SAND98-0210).  However, some 

modifications were made to customize it for a UNIX environment and as a library that is called 

from the DAKOTA environment.  This manual covers the use of the LHS code as a library and in 

the standalone mode under UNIX.  
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1.  Introduction 

For more than twenty years, the Latin hypercube sampling (LHS) program has been successfully 

used to generate multivariate samples of statistical distributions.  Its ability to use either Latin 

hypercube sampling or pure Monte Carlo sampling with both random and restricted pairing 

methods has made it an important part of uncertainty analyses in areas ranging from probabilistic 

risk assessment (PRA) to complex simulation modeling.   

 

The original version of LHS developed at Sandia National Laboratories was documented in 

SAND83-2365 (Iman and Shortencarier).  This code was substantially revised, extended, and 

upgraded in the mid-1990s.  Gregory Wyss, Sharon Daniel, and Kelly Jorgensen designed and 

implemented much of this upgrade to the LHS software, converting it from Fortran 77 to Fortran 

90, adding more than 25 new distributions, and including functionality that made the code much 

more portable.  The revised version also included development of a Windows-based user interface 

to assist the user with input preparation as well as a graphical output system to support plotting of 

distributions generated by LHS.  The documentation of the capabilities of the revised LHS code is 

presented in SAND98-0210 (Wyss and Jorgensen, 1998).   

 

Michael Eldred, Sharon Daniel, Laura Swiler, and Shannon Brown ported the 1998 version of LHS 

(which was primarily designed for a Windows platform) to a Linux/UNIX environment in 2003-

2004.  This process involved writing some additional functionality to allow the LHS code to be 

called as a library from within the DAKOTA software environment (“input-by-call” vs. input by 

file), as well as some changes to modernize the code and make it more compatible with the needs of 

advanced simulators (e.g., converting single precision variables to double precision).  The version 

of LHS that runs under a Linux or UNIX operating system can be compiled to run in two ways:  

called as a library or as a standalone LHS code run with file input.   

 

This report documents the capabilities of the LHS UNIX Library/Standalone version.  There is 

significant overlap in this report with SAND98-0210, however we wanted to create a separate 

User’s Guide specifically for the UNIX version of LHS. 

 

This manual is divided into six chapters.  The next chapter is an introduction that describes the 

concepts involved in the Latin hypercube sampling and restricted pairing methods employed by the 

software. Chapter 3 describes how to run the LHS software in standalone mode and specifies the 

input file format needed, while Chapter 4 contains detailed descriptions of the distributions 

supported by LHS.  Chapter 5 describes how to run LHS as a callable library from within 

DAKOTA, while Chapter 6 is a summary of the report.   

 

Note:  If you are familiar with LHS and just want the “quick guide” to the keywords that control 

LHS execution in standalone mode, jump to Section 3.2.   
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2.  Latin Hypercube Sampling Theory 

Latin hypercube sampling was developed to address the need for uncertainty assessment for a 

particular class of problems.  Consider a variable Y that is a function of other variables X1, X2, …, 

Xk.  This function may be very complicated, for example, a computer model.  A question to be 

investigated is “How does Y vary when the Xs vary according to some assumed joint probability 

distribution?”  Related questions are “What is the expected value of Y?” and  “What is the 99th 

percentile of Y?” 

 

A conventional approach to these questions is to apply Monte Carlo sampling.  By sampling 

repeatedly from the assumed joint probability density function of the Xs and evaluating Y for each 

sample, the distribution of Y, along with its mean and other characteristics, can be estimated.  The 

LHS software supports this approach for generating samples of the Xs.  The program output, for n 

Monte Carlo repetitions, is a set of n vectors of input variables (each such vector is k-dimensional). 

Each input vector can then be evaluated by the function or program to generate n values of the 

result Y (Y may be a scalar or a vector whose dimensionality is determined by the function or 

program of interest).  This approach yields reasonable estimates for the distribution of Y if the value 

of n is quite large.  However, since a large value of n requires a large number of computations from 

the function or program of interest, which is potentially a very large computational expense, 

additional methods of uncertainty estimation were sought. 

 

2.1  Sampling 

An alternative approach, which can yield more precise estimates, is to use a constrained Monte 

Carlo sampling scheme.  One such scheme, developed by McKay, Conover, and Beckman (1979), 

is Latin hypercube sampling. Latin hypercube sampling selects n different values from each of k 

variables X1, … Xk in the following manner.  The range of each variable is divided into n 

nonoverlapping intervals on the basis of equal probability.  One value from each interval is selected 

at random with respect to the probability density in the interval.  The n values thus obtained for X1 

are paired in a random manner (equally likely combinations) with the n values of X2.  These n pairs 

are combined in a random manner with the n values of X3 to form n triplets, and so on, until n k-

tuplets are formed.  These n k-tuplets are the same as the n k-dimensional input vectors described in 

the previous paragraph.  This is the Latin hypercube sample.  It is convenient to think of this sample 

(or any random sample of size n) as forming an (n × k) matrix of input where the ith row contains 

specific values of each of the k input variables to be used on the ith run of the computer model. 

 

The Latin hypercube sampling technique has been applied to many different computer models since 

1975.    A more detailed description of Latin hypercube sampling with application to sensitivity 

analysis techniques can be found in Iman, Helton, and Campbell (1981a, b).  A tutorial on Latin 

hypercube sampling may be found in Iman and Conover (1982b).  A recent comparison of Latin 

hypercube sampling with other techniques is given in Helton and Davis (2001). 
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To help clarify how intervals are determined in the Latin hypercube sample, consider a simple 

example where it is desired to generate a Latin hypercube sample of size n = 5 with two input 

variables.  Let us assume that the first random variable X1 has a normal distribution with a mean 

value of µ and a variance of σ2.  The endpoints of the intervals are easily determined based on the 

parameters µ and σ2. The intervals for n = 5 are illustrated in Figure 2-1 in terms of both the density 

function and the more easily used cumulative distribution function (CDF).  The intervals in Figure 

2-1 satisfy 

 

  P(–∞ ≤  X1 ≤  A)  =  P(A ≤  X1 ≤  B)  =  P(B ≤  X1 ≤  C) 

 

=  P(C ≤  X1 ≤  D)  =  P(D ≤  X1 ≤  ∞)  = 0.2 

 

Thus each of the five intervals corresponds to a 20% probability. 

 

We will assume in this example that the second random variable, X2, has a uniform distribution on 

the interval from G to L.  The corresponding intervals used in the Latin hypercube sample for X2 are 

given in Figure 2-2 in terms of both the density function and the CDF. 

 

The next step in obtaining the Latin hypercube sample is to pick specific values of X1 and X2 in 

each of their five respective intervals.  This selection must be done in a random manner with 

respect to the density in each interval; that is, the selection must reflect the height of the density 

across the interval.  For example, in the (–∞, A) interval for X1, values close to A will have a higher 

probability of selection than those values in the tail of the distribution that extends to –∞.  Next, the 

selected values of X1 and X2 are randomly paired to form the five required two-dimensional input 

vectors.  In the original concept of Latin hypercube sampling as outlined in McKay, Conover, and 

Beckman (1979), the pairing was done by associating a random permutation of the first n integers 

with each input variable.  For illustration, in the present example consider two random 

permutations of the integers (1, 2, 3, 4, 5) as follows: 

 

   Permutation Set No. 1:  (3, 1, 5, 2, 4) 

   Permutation Set No. 2:  (2, 4, 1, 3, 5) 

 

By using the respective position within these permutation sets as interval numbers for X1 (Set 1) 

and X2 (Set 2), the following pairing of intervals would be formed: 
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Figure 2-1: Intervals Used with a Latin Hypercube Sample of Size n = 5 in Terms of the Density 

Function and Cumulative Distribution Function for a Normal Random Variable 
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Figure 2-2: Intervals Used with a Latin Hypercube Sample of Size n = 5 in Terms of the Density 

Function and Cumulative Distribution Function for a Uniform Random Variable 
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 Interval No. Interval No. 

Computer Run No. Used for X1 Used for X2 

1 3 2 

2 1 4 

3 5 1 

4 2 3 

5 4 5 

 

Thus, on computer run number 1, the input vector is formed by selecting the specific value of X1 

from the interval number 3 (B to C) and pairing this value with the specific value of X2 selected 

from interval number 2 (H to I).  The vectors for the second and subsequent runs are constructed in 

a similar manner. 

 

Once the specific values of each variable are obtained to form the five input vectors, a two-

dimensional representation of the Latin hypercube sample such as that given in Figure 2-3 can be 

made.  Note in Figure 2-3 that all of the intervals for X1 have been sampled, and the same is true of 

X2.  In general, a set of n Latin hypercube sample points in k-dimensional Euclidean space contains 

one point in each of the intervals for each of the k variables. 

 

To illustrate how the specific values of a variable are obtained in a Latin hypercube sample, 

consider the following example.  Suppose it is desired to obtain a Latin hypercube sample of size n 

= 5 from a normal distribution with a mean of 5.0 and a variance of 2.618 as indicated in Figure 

2-4.  The density characteristics of the normal distribution allow for the definition of the equal 

probability intervals.  These intervals are shown in Figure 2-4 in terms of a density function.  The 

next step is to randomly select an observation within each of the intervals.  This selection is not 

done uniformly within the intervals shown in Figure 2-4, but rather it is done relative to the 

probability density function distribution being sampled (in this case, the normal distribution).  This 

is equivalent to uniformly sampling from the quantiles of the distribution (equivalent to sampling 

the vertical axis of the CDF) and then “inverting” the CDF to obtain the actual distribution values 

that those quantiles represent.  This process is illustrated in Figure 2-4. 

 

Therefore to get the specific values, n = 5 numbers are randomly selected from the standard 

uniform distribution (uniformly distributed between 0 and 1).  Let these be denoted as Um, where m 

= 1, 2, 3, 4, 5.  These values will be used to select distribution values randomly from within each of 

the n = 5 intervals.  To accomplish this, each of the random numbers Um is scaled to obtain a 

corresponding cumulative probability, Pm, so that each Pm lies within the m
th interval.  Thus, for this 

example with n = 5, 

 

P U
m

m m=


 

 +

−

 




1

5

1

5
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Figure 2-3: A Two-Dimensional Representation of One Possible Latin Hypercube Sample of 

Size 5 Utilizing X1 and X2 
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Figure 2-4: Interval Endpoints Used with a Latin hypercube sample of Size 5 (top) and Specific 

Values of X Selected Through the Inverse of the Distribution Function (bottom) 
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This ensures that exactly one probability, Pm, will fall within each of the five intervals (0, 0.2), (0.2, 

0.4), (0.4, 0.6), (0.6, 0.8) and (0.8, 1).  The values Pm are used with the inverse normal distribution 

function to produce the specific values to be used in the final Latin hypercube sample.  Note that 

exactly one observation is taken from each interval shown in Figure 2-4.  The entire process is 

shown in Table 2-1.  Figure 2-4 makes it clear that when obtaining a Latin hypercube sample, it is 

easier to work with the CDF for each variable.  This is the approach used in the computer program, 

rather than defining the endpoints of the intervals on the x-axis. 

 

Figure 2-4 shows how one input variable having a normal distribution is sampled with Latin 

hypercube sampling.  This procedure is repeated for each input variable, each time working with 

the corresponding cumulative distribution function.  If a random sample is desired, then it is not 

necessary to divide the vertical axis into n intervals of equal width. Rather, n random numbers 

between 0 and 1 are obtained and each is directly (i.e., without scaling) mapped through the inverse 

distribution function to obtain the specific values.  The final step in the sampling process involves 

pairing the selected values. 

 

Table 2-1: One Possible Selection of Values for a Latin Hypercube Sample of Size 5 from a 

Normal Distribution with a Mean of 5 and a Standard Deviation of 2.618 

 

 

 

Interval 

Number 

m 

 

 

Uniform (0,1) 

Random No. 

Um 

Scaled 

Probabilities 

Within the Interval 

Pm = Um(0.2) + 

(m–1)(0.2) 

Corresponding 

Standard Normal 

Value (Z-score) 

from the Inverse 

Distribution 

Corresponding 

N(5, 2.618) 

Observation 

Within the 

Intervals 

1 0.080 0.016 -2.144 1.529 

2 0.610 0.322 -0.462 4.252 

3 0.525 0.505 0.013 5.021 

4 0.935 0.787 0.796 6.288 

5 0.620 0.924 1.433 7.319 

 

 

2.2  Pairing 

It should be noted that even though two variables are sampled independently and paired randomly, 

the sample correlation coefficient of the n pairs of variables in either a random sample or a Latin 

hypercube sample will, in general, not equal zero due to sampling fluctuations.  In order to obtain a 

sample in which the sample correlations more nearly match the assumed, or intended, correlations, 

Iman and Conover (1982a) proposed a method for restricting the way in which the variables are 

paired.  The effect of this restriction on the statistical properties of the estimated distribution of Y, 

its mean and percentiles, is believed to be small.  The LHS software supports both the random 

pairing of variables described in the previous section and the restricted pairing of variables that is 

explained in this section. 
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While a full description of the restricted pairing methodology is beyond the scope of this report, a 

heuristic description is appropriate in order to give the prospective LHS software user a greater 

level of comfort with the software.  Recall that the basic method for LHS is to select a set of n 

observations (random samples) for each random variable, and then to randomly “pair” those 

selected observations.  This yields a set of n vectors, where each vector contains one value for each 

random variable.  Thus, if there are k random variables, each of the n vectors is k-dimensional. 

 

In the process of sampling a single distribution (generating n observations of values for that 

distribution), there is no significance to the order in which those observations are obtained.  What 

matters for the purposes of the uncertainty analysis is that the entire collection of observations 

faithfully preserve the properties of the distribution from which it was sampled. 

 

We can now view the pairing process as follows.  Imagine writing the value of each observation for 

distribution X1 on a separate slip of paper and placing those slips into a hat.  There would now be n 

separate slips of paper in that hat.  Now imagine following the same process for distribution X2, and 

placing the slips in a second hat.  The same process could be followed for distributions X3 through 

Xk, so that at the end of the process one would have k hats, each containing n slips of paper with 

distribution values written on them. 

 

To accomplish the random pairing process described previously, one would simply draw one slip of 

paper at random from each of the k hats, and the group of values written on those k slips of paper 

would form the first observation of the output data set.  In the language of the previous section, 

these values would form the k-dimensional input vector for the first computer run, or the first row 

in the (n × k) matrix of sampling results.  The second set of values drawn randomly from the k hats 

would form the second observation, k-dimensional input vector, or matrix row, and so forth until 

the last, or nth, set of values was drawn to form the last such observation.  Since exactly n values 

were generated for each distribution, all of the hats are now empty.  Thus, all of the generated 

distribution values were used, so each column in the (n × k) matrix faithfully represents the 

distribution from which its values were drawn. 

 

One could, however, visualize a different pairing process in which the slips of paper from the k hats 

were poured out to make k separate piles.  The slips of paper from those piles could then be 

arranged in columns to form the (n × k) matrix described previously.  Since there is no significance 

to the order in which the individual slips of paper are arranged in these columns, one might imagine 

a person examining the entire (n × k) matrix and deliberately moving slips of paper around within 

columns to achieve some goal for the overall matrix.  If one were clever, one could order each 

column so that the correlation between its values and those of every other column in the matrix is as 

small as possible.  When this process is completed, the (n × k) matrix still contains the same values 

in the same columns, but each column has been intentionally reordered.  Each column in the matrix 

faithfully represents the distribution from which its values were drawn because, once again, all of 

the values generated for the distribution were used.  Also, each row still represents the k-

dimensional input vector for a computer run because it contains one value from each of the 

distributions X1 through Xk.  Thus the (n × k) matrix is in every sense equivalent to that generated by 

the random pairing process described earlier.  In fact, there is some small probability that the 

random pairing algorithm would generate this matrix if exactly the right sequence of random draws 
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were to occur during the process.  This intentional selection of the pairing of the selected 

observations is directly analogous to the restricted pairing procedure developed by Iman and 

Conover and implemented within the LHS software. 

