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I. Introduction

The use of optimization in engineering design has fueled the development of algorithms for specific engi-
neering needs. When the simulations are expensive to evaluate or the outputs present some noise, the

direct use of nonlinear optimizers is not advisable, since the optimization process will be expensive and may
result in premature convergence. The use of approximations for both cases is an alternative investigated by
many researchers including the authors.

When approximations are present, a model management is required for proper convergence of the algo-
rithm. In nonlinear programming, the use of trust-regions for globalization of a local algorithm has been
proven effective. The same approach has been used to manage the local move limits in sequential approxi-
mate optimization frameworks as in Alexandrov et al.2, Giunta and Eldred4, Pérez et al.6, Rodŕıguez et al.8,
etc.

The experience in the mathematical community has shown that more effective algorithms can be obtained
by the specific inclusion of the constraints (SQP type of algorithms) rather than by using a penalty function
as in the augmented Lagrangian formulation. The presence of explicit constraints in the local problem
bounded by the trust region, however, may have no feasible solution.

In order to remedy this problem the mathematical community has developed different versions of a
composite steps approach. This approach consists of a normal step to reduce the amount of constraint
violation and a tangential step to minimize the objective function maintaining the level of constraint violation
attained at the normal step.

Two of the authors have developed a different approach for a sequential approximate optimization frame-
work using homotopy ideas to relax the constraints. This algorithm called interior-point trust-region se-
quential approximate optimization (IPTRSAO) presents some similarities to the two normal-tangential steps
algorithms. In this paper, a description of the similarities is presented and an expansion of the two steps
algorithm is presented for the case of approximations.
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II. Sequential approximate optimization

The objective of a SAO algorithm is to solve optimization problems by the use of local approximations.
Although the approximation can be of any type, second order polynomials are often used. An generalization
of an optimization problem is the so called multidisciplinary design optimization problem. In this general
case, the objective function and constraints are functions of the output states of a system simulation or
simulation analysis (SA) composed by one or more single discipline analysis or contributing analysis (CA).
The general multidisciplinary design optimization problem to be solved is of the form:

min f(y)
s.t. g(y) ≥ 0, (1)

h(y) = 0,
xmin ≤ x ≤ xmax,

where y = SA(x) is the vector of output states of the system analysis. From now on we will refer to the
function and the constraints just as f,g,h assuming they are functions of the states y and therefore of the
design variables x. Also we will assume that all design variables are continuous.

The main idea of a sequential approximate optimization algorithm is to approximate locally the objective
function and constraints by a response surface function, usually a quadratic polynomial . The approximation
is constructed within the local region known as the trust region. The core of the algorithm is the solution
of the local minimization subproblem. The solution of this problem yields a candidate design that is either
accepted or rejected, and as a result the trust-region itself is updated.

A. Minimization Subproblem

Lets assume x0 is the starting design point, the trust region is defined and the response surface approxima-
tions of the objective function f and constraints h, g are available (f̃ , h̃, g̃). The minimization subproblem
can be written as:

min θ̃

s.t. g̃ ≥ 0 (2)
s.t. h̃ = 0

xL ≤ x ≤ xU

where θ is the objective function used for the minimization. The tilde refers to the response surface
approximation of the function and xL and xU are the local variable bounds.

The inclusion of the approximate constraints g̃ ≥ 0 and h̃ = 0 forces the local optimum to be located in
the approximate feasible region, while the merit function θ̃ guides the algorithm to the optimum. Different
merit functions can be used. In the DAKOTA framework, θ = f while in the IPTRSAO algorithm θ is the
augmented Lagrangian function as in Rockafellar9:

θ = f + λTψψ + λThh + rψTψ + rhTh, (3)

where

ψi = min{gi,−λi
2r

} (4)

An SQP-like alternative is to make θ the Lagrangian function.

2 of 10

American Institute of Aeronautics and Astronautics



B. Infeasible Starting Point

In real engineering problems, it is almost impossible for the designer to provide a feasible starting point. If
this is the case, the local subproblem may not have a feasible solution. Although the optimizer used to solve
problem (2) may give a point that reduces the constraint violation, no robustness of the algorithm can be
assured.

