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Multi-point Extended Reduced Order Modeling For

Design Optimization and Uncertainty Analysis

G. Weickum∗, M.S. Eldred†, and K. Maute‡

For large computational models, standard deterministic optimization approaches can be
prohibitively expensive due to the need to repeatedly evaluate the model. This difficulty
is amplified when stochastic aspects of the model are included, such as in reliability based
design optimization. This work seeks to alleviate the computational costs of analyzing
dynamic systems through employing a surrogate model in place of the full model analysis.
The surrogate model of interest is a reduced-order model (ROM), which employs a Galerkin
projection of the system response using a computed set of basis functions in order to
significantly reduce the number of degrees of freedom in the system. The ROM techniques
presented will not only be able to approximate the response accurately at the nominal
design, with a significant reduction in computation cost, but will also estimate the response
due to a change in design or uncertain variable parameters. Two conceptual approaches
will be explored: extended reduced order modeling (EROM) and spanning reduced order
modeling (SROM). The difference between these methods is an EROM approximates an
updated basis (eigenmodes, singular vectors) for each change in parameters while an SROM
uses a single spanning basis for the full parameter space. Different techniques for the
computation of the EROM and SROM bases are explored, and the best of these methods
are incorporated into the optimization and stochastic analysis of a structural problem,
demonstrating the benefit of ROMs.

I. Introduction

In the past decade, numerical optimization methods have attracted significant interest from the design
engineering community. These methods allow the systematic integration of computational models into the
design process exploiting the advances in numerical simulation techniques for design purposes. Design opti-
mization approaches predicting the performance of the engineering systems by high-fidelity nonlinear single
and coupled multi-disciplinary models have been applied to a broad range of engineering design problems.
Furthermore, stochastic variations of system parameters and operating conditions can be taken into account
in the formulation of the design optimization problem. By considering uncertainties directly within compu-
tational design, one can make the design either more robust and/or more reliable. The stochastic response
of the system can be quantified, for example, by sampling techniques, approximate reliability methods, and
stochastic projection schemes. Common to all these methods is they require a repeated evaluation of the
simulation models for various configurations of the system.

At the same time as the complexity and accuracy of these models increase, the computational costs for
analyzing the systems performance increases. In particular if the stochastic and reliability-based performance
criteria are evaluated, using high-fidelity simulation techniques leads to unacceptable computational costs.
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Both the optimization procedure and the stochastic analysis method require multiple analyses of altered
system states in a parameter space, shown in figure 1. The parameters are either design and/or random
variables.

Analysis

Stochastic

Optimization

Full

Figure 1. General schematic of an optimization/stochastic process

The key to incorporating a computationally expensive simulation technique into a stochastic design
framework is to decrease the expense of analyzing systems altered in the parameter space. Two approaches
are frequently used to achieve this goal. Following traditional engineering practice, simplified physical
models can be used to reduce the model complexity and the computational costs. For example, a wing can
be approximated by a beam model. While this approach is very efficient for predicting some aspects of the
system response, simplified models are often not able to predict a broad range of the performance criteria.
Therefore, multiple simplified models need to be developed and calibrated to capture all performance criteria
of interest, requiring a thorough understanding of the engineering system. For complex systems dominated,
for example, by nonlinear phenomena, coupling of multiple physical fields, and/or strong transient effects,
simplified physical models often approximate the response inadequately. In addition, engineering intuition
is often required to connect the parameters of the simplified models to the design parameters of the real
system.

Alternatively, surrogate models have been developed allowing the approximation of the system response
as a function of the design parameters based on performance predictions from high-fidelity simulation models.
Surrogate models may be broadly characterized as data fit (local, multi-point, or global approximations),
multi-fidelity (omitted physics, coarsened discretization or tolerances), or reduced order model (ROM) surro-
gates. A ROM mathematically reduces the system modeled, while still capturing the physics of the governing
partial differential equations (PDEs), by projecting the original system response using a computed set of
basis functions. The projection reduces the number of degrees of freedom (DOFs) in a large finite element
model (O(104 −109) DOF) down to a handful of basis coordinates (typically O(100 −101)). Thus, the ROM
case is distinguished from the data fit case in that it is still intimately tied to the original PDEs and retains
their physics, and is distinguished from the multi-fidelity case in it is derived directly from the original
high fidelity model and does not require multiple models of differing fidelity. ROM models have proven a
successful means of reducing the computational costs of a system’s response in time.1–4 However, ROMs
typically approximate the response of only one particular configuration and are therefore of limited use for
design optimization and stochastic analysis purposes.

