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Model Calibration under Uncertainty:                             
Matching Distribution Information 

Laura P. Swiler*, Brian M. Adams†, and Michael S. Eldred‡ 
Sandia National Laboratories§, Albuquerque NM 87185 

We develop an approach for estimating model parameters which result in the “best 
distribution fit” between experimental and simulation data. Best distribution fit means 
matching moments of experimental data to those of a simulation (and possibly matching a 
full probability distribution). This approach extends typical nonlinear least squares methods 
which identify parameters maximizing agreement between experimental points and 
computational simulation results. Several analytic formulations for the distribution 
matching problem are provided, along with results for solving test problems and 
comparisons of this parameter estimation technique with a deterministic least squares 
approach.  

I. Introduction 
Nonlinear models are frequently used to model physical phenomena, including engineering applications. In this 

paper, we refer to a nonlinear model very broadly:  the output of the model is a nonlinear function of the parameters 
[Draper98]. Thus, nonlinear models can include systems of partial differential equations (PDEs). Some examples 
include CFD (computational fluid dynamics), groundwater flow, heat transport, etc. Nonlinear models also include 
functional approximations of uncertain data via regression or response surface models. In most cases, we have some 
type of simulation model which is a nonlinear model, so we use the term nonlinear model and simulation model 
interchangeably in this paper. In addition to a simulation model, we assume that we have experimental data which 
may be used to calibrate the model. The calibration often requires the solution of an optimization problem to 
determine the optimal parameter settings for the simulation model.  

In this paper, we are concerned with identifying model parameters which result in a “best fit” between 
experimental data and simulation results in a nondeterministic context. That is, instead of matching point estimates 
we are concerned with matching moments (e.g., mean or variance) between experimental and simulation data where 
the variability in the model output is due to parametric uncertainty. We develop an approach extending the typical 
nonlinear least squares formulation to allow for this distribution matching. Note that “parameters” may be 
parameters in an approximation model such as a regression model, or physics modeling parameters which are used 
in physical simulation models such as PDEs. We distinguish data from parameters:  data are physical data which are 
input either to a regression or physical simulation. For example, in groundwater flow modeling, hydraulic 
conductivity is a parameter and data may include measured flow rates from well tests. In this paper, we denote 
parameters that will be calibrated as θ, and the independent input data (e.g., state variables, configuration data, 
boundary conditions) as x. We also assume that there are uncertain variables, denoted by u, that represent inherent 
variability or lack of exact knowledge influencing the simulation, but which we cannot observe. The effect of the 
uncertain variables is reflected in both the output variability of the nonlinear model and the experimental data, but 
we can only explicitly account for these uncertain variables in the simulation model. Thus, our simulation model, f, 
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is a function of (x, θ, u) but the experimental observations y are only a function of x: we observe x and y(x). Given 
these assumptions, we want to use a calibration framework in a specific way, to aggregate or “integrate out” the 
effects of the uncertain variables at the simulation model level by approximating their effects with statistical metrics 
such as moments, and matching such moments to those of the experimental data. 

There are several motivations for matching distribution information between the model and the experimental 
data instead of directly matching point values. Often experimental data is of poor quality, has very few data points, 
or may not be directly relevant to the particular simulation model under investigation. In this case, we may just want 
to match means and/or variances. Another case is where modelers just want to obtain a ballpark estimate based on 
bounds matching:  that is, analysts want the model upper and lower bound estimates (accounting for model 
uncertainty) to match the upper and lower bounds on the data. One might have several sets of experiments and want 
to match the mean or moments of each to a simulation model. Finally, the model may have some uncertain variables 
(some of which may be “calibrated” by choosing parameter values to describe them such as distribution means, and 
other uncertain variables will not be calibrated) and we want to incorporate this uncertainty in the response. 
 The outline of this paper is as follows:  we present a brief overview of nonlinear least squares optimization 
techniques in Section II, and provide several formulations for matching moments or distributions in Section III. In 
Section IV we outline a number of approaches which can be used to solve these formulations, with examples and 
results in Section V, followed by the conclusions in Section VI. 

 

II. Nonlinear Least Squares Optimization Methods 
Nonlinear regression extends linear regression for use with a much larger and more general class of functions 

[Bates88]. Unlike linear regression, there are few limitations on the way parameters may enter into the functional 
part of a nonlinear regression model. The way in which the unknown parameters in the nonlinear function are 
estimated, however, is conceptually the same as in linear least squares regression.  

The nonlinear model of the response y as a function of the n-dimensional inputs x is given as:  
ε+= );( θxfy                (1) 

where f is the nonlinear model, θ is a vector of parameters to be calibrated, ε is a random error term, and we assume 
that 0][ =εE  and and the error terms are independent and identically distributed (iid). Usually y is 
a function of x but this dependence is often implicit and y(x) simply written as y. Note that for nonlinear functions, 
the derivative of f with respect to the parameters θ depends on at least one of the parameters of the vector θ. Given 
observations of the response y corresponding to the independent variables x, the goal of nonlinear regression is to 
find the optimal values of θ to minimize the error sum of squares function S(θ), also referred to as SSE: 
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where )(θiR are the residual terms. Nonlinear regression employs an optimization algorithm to find the least 

squares estimator θ  of the true minimum θ*; a process that is often difficult [Seber03]. Derivative-based nonlinear 
least squares optimization algorithms exploit the structure of such a sum of squares objective function. If S(θ) is 

differentiated twice, terms of residual 

ˆ

)(θiR , )(θ″iR , and 2)]([ θ′iR result. By assuming that the residuals 

)(θiR  are close to zero near the solution, the Hessian matrix of second derivatives of S(θ) can be approximated 

using only first derivatives of )(θiR . 
An algorithm that is particularly well-suited to the small-residual case and the above formulation is the Gauss-