A simple alternative is the use of an initial algorithm that seeks a feasible design and once it is found, the
algorithm would switch to solve the subproblem (2). However, this is not practical since seeking a feasible
design can take as long as a full optimization. In the IPTRSAO framework Pérez et al.6, 7, the use of a two
algorithm approach for the optimization was avoided by relaxing the constraints when an infeasible starting
point is encountered. Probability one homotopy methods10,11 were used to relax the constraints to obtain a
feasible design point within the trust region.

Choose bi > 0
gri(x) = gi(x) + (1 − τ)bi ≥ 0 (5)

Where bi is a constant and τ drives the relaxed constraint gri to the actual constraint by gradually
adjusting τ = 0 → τ = 1 .

The approximate minimization subproblem (2) can be solved with respect to the relaxed constraints.

min θ̃

s.t. g̃r ≥ 0 (6)
s.t. h̃r = 0
xL ≤ x ≤ xU

Note that the resulting point is feasible with respect to the relaxed inequality constraints. This is referred
to as a relaxed feasible point. The most important characteristic of this algorithm is that all constraint
violations are controlled by a single parameter, τ , and no single constraint dominates the optimization
process. At each iteration, the parameter τ is gradually updated from τ = 0 to τ = 1. The optimization, has
two steps, one, determining the value of τ for the next iteration, and the second step, in which the relaxed
approximate minimization (6) is solved. To determine τ Pérez et al.7 present an heuristic approach that
requires the solution of an approximate optimization to find the maximum value of τ that gives a relaxed
feasible point within the trust region. In Pérez et al.6 a predictor-corrector scheme is implemented, using the
machinery of the probability-one homotopy theory for nonlinear optimization Watson and Haftka11, Watson
et al.12.

III. Composite step approaches

In trust region algorithms for the solution of nonlinear constrained optimization problems, variations of
a composite step algorithm have been used to solve the infeasible trust region subproblem. Conn et al.3

offers an overview of the approaches. Two of them are of interest to our specific application. The Byrd-
Omojokun-like approaches and the Celis-Dennis-Tapia-like approaches. The differences between these two
and the homotopy approach described above lies in the formulation of the normal and tangential steps.

The composite step algorithms, have been used in SQP frameworks primarily, in which the objective
function is a quadratic approximation of the Lagrangian function and the constraints are linearized. Here
we presented a modified version of the composite step algorithm suited to a general SAO framework, where
approximations to the objective function and constraints are readily available and the cost of solving an
approximate minimization problem as (6) is small compared to the cost of function evaluations.
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A. Normal step

The objective of the normal step, is to reduce the amount of constraint violation at each iteration. So the
normal step is the solution of the problem

min ||min(0, g̃(x0 + sn)||2 (7)
s.t.||sn|| ≤ ξ∆

where 0 < ξ ≤ 1 limits the normal step to allow some freedom in the tangential step.
One could solve this problem exactly due to the availability of quadratic approximations to the constraints,

i. e., find the model minimizer, or use an approximate solution approach as in Conn et al.3. The convergence
theory only requires an approximate solution to this problem that guarantees some fraction of the Cauchy
descent. So a quick solution is given by the Cauchy point:

sc = −αcATg(x0) (8)
αc = arg min ||g̃(x0 + sc(α)||2 (9)

s.t.||sc|| ≤ ξ∆

Note that although is well known that the model minimizer used in unconstrained trust region methods
is the most efficient in rate of convergence, in our application, the normal step only reduces the amount of
constraint violation. It is expected that the algorithm may reach the feasible region some iterations before
convergence of the algorithm is achieved, therefore both approaches (and any in-between) may have good
performance.

B. Tangential step

The significant difference between the Byrd-Omojokun-like and the Celis-Dennis-Tapia-like approaches is in
the formulation of the constraint violation once a normal step is taken.