The main emphasis of the paper is the extension of ROMs for capturing the systems response in the
parameter space. This paper will first describe the basic framework of ROMs for the dynamic analysis of
linear structural response. The approach is based on a Galerkin projection scheme with the basis vectors
being proper orthogonal decomposition (POD) modes. The proposed extensions of ROMs are described in
Section 3. In Section 4 a numerical study on a connecting rod will be presented comparing the accuracy
of various approximation methods. The best of these approaches will be used within optimization and
uncertainty quantification to compare performance against the full model.

II. Background

The overall approach is to use the ROM as a surrogate in the place of the full order model. The
surrogate is built from information extracted from the full order model, figure 2, and is then interfaced with
the optimization or uncertainty quantification method. By using the surrogate, the computational time is
significantly reduced.

In general, the surrogate model has a limited range of validity and does not necessarily approximate the
whole design space. A trust region framework, such as the ones shown by Giunta and Eldred5 and Eldred
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Figure 2. How surrogate model is incorporated into the optimization process

et al.,6 can be used within optimization to adaptively manage the range of surrogate accuracy. Eq. 1 shows
the trust region approximate subproblem:

minimize f̂k(x)

subject to xl ≤ x ≤ xu

‖ x− xk
c ‖

∞
≤ ∆k, (1)

where x ∈ ℜn is the vector of design variables, f̂k(x) is the surrogate model, xc is the center point of the
trust region, and ∆k is the current size of the trust region. After defining an initial trust region, a surrogate
is built for the trust region and optimization is performed on the surrogate within the trust region. After
completion of the approximate optimization, the ratio of actual improvement in the full order model to the
predicted improvement in the surrogate model is calculated. Depending on the ratio, the iteration is accepted
or rejected and the trust region is shrunk, expanded, or retained. A new surrogate is then constructed for
the new trust region and the process is repeated until convergence.

A. Reduced Order Models

In this section, we will discuss the construction of the ROM surrogate model for a dynamic analysis of a
finite element model. The governing equation of interest is a structural dynamic response (2), where M is
the mass matrix, F int is the internal force, u is the displacement, and the external force is fext(u, t).

Mü + F int(u, u̇) = fext(u, t) (2)

The dynamic response is either linear or nonlinear depending on the internal forces F int and the external
forcing function, fext(u, t), which can be dependent on time (t) as well as displacement (u).

For large systems, the calculation of the linear dynamic response is costly and the cost is further increased
for nonlinear systems. The cost of the dynamic response is reduced by using a reduced order model, which
is a low dimensional approximation. Following a Galerkin type projection scheme, the displacements of the
system response are approximated by k basis vectors (Φ) and generalized variables η as shown below:

u(t) =

k
∑

j=1

ηj(t)φ(j) = Φη(t) (3)

The reduction of the dynamic response is performed by using the approximation from (3) in (2) and pre-
multiplying by ΦT as shown below.

ΦT MΦη̈(t) + ΦT F intΦ(η(t), η̇(t)) = ΦT f ext(u, t) (4)

The system, originally n×n, is reduced to a k× k system, where k are the number of basis vectors used and
k ≪ n. The force vectors are reduced from n × 1 for the full system to k × 1 for the reduced system. The
reduced system may be written as:

MRη̈ + F int
R (η, η̇) = fext

R (η, t) (5)

where MR, F int
R , and f ext

R are dependent upon the basis vectors and the system matrices for a particular
design.
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For linear systems, F int
R (η, η̇) and f ext

R (η, t) are only linear functions of η and can be calculated as follows:

F int
R (η, η̇) = ΦT KintΦ η(t) + ΦT DΦ η̇(t) (6)

fext
R (η, t) = ΦT fext(t) + ΦT KextΦ η(t) (7)

where Kint and Kext are the stiffness matrices associated with the internal and external forces, and D is
the damping matrix accounting for viscous damping.

