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An important component of verification and validation of computational models is so-
lution verification, which focuses on the convergence of the desired solution quantities as
one refines the spatial and temporal discretizations and iterative controls. Uncertainty
analyses often treat solution verification as a separate issue, hopefully through the use of
a priori grid convergence studies and selection of models with acceptable discretization
errors. In this paper, a tighter connection between solution verification and uncertainty
quantification is investigated. In particular, error estimation techniques, using global norm
and quantity of interest error estimators, are applied to the nonlinear structural analy-
sis of microelectromechanical systems (MEMS). Two primary approaches for uncertainty
quantification are then developed: an error-corrected approach, in which simulation re-
sults are directly corrected for discretization errors, and an error-controlled approach, in
which estimators are used to drive adaptive h-refinement of mesh discretizations. The for-
mer requires quantity of interest error estimates that are quantitatively accurate, whereas
the latter can employ any estimator that is qualitatively accurate. Combinations of these
error-corrected and error-controlled approaches are also explored. Each of these techniques
treats solution verification and uncertainty analysis as a coupled problem, recognizing that
the simulation errors may be influenced by, for example, conditions present in the tails
of input probability distributions. The most effective and affordable of these approaches
are carried forward in probabilistic design studies for robust and reliable operation of a
bistable MEMS device. Computational results show that on-line and parameter-adaptive
solution verification can lead to uncertainty quantification and design under uncertainty
studies that are more accurate, efficient, reliable, and convenient.

I. Introduction

Pre-fabrication design optimization of microelectromechanical systems (MEMS) is an important emerging
application of uncertainty quantification and reliability-based design optimization. Typically crafted of
silicon, polymers, metals, or a combination thereof, MEMS serve as micro-scale sensors, actuators, switches,
and machines with applications including robotics, biology and medicine, automobiles, RF electronics, and
optical displays.! Design optimization of these devices is crucial due to high cost and long fabrication
timelines. Uncertainty in the micromachining and etching processes used to manufacture MEMS can lead
to large uncertainty in the behavior of the finished products, resulting in low part yield and poor durability.
Reliability-based design optimization (RBDO), coupled with computational mechanics models of MEMS,

*Principal Member of Technical Staff, Optimization and Uncertainty Estimation Department, MS-1318, Associate Fellow
ATAA.
fLimited Term Member of Technical Staff, Optimization and Uncertainty Estimation Department, MS-1318, Member AIAA.
fSenior Member of Technical Staff, Advanced Computational Mechanics Architectures Department, MS-0382.
8Senior Member of Technical Staff, Advanced Computational Mechanics Architectures Department, MS-0382.
9Senior Member of Technical Staff, Multiphase and Nanoscale Transport Processes Department, MS-0836.
I Senior Member of Technical Staff, Multiphase and Nanoscale Transport Processes Department, MS-0836.
**Senior Member of Technical Staff, MEMS Devices and Reliability Physics, MS-1310.
ftSandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States
Department of Energy’s National Nuclear Security Administration under Contract DE-AC04-94AL85000.

1 of 16

AlAA 2007-1934

Copyright © 2007 by the American Institute of Aeronauli¢scang AslePAMIGSt INGronautics and Astronautics Paper 2007-1934
The U.S. Government has a royalty-free license to exercise all rights under the copyright claimed herein for Governmental purposes.

All other rights are reserved by the copyright owner.



offers a means to quantify this uncertainty and determine a priori the most reliable and robust designs that
meet performance criteria.?

Uncertainty quantification (UQ) is the process of determining the effect of input uncertainties on response
metrics of interest. These input uncertainties may be characterized as either aleatory uncertainties, which
are irreducible variabilities inherent in nature, or epistemic uncertainties, which are reducible uncertainties
resulting from a lack of knowledge. Since sufficient data is generally available for aleatory uncertainties,
probabilistic methods are commonly used for computing response distribution statistics based on input
probability distribution specifications. Conversely, for epistemic uncertainties, data is generally sparse,
making the use of probability theory questionable and leading to nonprobabilistic methods based on interval
specifications.

For the MEMS problems of interest, data on manufacturing variabilities is generally available and proba-
bilistic methods may be used. The technique selected for performing UQ in this study is reliability analysis,
which quantifies the effect of aleatory input uncertainties defined by probability distributions. This class of
UQ methods is often more efficient at computing statistics in the tails of the response distributions (events
with low probability) than sampling-based approaches because the number of samples required to resolve a
low probability can be prohibitive. Thus, these methods, as their name implies, are often used in a reliability
context for assessing the probability of failure of a system when confronted with an uncertain environment.

A reliability analysis that captures the effect of random variables on response metrics for an inaccurate,
inappropriate, or unconverged model is of limited utility. For this reason, it is prudent to pursue verification
and validation activities for the computational model of interest. One portion of this is the area of solution
verification, which focuses on the convergence of the desired solution quantities as one refines the spatial
and temporal discretizations and iterative controls. When these convergence analyses are performed off-
line, they may result in a relatively expensive model that has been verified for a single set of nominal
design/uncertain parameters. With the advent of finite element error estimation techniques, techniques for
on-line and parameter-adaptive solution verification become possible and hold potential for improving overall
accuracy and efficiency.

