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Abstract. The Department of Energy (DOE) national laboratories have one of the
longest and most consistent histories of supercomputer use. We summarize the archi-
tecture of DOE’s new supercomputers that are being built for the Accelerated Strate-
gic Computing Initiative (ASCI). We then argue that in the near future scaled-down
versions of these supercomputers with petaflop-per-weekend capabilities could become
widely available to hundreds of research and engineering departments. The availability
of such computational resources will allow simulation of physical phenomena to become
a full-fledged third branch of scientific exploration, along with theory and experimenta-
tion. We describe the ASCI and other supercomputer applications at Sandia National
Laboratories, and discuss which lessons learned from Sandia’s long history of supercom-
puting can be applied in this new setting.
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1. Introduction. The Department of Energy (DOE) National Labo-
ratories have one of the longest and most consistent histories of supercom-
puter use. From some of the earliest computers used at Los Alamos, to
Cray vector supercomputers in the 70’s and 80’s, to nCUBE and Connec-
tion Machine systems in the late 80’s, the national labs have required and
obtained the biggest, fastest computers available. Through the 90’s and
00’s, the national labs have and will continue to commission development
of ever more powerful machines.

The national defense-program laboratories — Sandia, Los Alamos, and
Lawrence Livermore National Laboratories — forsee a long term need for ter-
aflop computing power to successfully achieve their missions in maintaining
the safety, reliability, performance, and availability of the nuclear stockpile.
On September 24, 1996, President Clinton signed the Comprehensive Test
Ban Treaty, agreeing to a zero-yield test ban [33]. Since the United States
is also reducing its manufacturing base for nuclear weapons components,
the national laboratories are faced with the challenge of maintaining an
aging stockpile without the ability to use the ultimate test of functionality.
President Clinton’s vision was to replace testing with science-based stock-
pile stewardship, meaning virtual prototyping of weapons components, and
computer simulation of aging effects, to be coupled with statistical data

*This work was supported in part by the United States Department of Energy under
Contract DE-AC04-94AL85000. Sanda is a multiprogram laboratory operated by Sandia
Corporation, a Lockheed Martin Company, for the United States Department of Energy.

t dsgreen@cs.sandia.gov; Sandia National Labs, Albuquerque, NM 87185-1110.

E wehart@cs.sandia.gov; Sandia National Labs, Albuquerque, NM 87185-1110.

§ caphill@cs.sandia.gov; Sandia National Labs, Albuquerque, NM 87185-1110.

1



2 DAVID S. GREENBERG ET AL.

gathered from evaluation (dismantlement) of existing weapons (without
detonation).

To achieve this end the Accelerated Strategic Computing Initiative
(ASCI) [1] began before the test ban was signed, and is expected to con-
tinue through 2010. The program funds research and development of the
algorithms, applications, hardware, systems software and tools needed to
implement science-based stockpile stewardship. In Section 2, we summarize
the architectures of the new massively parallel machines under development
for the ASCI program.

We believe the lessons learned from the supercomputing efforts within
DOE have applicability far beyond the scope of ASCI supercomputing.
In Section 3 we argue that systems with supercomputer-level performance
(though not yet ASCI-level performance) could soon become available to
the department-scale research group. That is, by tightly networking com-
modity components, academic and industrial research departments should
be able to afford petaflop/weekend performance by the year 2000. These
machines could be built incrementally with minimum funding impact by
using “Stone Soup” tactics. In analogy with the children’s story, each re-
searcher who wants to use the department’s supercomputer will contribute
something to the pot: a few more processors, some interconnect, etc.!

We review some major supercomputer applications at Sandia National
Laboratories (Section 4) to illustrate the capabilities of these machines. We
argue that the general methods computational scientists use at Sandia to
achieve maximum performance on these machines are generally applicable,
particularly for distributed memory machines like the ASCI Red machine.

Section 5 describes some of the lessons learned at Sandia as we have
advanced from prototype high-performance computers such as the nCUBE
and the Paragon to ASCI-class machines. Some of these lessons can be
applied to these new mini-supercomputers, but in some cases there is still
much to be learned. In particular, we consider issues of the usage model,
programming model, resource management, data movement, system relia-
bility, and code evolution. Section 6 offers some concluding remarks.

2. ASCI supercomputers. In the 90’s researchers at various DOE
laboratories used many high-performance machines including Paragons,
Cray T3Ds, SP2s, nCUBEs, and CMb5s. From 1994 to 1997, the primary
machine for large simulations at Sandia National Laboratories has been
an Intel Paragon. This machine has over 1800 nodes, each consisting of
two i860XP processors, which operate at 75 megaflops (MF) each. When
one processor on each node is used as a communication coprocessor, as per
the original design, this yields a peak performance of 140 gigaflops (GF).
Sandia enabled the second processor to be used for computation, though
hampered by low memory bandwidth. This allowed some applications to

!Recently several researchers at Oak Ridge National Laboratory began an attempt
to apply this model literally by collecting equipment scheduled for reapplication [24].
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exceed the advertised peak performance of the machine. The nodes are
arranged in a 16 x 120 mesh, with 5 I/O columns in the middle. Com-
munication links can move 200 megabytes per second (MB/sec) in each
direction. The machine has 37 gigabytes (GB) of RAM and 330GB of disk
space.

At Sandia, we have recently installed the ASCI Red machine. Sandia
and Intel have expanded the ideas proven successful in the Paragon to cre-
ate a commodity-based supercomputer. Though the CM-5 used SPARC
processors for nonfloating point computation [21], and the Cray T3D uses
alpha chips [5], this is the first machine where true supercomputing per-
formance for scientific computing is delivered by processors that will also
be used in millions of PCs. Where the Paragon used the end-of-the-line
i860 processor, an embedded processor, the ASCI Red machine uses the
mainstream Pentium-pro™ processor. Over 9000 Pentium-pros™, each
of which provides 200MF peak, are tightly integrated to produce a total
peak performance of 1.8 teraflops (TF). The machine sustained 1.3TF on
the MPLinpack benchmark in June, 1997.

The processors are packaged into dual-processor nodes using stan-
dard PC/server chip sets. The dual processors can either be used to
perform shared-memory computing or one can serve as a communication
co-processor. In order to increase the density of integration, most of the
mother boards contain two nodes. The resulting 2000+ boards are inter-
connected in a 32 x 34 x 2 mesh.