 

It is logical to ask then whether this restricted pairing technique can be used to induce specified 

nonzero correlations between random variables since it is already being used to cause these same 

correlations to tend toward zero (or, more properly, become as small as possible).  The answer is 

yes, with the limitation that such induced correlations are based on the nonparametric technique 

known as rank correlation.  Such a measure is used since it remains meaningful in the presence of 

non-normal distributions on the input variables.  The LHS software provides the user with input 

parameters by which these pairwise correlations can be specified. 

 

While correlation is defined and measured in terms of pairs of random variables, it is possible to 

consider multivariate correlations.  One might, for example, have a group of five random variables 

that are all strongly correlated with each other.  This situation can be specified to the LHS software 

by defining correlations between every possible combination (pair) of random variables within that 

five-variable group.  For a group of five random variables, this would require 10 correlation 

specification statements (all the unique combinations of five random variables taken two at a time). 

 

There are mathematical limitations to the ways that random variables can be correlated with one 

another.  For example, the following three-way correlation is statistically impossible: 

 

 Correlation (A, B) = –0.95 

  Correlation (A, C) = –0.95 

 Correlation (B, C) = –0.95 

 

The first two statements imply that large values of A tend to be paired with small values of both B 

and C, while the last statement implies that small values of B tend to be paired with large values of 

C.  This condition cannot be realized by any real sampling scheme. An impossible correlation could 

also be inadvertently specified by a user if he or she were to attempt to define the five-variable 

correlation described above, but one pairwise combination of variables was omitted from the 

program input.  This would cause the LHS software to attempt to correlate all five variables with 

each other and yet maintain one pair of variables within that group as statistically independent.  

This is clearly a statistical impossibility. 

 

When the LHS software encounters such a condition, it generates a warning for the user and makes 

the smallest adjustments possible to the requested correlations so that it can generate its results.  

However, such conditions generally indicate that the user has either made a mistake in specifying 

input to the software or does not thoroughly understand the correlation conditions that he or she is 

attempting to model since contradictory correlation information has been entered.  When the 

software detects these conditions, it is important to step back and reevaluate the software input to 

ensure that these contradictions are eliminated. 

 

As a final note, if a correlation structure is not specified by the user, then the program computes a 

measure for detecting large pairwise correlations.  This measure is known as the variance inflation 
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factor (VIF) and is defined as the largest element on the diagonal of the inverse of the correlation 

matrix.  As the VIF gets larger than 1, there may be some undesirably large pairwise correlations 

present.  Marquardt and Snee (1975) deal with some very large VIFs (> 2 × 106) and provide a 

readable explanation on reasonable sizes of VIFs.  Marquardt (1970) indicates that there can be 

serious colinearity (i.e., large pairwise correlations present) for VIF > 10.  Thus, there is certainly 

no problem as long as the VIF is close to 1.  The VIF appears as part of the computer printout when 

the user requests the correlation matrix to be printed without specifying a correlation structure. 
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3.  The LHS Standalone Mode 

This chapter explains how the LHS Standalone mode runs, and how the input file must be 

specified.   LHS is run by entering the following at the command line:  

 

  lhsdrv filename <enter> 

 

where filename is the name of the keyword file.  If the parameter filename is omitted, the program 

will prompt the user for the name of the keyword file.  The keyword file contains all of the 

necessary information to specify an LHS run (such as random seed, number of sample observations, 

distribution names and associated parameters, etc.)  

3.1  Keyword Input Description and File Structure 

The LHS program requires certain parameters to be defined in order to perform its sampling 

calculations. The program recognizes 55 keywords that dictate the characteristics of the generated 

sample such as size and type of sample, number of samples desired, correlation structure for input 

variables, and type of distribution specified on each variable. Other keywords are used to control 

the program output. 

 

The program input may be placed in a single file, or the global program commands and 

distribution-specific commands may be placed in separate files. However, all input files require the 

same basic input format.  The format of the distribution-specific input commands will be described 

after the general commands.   

3.1.1 Input File Characteristics 

All files read by LHS are based on a common file format that provides the user with a great deal of 

latitude in generating easily read, self-documenting input. Each LHS input file is a space-delimited 

free-format ASCII text file. As the file is read, its contents are treated as case-insensitive. The 

format supports continuation lines as well as whole-line and trailing comments. 

3.1.2 Keyword File Characteristics 

LHS assumes that each input line will contain no more than 80 ASCII characters. If longer input 

lines are used, the code will ignore all input that is not contained within the first 80 columns.  Each 

line is assumed to contain either a whole-line comment or single command (possibly followed by a 

trailing comment).  Each command in the keyword file must be fully contained on a single line. 

Note that this is different from the distribution input file in that continuation lines are not permitted 

in the section of the file that is used to specify command keywords to control LHS execution. 

 

The LHS input file format provides for both full-line and trailing comments. Under this format, all 

blank lines and all text following “$” characters (dollar sign) are considered comments. A full-line 

comment is any line that contains only blank spaces or contains a dollar sign as its first nonblank 
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character. A trailing comment consists of any text that follows a dollar sign on any line in the file. 

In a trailing comment, the dollar sign must be preceded by one or more blank spaces. Since LHS 

ignores all text that follows a dollar sign, it is not possible to place comments between items on a 

single line. 

 

A command may begin and end at any point on the line (an arbitrary number of leading and trailing 

spaces may be used as desired). If a command keyword is composed of more than one word, those 

words must be separated by one and only one blank space.  However, the user may include as many 

blank spaces as desired between a keyword and any required alphabetic or numeric values. For 

example, 

 
LHSOPTS     Random Sampling 

 

is a legal input line because the keywords LHSOPTS and Random Sampling may be preceded and 

followed by an arbitrary number of blank spaces, but only a single blank space is permitted within 

the keyword Random Sampling. It should be noted that LHS treats commas (“,”) and tab characters 

as being fully equivalent to and interchangeable with blank space characters. 

 

The alphanumeric input to LHS has been designed to allow maximum user flexibility. All character 

input is case-insensitive, so a user can provide any combination of upper- and lower-case characters 

for LHS input. Thus, the keywords Normal, NORMAL, normal, and noRMaL are all considered 

equivalent by LHS. 

 

All numeric input is read in Fortran list-directed (free-format) input. Thus a user may specify 

numeric input in any Fortran-standard format, including integer (146), floating point (15.643), and 

exponential notation (1.426E-3). 

 

The LHS keyword file contains the keywords that control program execution. These keywords 

specify, for example, the run title, the number of observations to be generated, the types of point 

estimate calculations to be performed, the names of the files to be used, and the types of reports to 

be generated. Continuation lines cannot be used in the keyword section of this file. The keywords 

that can be used in this file are described in the following section. 

3.1.3  Input File Structure 

LHS was designed to allow two different forms of input file structure: single-file and double-file. 

Single-file input simply places the distribution information and the command keyword information 

in a single file.  It is possible to freely intersperse command keywords and distribution definitions 

within this single input file as long as all command keywords occur prior to the Dataset: keyword.  

However, the preferred method of file development bunches the command keywords near the top of 

the input file (with appropriate comments), followed by the Dataset: keyword and the complete set 

of distribution definitions.  The single-file input structure is assumed whenever the command 

keyword PRETRIN is not used in the input file.  Note that continuation lines are allowed in the 

distribution section of this input file. 
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The double-file input structure groups the command keywords in one file and the distribution 

definitions in a second file.  This file structure was developed to aid the analyst in quality assurance 

of the distribution definition information because it allows the analyst to change the parameters of 

the LHS run (e.g., change the number of observations requested or the output file name) without 

modifying the file that contains the distribution definitions.  The name of the second input file (the 

distribution definition file) is specified using the PRETRIN keyword.  If the PRETRIN keyword is 

present, LHS will read distribution definitions only from this second file and will ignore any 

distribution definition information contained in the command keyword file. 

3.2 Keywords to Control Program Execution 

Table 3-1 lists the keywords that set up the execution of the LHS program.  Recall that LHS is run 

in standalone mode with the following command:  lhsdrv keywordfilename, where the keyword file 

lists the keywords that control execution.  Also note that LHS is designed to be run as one element 

in a large suite of codeseach of which has its own set of keywords. Therefore, LHS ignores 

keywords that it does not recognize.  More details about the keywords are in the sections following 

Table 3-1.  An example keyword file is given in Section 3.2.5.  Table 3-3 in Section 3.3 specifies 

the distribution names and parameters. 

 

Table 3-1: Keywords in LHS Input file 

KEYWORD Specification Required  Value 

LHSSEED iseed Random Number Seed YES Integer n  (1 ≤ n ≤ 231 - 1) 

LHSOBS num Number of observations per 

entire LHS sample 

YES Integer number of 

observations  

LHSOUT filename 

 

Name of LHS sampled data 

output file 

YES Valid filename 

LHSMSG filename 

 

 

Name of output file that 

contains the LHS user output 

and messages from LHS 

execution 

YES Valid filename 

LHSREPS  nreps 

 

Number of multiple LHS 

sample sets generated  

NO Default:  nreps = 1 

LHSPVAL ipval Point value specification 

ipval = 0 takes the point 

values specified in the input 

file; ipval = 1 takes the mean 

value of the input distribution 

as a point value; ipval = 2 

takes the median as a point 

value 

NO Default:  ipval = 1 
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LHSOPTS  options 

 

 

How the sampling is done NO RANDOM SAMPLE is 

pure Monte Carlo; 

RANDOM PAIRING 

refers to random pairing for 

correlation.  Omitting the 

LHSOPTS keyword results 

in restricted pairing. 

LHSTITL  title        Title of LHS Run NO User-defined name 

LHSRPTS  options 

 

Reporting Options NO Default = None.  

HIST = prints histogram of 

each sampled random 

variable, CORR = prints 

achieved correlation 

matrices, DATA = prints 

raw and rank sample 

values.  Any combination 

of HIST, CORR, and 

DATA may be used. 

LHSSCOL 

 

 

Forces output to be one value 

per line  

NO Default: False 

PRETRIN filename Allows the LHS program to 

open the specified secondary 

file that contains distribution 

information 

NO Default:  None 

CONSTANT value Allows one to write a 

constant to the output file 

NO  

SAME AS old_variable Allows one to specify aliases 

for distributions (one random 

variable is the same as 

another) 

NO old_variable must be an 

explicitly defined 

distribution in the input file 

CORRELATE 

first_variable 

second_variable  corr 

Allows the user to specify a 

correlation coefficient, corr, 

between two variables 

NO –1 < corr < 1 

DATA: Precedes a distribution name, 

type, and parameter values 

YES If DATASET: is used (see 

next row), then DATA: is 

not required on each line. 

DATASET: DATASET can be used in 

front of a whole set of 

distributions 

YES  Note:  either DATA: must 

be specified on each 

distribution line or 

DATASET: can be used in 

front of a group of 

distributions 
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DISTRIBUTION 

NAME   parameter 

values 

See Section 3.3.3  NO Required parameters are 

specific to each 

distribution.  For example:  

DATA:  MyVar1 

NORMAL  0 1  

 

3.2.1  Sampling and Processing Control Keywords 

The keywords described in this section are used to control the processing that occurs in LHS.  They 

are used to determine the starting point of the random number sequence, the types of sampling and 

pairing to be performed, the number of observations to be generated, and the method to be used for 

computing the point estimate values for the sampled distributions. 

 

LHSSEED  iseed 

(Required) 

 

The positive integer iseed specified with this keyword provides the “seed value” or starting point 

for the LHS random number generator.  The value specified by this keyword must be within the 

range of representable positive integers (1 ≤ n ≤ 231 - 1).  There is anecdotal evidence to suggest that 

the randomness of the random number generator may be somewhat compromised for very small 

seed values, so it is recommended that random seed values less than approximately 1000 be 

avoided.  The seed value is printed in the LHS message file at the beginning of each sample.  If the 

keyword LHSREPS (described later in this section) specifies a number greater than 1, the current 

value of the random seed is retrieved and printed at the start of the generation of each new sample.  

This allows the user to regenerate by rerunning the program with the new seed and with the 

LHSREPS parameter omitted (or having LHSREPS 1). 

 

 Example:  LHSSEED 15964 

 

A run with this example would start the random number generator based on an integer seed value of 

15964. 

 

LHSOBS  num 

(Required) 

 

This keyword must be followed by a positive integer that specifies the number of observations that 

LHS will generate to be included in the sample for each distribution.  The maximum number of 

observations is defined by a parameter in the SIPRA.INI initialization file. 

 

 Example:  LHSOBS 500 

 

An LHS run containing this keyword would produce 500 observations for each variable. 

 

LHSREPS  nreps 
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(Optional, default: nreps = 1 ) 

 

This keyword can be used to generate multiple samples (replications).  When present, it must be 

followed by a positive integer to specify the number of complete sample sets of the data (each of 

the size LHSOBS).  The samples are then written back to back in the output file.  If LHSREPS is 

omitted, a single sample is generated. 

 

 Example:  LHSREPS 3 

 

This example would produce three repetitions of the specified distribution samples, each with the 

size LHSOBS. 

 

LHSPVAL ipval 

(Optional, default: ipval = 1) 

 

This keyword allows the user to select which method LHS will use to calculate the representative 

point value found in the first block of the LHS sampled data output file.  If this keyword is omitted, 

the point values printed will represent the mean.  LHSPVAL, followed by an integer number ipval, 

specifies whether the point value in the LHS output file is to represent the mean (ipval = 1) or 

median (ipval = 2) of the distribution.  If a zero is specified (ipval = 0), then the point value 

specified for the distribution in the input file is copied directly to the sample output file.  Note that 

the “optional” distribution point values become required input if zero is specified for this keyword. 

 

 Example:  LHSPVAL  0 

 

This example would cause LHS to enter the user-specified point value for each distribution in the 

point estimates block of the LHS output file.  Note that if the analyst needs to import an LHS input 

file for use in TEMAC3, then LHSPVAL must be set to 0.  TEMAC3 can, however, use LHS 

output files that were created with LHSPVAL set to values other than 0. 

 

LHSOPTS  options 

(Optional, default: no options selected) 

 

This keyword allows the user to control the sampling and pairing methods that LHS will use in 

preparing its sampled data output file.  If the keyword is omitted, LHS will use Latin hypercube 

sampling with restricted pairing.  If the keyword is present, it must be followed by one or more of 

the following keywords. 

 

RANDOM SAMPLE This option causes LHS to suppress Latin hypercube sampling and use 

purely random (Monte Carlo) sampling techniques in its place.  If this option 

is omitted, LHS uses Latin hypercube sampling. 

 

RANDOM PAIRING This option causes LHS to suppress the restricted pairing method and 

generate a sample with purely random pairing.  If this option is omitted, 

LHS uses restricted pairing. 
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 Example:  LHSOPTS   RANDOM PAIRING  

 Example:  LHSOPTS   RANDOM SAMPLE 

 Example:  LHSOPTS   RANDOM SAMPLE   RANDOM PAIRING  

 

The first example would cause LHS to produce its sample using Latin hypercube sampling 

techniques, and to use random pairing of variables.  The second example would cause LHS to use 

random sampling with restricted pairing.  The third example would cause LHS to use both random 

sampling and random pairing. 

 

3.2.2  Output and Reporting Keywords 

The keywords described in this section are used to define how LHS generates its output.  Using 

these keywords, the user can control the title to be placed in the output file, the types of reports to 

be generated, and the format of the sampled data output file. 

 

LHSTITL  title        

(Optional, default: title = blank) 

    

This keyword can be used to specify the title of each LHS run.  If specified, it must be followed 

with alphanumeric data (up to 70 characters long) to help describe the application of the sample. 

This information will be printed as a one-line header on each page of the output. If it is omitted, a 

blank header is generated at the top of each page. 

 

 Example:  LHSTITL  This is a test EVNTRE/LHS run 

 

An LHS run using this example LHSTITL record would have “This is a test EVNTRE/LHS run” 

written as a header on each page of the message output file and as a comment in the sampled data 

output file (if the default format is used). 

 

LHSRPTS  options 

(Optional, default: options = none) 

 

This keyword is used to specify which reports LHS will print in the message output file.  If 

LHSRPTS is omitted, the message file will contain only the title, run specifications, and 

descriptions of the distributions sampled.  If LHSRPTS is included, it must be followed by one or 

more of the following three additional keywords.  These additional keywords can appear in any 

order (separated by blanks).  They function as follows: 

 

CORR Print both the achieved raw correlation matrix and the achieved rank correlation matrix 

associated with the actual sample. 