A number of different conceptual formulations are possible for incorporating errors and uncertainties. If
the discretization errors are not driven toward zero through the use of mesh refinement (in an error-controlled
approach), then they can be included within the uncertainty analysis (in an error-corrected approach) using
one of the following conceptual models:

1. given error estimates for the response quantities of interest, model the discretization error as a deter-
ministic quantity that can correct results for a particular mesh discretization. The results generated
from the uncertainty analysis are then projected towards the fully converged results, but uncertainties
in the accuracy of the error estimates are not modeled.

2. given error estimates for the response quantities of interest, model the true discretization error as being
uncertain since the estimate will not in general be exact. In particular, model the discretization error
as a random variable and incorporate it as an additional uncertainty within the probabilistic analysis.

3. given error bounds for the response quantities of interest, model the true discretization error as an
additional uncertainty within the UQ analysis. Given no additional data on the error distribution
within the bounds, modeling the error as an epistemic uncertainty using an interval distribution would
be appropriate.

Put another way, one can attempt to eliminate the errors (through uniform or adaptive mesh refinement),
account for the errors deterministically (approach 1), or account for the errors probabilistically (approaches
2 and 3). In this study, we employ approach 1, and do not model the discretization error as a random
quantity. In addition, error bounds are more challenging to obtain and are outside the scope of this paper.
Approaches 2 and 3 are directions for future research.

Our test problem for solution-verified reliability analysis comes from the structural mechanics simulation
of a bistable MEMS switch. The geometric nonlinearity and large displacements of the problem motivate a
fully nonlinear finite strain 2D elasticity model for the bistable switch. In order to compute an estimate of
the error in the force at each displacement step resulting from the mesh discretization, an a posteriori error
estimate was derived for this quantity of interest. This “goal-oriented” estimator is defined by integrating
the finite element residual weighted by the error in an associated global linearized adjoint problem. Local

2 of 16

American Institute of Aeronautics and Astronautics Paper 2007-1934



element contributions to the global error estimate can then be used to drive adaptive mesh refinement. In
this case, the mesh is adapted to minimize the error in the force, which is known as goal-oriented adaptivity.

Sections II, III, and IV describe the reliability analysis, error estimation, and reliability-based design
optimization algorithms, respectively. Section V describes their application to a microelectromechanical
compliant bistable mechanism, Section VI presents computational results, and Section VII provides conclud-
ing remarks.

II. Reliability Method Formulations

Reliability methods are probabilistic algorithms for quantifying the effect of input uncertainties on re-
sponse metrics of interest. In particular, they perform uncertainty quantification (UQ) by computing approx-
imate response distribution statistics based on specified probability distributions for input random variables.
These response statistics include mean, standard deviation, and cumulative or complementary cumulative
distribution function (CDF/CCDF) response level and probability level pairings.

Refs. 3 and 4 describe a variety of first-order and second-order algorithms for reliability analysis, including
Mean Value (MV, also known as MVFOSM), Advanced Mean Value (AMV), iterated Advanced Mean Value
(AMV+), second-order iterated Advanced Mean Value (AMV?2+), two-point adaptive nonlinearity approx-
imation (TANA), and the first-order and second-order reliability methods (FORM and SORM). MV is the
simplest, least-expensive reliability method because it estimates the response means, response standard de-
viations, and all CDF/CCDF response-probability-reliability levels from a single evaluation of response func-
tions and their gradients at the uncertain variable means. This approximation can have acceptable accuracy
when the response functions are nearly linear and their distributions are approximately Gaussian, but can
have poor accuracy in other situations. All other reliability methods solve a nonlinear equality-constrained
optimization problem to compute a most probable point (MPP) and then integrate about this point to com-
pute probabilities. The MPP search is performed in uncorrelated standard normal space (“u-space”) since it
simplifies the probability integration. The transformation from correlated non-normal distributions (x-space)
to uncorrelated standard normal distributions (u-space) is denoted as u = T'(x) with the reverse transfor-
mation denoted as x = T~1(u). These transformations are nonlinear in general, and possible approaches
include the Rosenblatt,” Nataf,® and Box-Cox” transformations. The nonlinear transformations may also be
linearized, and common approaches for this include the Rackwitz-Fiessler® two-parameter equivalent normal
and the Chen-Lind® and Wu-Wirsching!? three-parameter equivalent normals. The results in this paper
employ the Nataf nonlinear transformation which occurs in the following two steps. To transform between
the original correlated x-space variables and correlated standard normals (“z-space”), the CDF matching
condition is used:

() = Fla,) (1)

where ®() is the standard normal cumulative distribution function and F() is the cumulative distribution
function of the original probability distribution. Then, to transform between correlated z-space variables
and uncorrelated u-space variables, the Cholesky factor L of a modified correlation matrix is used:

z = Lu (2)

where the original correlation matrix for non-normals in x-space has been modified to represent the corre-
sponding correlation in z-space.