The national laboratories have both classified and unclassified super-
computer applications. Although the Paragon could run in either classified
or unclassified mode, there was no way to partition the machine to allow
classified and unclassified codes to run simultaneously (e.g. a classified pro-
duction run on part of the machine while the remainder was available for
visualization of unclassified data). To allow greater flexibility, ASCI Red
is partitioned into three sections: classified, unclassified, and floating. The
classified and unclassified partitions are always physically disconnected,
and the floating section is connected to at most one of the other two sec-
tions. The classified and unclassified sections have full access to the service
nodes and disks dedicated to their sides; these two sections are currently
two of the world’s most powerful supercomputers by themselves (400GF),
but in this context they are relatively small. The floating section contains
most of the compute nodes (approximately 1TF). In the current plans,
when the floating section is added to one of these partitions, application
codes have access to about 3/4 of the computing resources.

The interconnect in the ASCI Red machine consists of two types of
chips. A network interface chip (or NIC) provides bidirectional direct mem-
ory access (DMA) from a node to the network at 400 MB/sec. A mesh
router chip (MRC) has six ports which can be dynamically switched to
create wormhole-routed [23] connections. In particular, one port is con-
nected to a node NIC and the other five can be used to form a two-plane
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mesh. A header packet specifies offsets in each mesh direction (actually
the routing is z,x,y,z to provide redundant routes). The MRC chips match
incoming packets with outgoing ports in a fair manner. Data packets follow
the path established by the header until they reach their destination. A
tail packet (often a data packet with a flag set) “tears down” the path and
frees channels for use by other packets. The Intel MRC chip also contains
advanced provisions for error detection and correction and for the sharing
of physical links among virtual lanes, which can reduce congestion and give
priority to critical messages.

Although a node of ASCI Red has only small-scale (two-processor)
shared-memory processing (SMP) capability, the overall design includes
hardware assistance for remote memory access. Final status of this hard-
ware and the software to control it has not been resolved but the intent is
that pieces of the memory on most nodes or all of the memory on a few
nodes can be mapped into the address space of a local node.2 The hard-
ware should catch load and store requests which are mapped to remote
memories, provide interconnect routing, maintain cache coherence, and be-
have to the memory bus like a local memory bank so that the processor
can proceed without waiting for a response. Software will allow maps to
be set up and account for situations which are beyond the capabilities of
the hardware.

The system software for ASCI Red partitions the nodes into three log-
ical groups: service, I/O, and compute [13]. Since the service partition is
relatively small (on the order of ten nodes) it runs a variant of OSF1/AD,
which supplies a standard workstation image to users. In order to inte-
grate the service partition into the machine, Sandia has added an interface
module, yod, which allows parallel tasks to be launched into the compute
partition and to be managed from the service partition. If desired, the yod
module can also enable communication between a parallel application and
a serial “host” node process or even processors on another machine.

Ideally, I/O partitions can be scaled with I/O needs. Since ASCI Red’s
I/O partition is currently of moderate size (fewer than 100 nodes), it can
also use the OSF1/AD variant. Sandia and Intel have developed an I/0O
partition interface, fyod, which allows compute nodes to efficiently transfer
I/O data to the I/O nodes and a parallel file system, PFS, which allows
data to be striped across multiple disks. The I/O nodes then transfer data
to and from storage.

For the compute partition, where unlimited scaling and highest per-
formance are critical, Sandia and Intel have developed a light-weight kernel
called Puma/Cougar. Puma is designed to use minimal resources; when-
ever possible, services are deferred to the service or I/O partition. Puma’s
resources are concentrated on efficient process management, memory man-

20ne restriction is that the Intel processors have only 36 bits of addressability and
the entire memory is over .5TB — thus 40 bits of addressability.
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agement, and interprocessor communication. Although it supports multi-
processing, Puma is tuned for the high-performance case where a single
user controls the entire node with a single process. Puma provides the
convenience of a virtual memory space (i.e. to maintain the standard code
linking model). However, in order to avoid the high on-node costs and
the crippling communication costs of waiting for pages to be brought in
from secondary storage, it does not provide demand paging. Puma uses
an innovative concept called Puma portals [30, 35] to receive messages.
A portal is an opening into the address space of a user application. In-
coming messages are deposited directly into the location the user specified.
This avoids an expensive memory-to-memory copy operation and reduces
overhead significantly.

Two additional ASCI machines are expected in early 1999. They are
usually referred to as ASCI Blue Pacific (being built by IBM for Lawrence
Livermore National Laboratories) and ASCI Blue Mountain 3 (being built
by SGI/Cray for Los Alamos National Laboratories). Both of these devel-
opment efforts include initial (below-spec) systems that are currently being
delivered and two planned upgrades.

As currently planned, ASCI Blue Pacific will have 512 nodes, each of
which consists of 8 IBM RS-class processors. Within a node, the 8 proces-
sors will be connected by a new crossbar switch with GB/sec bandwidth
and low latency. The interconnection between the nodes will build upon
the SP2 technology. The OS will be a specially enhanced version of AIX.
Blue Pacific will have a peak performance of 3.2TF, 2.5TB of RAM, and
75TB of disk space.

ASCI Blue Mountain will use the Origin 2000 technology to explore
the use of much larger (256 or 512)-processor shared-memory components.
It will also make use of Cellular-Irix, currently under development, a new
operating system designed for very large SMPs. LANL has contracted for
both a 3.2TF machine and a 1TF machine that will operate independently
but which may be connected if needed. The memory and disk capabilities
are similar to Blue Pacific.

3. The age of computational simulation. The predicted advent
of GF/sec computational nodes and the ability to economically cluster
multiple nodes into a single computational engine will soon enable the
use of computational simulation tools by a wide range of university sci-
ence departments and industrial engineering groups. The simulation of
physical phenomenon, from first principles quantum dynamical systems, to
micro-properties of materials, to macro-properties of fluid flow, chemical
reactions, and molecular dynamics, will join experimentation and theory
as mainstays of science. It will be possible to proceed directly, within a
single computational framework, from a CAD design to test simulations to
parametric optimizations to instructions for machine tools.

3The Blue distinguishes the time of purchase from the Red machine. Pacific and
Mountain refer to the time zones where the machines will reside.
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Though the predictions above may seem fanciful to some, they are
fairly direct extrapolations from the computational experiences at large
national laboratories such as Sandia National Labs. For many years these
labs executed the computational simulations necessary for their national-
security missions using special-purpose machines like the Cray vector series
and the nCUBE hypercube machines. However, recently there has been a
move toward tightly coupling standard microprocessors. The processors of
the ASCI Red machine are the same processors that are available in com-
modity PCs. The motherboards described in Section 2 are laid out more
compactly* than motherboards for standard PCs, where space is not a big
concern, but are otherwise standard. The interconnect is special-purpose,
but it still consists of only two types of chips: the NIC and MRC. Of these
two, the MRC technology is currently further from the mainstream.