Newton algorithm. This formulation and algorithm combination typically requires the user to explicitly formulate 
each term in the least squares (e.g., n terms for n data points) along with the gradients for each term. This may be 
very expensive for computationally intensive evaluations of f, and even more so when finite differences are used, 
since the number of necessary calculations also will increase as the number of parameters increases. Additionally, 
the approximation of gradients in the presence of errors in the problem is problematic; the gradient approximation 
may have larger errors than the objective function approximation [Borggaard]. Despite these limitations, gradient-
based methods are usually much more efficient than derivative-free approaches. Three gradient-based methods 
tailored for nonlinear least squares optimization problems are available in a software tool called DAKOTA 
[Eldred06]. They are a standard Gauss-Newton algorithm, NLSSOL, and NL2SOL. NLSSOL uses a sequential 
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quadratic programming formulation (SQP), and exploits the structure of the least squares objective function through 
the periodic use of Gauss-Newton Hessian approximations to accelerate the SQP algorithm. NL2SOL uses a trust-
region method (and thus can be viewed as a generalization of the Levenberg-Marquardt algorithm) and adaptively 
chooses between two Hessian approximations, the Gauss-Newton approximation alone and the Gauss-Newton 
approximation plus a quasi-Newton approximation to the rest of the Hessian. This enables good performance on 
problems with large residuals at the optimal parameter values, but even on small-residual problems, the latter 
Hessian approximation can be useful when the initial parameter iterate is far from the solution. On problems that are 
not over-parameterized (i.e., that do not involve more optimization variables than the data support), NL2SOL 
usually exhibits fast convergence. In the case of high cost and/or questionable accuracy in computing gradients, 
global optimization algorithms not requiring derivatives, also available in DAKOTA, may be necessary. 

 

III. Matching Distribution Information 
 Often we are interested in running a simulation model repeatedly to obtain information about the spread and 

variability in its response. In particular, uncertainty propagation refers to the process where, given a characterization 
of uncertain model input values u, a method such as Monte Carlo sampling is used to obtain model output values 
which reflect the input uncertainty. One may be interested in moments, bounds, or a full distribution characterization 
of these output values. In this paper, we assume the simulation model is deterministic:  for a particular set of input 
parameter values (x, θ, u), the model always returns the same output.  

If we sample over the uncertain input values, e.g. draw values from the probability distributions describing u, 
then for a particular set of data values x and calibration parameter values θ, we can obtain a distribution of response 
values y. This yields more information from the simulation than the set of pairs  that are typically 
matched in regression analysis. For example, the computational model f depends on a realization uj of the uncertain 
variables: , and sampling over values uj yields a distribution of simulation values associated with each 
experimental point y(xi). In this work, we aggregate the effects of the uncertainty by calculating moments or other 
statistical measures of f and calibrating to these instead of explicitly fitting the experimental data (which implicitly 
depends on u) to each of the simulation points .  

));(,( θx ii fy
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In the following formulations, the vector θ always denotes calibration parameters, x denotes input data such as 

configuration data, state variables, boundary conditions, etc., and uj represents a realization of the stochastic inputs 
u. It is possible for the characteristics of the uncertain input distributions to depend on θ (with an abuse of notation, 
u(θ)). Our approach can find the optimal values of calibration parameters θA entering directly into the model, or 
those θI which influence the characterization of u, as shown in Figure 1. 
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Figure 1. Depiction of simulation dependence on configuration variables x, calibration parameters θ, and 

uncertain variables u 
 
This paper illustrates several variations on the standard nonlinear least squares (NLLS) formulation given in 

equation (2), each accounting for statistical behavior of the model/experimental response. In the first case, one has 
repeated values taken in a single experiment (e.g., one experimental configuration) and wants to obtain parameter 
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values so that the mean of the simulation matches the mean of the experimental results as shown in Figure 2. Note 
that the experimental and simulation data may not follow the same distribution in the case of matching means. The 
objective function for the NLLS formulation in this case is:   
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where is the experimental mean, is the mean of the simulations taken over realizations uj of U, and the 
number of experimental data points (n) may be different from the number of simulation runs (m).  

expμ simμ
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Figure 2. Matching simulation and experimental means 

 
 
Note that we could choose to match both means and variances or standard deviations (and higher order moments 

as well). Figure 3 shows the case of matching means and standard deviations. In this case, the NLLS formulation 

becomes: where σexp and σsim are the standard deviation of the 
experimental data and simulation results, respectively. In this case, one might want to weight the residual terms in 
accordance with the importance of matching particular moments. Usually it is more critical to match the mean or 
lower moments, so these would be more heavily weighted. One non-heuristic approach to weighting mean and 
variance is to instead match specific moment projections formulation using non-generalized reliability indices. A 
reliability index can be thought of as the number of standard deviations a particular output value z* is from the 

mean. The reliability indices are calculated as: 

2
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, where z is the mean of the experimental response and 

σ  is the standard deviation of the experimental response. Instead of explicitly matching the mean and standard 
deviation, the problem is reformulated to match several reliability indices corresponding to experimental data. Doing 
this implicitly matches the simulation mean and standard deviation to the experimental mean and standard deviation, 

because the simulation β terms are calculated as 
sim

simsim
simβ
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σ
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. A strength of this formulation is that various 

response values used to calculate the β terms implicitly determine weights for the mean and standard deviation. This 
approach may be more appropriate than arbitrarily choosing a weighting scheme such as 2:1 for mean: standard 
deviation. While this may appear to be CDF matching, it is not, since only the underlying weighted moments are 
being estimated. Later, generalized reliability indices β* are estimated; this is a form of CDF matching. 
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Figure 3. Matching simulation and experimental means and variances 