The forward reliability analysis algorithm of computing CDF/CCDF probability p or reliability £ levels
for specified response levels Z is called the reliability index approach (RIA), and the inverse reliability analysis
algorithm of computing response levels z for specified CDF/CCDF probability p or reliability levels 3 is called
the performance measure approach (PMA).!! The differences between the RIA and PMA formulations appear
in the objective function and equality constraint formulations used in the MPP searches. For RIA, the MPP
search for achieving the specified response level Z is formulated as

T

minimize u‘u
subject to G(u) =z (3)
and for PMA, the MPP search for achieving the specified reliability /probability level 3,p is formulated as
minimize (or maximize) G(u)
subject to u’u = 32 (4)
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where u is a vector centered at the origin in u-space, g(x) is the limit state function (the response function
for which probability-response level pairs are needed), and g(x) = G(u) by definition. In the RIA case,
the optimal MPP solution u* defines the reliability index from § = =|ju*|l2, which in turn defines the
CDF/CCDF probabilities based on first-order integration (i.e., p = ®(—/)), second-order integration (e.g.,
Breitung, Hohenbichler-Rackwitz, or Hong corrections which use principal curvatures k; of the limit state
function to better inform the integration), or (adaptive) importance sampling. In the PMA case, the limit
state at the MPP (G(u*)) defines the desired response level result. Refer to Refs. 3 and 4 for information
on sign conventions and other details.

There are a variety of algorithmic variations that can be explored within RIA/PMA reliability analysis
including limit state approximations, probability integrations, warm starting approaches, Hessian approx-
imations, and optimization algorithm selections.®>* The results in this paper come from optimizing the
AMV?2+ approximation,* where a second-order Taylor series model of the limit state is used and updated as
the optimization progresses with rank one updates to the Hessian and new expansions about each candidate
MPP. When the desired statistics include probabilities, they are calculated by integrating around the most
probable point in u-space using either first order or second-order integration methods. All of these reliability
analysis capabilities are implemented in DAKOTA, an open-source software toolkit for design optimization,
uncertainty quantification, parameter estimation, and sensitivity analysis.!?

ITII. Error Estimation

We now describe the nonlinear elasticity problem that we will solve for the force response of the MEMS
device. In addition, we outline the a posteriori error estimators that we use to compute the error in the
force.

Suppose that we wish to solve the following nonlinear elasticity problem in a domain €: find the stress
tensor field o satisfying

—V.o=f zell (5)

In general o is a nonlinear function of the displacment vector field u. Q is the deformed reference frame,
which is the image of the undeformed reference frame 2 x under the mapping

r=X+u (6)

for any X € Qx.
The stress is a nonlinear function of the displacement gradients. In order to derive this expression, we
first introduce the deformation gradient, which is the derivative of the mapping in (6)

F=(Vxz)' = (VxX)' + (Vxu) =1+ (Vxu)'. (7)
The stress o = o(Vu) is then given by the neo-Hookean constitutive model
o " AlnJ
== (F-F"—-1 1 8

where J = det F' and A and p are the Lamé coefficients. For infinitessimal gradients V xu, the neo-Hookean
model will reduce to the form of Hooke’s law for linearized elasticity

1
oc=2pe+Ntre)l, e= i(VXut + (Vxu)t).

The nonlinearities in this problem arise from two main sources. First, the neo-Hookean model is a highly
nonlinear function of the deformation gradient. Second, both the domain and the derivatives are functions
of the displacement field.

In order to derive a weak variational formulation, we begin by multiplying (5) by a test function v and
integrating by parts over €) to obtain

/U:Vvdac—/ a-nvds:/fvdx. (9)
Q X9) Q

We assign Dirichlet boundary conditions to part of the domain I'p

u=up, (10)
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and Neumann boundary conditions to the remainder I'
o-n=gn. (11)

Substituting these into (9), we obtain the variational problem for u satisfying

/U:Vvdx:/fvdx—i—/ gn vds, (12)
Q Q I'n

for all test functions v that vanish on I'p. By choosing a finite dimensional space V},, we can define a finite
element approximation as the solution to th problem: find uy € up + Vj:

/Uh:Vvhdw:/fvhdx+/ gy vpds, Yu, € Vp, (13)
Q Q I'n

where op, = 0(Vuy) is the discrete stress.
Suppose that we are interested in estimating the error in the i—th component of the surface traction over
some segment 'y C I'p
Jj(u) = jir, (u) = / e;-o(u)-nds. (14)
Lo

In practice a more accurate postprocessed surface force is given by

jh(u)z/F o(u) : Vi, dm—/sz/Jhd:c—i—/F gN U ds. (15)

Here the function vy, is defined as the finite element function which is one for nodes of component ¢ on I'g
and zero for all other nodes.
Let z be the solution to the following linearized adjoint problem: find z such that

o e, s €Ty, (16)
0, se'p/Ty,

and
/(a'(uh)z) :Vode =0, veV. (17)
Q
Using this adjoint problem, we can derive the error estimate for the error E = jj(u) — jn(up) as
E= [ o(up): V(z—vp) da:—/ f(z—vh)dac—/ gy (z —wvp)ds+ R, Vv, € V, (18)
Q Q Tn

where R is a higher order remainder.