Despite the proprietary nature and special-purpose use of the Intel
MRC chips, switching methods have a long history in the literature [6, 10]
and are in use in open designs like the Myrinet system from Myricom.
There is no reason to expect that reasonably-priced, PCI-based switches us-
ing these techniques will not be readily available within the next few years.
In the meantime, groups at many labs and academic departments have
begun building small-scale systems similar to the Sandia system by using
standard ethernet and ATM interconnects [20, 32]. By the turn of the cen-
tury the basic technology should be widely available to enable economical
construction of department-scale machines that can perform multi-petaflop
simulations over the course of a weekend (48hrs x 100GF /sec).

4. Applications at Sandia®. One of the biggest barriers to the use
of cost-effective, distributed-memory supercomputers is the perception that
it is very difficult to write applications codes for these machines. Counter
to this perception, researchers at Sandia have discovered that typically
only a small fraction of their development effort goes toward distributed
memory issues — most of the effort is in adding more complex and detailed
physics and chemistry to the code and assuring numerical stability and
rapid convergence for the larger problem sizes that can now be tackled.
One reason for this relative ease of data layout and message passing is
that DOE’s investment in high-performance parallel machines has been
matched by a significant investment in tools that facilitate the development
of parallel applications.

For example, load balancing tools like Chaco (see below) can elim-
inate much of the bookkeeping required to develop efficient distributed-
memory software. A key to distributed-memory programming, (and for

4Even so, ASCI Red still requires over 70 full-sized cabinets.

5This section draws heavily from the Sandia-maintained web pages, accessible via
www.cs.sandia.gov. These pages contain further details about the codes described in
this section, pictures and videos of sample simulations, and descriptions of additional
codes and tools.
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all efficient programming on cache-based, RISC architectures, both serial
and parallel) is the careful layout of data. Fortunately a good layout of
data for cache-usage is often a good start for layout of data for parallel
computing. Furthermore, a good understanding of the interplay between
sections of data is important to understanding stability and convergence in
simulations of physical systems. Thus an application developer can often
determine manageable-sized chunks of work and the interactions between
them and use Chaco to handle the messy details of data layout for efficient
computation and interprocessor communication.

By following this simple strategy of decomposing problems into natural
pieces, Sandia researchers have developed high-performance parallel codes
for a wide variety of application areas. The dominant application areas
involve simulations of physical systems such as heat transfer, chemically
reacting flows, transient solid dynamics, and 3D seismic imaging. Parallel
algorithms for new applications in optimization and microsimulation re-
quire very different parallel algorithmic methods. The following sections
describe parallel tools developed at Sandia and describe a variety of signif-
icant applications that illustrate the types of problems that we solve with
distributed-memory machines.

4.1. Parallel tools.

System Software. The use of any computer begins with its system soft-
ware. The development of MAC OS and Microsoft Windows has fundamen-
tally changed the way users interact with computers. However, high-per-
formance computing users have continued to rely on proprietary operating
systems and on variants of the venerable UNIX system. At Sandia, we
have learned that it is critical to have system software which is tuned and
tailored to high-performance computing.

In order to achieve the best performance from the Intel Paragon, we
installed the SUNMOS operating system developed by Sandia and the Uni-
versity of New Mexico. SUNMOS requires less than 256 KB of memory and
achieved 2.5 times the communication rate of the original operating system,
OSF [22]. The efficacy of the SUNMOS operating system was demonstrated
in December 1994 when it was used to achieve a sustained performance of
281GF on the MP Linpack benchmark (a record at that time).

In the joint development of the ASCI Red machine, Sandia and Intel
developed a second-generation operating system, Puma. The Intel version,
called Cougar, enables the over 9000 processors to work efficiently together.
A special communication technique, called portals [30, 35], allows applica-
tions to efficiently use the 400MB/sec links between nodes. Cougar au-
tomatically routes messages between nodes using an alternate path when
necessary to avoid components which have failed or which are being up-
graded. Cougar also accesses the virtual plane mechanisms which allow
multiple messages to share a single wire in order to increase predictability
and decrease congestion.
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Puma is designed to avoid many of the costly functions and daemons
of standard operating systems which provide convenience to interactive
users but increase overhead for parallel computations. We are currently
integrating it with Linux through a partition model [13] in which Puma
can supply performance on most nodes and Linux can supply convenient
features on a few nodes.

Load-balancing tools. The Chaco software package [18], developed at
Sandia, minimizes communication requirements for statically load-balanced
settings. When solving a set of PDEs using finite-element methods over
a static mesh of an object, the computation and communication patterns
repeat each iteration. A single iteration can be represented by a weighted
graph where each node represents a computation, each edge represents a
communication, and weights represent quantity or volume. For machines
such as the Paragon or the CM-5 where the physical topology does not sig-
nificantly effect the cost of sending a message, the question of balancing load
while simultaneously minimizing communication can be well-approximated
by the combinatorial problem of graph separation. The graph separation
problem accepts a weighted graph as input and partitions the nodes into
two groups such that the sum of the node weights is roughly balanced (for
example, neither side has more than 2/3 of the total weight), and the sum
of the weights of the edges going between the two groups is minimized
(over all partitions satisfying the weight-balance constraint). This can be
generalized to partitioning into more than two groups. If nodes of the
computation are assigned to processors as suggested by such a partition,
one can expect reasonable load balance (total weight of computation on a
processor compared to the average weight), and minimum global commu-
nication. Although the graph separation problem is NP-complete [11], the
Chaco package produces good approximations.

Dynamic load-balancing methods are currently being developed to fa-
cilitate the parallelization of methods like adaptive mesh refinement. For
example, Devine and Flaherty [7] use a modified tiling procedure to guide
local work exchange when using adaptive grids to solve hyperbolic systems
of conservation laws, such as Burgers’ equation and the Euler equations of
inviscid flow.

Linear solvers. Aztec [19] is a parallel iterative library for solving lin-
ear systems, which is both easy-to-use and efficient. Simplicity is attained
using the notion of a global distributed matrix. The global distributed
matrix allows a user to specify pieces (different rows for different proces-
sors) of his application matrix exactly as he would in the serial setting
(i.e. using a global numbering scheme). Issues such as local number-
ing, ghost variables®, and messages are ignored by the user and are in-

6Ghost variables are copies of variables owned by other processors, but relevant
to the local computation. They allow the serial code to function correctly between
communications. With asynchronous communication, they may also hide latency.



