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Surrogate-based-optimization methods provide a means to minimize expensive high-
fidelity models at reduced computational cost, by using a high-fidelity model in combina-
tion with a low-fidelity model that is less costly but less accurate. A number of model
management techniques have been developed and shown to work well for the case in which
both models are defined over the same design space. However, many systems exist with
variable fidelity models for which the design variables are defined over different spaces,
and a mapping is required between the spaces. Two mapping methods, corrected space
mapping and POD mapping, are used in conjunction with trust-region model manage-
ment. Four constraint-management methods are demonstrated with each of the mapping
methods: Lagrangian minimization, direct surrogate optimization, a method based on
sequential quadratic programming (SQP), and a composite step approach called MAE-
STRO. The methods are demonstrated on a fixed-complexity analytical test problem and
a variable-complexity wing design problem. Both direct surrogate optimization and the
SQP-like method consistently outperformed optimization in the high-fidelity space. On
the wing design problem, the combination of direct surrogate optimization and POD map-
ping achieved 53% savings in high-fidelity function calls over optimization directly in the
high-fidelity space.

I. Introduction

A
s computational capabilities continue to grow, designers of engineering systems have available an increas-
ing range of numerical analysis models. These multifidelity models range from low-fidelity simple-physics

models to high-fidelity detailed computational simulation models. The drive towards including higher-fidelity
analyses in the design process, for example through the use of computational fluid dynamic (CFD) analy-
ses, leads to an increase in complexity and computational expense. As a result, design optimization, which
requires large numbers of analyses of objectives and constraints, becomes prohibitively expensive for many
systems of interest. This paper presents a methodology for improving the computational efficiency of high-
fidelity design, by exploiting variable fidelity and variable complexity — that is, inexpensive models of lower
physical resolution combined with coarser design parameterizations — in a design optimization framework.

Surrogate-based optimization (SBO) methods have been proposed as one method to achieve high-fidelity
design optimization at reduced computational cost. In SBO, a surrogate, or less expensive and lower-fidelity,
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model is used for the majority of the optimization, with recourse to the high-fidelity analysis less frequently.
The determination of when to use the high-fidelity model is based on some rigorous procedure for deciding
the appropriate level of fidelity. The surrogate model can be developed in a number of ways, including using
a simplified-physics model with a different set of governing equations. However, an improvement in a design
predicted by a low-fidelity model does not guarantee an improvement in the high-fidelity problem.

Much work has been performed on developing SBO methods that are provably convergent to an optimum
of the high-fidelity problem. Ref. 1 reviews a broad spectrum of SBO work. One promising group of
methods is based on trust-region model management (TRMM), which imposes limits on the amount of
optimization performed using the low-fidelity model, based on a quantitative assessment of that model’s
predictive capability. These TRMM methods are provably convergent to an optimum of the high-fidelity
model, provided the low-fidelity model is corrected to be at least first-order consistent with the high-fidelity
model.2 Correcting to second-order or quasi-second-order consistency provides improved performance.3 The
corrections can be additive or multiplicative; additive has been shown to be more appropriate in a wider
variety of problems.3

A number of researchers have developed SBO methods for constrained problems. Booker et al. developed
a direct-search SBO framework that converges to a minimizer of an expensive objective function subject only
to bounds on the design variables, and that does not require derivative evaluations.4 Audet et al. extended
that framework to handle general nonlinear constraints5 using a filter method for step acceptance.6 Ro-
driguez et al. developed a gradient-based TRMM augmented-Lagrangian strategy using response surfaces,
and showed that using separate response surfaces for the objective and constraints provided faster conver-
gence than using a single response surface for the augmented Lagrangian.7 Alexandrov et al. developed the
MAESTRO class of methods, which use gradient based optimization and trust region model management,
and compared them to a sequential quadratic programming (SQP)-like TRMM method.8

The SBO methods developed to date achieve computational gain by performing most of the analysis
on the low-fidelity model; however, they require that the high- and low-fidelity models operate with the
same set of design variables. For practical design applications, multifidelity models are often defined over
different design spaces. For example, the multifidelity supersonic business jet problem considered by Choi
et al.9 has a low-fidelity model that uses classical supersonic aerodynamics and vortex lattice-methods, and
a high-fidelity analysis that employs the Euler equations. The low-fidelity model operates on an aircraft
defined by 16 design variables: the wing area, aspect ratio, and sweep, the location of the wing root leading
edge, the thickness to chord length at three locations on the wing, the minimum cockpit diameter, the
minimum cabin diameter, and the fuselage radii at six locations. The high-fidelity model uses 126 design
variables: leading and trailing edge droop, twist, and 15 camber Hicks-Henne bumps at each of 7 locations
on the wing. Further, combining a low-fidelity model with a coarser parameterization of the design offers the
opportunity for additional reduction in computational complexity and cost beyond current SBO methods.
To achieve this, new variable-complexity design methodology is required that incorporates variable design
parameterizations into SBO methods.

Methods for incorporating models defined over variable design spaces for unconstrained optimization were
introduced in Ref. 10. This work extends the work in Ref. 10 to address constrained problems, which is of
interest for the majority of practical design problems. Since many algorithms for solving constrained problems
are reduced to solving a sequence of unconstrained subproblems, solution methods for unconstrained problems
provide a foundation for development of constrained problems. In Section II, an overview of constrained
trust-region methods is presented. In Section III, two methods for mapping between different design spaces
are presented, and a description of the trust-region approach in the variable-complexity case is given. Section
IV and Section V present results for an analytical test case and an engineering design problem, respectively.
Finally, conclusions are drawn in Section VI.