 
The next case is more interesting:  matching the means between simulation and experimental data at several 

experimental configurations, where each configuration contains replicated points and allows a different variance at 
each experimental configuration. This is similar to nonlinear weighted least squares, with the difference that we are 
matching means and not the actual data at these different configurations. In this situation, the NLLS objective 
function is:  

   ∑
∑∑

∑
=

==

=
⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−=−=
K

k

m

j
kj

n

i
kiK

k
ksimk m

f

n

y
S

kk

1

2

11

1

2
)()exp(

);;(
)()(

uθx
θ μμ    (4) 

where each experimental configuration k has its own mean, and both the number of experimental data points and 
simulation data points may vary across the K configurations. Note also that K could represent a number of response 
functions which one is trying to simultaneously match, instead of a number of experimental configurations. Figure 4 
shows this case for K=3 configurations or responses.  
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Figure 4. Matching several simulation and experimental means 

 
Finally, we match entire probability distributions by matching discrete values from the experimental and 

simulation cumulative distribution functions (CDFs), although other distance metrics between probability 
distributions could be used. For example, in Figure 5 we show an example where we match the response levels at 5 
fixed percentile values pk (= 0.2, 0.4, 0.6, 0.8, and 1.0) from a CDF of the experimental data to a CDF of the 
simulation data. This type of parameter optimization can be very powerful:  we are choosing values of input 
parameters which yield output results from simulation runs to match a generic experimental distribution. This NLLS 
formulation can be given in terms of experimental response levels Yk and model response fk as: 
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where the CDF of both the experimental data and the simulation data is discretized to K levels. For each level, 
simple counting, distribution fitting, or interpolation may be used to calculate the empirical response level 
corresponding to the probability levels pk. Alternately, one may fix response levels Yk of interest and use 
probabilities in the least squares criterion as shown in equation 6, where simple counting, distribution fitting, and/or 
interpolation may be used to calculate the probability that both the experimental data and simulation data are less 
than a certain value Yk: 
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For example, if Yk = 52.5, and the probability that the experimental data was less than or equal to 52.5 is 0.8, then 
the NLLS optimization would seek values of θ such that the probability that the simulation model yields a value less 
than or equal to 52.5 is also approximately 0.8. Note that the formulations in Equation 5 and 6 may be expanded to 
include the matching of several CDFs, similar to the multiple mean responses in Equation 4. Also, the formulations 
may be modified to allow for different measures of a stochastic response. For example, instead of matching 
percentiles along a CDF, one may match generalized reliability indices, which are just a nonlinear transformation of 
probabilities that often results in a more linear dependence on θ . 
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Figure 5. Matching response levels at percentile values values 

between the simulation (in red) and experiment (in blue) 
 
In this section, we introduced modified nonlinear least squares formulations that allow matching stochastic 

quantities such as moments, percentiles, and response levels. Note that these formulations focus on the stochastic 
response of the simulation introduced by parameter uncertainty in the model. It is also possible to obtain confidence 
intervals on the calibrated parameter values, based on the variability in the experimental data and on certain 
assumptions about the linearity of the model and the distribution of experimental error. There are a variety of 
methods that one can use to obtain individual or joint confidence intervals (CIs) on parameters obtained in a NLLS 
formulation, include Bonferroni intervals, the linear approximation method, the F-test method, and the log-
likelihood method. These methods along with application results are well documented in [Donaldson87], 
[Rooney01], and [Vugrin06]. The issue of generating confidence intervals around calibrated parameters is not 
addressed in this paper, but the CI formulations could extend naturally to the calibration framework being proposed.  

 

IV. Solution Approaches:  NLLS under uncertainty 
The formulations in Section III are all examples of nonlinear least squares methods under uncertainty. A variety 

of methods may be used to solve such optimization under uncertainty (OUU) problems. For this paper, we will 
primarily focus on nested approaches, consisting of an outer loop nonlinear least squares optimization method (such 
as Gauss-Newton) and an inner loop uncertainty quantification (UQ) method that iterates on the simulation and 
provides statistical information (such as mean, variance, or percentile values) to the outer loop for incorporation in 
the NLLS objective function. Graphically, the flow of information is shown in Figure 6. 
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Figure 6. NLLS under Uncertainty:  Nested solution approach 

 
 There are several ways one may perform UQ to calculate statistical information on the inner loop. These 

include sampling methods, reliability methods, and stochastic expansion methods, which are outlined in the 
following sections. A powerful alternative to the strictly nested paradigm is trust region-managed surrogate-based 
calibration under uncertainty, where surrogate (meta-) models for the inner loop statistics as a function of the 
calibration parameters θ are iteratively constructed and updated as optimization progress is made in converging to 
the optimal least squares regressor . Other methods include sequential or uni-level reliability optimization 
methods, which more closely couple the optimization and uncertainty quantification by iterating between these and 
updating the optimization goals based on the most recent probabilistic assessment results. [Eldred and Bichon, 
2006]. 