ENABLING DEPARTMENT-SCALE SUPERCOMPUTING 9

stead computed by an automated transformation function. Efficiency is
achieved using standard distributed-memory techniques; locally-numbered
submatrices, ghost variables, and message information computed by the
transformation function are maintained by each processor so that local cal-
culations and communication of data dependencies are fast. Additionally,
Aztec takes advantage of advanced partitioning techniques (Chaco) and uti-
lizes efficient dense matrix algorithms when solving block sparse matrices.
Aztec includes a variety of numerical methods including conjugate gradient
(CG), conjugate gradient squared (CGS), stabilized biconjugate gradient
(BiCGSTAB), generalized minimal residual (GMRES), and transpose-free
quasi-minimal residual (TFQMR) as well as numerical preconditioners such
as point & block Jacobi, Gauss-Seidel, least-squares polynomials, and over-
lapping domain decomposition using sparse LU, incomplete LU (ILU), and
block incomplete LU (BILU) within domains.

Automatic meshing. The CUBIT mesh generation/grid generation en-
vironment [31] is a two- and three-dimensional finite element mesh gener-
ation tool. It is a solid-modeler-based preprocessor that robustly, and au-
tomatically (that is, with no human intervention) generates quadrilateral-
element meshes for surface solids and hexahedral-element meshes for vol-
ume solids. These elements are shaped to maximize the numerical stability
of the subsequent finite-element computations. For example, CUBIT avoids
elements with very small (solid) angles. CUBIT currently incorporates a
variety of algorithmic techniques including paving, mapping, and sweeping.
Sandia is developing fundamentally new algorithmic techniques for mesh
generation which will be incorporated into the package as they mature.

4.2, Parallel applications.

4.2.1. Simulations of physical systems.

Shock Physics. One of the first applications codes to take advantage
of massive parallelism at Sandia was CTH. CTH is a shock-physics code
designed to simulate the effects of very high-speed impacts and the resulting
shock waves. While CTH typically is used within DOE to simulate weapons
impacts, it can be used for any high-impact problem. For example, it was
used to predict the size and shape of the impact plumes of the Shoemaker-
Levy 9 comet into Jupiter and thereby aid astronomers in planning their
observations. Recently it was used to simulate the impact of a comet into
the Atlantic ocean. The predicted tidal wave dwarves the New York skyline
and the atmospheric effects are world-wide.

CTH derives its power and flexibility from its ability to model many
materials at once, track large deformations, incorporate solid mechanics
principles, and does so accurately enough to follow strong shock waves. In
order to solve particular problems it includes simulation models for multi-
phase, elastic-viscoplastic, porous and explosive materials. For example,
CTH can model concrete as it liquifies under intense shock pressure.
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Numerically CTH is relatively simple. It uses three-dimensional rect-
angular meshes; two-dimensional rectangular, and cylindrical meshes; and
one-dimensional rectilinear, cylindrical, and spherical meshes. It uses se-
cond-order accurate numerical methods to reduce dispersion and dissipa-
tion and produce accurate, efficient results. The resulting discretizations
are thus relatively simple to scale to very large-sized problems.

Solid Dynamics. Recently Sandia has been developing a successor to
CTH (with added capabilities) called ALEGRA. ALEGRA is a multi-
material, Arbitrary-Lagrangian-Eulerian code for solid dynamics. As in
CTH, ALEGRA can include complex models of the interactions of multi-
ple materials in multiple physical phases, but it can also perform structural
analysis.

ALEGRA gains much of its flexibility by incorporating multiple mesh
discretizations. When an object is subject to a large external flow, the ob-
ject is represented by a stationary (Eulerian) mesh and the material flows
through the mesh. When it is preferable to view the object as moving
through a background material, the mesh can move with the material (La-
grangian) so there is no flow between elements. For complex situations
the the mesh motion can be entirely independent of the material motion
(Arbitrary).

All three mesh types can coexist in the same problem. One part of the
mesh can require Eulerian algorithms to model large deformation flows or
penetrations while another part of the mesh requires Lagrangian algorithms
to model small deformation structural response and yet another part of
the mesh can have arbitrary mesh motion to follow ‘near Lagrangian’ flow
fields. A mesh can even change type as the calculation progresses.

Typical problems solved using ALEGRA include: simulating the inter-
actions of soil and a building during an explosion, simulating the tooling of
a block of aluminum by a tungsten/steel blade, and simulating the impact
to a human head during a crash.

The use of many types of meshes can make it difficult to specify a
specific instance of a problem. Research is continuing at Sandia into ways
to more quickly specify the geometry of a problem and to quickly create
high-fidelity, three-dimensional meshes of complex objects. Some of the
latest research is in the use of H-adaptivity to dynamically refine meshes
only in those areas where accuracy or stability is needed. Within ALEGRA
this effort is called HAMMER. The algorithms in HAMMER can currently
refine the three-dimensional region of an oblique impact between two solid
bars. Localizing the refinement greatly decreases the computational power
necessary for the simulation.

Impact on Industry. Sandia has applied its expertise in high-perform-
ance simulation to many industrial problems. Here we describe briefly two
examples, the SALVO project for siesmic imaging [25] and the the MP-
SALSA project for chemically-reacting flows [29].
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SALVO uses a parallel solution of the three-dimensional wave equation
to image sub-surface geophysical features based on field recording of wave
reflections in siesmic surveys. The partner oil companies use the images
to decide whether there is likely to be oil under a particular region and if
so what is the best place to drill a well. Since the wells are very expen-
sive to drill, any increase in the expected output of a well can be quite
profitable. SALVO must simulate the wave propagation through a wide
range of features such as sedimentary layers and salt domes. It also in-
cludes sophisticated signal processing to dampen echos and other artifacts.
Current versions of SALVO run on a wide variety of platforms including
Intel Paragons, IBM SPs, and Cray T3Ds.

The MPSALSA project combines the ability to simulate fluid flows
with the ability to simulate chemical reactions. The code has been a pri-
mary stimulus for the development of efficient” parallel iterative, sparse
matrix solvers. Complex chemically reacting flow simulations are impor-
tant for many critical technology areas of interest to federal agencies and to
U.S. industry. These areas include: combustion research for transportation,
atmospheric chemistry modeling for pollution studies, chemically-reacting
flow models for analysis and control of manufacturing processes, surface
catalytic reactors for methane-to-methanol conversion and chemical vapor
deposition (CVD) process modeling for production of advanced semicon-
ductor materials.