A practical error estimate based on (18) can be derived using an approximate dual solution. Let zj, be
the finite element approximation to the adjoint solution z. Since the terms in 18 containing the data f
and gy are formally higher order, we can neglect them in a practical error estimate. Finally, we can use
vp, = zp, and approximate the exact gradients of z using a gradient recovery operator R(Vzp) based on zj.
The practical error estimator is then given by:

ne = /Qa(uh) :(R(Vzp) — Vazp,) de. (19)

The factors influencing the accuracy of the error indicator include the linearization error, the neglection of
the higher order terms, the gradient recovery approximation, and error from numerical quadrature.

IV. Reliability-Based Design Optimization

Capabilities to assess reliability and estimate errors have thus far been discussed. The next step is to
embed these procedures within the design optimization context, and we will employ reliability-based design
optimization (RBDO) algorithms to perform solution-verified design under uncertainty. RBDO approaches
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may be broadly characterized as bi-level (in which the reliability analysis is nested within the optimization'?),
sequential (in which iteration occurs between optimization and reliability analysis'# 1), or unilevel (in which
the design and reliability searches are combined into a single optimization!%). The reliability analysis ca-
pabilities described in Section II provide a rich foundation for exploring a variety of RBDO formulations.
Ref. 3 investigated bi-level, fully-analytic bi-level, and first-order sequential RBDO approaches employing
underlying first-order reliability assessments. Ref. 4 investigated fully-analytic bi-level and second-order se-
quential RBDO approaches employing underlying second-order reliability assessments. The studies in this
paper employ semi-analytic bi-level RBDO, where the semi-analytic nature arises from the combination of
analytic probabilistic sensitivities with numerical simulation response sensitivities.

The bi-level RBDO approach performs a full reliability analysis for every optimization function evaluation.
This involves a nesting of two distinct levels of optimization within each other, one at the design level and
one at the MPP search level. Since an RBDO problem will typically specify both the Z level and the p/f3
level, one can use either the RIA or the PMA formulation for the UQ portion and then constrain the result
in the design optimization portion. In particular, RIA reliability analysis maps z to p/3, so RIA RBDO
constrains p/[3:

minimize f
subject to 3> (3
or p<p (20)
And PMA reliability analysis maps p/3 to z, so PMA RBDO constrains z:
minimize f
subject to 2z >z (21)

where z > Z is used as the RBDO constraint for a cumulative failure probability (failure defined as z < 2)
but z < z would be used as the RBDO constraint for a complementary cumulative failure probability (failure
defined as z > z).

An important performance enhancement for bi-level methods is the use of sensitivity analysis to analyt-
ically compute the design gradients of probability, reliability, and response levels. When design variables
are separate from the uncertain variables (i.e., they are not distribution parameters), then the following
first-order expressions may be used:'3 1718

Vaz = Vag (22)
1
Vdﬁcdf = mvdg (23)
Vaveasr = —&(—Bear)VaBear (24

In the case of second-order integrations, Eq. 24 must be expanded to include the curvature correction.*

To capture second-order probability estimates within an RIA RBDO formulation using well-behaved g
constraints, a generalized reliability index can be introduced where

Bear = " (pear) (25)

for second-order p.qr. This reliability index is no longer equivalent to the magnitude of u, but rather is
a convenience metric for capturing the effect of more accurate probability estimates. The corresponding
generalized reliability index sensitivity is presented in Ref. 4. Even when V4g is estimated numerically,
these probabilistic sensitivity equations can be used to avoid numerical differencing across full reliability
analyses. This semi-analytic approach is the one adopted for the MEMS application explored in this paper.

When the design variables are distribution parameters of the uncertain variables, V qg is expanded with
the chain rule and Eqgs. 22 and 23 become

Vaz = VaxVikg (26)
1

c p— —_— X 27

VaBeds .G ”deV g (27)

where the design Jacobian of the transformation (V4x) may be obtained analytically for uncorrelated x or
semi-analytically for correlated x (V4L is evaluated numerically) by differentiating Egs. 1 and 2 with respect
to the distribution parameters. All other equations remain the same as before. For this design variable case,
all required information for the sensitivities is available from the MPP search.
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V. Simulation of MEMS Bistable Mechanisms

MEMS bistable mechanisms toggle between two stable positions, making them useful as micro switches,
relays, and nonvolatile memory. In particular, the focus here is on shape optimization of compliant bistable
mechanisms, where instead of mechanical joints, material elasticity and geometry enable the bistability of
the mechanism.!® 2! Figure 1(a) contains an electron micrograph of a MEMS compliant bistable mechanism
in its second stable position. The first stable position is the as-fabricated position. One achieves transfer
between stable states by applying force to the center shuttle via a thermal actuator, electrostatic actuator,
or other means to move the shuttle past an unstable equilibrium.

Bistable switch actuation characteristics depend on the relationship between actuation force and shuttle
displacement for the manufactured switch. Figure 1(b) contains a schematic of a typical force—displacement
curve for a bistable mechanism. The switch characterized by this curve has three equilibria: F; and Ej3
are stable equilibria whereas Fs is an unstable equilibrium (arrows indicate stability). A device with such
a force—displacement curve could be used as a switch or actuator by setting the shuttle to position E3 as
shown in Figure 1(a) (requiring large actuator force F),4,) and then actuating by applying the comparably
small force F,,;, in the opposite direction to transfer back through E5 toward the equilibrium E;. One
could utilize this force profile to complete a circuit by placing a switch contact near the displaced position
corresponding to maximum (closure) force as illustrated. Repeated actuation of the switch relies on being
able to reset it with actuation force Fj, 4.