II. Constrained Trust-region Methods

We consider a general design problem posed using the following nonlinear optimization formulation:

min
x

f(x)

subject to c(x) ≤ 0 (1)

xL ≤ x ≤ xU ,
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where f ∈ IR represents the scalar objective to be minimized and x ∈ IRn is the vector of n design variables
that describe the design. The vectors xL and xU define lower and upper bounds on x, respectively. The vector
c ∈ IRm contains m constraints, which provide a mathematical description of requirements that the design
must satisfy. For realistic design problems of engineering relevance, the complexity of the optimization
problem (1) is twofold: first, the simulations required to evaluate f(·) and c(·) may be computationally
expensive, and second, the dimensionality of x may be large.

One approach to reduce the cost of optimization is to use SBO. Past work has focused on providing
surrogate models f̃(x) and c̃(x), for f(x) and c(x) respectively, that are computationally more efficient to
evaluate.11 Surrogate models can be roughly divided into three categories: data fit surrogates, using inter-
polation or regression of the high-fidelity model evaluated at one or more sample points;12–14 reduced-order
models, derived using techniques such as proper orthogonal decomposition (POD)15, 16 and modal analy-
sis;17, 18 and hierarchical models, also called multifidelity, variable-fidelity, or variable-complexity models. In
this last case, a physics-based model of lower fidelity and reduced computational cost is used as the surrogate
in place of the high-fidelity model. The multifidelity case can be further divided based on the means by
which the fidelity is reduced in the lower-fidelity model. The low-fidelity surrogate can be the same as the
high-fidelity, but converged to a higher residual tolerance;19 it can be the same model on a coarser grid;20, 21

or it can use a simpler engineering model that neglects some physics modeled by the high-fidelity analysis.22

Surrogate models can be rigorously incorporated into design optimization through the use of a formal
model management strategy. One such strategy is a TRMM framework.23 By using corrections to ensure
that the surrogate model is at least first-order accurate at the center of the trust region, this method is
provably convergent to a local minimum of the high-fidelity function. The TRMM framework is widely used,
having been adapted for multi-objective optimization24 and multidisciplinary optimization,25 in cases when
the design vector is the same between the high-fidelity and surrogate models.

The general approach in TRMM is to solve an optimization subproblem using only the low-fidelity model,
with an additional constraint that requires the solution to lie within a specified trust region. The size of
the trust region is managed using a merit function to quantitatively assess the predictive capability of the
low-fidelity model. There are a number of ways to incorporate constraints in trust-region methods; the
specific subproblem solved on each iteration and the merit function depend on the specific constraint man-
agement method chosen. The four constraint management methods described in the following subsections are
augmented Lagrangian minimization, direct surrogate optimization, an SQP-like method, and MAESTRO.

In this work, we denote the uncorrected low-fidelity models for f and c by f̂ and ĉ, respectively, while
the respective corrected surrogate models are denoted f̃ and c̃.

A. Lagrangian minimization

One method to solve constrained optimization problems is to formulate a Lagrangian or augmented La-
grangian of the problem and solve the resulting unconstrained problem. The first constraint management
method combines this approach with the unconstrained TRMM method of Alexandrov et al.23 and quasi-
second-order additive corrections using the Broyden-Fletcher-Goldfarb-Shanno26–29 (BFGS) approximation
to the Hessian matrix.3 The algorithm is modified from Ref. 30, with the construction of the response sur-
face in that work replaced by the correction of the low-fidelity model to be consistent with the high-fidelity
model. A series of subproblems are solved, which have the form

min
x

L̃k(x, λk, rk
p )

subject to ‖x− xk
c‖∞ ≤ ∆k, (2)

where, for subproblem k, L̃k(x, λk, rk
p ) is the surrogate augmented Lagrangian, λk is the vector of Lagrange

multipliers, rk
p is the penalty parameter, xk

c is the center of the trust region, and ∆k is the trust-region radius.

The solution of the kth subproblem (2) is denoted xk
∗

and, if the step is accepted, is used as the center of
the trust region for the following subproblem, that is xk

c = xk−1
∗

. The surrogate augmented Lagrangian, L̃,
can be defined in two different ways, which are described below.

The size of the trust region, ∆k, is determined using a merit function. The trust-region ratio is defined as
the ratio of the actual improvement in the merit function to the improvement predicted by optimization on
the surrogate model of the merit function. For this method, the merit function is the augmented Lagrangian,
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and the trust-region ratio is therefore defined as

ρk =
L(xk

c , λk, rk
p ) − L(xk

∗
, λk, rk

p)

L̃k(xk
c , λk, rk

p ) − L̃k(xk
∗
, λk, rk

p )
, (3)

where the high-fidelity augmented Lagrangian is defined by

L(x, λ, rp) = f(x) + λT c(x) + rp

m
∑

i=1

Ψi(x, λ, rp)2, (4)

where

Ψi(x, λ, rp) = max

(

ci(x),−
λi

2rp

)

, i = 1, . . . , m. (5)

The value for ρk defines the acceptance of the kth subproblem solution and the next trust region size,
∆k+1, using the following logic:

1. ρk ≤ 0 : The surrogate models are inaccurate. Reject the step and shrink the trust region by half to
improve surrogate accuracy.

2. 0 < ρk ≤ r1 : The surrogate models are marginally accurate. Accept the step but shrink the trust
region size by half.

3. r1 < ρk < r2 : The surrogate models are moderately accurate. Accept the step and maintain the
current trust region size.

4. r2 ≤ ρk : The surrogate models are accurate. Accept the step and increase the trust region size by a
factor of two.