Material properties. An important component of any physical simula-
tion is a detailed understanding of material properties. Some properties can
be readily obtained from experiments but there is a growing need to calcu-
late material properties from first principals. Codes designed to simulate
materials at the molecular and quantum level provide distinct challenges
for high-performance computing as opposed to the larger-scale simulation
described above. Rather than attempting to create a discretization over
which physical reactions can be integrated, a materials code attempts to
model the individual components of a material such as atoms or electron
energy levels.

The LADERA program [17] models gradient-driven diffusion through
porus networks (like amorphous materials). Molecular dynamics, the sim-
ulation of the motion of individual molecules, is used throughout the sim-
ulated system volume. The techniques of Grand Canonical Monte Carlo
are used to maintain two local chemical potential control volumes which
control the chemical potential of each species via particle insertion and
deletion. The transport diffusivity is measured by establishing a steady-
state chemical potential gradient, measuring the flux and gradient of the
resulting steady-state density profile, and using Fick’s Law much the same
way as in experimental systems.

"The code has twice been nominated as a finalist for the Gordon Bell Prize for
advances in computational performance.
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QUEST is an electronic structure code, using LDA (local density ap-
proximation) with an LCAO (linear combination of atomic orbitals) basis
represented as contracted Gaussians. QUEST uses ab-initio pseudopoten-
tials and can handle s, p and d states.

4.2.2. Optimization methods.

DAKOTA. Optimization methods are becoming increasingly impor-
tant in the engineering sciences as computational resources increase to
permit the use of optimization for automated design. Engineering-design
problems typically utilize physical simulation(s) to evaluate the utility of
a given design. Consequently, the use of optimization methods to perform
a systematic search of feasible design parameters requires the computation
of many simulations.

The DAKOTA software toolkit [9] incorporates a variety of optimiza-
tion methods that use parallelism in one of two ways: by performing mul-
tiple evaluations of the objective function simultaneously for multiple pa-
rameter settings or by parallelizing the objective function evaluation itself
for a single set of parameters. The first approach is useful if each simula-
tion is not too expensive; it performs simulations independently on each
processor in a master-slave fashion. This approach is useful, for example,
for optimization methods that compute finite differences to estimate the
gradient at a point, which involves the simultaneous evaluation of a group
of design parameters. The second approach is useful when each simulation
is expensive; the parallelization of the simulation serves to reduce the total
time of execution. Efforts are currently underway at Sandia to develop a
capability within DAKOTA to combine both of these capabilities, enabling
parallel simulations to be run independently on a collection of processors
by a master optimization process.

Heuristic Global Optimization. The SGOPT global optimization li-
brary [15] provides a common interface to parallel-optimization methods.
The parallel global search can be guided by a single master process or dis-
tributed among many coordinated processes. Users will ultimately be able
to quickly apply, for example, a parallel simulated-annealing method to a
new application by specifying an objective function and search neighbor-
hoods.

The current version of SGOPT includes a variety of parallel genetic
algorithms. Genetic algorithms are a general heuristic search technique.
Each algorithm maintains a population of candidate solutions, which can
be ranked by a scoring function. New generations of candidate solutions
“evolve” from the previous population using specified mutation operations
applied to individual solutions and crossover operations, which produce
a new solution from two previous ones. The best candidates survive to
produce the next generation. Parallel genetic algorithms typically create
new candidates locally and coordinate the global search by communicating
the best solutions seen on each processor; the communication topology
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is typically sparse and load balancing is generally not an issue for these
algorithms.

Achieving high parallel performance for distributed global optimiza-
tion algorithms requires an algorithmic investigation into the effects of
parallelization. For example, we have observed that asynchronous com-
munication appears to improve the search performed by genetic algorithms
in addition to eliminating the idleness introduced by synchronization [16].
That is, communicating too often in genetic algorithms leads to prema-
ture convergence to solutions that are generally poorer than those found
by more loosely synchronized implementations.

Branch and Bound. Sandia has recently begun developing PICO, a li-
brary of Parallel algorithms for Integer and Combinatorial Optimization
whose initial focus is branch and bound. Branch and bound is an exhaus-
tive search technique which proceeds by recursively dividing the feasible
region into subproblems and discarding suboptimal subregions (where the
bounding procedure returns a value worse than the best feasible solution
found so far). Each subregion corresponds to a node on a search tree. In
PICO, nodes are processed in parallel asynchronously. PICO, run on ASCI
Red, should be able to solve much larger instances of combinatorial prob-
lems than previously possible because of the huge number of processors
and large memory size (hence the ability to search larger trees).

As with parallel global optimization, the role of communication plays
a critical role in parallel branch-and-bound algorithms. For example, par-
allel branch-and-bound algorithms can exhibit slow-down effects when the
global search is not well coordinated, thereby allowing some processors to
unproductively explore the branching tree [8]. PICO uses one or more mas-
ter processors to control the selection of search nodes to be processed [8].
Processors must coordinate a variety of communication tasks, including;:
(1) communicate to distribute the load (make sure that all available pro-
cessors are working on subproblems if possible), (2) distribute the quality
of work (make sure that processors are not searching nodes that are likely
to be suboptimal when other, better nodes, are not being processed), and
(3) propagate the best solution found so far (so that some subproblems can
be determined suboptimal and dropped).

5. Using department-scale parallel machines. In the previous
sections we have described how very-large systems have been built at San-
dia and used to enable a new simulation capability. We have argued that
it will soon be possible for groups of researchers, such as academic sci-
ence/engineering departments and industrial design teams, to afford sim-
ilar capability. In this section we discuss issues related to making these
computational capabilities readily usable by all potential users. In many
cases these issues are extensions of concerns that many users have about
Unix workstations and servers. The potentially heterogeneous nature of
department-scale machines, the distributed nature of their architectures,
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and the desire to reach a wide class of users magnifies the problems and in
many cases necessitates new research directions.

This section divides the issues into the following pieces: usage mod-
els, programming models, resource management, data movement, system
reliability, and code evolution.

5.1. Usage models. The usage model for most supercomputers is
fairly simple. Parallel programs are compiled serially on a portion of the
supercomputer or on a cross-compilation platform. Special libraries to
enable use of the particular supercomputer are linked with the compiled
code. Standard input and output are funnelled through a proxy process
and other output can be directed to disk or tape resources. The usage
model can depend upon scheduling and resource-management strategies
which are discussed in Section 5.3.