For nonlinear systems, the internal and external forces are dependent on the displacements and the
reduced force matrices can be updated in two ways. The first is to evaluate the forces in the full order
model, using the approximation of the displacements from (3) which is called an ”on-line” approximation.
The second method, ”off-line” approximation, is to build the force functions so F int

R (η, η̇) and fext
R (η, t)

are only functions of η and t. The advantage of using an on-line approximation is the system response is
calculated more accurately at the cost of CPU time. Using an off-line approximation, the CPU time is
decreased at the cost of accuracy.

In order to augment the ROM in (5) and capture the change of the system response due changes in
system parameters, the system matrices, force functions, and the basis vectors need to be approximated as
functions of the parameters. For linear systems, it was shown in a previous study by Allen7 et al. the system
matrices should be recalculated at each design point within the optimization process. First and second order
Taylor Series approximations of the system matrices were investigated, but were not able to capture the
response accurately.

In this study, two means of updating the basis are considered, namely a Taylor Series and combined
approximation, where the latter, shown in the same study,7 was a better approximation. For the Taylor
Series approximation, the basis and gradients of the basis are needed from the nominal design. For combined
approximation, the gradients are not required, but can be used to improve the approximation of the basis.
Once the basis is approximated for a parameter change, a reduced linear dynamic analysis is performed to
obtain the output response. For linear systems, eigenmodes are commonly used as basis vectors. Allen et
al.7 studied the approximation of basis vectors using the eigenmodes and their gradients. For nonlinear
system and in this study, proper orthogonal decomposition and the method of snapshots are used for basis
generation. Different approximation methods will be explored for either the POD modes themselves or the
snapshots taken from the full response.

B. Proper Orthogonal Decomposition

The application of POD to develop ROMs has been demonstrated in a variety of other disciplines.1–4 POD
reduces a large set of multidimensional data, often in the millions, to a smaller system, often in the tens
or hundreds. The response of interest, the solution of a dynamic system, is projected onto a set of basis
functions (or modes) by defining a set of coefficients which define the contributions of the individual basis
vectors to the response.

A POD basis, which is used to approximate the system’s response (2), is built from snapshots taken from
a full transient analysis. When N snapshots are taken from the transient response, and a covariance matrix
(R) is built, shown below:

Rij =
1

N

∫

Ω

uiujdΩ (8)

or for the discretized case:
R = (u − ū)T M̃(u − ū)

ū =
1

N

∑

uj

where u are the snapshots from the dynamic response, Ω represents the body, and M̃ is the mass matrix
with unity density. When finding the covariance matrix, the mean of the snapshots are subtracted from the
snapshots. The information of interest is not contained in the mean of the snapshots. The reader may note
the covariance matrix defined above is different from the traditional definition, R = uM̃uT , which results
in a n × n matrix. However, the matrix defined in (8) is preferred since its dimension is only k × k, where
k represents the number of snapshots considered. An eigen analysis is performed on this smaller covariance
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matrix and the modes Φ are solved by:

ΦK =

K
∑

j=1

aK
i uj K = 1, 2, · · · , N (9)

where a are the eigenvectors of R. The POD basis (Φ) is not guaranteed orthogonal to the mass and stiffness
matrix, as are the eigenmodes of the system, and are dependent upon the time interval and forcing function
utilized in the time integration from which the snapshots were obtained. The POD modes attempt to capture
as much of the system response as possible in the sense of a vector norm, and may or may not reflect the
eigenmodes.

The up-front cost of using POD modes as a basis is the full system analysis required to obtain the
snapshots, whereas using eigenmodes requires solving the eigen problem. The choice between which modes to
use is dependent upon the type of problem, and the difference in cost between a full system time integration
and an eigen analysis. For fluid or multi-physics problems, for example, single time integration is often
significantly cheaper than an eigen analysis, so POD modes are preferred.

1. Sensitivity of POD Modes

The derivatives of the POD modes with respect to the design variables are needed to build a first order
approximation of a design change from the nominal design. An analytical approach is used to approximate
the derivatives of the POD modes with respect the design parameter p. First the POD eigen system is
differentiated with respect to the system parameter p:

d

dp

(

C − ω2
i I
)

ϕi = 0 (10)

C =
uTMu

N
(11)

M is the mass matrix with unity density, (u) is the matrix of snapshots taken from the system response, ω2
i

are the eigenvalues, ϕi are the eigenvectors, and N is the number of snapshots taken. Applying the product
rule, equation (10) results in:

(

C − ω2
i I
) dϕi

dp
+

(

∂uT

∂p
Mu + uT ∂M

∂p
u + uTM∂uT

∂p

N
− 2ωi

∂ωi

∂p
I

)

ϕi = 0 (12)

Premultiplying (12) by ϕT
i eliminates the first term due to symmetry in C and results in:

ϕT
i

(

∂uT

∂p
Mu + uT ∂M

∂p
u + uTM

∂uT

∂p

)

ϕi = 2Nωiϕ
T
i Iϕi

∂ωi

∂p
(13)

Using (13), the gradients of the eigenvalues with respect to the system parameter are found as:

dωi

dp
=

ϕT
i

(

∂uT

∂p
Mu + uT ∂M

∂p
u + uTM∂uT

∂p

)

ϕi

2NωiϕT
i Iϕi

(14)

This solution for the sensitivities of the eigenvalues is substituted into dωi/dp in the first term of (12), where
Ω is defined as:

Ω =

(

∂uT

∂p
Mu + uT ∂M

∂p
u + uTM∂uT

∂p

N
− 2ωiϕ

T
i Iϕi

∂ω2
i

∂p

)

ϕi (15)

which results in the following system
(

C − ω2
i I
) dφi

dp
= Ω (16)

This system is solved for dϕi/dp by:
dϕi

dp
= C̃+Ω (17)
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where C̃+ is the generalized inverse8, 9 of the singular matrix C̃:

C̃ =
(

C− ω2
i I
)

(18)

The last step is to expand dϕi for the approximation of the POD modes dφi

dφi

dp
=

du

dp
ϕi + ui

dϕi

dp
(19)

C. Combined Approximation

Combined approximation (CA)10–14 is a reanalysis method used to approximate the basis vectors due to a
change in system parameters. The new basis is approximated as a linear combination of another basis:

φ̃i(p) = y1r1 + y2r2 + · · · + ynrn (20)

where yi are constants and r is the basis used for CA. A binomial series expansion about the original design
is often chosen as the reduced basis.10, 11 In this study, one of the methods chosen for the CA approach
is a Taylor Series approximation of the basis function. The Taylor Series approximation uses the original
basis and the first derivatives of the basis with respect to the system parameters to approximate the current
design at p. Therefore, the CA approximation becomes:

φ̃i(p) ≈ y1φi + y2
∂φi

∂p1
+ · · · + yn+1

∂φi

∂pn

(21)

The reader may note this is equivalent to a first order Taylor series expansion if y1 = 1 and yi>1 = ∆pi−1.
However, to find the coefficients y, the newly assembled system matrices are reduced by the Taylor Series
basis r. Once the reduced matrix MCA and KCA are found, where MCA = rTMr and KCA = rTKr, the
following eigenvalue problem is solved to find y:

KCAy = λMCAy (22)

where y are the eigenmodes of (22). One can approximate φ̃i(p) via (22) using only the first eigenmode of
22). This method is referred to as single CA in the following. Alternatively, additional eigenmodes from (22)
can be used to approximate several basis vectors by considering multiple eigenmodes of (22). This approach
is referred to as full CA and is detailed below.

III. Extended Reduced Order Modeling Approaches

ROMs are accurate for the nominal design it was built from. For optimization or uncertainty quantifi-
cation, the ROM needs to be accurate for the design change. The extension of the ROM into the design
space will be further stated as an extended reduced order model (EROM). For the model of interest, the
system matrices from (2) are dependent on a design change as well as the basis Φ from (3). As stated
earlier, the system matrices are rebuilt at each design. In this section various alternatives will be studied for
approximating the basis vectors as a function of system parameters.

The approximation of the basis, POD modes for this study, can be approximated using the basis and/or
the gradients of the basis with respect to design and random variables at the nominal design, which is
represented in figure 3 with a red cross. The approximation built in the middle is only a local approximation
and will most likely not be able to approximation the whole design space (one point EROM). In an attempt
to capture more of the design space, a multi-point approximation of the design space is explored. The green
crosses in figure 3 represent sample points in the design space at which new snapshots and/or a new basis
vector are computed. The idea is the whole design space can be approximated, if a sufficient number of
sample points is used.