1. Approach A: Byrd-Omojokun-like

The proposed approach is different to that in Pérez et al.6 in that the relaxation is not controlled by a single
parameter for all constraints, but it is independent for each one. After computing the normal step sn that
minimizes the constraint violation within a reduced trust region, a new formulation of the constraints take
place:

gri(x) = gi(x) −min(0, gi(x0 + sn)) ≥ 0 (10)

Note that the main difference between this and (5) is that the parameter τ controls the amount of
relaxation for all constraints simultaneously, while in this approach the constraints can move independent of
each other.

The optimization subproblem is solved as in (6).

2. Approach B: Celis-Dennis-Tapia-like

In this approach, the objective is to reduce the norm of the constraint violation, without looking at each
constraint independently. Once the normal step sn has been computed, the norm of the constraint violation
at the normal step is:
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κ = ||min(0, g̃(x0 + sn)||2 (11)

Then a modified form of the minimization subproblem (6) is solved:

min θ̃

s.t. ||min(0, g̃(x) ≤ κ (12)
xL ≤ x ≤ xU

This formulation allows some trade-off in the constraints. However, it is sensitive to the scaling of the
constraints.

The combination of the two normal-step solutions and two tangential step formulations are to be compared
with the homotopy approach of Pérez et al.7. Some heuristic decisions have to be done in choosing the value
of ξ. A value close to one will move the design closer to the feasible region leaving small room for improvement
of the objective function. Note that a value of ξ = 1 does have a more dramatic effect when the normal step
is the model minimizer since it leaves no room for improvement of the objective function.

IV. Numerical experiments

To analyze the behavior of the different approaches, four test problems have been implemented within a
trust region framework. Two of the problems have inequality constraints only, while two have both equality
and inequality constraints. The four composite steps combinations plus the heuristic homotopy approach
were implemented in the same Matlab c©The Mathworks framework. Unless specified, the results are coded
according to the type of composite step: nh n t, where n = 0 corresponds to the model minimizer and
n = 1 is the Cauchy point. t = 0 corresponds to the Byrd-Omojokun-like tangential step, and t = 1 to the
Celis-Dennis-Tapia-like tangential step.

A. Barnes problem

This is a simple nonlinear constrained problem with two design variables and three inequality constraints. A
full description of the problem can be found at Pérez et al.7. The size of the problem and nonlinear nature
helps to identify the behavior of the different options. The optimization results are shown in Table 1 in
number of iterations required to converge. These results were obtained with ξ = 0.9.

Table 1. Number of iterations required to converge for the Barnes problem

Approach P1 P2
homotopy 5 10

cs exact Byrd 5 11
cs exact Celis 5 9

cs Cauchy Byrd 5 10
cs Cauchy Celis 5 10

The results for this problem are very uniform for ξ = 9. In Figure 1 the number of iterations to converge
vs. the value of ξ are shown. This plots show that the best results are obtained with ξ = 0.9. However, the
results at other values are not so discouraging. At low values of ξ, the strategies seem to be more stable,
giving the tangential step more freedom to reduce the value of the objective function. However from 0.4 to
0.9 fluctuations are more noticeable. These results are expected to be problem dependent. Figure 2 shows
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(b) Iterations vs. ξ, starting point 2

Figure 1. Convergence plots for different values of ξ

the effect of different values of ξ on the constraint violation. One can appreciate in this plot the different
levels of allowed constraint violation for each iteration.

B. High performance, low-cost structure (HPLCS)
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Figure 2. Constraint violation vs. it-
erations for different values of ξ. Case
cs exact Celis

This problem consists of the design of a 10 bar structure. The ob-
jective is to minimize weight while maximizing load. The prob-
lem was introduced in Wujek et al.13 and consists of a total of 17
design variables (cross sections, trusses topology and payloads)
and 13 inequality constraints. The results are shown on Table 2.