Unfortunately, even this simple model can vary considerably in de-
tail from machine to machine. Users must know where to find the correct
versions of compilers and libraries. Disk space is often limited on the super-
computer so executables may have to be copied onto the machine for each
use. “Standard” libraries such as BLAS and MPI are rarely identical in be-
havior (eg. BLAS routines can have different calling conventions and MPI
routines can have different buffering strategies). The method of launching
the application tends to use a proprietary command sequence with wildly
varying conventions for specifying the parameters of the run such as the
number and type of nodes, the location of executables, the location of disk
files, etc. Debuggers and performance monitors, when they exist, can use
interfaces which differ from the launch interface.

The reader who is familiar with Unix workstations will recognize that
many of these issues must be faced when creating code that is portable
across multiple vendors’ workstations, or multiple generations of work-
stations from a single vendor. For the department-scale supercomputers
envisioned here these problems compound, since the supercomputers may
contain components from multiple vendors and multiple generations which
must be used simultaneously. The user community should include scien-
tists and engineers, many of whom are not familiar with Unix (and who
don’t want to be). Some method of simplifying interaction with the sys-
tem will be necessary in order enable the routine use of these machines by
individuals who are not experts in parallel computing.

Since, it is unlikely that any one particular set of interfaces and li-
braries will replace all others, we envision the creation of a flexible machine-
independent front-end interface. This front-end might follow the current
trend toward web-based forms. Users can choose common parameters such
as machine, number of nodes, or name of executable from pull-down menus.
Machine-specific, site-specific, and user-specific profiles could then fill in
many attributes such as locations of compilers, libraries, temporary files,
and launch sequences. The front-end could translate this to the local ma-
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chine syntax, warn the user when certain features were not specified or were
not available, and launch the application and/or create scripts for faster
future compilation and invocation.

Standardizing interfaces to debugging and performance monitoring
tools may prove more difficult because the requirements for these tools
continue to change. Standard text-window approaches quickly become un-
wieldy as the number of threads of parallelism expand. Consequently, tasks
such as monitoring progress, debugging, and performance tuning will re-
quire new tools. One approach is to use advanced graphical and virtual re-
ality techniques to encode information about all threads so that the user can
navigate through the data. It remains to be seen how well these approaches
will scale on very large machines, but they have promise for department-
scale machines. Data filtration methods will evolve as we learn more about
how human’s can and do integrate information. Such tools will be helpful
on small systems, but critical for large ones.

5.2. Programming models. A programming model defines the way
an application interacts with the system to access resources such as mem-
ory, I/0, and processors. For example, the programming model for the
Intel Paragon and ASCI Red is a distributed-memory model with stati-
cally allocated processors; message cost is modeled by a fixed start-up cost
and, for large messages, an additional length-dependent cost, but does not
depend upon which pair of processors is communicating.

We believe this programming model is a good starting point for depart-
ment-scale machines. Although shared-memory models offer a seemingly
simpler programming model for parallel machines, they are unlikely to
resolve difficulties associated with the development of high-performance
parallel algorithms. Shared-memory models obscure the fact that each
processing element sees a hierarchy of access time for data. As machines
grow, the effect of this hierarchy becomes more pronounced. Increasing the
number of processors by an order of magnitude will increase the number of
levels of the hierarchy and/or increase the worst-case gap between levels.
Consequently, parallel software using a shared-memory model will probably
not perform as well as one based on a distributed-memory model, where
data movement is explicitly determined.

Several standards have recently emerged that begin to provide a more
uniform programming model for distributed-memory parallel machines.
Standards like MPI [14] and POSIX threads [27] provide general capa-
bilities for communication and coordination of computation respectively
that were previously available only in vendor-specific libraries.

Threads allow a single processor to multitask without the overhead of
process swapping. Complex parallel codes, such as parallel optimization,
can be conveniently partitioned into multiple independent (parallel) tasks.
Ideally, the user should be able to allocate these tasks to processors arbi-
trarily, using threads to provide modularity. To achieve this, each thread
must be a communicator within MPI.
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Although we have argued that pure shared-memory programming is
not ideal for large simulation applications, computing components will in-
creasingly include symmetric multiprocessors. SMP components that con-
tain 4-8 processors are currently available (e.g. SGI 02000, DEC 8400,
SUN Starfire), and will increasingly be used as base components for larger
clusters. As described in Section 2, the ASCI Blue machines will have this
basic design, ultimately with much bigger SMP nodes.

Programming models for stand-alone SMP machines have been strong-
ly influenced by database applications. Since no machine of this sort has
been built at either the ASCI scale or department scale, researchers and
vendors must develop programming models for general-purpose scientific
computing on these types of machines. It’s possible that no single model
may ultimately suffice for all users depending upon the size of the SMP
nodes, the sophistication of the user, and the desire for performance vs.
quick development. For example, a simple programming model might treat
each physical processor as a separate node. This model provides good con-
tinuity with current simulation work; supporting this model would enable
simulation codes to run seamlessly on a cluster of SMPs with some perfor-
mance penalty. Alternatively, one could augment the memory hierarchy of
this simple model by one level to recognize that off-processor communica-
tion with any member of the same SMP node is faster than communication
with any more remote processor. A more sophisticated programming model
might explicitly reflect the physical characteristics of the machine, such as
the topology, to provide better data movement.

Finally, the manner in which processors are allocated and programs are
executed is an important component of the programming model. The ASCI
Red machine provides static allocation of processors on which a program
is run in a SPMD fashion — a single program is loaded onto a statically-
defined number of processors. Each copy of the program then processes its
own data and communicates with the other copies via some interface. Both
PVM and the MPI2 standard extend the model to allow applications to
request and colonize additional processors during execution. In this model
an application might start on a single processor and, based on the input,
request groups of nodes to be used for specific subtasks. During execution
the application can even release nodes which are no longer needed.

The implications of extending the parallelism model beyond static al-
location are significant — particularly for the system software. Resolving
competing requests for resources, supplying consistent names, and medi-
ating communication are just a few of the hard questions to be resolved.
However, there is a great incentive to solve these problems since their reso-
lution will also be useful in creating systems which can dynamically adjust
to faulty hardware. It is hard to predict what breakthroughs will enable
more flexible parallelism. In the short run, parallelism will probably be
mostly static. Simple forms of dynamic growth such as pre-allocated nodes
but dynamic allocation of processes (e. g. allowing a process to allocate
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from a fixed-size “heap” of processors) and pre-defined servers to which
applications can attach will then allow experimentation to determine the
true needs for dynamic growth. Operating systems will also have to resolve
some of the naming and code-migration issue to allow (software) swapping
of a spare physical processor for a faulty processor within an otherwise
statically-allocated environment.