] force
actuation force switch
contact
FmaxT
anchors !
‘ !
) : E2 E3
. : \/
I
I
U displacement
- Fmin**
' AMRAY

(a) Scanning electron micrograph of a MEMS bistable (b) Schematic of force-displacement curve for bistable
mechanism in its second stable position. The attached MEMS mechanism. The arrows indicate stability of equi-
vernier provides position measurements.?2 libria F; and E3 and instability of Es.

Figure 1. Bi-stable MEMS mechanism.

The device design considered in this paper is similar to that in the electron micrograph in Figure 1(a),
for which design optimization has been previously considered,?! as has robust design under uncertainty with
mean value methods.?? The primary structural difference in the present design is the tapering of the legs,
shown schematically in Figure 2(a). Figure 2(b) shows a scale drawing of one tapered beam leg (one quarter
of the full switch system). A single leg of the device is approximately 100 um wide and 5-10 pum tall. This
topology is a cross between the fully compliant bistable mechanism reported in Ref. 21 and the thickness-
modulated curved beam in Ref. 24. As described in the optimization problem below, this tapered geometry
offers many degrees of freedom for design.

A. Finite element simulation

The geometric nonlinearity and large displacements of the bistable MEMS problem motivated a fully non-
linear finite strain 2D elasticity model for the bistable switch which we solve using Aria.2® Aria is a Sierra2®
framework-based parallel finite element analysis code for the solution of coupled multiphysics problems in
2D or 3D; is capable of steady-state, continuation and transient analysis; and includes support for error esti-
mation, dynamic h-adaptivity and several nonlinear solution strategies including full Newton with analytic
sensitivities (used here). In this test problem the material is taken to be a compressible neo-Hookean non-
linear elastic solid that can sustain large displacements and strains.?” For discretization, we used standard
Galerkin finite elements with either linear or quadratic quadrilateral elements with h-adaptivity and hanging
node constraints.
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tapered beam

hd

actuation force

(a) Schematic of a tapered beam bistable mechanism in (b) Scale rendering of tapered beam leg for bistable mech-
as-fabricated position (not to scale). anism.

Figure 2. Tapered beams for bistable MEMS mechanism.

The goal of the model is to compute the surface force response as one end of the switch is displaced,
while the other end is fixed. This force is computed using the post-processed reaction force at the nodes
on the specified boundary segment. For the MEMS design, the value of the force is computed throughout
a range of prescribed displacements, and the minimum force is calculated by interpolation of the computed
displacement-force points.

In order to compute an estimate of the error in the force at each displacement step, an a posteriori error
estimate was derived for the force error (Section IIT). Formally, this “goal-oriented” estimator is defined
by integrating the finite element residual weighted by the error in an associated global linearized adjoint
problem. In practice, we compute a finite element approximation to the adjoint problem using the same mesh
and elements as the original displacement formulation. Then the adjoint error weights are approximated as
the difference between a local higher order recovered adjoint solution and the computed approximate adjoint
solution.

B. Random and design variable formulation

The tapered beam legs of the bistable MEMS mechanism are parameterized by the 13 design variables
shown in Figure 3, including widths and lengths of beam segments as well as angles between segments.
For simulation, a symmetry boundary condition allowing only displacement in the negative y direction is
applied to the right surface (x = 0) and a fixed displacement condition is applied to the left surface. With
appropriate scaling, this allows the quarter model to reasonably represent the full four-leg switch system.

Due to manufacturing processes, fabricated geometry can deviate significantly from design-specified beam
geometry. As a consequence of photo lithography and etching processes, fabricated in-plane geometry edges
(contributing to widths and lengths) can be 0.1 £ 0.08 um less than specified. This uncertainty in the
manufactured geometry leads to substantial uncertainty in the positions of the stable equilibria and in the
maximum and minimum force on the force—displacement curve. The manufactured thickness of the device
is also uncertain, though this does not contribute as much to variability in the force—displacement behavior.
Uncertain material properties such as Young’s modulus and residual stress also influence the characteristics
of the fabricated beam. For this application two key uncertain variables are considered: AW (edge bias on
beam widths, which yields effective manufactured widths of W; + AW,i = 0,...,4) and S, (residual stress
in the manufactured device), with distributions shown in Table 1.

Table 1. Uncertain variables x = [AW, S;] used in reliability analysis.

variable mean (p) std. dev. distribution
AW (width bias)  -0.2 um 0.08 normal
Sy (residual stress) -11 Mpa 4.13 normal
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Figure 3. Design parameters for the tapered-beam fully-compliant bistable mechanism (geometry not to
scale). Displacement is applied in the negative y direction at the right face (z = 0), while at the left face, a
fixed displacement condition is enforced.