 

HIST Print a text-based histogram for each random variable. 
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DATA Print the complete set of all data samples and their ranks in the message output file.  Use of 

this option makes the individual sample input vectors available in the message file.  It 

should be used with caution, however, because it can cause the generation of an extremely 

large message output file. 

 

 Example 1:  LHSRPTS CORR HIST 

 Example 2:  LHSRPTS DATA 

 Example 3:  LHSRPTS HIST DATA CORR 

 

If Example 1 were used, the message output file would contain both raw and rank correlation 

matrices for the sample and a histogram for each variable.  If Example 2 were specified, the 

message file would contain all of the sample data and rank data for every observation of every 

variable sampled.  If Example 3 were specified, all three types of reports would be written to the 

message output file. 

 

LHSSCOL 

(Optional, default: False) 

 

This keyword specifies that LHS is to write its sampled data output file in a single column – that is, 

one value per line.  This has been found helpful by certain postprocessing programs that have 

difficulty interpreting data files that contain more than one value per line.  

 

 Example:   LHSSCOL 

 

This example causes LHS to generate its sampled data file in a single-column format with one 

value per line. 

 

3.2.3  File Specification Keywords 

LHS and its associated codes make use of several files.  The keywords described in this section are 

used to specify the names of those files.  Currently, file names should be specified in the MS DOS 

8.3 file format (including, at the user’s option, the full file path name, but without long file names 

or spaces), although enhancements to the software that will remove these restrictions are planned 

for the near future. 

 

LHSOUT filename 

(Required) 

 

This keyword, followed by a file name, allows the user to specify the name of the LHS sampled 

data output file. This output file is designed to be read by other programs and is not formatted for 

easy examination by the analyst.  The file designed for the analyst to read is the message file, which 

is specified by the next keyword description. 

 

 Example:  LHSOUT TestRun.LSP 
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 Example:  LHSOUT C:\ARRAMIS\NewProb\TestRun.LSP 

 

An LHS run with this example would write the sampled output to a file named “TestRun.LSP.” 

 

LHSMSG filename 

(Required) 

 

This keyword, followed by a file name, allows the user to specify the name of the output file that 

contains the LHS user output and reports (“messages”) from the LHS execution. 

 

 Example:  LHSMSG TestRun.LMO 

 Example:  LHSMSG C:\ARRAMIS\NewProb\TestRun.LMO 

 

An LHS run with this example would write the message and user reports to a file named 

“TestRun.LMO.” 

 

 

PRETRIN  filename 
(Optional, default: none) 

 

The keyword PRETRIN, followed by a file name, allows the LHS program to open the specified 

secondary file that contains distribution description information.  If this keyword is omitted, LHS 

will read the distribution description information from the keyword file (see Section 4.1.2). 

 

 Example:   PRETRIN TestRun.LDI 

 Example:   PRETRIN C:\ARRAMIS\NewProb\TestRun.LDI 

 

This example would cause LHS to open the file TestRun.LDI to read the distribution and 

correlation specifications. 

 

When the PRETRIN keyword is used, LHS assumes that all distribution definitions and correlation 

information will be read from the file designated by this keyword.  Any random variables defined in 

other input files will be ignored.  Within that file, each random variable must be defined either on a 

line that begins with the keyword Data: or within a block that begins with the keyword Dataset: (the 

definition of correlation between variables must follow these same rules – see Chapter 4). 

 

3.2.4  Keywords Not Related to Distributions 

Constants 

As originally structured, LHS produced a sampled output file that contained only those random 

variables that were sampled by the LHS program.  Thus, if a user wished to use some point estimate 

values in a model while sampling other model parameters, he or she would be required to place the 

point estimate data in a separate file and provide a method for both the point estimate data and the 
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sampled data to be read by the model program.  Alternatively, the user could build a translation 

program that reads the LHS output file and the point estimate data file, merges them into a single 

entity, and writes the data in a format familiar to the model program. Both of these options are 

unnecessarily cumbersome.  For this reason, the CONSTANT distribution type was added to LHS.  

Recall that LHS always automatically generates a point estimate value for each distribution 

sampled.  Depending on the sampling options selected, this point estimate value will be the mean of 

the samples generated, the median of the samples, or the user-specified value that precedes the 

distribution description.  This point estimate value is placed in the LHS output file in order to 

enable programs that receive LHS results to determine at run time whether to use the sampled 

results or the point estimate value on a random variable-by-random variable basis.  The 

CONSTANT distribution type simply enables the user to make additional entries in the point 

estimates (constant values) section of the LHS output file without placing additional values in the 

sampled data section or requiring LHS to perform additional sampling or pairing operations.  It 

enables the user to maintain all program input data in a single file and minimize data file quality 

assurance requirementswhether the data are sampled or point value in nature. 

CONSTANT   val 

The keyword CONSTANT places the distribution name and point estimate value val in the constant 

block section of the LHS output file.  

 

 First Example:  NewOne 150.0 CONSTANT 152.5 

 Second Example:  Pi 3.14159 CONSTANT  3.14159 

 

The first example places the variable named “NewOne” into the constant block section of the LHS 

output file.  If the user has requested that LHS compute the point estimate values for sampled 

distributions as either the mean or the median of the sampled data, the value associated with 

NewOne in the LHS output file will be 152.5.  Otherwise, if the user has requested that LHS use the 

specified point estimate value, the value associated with NewOne in the LHS output file will be 

150.0.  While this example demonstrates the flexibility that can be used in specifying LHS input, it 

does not represent a typical application of the CONSTANT keyword.  One usually specifies the 

same value for both the user-specified point estimate and the CONSTANT distribution’s val 

parameter, as shown in the second example. 

 

Distribution Aliases 

It is not unusual in certain risk assessment applications to specify that two variables are “totally 

correlated.”  This might occur, for example, when the same valve model from the same 

manufacturer has been used in two different locations in a plant system.  There is no reason to 

believe that these two seemingly identical valves will have different failure probabilities, but there 

is uncertainty as to exactly what that failure probability should be.  Thus, the probability of valve 

failure is sampled from one distribution, but given two namesone for each physical valveso 

that the risk model can readily identify failure probabilities for both components. 
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The keyword SAME AS is used to implement this condition.  This keyword is used by first 

defining a random variable that defines the distribution to be sampled for one of the totally 

correlated variable names.  The second totally correlated variable is then linked to the first using the 

SAME AS keyword so that its name becomes a valid alias for the same distribution samples.  The 

LHS sampled data output file will contain only one set of values, and the file will contain a notation 

that indicates that this single set of values is to be used for both totally correlated variables. 

SAME AS   old_variable 

The keyword SAME AS defines a new name (alias) that is to be associated with an existing 

distribution.  The old_variable parameter specifies the name of the existing random variable that is 

to be referred to by an additional new name.  Note that old_variable must be the name of a random 

variable that is explicitly defined with a distribution description.  The value of old_variable cannot 

point to the name of another variable that is defined using the SAME AS keyword. 

 

Example: First   0.0  NORMAL  0.0  1.0 
  Second  SAME AS  First 
  Third   SAME AS  First    $  This input is valid 
  $ Fourth SAME AS  Second  $  This is not valid 

 

In this example, the random variable named “First” is explicitly defined as a normal distribution, 

and the random variables named “Second” and “Third” are set up to be totally correlated to First.  

In other words, Second and Third are simply different names (aliases) for the observations 

generated when the distribution First is sampled.  The input for the variable named “Fourth” would 

be invalid because its old_variable parameter points to the variable Second, which was itself 

defined using the SAME AS keyword, instead of correctly pointing to the variable First as the 

object of its alias. 

 

Controlling Correlation 

Chapter 2 described how the LHS software, through the use of restricted pairing techniques, can 

intentionally pair samples from random variables in such a manner as to control correlation 

between those variables.  By default, LHS assumes that the user desires the pairwise correlation 

between all pairs of random variables to approach zero (i.e., all random variables should be 

independent of one another to the degree possible).  If the user wishes to specify other pairwise 

correlations between random variables, that is done using the CORRELATE keyword. 

 

CORRELATE    first_variable   second_variable   corr 

This keyword causes LHS to attempt to create a correlation of corr between the ranks of the 

sampled values for first_variable and the ranks of the sampled values for second_variable.  The 

parameters first_variable and second_variable are the names of random variables that are explicitly 

defined with a distribution description and not using the SAME AS keyword.  The specified 
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correlation value parameter corr must satisfy the condition (–1 < corr < 1).  This statement will be 

evaluated by LHS to ensure that the data item names are legitimate prior to LHS processing. 

 

Example: X  Normal 0.0  1.0 
  Y  Uniform  1.7  3.5 
  Z  SAME AS  Y 
  CORRELATE  X  Y  0.5 
  $ CORRELATE  Y  X  0.5   $ Identical to above 
  $ CORRELATE  X  Z  0.7   $ This is not valid 

 

In this example, the first Correlate statement will cause LHS to attempt to establish a rank 

correlation of 0.5 between the random variables X and Y.  Note that the order in which the random 

variable names appear in the Correlate statement does not matter, so the second Correlate statement 

(seen in comments in this example) would, if used, produce results identical to the first Correlate 

statement. 

 

The third Correlate statement (also seen in comments in the example) would not be valid because it 

involves the random variable Z, which is defined using a SAME AS statement.  It could be 

corrected by replacing the variable name Z with the variable name Y so that it no longer points to a 

distribution that is defined using the SAME AS keyword. 

 

There are two important points to remember about the use of correlation within LHS.  First, LHS 

only considers CORRELATE statements when it operates in the restricted pairing mode.  This is 

because the random pairing process is just that – random – and cannot control correlation between 

random variables.  There are two ways that LHS can be forced into a random pairing mode:  the 

user can (1) select Random Pairing in the user interface (see Chapter 3); or (2) set up a problem in 

which LHS is told to generate fewer observations than the number of random variables that are 

being sampled.  In this second condition, LHS cannot accomplish restricted pairing because the 

mathematical algorithm that performs restricted pairing fails for these conditions.  When the user 

attempts to run such a problem (more random variables than observations) with restricted pairing, 

LHS generates a warning message in its message output file to tell the user that restricted pairing 

could not be used, and a modified form of random pairing is used instead (see Section 3.3.5).  This 

warning message, however, can be easily missed.  Therefore it is important to bear this situation in 

mind when running problems with either a large number of random variables or a small number of 

observations.  For best results, the user should ensure that the number of observations requested is 

at least 4/3 the number of random variables being sampled (not including CONSTANT and SAME 

AS keywords). 

 

The second point to remember about the CORRELATE keyword is that it truly specifies pairwise 

correlations between random variables.  Thus, if more than two random variables are to be 

correlated with one another, the user must enter a CORRELATE record for every pairwise 

combination of variables to be so correlated.  Consider four random variables named A, B, C and D 

that are all to be correlated with one another, with all pairs having a pairwise correlation coefficient 

of 0.2.  This is accomplished using the following sample input: 
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 Example: A  Normal  0.0  1.0 
   B  Uniform  0.5  2.5 
   C  Lognormal  0.1  3.0 
   D  Uniform   -100.0  100.0 
     $ 
   Correlate  A  B  0.2 
   Correlate  A  C  0.2 
   Correlate  A  D  0.2 
   Correlate  B  C  0.2 
   Correlate  B  D  0.2 
   Correlate  C  D  0.2 

 

The user must be extra careful when attempting to induce negative correlation between more than 

two random variables.  There are mathematical limitations to the ways that random variables can be 

correlated with one another.  For example, the following three-way correlation is statistically 

impossible: 

 

 Example: Correlate  A  B  –0.95 
   Correlate  A  C  –0.95 
   Correlate  B  C  –0.95 

 

The first two statements imply that large values of A tend to be paired with small values of both B 

and C, while the last statement implies that small values of B tend to be paired with large values of 

C.  This condition cannot be realized by any real sampling scheme.  When the LHS software 

encounters such a condition, it generates a warning and makes the smallest adjustments possible to 

the requested correlations so that it can generate its results.  However, such conditions generally 

indicate that the user has either made a mistake in specifying input to the software or does not 

thoroughly understand the correlation conditions that he or she is attempting to model since 

contradictory correlation information has been entered.  It may be that the user actually intended 

that large values of A should be paired with small values of both B and C, so that B and C should in 

fact have a strong positive pairwise correlation, such as: 

 

 Example: Correlate  A  B  –0.95 
   Correlate  A  C  –0.95 
   Correlate  B  C   0.95 

 

When the software detects physically unrealizable correlation conditions, it is important for the user 

to step back and reevaluate the software input to ensure that these contradictions are eliminated. 
 

3.2.5  Example Keyword and Distribution File  

An example keyword input file is shown below.  The distribution portion of the file is discussed in 

the next section and further distribution information is given in Chapter 4.  Note that in this 

example listing, both the keywords and the distributions are given in the same keyword input file.   
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LHSTITL Sample Run for LHS Manual 
LHSOBS  100 
LHSSEED  56595857 
LHSPVAL  0 
LHSRPTS   CORR   
LHSOUT   TESTMAN.LSP 
LHSPOST  TESTMAN.MSP 
LHSMSG   TESTMAN.LMO 
DATASET:   
VIN-FILT-MAINT    0.003     LOGNORMAL     1.1     2.0 
VIN-FILT-PLUG     0.003     LOGNORMAL     1.1     2.0 
VIN-PIPE-1     0.003     NORMAL     0.003     0.001 
VIN-PIPE-2     0.003     NORMAL     0.003     0.001 
VIN-PIPE-3     0.003     NORMAL     0.003     0.001 
VIN-PUMP-F     0.003     LOGNORMAL     1.1     2.0 
VIN-PUMP-PWR   0.003     LOGNORMAL     1.1     2.0 
VIN-RES-BROKE  0.003     LOGNORMAL     1.1     2.0 
VIN-RES-EMPTY  0.003     LOGNORMAL     1.1     2.0 
CORRELATE  VIN-PIPE-1  VIN-PIPE-2  0.5 
CORRELATE  VIN-PIPE-1  VIN-PIPE-3  0.5 
 

Figure 3-1:  Example Keyword File  
 

Below is an example of just the distribution portion of the input.  In this example, the keyword file 

would be given separately.  The distribution information is outlined in detail in Section 3.3. 

 
Data:    MOV-1A-FTC  1.0E-3  Lognormal  1.0E-3   3 
$  Here is a full line comment 
$  This distribution is entered using several continuation 
$  lines to aid the analyst in documenting the data 
Data:  MOV-2B-FTRO   1.8E-4   % $ Point value from data 
                   Lognormal  % 
                     1.0E-4   % $ Mean, From ref. xxxx 
                       3      % $ Error Factor 
Data:  Recover-Time   Uniform  38  51 
                     $ Bounds from ref. wxyz 
Dataset: 
Velocity  Bounded Normal  950  74  500  1500 
Test-Results  Binomial  0.01 847 
Fire Temperature  Continuous Linear   # 
  7      # $ 7 pairs of data 
  300 0.0  # $ minimum value 
  500 0.1  # $ 10 percentile 
  650  0.25  # $ 25 percentile 
  800  0.5  # $ median 
  1000 0.75  # $ 75 percentile 
  1400 0.95  # $ 95 percentile 
  1900 1.0  # $ distribution maximum 
Correlate  MOV-1A-FTC  MOV-2B-FTRO  0.4 

 

Figure 3-2:  Example Distribution File 
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3.3   Distribution Input File Summary 

This section outlines the distribution information that is input to LHS.  The distribution information 

may be specified as part of the keyword file, or may be specified in a separate file. 

3.3.1  Names of Random Variables 

In LHS, all random variables must be assigned a name.  Since results from LHS are often used as 

input by other programs, LHS provides a way for those programs to properly identify the individual 

components of the sampled data in the LHS output file. LHS does this by requiring each specified 

distribution to be identified by a unique name. Each name must meet the following criteria:  

 

• It may contain no more than 16 characters 

 

• The “$” (dollar sign), “#” (number sign), “%” (percent sign), “,” (comma), “ “ (blank space), 

and tab characters are not valid within names 

 

• A name must not form a valid representation of a real number for an ANSII-standard Fortran 

compiler 

 

Examples of valid and invalid distribution names are found in the following table. 