The parameters r1 and r2 are user-selected, and in this work are r1 = 0.2 and r2 = 0.9.
The Lagrange multipliers λk in (4) are updated when ‖∇L(xk

c , λk, rk
p )‖2 < µk or there have been three

consecutive subproblem step rejections, and ‖c(xk
c )‖∞ ≤ ηk, using for the ith Lagrange multiplier the formula

λk+1
i = max

(

0, λk
i + 2rk

pci(x
k
c )
)

, (6)

and the penalty parameter rk
p is updated when ‖∇L(xk

c , λk, rk
p)‖2 < µk and ‖c(xk

c )‖∞ > ηk using

rp
k+1 = 5rk

p . (7)

The trust-region size is an indicator of how well the surrogate function is approximating the high-fidelity
augmented Lagrangian. Whenever either the Lagrange multipliers or penalty parameter are updated, the
augmented Lagrangian changes significantly, so the size of the trust region is reset using

∆k+1 = κ‖∇L(xk
c , λk, rk

p)‖2, (8)

where κ is some number greater than one. Since the norm of the gradient of the augmented Lagrangian is
a measure of proximity to the optimum solution, (8) ensures that the trust region size will become smaller
as the current iterate approaches the optimum. Also, when the Lagrange multipliers and penalty parameter
are changed, the parameters µ and η are updated using

µk+1 = µk min

(

1

rk
p

, 0.1

)

(9)

and

ηk+1 = ηk min

(

1

rk
p

, γ

)

. (10)

The algorithm parameters µ0, η0 and γ are user-selected. The Lagrange multiplier and penalty parameter
update rules are illustrated in Figure 1 of Ref. 30.

The surrogate augmented Lagrangian, L̃ is defined in one of the two following ways. These methods are
variations on the two methods compared in Ref. 7.
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1. Approximating the Lagrangian

In this method, the whole augmented Lagrangian is approximated with a single surrogate. That is, on
each iteration, a surrogate L̃k is created for L, using a BFGS quasi-second-order additive correction to the
augmented Lagrangian of the low-fidelity model, L̂, defined by

L̂k(x, λ, rp) = f̂(x) + λT ĉ(x) + rp

m
∑

i=1

Ψ̂i(x, λ, rp)2, (11)

using

Ψ̂i(x, λ, rp) = max

(

ĉi(x),−
λi

2rp

)

, i = 1, . . . , m. (12)

The surrogate augmented Lagrangian for each subproblem is then obtained by correcting the low-fidelity
augmented Lagrangian,

L̃k(x, λ, rp) = L̂(x, λ, rp) + Ak(x), (13)

where Ak is a quadratic function of x:

Ak = Ak
0 + ∇AkT

(x − xc) +
1

2
(x − xc)

T∇2A
k
(x − xc). (14)

Each of the components of Ak is calculated such that at xc, L and L̃k have the same function value, gradient,
and BFGS approximation to the Hessian matrix.

2. Approximating objective and constraints separately

In this version of the method, the surrogate augmented Lagrangian is formed using separate approximations
to the objectives and the constraints. The surrogate augmented Lagrangian is therefore

L̃k(x, λ, rp) = f̃k(x) + λT c̃k(x) + rp

m
∑

i=1

Ψ̃k
i (x, λ, rp)2, (15)

where Ψ̃k is defined as in (12) but using the surrogate rather than low-fidelity constraints, and f̃k and c̃k

are obtained using additive corrections,

f̃k(x) = f̂(x) + Ak(x), (16)

and
c̃k
i (x) = ĉi(x) + Bk

i (x), i = 1 . . .m. (17)

The correction function Ak(x) is defined in equation (14). Each correction function Bk
i (x) is defined similarly,

ensuring quasi-second-order consistency between the surrogate constraints and the high-fidelity constraints
at the center of the trust region.

B. Direct surrogate optimization

The second method of constraint management solves a series of subproblems that minimize the surrogate
objective subject to the surrogate constraints. The subproblem in this case is defined as

min
x

f̃k(x)

subject to c̃k(x) ≤ 0 (18)

‖x − xk
c‖∞ ≤ ∆k.

The merit function for this method is the augmented Lagrangian, calculated using the separate approxima-
tions to the objectives and the constraints as in Section IIA2. The trust-region ratio is therefore defined by
equation (3), and the size of the trust region is managed using the logic given in Section IIA. The Lagrange
multipliers and penalty parameters are also updated using equations (6) and (7) in order to calculate the
merit function.
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C. Sequential-Quadratic-Programming-like method

This method is modified from Ref. 8. It is similar to sequential quadratic programming (SQP) in that on
each subproblem it minimizes an approximation to the Lagrangian subject to linear approximations to the
high-fidelity constraints. The subproblem is

min
x

L̃k(x)

subject to c(xk
c ) + ∇c(xk

c )T (x − xk
c ) ≤ 0 (19)

‖x − xk
c‖∞ ≤ ∆k,

where L̃k is the approximation to the Lagrangian of the problem, defined as

L̃k(x, λk) = f̃k(x) + λkT
c̃k(x). (20)

The merit function for this method is the Lagrangian. Since this method uses the Lagrangian rather than
the augmented Lagrangian, there is no penalty parameter and equation (6) cannot be used. The Lagrange
multipliers are therefore updated by minimizing the residual in the Karush-Kuhn-Tucker conditions. The
vector of Lagrange multipliers for the next subproblem, λk+1, is determining by solving

λk+1 = arg min
λ

‖∇f(xk
c ) +

∑

i∈Sk λi∇ci(x
k
c )‖2

2 (21)

subject to λ ≥ 0,

where Sk is the set of active constraints for subproblem k. The optimization problem (21) is a nonnegative
least-squares constraint problem, which is solved using the method of Ref. 31.

D. MAESTRO

The MAESTRO method was developed by Alexandrov in order to solve multidisciplinary design optimiza-
tion (MDO) problems that include constraints from a number of disjoint disciplines, and that are possibly
calculated on separate nodes of a distributed system. It is described in detail in Ref. 8. The major difference
between MAESTRO and the other trust-region methods is that MAESTRO solves two problems on each
iteration: one to minimize the constraints and another to minimize the objective. The step used is then the
sum of the steps found from the solutions to those two problems. Separate trust regions are maintained for
the objectives and for the constraints.