For the multi-point approximations, three different methods are used where either the POD modes or the
snapshots are taken from each design point. Within each of the three methods several alternative approaches
will be studied. Method M-1 finds the basis due to a design change with no derivative information. Option
M-1a refers to the approximation of the basis vectors by a single CA, Option M-1b by a full CA. For a single
CA, each of the individual modes is approximated using information only from like modes. An example
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Figure 3. Schematic of how multi-point approximation will be implemented

is approximating the first mode using only the first modes at each sample point. The first modes from
each design will be used in CA to find the approximated first mode at the design change and like wise for
the preceding modes. For a design with four sample points, the first POD mode at the design change is
approximated using the first POD mode at each sample point in CA. This is also done for preceding modes.
In the eigen analysis from (22), a four by four eigen analysis is performed, where only the first eigenvector is
used in (20). For a full CA, all of the modes are used to approximate all of the other modes due to a design
change. In the previous example, assuming each of the four design points have three individual modes, a
twelve by twelve eigen analysis is performed where all the modes from (22) are used in the approximation
of the new basis. Since all of the eigenvectors are used, this increases the number of bases in ROM. In the
single CA, four new modes are produced where twelve are produced for the full CA. Once the modes are
found, they are used in the ROM to predict the response at the design change.

In option M-1c, a single CA on the snapshots is performed where each snapshot is approximated using like
snapshot from each of the design points in CA. There are as many eigen analyses as there are snapshot for this
technique where only the first eigenvector from (22) is used in (20). Once the snapshots are approximated,
a POD analysis is performed to find the modes at the design change. If two design points are used, and only
ten snapshots are taken from each design, the first snapshot is predicted by taking the first snapshot from
each design. This produced a reduced mass and stiffness matrix which is two by two and in turn produced
a two by two eigen analysis. Only the first eigenvector is used in (20) for the approximation of the first
snapshot. This is done for all ten snap shots.

In option M-1d all of the snapshots from each sample are taken into account. The snapshots are put
collectively together and a POD analysis is performed on the whole set of snapshots. Once the POD modes
are built a full CA is performed to find the new basis vectors.

In method M-2, all of the same options are used, but derivative information is used in the approximation.
However, in option M-2d, the mode and its corresponding derivatives are used in a single CA and done for
all preceding modes. For method M-2e, a full CA is performed where all modes and derivatives are used to
approximate modes at the design change.

Method M-3 collects two approaches referred to as spanning ROMs (SROMs). Option M-3a collectively
put the bases from each sample point together and M-3b collectively puts the snapshot together from each
design, perform a POD analysis and the modes acquired will be used to approximate the design space.

The difference between SORM (M-3) and EROM (M-1 and M-2) is once the basis vectors are built for
SORM, there is no update of the bases as the system parameters change. In the EROM methods, the
basis vectors are updated at each different design through CA on either the basis (M-1a,b and M-2a,b), the
snapshots (M-1c and M-2c) or the combination of snapshots (M-1d and M-2d,e) from each sample point.
For options M-1d and M-2d,e, once the POD modes are found, there is no need to rebuild the POD modes
again because it would produce the same POD modes each time as the snapshots are not changing. The
actual approximation comes from performing CA on the POD modes from the combination of snapshots.

The various methods studied are summarized below.

1. EROM approximation using no derivative information (method 1): Figures 6
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a) Single CA of the basis

φ̃i(p) ≈ y1φ
(1)
i + · · · + ykφ

(k)
i

b) Full CA of method 1a

c) Single CA of the snapshots

ũi(p) = y1u
(1)
i + · · · + yku

(k)
i => POD => Φ̃

d) Full CA on the collective set of snapshots

UTotal = [u(1)| · · · |u(k)] => POD => Φ̃

2. EROM approximation using derivative information (method 2): Figures 7

a) Single CA of basis and derivatives

φ̃i(p) ≈ y1φ
(1)
i + · · · + yj+1

∂φ
(1)
i

∂pj

+ · · · + ymφ
(k)
i + ym+1

∂φ
(k)
i

∂pj

b) Full CA of method 2a

c) Single CA on the snapshots and derivative

ui = y1u
(1)
i + y2

du
(1)
i

dpj

+ · · · + yku
(k)
i + yk+1

du
(k)
i

dpj

=> POD => Φ̃

d) Single CA on the collective set of snapshots and derivative

UTotal = [u(1)| · · · |u(k)] => POD => Φ̃

Φsnap, [
du(1)

dp
| · · · |

du(k)

dp
] =>

dΦsnap

dp

e) Full CA of method 2d

3. SROM approximation (method 3): Figures 8

a) Combination of bases
Φ̃(p) ≈ [Φ(1)| · · · |Φ(k)]

b) Combination of snapshots

UTotal = [u(1)| · · · |u(k)] => POD => Φ̃

In the above list, φ̃i(p) is the approximated basis at a particular configuration and φi are the basis at the
sampled design. y are constants found in CA and the super-script denotes information from the kth sample
point.