 

Table 3-2:  Valid and Invalid Distribution Names 

 

Valid Distribution Names Invalid Distribution Names Reason Name is Invalid 

Valve-Fails 

Spark 

PulseWidth 

Hydrogen-Percent 

Acceleration 

Amount of Hydrogen   

%Hydrogen   

Repair$ 

1234567 

Loss% 

Valve#1-Fail 

Failure,Valve1 

TheValveFailsWideOpen 

Includes spaces 

Includes continuation character 

Includes comment character 

A number 

Includes continuation character 

Includes continuation character 

Includes a comma 

Too many characters 

 

Any name that is longer than 16 characters will be truncated to 16 characters. These names appear 

in the LHS output file and are used to identify which distribution corresponds to which set of 

observations in that file. 

 

3.3.2  Distribution Specification 

LHS will take as its distribution input any line from the file on which the first keyword is Data:.  
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LHS also recognizes an option where its input is concentrated in a block at the bottom of a file. 

This block must begin with the keyword Dataset: on a line by itself. All lines that follow this 

statement are assumed to belong to LHS input regardless of whether they begin with the keyword 

Data:. Note that continuation and comment lines are permitted for both types of distribution input 

statements. 

 

The keywords that can be used to describe distribution input are described later in this chapter.  

However, they all follow a common format: 

 

name    point_value    dist-name    dist-parm    dist-parm ..... 

 

In this format, name is the variable name the user assigns to this distribution (described in the 

previous section).  For each named distribution, LHS will generate not only sampled data, but also a 

point estimate value.  This value can be used by software models that cannot accept or effectively 

use the sampled results provided by LHS.  At the user’s discretion, this point value can be either the 

sample mean, the sample median, or a user-specified value.  If the analyst wishes to use the user-

specified value option, then he or she must enter that value using the point_value parameter.  This 

field is required only when the analyst specifies that LHS is to use the “user-specified value” for the 

point estimate instead of computing the sample mean or median for this purpose.  In all other 

instances, the point_value parameter is optional and can be omitted. 

 

The remaining parameters in this format are used to specify which distribution LHS is to sample for 

this random variable, and what that distribution’s characteristics are to be.  The dist-name 

parameter specifies which type of distribution is to be sampled (e.g., normal, uniform, 

hypergeometric), and the dist-parm values are the distribution parameters required by LHS to 

describe the particular distribution.  Note that each distribution type requires its own unique set of 

parameters, and that the number of parameters required can vary from one to four (for standard 

distribution types) or more (for user-defined distribution types).  The user is free to enter the 

required parameters in any format that he or she finds meaningful as long as it remains consistent 

with the format requirements described in this section.  Note that this distribution definition 

statement must either be preceded by a Data: qualifier or be part of the Dataset: block at the end of 

the input file if the LHS software is to recognize it. 

 

Table 3-3 outlines the distributions defined in LHS.  There are also other user-defined distributions 

recognized by LHS.  These are outlined in Sections 3.3.4 and 3.3.5. 
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3.3.3 Defined Distributions in LHS 

Table 3-3:  LHS Distribution Names 

 

Distribution 

Name 

Parameters 
 

NORMAL mean standard-deviation 

> 0.0 

 

 

 

TRUNCATED 

NORMAL 

mean  

 

standard_deviation 

> 0.0  

lower 

0.0 ≤ lower < upper ≤ 1.0 

upper 

BOUNDED 

NORMAL  

mean standard_deviation 

> 0.0 

lower_bound 

lower_bound < upper_bound 

upper_bound 

NORMAL-B  value_at_0.001 value_at_0.999   

LOGNORMAL  mean 

> 0.0 

error_factor 

> 1.0 

  

LOGNORMAL-N  mean 

> 0.0 

standard_deviation 

> 0.0 

  

TRUNCATED 

LOGNORMAL  

mean 

> 0.0 

error_factor 

> 1.0 

lower 

0.0 ≤ lower < upper ≤ 1.0 

upper 

TRUNCATED 

LOGNORMAL-N  

mean 

> 0.0 

standard_deviation 

> 0.0 

lower 

0.0 ≤ lower < upper ≤ 1.0 

upper 

BOUNDED 

LOGNORMAL  

mean 

> 0.0 

error_factor 

> 1.0 

lower_bound 

lower_bound < upper_bound 

upper_bound 

BOUNDED 

LOGNORMAL-N  

mean 

> 0.0 

standard_deviation 

> 0.0 

lower_bound 

lower_bound < upper_bound 

upper_bound 

LOGNORMAL-B  value_at_0.001 

> 0.0 

value_at_0.999 

> 0.0 

  

UNIFORM  

 

A 

A < B 

B   

LOGUNIFORM  

 

A 

0.0 < A < B 

B   

EXPONENTIAL  λ 
> 0 

   

MAXIMUM 

ENTROPY  

A 

0 ≤ A < µ  < B 
µ B  

WEIBULL  α 
  > 0 

β 

 >  0 

  

PARETO  α 
  > 2.0  

β 
> 0.0 

  

GAMMA  α β   

BETA  A 

0 ≤ A < B 

B p 

 ≥ 0.001 

q 

≥ 0.001 

INVERSE 

GAUSSIAN  

µ 
> 0 

λ 
 > 0 

  

TRIANGULAR  

 

a 

a  <  c  

b 

a ≤  b ≤  c 

c  

POISSON λ 
> 0 
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Distribution 

Name 

Parameters 
 

BINOMIAL  p 

0 < p < 1  

n 

 > 1 

  

NEGATIVE 

BINOMIAL  

p 

0 < p < 1 

n 

 > 1 

  

GEOMETRIC   p 

0 < p < 1 

   

HYPERGEOMETRIC  NN 
N1< NR < NN 

N1 NR  

 

3.3.4  User-Defined Continuous Distributions 

CONTINUOUS LINEAR  n   ordered_pair1   ordered_pair2...   ordered_ pairn 

and 

CONTINUOUS LOGARITHMIC  n   ordered_pair1   ordered_pair2...   ordered_pairn 

 
• n is an integer number of ordered pairs that will be used to represent the CDF (n > 1). 

• Within each ordered pair, the first number is the value of the distribution; the second number is the cumulative 

probability (CDF value) associated with this distribution value. 

• The probabilities must increase monotonically starting with 0.0 and ending with 1.0. 

• The distribution values (the first entry in the ordered pair) must also increase monotonically. 

  

CONTINUOUS FREQUENCY  n   ordered_pair1   ordered_pair2...   ordered_pairn 

 
• n is an integer number of ordered pairs that will be used to represent the CDF (n > 1). 

• The first value in each ordered pair is the value of the distribution at a particular point. 

• The second value in the ordered pair is a relative frequency associated with the value. 

• The frequencies are relative only to each other, and must be strictly positive.   

• The values must increase monotonically. 

 

UNIFORM*   n   obs1   obs2...   obsn  first_point   endpoint1   endpoint2...   endpointn 

and 

LOGUNIFORM*   num   obs1   obs2...   obsn    first_point   endpoint1   endpoint2...  endpointn 

 
• The first parameter specifies the number of  intervals n in an n-part histogram. 

• n is followed by a series of n integer values obs. 

• Each value obsi represents the number of observations that LHS will draw from the i
th interval.  The sum of all obsi 

must equal the number of observations requested from LHS. 

• The obsi are followed by n contiguous intervals that are to be sampled. 

• The intervals are specified by entering a first_point (the distribution minimum) followed by n interval endpoint 

values. 
 

3.3.5  User-Defined Discrete Distributions 

DISCRETE CUMULATIVE   n   ordered_pair1   order_pair2...   ordered_pairn 
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• n is an integer number of ordered pairs that will be used to represent the CDF (n > 1). 

• Within each ordered pair, the first number is the value of the distribution; the second number is the cumulative 

probability (CDF value) associated with this distribution value. 

• Probabilities increase monotonically starting with a value greater than 0.0 and ending with 1.0. 

• The distribution values (the first entry in the ordered pair) must increase monotonically. 

 

DISCRETE HISTOGRAM   n   ordered_pair1   ordered_pair2...   ordered_pairn 

 
• n is an integer number of ordered pairs that will be used to represent the CDF (n > 1). 

• The first value in each ordered pair is the value of the distribution at a particular point. 

• The second value in the ordered pair is a relative frequency associated with the value. 

• Frequencies are relative only to each other, and must be strictly positive.   

• The values must increase monotonically. 

 
 



32 

3.4  Input File Specifications 

This section summarizes the LHS Input File specifications. 

3.4.1  File Characteristics 

• Space-delimited case-insensitive free-format ASCII text file.  

• Each input line must contain no more than 80 ASCII characters. 

• Continuation character is either a "#" or a "%", preceded by one or more blanks, at the end of the line. 

• All text following "$" characters (dollar sign) are considered comments. 

• Each continuation line must end with a continuation character unless it terminates the command. 

• A command may begin and end at any point on the line (an arbitrary number of leading and trailing spaces may be 

used as desired). 

• If a command keyword is composed of more than one word, those words must be separated by one and only one 

blank space.   

• Multiple blank spaces may be included between a keyword and any required alphabetic or numeric values. 

• LHS treats commas (",") and tab characters as being fully equivalent to and interchangeable with blank space 

characters. 

• Numeric input may be specified in any Fortran-standard format. 

• In a trailing comment, the dollar sign must be preceded by one or more blank spaces. 

• It is not possible to place comments between items on a single line. 

• Full-line comments may be placed between a continued line and its continuation or between consecutive 

continuation lines. 
 

3.4.2  Names of Random Variables 

• Names may contain no more than 16 characters 

• The "$"  (dollar sign), "#" (number sign), "%" (percent sign), "," (comma), " " (blank space), and tab characters are 

not valid within names 

• A name must not form a valid representation of a real number for an ANSII-standard Fortran compiler.  
 

3.4.3  Distribution File Structure 

• LHS will take as its input any line from the file on which the first keyword is Data:. 

• All lines that follow the keyword Dataset: (on a line by itself) are assumed to belong to LHS input regardless of 

whether they begin with the keyword Data:. 

• Keywords used to describe distribution input follow a common format: 

 

name    point_value    dist-name    dist-parm    dist-parm ..... 

 

• The point_value parameter represents the value that the analyst wants used for this variable by models that cannot 

accept or effectively use the sampled results provided by LHS. 

• The point_value field is required only when the analyst specifies that LHS is to use the user-specified value for the 

point estimate instead of computing the sample mean or median for this purpose.  In all other instances, the 

point_value parameter is optional and can be omitted. 
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3.5 LHS Execution and Output 

3.5.1 Running LHS 

In Standalone mode,  LHS is run by entering the following at the command line:  

 

  lhsdrv filename <enter> 

 

where filename is the name of the keyword file.  If the parameter filename is omitted, the program 

will prompt the user for the name of the keyword file.  The keyword file contains all of the 

necessary information to specify an LHS run (such as random seed, number of sample observations, 

distribution names and associated parameters, etc.)  

 

3.5.2  The Message Output File 

The message file is the output file that the user will read.  It consists of three parts:  the header page, 

an input review, and an uncertainty data block. 

 

Header Page 

The header page contains a listing of the time and date the program was run, which files were 

accessed during execution, and which options were specified.  Options include random or Latin 

hypercube sampling, random or restricted pairing, and output options such as correlation matrices 

and histograms. 

 

Input Review 

This section is simply an annotated copy of the input to LHS, including the distributions and 

correlation specifications that were performed, the starting point of the random number generator, 

the number of random variables, and the number of observations. 

 

Uncertainty Data Block 

This data block contains the information specified by the LHSRPTS keyword.  If DATA was 

specified, then there will be a listing of each sampled distribution as well as the rank information 

from the sample.  If CORR was specified, then the raw and rank correlation matrices associated 

with the actual sample generated are printed.  If HIST was specified, then one text histogram will be 

printed for each random variable.  Any combination of the above three options may be used. 
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3.5.3  The Sampled Data Output File 

The file format consists of three blocks:  the point estimate data block, the uncertainty header block, 

and the uncertainty data block.  Since LHS is meant to be run in a suite of codes, this output will 

have characteristics similar to the input files of other programs so that other programs may easily 

use this output.  All three blocks must be present in the file in the stated order.  The point estimate 

data block starts at the beginning of the file and proceeds until the keyword “@UNCERTAINTY” 

is found as the first item on the line.  This marks the beginning of the uncertainty header block.  

This header block ends with the keyword “@SAMPLEDATA”.  The uncertainty data block follows 

this keyword and occupies the rest of the file. 

 

Common Characteristics of the Point Estimate and Uncertainty Header Blocks 

1. All data fields are space-delimited.  All processors should treat commas and tab characters as if 

they were blank spaces. 

 

2. A data record may occupy multiple lines, but each line may have no more than 80 characters.  

Characters that occur in columns greater than 80 are ignored.  If a data record is to be continued 

on the following line, it must contain a continuation character (either a “#” or a “%”) as the last 

character prior to any trailing blanks or comments (see below).  The continuation character must 

be preceded by one or more blank spaces. 

 

3. All text following a “$” (dollar sign) is considered a comment.  If a dollar sign is the first item 

on a data record, the entire record is treated as a comment.  A dollar sign and comment may also 

follow all data items on a record or the continuation character (trailing comment).  In these 

cases, the dollar sign must be preceded by one or more blank spaces.  Comments may not come 

between data items on a single record (except following a continuation character on a continued 

line). 

 

4. Blank lines are considered comment records and are ignored.  Any number of blank lines and/or 

comment lines may be placed between a line and its continuation or between consecutive 

continuation lines. 

 

5. All names used in the file must meet the following criteria: (a) each name must contain no more 

than 16 characters; (b) the “$” (dollar sign), “#” (number sign), “%” (percent sign), “,” 

(comma), “ “ (blank space), and tab characters are not valid within names; and (c) a name must 

not form a valid representation of a real number for an ANSI-standard Fortran compiler.  All 

names are to be treated as case-insensitive, so the names FRED, Fred, fred, and freD are all 

equivalent.  Names that are longer than 16 characters may be truncated to 16 characters at the 

discretion of the processor. 

 

6. Where numbers are specified, they may be in any format recognized by an ANSI-standard 

Fortran compiler. 
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7. Each name must be unique within each section.  Duplicate definitions in the same section for a 

single data item are not valid.  However, an item may be defined once in each section.  If an 

item is defined once in the point estimate block and once in the uncertainty header block, both 

definitions are effective.  The reading program would have to decide whether its calculations 

should use the point estimate value, the distribution, or both. 

 

8. A line and all of its continuation lines (with all trailing and intervening comments eliminated) 

must together consist of no more than 32,767 characters. 

 

Point Estimate Block 

This block starts the beginning of the file and proceeds until the keyword @UNCERTAINTY is 

found as the first item on a line.  It begins with a single comment record (starting with a dollar sign) 

that documents the version of the LHS file format being used.  The record should be exactly as 

follows: 

 
 $ LHS File Format Version 1.00 

 

The record need not begin in the first column.  Any program to read this record (in order to verify 

input file compatibility) may assume that only one blank character exists between each of the 

words, but should not make any assumptions regarding which characters will be in upper or lower 

case. 

 

This initial comment record will be followed by several additional comment records that document 

the pedigree of the file, such as the name and version of the program, the data and time the program 

was run, and the list of files accessed by the program. 

 

A data record in the point estimate data block consists of anything that is not discarded as a 

comment.  Only one type of data record will be written out:  a list of one or more names followed 

by one or two real number values.  The first value represents the point value for each of the items 

found on the list of named data items.  The second item, which is optional, is the standard deviation 

associated with the point estimate value.  The point estimate value that appears at the end of the line 

is assigned to all named data items on that line (including all active continuation lines).  The list is 

space delimited (see Section 2 above). 

 

Any processor reading this data format should look for the following common errors:  (a) a record 

consisting of a list of names that is not followed by a legal value is illegal;  (b) a record consisting 

of a value without a corresponding list of names is illegal;  (c) names that follow the value(s) on a 

record are illegal. 