The MAESTRO method requires only equality constraints; therefore the inequality constraints are con-
verted to equality constraints using squared slack variables. The ith inequality constraint, ci, is converted
to an inequality constraint, hi, using

hi(x) = ci(x) + z2
i = 0, (22)

where zi is the corresponding slack variable. The vector of resulting equality constraints is denoted h(x, z),
where z is the vector containing the slack variables.

Each subproblem is broken down into two parts. The first part minimizes the constraints, subject to the
bounds on the solution provided by the trust region:

min
x,z

‖h̃k(x, z)‖2

subject to ‖x − xk
c‖∞ ≤ ∆k

con, (23)

‖z − zk
c‖∞ ≤ ∆k

con,

where h̃k is the surrogate model of h for the kth subproblem, zk
c is the vector of slack variable values at the

center of the trust region, and ∆k
con is the trust-region size for the kth constraint subproblem. The solution

to this problem is denoted (xk
1 , zk

1). The constraint trust-region ratio is calculated as:

ρk
con =

‖h(xk
c , zk

c )‖2 − ‖h(xk
1 , zk

1)‖2

‖h̃k(xk
c , zk

c )‖2 − ‖h̃k(xk
1 , zk

1)‖2

, (24)

and the constraint trust region radius ∆k
con is updated according to the rules in Section IIA using the

two-norm of the constraints as the merit function.
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The second part of the subproblem minimizes the objective, subject to the conditions that the solution
remains within the objective trust region and that improvement in the constraints is maintained:

min
x,z

f̃k(x, z)

subject to ‖x− xk
1‖∞ ≤ ∆k

obj , (25)

‖z− zk
1‖∞ ≤ ∆k

obj ,

h̃k(x, z) = h̃k(xk
1 , zk

1).

The solution to the problem (25) is denoted (xk
2 , zk

2). The objective trust-region ratio is calculated as

ρk
obj =

f(xk
1 , zk

1) − f(xk
2 , zk

2)

f̃(xk
1 , zk

1) − f̃k(xk
2 , zk

2)
, (26)

and the objective trust region size ∆k
obj is updated according to the rules in Section IIA.

III. Variable-complexity Design Spaces

Multifidelity surrogate models provide the opportunity to further reduce the complexity of the optimiza-
tion problem (1) by using a different design vector. That is, a lower-fidelity model of f(x) may be given by

f̂(x̂), where x̂ ∈ IRn̂ is a design vector of reduced complexity. For example, the dimension of x̂, n̂, may be
smaller than the dimension of x. In the case of variable grid size, the optimization design variables may be
directly related to the discretization of the grid, leading to fewer design variables on the coarser grid. In the
neglected-physics case, the two models may use entirely different sets of design variables.

Constrained SBO methods have until now been applicable only to models in which both the high-fidelity
model, f(x), c(x), and the low-fidelity model, f̂(x̂), ĉ(x̂), are defined over the same space, that is, x = x̂.
In order to use a low-fidelity model with a different set of design variables from the high-fidelity function to
be optimized, it is necessary to find a relationship between the two sets of design vectors, that is, x̂ = P (x)
or x = Q(x̂). In Ref. 10, such a mapping was applied to unconstrained problems. This work extends these
mapping techniques to constrained problems. In this section, we first describe the variable-complexity case
of the constrained trust-region methods and then present two mapping methods.

A. Variable-complexity trust region methods

To extend the TRMM methods described in Section II to the case of variable complexity, the mapping
between x and x̂ must be incorporated. The mapping must be introduced in such a way as to ensure at
least first-order consistency between the surrogate model and high-fidelity model at the center of the trust
region. In order to enforce this consistency, additive corrections are used.

For some low-fidelity function β̂(x̂) that approximates a high-fidelity function β(x) and a mapping
x̂ = P (x), the kth corrected surrogate function is defined as

β̃k(x) = β̂ (P (x)) + Ak(x). (27)

The correction function, Ak, is a quadratic Taylor series of the difference between the two functions β and β̂

Ak = Ak
0 + ∇AkT

(x − xc) +
1

2
(x − xc)

T∇2A
k
(x − xc), (28)

with each element calculated using

Ak
0 = βk(xk

c ) − β̂
(

P (xk
c )
)

, (29)

∂Ak

∂xp

=
∂β

∂xp

(xk
c ) −

n̂
∑

j=1

∂β̂

∂x̂j

(

P (xk
c )
) ∂x̂j

∂xp

, p = 1 . . . n, (30)

∂2Ak

∂xp∂xq

= Hpq −

n̂
∑

j=1

(

∂β̂

∂x̂j

(

P (xk
c )
) ∂2x̂j

∂xp∂xq

+

n̂
∑

ℓ=1

Ĥjℓ

∂x̂j

∂xp

∂x̂ℓ

∂xq

)

, p = 1 . . . n, q = 1 . . . n, (31)
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where H is the BFGS approximation to the Hessian matrix of the high-fidelity function β at xk
c , Ĥ is the

BFGS approximation to the Hessian matrix of the low-fidelity function β̂ at P (xk
c ), and Hpq denotes the

pqth element of the matrix H.
When using the Lagrangian-approximating approach of Section IIA1, the correction uses the augmented

Lagrangian for β and β̃. When using the other four multifidelity constraint-management approaches, cor-
rections are applied separately to the objective, setting β = f and β̃ = f̃ , and to each of the constraints,
setting β = ci and β̃ = c̃i. For each subproblem k, equation (29) computes the difference between the
value of the high-fidelity function and the low-fidelity function at the center of the trust region. Using the
chain rule, equation (30) computes the difference between the gradient of the high-fidelity function and the
gradient of the low-fidelity function at the center of the trust region, where the gradients are computed with
respect to the high-fidelity design vector x. The second term in (30) therefore requires the Jacobian of the

mapping,
∂x̂j

∂xp
. Similarly, equation (31) computes the difference between the BFGS approximation of the

Hessian matrices of the high-fidelity and low-fidelity functions at the center of the trust region. Once again,
derivatives are required with respect to x and are computed using the chain rule.