5.3. Resource management. The departmental supercomputer, by
its very nature, will be a shared and valuable resource. Some method will
have to be developed to adjudicate between various types and sizes of
usage requests. In this section we discuss fundamental resource-allocation
choices such as interactive vs. batch scheduling, time-slicing vs. dedicated
computation, and static vs. dynamic processor allocation. We also consider
scheduling issues for different management policies, fragmentation, and
performance evaluation.

In an interactive environment, the user submits a job to be run “while
you wait.” If the resources are not available, the job is denied. In a batch
system, a request is queued if necessary and run when the resources are
available according to a site-specific priority policy.

A common technique for minimizing denial in interactive settings is
to time slice the use of processors. Time slicing allows many requests to
receive small amounts of service which it is hoped are enough to meet the
users’ immediate needs. Network-of-workstation systems, PVM systems,
and IBM SPs typically allow processor-level time sharing via the standard
Unix process interfaces. This is in contrast to dedicated systems where each
processor runs at most one (perhaps multithreaded) process at a time.

The ASCI Red machine uses NQS to provide static allocation of ded-
icated processors with both interactive and batch scheduling. During the
day, the processors are partitioned into an interactive section and a short-
term batch section. At night the entire system is dedicated to large batch
jobs. A job must specify the number of processors it requires and an es-
timate of the time it will run. In the interactive section, a job is run
immediately if the processors are available. Otherwise, it is denied. For
the batched queues, jobs are submitted with a priority which grows as the
job waits in the queue. The highest-priority job that can fit on the number
of available processors is run, unless the globally highest-priority job has
crossed a priority threshold. At this point, released resources are held idle
for this job until enough are available for it to run.

There is no requirement that processors allocated to a particular pro-
cess be physically close to each other, though this is done where possible.
Such a policy could lead to bad fragmentation. However, the machine is
cleared of all jobs twice per day when switched between day and night poli-
cies. In practice this keeps fragmentation to an acceptable level. There is
some underutilization of resources just before switching to daytime mode,
since there are few jobs in the queue short enough or small enough to use
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the “leftovers” from the night’s big runs, and no interactive users allowed.

We believe this basic division of resources is a good starting point for
department-scale simulation engines. In particular, we believe that dedi-
cated processing is more appropriate than time-slicing. First, simulations
tend to require large amounts of memory. Time-slicing mechanisms rely on
the ability to quickly switch between users and this is not possible if each
user wants most or all of the memory. Second, time slicing in parallel ap-
plications can lead to huge inefficiencies. If one portion of the application
must wait for another which is swapped out then resources can be idled
and deadlock is possible. While “gang-scheduling” processes can eliminate
deadlock by ensuring that all processes of an application run at the same
time, it is probably not the most appropriate use of the resources. The best
use of parallel hardware is achieved by devoting the vast majority of the
processors to servicing the large simulation jobs which require the compu-
tational and/or memory resources of the full machine. Since applications
that require time slicing do not fully utilize a tightly-coupled machine, we
believe that they can best be performed on clusters of workstations or on
standard Unix servers.®

An additional benefit of dedicated use is simplied performance evalua-
tion. It is much easier to compare the performance of competing algorithms
when they are run in dedicated mode. Otherwise, one must determine how
long each processor ran the application, calculate which portion of mes-
sage latency was caused by swapping, ensure that swapping does not hide
latency, and so on.

We have already argued that most resources should be dedicated to
large production runs. These are stable codes which can run without oper-
ator intervention and can direct output to files. Therefore, batch schedul-
ing is appropriate for these runs. However, some smaller portion of the
resources must be available for interactive use for code development. Inter-
active use not only allows immediate feedback, when resources are available,
but also allows interactive debugging, visualization, and human guidance
for parameter tuning. A university department, where some subset of re-
searchers is active at any given time, will probably need to have interactive
capability 24 hours a day most of the time, with special arrangements made
for runs requiring the full machine.

Regardless of basic resource allocation policy, explicit scheduling of
queued tasks is difficult and will require policies more flexible than NQS
in order to achieve acceptable performance as the complexity of resource
demands increases. There are not only multiple processors, but also mul-
tiple auxiliary resources such as disks and/or tape. Without preemption,
long jobs requiring many resources can effectively starve many small jobs.

8Tying high-performance servers with workstation-level servers into a single com-
putational resource would force the reevaluation of these issues, but such systems are
beyond the scope of this paper.
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However, a steady stream of small jobs can also lock out a large job if they
are continually scheduled into small groups of newly-released processors.
At Sandia, task queues tend to be long, so there are many choices for the
next job to run. Furthermore, time estimates should be treated only as an
upper bound. Jobs can be terminated if they exceed their time estimate,
but such a policy encourages users to inflate their running-time estimates.
The development of more flexible queueing systems is already underway
including LSF and IBM'’s loadleveler.

5.4. Data movement. We have argued that the natural progression
of technology will enable tightly-coupled systems consisting of a hundred
powerful PC-class nodes by the end of the century. There will be, however,
a significant gap between the speed at which memory internal to a node
and external to a node can be accessed. Keeping this gap as small as
possible and/or mitigating it in software as much as possible will be a key
to making the described systems general enough to handle the wide class
of simulation problems for which they are constructed.

Computer vendors, national labs, and universities have all been work-
ing hard to reduce the cost of moving data between processors. One ap-
proach has been to add hardware to manage data movement asynchro-
nously to main computation. Sometimes the hardware is used to manage
protocol stacks. For example the IBM SP series has smart channels and an
attached 386 processor, and the Intel machines have a message co-processor
mode in which one processor within an SMP node handles only communi-
cation. Other hardware is designed to move data directly from memories to
the network without interrupting the processors. For example, Intel allows
block transfer commands to be loaded to a direct-memory-access (DMA)
engine, and Cray has implemented a variety of block transfer engines and
special data-movement registers.

A second approach has been to attack the software overhead. Sandia
has implemented a new protocol called portals which allows data to be
moved directly to and from user-level addresses, thereby avoiding memory
copies. Additionally, Chien [26] has developed fast messages and a variety
of groups are working on active messages [34]. All of these approaches
concentrate on allowing the data to access hardware as soon as possible.
They take advantage of the fact that system-area networks are much more
reliable than the typical LAN, WAN, or internet connection.

A system which provides general-purpose communication with 10us
latency is currently considered very good. However, some special-purpose
systems can operate in the 1us range. Reduction much beyond 1us may be
difficult for large machines based purely on speed-of-light constraints, but
1us latencies seem a reasonable goal.