Given the 13 geometric design variables
d = [L17 LQ; L3a L47 917 927 03, 043 W07 W17 W27 W33 W4]

subject to the bound constraints listed in Table 3 and the specified uncertain variables x = [AW,S,], we
formulate a reliability-based design optimization problem to achieve a design that actuates reliably with at
least 5 uN force. The RBDO formulation uses the limit state

g(x) = Fmin(x) (28)

and failure is defined to be actuation force with magnitude less than 5.0 uN (F,.;, > —5.0). Reliability
index Becqr > 2 is required. The RBDO problem utilizes the RIA Z — 3 approach (20) with Z = —5.0:

max E [Finin(d, x)]
s.t. 2 < ﬂccdf(d) (29)
50 < E[Fne(d,x)] < 150
E[E2(d,x)] < 8

although the PMA (3 — z approach (21) could also be used. The use of the F},;, metric in both the objective
function and the reliability constraint results in a powerful problem formulation, because in addition to
yielding a design with specified reliability, it also produces a robust design. By forcing the expected value
of Fyuin toward the —5.0 target while requiring two standard deviations of surety, the optimization problem
favors designs with less variability in F},,;,. This renders the design performance less sensitive to uncertainties.
The response PDF control is depicted in Figure 4(a), where the mean is maximized subject to a reliability
constraint on the right tail. Alternatively, the response PDF control depicted in Figure 4(b) could be
employed by maximizing the PMA z level corresponding to 3 = —2. This has the advantage of controlling
both sides of the response PDF, but it is more computationally expensive since it requires the solution of two
MPP optimization problems per design cycle instead of one. For this reason, the RIA RBDO formulation in
(29) is used for all results in this section.

Throughout uncertainty analysis and design optimization using DAKOTA, for each set of specified ge-
ometric design parameters and realizations of uncertain variables, we create and mesh the tapered beam
geometry and then perform finite element analysis with Aria to simulate the nonlinear elastic deformation of
the beam through discrete displacement steps to produce a force—displacement curve. All switch simulations
employ a quarter model (single beam), with appropriate boundary conditions and multipliers to recover the
full system.
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(a) Response PDF control of mean and right tail (b) Response PDF control of both tails

Figure 4. Schematic representation of design formulations for output response PDF control.

VI. Computational Results

In this section, the reliability analysis, error estimation, and RBDO algorithms described in Sections II,
III, and IV are applied to the bistable MEMS device described in Section V. Extensive computational results
are reported in Ref. 28, for which the highlights are summarized here.

A. Error estimation

In Figure 5(a) we plot the force—displacement curves computed using a sequence of uniformly refined meshes
of linear elements along with a fine mesh of 3200 quadratic elements, which is used as a reference solution.
Looking at the entire curve, only the curves from the two coarsest meshes are clearly distinguishable from

100 — _0— ::222; ggg 4 B —o—— linear 200
- jinear 3200 | @1(tn) :::Z; 2(2)80 Qn(un)
i - ——<—— linear 12800 » B —~—— linear 12800

- ——o—— quadratic 3200 } Q —o—— quadratic 3200 } Q

6 6.5 7 7.5 8
Displacement, § (um) Displacement, § (pm)
(a) Entire curve. (b) Curve near minimum force.

Figure 5. Force—displacement curves for uniform meshes of linear elements and a fine mesh of quadratic
elements.

the finer grids. However, on closer inspection in a region near the minimum force value, we see in Figure 5(b)
that the rate of convergence to the reference curve is superlinear.??
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In Figure 6(a,b) we plot the error estimator n® and the exact error in the surface force computed
using linear elements for each displacement step. We can see that both the estimator and the exact error are
typically negative, and converge to zero in absolute value as the mesh is refined. Again the error rate appears
to be superlinear. In order to quantify the accuracy of n?, we plot in Figure 6(c) the global effectivity @

|
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Figure 6. Estimated and exact surface force error and error effectivity for uniform meshes of linear elements.

for each displacement step. It is clear that this ratio is always between 0.7 and 1.4, and tends to one as the
mesh is refined. Thus we have demonstrated that for sequences of uniform meshes, the estimator n® is a
reasonable predictor of the error in the surface force for our MEMS application problem. Furthermore, the
predictive capability improves as the meshes are refined.

We now turn to calculations with the error estimator 79 in an adaptive mesh refinement algorithm. In
these calculations, the nonlinear solve at each time step is wrapped in an outer adaptive iteration. The
adaptive iteration proceeds through the following steps:

1. Solve the nonlinear system for uy,
2. Calculate the error estimator 7%

3. If the error estimator exceeds the given tolerance, then apply the marking algorithm to mark elements
for refinement/coarsening; otherwise exit the adaptive loop

4. Adapt the mesh based on the markers and prolongate all fields (coordinates, displacements, etc.) onto
the new mesh.

We illustrate each adaptive iteration, as defined above, by plotting all of the error—displacement data points
on the same graph. This means that for a given displacement step, there can be multiple output points as
the adaptive algorithm adapts the mesh to minimize the global error estimator. In Figure 7(a,b), we plot
such a data set for the estimated and exact error computed using the estimator n© and various refinement
tolerances. Looking at any fixed displacement step, we can also see the number of adaptive iterations taken
indicated by the points on the same vertical line. Also, we can see where the error decreases, typically from
refinement of elements, and where it sometimes increases, typically from coarsening of elements. We see
that while the estimator is reduced below the tolerance at each displacement step, the exact error may not
be less than the tolerance. This is related to the accuracy of the estimator, which improves as the error
tolerance is decreased. However, the adaptive algorithm maintains the estimated error to be less than the
error tolerance in absolute value. The ability to adapt the mesh so that the exact error is near or below
a specified tolerance is directly related to the accuracy of the error estimator. In Figure 7(c) we plot the
global effectivity of the estimator 9. We see that even under the conditions of local mesh refinement, the
error estimator is still quite accurate throughout the series of displacement steps.