The correction function A used is defined as a function of x, that is, the set of high-fidelity design
variables. In this implementation, the steps taken by the optimization method are in the high-fidelity space.
One avenue of current research is to develop mappings from the high-fidelity space to the low-fidelity space
that are constrained to contain the step directions of interest, thus allowing the optimization method to
work in the low-fidelity space.

It is also interesting to note that, in the case of a low-fidelity design vector x̂ of lower dimension than
the high-fidelity design vector x, the mapping identifies a subspace of the high-fidelity space to be spanned
by the low-fidelity design vectors. If only the mapped low-fidelity objective and constraints were used,
optimization progress would be limited to that subspace. That is, no change would be observed in those
high-fidelity design variables (or combinations thereof) not represented in the low-fidelity space. However,
since the correction function (28) is defined in the high-fidelity space in such a way that the surrogate models
are BFGS-consistent with the high-fidelity functions in all the high-fidelity dimensions, the solutions to the
trust-region optimization subproblems can be in any direction in the high-fidelity space.

B. Corrected space mapping

Space mapping32, 33 is a method of linking variable-fidelity models developed in the microwave circuit design
community. In that application area, it is often appropriate to make corrections to the input of a model,
rather than to its output. In space mapping, a particular form is assumed for the relationship P between the
high- and low-fidelity design vectors. This form is described by some set of parameters, contained here in a
vector p, that are found by minimizing the difference between the high- and low-fidelity outputs. However,
this standard space mapping method does not enforce the consistency required for a convergent trust-region
optimization algorithm.

In order to obtain a surrogate model that satisfies the consistency conditions for provable convergence,
we use the corrected space mapping method presented in Ref. 10. This method performs the space mapping
and correction steps simultaneously, by embedding the correction within the space mapping optimization
problem. That is, it incorporates a correction, and with the remaining degrees of freedom, performs the best
match possible to the control points by varying the input mapping.

In the unconstrained case, the corrected space mapping optimization problem is given by

pk = argmin
p

q
∑

i=1

||β(xi) − β̃k(xi,p)||2, (32)

where β is chosen to be the high-fidelity objective function f and β̃k is the corresponding corrected surrogate
function f̃k. The optimization problem (32) seeks to minimize the difference between the high-fidelity
and surrogate objective functions over a set of q sample points xi, where xi denotes the ith sample (or
control) point. Both the choice of sample points and the particular form of the mapping P is left to the
implementation.

Here, we consider the extension of corrected space mapping to constrained problems. When using the
Lagrangian-approximating approach of Section IIA1, the corrected space mapping optimization problem uses
the augmented Lagrangian for β and β̃. That is, the space mapping parameters p are determined by solving
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an optimization problem of the form (32) that minimizes the difference over a set of sample points between
the high-fidelity Lagrangian L, as defined in equation (4), and the surrogate Lagrangian L̃, as defined in
equation (13). When using the other four multifidelity constraint-management approaches, space mapping
is applied separately to the objective, setting β = f and β̃ = f̃ , and to each of the constraints, setting β = ci

and β̃ = c̃i. This results in m + 1 space mapping optimization problems of the form (32), each with its own
correction function and vector of space mapping parameters. The elements of the correction function are
calculated using equations (29) to (31).

In the implementation employed in this work, the sample points used in equation (32) are the previous
q subproblem iterates, at which high-fidelity objective function and constraint values are already available,
and a linear relationship was chosen for the mapping P :

x̂ = P (x) = Mx + b, (33)

where M is a matrix with n̂×n elements and b is a vector of length n̂ for a total of (n+1)× n̂ space-mapping
parameters contained in p.

It should be noted that when using corrected space mapping, the correction function must be re-evaluated
with each new value of p, since the low-fidelity function values, the low-fidelity gradient, and the first- and
second-order derivatives of the mapping needed in equations (29) – (31) change with the space-mapping
parameters, through their dependence on x̂. Since the resulting corrected function is at least first-order
accurate at the center of the trust region, the resulting trust-region optimization is provably convergent to
a local minimum of the high-fidelity problem.

C. POD mapping

The second mapping methodology is based on the gappy proper orthogonal decomposition (POD) method
of reconstructing data sets. This, in turn, is based on the POD method, also known as principal components
analysis and Karhunen-Loève expansions, which yields a set of basis vectors that provides the least-squares
optimal representation of a given data set.

The POD method of snapshots, developed by Sirovich,16 finds the basis vectors empirically. In this
method, a set of q snapshots x1,x2, . . . ,xq, or column vectors describing different states of a system, is
computed. The POD basis vectors, φj , j = 1, 2, . . . , q, can then be computed as the left singular vectors of
the matrix X, defined as

X =
[

[

x1 − x̄
] [

x2 − x̄
]

· · · [xq − x̄]
]

, (34)

where x̄ is the mean of the snapshots and the ith column of X contains the ith snapshot minus the mean.
The singular values of X indicate the relative importance of the corresponding basis vector in representing

the snapshots. Therefore, only the q basis vectors corresponding to the largest singular values are used. A
low-dimensional representation of a solution x is thus given by

x ≈ x̄ +

r
∑

j=1

νiφ
i, (35)

where νi is the coefficient describing the contribution of the ith POD mode φi to the solution x.
The gappy POD method allows one to reconstruct data from a “gappy” data set, that is, a set in which

some of the data are unknown or missing.34, 35 The first step is to define a mask vector, which describes for
a particular solution vector where data are available and where data are missing. For the solution x, the
corresponding mask vector n is defined as follows:

ni = 0 if xi is missing

ni = 1 if xi is known,

where xi denotes the ith element of the vector x. Pointwise multiplication is defined as (n,x)i = nixi. Then
the gappy inner product is defined as (u,v)n = ((n,u), (n,v)), and the induced norm is (‖v‖n)2 = (v,v)n.