In order to achieve 1us latencies, it will probably be necessary to har-
ness some of the hardware currently used to mask local memory latency.
For Ghz processors, nominally 40ns memories, and nominally 1us network
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latencies, the ratio of cache memory speed to local memory to remote
memory is 1:40:1000. Thus, the gap between remote and local memory
may be smaller than the gap between local memory and high-speed cache.
Advances in multi-chip packaging and memory technology may shift this
ratio slightly but it is likely to be about equal for the foreseeable future.
Thus it seems appropriate to look at the techniques designed to mask the
cache-to-processor-memory gap.

Latency-masking techniques can be divided into three classes: fetching
data early, keeping data near-by for reuse, and doing something else while
waiting for data to arrive. Two common ways of fetching data early are
to issue explicit pre-fetch commands and to bring in entire cache lines
under the assumption that wanting one word means the others will be
needed soon. Caches are of course the paradigmatic method of keeping
data nearby. Pipelining, multi-threading, and out-of-order execution are
a few of the ways in which useful work can be performed while awaiting
data. For writes there is also the possibility of not waiting for data to finish
being moved before continuing with computation.

All of these mechanisms typically make use of a combination of special
hardware and compiler assistance. When necessary, additional levels have
been created such as floating-point registers, vector registers, write-back
buffers and DRAM page-mode optimizations. In order to allow flexible
movement between levels, a variety of mechanisms have been introduced
to keep track of what data is where. Caches have tags, virtual memory
pages are mapped to real pages etc. In fact, the mechanisms for mapping
between levels have accrued caches independent of the data caches, such
as the translation look-aside buffers.

The challenge for the architecture community is to understand how
best to expand these local-memory techniques to remote memories, in par-
ticular how to handle the timing and reliability issues of off-node commu-
nication without unduly sacrificing local performance. For example, even
beyond added latency issues, remote memory accesses can fail, and even if
successful usually require acknowledgements. Current techniques tend to
gather remote data into buffers which are then transmitted in large packets
to amortize protocol overhead.

5.5. System reliability. The affordable systems envisioned in Sec-
tion 3 will not be practical unless they can run for days or weeks without in-
terruption. Much of the work in system reliability has assumed that pieces
are loosely coupled. For example, a distributed system such as a cluster
of workstations uses the TCP /IP protocol to decouple workstations. Run-
time systems such as Linda [3] or Cilk [4] can then provide a very robust
system via the bag-of-tasks model [2]. Many large-scale simulation codes
have tasks which make repeated passes over huge data structures. These
tasks are not appropriate for bag-of-tasks because frequent rescheduling
will destroy data locality. This motivates our emphasis on much more
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tightly coupled systems. A robust tightly-coupled system must recognize
and isolate hardware faults; failed components cannot bring down the whole
system and they must be replaceable while the system continues to run.

In fact, one of the new design requirements of the ASCI Red machine
was that the system mean-time-to-failure (MTF) be over a month even
though component MTF is closer to two days. From a hardware point
of view this meant that many system resources such as clocks and power
supplies had to have redundant spares. In addition, the network had to
be designed to survive the electrical disconnect of pieces. Thus a board
containing a subpiece of the mesh can be physically removed and replaced
without causing catastrophic signaling errors.

This hot-swapability is complimented by a two-plane mesh design and
a redundant routing scheme that maintains routable connectivity between
all healthy components even when one component is faulty. A separate
diagnostic network is included to monitor the health of other components.
The diagnostic hardware can isolate faulty components and initiate the
rerouting and application-recovery operations.

From a software point of view, it was necessary to create an operat-
ing system that could withstand pieces being removed and replaced. The
standard daemon schemes tended to propagate faults into system failures.
The Puma/Cougar light-weight kernel system acts independently on each
node and interacts only through tightly-coupled data-movement protocols.
The OS can receive and propagate signals from the diagnostic hardware to
applications. The OS is also responsible for automatically routing around
failed components. It can create new routes using the flexibility provided
by the second plane. In addition it can reconfigure a spare node to have
the logical identity of a failed node.

With this type of system reliability, applications that are designed with
a distributed-system scheme such as bag-of-tasks can continue without the
failed component and even be given a replacement component. However,
applications that are less fault-tolerant (such as most simulation codes)
must be restarted from scratch on healthy hardware. To overcome this de-
ficiency, we believe that parallel OSs must manage the checkpointing and
recovery of applications which span faulty hardware. It is unlikely that
users will develop applications that are robust to system failures since this
would add significant complexity to their software development. Conse-
quently, checkpointing technologies seem the most promising approach to
ensuring that long simulations can be performed in spite of system failures.
Although checkpointing is not a new idea, there remain many fundamental
questions concerning the most appropriate and useful means for check-
pointing parallel applications on large machines. For example, assuming
that processor memory is needed for computation, checkpoint data must be
stored on the external file system. Stopping a computation to checkpoint,
e.g. write out all memory, can be unacceptably slow. However, checkpoint-
ing pieces in “background” mode leads to issues of data consistency and
can interfere with performance evaluation.
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Another problematic area for system reliability is disk and network
I/0. While RAID devices increase the reliability of disks, they do not
scale to the levels expected of our systems. Applying the highest level of
redundancy techniques to all components will probably prevent the systems
from achieving the performance for which they will be built. It will be
particularly important to identify which sections require redundancy and
which require highest performance, and therefore only bare-bones reliability
measures.

5.6. Code evolution. Computer hardware is changing so rapidly
that no one should expect a system to stay static for more than a few years.
However, if scientists and engineers are going to use these systems as part
of their routine work, they cannot be asked to start over from scratch every
year or two. What we need is the confidence that a C or Fortran program-
mer has today that his or her program will run on whatever workstation
comes along. The simulation code developer needs to know that his code
will run on the new parallel machine, even though maximizing performance
for the new architecture could be a time-consuming process. Of all the po-
tential barriers to creation of a vibrant, affordable, simulation capability
the need for a stable base is probably the most worrisome.

Standards such as MPI and POSIX threads, if and when they become
truly standard, will help in this regard, since any new machine will be
expected to support these capabilities. Availability of department-scale
supercomputers will accelerate standardization, at least to a small number
of competing options.

6. Conclusion. The national labs are in the process of developing ma-
chines and algorithms which enable simulation to complement experiment
and theory in the understanding of complex 3D phenomena. Simultane-
ously, market forces are creating the possibility of constructing affordable,
department-scale supercomputers. We envision a day soon when virtually
every scientist and engineer will rely on access to simulations running on
supercomputers. Although several challenges remain to be met, we are
optimistic that the new millenium will usher in this new age of simulation.
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