There are differences which should be noted for each method. The first two methods, EROM approxi-
mations, use CA to predict the modes at a design change. This is an actual approximation of the modes at
a particular configuration. Method M-3 combines information from each of the designs in the expectation
the information taken from each design will be able to predict a change in design. This method is not an
actual approximation of the reduced model at a particular configuration but is expected information taken
at each sampling point will be sufficient enough at predicting the modes at another configuration.

For the single CA an eigen analysis is performed for each individual basis approximation. If, for example,
there are three sample points, and four bases are needed to approximate the system response at a particular
configuration, then four, three by three eigen analyses are performed where only the first eigenvector is used
in the basis approximation. If a full CA is used a single twelve by twelve eigen analysis is performed where
all the eigenvectors are used. Also when running the actual ROM, the number of degrees of freedom in the
system is four and twelve respectively for the example above. If CA is performed on the snapshots and only
the first eigenmode is used in CA, there are as many eigen analyses as there are snapshots.
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Comparing the computation cost of each method, the full analysis for method (recalibration point) M-1
and M-3 are equal. The full analysis of method two is more expensive because gradient information is
required. The approximation of the modes is done for only method M-1 and M-2, making these methods
more expensive. Performing the reduced dynamic analysis, a single CA is less expensive then a full CA
because more modes are used in the full CA of the dynamic analysis. A summary of the computation cost
is shown below.

FullAnalysis

Method 1 == Method 3

Method 1 < Method 2

ROMAnalysis

Method 3 < Method 1 < Method 2

where

Single CA < Full CA

(23)

IV. Computational Experiments: Connecting Rod

The various methods and options previously introduced are studied with a typical mechanical component:
a connecting rod.15, 16 This example was used in a previous study7 optimizing the design based on an EROM
approximation.

The rod is clamped at the inner circumference of the left hole, and a transient force is applied to the
inner circumference of the right hole. The rod has an overall length of 42mm, a thickness of 3mm, a Poisson
ratio of 0.3, and a Young’s modulus of E = 7.2× 105N/mm2. A linear elastic response and light damping is
assumed using a Raleigh model, with α = 10−5 and β = 10−5. The beam is discretized by 400 isoparametric
4 node plane-stress elements, resulting in a total of 936 degrees of freedom. All computations are performed
within MatLab utilizing the CALFEM finite element toolbox.17 Two geometric parameters, p1 and p2,
control the horizontal position of the center hole, as depicted in figure 4.

f(t) 

hole placement

Length = 42 mm

Thickness = 3 mm

time

applied force

uncertainp1 p2

Figure 4. Model of the connecting rod

For illustration purposes, the following optimization problem is studied: find the values of the parameters
p1 and p2 such the dissipation energy is minimized.

min
s

(Dissipation Energy)

subject to : −4 ≤ s1 ≤ 4

subject to : −4 ≤ s2 ≤ 4

(24)

A. EROM of Connecting Rod

For the rod, each method (M-1, M-2 and M-3) for approximating the dissipation energy for a particular
configuration was analyzed. The options were tested for a one, two and three point EROM approximation.
The best estimations of the design space will be implemented into the optimization of the rod.

The top left of figure 5 shows the full order response where the contours represent the dissipation energy.
The contours from method M-1 and M-3 are the same using a one-point approximation with the exception
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of method M-1b and M-1d which produce similar results, shown on the top right of 5. This is equivalent
to approximating each design with the same modes. The middle left plot is a one point EROM, which is
the same for all of the techniques in method except M-2b and M-2e. Using the full CA, the design space is
captured better, but still not satisfactory. To see the effects of the multi-point approximations, each of the
methods were tested and the contours plotted of the dissipation energy. For each method, two and three
points in the design space were used for the approximation.
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Figure 5. Comparison of full, one point ROM, EROM and full CA on the EROM

Figure 6 shows the approximation of method M-1 (no derivative information). The plots on the left of
figures 6-8) show a two point sampling method and the right shows a three point sampling method. Each of
the figures shows the plots in the order the techniques stated above. Figure 6 shows the contours without
using derivative information. Figure 7 shows the contours using derivative information and the third figure
shows the SROMS approximations.