 

Any processor wishing to skip this section can simply read and discard all lines until the keyword 

“@UNCERTAINTY” is found as the first data item on a noncomment line (the keyword 

“@UNCERTAINTY” may be preceded by leading blank spaces). 
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The Uncertainty Header Block 

The uncertainty header block contains two input sections that may occur in either possible order.  

The first section consists of a single line containing the keyword @OBSERVATIONS as its first 

data item, followed by a positive integer that represents the number of observations that are found 

in the uncertainty data block.  It is critical that the value on this record accurately reflect the true 

number of observations present in the file.  Any processor reading this data format must be sure that 

there are at least this number of observations present in the file.  It may, however, ignore any 

additional observations that may be present. 

 

The second section describes the number and names of the distributions that are found in the 

uncertainty data block.  The section begins with a single line containing the keyword 

@VARIABLES as its first data item, followed by a positive integer that represents the number of 

distributions that are found in the uncertainty data block.  It is critical that the value on this record 

accurately reflect the true number of variables present in the file.  Any processor reading this data 

format must be sure that there are at least this number of distributions present in the file.  It may, 

however, ignore any additional distributions that may be present. 

 

The @VARIABLES n line must be followed by exactly n lines that provide names for the n 

distributions.  Each of these lines begins with the primary name for the distribution, followed by a 

“:” (colon character).  Following the colon character is an optional list of secondary names for the 

distribution.  Thus, each of the n distributions is given exactly one primary name and an arbitrary 

number of secondary names.  The list of names is space-delimited and may extend to one or more 

continuation lines.  Comments may be present at any point in this block. 

 

The order in which these records appear is significant.  All names on the first record encountered in 

this section are assumed to correspond to the first distribution in the uncertainty data section of the 

file.  The names on the second record are assumed to correspond to the second distribution, and so 

forth.  For this reason, the number of records found in this section must correspond exactly to the 

number that follows the @VARIABLES keyword, and that value must exactly match the number of 

distributions found in the uncertainty data block.  Anything else is an error condition. 

 

The uncertainty header block is terminated by the @SAMPLEDATA keyword. 

 

Uncertainty Data Block 

The uncertainty data block is completely different from either of the preceding blocks.  It contains 

only numeric data (no names).  Comments lines are not supported in this block.  Continuation lines 

exist only as described below.  This block contains most of the numeric data generated by LHS. 

 

It contains nobs data records – one record for each observation.  The data record for a file containing 

nvar variables consists of two integers followed by nvar real values.  The first integer value contains 

the observation number.  The second integer value contains the number of the distribution values 

that follow (nvar).  These integers are followed by one value from each of the nvar distributions.  In 

other words, there will be (nvar+2) columns of data – the first tells which observation is on that line, 
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the second contains the number of distributions, and the next nvar columns each correspond to one of 

the distributions performed. 

 

The records in this section are generally written and read using a Fortran list-type format in an 

implied “Do Loop.”  Thus, one record may consist of several lines without explicit continuation 

characters.  The Fortran program will read additional lines as needed.  The following hypothetical 

code example would read one entire uncertainty data block (all variables and all observations): 

 
   Do i=1, NObs 
    Read (1,*) i, NVar, (Values(i,j), j=1, NVar) 
   End Do 

 

The block is typically written to the file using similar code.  Note that the use of the Fortran “*” 

format for reading and writing does not allow for continuation characters or comment lines.  Thus, 

these are not allowed in this data block. 

 

Note that this block occupies the remainder of the file.  Thus, an attempt to read this file following 

the completion of the above loop should result in an end-of-file error condition.  Figure 3-3 contains 

a sample LHS output file. 
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$ LHS File Format Version 1.00  
$ 
$ This LHS run was executed on  9/ 4/97 at 12:31:46.46 
$ with LHS Version: 2.10 Release 2, Compiled 03/10/1997           
$ The run title was: 
$ LHS INPUT FOR NUCLEAR TECHNOLOGY TEST PROBLEM                                 
$ Message output file for this run: LHS.MSG                                     
$ 
$ Input file(s) for this run:  
$ 
$ Point Values for the distributions follow: 
$ 
$ All point values represent the optional point  
$ values that were found in the input file. 
$ 
    BA                    2.0000000E-01 
    BB                    2.0000000E-01 
    BC                    1.0000000E-01 
    BD                    1.0000000E-01 
    I1                    1.0000000E+00 
    I2                    2.0000000E+00 
$ 
@UNCERTAINTY 
  @OBSERVATIONS     10 
  @VARIABLES      6 
    BA:                 
    BB:                 
    BC:                 
    BD:                 
    I1:                 
    I2:                 
@SAMPLEDATA 
           1           6   0.174378       0.204163       0.203658  
   0.712264E-01   0.175162        1.02023     
           2           6   0.127138       0.135356       0.616336E-01 
   0.994375E-01    5.18535       0.524736     
           3           6   0.153722       0.247982       0.108648     
   0.400652        1.12832        4.05337     
           4           6   0.195077       0.189196       0.934008E-01 
   0.280316E-01   0.809043        2.92969     
           5           6   0.331527       0.151177       0.185418     
   0.633564E-01    1.50779        1.50650     
           6           6   0.131032       0.102713       0.117998     
   0.845984E-01   0.371710        1.93410     
           7           6   0.881318E-01   0.290377       0.511588E-01 
   0.417372E-01   0.644589        1.72556     
           8           6   0.258039       0.405209       0.679013E-01 
   0.134097       0.603218       0.877367     
           9           6   0.226539       0.122867       0.408741E-01 
   0.145608       0.269958        1.20896     
          10           6   0.285970       0.176833       0.293484E-01 
   0.529115E-01   0.309393        2.55828     

 

Figure 3-3:  Sample Output File 
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4.  Distribution Input 

This chapter describes the distributions that can be sampled in LHS in more detail.  The file 

specification for these distributions is found in Section 3.3. 

 

4.1  Continuous Distributions Recognized by LHS 

The keywords described in this section are used to specify which distributions are to be sampled by 

the LHS program.  Users may select from among 21 traditional continuous distribution functions 

and 5 empirical continuous distribution functions in order to achieve the best possible 

representation of their data.  Discrete distribution functions are described in the next section.  The 

21 continuous distributions are contained in 5 major groups:  normal distributions, lognormal 

distributions, uniform and loguniform distributions, user-specified continuous distributions, and 

miscellaneous continuous distributions.   

 

4.1.1  Normal Distributions 

The LHS software provides the user with four different methods for sampling from the normal 

distribution.  The normal distribution is defined by the density function 

 

f x  =  
1

 e      -   <  x <  ,
x

( )
( )( )

σ π

µ

σ

2

2

2
2

−
−

∞ ∞  

where the distribution mean and variance are µ and σ2, respectively.  The standard deviation of the 

distribution, which is required by LHS as an input parameter for several normal distribution 

sampling methods, is denoted by σ.  The first sampling method for the normal distribution samples 

over all quantiles.  The remaining methods sample normal distributions that have been truncated or 

bounded. 

 

NORMAL   mean   standard-deviation 

The keyword NORMAL specifies that a normal distribution is to be performed.  The function is 

sampled over all quantiles.  The normal distribution is defined by two input parameters: the mean 

(µ) and the standard deviation (σ).  The mean may be any real value;  however, the standard 

deviation must be  positive. 

 

 Example:  Item1 0.0 NORMAL 0.0 1.0 
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This example defines a normal distribution named “Item1” with a point value of 0.0, a mean of 0.0, 

and a standard deviation of 1.0.  Figure 4-1 shows the PDFs of the three normal distributions with 

varying µ and σ. 
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Figure 4-1:  Normal Distribution PDF 

 

TRUNCATED NORMAL   mean  standard_deviation   lower   upper 

A truncated normal distribution is a normal distribution that is only sampled between two user-

specified quantiles.  The TRUNCATED NORMAL distribution is defined by four input 

parameters:  the mean and standard deviation of the normal distribution, the lower quantile beyond 

which sampling is not to occur, and the upper quantile beyond which sampling is not to occur.  As 

above, the standard deviation must be  positive.  In addition, the lower and upper quantile values 

must satisfy the condition  0.0 ≤ lower < upper ≤ 1.0. 

 

 Example:  Item2 0.5   TRUNCATED NORMAL   3.0  1.0  0.1  0.8 

 

This example defines a distribution with the name “Item2” and a point value of 0.5.  The normal 

distribution with a mean of 3.0 and a standard deviation of 1.0 is to be sampled only between the 

0.1 and 0.8 quantiles (the PDF for this distribution is shown in Figure 4-2). 
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Figure 4-2:  Truncated Normal Distribution PDF (µ = 3, σ = 1, lower = 0.1, upper = 0.8) 
 

BOUNDED NORMAL   mean   standard_deviation   lower_bound   upper_bound 

The bounded normal distribution is similar to the truncated normal distribution except that the user 

specifies the distribution values between which sampling is to occur, instead of the quantiles 

between which sampling is to occur.  Four parameters are required:  the mean and standard 

deviation of the sampled normal distribution, the lower function value beyond which sampling is 

not to occur, and the upper function value beyond which sampling is not to occur.  The 

lower_bound parameter must be less than the upper_bound. 

 

 Example:  Item4 3.5 BOUNDED NORMAL  2.9  2.0  1.0  6.0 

 

This example defines a distribution named “Item4” with a mean of 2.9 and a standard deviation of 

2.0 that is to be sampled only between the values 1.0 and 6.0.  The point value of 3.5 is an optional 

input parameter if the user allows LHS to automatically compute a point value as the mean or 

median of the generated sample.  Figure 4-3 shows the PDF of the normal distribution between 1.0 

and 6.0. 
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Figure 4-3: Bounded Normal Distribution PDF (µ = 2.9, σ = 2.0, lower_bound = 1.0, 
upper_bound = 6.0)  

 

NORMAL-B   value_at_0.001   value_at_0.999 

This method of sampling a bounded normal distribution is provided mainly for backward 

compatibility with previous versions of LHS.  It samples a normal distribution between the 

quantiles of 0.001 and 0.999.  However, instead of specifying the mean and standard deviation of 

the normal distribution along with the bounds or quantiles to be sampled between, the user specifies 

only the range that is to be sampled.  LHS assumes that the endpoints of this range are the values of 

the distribution at the 0.001 and 0.999 quantiles, respectively.  These parameters can be related to 

the mean and the standard deviation of the distribution as follows: 

 

0.001 3.09023V  =   µ σ−  

0.999 3.09023V  =   +  µ σ  

 

Example:  Item3  5.85  NORMAL-B  2.0  9.7 

 

This example defines a normal distribution named “Item3” that has a range from 2.0 to 9.7.  This 

range translates to a normal distribution with a mean of 5.85 and a standard deviation of 1.25 that is 

sampled only between the values of 2.0 and 9.7, or equivalently, between the quantiles of 0.001 and 

0.999.  In this example, the optional point value has been set to the mean value of the distribution.  

Figure 4-4 shows the normal-B distribution. 
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Figure 4-4:  Normal-B Distribution PDF (value_at_0.001 = 2.0, value_at_0.999 = 9.7) 

 

4.1.2 Lognormal Distributions 

A lognormal distribution is simply a distribution whose logarithm is described by a normal 

distribution.  A lognormal distribution is defined by a density function of 

f y
y

y
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− −
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2

2
σ π
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where µ and σ are the mean and standard deviations of the underlying normal distribution.  The 

mean, variance, and median of the lognormal distribution can be computed from µ and σ using the 

following formulas:  

 E ( y ) =  e   
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median =  eµ . 

Lognormal distributions are typically specified in one of two ways throughout the literature.  One 

way is to specify the mean and standard deviation of the underlying normal distribution (µ and σ) as 

described above.  The other way is to specify the distribution using the mean of the lognormal 

distribution itself and a term called the “error factor.”  The error factor for a lognormal distribution 

is defined as the ratio of the 95th percentile to the median, or, equivalently, the ratio of the median to 

the 5th percentile. Physically, its square represents the width of a 90% confidence interval with 
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respect to the median.  The mathematical relationship between the input mean and error factor, and 

the parameters of the underlying normal distribution (µ and σ)  is shown by the following relations: 

 
( )

σ =
ln error factor

1.645
 

 ( )µ σ = −ln input mean
1

2
2  . 

When the mean and error factor are used as input for the lognormal distribution, both input 

parameters must be positive, and the error factor must be greater than one.  If µ and σ are specified, 

there is no restriction on µ, but σ must be positive. 

 

LOGNORMAL  mean   error_factor 

The keyword LOGNORMAL is used to specify a lognormal distribution that is sampled over all 

quantiles using the mean and the error factor as input parameters. 

 

 Example:  Item7 0.32 LOGNORMAL   0.01   3.0 

 

This example represents a lognormal distribution with a mean of 0.1 and an error factor of 3.0.  

This translates to an underlying normal distribution with a mean of −4.82818 and a standard 

deviation of 0.667849.  The 90% confidence interval for this distribution is a factor of 9.0.  Figure 

4-5 shows the PDF of a lognormal distribution. 
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Figure 4-5: Lognormal Distribution PDF (mean = 0.01, error_factor = 3.0) 
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LOGNORMAL-N   mean   standard_deviation 

Use of the keyword LOGNORMAL-N will also produce a lognormal distribution sampled over all 

quantiles.  With this keyword, however, the user must enter the distribution parameters as the mean 

and standard deviation of the underlying normal distribution (µ and σ). 

 

 Example:  Item6  0.2  LOGNORMAL-N   -4.82818   0.667849 

 

This example produces a lognormal distribution based on an underlying normal distribution with a 

mean of −4.82818 and a standard deviation of 0.667849.  This lognormal distribution has a mean of 

0.01 and an error factor of 3.0.  This example is equivalent to the example shown for the lognormal 

distribution type above. 

 

TRUNCATED LOGNORMAL   mean   error_factor   lower   upper 

The keyword TRUNCATED LOGNORMAL is used to describe a lognormal distribution that is 

sampled only between two user-specified quantiles using the mean and the error factor as input 

parameters.  The lower and upper parameters represent the lower and upper quantiles beyond which 

sampling is not to occur. The lower and upper quantile values must satisfy the condition  0.0 ≤ 

lower < upper ≤ 1.0. 

 

 Example:  Item10 TRUNCATED LOGNORMAL  2.0  2.0  0.13  0.86  

 

This example yields a lognormal distribution named “Item10” with a mean value of 2.0 and an error 

factor of 2.0.  The distribution will only be sampled between the 13th and 86th percentiles (the 0.13 

and 0.86 quantiles).  In this example, the optional point value has been omitted. 

 

TRUNCATED LOGNORMAL-N   mean  standard_deviation   lower   upper   

The keyword TRUNCATED LOGNORMAL-N is equivalent in every way to the keyword 

TRUNCATED LOGNORMAL except that in this case the user must enter the lognormal 

distribution parameters as the mean and standard deviation of the underlying normal distribution (µ 

and σ) as was done for the LOGNORMAL-N keyword described previously.  This distribution will 

be sampled only between the quantiles specified by the lower and upper input parameters.  The 

lower and upper quantile values must satisfy the condition  0.0 ≤ lower < upper ≤ 1.0. 

 

 Example:  Item11 TRUNCATED LOGNORMAL-N  2.0  3.0  0.13  0.86  

 

This example produces a lognormal distribution whose underlying normal distribution has a mean 

of 2.0 and a standard deviation of 3.0, and is only sampled between the 13th and 86th quantiles.  The 

equivalent mean and error factor are 665.1 and 139.1.  In this example, the optional point value has 

been omitted. 



46 

BOUNDED LOGNORMAL   mean   error_factor   lower_bound   upper_bound 

A bounded lognormal distribution is similar to the truncated lognormal distribution described 

previously except that the user specifies the distribution values between which sampling is to occur, 

instead of the quantiles between which sampling is to occur.  The keyword BOUNDED 

LOGNORMAL must be accompanied by the mean, error factor, the lower function value beyond 

which sampling should not occur and the upper function value beyond which sampling should not 

occur.  The lower_bound parameter must be less than the upper_bound, and both values must be 

positive. 

