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Reliability methods are probabilistic algorithms for quantifying the effect of uncertain-
ties on response metrics of interest. In particular, they compute approximate response
function distribution statistics (probability, reliability, and response levels) based on spec-
ified probability distributions for input random variables. In conjunction with simulation
software, these reliability analysis methods may be employed within reliability-based de-
sign optimization (RBDO) algorithms for designing systems subject to probabilistic perfor-
mance criteria. In this paper, RBDO methods are compared and their effectiveness demon-
strated by application to design optimization of microelectromechanical systems (MEMS),
devices for which uncertainties in material properties and geometry affect performance
and reliability. A new tapered beam topology for a fully compliant bistable mechanism is
presented and its geometry optimized with RBDO to reliably achieve a specified actuation
force, while simultaneously reducing predicted force variability due to material proper-
ties and manufacturing. The optimal designs specified by these optimization processes
are predicted to be reliable, but also more robust to manufacturing process variations.
Software-based MEMS design illustrates challenges faced when applying RBDO methods
in engineering contexts.

I. Introduction

Pre-fabrication design optimization of microelectromechanical systems (MEMS) is an important emerging
application of uncertainty quantification (UQ) and reliability-based design optimization (RBDO). Typically
crafted of silicon, polymers, metals, or a combination thereof, MEMS serve as micro-scale sensors, actua-
tors, switches, and machines with applications including robotics, biology and medicine, automobiles, RF
electronics, and optical displays.! Design optimization of these devices is crucial due to high cost and long
fabrication times. Uncertainty in the micromachining and etching processes used to manufacture MEMS
can lead to large uncertainty in the behavior of the finished products. RBDO, coupled with computational
mechanics models of MEMS, offers a means to quantify this uncertainty and determine a priori the most
reliable design that meets performance criteria.

Uncertainty and sensitivity analysis techniques®3 that predate modern reliability methods have histori-
cally been used to understand variability in systems and these have natural application to MEMS. Recently,
Monte Carlo and robust optimization techniques have been explored in this context as well.* These tools
analyze the expected performance variability or robustness for a particular design.

Reliability methods are probabilistic algorithms for quantifying the effect of input uncertainties on re-
sponse metrics of interest. In particular, they perform UQ by computing approximate response function
distribution statistics based on specified probability distributions for input random variables. These response
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statistics include mean, standard deviation, and cumulative or complementary cumulative distribution func-
tion (CDF/CCDF) pairings of response levels and either probability or reliability levels. These methods are
often more efficient at computing statistics in the tails of the response distributions (events with low proba-
bility) than sampling-based approaches because the number of samples required to resolve a low probability
can be prohibitive. Thus, these methods, as their name implies, are often used in a reliability context for
assessing the probability of failure of a system when confronted with an uncertain environment.

Classical reliability analysis methods include Mean-Value First-Order Second-Moment (MVFOSM), First-
Order Reliability Method (FORM), and Second-Order Reliability Method (SORM).® More recent methods
seek to improve the efficiency of FORM analysis through limit state approximations, including the local and
multipoint approximations of Advanced Mean Value methods (AMV/AMV+)® and Two-point Adaptive
Nonlinearity Approximation-based methods (TANA),® respectively. Each of the FORM-based methods
can be employed for “forward” or “inverse” reliability analysis through the reliability index approach (RIA)
or performance measure approach (PMA), respectively.”

The capability to assess reliability is broadly useful within a design optimization context, and reliability-
based design optimization methods are popular approaches for designing systems while accounting for un-
certainty. RBDO approaches may be broadly characterized as bi-level (in which the reliability analysis is
nested within the optimization),'® sequential (in which iteration occurs between optimization and reliability
analysis),'!"12 or unilevel (in which the design and reliability searches are combined into a single optimiza-
tion).!? Bi-level RBDO methods are simple and general-purpose, but can be computationally demanding.
Sequential and unilevel methods seek to reduce computational expense by breaking the nested relationship
through the use of iterated/surrogate or simultaneous approaches, respectively.

A compelling technical advantage of microsystems is that, like integrated circuits, they can be batch
fabricated for high volume applications. Designing MEMS that are less sensitive to manufacturing process
variations results in higher yield of reliable devices. Recognizing the importance of designing reliable and ro-
bust systems, researchers have coupled uncertainty analysis and reliability methods with design optimization
for MEMS. Many have considered design problems similar to those presented in this paper. For example,
Liu, et al., sought designs robust to width variations'* and Mawardi and Pitchumanu applied robust opti-
mization to resonators.!®> Compliant MEMS were also explored by Maute and Frangopol who investigated
topology optimization with reliability-based design methods.'® Wittwer, et al., united modern uncertainty
analysis, model validation, and robust optimization techniques in a comprehensive design method accounting
for process uncertainties.'”