B. Reliability analysis

Figure 8 shows results for reliability analysis of the MEMS bistable mechanism. Cumulative distribution
functions (CDFs) are used to display the results from PMA-based reliability analyses. In Figure 8(a),
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Figure 7. Estimated and exact surface force error and error effectivity for adaptive meshes using n< for all
iterations.

convergence of the CDFs is shown for a sequence of meshes using linear elements (200, 800, 3200, and 12800
elements), and in Figure 8(b), error-corrected results are presented for the two coarsest meshes. It is evident
that very nearly the same results are obtained for the reference mesh (3200 quadratic elements) and the 800
linear element mesh including error corrections.

Table 2 shows the computational time required for each of these analyses in terms of both function eval-
uations and average time per evaluation as well as the discrete L? error in minimum force values between
the various approximations and the reference CDF, calculated over the 13 requested probability levels p;.
The L? error for the finest linear mesh considered (12800 elements) is 3.1199e-02 uN, with Aria evaluations
requiring, on average, 388 seconds. Using the error correction on a linear mesh with only 800 elements yields
an error of 7.6341e-02 uN, with evaluations averaging 35 seconds, less than 10% of the cost. The linear
elements converge at approximately second order, while the error-corrected linear elements and quadratic
elements converge at approximately fourth order.?® Since the inclusion of adjoint error estimation calcula-
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Figure 8. Cumulative distribution functions for F),;, for a set of uniformly-refined meshes with and without
error correction.

tions only adds 46-49% to the nominal per-simulation cost, a quantitatively-predictive error correction on
a coarse mesh can significantly outperform a fully-converged fine mesh (which can be orders of magnitude
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more expensive). However, the error estimates are not always quantitatively predictive, and it is evident
from the 200 linear element results in Figure 8 that a level of mesh convergence is still required for the error
estimates to be predictive, however the level of mesh convergence required with error estimates is much lower
than without. This points to the use of a combination of error control and error correction, where mesh
adaptivity is first used to obtain a mesh where the estimator can be quantitatively predictive (but the mesh
is not refined to the point of driving the error to zero), and then the estimate is applied as a correction
factor. Refer to Ref. 28 for additional information on these combined approaches.

Table 2. Computational cost and error for 13 point CDF generated with various meshes.

FEA uQ num. num. func. time per L2 error in
type method elts. nodes evals eval (sec) z=Fin

linear AMV?2+ 200 303 340 5.7767  3.1758e+00
linear w/EE AMV2+ 200 303 485 8.5953  9.2555e-01
linear AMVZ+ 800 1005 410 23.4885  5.8753e-01
linear w/EE ~ AMV?2+ 800 1005 445 34.6055  7.6341e-02
linear AMV2+ 3200 3609 475 93.2751  1.2985e-01
linear w/EE AMVZ+ 3200 3609 420  136.2651  6.0263e-03
linear AMVZ+ 12800 13617 425  388.3487  3.1199e-02

linear w/EE  AMV?+ 12800 13617 470 568.3060  7.0266e-04
quadratic AMV24+ 3200 13617 360  477.8220

C. RBDO

The RBDO problem is solved by applying the DAKOTA software in the bi-level (nested) approach of
Section IV using semi-analytic derivatives of reliability metrics with respect to design variables for the
optimizer. Design variable optimization is performed with the DOT optimizer using the modified method of
feasible directions (MMFD)?? and each RIA reliability analysis is performed using AMV?2+ approximations
with SR1 quasi-Hessians to solve the MPP optimization subproblems. The initial iterate for the gradient-
based MMFD is taken to be an optimal design point from Ref. 2, which is already in the vicinity of the
desired solution. Optimization is performed for various discretizations and error corrections, each starting
from this initial iterate.

Table 3 contains optimal RBDO designs corresponding to the coarse (800 element) linear mesh, with
and without % error correction, the finest (12800 element) linear mesh, and the reference quadratic mesh.
In all except the reference mesh case, the optimizer progresses to an optimal solution where the reliability
constraint 3 is active and the expected value of Fj,;, is maximized. The optimizer progresses when using
the reference mesh, but does not yield as good a value for F,;,, nor as tight a constraint on the reliability
metric §. For all meshes considered, reliability-based design optimization finds device designs more robust

to input uncertainties by the means depicted in Figure 4(a). The initial bistable MEMS design reported

in Ref. 2 had variability in Fj,;, of 5.6 uN per input standard deviation, calculated as ElFmin)=Fmin ~ Ag

shown in Table 3, the optimal designs found with the present methods have variability 0.59-0.62 uN per
input standard deviation, indicating less sensitivity to input uncertainties. The error-corrected 800 element
coarse mesh yields a similar solution to the 12800 element fine mesh, but at less than 10% of the total
computational cost (27 versus 373 compute hours).