 

 Example:  Item7 0.22 BOUNDED LOGNORMAL  0.34  2.0  0.1  2.2 

 

This example produces a lognormal distribution named “Item7” with a mean of 0.34, an error factor 

of 2.0, and a point estimate value of 0.22.  The lognormal distribution will not be sampled for 

values less than 0.1 nor for values greater than 2.2. 

 

BOUNDED LOGNORMAL-N   mean   standard_deviation   lower_bound   upper_bound 

The keyword BOUNDED LOGNORMAL-N is equivalent in every way to the keyword 

BOUNDED LOGNORMAL except that in this case the user must enter the lognormal distribution 

parameters as the mean and standard deviation of the underlying normal distribution (µ and σ) as 

was done for the LOGNORMAL-N keyword described previously. This distribution will be 

sampled only between the lognormal distribution values specified by the lower_bound and 

upper_bound input parameters.  The lower_bound parameter must be  less than the upper_bound, 

and both values must be  positive. 

 

 Example:  Item8  1.0  BOUNDED LOGNORMAL-N  0.1  0.2  1.0  2.0  

 

This example would produce a lognormal distribution based on an underlying normal distribution 

with the parameters µ = 0.1 and σ = 0.2.  The distribution will be sampled only between the 

lognormal distribution values 1.0 and 2.0. 

 

LOGNORMAL-B   value_at_0.001     value_at_0.999 

This method of sampling a bounded lognormal distribution is provided mainly for backward 

compatibility with previous versions of LHS.  It samples a lognormal distribution between the 

quantiles of 0.001 and 0.999.  However, instead of specifying the mean and error factor of the 

lognormal distribution along with the bounds or quantiles to be sampled between, the user specifies 

only the range that is to be sampled.  LHS assumes that the endpoints of this range are the values of 

the lognormal distribution at the 0.001 and 0.999 quantiles, respectively.  These parameters must be 

positive, and value_at_0.001 must be less than value_at_0.999.  These parameters can be related to 

the mean and the standard deviation of the underlying normal distribution, as well as the lognormal 

mean and error factor as follows: 
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where M and E are the mean and error factor of the desired lognormal distribution, and µ and σ are 

the mean and standard deviation of the underlying normal distribution. 

 

 Example:  Item12  4.55  LOGNORMAL-B  2.0  9.7 

 

This example defines a lognormal distribution named “Item3” that has a range from 2.0 to 9.7.  

This range translates to an underlying normal distribution with a mean of µ = 1.48 and a standard 

deviation of σ  =  0.255, or equivalently, a lognormal mean of M = 4.55 and an error factor of 

E = 1.52.  The distribution is sampled only between the values of 2.0 and 9.7, or, equivalently, 

between the quantiles of 0.001 and 0.999.  In this example, the optional point value has been 

omitted. 

 

4.1.3 Uniform and Loguniform Distributions 

A uniform distribution, specified over a particular bounded interval (A, B), has the property that all 

points within that interval are equally likely.  A loguniform distribution is simply a distribution 

whose logarithm is described by a uniform distribution.  A uniform distribution is defined by the 

following probability density and cumulative distribution functions: 

f(x) =  
1

B A
,     A  x  B
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≤ ≤  

F(x) =  
x A

B A
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−

−
≤ ≤  . 

 

The mean E(x), median M(x), and variance V(x) are 
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Similarly, a loguniform distribution is defined by the following probability density and cumulative 

distribution functions: 

 f(x) =  
1

x
(  B -  A )    A <  x <  Bln ln  
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 F(x) =  
 x -  A

 B - A
,     A <  x <  B

ln ln

ln ln 
 . 

 

The mean E(x), median M(x), and variance V(x) are 

 

 E(x) =  
B - A

B -  Aln ln
 

 M(x) =  
 B +  A

2
 =  ABexp

ln ln 

 


  

 V(x) =  ( B - A )  
(  B - A ) ( B +  A ) - 2 ( B - A )

2 ( B -  A )2
ln ln 

ln ln
 . 

UNIFORM    A    B 

A uniform distribution samples values uniformly between two specified intervals.  The keyword 

UNIFORM, followed with two endpoints, A and B, will sample a uniform distribution.  

 

 Example:  Item13 0.5 UNIFORM   0.0   1.0 

 

This example samples a uniform distribution named “Item13” over the interval from 0.0 and 1.0.  

Figure 4-6 shows the PDF of a uniform distribution. 

 

LOGUNIFORM  A   B 

The keyword LOGUNIFORM allows the logarithm of the variable to be sampled uniformly over 

the logarithm of the range specified by the two endpoints supplied.  The endpoints A and B must be 

 positive. 

 

An example may help the uninitiated user understand how a loguniform distribution is sampled in 

LHS.  Consider an example distribution with A = 10-3 and B = 10.  The logarithm (base 10 is used 

here for convenience) of this distribution, which has distribution endpoints Alog10 = –3 and Blog10 = 

1, is sampled as a uniform distribution.  The individual sample results are then converted back to 

the original distribution by a base 10 exponentiation process.  Thus, one-quarter of the samples will  
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Figure 4-6: Uniform Distribution PDF (A = 0.0, B = 1.0) 

 

be drawn between –3 and –2 for the underlying uniform distribution, another one-quarter will be 

drawn between –2 and –1, another one-quarter will be drawn between –1 and 0, and the final one-

quarter will be drawn between 0 and 1.  The lognormal variable will show one-quarter of its 

samples between 10-3 and 10-2, another one-quarter between 10-2 and 10-1, another one-quarter 

between 10-1 and 100 (or 1) and the one-quarter between 1 and 10.  Thus the variable is sampled 

uniformly on a logarithmic scale, and each decade is sampled with the same frequency. 

 

 Example:  Item14 0.375 LOGUNIFORM 0.001 10 

 

In this example, the variable named “Item14” with a point value of 0.375 will be sampled as a 

loguniform distribution over a range from 0.001 to 10.  This input string implements the example 

distribution described in the previous paragraph.  Figure 4-7 shows a Loguniform PDF. 

 

4.1.4  User-Defined Continuous Distributions 

The user-defined continuous distributions implemented within LHS represent various 

generalizations of the uniform and loguniform distributions described in the previous section.  In 

each case, the user enters data that will be interpreted by LHS as the points for a multisection 

distribution that is, at the user’s discretion, either piecewise-uniform or piecewise-loguniform.  LHS 

provides five different methods by which these distributions can be entered.  Three of these 

methods result in piecewise-uniform distributions (linear interpolation of the input data), while the 

other two result in piecewise-loguniform distributions (logarithmic interpolation of the input data). 
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Figure 4-7:  Loguniform PDF (A = 0.001, B = 10) 

 

CONTINUOUS LINEAR  n   ordered_pair1   ordered_pair2 ... ordered_pairn 

A continuous linear distribution is used to approximate an arbitrary distribution (either an empirical 

distribution or some other continuous distribution form not implemented within LHS) in terms of a 

set of piecewise uniform distributions.  The user enters the CDF for this arbitrary distribution as a 

series of ordered pairs.  The user must first specify n, an integer number of ordered pairs that will be 

used to represent the CDF (n > 1).  The n ordered pairs that represent the CDF follow, forming the 

remainder of the input for this distribution.  Within each ordered pair, the first number is the value 

of the distribution; the second number is the cumulative probability (CDF value) associated with 

this distribution value. The probabilities in the ordered pairs (the second entry in the ordered pair) 

must increase monotonically starting with 0.0 and ending with 1.0.  The distribution values (the 

first entry in the ordered pair) must also increase monotonically.  LHS uses these points to generate 

a piecewise-uniform distribution with the quantiles specified by the user.  In other words, linear 

interpolation is used between the user-specified quantiles to define the CDF for this distribution.  If 

n = 2, a uniform distribution is generated between the two points. 

 

 Example:  Item19   4.5    CONTINUOUS LINEAR   3  # 
      5.0   0.0   # 
      7.0   0.72  # 
     10.0   1.0 

 

This example constructs an empirical CDF named “Item19” with a minimum at y = 5.0, a 

maximum at y = 10.0, and its 72nd percentile at y = 7.0.  Note the use of the continuation characters 

(#) to place the input requirements on more than one line to facilitate user interpretation.  This 

distribution will be sampled as a piecewise uniform distribution with 72% of the samples drawn 

uniformly over the interval (5.0, 7.0) and 28% of the samples drawn uniformly over the interval 
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(7.0, 10.0).  Figure 4-8 shows the PDF of a continuous linear distribution corresponding to the 

example with “Item19”. 

 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

4 5 6 7 8 9 10 11

 
 

Figure 4-8:  Continuous Linear PDF 

 

CONTINUOUS LOGARITHMIC  n   ordered_pair1   ordered_pair2 ...  ordered_pairn 

A continuous logarithmic distribution is used to approximate an arbitrary distribution (either an 

empirical distribution or some other continuous distribution form not implemented within LHS) in 

terms of a set of piecewise loguniform distributions.  Its input format and interpretation of data are 

identical to that of the continuous linear distribution above. LHS uses the specified ordered pairs to 

generate a piecewise-loguniform distribution with the quantiles specified by the user.  In other 

words, logarithmic interpolation is used between the user-specified quantiles to define the CDF for 

this distribution.  If n = 2, a loguniform distribution is generated between the two points. 

 

 Example:   Item20   5.4   CONTINUOUS LOGARITHMIC  4   # 
       0.01   0.0   # 
       0.05   0.35  # 
       0.1    0.79  # 
       1.0    1.0 

 

This example constructs an empirical CDF named “Item20” with a minimum at y = 0.1, a 

maximum at y = 1.0, and its 35th and 79th percentiles at y = 0.05 and y = 0.1, respectively.  This 

distribution will be sampled as a piecewise loguniform distribution with 35% of the samples based 

on a loguniform distribution over the interval (0.01, 0.05), 44% drawn similarly over the interval 

(0.05, 0.1), and the remaining 21% drawn from a loguniform distribution over the interval (0.1, 

1.0).  Note that both the distribution values (the first column in this example) and the quantiles (the 

second column in this example) increase monotonically.  Figure 4-9 shows the PDF of a continuous 

logarithmic distribution corresponding to the example with “Item20”. 
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Figure 4-9:  Continuous Logarithmic PDF 

 

CONTINUOUS FREQUENCY  n   ordered_pair1   ordered_pair2 ...  ordered_pairn 

The keyword CONTINUOUS FREQUENCY provides an alternative method for specifying a 

piecewise uniform continuous distribution.  It is similar in format to the continuous linear 

distribution described previously in that the user specifies the number of ordered pairs to be read, 

followed by a series of ordered pairs.  Once again, the first value in each ordered pair is the value of 

the distribution at a particular point.  However, instead of specifying the cumulative probability 

associated with that value as the second item in the ordered pair, as was done for the continuous 

linear distribution, the user specifies a relative frequency associated with the value.  The frequencies 

in the ordered pairs are relative only to each other, and must be  positive.  The frequencies need 

not increase monotonically, although values must still increase monotonically. 

 

LHS internally converts the continuous frequency distribution into a cumulative distribution 

function (continuous linear distribution) by assuming that between any two user-specified points, 

the relative probability density is the average of the input frequencies at the two points.  The first 

and last points entered by the user are assumed to represent the minimum and maximum values of 

the distribution, respectively. 

 

 Example:    Item21   0.5   CONTINUOUS FREQUENCY   4   # 
    11.0   1.0   # 
    23.0  18.6   # 
    30.0   7.2   # 
    38.6   2.4 

 

This example specifies a continuous distribution function that is piecewise uniform over three 

intervals.  The relative probability density of the three intervals is 9.8, 12.9, and 4.8, so the total 

relative probability density over the entire distribution is 27.5.  The relative interval probability 

densities are then normalized by the total relative probability density and aggregated to form the 
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cumulative distribution function that is sampled by LHS.  Based on these values, the equivalent 

continuous linear representation for this example is: 

 
   Item21   0.5   CONTINUOUS LINEAR   4   # 
    11.0   0.0  # 
    23.0   0.356 # 
    30.0   0.825 # 
    38.6   1.0 

 

If all input frequencies are identical, a uniform distribution is generated. If only two points are 

input, LHS adds an imaginary third point halfway between the two input points with a frequency of 

zero before converting the frequencies into a cumulative function. The continuous frequency 

distribution always uses linear interpolation.  Figure 4-10 shows the PDF of the continuous 

frequency distribution corresponding to the “Item21” example. 
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Figure 4-10: Continuous Frequency (Continuous Linear) PDF 

 

UNIFORM*   n   obs1   obs2 ...  obsn  first_point   endpoint1   endpoint2 ...  endpointn 

The user can enter a piecewise uniform distribution using an alternative format by specifying the 

UNIFORM* keyword.  The results of sampling this distribution are similar to those generated by 

the continuous linear distribution type.  This distribution enables the user to specify a piecewise 

uniform distribution in the form of an n-part histogram.  The first parameter for this keyword 

specifies the number of  intervals n for which piecewise uniform distributions will be generated.  

Next, the user specifies a series of n integer values, obs.  Each value obsi represents the number of 

observations that LHS will draw from the ith interval.  Therefore, the sum of all obsi must be exactly 

equal to the number of observations LHS has been requested to produce during this particular 

execution.  If the user wishes to run a second calculation with a different number of observations, 

the values of obsi must be adjusted so that they sum to the new number of observations requested.  

Furthermore, each value of obsi must be greater than or equal to zero. 
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Following the n values of obsi, the user must specify the endpoints of the n intervals that are to be 

sampled.  These intervals are assumed to be contiguous, so the endpoints of the n intervals are 

specified by entering a first_point (the distribution minimum) followed by n interval endpoint 

values.  The value of first_point must be less than that of all endpoint values, and the endpoint 

values must be specified in increasing order.  Note that the subintervals do not have to be of equal 

width. 

 

 Example:  Iteml3 0.29 UNIFORM*  3 # 
      302   693    5     # 
   -1.0   1.0   7.0   8.3 

 

This example produces three piecewise uniform distributions.  The first uniform distribution will 

select exactly 302 samples from the interval (–1.0, 1.0).  The second uniform distribution will select 

exactly 693 samples from the interval (1.0, 7.0).  The third uniform distribution will select exactly 5 

samples from the interval (7.0, 8.3).  This example would only be valid for problems that request 

LHS to generate 1000 observations from all distributions.  For other requested numbers of 

observations, the second line of the example input would have to be changed so that it sums to the 

new requested number of observations.  Figure 4-11 shows the PDF of a piecewise uniform 

distribution corresponding to the example “Item13”. 

 

LOGUNIFORM*   num   obs1   obs2 ...  obsn.    first_point   endpoint1   endpoint2 ...  endpointn 

The keyword LOGUNIFORM* generates a series of piecewise continuous LOGUNIFORM 

distributions in exactly the same way that UNIFORM* generates a series of piecewise UNIFORM 

distributions.  All of the restrictions from the UNIFORM* distribution apply to this distribution as 

well.  Furthermore, for the LOGUNIFORM* distribution, first_point and all endpoint values must 

be  positive. 
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Figure 4-11:  Piecewise Uniform PDF 

 

 Example:  Item28  4.7  LOGUNIFORM*  3 # 
      182   723    95  # 
   0.4   1.0   7.0   14.6 

 

This example produces three piecewise loguniform distributions.  The first loguniform distribution 

will select exactly 182 samples from the interval (0.4, 1.0).  The second loguniform distribution will 

select exactly 723 samples from the interval (1.0, 7.0).  The third uniform distribution will select 

exactly 95 samples from the interval (7.0, 14.6).  This example would only be valid for problems 

that request LHS to generate 1000 observations from all distributions.  For other requested numbers 

of observations, the second line of the example input would have to be changed so that it sums to 

the new requested number of observations.  Figure 4-12 shows the PDF of a piecewise loguniform 

distribution corresponding to “Item28”. 

 

4.1.5  Miscellaneous Continuous Distributions 

LHS recognizes a number of additional distributions that may be needed for specialized 

applications.  This section describes how the exponential distribution, the maximum entropy 

distribution, the Weibull distribution, the Pareto distribution, the gamma distribution, the beta 

distribution, the inverse Gaussian distribution, and the triangular distribution can be sampled using 

LHS. 
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Figure 4-12:  Piecewise Loguniform PDF 
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EXPONENTIAL   λλλλ 

An exponential distribution is used to predict the time between events (such as radioactive decay), 

or a lifetime with a constant probability of failure.  An exponential distribution is defined by the 

following probability density and cumulative distribution functions:  

 

f(x) =  e ,     x  - xλ λ ≥ 0  

 

F(x) - e ,     x  - x= ≥1 0λ  . 