This paper explores a variety of algorithms for performing reliability analysis. In particular, forward
and inverse reliability analyses are described, including variations in limit state approximation, probability
integration, Hessian approximation, and most probable point search algorithms. These uncertainty quantifi-
cation capabilities are then used as a foundation for exploring RBDO formulations. The algorithms described
are implemented in the DAKOTA software suite,'® an open-source software framework for design and per-
formance analysis of large-scale computational models on high performance computers, which couples with
finite element-based simulations to generate design results for the MEMS devices of interest.

Sections IT and IIT describe the reliability and RBDO algorithms, respectively. Section IV demonstrates
their application to a compliant bistable micromechanism. Section V provides concluding remarks and
indicates future directions.

II. Reliability Method Formulations

A. Mean Value

The Mean Value method (MV, also known as MVFOSM)? is the simplest, least-expensive reliability method
because it estimates the response means, response standard deviations, and all CDF/CCDF response-
probability-reliability levels from a single evaluation of response functions and their gradients at the uncertain
variable means. This approximation can have acceptable accuracy when the response functions are nearly
linear and their distributions are approximately Gaussian, but can have poor accuracy in other situations.
The expressions for approximate response mean f,, approximate response standard deviation o, response
target to approximate probability /reliability level mapping (2 — p, 3), and probability /reliability target to
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approximate response level mapping (p, 3 — z) are

tg = 9(px) (1)
d d
79 = 32 37 Covlis ) gine) gy i) (2)
i g v

Bedf = Mgg; : (3)
5ccdf = : ;g‘ug (4)
2= ttg = 09 Beay (5)

z = pg + 0gBccdf (6)

respectively, where x are the uncertain values in the space of the original uncertain variables (“x-space”),
with g denoting mean, g(x) is the response function for which probability-response level pairs are needed,
and Bcqr and Beeqr are the CDF and CCDF reliability indices, respectively.

With the introduction of second-order limit state information, Mean-Value Second-Order Second-Moment
(MVSOSM) calculates a second-order mean as

o= o) + 5 3 > ol T ("

This is commonly combined with a first-order variance (Eq. 2), since second-order variance involves higher
order distribution moments (skewness, kurtosis)® which are often unavailable. For MPP searches informed
by Hessian information (described in Section II.B), the MVSOSM second-order mean (Eq. 7) can be used
to calculate response means.

The first-order CDF probability p(g < z), first-order CCDF probability p(g > 2), Bear, and Secqr are
related to one another through

p(g < 2) = @(—PBear) (8)
p(g > 2) = @(—PBecar) 9)
e = =@ (p(g < 2)) (10)
Beedr = =2~ (p(g > 2)) (11)
Bedf = —Becdr (12)
plg<z)=1-pg>2) (13)

where ®() is the standard normal cumulative distribution function. A common convention in the literature is
to define g in such a way that the CDF probability for a response level z of zero (i.e., p(g < 0)) is the response
metric of interest. The formulations in this paper are not restricted to this convention and are designed to
support CDF or CCDF mappings for general response, probability, and reliability level sequences.

B. MPP Search Methods

Other reliability methods solve an equality-constrained nonlinear optimization problem to compute a most
probable point (MPP) and then integrate about this point to compute probabilities. The MPP search is
performed in uncorrelated standard normal space (“u-space”) since it simplifies the probability integration:
the distance of the MPP from the origin has the meaning of the number of input standard deviations
separating the mean response from a particular response threshold. The transformation from correlated non-
normal distributions (x-space) to uncorrelated standard normal distributions (u-space) is denoted as u =
T (x) with the reverse transformation denoted as x = T~!(u). These transformations are nonlinear in general,
and possible approaches include the Rosenblatt,'® Nataf,?® and Box-Cox?! transformations. The nonlinear
transformations may also be linearized, and common approaches for this include the Rackwitz-Fiessler?? two-
parameter equivalent normal and the Chen-Lind?? and Wu-Wirsching?* three-parameter equivalent normals.
The results in this paper employ the Nataf nonlinear transformation which occurs in the following two steps.
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To transform between the original correlated x-space variables and correlated standard normals (“z-space”),
the CDF matching condition is used:
D(z) = F(x;) (14)

where F() is the cumulative distribution function of the original probability distribution. Then, to transform
between correlated z-space variables and uncorrelated u-space variables, the Cholesky factor L of a modified
correlation matrix is used:

z =Lu (15)

where the original correlation matrix for non-normals in x-space has been modified to represent the corre-
sponding correlation in z-space.?’