For a vector x that has some unknown components, it is assumed that the repaired vector x̌ can be
represented by the expansion (35). In this representation, the POD coefficients νi are chosen to minimize
the error between the available and reconstructed data. This error can be defined as

ǫ = ‖x− x̌‖2
n (36)
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using the gappy norm so that only the original existing data elements in u are compared. The coefficients
νi that minimize the error ǫ can be found by differentiating (36) with respect to each of the νi in turn. This
leads to the linear system of equations

Eν = r, (37)

where the ijth component of E is given by

Eij =
(

φi, φj
)

n
(38)

and the ith component of r is given by
ri =

(

u, φi
)

n
. (39)

Solving equation (37) for ν, the missing elements of u can be obtained using the expansion (35).
As described in Ref. 10, the gappy POD method provides a way to map between high- and low-fidelity

design space data: the high-fidelity vector is treated as the known data, and the low-fidelity as the unknown
data, or vice versa. In the mapping application, the POD basis vectors must span both low- and high-fidelity
design space. This is achieved by generating a set of r training pairs, for which the low- and the high-fidelity
vectors describe the same physical system. These training pairs are combined in the following way to form
the snapshot matrix:

X =







[

x̂1 − ¯̂x
] [

x̂2 − ¯̂x
]

· · ·
[

x̂r − ¯̂x
]

– – –

[x1 − x̄] [x2 − x̄] · · · [xr − x̄]






, (40)

where now the ith column of X contains both the ith low- and the ith high-fidelity snapshots, and ¯̂x denotes
the mean of the low-fidelity snapshot set.

The left singular vectors of this snapshot matrix provide the corresponding POD basis vectors, which are
partitioned in the same way as the snapshot vectors. Therefore, equation (35) can be decomposed into two
equations

x = x̄ +

q
∑

i=1

νiφ
i (41)

x̂ = ¯̂x +

q
∑

i=1

νiφ̂
i, (42)

where φi is the portion of the ith POD basis vector corresponding to x and φ̂i is the portion corresponding
to x̂.

Using the gappy POD formulation, equation (41) can be solved in a least squares sense in order to find
the coefficients ν that best represent a given high-fidelity vector x. Those coefficients can then be used in
equation (42) to calculate the low-fidelity vector. Alternatively, if a mapping is desired from the low-fidelity
space to the high-fidelity space, the coefficients are found from equation (42) and used in (41).

Unlike for space mapping, a single POD mapping is used for the objective and all constraints in all
constraint-management methods. When incorporating this method into the TRMM framework, an additive
or multiplicative correction must be used to ensure at least first-order consistency. These corrections are
applied as shown in the beginning of this section.

IV. Barnes Problem

The first example considers a simple analytic test case. This problem was originally developed by G.K.
Barnes as part of an M.S. thesis.36 It was then used as a demonstration problem in a textbook,37 and has
since been used a number of times to demonstrate optimization approaches.7, 38–40 The objective function is

f = −75.196 + 3.81x1 − 0.126x2
1 + 2.5056× 10−3x3

1 − 1.034 × 10−5x4
16.83x2 − 0.0302x1x2

+ 1.281 × 10−3x2x
2
1 − 3.525× 10−5x2x

3
1 + 2.266 × 10−7x2x

4
1 − 0.256x2

23.46 × 10−3x3
2 (43)

− 1.35 × 10−5x4
2 +

28.106

x2 + 1
+ 5.237× 10−6x2

1x
2
2 + 6.3 × 10−8x3

1x
2
2 + 1.663× 10−6x1x

3
2 + 2.867e0.0005x1x2
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Figure 1. Objective function
contours and constraints of the
Barnes problem. Local and
global optima are indicated with
an ‘x’.
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Figure 2. Objective function
contours and constraints of the
low-fidelity approximation to the
Barnes problem. Optima of the
high-fidelity problem are indi-
cated with an ‘x’.

and the constraints are

c1 = −(x1x2/700 − 1) ≤ 0, (44)

c2 = −(x2/5 − x2
1/625) ≤ 0, (45)

c3 = −(x2/50 − 1)2 − (x1/500− 0.11) ≤ 0. (46)

In addition, the following bounds are imposed on the two design variables:

0 ≤ x1 ≤ 80, (47)

0 ≤ x2 ≤ 80. (48)

The problem has a global minimum at x = (80, 80) with an objective
value of f = −132.876 and a local minimum at x = (49.526, 19.622) with
an objective value of f = −31.6372. At that local minimum only the
second constraint is active. Contours of the objective and lines showing
the constraints are shown in Figure 1. The Barnes problem was chosen
because it is two-dimensional and therefore easy to visualize, it has a
number of interesting starting points, demonstrating tradeoffs between
minimizing the objective and satisfying the constraints, and it has been
used in previous studies.

The low-fidelity objective function is a third-order Taylor series of
the high-fidelity function about the point x = (30, 40). The low-fidelity
constraints are linear functions chosen to be in approximately the same
location as the quadratic curves of the exact constraints over the global
space. The equations for these low-fidelity constraints are

ĉ1 = (−x̂1 − x̂2 + 50)/10 ≤ 0, (49)

ĉ2 = (0.64x̂1 − x̂2)/6 ≤ 0, (50)

ĉ3 =

8

<

:

0.006x̂1 − 0.0134x̂2 + 0.34 ≤ 0 if x̂2 > 50,

0.006x̂1 + 0.0134x̂2 − 1 ≤ 0 if x̂2 ≤ 50.
(51)

The objective function contours and constraints used for the low-fidelity
model are shown in Figure 2.