θ̂

A. Sampling methods 
The most common method of calculating uncertainty with simulations is to specify distributions on the uncertain 

input values, and then repeatedly sample from those distributions, running the model with the sampled values to 
build up a distribution of the outputs. This is classical propagation of uncertainty. The sampling techniques can be a 
variety of Monte Carlo methods, including stratified sampling (Latin hypercube sampling) which spread the samples 
over the space [Swiler and Wyss, 2004], or quasi-Monte Carlo sampling, which is a way of generating sequences 
that approximate a uniform distribution [Knuth, 1997; Gentle, 2004]. Typically m samples are taken from 
distributions on inputs, and each one is run through the simulation model, resulting in m realizations of the outputs.  

B. Reliability Methods 
Reliability methods are based on probabilistic approaches that compute approximate response function statistics 

based on specified uncertain variable distributions. These response statistics include response mean, response 
standard deviation, and cumulative or complementary cumulative distribution functions (CDF/CCDF). These 
methods are often more efficient at computing statistics in the tails of the response distributions (events with low 
probability) than sampling-based approaches in which the number of samples required to resolve a low probability 
can be prohibitive. A full discussion of the theory behind analytic reliability methods will not be presented here; 
instead see the discussion in Section 6.3 of the DAKOTA User’s Manual [Eldred et al.] and in [Haldar and 
Mahadevan]. 
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The mean value reliability method (also called First-order Second-Moment method) is based on a first-order 
Taylor series approximation of the response function linearized at the mean values of the random variables. The 
mean value method calculates the mean and variance of the output. More advanced reliability methods based on 
most-probable point analysis, answer the fundamental question:  Given a set of uncertain input variables, u, and a 
scalar response function, f, what is the probability that the response function is below or above a certain level, z ?  
This probability calculation involves a multi-dimensional integral over an irregularly shaped domain of interest. The 
reliability methods all involve transforming the user-specified uncertain variables to a space of independent standard 
Gaussian random variables, possessing a zero mean and unit variance. The region of interest is also mapped to the 
transformed space. In the transformed space, probability contours are circular and the multi-dimensional integrals 
can be approximated by simple functions of a single parameter, β, called the reliability index. β is the minimum 
Euclidean distance from the origin in the transformed space to the response surface, determined by z . This point is 
also known as the most probable point (MPP) and is found by solving a nonlinear equality-constrained optimization 
problem. The distance from the MPP to the origin has the meaning of the number of input standard deviations 
separating the mean response from a particular response threshold. There are many reliability methods:  most of 
them involve different ways to approximate the limit state, solve for the MPP, or integrate to calculate the 
probabilities.  

Note that although analytic reliability methods may require fewer function evaluations than sampling methods, 
they do require finite difference or analytic gradients of the output variable with respect to the uncertain variables. 
Hessian information, if available, tends to help the performance of these methods. Finally, finding each point in a 
cumulative distribution function requires performing a separate optimization calculation.  

C. Stochastic Expansion Methods 
Stochastic expansion methods approximately represent random response functions in terms of finite-dimensional 

series expansions. We focus on two stochastic expansion methods:  polynomial chaos expansions (PCE) and 
stochastic collocation methods (SC). PCE is a type of stochastic response surface method [Ghanem and Red-Horse]. 
These methods approximate outputs of the uncertain system through series expansions of standard random variables. 
In PCE, the series expansion is often based on Hermite polynomials which are functions of Gaussian random 
variables, although other orthogonal polynomials which are functions of other distribution types may be used. 
Eldred, Webster, and Constantine [2008] provide an overview of the various types of random input distributions that 
can be modeled and the corresponding orthogonal polynomials, as well as describe solution approaches. The goal of 
a PCE analysis is to determine the unknown coefficients of the orthogonal polynomials in the series expansion. 
Usually, these coefficients can be calculated from a limited number of model simulations.  

Conceptually, the propagation of input uncertainty through a model using PCE consists of the following steps: 
(1) input uncertainties are expressed in terms of a set of unit Gaussian random variables, (2) a functional form such 
as Hermite polynomials is assumed for selected outputs, and (3) the parameters of the functional approximation are 
determined. An important distinguishing feature of the PCE methodology is that the solution series expansions are 
expressed as random processes, not merely as statistics as with many other nondeterministic methods. Thus, one 
obtains a stochastic approximation of the response which can be sampled thousands of times (by sampling the 
underlying Gaussian random variables) to obtain statistics of interest. Note that PCE can be most efficient when 
there is additional information from the problem physics which dictates the most appropriate type of approximating 
polynomials. For this paper, we used 2 variants of stochastic expansion methods: a PCE approach and a stochastic 
collocation approach. Both methods used 3rd order quadrature to sample the points upon which the expansion is 
based. In the stochastic collocation approach, Lagrange polynomial interpolants are used instead of orthogonal 
polynomials.   Finally, once the expansion coefficients were determined for PCE or SC, the expansion was sampled 
100,000 times to determine the statistics of interest (such as the mean or percentile values). 

D. Software Implementation 
To implement the examples discussed in the following section, we use the DAKOTA toolkit [DAKOTA – 

Eldred et al. 06]. DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) is a software tool 
which provides an integrated suite of optimization methods, data sampling methods, and response surface 
approximation methods. It is a publicly-available software package that can readily be employed for various 
optimization studies, parameter estimation, uncertainty analysis, etc. For the results presented in this paper, we 
employed DAKOTA version 4.1+ on a 64-bit Intel microprocessor-based computer workstation running the Red Hat 
Enterprise Linux 4 operating system. This version of DAKOTA is available to the public, under the restrictions of 
the GNU General Public License, from http://www.cs.sandia.gov/DAKOTA. 
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DAKOTA is designed to explore advanced solution methodologies, such as those proposed here, coupling NLLS 
algorithms to uncertainty analysis capabilities. DAKOTA contains algorithms for uncertainty quantification with 
sampling, reliability, and PCE/stochastic finite element methods and for parameter estimation with nonlinear least 
squares methods. It also contains general gradient and non-gradient based optimization algorithms and parameter 
study capabilities. The individual algorithms may be linked together within “strategies” such as surrogate-based 
optimization or optimization under uncertainty. We specifically draw on the following capabilities of DAKOTA:  

1. Algorithm “nesting” to specify an outer and inner loop formulation as depicted in Figure 6. This facilitates 
sending the calibration parameters θ from the outer to inner loop and sending statistical measures from the inner 
loop back to the outer loop to be incorporated in the outer loop objective function.  