The forward reliability analysis algorithm of computing CDF/CCDF probability levels p or reliability
levels (3 for specified response levels Z is called the reliability index approach (RIA), and the inverse reliability
analysis algorithm of computing response levels z for specified CDF/CCDF probability levels p or reliability
levels (3 is called the performance measure approach (PMA).® The differences between the RIA and PMA
formulations appear in the objective function and equality constraint formulations used in the MPP searches.
For RIA, the MPP search for achieving the specified response level Z is formulated as

minimize ulu

subject to G(u) =z (16)
and for PMA, the MPP search for achieving the specified reliability /probability level 3, p is formulated as

minimize (or maximize) G(u)
subject to ulu = 2 (17)

where u is a vector centered at the origin in u-space and G(u) = g(x) by definition. In the RIA case,
the optimal MPP solution u* defines the reliability index from § = £|u*||2, which in turn defines the
CDF/CCDF probabilities (using Egs. 8 and 9 in the case of first-order integration). The sign of ( is defined
by

G(u*) > G(0) : Beqr <0, Becar > 0
G(u*) < G(0) : Bear > 0, Becar <0

where G(0) is the median limit state response computed at the origin in u-space (where Beqr = Becar = 0
and first-order p(g < z) = p(g > 2) = 0.5). In the PMA case, the minimization or maximization of G(u) is
similarly determined by (:

Bedr < 0, Becar > 0 : maximize G(u)
Beas > 0, Becar < 0 : minimize G(u)

and the limit state at the MPP (G(u*)) defines the desired response level result.

There are a variety of algorithmic variations that can be explored within RIA/PMA reliability analysis
including limit state approximations, probability integrations, warm starting approaches, Hessian approx-
imations, and MPP search algorithm selections.?>>26 The results in this paper come from either directly
optimizing without approximating the limit state G(u) (FORM), or optimizing the AMV?+4 approxima-
tion,26 where a second-order Taylor series model of the limit state is used and updated as the optimization
progresses with rank one updates to the Hessian and new expansions about each candidate MPP. When
the specified response metrics or constraints include probabilities p, they must be calculated by integrating
around the most probable point in u-space. First-order integration methods directly use Eqgs. 8 and 9 and
second-order integration methods are discussed in Ref. 26, including the Breitung correction, which uses
principal curvatures k; of the limit state function to better inform the integration. First-order integrations
are employed for the probability formulation RBDO process presented in Section IV, however the proba-
bilities about the resulting converged MPPs are verified using second-order integrations (SORM) with full
finite-difference Hessians.

4 of 15

American Institute of Aeronautics and Astronautics



III. Reliability-Based Design Optimization

Reliability-based design optimization (RBDO) methods are used to perform design optimization ac-
counting for reliability metrics. The reliability analysis capabilities described in Section II provide a rich
foundation for exploring a variety of RBDO formulations. In Ref. 25, Eldred, et al., investigated bi-level,
fully-analytic bi-level, and first-order sequential RBDO approaches employing underlying first-order reli-
ability assessments. In Ref. 26, Eldred and Bichon investigated fully-analytic bi-level and second-order
sequential RBDO approaches employing underlying second-order reliability assessments.

In bi-level (nested) RBDO, the simplest and most direct RBDO approach (and that employed in this
paper), an optimization algorithm is used to minimize over design variables d an objective function subject
to constraints, where each of these include dependence on design variables and/or statistics generated by
reliability analysis. For each design iterate d, evaluation of the statistics requires a full probability /reliability
analysis over the uncertain variables x. Thus bi-level RBDO involves a nesting of two distinct levels of
optimization within each other, one at the design level and one at the MPP search level.

Since an RBDO problem will typically specify both the Z level and either the p or 3 level, one can use
either the RIA or the PMA formulation for the UQ portion and then constrain the result in the design
optimization portion. In particular, RIA reliability analysis (Eq. 16) maps a specified response level Z to p
or (3, so RIA RBDO constrains p or f:

minimize  f(d,x
subject to  3(d) > 3
or p(d)<p (18)
And PMA reliability analysis (Eq. 17) maps a desired probability p or reliability 3 to z, so PMA RBDO

constrains z:

minimize  f(d,
subject to  z(d)

x)
>z (19)

where z > Z is used as the RBDO constraint for a cumulative failure probability (failure defined as z < z)
but z < zZ would be used as the RBDO constraint for a complementary cumulative failure probability (failure
defined as z > z). While DAKOTA can solve these simple inequality-constrained RBDO formulations, it
also supports general optimization under uncertainty mappings?” which allow flexible use of statistics within
multiple objectives, inequality constraints, and equality constraints.