Three starting points were used. The point x0 = (30, 40) is a feasible
starting point, while x0 = (65, 5) and x0 = (10, 20) are infeasible starting
points. At x0 = (10, 20), the directions towards feasibility and optimality
are near-orthogonal. The algorithm parameters used were r0

p = 10, η0 = 1,
κ = 1, γ = 0.01, r1 = 0.2 and r2 = 0.9.

Although for this case one could choose the trivial mapping x = x̂,
the corrected space mapping and POD mapping methods were used to generate mappings as described in
Section III. For the POD method, 100 snapshots were generated on a uniform grid within the bounds. Two
POD basis vectors were used. In this case, where the actual mapping is linear, linear combinations of those
two vectors capture the entire mapping. For space mapping, the eight previous iterates were used as the
control points. The linear space mapping of equation (33) was used.

Each of the constraint methods were run with each of the mapping methods, for a total of ten method
combinations. In addition, for a benchmark, SQP was applied directly to the high-fidelity model in a single-
fidelity approach. For those methods requiring Lagrange multipliers, an initial guess of λ0

i = 0, i = 1, 2, 3,
was used for each multiplier. For MAESTRO, which requires initial slack variables, z0

i = 1, i = 1, 2, 3 was
used. Table 1 shows the number of high-fidelity function evaluations needed by each method to reach a
function value within 10−2 of the known local optimum with a constraint violation of no more than 10−3.
As can be seen in Table 1, direct surrogate optimization was able to converge more quickly than high-fidelity
SQP for all cases considered, with an average reduction in the number of high-fidelity function calls of
almost a factor of two. The SQP-like method also performed at least as well as SQP in the high-fidelity
space, though the gains are more modest than direct surrogate optimization.

Approximating the Lagrangian with a single surrogate converged slowly, although it did converge from
all starting points. It uses less information then any of the other methods, since it has only one correction
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function. Consequently, it also has slightly less overhead than the other methods. However, in design prob-
lems of interest, overhead is insignificant relative to high-fidelity function evaluations, and is not considered
a basis for comparison in these results. The Lagrangian with separate approximations was on average su-
perior to the first method, but converged more slowly in two cases. The best approach between the two
Lagrangian minimization methods presented in Section IIA can therefore be dependent on the initial guess
and the problem. MAESTRO did not converge in the allowed 100 iterations for one of the starting points;
for the others it was comparable to the Lagrangian method with separate surrogates for the objective and
constraints. Although the relative performance of the two mapping methods varies among the starting
points, on average corrected space mapping converged more quickly than POD mapping for three of the four
constraint-management methods.

Constraint Mapping From (30,40) From (10,20) From(65,5) Average

Management Method Calls Ratio Calls Ratio Calls Ratio ratio

SQP in high-fidelity space N/A 10 1 14 1 10 1 1

Approx. whole Lagrangian POD 26 2.6 62 4.429 12 1.2 2.743

Approx. whole Lagrangian SM 33 3.3 21 1.5 17 1.7 2.167

Lagrangian with sep. approx. POD 16 1.6 20 1.429 17 2.125 1.718

Lagrangian with sep. approx. SM 23 2.3 23 1.643 14 1.4 1.781

Direct Surrogate Approximation POD 4 0.4 8 0.571 8 0.8 0.591

Direct Surrogate Approximation SM 7 0.7 7 0.5 5 0.5 0.567

SQP-like POD 8 0.8 12 0.857 10 1 0.886

SQP-like SM 8 0.8 8 0.571 8 0.8 0.724

MAESTRO POD 12 1.2 N/A N/A 17 1.7 1.450

MAESTRO SM 12 1.2 N/A N/A 17 1.7 1.450

Table 1. Convergence of variable complexity optimization methods. “Calls” refers to the number of high-
fidelity function calls, both objective and constraints, along with their gradients, while “Ratio” gives the ratio
of high-fidelity function calls required compared to SQP in the high-fidelity space.

Figures 3 and 4 show all the constraint management methods discussed, using POD mapping from
the point x0 = (10, 20). While the Lagrangian method with the single correction function takes small steps
steadily towards the solution, both the separate approximations and direct surrogate optimization take larger
steps, overshooting the optimum but returning to converge more quickly than the first method. Note that
direct surrogate optimization first finds a feasible point, and then moves towards optimality. MAESTRO
initially makes very good progress, but does not find the optimum in the allowed 100 iterations.

Figure 5 shows the most promising method, direct surrogate optimization, with both space mapping and
POD mapping. This shows that both mapping methods have very similar performance, although they take
different paths to the optimum.

V. Wing design problem

The second example considers incidence angle design of a wing. The wing is rectangular with an aspect
ratio of 10. The objective function is the coefficient of induced drag, and the wing is constrained to have a
coefficient of lift of at least 0.2. The optimization problem is given by

min
α

200CDi(α)

subject to 10 (0.2 − CL(α)) ≤ 0 (52)

−10◦ ≤ αi ≤ 10◦, i = 1 . . . 5,

where scaling has been applied to both objective and constraint in order to improve numerical conditioning.
The high-fidelity code uses a vortex lattice method, using a zero thickness, constant collocation, doublet

lattice model.41 The method is similar to a vortex lattice method composed of horseshoe line vortices. By
imposing Neumann boundary conditions and a zero-spanwise-vorticity trailing edge Kutta condition, the
wing and wake surface doublet strengths can be uniquely determined. The discretization is performed using
quadrilateral panels with uniform chordwise spacing and cosine spanwise refinement. A standard Trefftz
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Figure 3. Paths of various constraint-management methods, using POD mapping from x0 = (10, 20). (a) La-
grangian with single approximation, (b) Lagrangian with separate approximations for objective and constraints,
(c) Direct surrogate optimization (d) MAESTRO (e) SQP-like variable complexity method. For comparison,
the path of SQP working directly in the high-fidelity space is shown in black.
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Figure 5. Paths, function value, and maximum constraint violation of direct surrogate optimization method,
using space mapping and POD mapping, from x0 = (10, 20).