2. Three NLLS methods (Gauss-Newton, NLSSOL and NL2SOL) for nonlinear least squares optimization and 
three uncertainty quantification method classes (sampling, reliability methods, and stochastic expansion methods) 
for the inner loop calculation of statistical measures of simulation responses.  

3. Option to utilize analytic or generate finite difference gradients.  
4. Design variable insertion: the capability to calibrate parameters which specify or govern distributions (such as 

means, variances, and bounds).  
5. In some cases, the ability to compute analytic derivatives of the statistics of interest with respect to the 

calibration parameters, without resorting to additional evaluations of the computational model. 
 

V. Examples and Results 
For Examples A, B, and C, we explore a problem from the reliability optimization community [Sues01] to 

demonstrate the formulations outlined in Section III. The problem involves a cantilever beam, depicted in Figure 7. 
This problem is often formulated as a design problem where the goal is to minimize the weight (or, equivalently, the 
cross-sectional area) of the beam subject to displacement and stress reliability constraints. We modify this 
formulation, since we are interested in obtaining values (estimated parameters) for the width and thickness of the 
beam (w and t) which result in the simulated displacement “matching” the experimental displacement in a variety of 
ways (e.g., matching means, matching CDFs, etc.)  
 

Figure 7. Cantilever Beam Schematic 
 
The variables characterizing the beam problem are shown in Table 1. The random variables u in the problem 

include the yield stress R of the beam material, the Young’s modulus E of the material, and the horizontal and 
vertical loads, X and Y, which are modeled with normal distributions. Typically R provides an uncertain constraint 
on the calculated stress, but will not be considered in the modified problem formulation, where we are matching 
distributions of displacement. The length of the beam is constant: L=100 inches. Note that for the common 
formulation used in reliability optimization, the displacement is subject to a constraint [DAKOTA06], but for the 
purposes of this study, it is not.  

 
Three response functions are typically calculated as part of the simulation: area, stress, and displacement. Area is 

simply w*t. Stress and displacement (assuming simplifying assumptions such as isotropic material properties of the 
beam and elastic displacement) are given by:  
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Table 1. Variables characterizing the Cantilever Beam Problem 

 Variable Description Mean or Nominal 
Value 

Standard 
Deviation 

constant L length 100 inches N/A 
w width 4 inches N/A design 

θ t thickness 4 inches N/A 
X horizontal load 500 lbs 100 
Y load 1000 lbs 100 
R  yield stress 40000 psi 2000 

uncertain 
u 

E elastic modulus  2.9E7 psi 1.45E6 

A. Example of matching means 
   For this first example, we demonstrate a model calibration where the outer loop nonlinear least squares 

optimization seeks values of the parameters w and t which result in the mean of the simulation model for the 
displacement of the beam approximately matching the experimental data sample mean for the displacement of the 
beam. The inner loop involves sampling or other uncertainty analysis over three uncertain variables: E, X, and Y. For 
this exercise, we simulated 20 experimental data points by holding the design variables fixed at w* = 2.5 inches and 
t* = 2.5 inches, and sampling over the uncertain variables. The mean of this particular sample is 3.993 inches. The 
displacement of the nominal beam given the properties in Table 1 above (with w = t = 4 inches) is 0.605 inches. 
Thus, when using the nominal values as an initial iterate, we expect the calibration to result in smaller values for w 
and t to match with the greater displacement observed in the simulated experiment.  

 
Table 2 shows the results of matching the experimental and model means, using three NLLS optimization 

methods and several uncertainty quantification methods. The NL2SOL algorithm consistently performs well. While 
in a few instances Gauss Newton’s performance rivaled that of NL2SOL, in general Gauss Newton and NLSSOL 
did not perform as well; therefore, the remaining results are presented using NL2SOL.  

 
The calibration results in Table 2 illustrate a typical tension between accuracy and efficiency (computational 

cost) when performing uncertainty quantification. For example, the mean value reliability method requires 
significantly fewer function evaluations than sampling. This is to be expected: each inner loop mean value UQ 
evaluation builds a first-order approximation of response uncertainty, requiring only a single function and gradient 
evaluation with the calibrated parameter values set from the outer loop, and the uncertain parameters set to their 
mean values. The efficiency of model calibration under uncertainty also depends on the method for computing 
required derivatives of statistics with respect to calibration parameters. Numerically differencing across UQ analyses 
is required when using sampling and is demonstrated for mean value, but can be costly (we employ central finite 
differences here, with a finite difference relative step size of 1% with respect to each calibration parameter). In 
contrast, mean value and stochastic expansion methods allow analytic calculation of calibration derivatives, 
substantially reducing outer loop cost. So, for example, the mean value method with analytic derivatives requires the 
fewest function evaluations. (For inner loop UQ methods themselves needing derivatives, e.g., mean value and 
stochastic expansion methods, we use analytic derivatives from the cantilever simulator.) 