In solving an optimization problem, many algorithms require derivatives of the objective function and
constraints with respect to d. An important performance enhancement for bi-level methods uses sensitivity
analysis to compute the design gradients of probability, reliability, and response levels, relying on the analytic
relationship between derivatives of the response function g and reliability metrics. In particular, when
design variables are separate from the uncertain variables (i.e., they are not parameters of uncertain variable

distributions), then the following first-order expressions may be used:!% 2829
Vaz = Vag (20)
1
VaBeif = 777 Vdd (21)
T IVWGG
Vaveas = —0(—PBed)VdBedr (22)

where it is evident from Eqs. 12 and 13 that VafBeear = —VaPBeqr and Vapeeqr = —Vapeqr. If second-order
integration is used to calculate p from 3, Eq. 22 must be expanded to include a curvature correction.?’
Even when Vg4g is estimated numerically, Eqs. 20-22 can be used to avoid numerical differencing across full
reliability analyses to obtain design derivatives.

When the design variables are distribution parameters of the uncertain variables, V4g is expanded with
the chain rule and Eqs. 20 and 21 become

Vaz = VaxVxyg (23)
1
= —— . 24
VaBedr NAE ”dev g (24)
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where the design Jacobian of the transformation (V4x) may be obtained analytically for uncorrelated x
or semi-analytically for correlated x (V4L is evaluated numerically) by differentiating Eqs. 14 and 15 with
respect to the distribution parameters. Eq. 22 remains the same as before. For this design variable case, all
required information for the sensitivities is available from the MPP search.

Since Eqgs. 20-24 are derived using the Karush-Kuhn-Tucker (KKT) conditions for a converged MPP, they
are appropriate for RBDO using AMV+, TANA, FORM, and SORM, but not for RBDO using MVFOSM,
MVSOSM, or AMV.

An alternative RBDO approach is the sequential approach, in which additional efficiency is sought by
breaking the nested relationship of the MPP and design searches. The general concept is to iterate between
optimization and uncertainty quantification, updating the optimization goals based on the most recent
probabilistic assessment results. This update may be based on safety factors'! or other approximations.'?

A particularly effective approach for updating the optimization goals is to use the p/3/z sensitivity
analysis of Egs. 20-24 in combination with local surrogate models.?® In Refs. 25 and 26, first-order and
second-order Taylor series approximations are explored. Surrogate models are used for both the objective
function and the constraints, although the use of surrogates for probabilistic functions alone is sufficient
to remove the nesting. When surrogate models are employed, a trust-region model management frame-
work3! can be used to adaptively manage the extent of the approximations and ensure convergence of the
RBDO process. Further, when using second-order approximations, the design Hessians can be efficiently
approximated with quasi-Newton updates.

IV. Application to MEMS Bistable Mechanism

In this section, the reliability analysis and design algorithms described in Sections II and IIT are applied
to bistable microelectromechanical systems.

MEMS bistable mechanisms toggle between two stable positions, making them useful as micro switches,
relays, and nonvolatile memory. In particular, the focus here is on shape optimization of compliant bistable
mechanisms, where instead of mechanical joints, material elasticity and geometry enable the bistability of
the mechanism.?? 34 Figure 1 contains an electron micrograph of a MEMS compliant bistable mechanism
in its second stable position. The first stable position is the as-fabricated position. One achieves transfer
between stable states by applying force to the center shuttle via a thermal actuator, electrostatic actuator,
or other means to move the shuttle past an unstable equilibrium.

actuation force

Figure 1. Scanning electron micrograph of a MEMS bistable mechanism in its second stable position. The
attached vernier provides position measurements.33

Bistable switch actuation characteristics depend on the relationship between actuation force and shuttle
displacement for the manufactured switch. Figure 2 contains a schematic of a typical force—displacement
curve for a bistable mechanism. The switch characterized by this curve has three equilibria: E; and Fj
are stable equilibria whereas Es is an unstable equilibrium (arrows indicate stability). A device with such a
force—displacement curve could be used as a switch or actuator by setting the shuttle to position F3 as shown
in Figure 1 (requiring large actuator force Fy,,,) and then actuating by applying the comparably small force
Fiin in the opposite direction to transfer back through Fs toward the equilibrium F;. One could utilize
this force profile to complete a circuit by placing a switch contact near the displaced position corresponding
to maximum (closure) force as illustrated. Repeated actuation of the switch relies on being able to reset it
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with actuation force Fj,qq-

force

switch

contact
Fmax“

E E, Ej
E | \/
v displacement

FminT ' ' '

Figure 2. Schematic of force—displacement curve for bistable MEMS mechanism. The arrows indicate stability
of equilibria F; and E3 and instability of Es.

The device design considered in this paper is similar to that in the electron micrograph in Figure 1, for
which design optimization has been previously considered,?* as has robust design under uncertainty with
mean value methods.'” The primary structural difference in the present design is the tapering of the legs,
shown schematically in Figure 3. This topology is a cross between the fully compliant bistable mechanism

tapered beam

actuation force

Figure 3. Schematic of a tapered beam bistable mechanism in as-fabricated position (not to scale).

reported in Ref. 34 and the thickness-modulated curved beam in Ref. 36. As described in the optimization
problem below, this tapered geometry offers many degrees of freedom for design.