Plane analysis41 is used to compute both the lift and induced drag. The high-fidelity design variables are the
angle of attack of the wing at each of five points, equally spaced from the root to the tip. A single analysis
of the high-fidelity code takes approximately 90-100 seconds on a 2.4 GHz desktop workstation.

The low-fidelity code uses lifting-line theory. A standard lifting line method following Ref. 42 has been
implemented to compute both the lift and induced drag. By assuming that the wing bound vorticity can be
approximated by a single spanwise line vortex, the lifting line method is less effective for low aspect ratio
wings than it is for higher aspect ratio wings. In its most general form, variations in both the incidence angle
and chord with respect to spanwise position can be prescribed. The low-fidelity design variables are also
angles of attack, but in this case at only three points, again equally spaced from the root to the tip. This
problem is therefore an example of a variable complexity design: the low-fidelity design space is of lower
dimension than the high-fidelity design space. A single analysis of the low-fidelity code takes approximately
30 milliseconds on a 2.4 GHz desktop workstation.

For both the high-fidelity and low-fidelity models, gradients were calculated using centered finite differ-
ences with a step size of 10−4 degrees. The evaluations required for these finite differences are included in
the count of the number of function calls. The initial design used for optimization has a uniform angle of
attack of three degrees. This point is feasible using both the high- and low-fidelity constraints. For the POD
mapping method, 100 snapshots were generated using uniform Latin hypercube sampling43 in the low-fidelity
space, over the angle of attack range from -5 to 5 degrees. The high-fidelity portions of the training pairs
were then created using linear interpolation. Two POD basis vectors were used. For space mapping, the
eight previous iterates were used as the control points. The linear space mapping of equation (33) was used.

The Lagrangian TRMM method with separate approximations to objective function and constraints,
direct surrogate optimization, and the SQP-like method were run, with each of the mapping methods. These
three methods were chosen because they proved more efficient than the other methods on the Barnes problem.
Again, SQP was applied directly in the high-fidelity space to provide a benchmark. The initial Lagrange
multiplier was set to λ0 = 0.

Table 2 shows the number of high-fidelity function evaluations needed by each method to reach a function
value within 10−3 of the minimum function value found, with a constraint violation of no more than 10−3.
Five of the six variable complexity method combinations outperformed SQP applied directly in the high-
fidelity space. The best method, direct surrogate optimization combined with POD mapping, has a 53%
savings on the number of function evaluations required. On this problem, that is a savings of more than two
and a half hours on a 2.4 GHz desktop workstation.

The lift distribution that yields minimum induced drag is elliptical.44 Figure 6 shows the resulting lift
distributions for SQP applied directly in the high-fidelity space and for direct surrogate optimization with
both POD and space mapping. SQP in the high-fidelity space and direct surrogate optimization with POD
have near-elliptical distributions. Direct surrogate optimization with corrected space mapping has a slight
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Constraint Management Mapping Method Calls Ratio

SQP in high-fidelity space N/A 209 1

Lagrangian with sep. approx. POD 340 1.627

Lagrangian with sep. approx. SM 148 0.708

Direct surrogate optimization POD 99 0.474

Direct surrogate optimization SM 158 0.756

SQP-like POD 113 0.541

SQP-like SM 102 0.488

Table 2. Convergence of variable complexity optimization methods. “Calls” refers to the number of high-
fidelity function calls, including those required to compute finite-difference gradients, while “Ratio” gives the
ratio of high-fidelity function calls required compared to SQP in the high-fidelity space.

depression in lift near the root. However, according to the high-fidelity code, the coefficient of induced
drag for this distribution is very close to the coefficient of induced drag for the elliptical distribution (0.12%
higher). This is an indication that the high-fidelity code may have flat areas or multiple local minima,
and is an example of the well-known tendency of optimization methods to find flaws in the analysis code.
Figure 7 shows the objective function value and constraint violation of SQP in the high-fidelity space and
direct surrogate optimization with both POD and corrected space mapping. It can be seen that for both
mapping methods the objective is reduced at a similar rate, but the POD mapping reduces the magnitude
of constraint violations more quickly than space mapping.
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Figure 6. Lift distribution of optima found by three optimization methods: applying SQP in the high-fidelity
space and applying direct surrogate optimization with each of space mapping and POD mapping. The initial
lift distribution is also shown.

Figure 8 shows the three constraint-management methods with corrected space mapping, along with the
benchmark SQP method. Again, while all three methods reduce the objective at a similar rate, they vary
in the speed of reducing the constraint violations.

15 of 18

American Institute of Aeronautics and Astronautics



0 100 200 300 400 500
0.25

0.3

0.35

0.4

0.45
Objective function value

 

 

0 100 200 300 400 500
0

2

4

6

8
x 10

−3 Constraint violation

High−fidelity function evaluations

 

 

SQP in high−fidelity space
Direct surrogate optimization with POD
Direct surrogate optimization with SM

Figure 7. Function value (200CDi) and maximum constraint violation max[0, 10(0.2 − CL)] of applying SQP in
the high-fidelity space and applying the direct surrogate optimization with each of space mapping and POD
mapping.
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VI. Conclusion

New methodology has been presented that extends surrogate-based optimization methods to variable-
complexity constrained design problems. This methodology can manage a hierarchy of design models in
the case where the design vector varies between the high-fidelity and low-fidelity models. Trust-region
model-management methods using direct surrogate optimization or an SQP-like method were found to be
the most efficient approach to manage constraints. When combined with POD mapping and applied to a
variable-complexity wing-design optimization problem, direct surrogate optimization achieved 53% savings
in high-fidelity function calls. These savings translated to a reduction in computational cost of more than
two and a half hours.
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