 
Regarding accuracy, there is a difference between the inner loop UQ method assessment of the response mean 

(evidenced by the very small residual errors in the mean estimate, between 0 and 1.0E-6) and the actual response 
mean obtained from more resolved LHS sampling. The reported LHS-verified mean was calculated by performing a 
10,000 sample LHS study with the estimated optimal parameter values. This verification of the mean estimate 
demonstrates that the mean value method is least accurate for this problem, followed by (under-resolved) sampling, 
and the stochastic expansion methods, which are most accurate. The mean value method estimated means around 
4.02 compared to the experimental mean of 3.993. 

 
Many combinations of w and t will yield a simulation mean comparable to the experimental mean of 3.993. This 

non-uniqueness or lack of identifiability of parameter values is a common issue in inverse problems, and matching 
higher-level statistics such as moments may exacerbate the problem. Regularization approaches may be used to 
address this [Aster et al., 2005], for example, Tikhonov regularization where a term is added to the sum of squared 
residuals to improve problem conditioning. The term added may penalize deviations from some expected parameter 
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range (prior knowledge), favor smooth solutions (penalize large derivatives), or be a factor of the response and/or 
input variable variance. For example, a Cholesky factorization of the inverse covariance matrix of the data is often 
used as the Tikhonov matrix. In ridge regression, a bias term is added to the response data to reduce the variance of 
the estimated parameters. We have not used regularization approaches in this paper and identify this as an area of 
future research (specifically, what type of regularization terms should be used when optimizing statistical 
measures?) 

 
 

Table 2. Results for Matching Simulation Mean with Experimental Mean of 3.993 
NLLS Method 
(Outer Loop) 

UQ Method 
(Inner Loop) 

t̂  ŵ  Residual 
Norm 
Value 

LHS-verified 
Residual 

Norm 

Num Fn 
Evaluations 

NL2SOL sampling (20) 2.116 2.795 1.03E-10 4.52E-3 840 
Gauss Newton sampling (20) 3.237 2.224 1.00E-6 4.76E-4 1700 
NLSSOL sampling (20) 2.437 2.530 2.22E-15 2.78E-3 2120 
NL2SOL mean value, 

numerical deriv. 
2.110 2.791 7.33E-11 3.48E-2 42 

Gauss Newton mean value, 
numerical deriv. 

3.243 2.220 1.19E-6 1.51E-2 85 

NLSSOL mean value, 
numerical deriv. 

2.428 2.530 3.11E-15 2.77E-2 106 

NL2SOL mean value, 
analytic deriv. 

2.110 2.791 0.0 3.48E-2 20 

NL2SOL PCE 2.117 2.795 4.44E-16 4.76E-6 270 
NL2SOL stochastic 

collocation 
2.117 2.795 4.44E-16 7.19E-7 270 

 
 

B. Example with means and standard deviations 
The next example demonstrates a model calibration where the outer loop nonlinear least squares optimization is 

choosing the values of the parameters w and t which result in the mean and standard deviation of the simulation 
model approximately matching the mean and standard deviation of the experimental data for the displacement of the 
beam. In this example, we included 2 residual terms (the difference between experimental and simulation means, 
and the difference between experimental and simulation standard deviations) in a least squares objective function 
with equal weights. If instead for example we wanted to place more priority on matching the means, we could use 
weighted least squares. Table 3 shows the results. Note that the experimental mean and standard deviation are 3.993 
and 0.4142, respectively. We see that matching both mean and standard deviation requires more function 
evaluations than matching only the mean. NL2SOL coupled with the mean value reliability method appears to be the 
most efficient for this formulation, but it is the least accurate. The stochastic expansion methods (PCE and stochastic 
collocation) offer a good balance in terms of efficiency and accuracy. 

 
The last two rows of Table 3 show an alternative approach for the inner loop UQ. We use the concept of 

reliability indices as explained in Section III. For this particular problem, we took 5 experimental data points 
corresponding to the 5th, 25th, 50th, 75th, and 95th percentile values. We then optimized with respect to matching the 
simulation data so that the simulation reliability indices would approximately correspond to the experimental 
reliability indices at these percentile values. This formulation implicitly matches the mean and standard deviation. In 
this particular example, the performance of the calibration method using reliability indices is comparable to using 
PCE or SC to calculate the first two moments directly in the inner loop. 
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Table 3. Results for Matching Mean to 3.993 and Standard Deviation to 0.414, using NL2SOL. 
UQ Method (Inner 
Loop) 

t̂  ŵ  Residual 
Norm values 

(mean, 
std.dev) 

LHS-verified 
Residual 

norm values 

Num Fn 
Evaluations 

sampling (20) 2.552 2.469 6.13E-03,        
5.24E-02 

3.86E-3, 
5.30E-3 

1640 

mean value, 
numerical deriv. 

2.020 2.910 1.48E-8, 
1.92E-10 

3.54E-2, 
8.38E-2 

49 

PCE 2.328 2.602 4.69E-12, 
1.15E-12 

9.48E-6, 
2.95E-4 

351 

stochastic collocation 2.328 2.602 4.76E-12, 
1.16E-12 

9.48E-6, 
2.88E-4 

351 

PCE specifying 
reliability indices 

2.328 2.603 5.94E-5, 
3.68E-5 

5.00E-5, 
3.31E-4 

324 

stochastic collocation 
specifying reliability 
indices 

2.328 2.603 5.95E-5, 
3.68E-5 

5.00E-5, 
3.25E-4 

324 

 

C. Example with CDFs 
Next we show an example matching percentiles from a cumulative distribution. For the experimental data, we 

take the original 20 samples, sort them in ascending order, and determine response levels (displacements) 
corresponding to the 0.05, 0.25, 0.50, 0.75, and 0.95 percentiles (so that the probability of the displacement of the 
experimental data P(Data ≤ 3.65) = 0.25, etc.). In this example, there are 5 terms in the least squares objective 
function, corresponding to the five percentiles of the CDF we are trying to match. The experimental response values 
at these percentiles are: 3.42, 3.65, 3.86, 4.33, and 4.66. 
 