Figure 4. Scale drawing of tapered beam leg for bistable mechanism.

An appropriately designed bistable switch actuates predictably with prescribed force F,,;, and is robust
to fabrication variations. The switch investigated here is subject to the following design criteria:

e reliably achieves specified actuation force Fi; = —5 uN;

e is bistable (Fyq. > 0 and Fuyp < 0);
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e attains at least 50 uNV force F,4, at switch contact to reduce electrical contact resistance, but requires
no more than 150 4N actuation force to set;

e unstable point Es occurs at no more than 8 ym (limited by the actuator displacement); and
e maximum stress no more than 1200 MPa.

The maximum stress constraint is relaxed to 3000 MPa for the analysis and optimization conducted here, to
allow for the stress concentration resulting from the particular numerical simulation used. The actual device
has stress-reducing fillets, which in a more rigorous analysis would be modeled and therefore accounted for
during design optimization. The force—displacement profile of a compliant bistable MEMS device is highly
sensitive to design geometry, so one can vary manufactured geometry to achieve these design criteria.

A. RBDO problem formulation

Figure 4 shows a scale drawing of one tapered beam leg (one quarter of the full switch system). A single
leg is approximately 100 um wide and 5-10 wm tall and is parametrized by the 13 design variables shown
in Figure 5, including widths and lengths of beam segments as well as angles between segments. For
simulation, a symmetry boundary condition allowing only displacement in the y direction is applied to the
right surface (z = 0) and a fixed displacement condition is applied to the left surface. With appropriate
scaling of reaction force (to account for device thickness and number of legs), these allow the quarter model
to reasonably represent the full four-leg switch system.

1r

051

—15F

y (Hm)

-2k

—25F

-3+

-3.51

.
-100 -80 -60 -40 -20 0
X (um)

Figure 5. Design parameters for the tapered-beam fully-compliant bistable mechanism (geometry not to
scale). Displacement is applied in the negative y direction at the right face (z = 0), while at the left face, a
fixed displacement condition is enforced.

Due to manufacturing processes, fabricated geometry can deviate significantly from design-specified beam
geometry. As a consequence of photo lithography and etching processes, fabricated in-plane geometry edges
(contributing to widths and lengths) can be 0.1 4 0.08 um less than specified. This uncertainty in the
manufactured geometry leads to substantial uncertainty in the positions of the stable equilibria and in the
maximum and minimum force on the force—displacement curve. The manufactured thickness of the device
is also uncertain, though this does not contribute as much to variability in the force—displacement behavior.
Uncertain material properties such as Young’s modulus and residual stress also influence the characteristics
of the fabricated beam. For this application, two key uncertain variables are considered: AW (effect of
edge bias, applied ATW to each edge, yielding effective manufactured widths W; + AW,i =0,...,4) and S,
(residual stress in the manufactured device), with distributions shown in Table 1.

Given the 13 geometric design variables d = [L1, Lo, L3, Ly, 61, 02,03, 64, Wy, W1, Wa, W5, Wy] (subject to
the bound constraints listed in Table 2) and the specified uncertain variables x = [AW, S,], we formulate two
reliability-based design optimization problems to achieve a design that actuates reliably with 5 uN force. (In
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Table 1. Uncertain variables x = [AW,S;] used in RBDO.

‘ variable ‘ mean (4) ‘ std. dev. ‘ distribution
AW (width bias) -0.2 um 0.08 normal
Sy (residual stress) | -11 Mpa 4.13 normal

the following problem descriptions and results, units of force are uN and units of displacement (including
equilibrium positions) are um. The first formulation is reliability metric-based using the limit state

9(x) = Frnin(x) (25)

and failure is defined to be actuation force with magnitude less than 5.0 uN (Fnin > —5.0). Reliability
index fBecqr > 2 is required. The RBDO problem utilizes the RIA Z — § approach (Eq. 18) with Z = —5.0:

max E [Frin(d, x)]
s.t. 2 < ﬂccdf(d)
50 < E[Fpnae(d,x)] < 150 (26)
E[E(d,x)] < 8
E[Smaw(d7x)] < 3000,

although the PMA 3 — z approach (Eq. 19) could also be used. The use of the F,,;, metric in both the
objective function and the reliability constraint results in a powerful problem formulation, because in addition
to yielding a design with specified reliability, it also produces a robust design. By forcing the expected value
of Fy,;n toward the —5.0 target while requiring two standard deviations of surety, the optimization problem
favors designs with less variability in F},,;,. This renders the design performance less sensitive to uncertainties.