 

The user must specify λ > 0. 
 

 Example:  Item28 0.36 EXPONENTIAL 2.0 

 

This example produces an exponential distribution named “Item28” with a point value of 0.36 and 

a distribution parameter λ = 2.0.  Figure 4-13 shows the corresponding PDF of this exponential 
distribution. 
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Figure 4-13: Exponential Distribution PDF (λ = 2) 
 

MAXIMUM ENTROPY  A   µµµµ   B 

The maximum entropy distribution implemented in LHS is a truncated exponential distribution, 

where A and B are the values of the distribution at its lower and upper bounds, respectively, and µ is 

the mean of the distribution.  The user must specify 0 ≤ A < µ < B.  LHS then computes a 

distribution parameter λ for a bounded exponential distribution that provides the appropriate mean 

value. 
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 Example:  Item33 0.25 MAXIMUM ENTROPY 0.0 1.0 3.0 

 

This example produces a truncated exponential distribution meeting maximum entropy criteria with 

a mean of 1.0, sampled between 0.0 and 3.0.   

 

Some other types of distributions that satisfy maximum entropy criteria are implemented in LHS 

under other names.  A maximum entropy distribution in which only the bounds (but no mean) are 

specified is equivalent to a uniform distribution. A maximum entropy distribution in which 

distribution bounds and quantiles are specified (but no mean) is equivalent to a cumulative linear 

distribution.  The distribution form implemented with the MAXIMUM ENTROPY keyword is 

used when the analyst wishes to specify only the bounds and the mean of the distribution.  Other 

maximum entropy distributions in which bounds, a mean, and a variance are specified, or in which 

bounds, quantiles, and a mean are specified, are not implemented in LHS.  Figure 4-14 shows 

several PDFs for the maximum entropy distribution with A = 0.0, B = 3.0, and varying µ. 
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Figure 4-14:  Maximum Entropy PDF (A = 0.0, B = 3.0, varying µ) 
 

WEIBULL   αααα   ββββ 

A Weibull distribution is most commonly used in reliability studies to help predict the lifetime of a 

device.  It is defined by the following density and cumulative distribution functions: 

( )

f( ) eω
α

β

ω

β

α ω

β

α

=
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
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
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−
−
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F( ) - e ,          .ω ω

ω

β

α

= ≤ ≤ ∞

−










1 0  

 

The user must specify α and β, both greater than zero. 
 

 Example:  Item29   0.35   WEIBULL   0.2   0.4 

 

This input produces a Weibull distribution named “Item29” with the distribution parameters α = 

0.2 and β = 0.4.  Figure 4-15 shows the PDF of the Weibull distribution corresponding to “Item29”. 
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Figure 4-15: Weibull Distribution PDF (α = 0.2, β = 0.4) 
 

PARETO   αααα   ββββ 

A Pareto distribution is used to find a distribution of high numbers (such as middle/high incomes).  

It is defined by the following density and cumulative distribution functions: 

p(x)
 

x

 

+=
α βα

α 1  

P(x)
x

,        x  .= −





 ≤ ≤ ∞1 where 

α
β

β  

The user must specify α  > 2.0 and β  > 0.0. 
 

 Example: Item30 0.35 PARETO 2.4 0.5 
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This example will produce a Pareto distribution named “Item30” with distribution parameters 

α = 2.4 and β = 0.5.  Figure 4-16 shows the PDF of the Pareto distribution corresponding to the 
“Item30” example. 
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Figure 4-16: Pareto Distribution PDF (α = 2.4, β = 0.5) 
 

GAMMA   αααα   ββββ 

A gamma distribution is used to predict the time to finish a specific task.  It has a density function 

defined by 

 

( )

f(x)
x e

( )

-
x

=

−α α β
β

α

1

Γ
          where       ( )Γ( ) y e dy.yα

α
=

− −∞

∫
1

0
 

The user must specify α, the parameter of the gamma function, and β, a scaling factor, both of 

which are real numbers.  The mean provided by this distribution is α/β.  Note that the gamma 

distribution is found in the literature in two different forms.  These forms differ only in the 

definition of β.  In the other form, β is defined as the reciprocal of its definition in this form.  Thus 

the other form of the gamma distribution results in a mean value of αβ.  The user should be careful 

in selecting the parameters for a gamma distribution to ensure that the parameters entered are based 

on the definition of β used in this program. 

 

 Example:  Item31 0.35 GAMMA 2.0 3.0 
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The preceding example will produce a gamma distribution named “Item31” in which the gamma 

function parameter is 2.0 and the result is scaled by 3.0.  Figure 4-17 shows the PDF of a gamma 

distribution. 
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Figure 4-17: Gamma Distribution PDF (α = 2.0, β = 3.0) 
 

BETA     A    B    p    q 

A beta distribution is used as a rough model in the absence of sufficient data.  The distribution is 

normalized to occur over a range from A to B, and is based on two shape factors, p and q.  A beta 

distribution is defined with a density function of 

f( )

A

B
β

β

β

=

∫
        where         ( ) ( )β =  x ( - x )p- q-1 11 , 

p and q are shape parameters, and A and B are the endpoints of the distribution.  The following 

conditions must be satisfied:  p, q ≥ 0.001, and 0 ≤ A < B.  Figure 4-18 has been provided to help 

the user see the effect of various choices of p and q. As an example, this figure can be used to see 

the influence of changing p with q fixed at different values, or changing q with p fixed at different 

values, or letting p = q as both increase. 

 

 Example:  Item18   0.2   BETA   2.0   4.0   2.0   2.0 

 

This example defines a beta distribution named “Item18” that will generate sample values between 

2.0 and 4.0 based on the shape factors p = 2.0 and  q = 2.0.   
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Figure 4-18:  Effect of Varying P, Q for Beta Distribution 
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INVERSE GAUSSIAN   µµµµ   λλλλ 

An inverse Gaussian distribution is characterized by the density function 

( )

f(x) =  
2  3

x

xλ

π

λ µ

x
  e

2

−
⋅ −













2 2
µ

 . 

 

The user must specify the distribution parameters µ and λ, both greater than zero. 

 

 Example:  Item32 0.35 INVERSE GAUSSIAN  0.01  0.3 

 

This example produces an inverse Gaussian distribution named “Item32” with a point value of 0.35 

and distribution parameters µ = 0.01 and λ = 0.3.  Figure 4-19 shows the PDF of an inverse 
Gaussian distribution. 
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Figure 4-19:  Inverse Gaussian PDF (µ = 0.01, λ = 0.3) 
 

TRIANGULAR   a   b   c 

A triangular distribution can be used to model certain situations where specific data are lacking.  

The probability density function for this distribution is a triangle with a distribution minimum at a, 

a distribution maximum at c, and a most likely value at b (the apex of the triangle).  In other words, 

all samples drawn from this distribution will come from the interval (a, c), and will be most densely 

populated in the area near b.  No samples are drawn from the region where x is less than a or the 

region where x is greater than c.  The values of the parameters must be such that a < c, and b must 

be located within the inclusive region [a, c].  In other words, b must satisfy the condition a ≤ b ≤ c. 
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For the most general case where a < b < c, the triangular distribution has the following probability 

density and cumulative distribution functions: 

 f(x)
2 ( x a )

( c a ) ( b a )
    a  x  b=

−

− −
≤ ≤  

 =
−

− −
≤ ≤

2 ( c x )

(c a ) ( c b )
    b  x  c  

 F(x)
( x a )

( c a ) ( b a )
    a  x  b

2

=
−

− −
≤ ≤  

=
−

−

− −

− −
≤ ≤

b a

c a
 -  

( x +  b 2c ) ( x b )

( c a ) ( c b )
    b  x  c  . 

In this general case, the mean, variance, and median of the distribution are 

 E(x)
a +  b +  c

3
=  

 V(x)
a ( a b ) +  b ( b c ) +  c ( c a )

18
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− − −
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− −
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    b  
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2
    b  
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The probability density function for this distribution is shown in Figure 4-20. 
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Figure 4-20:  Triangular Distribution  PDF (a = 0.0,  b = 2.5, c = 4.0) 

 

 

In the special case where b = a, the triangular distribution has the following probability density and 

cumulative distribution functions: 

 f(x)
2 ( c x )

( c a )2
=

−

−
 

 F(x)
( x a ) ( 2c x a )

( c a )
    a  x  c

2
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− − −
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In this special case, the mean, variance, and median of the triangular distribution are 

 E(x)
2a +  c

3
=  

 V(x)
( c a )

18

2

=
−

 

 median = −
−

c
c a

2
.  

The probability density function for this distribution is shown in Figure 4-21. 
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Figure 4-21: Triangular Distribution PDF (a = b = 0.0, c = 4.0) 

 

Finally, in the special case where b = c, the triangular distribution has the following probability 

density and cumulative distribution functions: 

 f(x)
2 ( x a )

( c a )2
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−

−
 

 F(x)
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2
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−
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In this special case, the mean, variance, and median of the triangular distribution are 

 E(x)
a +  2c

3
=  

 V(x)
( c a )

18

2

=
−

 

 median = −
−

a
c a

2
.  

The probability density function for this distribution is shown in Figure 4-22. 
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Figure 4-22: Triangular Distribution PDF (a = 0.0,  b = c = 4.0) 

 

 

The following three examples illustrate these three cases of triangular distribution. 

 

 General case example:  Item15 2.2 TRIANGULAR   0.0   2.5   4.0    

 

 Special case b = a example:  Item16 0.37 TRIANGULAR   0.0   0.0   4.0 

 

 Special case b = c example: Item17 3.24 TRIANGULAR   0.0   4.0   4.0 

 

Each of these examples defines a triangular distribution over the interval (0.0, 4.0).  The first 

example has a most likely value of 2.5, which is within the interval, while the second example has a 

most likely value equal to the distribution minimum, and the third example has a most likely value 

equal to the distribution maximum. 

 

4.2  Discrete Distributions Recognized by LHS 

The keywords described in this section are used to specify which discrete distributions are to be 

sampled by the LHS program.  Users may select from among five traditional discrete distribution 

functions and two empirical discrete distribution functions in order to achieve the best possible 

representation of their data.  The traditional and empirical discrete distributions are described in the 

following two sections.   

4.2.1  Common Discrete Distributions 

LHS recognizes a number of common discrete distributions that an analyst may find useful for 

statistical modeling applications. This section describes how the Poisson, binomial, negative 

binomial, geometric, and hypergeometric distributions can be sampled using LHS. 
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POISSON   λλλλ 

A Poisson distribution is used to help predict the number of discrete events that happen in a given 

time interval.  The random variable x has a Poisson distribution if it has a density function of  

f(x)
e

x!

x -
=

λ λ
       x=0, 1, 2, 3, … 

 

The user must specify a positive real value for the frequency λ.  This is a discrete distribution that 
returns real number representations of sampled integer values. The code execution speed decreases 

significantly as the input parameter λ becomes large. 

 

 Example:   Item24   2.0   POISSON   3.0 

 

In this example, “Item24” specifies a Poisson distribution with a frequency of 3.0 and an input point 

estimate value of 2.0.  Figure 4-23 shows the PDF for two sample Poisson distributions. 
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Figure 4-23:  Poisson PDF with Varying λ 

BINOMIAL  p  n 

A binomial distribution is used to predict the number of failures (or defective items) in a total of n 

tests (or a batch of n products) with a probability p of being a failure (or the probability of being 

defective).  A binomial distribution is defined by the density function 
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( )

( )f(y)=
n

y
p 1 - p
y n- y






         y=0, 1, 2, … 

 

The user must specify p, the failure probability (0 < p < 1), and n, the number of tests (n > 1).  This 

is a discrete distribution that returns real number representations of sampled integer values. The 

code execution speed decreases as the integer input parameter n becomes large. 

 

 Example:  Item26 0.34 BINOMIAL 0.45 50 

 

This example specifies a binomial distribution in which each observation of “Item26” contains the 

number of failures in a hypothetical series of 50 tests, where each unit has a failure probability of 

45%.  Figure 4-24 shows the PDF of a binomial distribution. 

 

0

0.02

0.04

0.06

0.08

0.1

0.12

1 4 7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

4
6

4
9

 
 

Figure 4-24:  Binomial Distribution PDF (p = 0.45, n = 50) 

 

 

NEGATIVE BINOMIAL   p   n 

A negative binomial distribution is used to find the number of times to perform a test to have n 

successes, with a probability of success of p.  A negative binomial distribution is defined by the 

density function 

( )f(x)=
n x 1

x
p 1 - p
n x+ −







  

The user must specify the probability of success p (0 < p < 1) and a number of  tests n (n > 1).  

This is a discrete distribution that returns real number representations of sampled integer values. 

 

 Example:  Item27   67   NEGATIVE BINOMIAL   0.5    100 
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In this example, the variable “Item27” is represented by a negative binomial distribution in which 

each observation contains the number of trials needed to achieve 100 successful trials with a 

probability of 50% to achieve success.  Figure 4-25 shows the PDF of a negative binomial 

distribution. 
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Figure 4-25:  Negative Binomial PDF (p = 0. 5, n = 100) 

 

 

GEOMETRIC  p 

A geometric distribution represents the number of successful trials that might be observed before a 

failure occurs.   This is a discrete distribution that is defined by the density function 

( )f(y)= 1- p p
y

       y=0, 1, 2, …  

 

This is a discrete distribution that returns real number representations of sampled integer values.  

The user must specify p, the probability (0 < p < 1) of success.  The code execution speed 

decreases as the input parameter p becomes small. 

 

 Example:  Item25 0.43 GEOMETRIC 0.67 

 

This example produces a geometric distribution named “Item25” that represents the number of 

successful trials until a failure with a 67% chance of success.  Figure 4-26 shows the PDF of a 

geometric distribution. 
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Figure 4-26:  Geometric Distribution PDF (p = 0.67) 

 

HYPERGEOMETRIC   NN   N1   NR 

A hypergeometric distribution is used to define the number of failures in a set of tests that has a 

known proportion of failures.  A random variable x is said to have a hypergeometric distribution if 

it satisfies the following density function: 

f(x) =  

N
x

N N
N x
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N
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where NN is the total number of tests, N1 is the number of items in the subpopulation (number of 

tests that failed), and NR is the number of selections.  Note that N1 < NR < NN. This is a discrete 

distribution that returns real representations of sampled integer values. 

 

 Example:  Item27 0.34 HYPERGEOMETRIC 110 30 45 

 

In this example, each observation of the variable “Item27” will contain the number of failed tests 

that were found in a randomly picked batch of 30 out of 110 total tests, where there are 45 total 

failed tests.  Figure 4-27 shows the PDF of a hypergeometric distribution. 
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Figure 4-27:  Hypergeometric Distribution PDF (NN = 110, N1 = 30, NR = 45) 

 

4.2.2  User-Defined Discrete Distributions 

The user-defined discrete distributions implemented within LHS provide an opportunity to specify 

the points of a discrete probability distribution function as either a cumulative distribution function 

or as a histogram (an unnormalized discrete density function).  The discrete histogram function is 

converted internally by LHS into a discrete cumulative distribution function prior to sampling.  The 

input format for these distributions is similar to their continuous counterparts described in Section 

4.2.4. 

 

DISCRETE CUMULATIVE   n   ordered_pair   ordered_pair   ordered_pair ... 