The errors measured by the L2 norm of the three point estimation are shown in figures 9. Method M-2d,
is a fair approximation and needs to be studied further to see if this technique will produce accurate results.
When a two-point approximation was used in M-2, the trend of dissipation energy was captured but there is
a clear discrepancy with respect to the contours. If an optimization algorithm was run to find the minimum
of the dissipation energy, it would have converged to the correct position, given the design space. The three-
point approximation changed the trend of the design space. An optimization algorithm would converge to
the incorrect optimum, but comparing the contours lines, it more accurately represents the position of the
contour, especially near the left of the design space. To see if the accuracy can be improved, more sample
point could be taken.

Three of the options resulted in poor approximations, namely method M-1d, M-3a and M-3b. The other
methods were able to approximate the design space, but some better than others. In any of the techniques
using a full CA, the accuracy of the response was increased. While the accuracy of the response was increased,
the computational time was also increased. Comparing the results of methods M-1 and M-2 showed using
gradient information always increases the accuracy of the approximation. Again this is at the cost of having
to calculate derivatives at recalibration points and, if the full CA is used, then the computational time of
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Figure 9. L
2 norm of each of the techniques from the three-point approximation
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analyzing the ROM is further increased due to the increased number of degrees of freedom in the ROM. The
method which performed the best was method M-2b. This method used derivatives of the POD modes in a
full CA estimation.

B. Optimization of Rod

The accuracy of the multi-point approximations was shown in the above section and will be tested in the
optimization of the rod. The starting point for the optimization process is at (0,0), and the contour of the
dissipation energy of the full model is shown in 10. The deterministic optimum from the full model is also
show in the figure.
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The optimization of the rod will be performed using the three options M-1b, M-2a and M-2b. Options
M-1b and M-2b showed the best accuracy with in each method and option M-2a is a benchmark to show
the improvement in using multi-point approximations from a previous study.7 While Allen et al.7 used
eigenmodes as bases, in this study, POD modes are used.

A trust region framework5, 6 will be used in the optimization process. The initial bounds of the trust
region were from -2 to 2 for both design variables (global bound from -4 to 4 for both design variables).
Two single-point approximations throughout the optimization process will be used to find the minimum of
the dissipation energy (method M-2a,b). Three different multi-point approximations are looked into for the
optimization of the rod. The first was appending to the basis (method M-2b) after convergence was reached
in the trust region. Therefore, the first trust region step in the optimization process was a single-point
approximation of the design space, and each trust region step after was a multi-point approximation. The
last two optimizations are multi-point approximations of the trust region using method M-1b and M-2b
where four and two points are used respectively.

To compare each of the methods, function evaluations of the full and reduced model are going to be
compared. The number of full function evaluation is shown in figure 11 and the ROM evaluations are shown
in 12. Figure 13 compares the cost of each of the methods with reference to the number of function evaluation
needed by scaling the ROM evaluation comparable to the full model evaluations.

In the case of the rod example, the costs for a ROM evaluation are roughly one fourth of the one for
the full model, so the number of ROM evaluations was divided by four and added to the number of full
evaluations. This can vary significantly from one model to the next, where for most cases the ROM will be
significantly cheaper than the full model analysis. The optimization with the EROM showed it would be
more costly to use a one point EROM. The method using a multi-point approximation without derivatives
of a full CA provided to be roughly the same as running the full model in the optimization process. The
two methods, which provided to be computationally cheaper than using the full-order model, are using a
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Figure 11. Total number of full function evaluations for the optimization of the connecting rod

Figure 12. Total number of ROM evaluations in the optimization of the connecting rod

Figure 13. Comparing the total cost by scaling the ROM evaluations comparable to the full model evaluation
in the optimization of the connecting rod
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multi-point approximation with derivatives and appending basis information after each trust region step.
The savings for the ROM in this example was one fourth the cost of the full model. This is not a significant
reduction in cost. Clearly, there is a dependence on the ratio of the full to ROM evaluation time, where
depending on the ratio it might be more beneficial to use the full model over the ROM model. In most cases
though, the ROM is significantly cheaper than the full model, and would be more beneficial to run any of
the methods used above for optimization.