The second problem formulation seeks design variables d to maximize the probability of actuation force
being in the desired interval [—6.2, —5.0]. For comparison with the previous reliability formulation, the
interval is chosen such that the response level Fy,;, = —5.0 deviates approximately 10% from the midpoint
—5.6 of the interval. The optimization problem is:

max P(-6.2 < Frin(d, x) < -5.0)
s.t. 50 < E[Fne(d,x)] < 150 (27)
E[E2(d,x)] < 8
E [Smaz(d,x)] < 3000.
An equivalent alternative to this probability formulation directly incorporates the reliability metric Beqr
corresponding to response levels Z = —6.2 and Z = —5.0 in the optimization criterion:
max Al "0 (@) - A5 0(@) (28)

(subject to the same nonlinear constraints). This formulation defines failure as F,,;;, < —6.2 or Fypip > —5.0
and favors designs with the smallest probability of failure, however, the 3 statistic sometimes performs better
than probability metrics in RBDO contexts.

The probability-based formulations in Eqs. 27 and 28 favor neither tail and yield robust designs by
maximizing probability in a fixed interval. In contrast, the reliability formulation in Eq. 26 yields robust and
reliable designs by constraining the right tail behavior of the output probability distribution while maximizing
the distribution mean. An alternate casting of the RBDO problem that controls both distribution tails would
retain the RIA-based reliability constraint 2 < B..q¢ from Eq. 26 and instead maximize the response level z
corresponding to Becqr = —2 (representing the left tail, calculated with PMA). Like Eq. 26, this combined
RIA/PMA formulation would yield reliable and robust designs, however it is not explored numerically in this
paper. Further studies are in progress to compare the effect of various problem formulations and algorithm
selections.

Throughout design optimization, for each set of specified geometric design parameters and realizations
of uncertain variables, we create and mesh the tapered beam geometry and then perform finite element
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analysis to simulate the nonlinear elastic deformation of the beam through discrete displacement steps to
produce a force—displacement curve. Maximum and minimum force values as well as displacement equilibria
are determined from the curve. Maximum stress S,,.. 1S calculated as the maximum Von Mises stress
over all nodes and all displacement steps. Finite element analysis is performed with Aria, a Galerkin finite
element-based program for coupled-physics problems implemented in Sandia National Laboratories’ STERRA
framework of multi-physics codes.3” All switch simulations employ the quarter model (single beam) system
described above, with appropriate boundary conditions and multipliers to recover the full system.

The optimization problem is solved by applying the DAKOTA software in a bi-level (nested) RBDO
approach. The design variable optimization is performed by the DOT optimizer using the modified method
of feasible directions (MMFD)3® and, for each design iterate, a complete uncertainty/reliability analysis
is performed with DAKOTA'’s reliability methods. We compare three reliability analysis methods for this
MEMS application: (1) MVFOSM (no MPP search), (2) AMV?2+, and (3) FORM using a nonlinear interior
point method to solve the MPP optimization subproblems. The latter two are advantaged by their ability
to provide (semi-)analytic derivatives of reliability metrics with respect to design variables for the optimizer
(see Section IIT), whereas the former must resort to numerical (finite difference) design derivatives due to
the use of o, to compute § (for general distributions, analytic derivatives of Eq. 2 with respect to d are
impractical to evaluate). Feasible initial iterates for the gradient-based MMFD were obtained using the
hyper-rectangle sampling algorithm DIRECT.3?

B. Numerical results

Results for the reliability problem formulation in Eq. 26 using the MVFOSM, AMV?+, and FORM methods
are presented in Table 2 and the optimal force—displacement curves are shown in Figure 6. Optimization
with MVFOSM reliability analysis offers substantial improvement over the initial design, yielding a design
with actuation force F,,;, nearer the —5.0 target and tight reliability constraint 3 = 2. However, since
mean value analyses estimate reliability based solely on evaluations at the means of the uncertain variables,
they can yield inaccurate reliability metrics in cases of nonlinearity or nonnormality. In this example, the
actual reliability (verified with MPP-based methods) of the optimal MVFOSM-based design is only 1.804
(AMV?2+) or 1.707 (FORM); both less than the prescribed reliability 3 > 2. In this example, the additional
computational expense incurred when computing the MPP via optimization may be justified.

Reliability-based design optimization with either the AMV2+ or FORM methods for reliability analysis
yield constraint-respecting optimal beam designs with significantly different geometries than MVFOSM. The
MPP-based methods yield a more conservative value of Fj,;, due to the improved estimation of 3. Each of
the three methods yields an improved design that respects the reliability constraint. The variability in Fi,qn
has been reduced from approximately 5.6 (initial) to 0.52 (MVFOSM design), 0.67 (AMV?2+ design), or 0.65
(FORM design) uN per (FORM verified) input standard deviation (w), resulting in designs that
are less sensitive to input uncertainties.