Table 4 shows a wide range of results for this calibration problem. In general, matching percentile values 
requires significantly more function evaluations than matching the first and second moments, but should offer more 
power in parameter estimation since the output PDF is better characterized. The various solution approaches obtain 
different values for the optimal parameters w and t. Some parameter values result in better matches to the middle 
percentiles and are very inaccurate in the tail (for example, the 20 sample LHS result has a residual difference of 
0.24 for the 95th percentile value), while others (mean value and stochastic expansion) have the most error matching 
the 50th percentile value. There is a tradeoff in matching the various percentiles: some can be matched closely at the 
expense of others. If the user wanted to force matching at tails, for example, one could weight the residuals to obtain 
better matches at the percentiles of interest.  
 

UQ performed with 20 sample LHS suffered from problems resolving tail probabilities. Increasing the sample 
size from 20 to 100 greatly increases the accuracy of the result, but at the cost of significantly more function 
evaluations due to its nesting within the model calibration. In this problem, we see that the Advanced Mean Value 
(AMV) reliability method, which performs a single Taylor series approximation in the space of the original 
uncertain variables ("x-space") centered at the uncertain variable means, and searches for the MPP using this 
approximation, yields similar results to the AMV+ method, which iteratively updates the Taylor series 
approximation at each MPP prediction until the MPP converges.  In other cases AMV+ may significantly 
outperform AMV, although in general it will require more function evaluations to converge. Finally, the stochastic 
expansion methods perform well.  
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Table 4. Results for Matching Experimental and Simulation Percentile Values from the CDF using NL2SOL:   

Experiment percentile values of 3.42, 3.65, 3.86, 4.33, and 4.66. 
UQ Method 
(Inner Loop) 

t̂  ŵ  Residual Norm 
values (one row per 
0.05, 0.25, 0.5, 0.75, 
and 0.95 percentile) 

LHS-verified 
residual norm 
values of 
percentiles 

Num Fn 
Evaluations 

sampling (20) 2.000 
 
 
 
 

2.958 5th:   0.1582 
25th:  0.1213 
50th:  0.02687 
75th:  0.0832 
95th:  0.2452 
TOTAL:  0.3279 

5th:  0.2298 
25th:0.0211 
50th:  0.0980 
75th:  0.0123 
95th: 0.1826 
TOTAL:  0.3104 

1440 
 
 
 
 

sampling (100) 2.444 
 
 
 
 
 

2.534 
 
 
 
 
 

5th:   0.0889 
25th: 0.0489 
50th:  0.0712 
75th:  0.1333 
95th:  0.0886 
TOTAL:  0.2024 

5th:  0.0924 
25th: 0.0298 
50th:  0.0885 
75th: 0.1002 
95th: 0.0140 
TOTAL:  0.1658 

6200 
 
 
 
 
 

MPP x-Taylor 
mean (AMV) 
 
 
 
 

4.300 
 
 
 
 
 

2.008 
 

5th:   0.0799 
25th: 0.0658 
50th:  0.1231 
75th:  0.0760 
95th:  0.0315 
TOTAL:  0.1807 

5th:  0.1232 
25th: 0.0373 
50th:  0.1180 
75th: 0.0363 
95th: 0.0866 
TOTAL: 0.1983 

385 
 
 
 
 
 

MPP x-Taylor 
mpp (AMV+) 

4.305 2.007 5th:   0.0799 
25th: 0.0659 
50th:  0.1231 
75th:  0.0760 
95th:  0.0315 
TOTAL:  0.1807 

5th:  0.1233 
25th:  0.0373 
50th:  0.1179 
75th:  0.0363 
95th:  0.0866 
TOTAL: 0.1983 

550 

PCE,  
specifying 
percentiles 

2.395  2.560 5th:   0.0903 
25th: 0.0046 
50th:  0.1063 
75th:  0.0769 
95th:  0.0077 
TOTAL:  0.1660 

5th:   0.0826 
25th:   0.0444 
50th:   0.1078 
75th:   0.0817 
95th:   0.0093 
TOTAL:  0.1648 

1809 

stochastic 
collocation, 
specifying 
percentiles 

2.408 
 

2.552 
 

5th:   0.0895 
25th: 0.0475 
50th:  0.1065 
75th:  0.0776 
95th:  0.0071 
TOTAL:  0.1663 

5th:   0.0827 
25th:   0.0445 
50th:   0.1079 
75th:   0.0818 
95th:   0.0075 
TOTAL: 0.1649 

2349 

 

D. Example with design variable insertion  
This bi-level example illustrates the case where outer loop design variables parameterize inner loop uncertain 

variable distributions. For example, one might wish to determine the mean and variance of a normal input variable 
distribution to minimize the least squares error in the output. This is called design variable insertion into the 
distribution parameters of the uncertainty analysis. We consider a steel column example from reliability-based 
structural optimization [Kuschel97], which is typically considered with three design variables [ ]b,d,hθ =  as 
shown in Table 5. 
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Table 5. Design Variables for the Steel Column Example 
Variable symbol design range reference value units 
mean of flange breadth b [200, 400] 200.00 mm 
mean of flange thickness d [10, 30] 17.50 mm 
mean of height of steel profile h [100, 500] 100.00 mm 