The multi-point approximations might be more beneficial for design problems which do not have many
design variables. The benefit of using multi-point approximations is the trust region can be increased and a
sample point could get close to the optimum which will provide a quick convergence. In addition, as some of
the sample points might not be beneficial for finding the optimum, the results show that appending to the
basis information after each trust region step helps to overcome such situations.

C. Stochastic Analysis

To illustrate the utility of the EROM in uncertainty analysis, the rod in Figure 4 is used, and the placement
of the center hole is modeled as a manufacturing uncertainty by the two uncertainty variables p1 and p2.
The intended placement of the hole is treated as the mean design, and a normal distribution is assigned to
the horizontal position of both ends of the hole, each with a standard deviation of 0.2mm. As a performance
measure, the amount of energy dissipated from the system between 0.4ms and 1.0ms is measured and utilized
to evaluate altered design states.

The most general uncertainty analysis technique is Monte Carlo Simulation (MCS). In general, MCS is
prohibited for most realistic dynamic systems due to the computational costs of each simulation, and the
high number of computations required for an accurate solution. This cost is significantly reduced by utilizing
the EROM due the reduced costs of time integration. However, the EROM proposed still requires assembly
of the altered system matrices, which are expensive for a large number of samples. MCS is performed here
not as a proposed solution of alleviating the computational burden, but as a means of demonstrating the
effectiveness of the EROM in the uncertainty space.

A Monte Carlo analysis is performed on both the full order and the EROM (one point M-1b). 6500
samples were taken in all, and the same sample points were used for both the full order model and EROM.
Each sample point represents one particular realization of the uncertainty parameters, for which a dynamic
analysis is carried out and the energy dissipated in the system between 0.4ms and 1.0ms is recorded. To test
the framework in terms of an uncertainty analysis, a failure surface is created by picking a critical energy
dissipation level of −16.5mJ . If a design failed to dissipate at least 16.5mJ of energy, that is Ed ≥ −16.5mJ ,
then the design is considered unsafe. The EROM, which was calibrated at the initial design, was first tested
within the range of possible sample points, the mean design plus or minus 4 standard deviations, and the
results were sufficiently accurate.

The results of the Monte Carlo analyses are illustrated in Figure 14. The plots on the left in Figure
14 represent the sample points and resulting probability density function (PDF) for the MCS with the full
order system analyses, whereas the plots on the right represent the samples points and resulting PDF for
the MCS with EROM system analyses. The sample points that failed in Figure 14 are shown in red (darker
in color), while the points whose energy dissipation was sufficient are shown in green (lighter in color). The
reader may note, through the MCS estimate of the failure surface is identified as the border between the two
colors.

Qualitatively, the failure surfaces and PDFs of the full order analysis and EROM analysis appear very
similar. Quantitative results are shown in Table 1. The MCS using the full order system analysis returned
a probability of failure of 20.24 %, and the MCS utilizing the EROM returned a probability of failure of
20.32 %. The difference between the two methods is 0.4 %, The percent error associated with a Monte Carlo
analysis, based on a 95 % confidence interval, is:

PercentError = 200

√

1 − Pf

nPf

(25)

where Pf is the probability of failure and n is the number of samples. For the given example, the percent
error is approximately 0.4%.
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Table 1. Monte Carlo results of full and EROM model analysis

Analysis method Probability of failure MCS error

Full model 20.24 % 3.97 %

EROM 20.32 % 3.96 %
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Conclusions

The paper has introduced a novel concept of reduced order modeling techniques for design optimization
and stochastic analysis purposes. A Galerkin projection scheme is used to reduce the number of degrees
of freedom in discretized PDE models. An extended reduced order models (EROMs) was proposed which
approximates the basis vectors at a particular configuration by a combined approximation scheme. It was
shown by numerical studies the EROM approach is accurate and reduces the cost of predicting the response.
Various approximation methods have been studied using either multiple sampling points and/or gradient
information. To increase the accuracy for large parameter changes, derivatives and/or multiple sampling
points are beneficial. The numerical studies suggest approximating the actually basis, opposed to approxi-
mating the snapshots, leads to a better accuracy over wider parameter range. Using EROMs within a design
optimization process, it was shown to gradually increase the set of basis vectors by including information
from previous design points significantly the accuracy.
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