For the MVFOSM optimal design, the verified values of 3 calculated by AMV2+ and FORM differ by
6%, illustrating a typical challenge engineering design problems pose to reliability analysis methods. Figure 7
displays the results of a parameter study for the metric F,;,(d,x) as a function of the uncertain variables
x for fixed design variables d = d}; (the optimum from MVFOSM RBDO). Since the uncertain variables
are both normal, the transformation to u-space used by AMV?+ and FORM is linear, so the contour plot is
scaled to a +3 standard deviation range in the native x-space. The relevant limit state for MPP searches,
9(x) = Fnin(x) = —5.0, is indicated by the dashed line. For some design variable sets d (not depicted),
the limit state is relatively well-behaved in the range of interest and first-order probability integrations
would be sufficiently accurate. For the design variable set dj, used to generate Figure 7, the limit state has
significant nonlinearity, and thus demands more sophisticated probability integrations. The most probable
points converged to by the AMV?2+4 and FORM methods are denoted in Figure 7 by the plus sign and circle,
respectively. While the distance from each point to the origin differs slightly (see verified § values in Table 2),
there clearly exist multiple candidates for the most probable point u satisfying Eq. 16.

Another computational difficulty observed during design optimization of an earlier bistable mechanism
design is simulation failure resulting from model evaluation at extreme values of physical and/or geometric
parameters. For example, during an MPP search, edge bias AW might grow in magnitude into its left tail
causing the effective width of the beam to shrink, possibly resulting in too flimsy a structure to simulate.
In summary, highly nonlinear limit states, nonsmooth and multimodal limit states, and simulation failures
caused by, e.g., evaluations in the tails of input distributions, pose challenges for RBDO in engineering
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Table 2. Reliability formulation RBDO: design variable bounds and optimal designs from MVFOSM, AMV?2+4,
and FORM methods for MEMS bistable mechanism.

variable/metric MVFOSM AMV?+ FORM
Lb. name u.b. initial d° || optimal d}; | optimal d% | optimal d}

10 Ly (um) 35 25.0 19.23 28.04 28.06
10 Ly (um) 35 25.0 28.44 24.42 24.45
10 L3 (um) 35 25.0 14.44 30.58 30.68
10 La (um) 35 25.0 35.00 30.55 30.66
0 01 (deg.) 5 1.0 2.733 4.200 4.189
0 02 (deg.) 5 3.0 2.260 2.481 2.488
0 03 (deg.) 5 3.0 2.719 2.465 2.478
0 04 (deg.) 5 1.0 3.230 2.384 2.390
1 Wo (um) 3 1.7 1.058 1.355 1.346
1 Wi (um) 3 1.2 2.038 1.275 1.265
2 Wo (um) 5 3.2 2.390 3.481 3.488
1 W3 (um) 3 1.2 1.312 2.006 2.004
1 Wy (um) 3 1.7 1.000 1.333 1.333
E [Finin] (1N) -26.29 -5.896 -6.188 -6.292

2 8 5.376 2.000 1.998 1.999
50 E [Fnaz] (uN) 150 68.69 50.01 57.67 57.33
E [E2] (um) 8 4.010 5.804 5.990 6.008

E [Smaz] (MPa) | 1200 470 1563 1333 1329

AMV?2+ verified 3 3.771 1.804 - -
FORM verified 3 3.771 1.707 1.784 -

applications, and must be mitigated through a combination of algorithm research, problem formulation, and
simulation refinement.

To evaluate the probability-based optimization formulation in Eq. 27, the optimal design d}, from the
reliability-based design optimization with MVFOSM (Table 2) is selected as an initial iterate. As indicated
in Table 3, this design has P(—6.2 < F,,,;, < —5.0) equal to 0.71 for first-order integration (FORM) or 0.78
for second-order integration (SORM). The goal is to determine if local changes in the design can increase the
probability. Optimal designs for this formulation resulting from RBDO with MVFOSM and AMV?2+ using
first-order probability integrations are shown in Table 3. The optimization processes both yield designs with
increased interval probability (regardless of choice of probability calculation method). However, the initial
and optimal design variables only differ slightly in each case. This small design change can be explained by
the fact that the chosen initial iterate is already a variance-minimizing design with respect to Fj,.;, = —5.0, so
the probability formulation essentially recenters the output distribution within the specified interval (from
mean at —5.9 and Beeqr = 2 to mean at —5.5 and balanced tails at —6.2 and —5.0) to achieve maximal
interval probability. This is reflected in Table 3, where F,,;,(ux) is larger for the optimal designs. Initial
studies involving optimization with the 8 formulation (Eq. 28) did not yield any further improvement in the
device’s probabilistic performance.