Table 2. Number of iterations required to converge for the HPLCS problem

Approach P1
homotopy 26

cs exact Byrd 23
cs exact Celis 10

cs Cauchy Byrd 34
cs Cauchy Celis 9

Plots of the history of the objective function, the norm of the
constraint violation and the maximum constraint violation are
presented in figure 3 on the following page. Note that both runs
using the Celis-Dennis-Tapia-like tangential present early conver-
gence. However the designs are feasible. The algorithm stopped
because the size of the step was to small. This suggests that
the Celis-Dennis-Tapia tangential step constrained the problem
in such a way that only small steps were allowed. This problem
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is known for having flat regions that allow early convergence.
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Figure 3. History plots for the HPLCS problem

C. Analytical reliability problem

This is a reliability-based design optimization problem. The
equations of the objective function and constraints are analytical functions of the design variables. The
problem contains equality constraints from the KKT equations of the reliability analysis. The problem and
the formulation used in this analysis is presented in detail in Pérez et al.5. There are 6 design variables, 2
inequality constraints and 4 equality constraints. The results are presented in Table 3 and in Figure 4.

Table 3. Number of iterations required to converge for the analytical reliability problem

Approach P1
homotopy 8

cs exact Byrd 11
cs exact Celis 14

cs Cauchy Byrd 13
cs Cauchy Celis 35

This type of problems is known to be highly non linear. In general, the homotopy heuristic step as
well as the model minimizer normal step reduce the constraint violation faster than the Cauchy point.
This is reflected on Figures 4 b and c. The combination of the Cauchy point as the normal step and the
Celis-Dennis-Tapia tangential step had convergence problems, as it required 35 iterations to converge.

D. Beam reliability problem

This problem is similar in structure to the analytical reliability problem. There are 5 design variables,
1 inequality and 2 equality constraints. The equality constraints come from the KKT equations of the
reliability analysis. A full description of the problem is found in Agarwal et al.1. The results are presented
in Table 4 and Figure 5.

The homotopy relaxation does a good job again. The use of the model minimizer for the normal step,
independent of the tangential step, is better than using the Cauchy point as normal step. Note that in this
problem the objective function is adjusted, not minimized from its starting point, making the normal step
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Figure 4. History plots for the analytical reliability problem

Table 4. Number of iterations required to converge for the beam reliability problem

Approach P1
homotopy 19

cs exact Byrd 21
cs exact Celis 24

cs Cauchy Byrd 40
cs Cauchy Celis 18
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Figure 5. History plots for the beam reliability problem
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more important until the design is feasible. The combination of Cauchy point with the Byrd-Omojokun
tangential step converged slowly due to one of the equality constraints. As mentioned before, the dominance
of a single constraint can be palliated by the homotopy approach. On the other hand, what proved to
be a slow convergent approach in the previous problem, was very successful with this problem. This also
underlines the problem-dependent nature of the approaches.

V. Concluding remarks

In this paper different techniques to control infeasible trust region subproblems for sequential approximate
optimization are explored. Homotopy relaxation techniques are compared to composite-step approaches
used in SQP-based nonlinear optimization algorithms. The composite-step techniques are adapted to the
availability of cheap local approximations. Four test problems are used to analyze the behavior of the
different techniques. The difference between the homotopy approach and the composite-step ones is that
the first minimizes the maximum constraint violation and controls the amount of relaxation for all violated
constraints at the same rate, while the normal step minimizes the norm of the constraint violation, allowing
each constraint to relax independent of each other.

In spite of the reduced number of test problems, some observations can be drawn. When the normal step
is solved using the model minimizer, the behavior in the presence of only inequality constraints is similar
for the homotopy approach and the composite step. However, in the presence of equality constraints, the
homotopy approach seems to perform better due to the simultaneous treatment of the relaxation of all
constraints. The use of the Cauchy point, may decrease the performance of the algorithm, particularly in
the presence of equality constraint. However, the use of some heuristics may palliate very bad cases. For
the tangential step, the Byrd-Omojokun approach, similar to the one employed in the homotopy approach,
seems to be more robust than the Celis-Denis-Tapia one.
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