 
The reference values correspond to the design originally reported to have optimal reliability. The components of the 
uncertain vector [ ]EFHDBPPPFu s ,,,,,,, 03,21= , enter into the response function of interest f as follows: 
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parameters have characteristics shown in Table 6, some of which depend on θ (inserted variables): 
 

Table 6. Uncertain Variables for the Steel Column Example 
variable symbol distribution mean/standard deviation unit 
yield stress Fs lognormal 400/35 MPa 
dead weight load P1 normal 500000/50000 N 
variable load P2 Gumbel 600000/90000 N 
variable load P3 Gumbel 600000/90000 N 
flange breadth B lognormal b/3 mm 
flange thickness D lognormal d/2 mm 
height of profile H lognormal h/5 mm 
initial deflection F0 normal 30/10 mm 
Young’s modulus E Weibull 21000/4200 MPa 

 
While any of the matching conditions could be applied to this example, we focus on the case of matching CDF 

response levels corresponding to specified probability percentiles 0.05, 0.25, 0.50, 0.75, and 0.95, as in Example C. 
Simulated experimental data were generated by setting b, d, and h, to the reference values and then evaluating f over 
40 Latin hypercube samples of the uncertain vector u. As before, binning the sample evaluations yields response 
levels [76.974, 115.02, 169.64, 191.93, 227.36] corresponding to the percentiles of interest. The goal of the least 
squares estimation is then to find θ such that the stochastic simulation output f, given u, matches these CDF data y. 
For this problem we apply NL2SOL with initial iterate θ0 = [300, 20, 300].  

 
The nested uncertainty analysis is performed using mean value or most-probable point (MPP) analytic reliability 

methods enhanced by a first-order Taylor series surrogate model constructed either (1) once at the uncertain 
variables means and then used to find all requested MPPs (Advanced Mean Value method, AMV), or (2) initially at 
the uncertain variable means and iteratively updated at each MPP prediction until each MPP converges (AMV+) 
[Eldred2006]. An advantage of MPP methods is that analytic derivatives of the UQ response levels f with respect to 
θ can be computed without performing finite differencing across the nested analysis, resulting in improved 
efficiency. Second-order enhancements (AMV2 and AMV2+) to the MPP searches were explored, but did not 
appreciably impact the optimization results and are not reported here. 

 
Table 7 shows the results for this example, including verification of the residuals using 10,000 sample LHS 

analysis. It is not surprising that we cannot always precisely recover the optimal parameters b and d since the 
parameters B and D are somewhat confounded in the response function f, and there are only 5 CDF percentiles to 
match. With mean value, analytic derivatives are not available, so the least squares solver must rely on finite 
difference derivatives across the entire nested UQ analysis, typically at considerably greater cost. In this case, 
however, the mean value approximation resolved the probability sufficiently for optimization, with overall lower 
cost. This highlights the importance of selecting a UQ method appropriate for the optimization problem at hand: 
with two design optima occurring at the design boundary, the optimizer works well given a reasonable, though 
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perhaps crude approximation to the trend. For a less well-behaved problem, the more advanced MPP methods might 
prove more efficient. 

Table 7. Results for the Steel Column Example, matching percentiles with design variable insertion 
UQ algorithm b* d* h* solver  

residual norm 
LHS-verified 
residual norm 

function  
evals 

mean value 200.0 17.07 100.0 19.32 20.87 91 
u-space AMV  228.7 14.42 220.4 24.07 28.77 145 
u-space AMV+ 200.0 17.03 100.0 18.63 21.45 399 

 
The panels in Figure 8 show the experimental CDF, the CDF corresponding to the optimization initial iterate, 

and the optimal CDFs determined by minimization with the NL2SOL algorithm using each of the MPP search 
methods in u-space. These graphically demonstrate the progress an optimizer makes in calibrating to a CDF. While 
more costly, the use of iterative model updating in AMV+ helps resolve tail probabilities slightly more accurately 
(see right figure).  

 
Figure 8. Initial and optimal calibrated simulation CDFs matching the experimental CDF for the Steel 

Column example. 
 

 

VI. Conclusions 
This paper has presented several formulations to estimate model parameters which result in the “best distribution 

fit” between experimental and simulation data, including matching the experimental mean with the simulation mean, 
matching both mean and standard deviation, and matching percentile values. Our results show reliability methods or 
stochastic expansion methods such as PCE are more effective than sampling in the propagation of uncertainty in the 
inner loop. This is partly due to the fact that reliability and stochastic expansion methods tend to be more accurate 
and efficient than sampling methods for uncertainty propagation, and partly due to the availability of analytic 
derivatives of the statistics for these methods. Specifically, reliability methods support CDF sensitivities and 
PCE/SC support moment sensitivities. NL2SOL generally was more efficient than NLSSOL or Gauss Newton on 
the problems in our case studies. The optimal model parameters obtained when only matching moments, especially 
matching only the experimental and simulation mean, may be non-unique, a common situation in inverse problems. 
Best distribution fit problems may require regularization approaches to address the lack of identifiability in 
parameter estimation. Finally, we have shown that finding optimal parameters to match percentiles may result in 
some percentiles being closely matched and others (such as tail probabilities) not being as well matched. Weighting 
the residual terms of interest can help address this. In terms of future work, we would like to consider treating the 
uncertainty as epistemic instead of aleatory, and matching interval bounds. We would also like to investigate 
methods which are not nested, such as sequential methods to handle optimization of calibration parameters under 
uncertainty. 
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