Analysis of the AMV?2+ optimal design (d% in Table 2) further contrasts the probability and reliability
formulations. For this reliability formulation optimal design, E[F},:n] = —6.2 and two input standard
deviations separate its mean from —5.0, yet the P(—6.2 < Fy;, < —5.0) is verified to be 0.47 (AMV?2+
or FORM) or 0.48 (SORM). This design is reliable, but is far from optimal with regard to the probability
metric. When d? is used as an initial iterate in the probability-based formulation, neither of the methods
yield a design with higher probability than those reported in Table 3. If controlling the left half of the
output distribution were truly important in the reliability context (i.e., if it were unacceptable to have many
—5.0 uN devices actuate with force greater than —6.2 yuN), the combined RIA/PMA formulation discussed
in Section IV.A should be considered.

In Table 3 there is substantial difference between the verified probabilities using first and second-order
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Figure 6. Optimal force—displacement curves resulting from RBDO of MEMS bistable mechanism with mean
value and AMV?2+ methods. The right plot shows the area near the minimum force. Two input standard

deviations (as measured by the method used during optimization) separate F,,;, from the target Frin = —5.0.
F (AW, S)
min r
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Figure 7. Contour plot of F},,;,(d, x) as a function of uncertain variables x (design variables d fixed at MVFOSM
optimal d},). Dashed line: limit state g(x) = Fnin(x) = —5.0; plus sign: MPP from AMV?2+; circle: MPP from
FORM; triangle indicates contour corresponding to Fi,;, = —6.2.

integrations. This observation, in conjunction with the nonlinear limit state plot in Figure 7, motivates
higher-order probability integration techniques for use in an RBDO context.
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Table 3. Probability formulation RBDO results including MVFOSM and AMV?2+4 methods with first-order
probability integrations and verified probability with AMV?2+ and FORM (first-order integrations) and SORM
(second-order integrations)

variable/metric MVFOSM | AMV?+

Lb. name u.b. initial optimal optimal
10 Ly (pm) 35 19.23 19.20 19.21
10 Lo (pm) 35 28.44 28.41 28.43
10 Lz (um) 35 14.44 14.42 14.43
10 Ly (pm) 35 35.00 34.99 35.00
0 01 (deg.) 5 2.733 2.732 2.730
0 0> (deg.) 5 2.260 2.258 2.255
0 03 (deg.) 5 2.719 2.718 2.716
0 04 (deg.) 5 3.230 3.237 3.239
1 Wo (pm) 3 1.058 1.061 1.059
1 Wi (pm) 3 2.038 2.043 2.041
2 Wa (pm) 5 2.390 2.392 2.391
1 W3 (pwm) 3 1.312 1.308 1.307
1 Wy (pwm) 3 1.000 1.003 1.002
P(—6.2 < Fpin < —5.0) 0.729 0.835 0.835
Frin(px) (uN) -5.896 -5.580 -5.546
50 E [Fraz] (BN) 150 50.01 50.01 49.71
E [E2] (um) 8 5.804 5.833 5.835
E [Smaz] (MPa) 1200 1563 1568 1565

verified P (AMV?4) 0.705 0.809 -

verified P (FORM) 0.713 0.809 0.829
verified P (SORM) 0.781 0.885 0.858

V. Conclusions

This paper explores the deployment of reliability analysis and design algorithmic capabilities to prob-
abilistic analysis and design of microelectromechanical systems (MEMS). A new bistable switch design is
presented and its geometry optimized using DAKOTA in conjunction with Aria, resulting in considerably
improved performance. The results include comparison of probability and reliability-based formulations as
well as algorithmic variations. Caution is necessary when using uncertainty quantification methods such as
mean value that relies on normality or probability integrations that rely on limit state approximations, as
they may give false confidence in the reliability of a design.

In performing risk-informed design with computer models, it is crucial to understand the fidelity of the
simulation model used. Work is in progress to extend the reliability methods in DAKOTA to leverage error
estimates from the finite element analysis codes used to simulate the bistable MEMS. The addition of adjoint
computation methods to Aria enables calculation of error estimates on specific quantities of interest output
from the simulation. For example, in addition to outputting the required force—displacement curve, the
software will output an estimate of the error in the force, indicated by convergence of the finite element
solution for the particular finite element mesh used.*°

Like global error metrics, these error estimates can be used to adaptively refine meshes to ensure solutions
sufficiently accurate for the application at hand. However, in contrast to global or norm error estimates,
these quantity of interest error estimates also quantify the error in the particular metrics (e.g., force or
maximum stress) being used in the optimization and reliability problems. They offer promise for both
correcting outputs of numerical codes and quantifying discretization error to better inform the probabilistic
design of engineering systems.
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