A discrete cumulative distribution is used to represent an arbitrary empirical distribution for which 

a limited number of discrete outcomes may occur.  The user enters the CDF for this arbitrary 

distribution as a series of ordered pairs.  The user must first specify n, an integer number of ordered 

pairs that will be used to represent the CDF (n > 1).  The n-ordered pairs that represent the CDF 

follow, forming the remainder of the input for this distribution.  Within each ordered pair, the first 

number is the value of the distribution; the second number is the cumulative probability (CDF 

value) associated with this distribution value. The probabilities in the ordered pairs (the second 

entry in the ordered pair) must increase monotonically starting with a value greater than 0.0 and 

ending with 1.0.  The distribution values (the first entry in the ordered pair) must also increase 

monotonically.  LHS uses these points to generate a discrete distribution in which the probability 

density associated with a particular value is the difference between its cumulative probability and 

that of its immediate predecessor (or, for the first value, the difference between its cumulative 

probability and zero). 
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 Example:  Item22 7.5 DISCRETE CUMULATIVE         3 # 
     5.0 0.33333  # 
     7.0 0.66667  # 
        10.0 1.0 

 

In this example, one-third of the observations for the random variable named “Item22” will be set 

to exactly 5.0, another third to exactly 7.0, and the remainder to exactly 10.0.  The PDF for this 

distribution is shown in Figure 4-28. 
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Figure 4-28:  Discrete Cumulative PDF  

 

DISCRETE HISTOGRAM   n   ordered_pair1   ordered_pair2 ...  ordered_pairn 

The keyword DISCRETE HISTOGRAM provides an alternative method for the user to specify an 

empirical discrete distribution.  It is similar in format to the discrete cumulative distribution 

described previously, in that the user specifies the number of ordered pairs to be read, followed by a 

series of ordered pairs.  Once again, the first value in each ordered pair is the value of the 

distribution at a particular point.  However, instead of specifying the cumulative probability 

associated with that value as the second item in the ordered pair, as was done for the discrete 

cumulative distribution, the user specifies the relative frequency associated with the value (or the 

length of the “bar” that would be associated with that value on a histogram graph).  The frequencies 

in the ordered pairs are relative only to each other, and must be  positive.  The frequencies need 

not increase monotonically, although values must still increase monotonically. 

 

 Example:  Item23   7.5   DISCRETE HISTOGRAM      3   # 
      5.0   17.0   # 
      7.0   17.0   # 
         10.0   17.0 

 

This example generates a discrete distribution named “Item23” that is equivalent to the distribution 

generated in the example for the discrete cumulative distribution in that one-third of the 

observations for this random variable will be set to exactly 5.0, another third to exactly 7.0, and the 
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remainder to exactly 10.0.  This occurs because all three discrete values are associated with the 

same relative frequency (the value 17.0).  LHS internally converts this histogram into a discrete 

continuous distribution prior to sampling.  This distribution is shown in Figure 4-29. 
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Figure 4-29:  Discrete Histogram (Discrete Continuous) PDF 
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5.  LHS and DAKOTA 

This section outlines the use of LHS from within the DAKOTA software.  DAKOTA (Design 

Analysis Toolkit for Optimization and Terascale Applications) is a sophisticated toolkit of iteration 

methods that “wrap around” engineering simulation models:  optimization solvers, design of 

experiments, and sampling techniques.  LHS is just one of the methods available from within 

DAKOTA.  More information about DAKOTA can be found at:  http://endo.sandia.gov/DAKOTA 

or in the set of DAKOTA manuals (User’s Manual, Reference Manual, and Developers Manual 

(2001)).  

 

The use of LHS from within DAKOTA is an example of using DAKOTA as a callable library.  

Section 5.1 describes the interface to LHS from within DAKOTA, and Section 5.2 has a description 

of the input-by-call format for people wanting to use LHS as a library from within their software.  

 

5.1 DAKOTA implementation of LHS Library 

To run LHS from within DAKOTA, one needs to specify some commands from within the 

DAKOTA input file.  Specifically, DAKOTA is run with the command:  dakota –i InputFileName. 

The input file name has many sections which are documented in the User’s Manual.  The use of 

LHS requires two things in the DAKOTA input file:  the specification of LHS under the “methods” 

section, and the specification of uncertain variable(s) in the “variables” section.  

 

5.1.1  Specification of LHS as a Nondeterministic Method 

This document will not list the complete specification of the DAKOTA input file; that is done in 

the DAKOTA Reference Manual.  However, the interface to LHS is done through the 

nondeterministic sampling method.  This method has the following options:   
 
( {nond_sampling}      \ 
  [seed = <INTEGER>] [fixed_seed] [samples = <INTEGER>] \ 
  [ {sample_type} {random} | {lhs} ] [all_variables] \ 
  [ {distribution} {cumulative} | {complementary} ] \ 
  [ {response_levels = <LISTof><REAL>}   \ 
    [num_response_levels = <LISTof><INTEGER>]  \ 
    [ {compute} {probabilities} | {reliabilities} ] ] \ 
  [ {probability_levels = <LISTof><REAL>}   \ 
    [num_probability_levels = <LISTof><INTEGER>] ] \ 
  [ {reliability_levels = <LISTof><REAL>}   \ 
    [num_reliability_levels = <LISTof><INTEGER>] ] ) \ 

 

The way to read this specification is as follows:  individual specifications (such as the 

nond_sampling method) are enclosed in {}, optional individual specifications are enclosed in [], 

and either/or relationships are denoted by the | symbol.  Thus, a rather minimal set of commands to 

perform LHS sampling in DAKOTA might look like this:  

 

http://endo.sandia.gov/DAKOTA
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method, 
 nond_sampling 
 sample_type lhs 
 seed = 54997 
 samples =100 

 

The nondeterministic sampling method in DAKOTA has two mutually exclusive sampling options: 

 random sampling or LHS sampling.  Since the nondeterministic sampling method has been 

designed for the analysis of engineering reliability problems, the user can specify if he or she wants 

to see the output as a cumulative distribution function (CDF) or as a complementary cumulative 

distribution function (CCDF).  Also, the last three main options in this specification have to do with 

the type of output.  For example, if one wants to know the probability or reliability calculated at 

particular response levels of a code, then one can specify:  

 
 response_levels 3.5 5.2 8.9 

 

For example, if we ran a code with 100 LHS input samples, the above statement would calculate 

the probability (from the 100 outputs corresponding to the 100 input samples) of being less than or 

equal to 3.5, of being less than or equal to 5.2, and of being less than or equal to 8.9 assuming CDF 

was specified.  If CCDF was specified, the probabilities would be greater than 3.5, 5.2, and 8.9.   

Likewise, one could specify the following probability levels:   

 
 probability_levels .25 .5 .75 1 

 

to obtain the response output at the four quartiles of the response output distribution, for example. 

 

Note that there are several things within the standalone version of LHS that cannot be specified 

from within the DAKOTA version.  The pairing option is one:  the LHS default in DAKOTA 

always uses restricted pairing (not random pairing.)  Not all distributions are supported (see the 

variable specification below).  Also, the user cannot run replicated LHS samples in the current 

version.  However, these things require minor changes to the DAKOTA interface that can be made 

if there is user demand for these features.     

 

5.1.2 Specification of Uncertain Variables   

The variables that the user wants to sample from and then pass these samples to an engineering 

model within the DAKOTA architecture are specified within the variables section of the DAKOTA 

input file.  The specification of uncertain variables looks like this:  

 
[ {normal_uncertain = <INTEGER>}    \ 

   {nuv_means = <LISTof><REAL>}    \ 
  {nuv_std_deviations = <LISTof><REAL>}  \ 
  [nuv_dist_lower_bounds = <LISTof><REAL>]  \ 
  [nuv_dist_upper_bounds = <LISTof><REAL>]  \ 
  [nuv_descriptors = <LISTof><STRING>] ]  \ 
 [ {lognormal_uncertain = <INTEGER>}    \ 
   {lnuv_means = <LISTof><REAL>}    \ 
  {lnuv_std_deviations = <LISTof><REAL>}   \ 
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       | {lnuv_error_factors = <LISTof><REAL>}   \ 
  [lnuv_dist_lower_bounds = <LISTof><REAL>]   \ 
  [lnuv_dist_upper_bounds = <LISTof><REAL>]   \ 
  [lnuv_descriptors = <LISTof><STRING>] ]   \ 
 [ {uniform_uncertain = <INTEGER>}     \ 
  {uuv_dist_lower_bounds = <LISTof><REAL>}   \ 
  {uuv_dist_upper_bounds = <LISTof><REAL>}   \ 
  [uuv_descriptors = <LISTof><STRING>] ]   \ 
 [ {loguniform_uncertain = <INTEGER>}    \ 
  {luuv_dist_lower_bounds = <LISTof><REAL>}   \ 
  {luuv_dist_upper_bounds = <LISTof><REAL>}   \ 
  [luuv_descriptors = <LISTof><STRING>] ]   \ 
 [ {weibull_uncertain = <INTEGER>}     \ 
   {wuv_alphas = <LISTof><REAL>}     \ 
  {wuv_betas = <LISTof><REAL>}     \ 
  [wuv_dist_lower_bounds = <LISTof><REAL>]   \ 
  [wuv_dist_upper_bounds = <LISTof><REAL>]   \ 
  [wuv_descriptors = <LISTof><STRING>] ]   \ 
 [ {histogram_uncertain = <INTEGER>}     \ 
  [ {huv_num_bin_pairs = <LISTof><INTEGER>}   \ 
    {huv_bin_pairs = <LISTof><REAL>} ]   \ 
  [ {huv_num_point_pairs = <LISTof><INTEGER>}  \ 
    {huv_point_pairs = <LISTof><REAL>} ]   \ 
  [huv_descriptors = <LISTof><STRING>] ]   \ 
 [uncertain_correlation_matrix = <LISTof><REAL>]   \ 

 

Thus, one can see that the DAKOTA implementation allows six distributions:  normal, lognormal, 

uniform, loguniform, weibull, and histogram.  Each uncertain variable specification contains 

descriptive tags and distribution lower and upper bounds. Distribution lower and upper bounds are 

explicit portions of the normal, lognormal, uniform, loguniform, and weibull specifications, 

whereas they are implicitly defined for histogram variables from the extreme values within the 

bin/point pairs specifications.  In addition to tags and bounds specifications, normal variables 

include mean and standard deviation specifications, lognormal variables include mean and either 

standard deviation or error factor specifications, weibull variables include alpha and beta 

specifications, and histogram variables include bin pairs and point pairs specifications.  

 

The inclusion of lower and upper distribution bounds for all uncertain variable types (either 

explicitly or implicitly) allows the use of these variables with methods that rely on a bounded 

region to define a set of function evaluations (i.e., design of experiments and some parameter study 

methods).  In addition, distribution bounds can be used to truncate the tails of distributions for 

normal and lognormal uncertain variables (see "bounded normal", "bounded lognormal", and 

"bounded lognormal-n" distribution types in Section 4.)    

 

These six distribution types are the distributions most commonly used in DAKOTA’s engineering 

and reliability applications, however, we can expose other distribution types available in the 

standalone version of LHS depending on user demand for these distributions.  

 

Below is an example of the variables section of the DAKOTA input file specifying uncertain 

variables:   
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variables,            \ 
 normal_uncertain = 2         \ 
   nuv_means             =  248.89, 593.33      \ 
   nuv_std_deviations    =   12.4,   29.7      \ 
   nuv_descriptor        =  'TF1n'  'TF2n'      \ 
 uniform_uncertain = 2         \ 
   uuv_dist_lower_bounds =  199.3,  474.63      \ 
   uuv_dist_upper_bounds =  298.5,  712.0      \ 
   uuv_descriptor        =  'TF1u'  'TF2u'      \ 
 weibull_uncertain = 2         \ 
   wuv_alphas            =   12.,    30.      \ 
   wuv_betas             =  250.,   590.      \ 
   wuv_descriptor        =  'TF1w'  'TF2w'      \ 
 histogram_uncertain = 3           \ 
   huv_num_bin_pairs   = 3 4        \ 
   huv_bin_pairs       = 5 17 8 21 10 0 .1 12 .2 24 .3 12 .4 0 \ 
   huv_num_point_pair  = 2             \ 
   huv_point_pairs     = 3 1 4 1       \ 
   huv_descriptor      =  'TF1h'  'TF2h'  'TF3h'    

  

According to this input file, there are two normal uncertain variables, two uniform, two weibull, 

and three histogram uncertain variables.  For the histogram uncertain variables, two have “bin 

pairs” (three and four, respectively), and one has a point pair.  For the histogram uncertain variable 

specification, the bin pairs and point pairs specifications provide sets of (x,y) pairs for each 

histogram variable.  The distinction between the two types is that while the former specifies counts 

for bins of non-zero width, the latter specifies counts for individual point values (which can be 

thought of as bins with zero width.)  In the terminology of LHS, the former is a "continuous linear 

histogram" and the latter is a "discrete histogram."  To fully specify a bin-based histogram with n 

bins where the bins can be of unequal width, n+1 (x,y) pairs must be specified.  For example, the 

first histogram variable has three bin pairs:  (5, 17), (8,21), and (10,0).  This variable has two bins:  

one between 5 and 8 with a count of 17, and one between 8 and 10 with a count of 21.  The last bin 

pair must have a 0 as the y-value to specify the end of the last bin.  The histogram with point pair 

values simply has two values:  3 or 4, each with 1 count so each value will be sampled equally.  

 

5.2 LHS as a callable library on Linux/UNIX platform   

The LHS UNIX Library/Standalone can be run as a callable library on a Linux or UNIX platform.  

The interface specifications are given in Table 5-1.  For more complete details about the meaning of 

some of these passed parameters, look at Section 3 of this manual and the source code.  
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Table 5-1.  LHS Input-by-Call Routines 

 

1. LHS_INIT(LHSOBS,LHSSEED,IError)     

    or   LHS_INIT_MEM(LHSOBS,LHSSEED,LNMAX,LMAXNNV,LNVAR, 

                                       NINTMX,LNCVAR,LMAXTB,LIPrint,LISamW,IError) 

Required 

2. LHS_OPTIONS(LHSREPS,LHSPVAL,LHSOPTS,IError) Optional 

3. LHS_FILES(LHSOUT,LHSMSG,LHSTITL,FLOPTS,IError) Optional 

4. LHS_DIST(NAMVAR,IPTFLAG,PTVAL,DISTYPE,APRAMS, 

                     NUMPRMS,IError,IDISTNO,IPVNO) 

 

See Note 

5. LHS_SDIST(NAMVAR,IPTFLAG,PTVAL,DISTYPE, NUMINTV, 

                       NOBSpI,ENDPNTS,IError,IDISTNO,IPVNO) 

 

See Note 

6. LHS_UDIST(NAMVAR,IPTFLAG,PTVAL,DISTYPE, 

                                      NUMPTS,XVAL,YVAL,IError,IDISTNO,IPVNO)  

 

 

See Note 

7. LHS_CONST(NAMVAR,PTVAL,IError,IPVNO) Optional 

8. LHS_SAMEAS(NEWNAM,ORGNAM,IError,IDISTREF,IPVNO) Optional 

9. LHS_CORR(NAM1,NAM2,CORRVAL,IError) Optional 

10. LHS_PREP(IError,NUMNAM,NUMVAR) Required 

11. LHS_RUN(MAXVAR,MAXOBS,MAXNAM,IError, LSTDNAM, 

                                  INDXNAM,PTVALST,NUMNAM,SMATX,NUMVAR) 

 

Required 

12. LHS_COROUT(MAXNUMC,MAXVAR,IError,C1MATX,C2MATX, 

                               NumCor,NumVar) 

 

Optional 

13. LHS_RtvSEED(Ierror,LastSeed)     

  Optional 

 

 

14. LHS_CLOSE(IError) Optional* 

Note:  At least one call must be made to LHS_DIST, LHS_UDIST, or LHS_SDIST. 

*Although not required, please call LHS_CLOSE as it makes for much more efficient use of the 

computer resources. 

 

6. Summary 

The objective of this document has been to describe both the theory and use of the Latin hypercube 

sampling software in the LHS UNIX Library/Standalone version.  The theory of Latin hypercube 

sampling was presented, along with detailed descriptions of how to use LHS in a standalone mode 

on a Linux/UNIX operating system.  The distribution types allowed in LHS UNIX 

Library/Standalone were described in detail.  The DAKOTA implementation of LHS was also 

described.   

 

LHS has been a powerful tool for sampling statistical distributions in uncertainty analyses for more 

than 20 years.  The LHS UNIX Library/Standalone version represents an investment to modernize 

the code capabilities and allow this valuable uncertainty analysis capability to remain viable for 

large-scale simulation models running under a Linux or UNIX operation system.   
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