Figure 9 shows curves generated using the reference mesh for each of the optimal design parameter sets
from Table 3. These “reference-verified” force-displacement curves further confirm that RBDO using the 800
linear element mesh, with % error-correction, yields an optimal design similar to the finest (12800 element)
mesh at much lower cost. Without error correction, however, the 800 linear element results have considerable
discrepancy.
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Table 3. RBDO results for MEMS bistable mechanism: optimal designs using AMV?2+ for four meshes.

initial optimal
variable or metric quadratic linear linear linear quadratic
Lb. | name ‘ u.b. 3200 800 800 w/EE 12800 3200
10 Ly (um) 35 28.06 28.33 28.07 28.04 28.08
10 Ly (pm) 35 24.50 24.61 24.44 24.42 24.47
10 L3 (um) 35 30.83 31.05 30.63 30.59 30.72
10 L4 (um) 35 30.83 31.08 30.61 30.56 30.70
0 01 (deg.) 5 4.167 4.170 4.195 4.198 4.184
0 02 (deg.) 5 2.500 2.514 2.485 2.482 2.491
0 03 (deg.) 5 2.500 2.523 2.472 2.467 2.484
0 04 (deg.) 5 2.400 2.410 2.387 2.385 2.393
1 Wo (um) 3 1.333 1.313 1.349 1.354 1.342
1 Wi (pm) 3 1.253 1.233 1.268 1.273 1.260
2 Wo (um) 5 3.500 3.505 3.485 3.482 3.491
1 W3 (um) 3 2.000 1.993 2.005 2.006 2.004
1 Wy (pm) 3 1.333 1.327 1.334 1.333 1.334
E [Fin] (uN) -6.645 -6.208 -6.231 -6.188 -6.288
2 8 2.172 1.998 1.998 2.002 2.094
50 | E[Fmaz] (uN) | 150 57.05 59.19 57.65 57.87 57.11
E[E2] (um) 8 6.019 6.156 6.002 5.996 6.021
var. in Fp, per 0.76 0.60 0.62 0.59 0.62
num. func. evals. - 3581 2822 3149 1750
avg. time/eval (sec) - 24.0552 34.4634 425.8951 | 479.9207

verified force—displacement curves, all displacement steps

90 T T T T T T T T T 56
—%— linear_800

— * —linear_800_ee

80 —&— linear_12800 b

zoom near minimum force with interpolating polynomials
. :

force (UN)
force (UN)

. . .
6.9 7 71 7.2 7.3 7.4 75 7.6 7.7
displacement (um) displacement (um)

(a) Entire curve. (b) Curve near minimum force.

Figure 9. Verified force—displacement curves generated using reference mesh (3200 quadratic elements) with
optimal geometries defined from RBDO on various meshes.

VII. Conclusions

This paper explores the benefits of embedding automated solution verification within uncertainty analyis
for the probabilistic analysis and design of microelectromechanical systems (MEMS). An error estimator is
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developed for the error in the surface force in finite element approximations of nonlinear elasticity mod-
els. Numerical results verify that the estimator produces accurate error estimates using both uniform and
adaptively-refined meshes. Error-corrected and error-controlled reliability analysis using the estimator are
applied to address solution verification in an automated, on-line manner. Any dependence of solution dis-
cretization errors on random or design variables, which can occur particularly when varying geometric shape
parameters, is captured. The most effective and affordable of these approaches are carried forward in prob-
abilistic design studies for robust and reliable operation of a bistable MEMS device.

The key paper conclusion is that on-line solution verification approaches show significant promise. In
terms of accuracy, controlling or correcting for errors (or both) leads to higher confidence in the uncertainty
analysis and probabilistic design recommendations. In terms of computational expense, the use of error-
correction on coarse meshes (from adjoint-based quantity of interest error estimates) was shown to result
in less than 10% of the simulation expense of fully converged meshes with comparable accuracy. In terms
of computational reliability, the ability of the on-line approach to be parameter-adaptive precludes the
possibility of using model results that are converged for one set of parameters, but not for another. And in
terms of convenience, the potential elimination of the need for manual convergence studies should significantly
reduce overhead for analysts and designers.

Table 4 summarizes these characteristics for different approaches to solution verification within UQ/RBDO
studies, including no solution verification, off-line solution verification at the simulation level (e.g., Fig-
ure 5(a)), off-line solution verification at the UQ/RBDO study level (e.g., Figure 8(a)), and on-line solution
verification using error estimation and adaptivity. Of these possibilities, the no verification and simulation-
level off-line approaches are believed to be the two most common practices at this time. The on-line ap-
proaches are clearly the most desirable, but are obtained at the price of additional simulation development
to support error estimation and adaptivity.

no simulation-level study-level on-line
verification off-line off-line EE/Adapt
Accuracy L M H H
Efficiency H M L H
Reliability L M H H
Convenience H M L H

Table 4. Comparison of solution verification strategies: H = high, M = medium, L. = low
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