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Reliability methods are probabilistic algorithms for quantifying the effect of uncertainties in simula-
tion input on response metrics of interest. In particular, they compute approximate response function
distribution statistics (probability, reliability, and response levels) based on specified probability distri-
butions for input random variables. In this paper, second-order approaches are explored for both the
forward reliability analysis of computing probabilities for specified response levels (the reliability index
approach (RIA)) and the inverse reliability analysis of computing response levels for specified proba-
bilities (the performance measure approach (PMA)). These new methods employ second-order Taylor
series limit state approximations and second-order probability integrations using analytic, numerical,
or quasi-Newton limit state Hessians, and are compared with the traditional second-order reliability
method (SORM) as well as two-point limit state approximation methods. These reliability analysis
methods are then employed within reliability-based design optimization (RBDO) studies using bi-level
and surrogate-based formulations. These RBDO formulations employ analytic sensitivities of response,
reliability, and second-order probability levels with respect to design variables that either augment or
define distribution parameters for the uncertain variables. Relative performance of these reliability
analysis and design algorithms are presented for a number of computational experiments performed us-
ing the DAKOTA /UQ software. Results indicate that second-order methods can be both more accurate
through improved probability estimates and more efficient through accelerated convergence rates.

I. Introduction

Reliability methods are probabilistic algorithms for quantifying the effect of uncertainties in simulation input on
response metrics of interest. In particular, they perform uncertainty quantification (UQ) by computing approximate
response function distribution statistics based on specified probability distributions for input random variables. These
response statistics include response mean, response standard deviation, and cumulative or complementary cumulative
distribution function (CDF/CCDF) response level and probability /reliability level pairings. These methods are often more
efficient at computing statistics in the tails of the response distributions (events with low probability) than sampling-based
approaches since the number of samples required to resolve a low probability can be prohibitive. Thus, these methods,
as their name implies, are often used in a reliability context for assessing the probability of failure of a system when
confronted with an uncertain environment.

A number of classical reliability analysis methods are discussed in Ref. 15, including Mean-Value First-Order Second-
Moment (MVFOSM), First-Order Reliability Method (FORM), and Second-Order Reliability Method (SORM). More
recent methods which seek to improve the efficiency of FORM analysis through limit state approximations include the
use of local and multipoint approximations in Advanced Mean Value methods (AMV/AMV+3!) and T'wo-point Adaptive
Nonlinearity Approximation-based methods (TANAZ2®34)  respectively. Each of the FORM-based methods can be em-
ployed for “forward” or “inverse” reliability analysis through the reliability index approach (RIA) or performance measure
approach (PMA), respectively, as described in Ref. 27.

The capability to assess reliability is broadly useful within a design optimization context, and reliability-based design
optimization (RBDO) methods are popular approaches for designing systems while accounting for uncertainty. RBDO
approaches may be broadly characterized as bi-level (in which the reliability analysis is nested within the optimization,
e.g. Ref. 3), sequential (in which iteration occurs between optimization and reliability analysis, e.g. Refs. 8,33), or unilevel
(in which the design and reliability searches are combined into a single optimization, e.g. Ref. 2). Bi-level RBDO methods
are simple and general-purpose, but can be computationally demanding. Sequential and unilevel methods seek to reduce
computational expense by breaking the nested relationship through the use of iterated or simultaneous approaches.
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In order to provide access to a variety of uncertainty quantification capabilities for analysis of large-scale engineering
applications on high-performance parallel computers, the DAKOTA project!? at Sandia National Laboratories has de-
veloped a suite of algorithmic capabilities known as DAKOTA /UQ.2? This package contains the reliability analysis and
RBDO capabilities described in this paper, and is freely available for download worldwide through an open source license.

This paper explores a variety of algorithms for performing reliability analysis. In particular, forward and inverse reli-
ability analyses are performed using multiple limit state approximation, probability integration, Hessian approximation,
and optimization algorithm selections. These uncertainty quantification capabilities are then used as a foundation for ex-
ploring RBDO formulations. Sections II and III describe these algorithmic components, Section IV provides computational
results for four benchmark test problems, and Section V provides concluding remarks.

II. Reliability Method Formulations

A. Mean Value

The Mean Value method (MV, also known as MVFOSM in Ref. 15) is the simplest, least-expensive reliability method be-
cause it estimates the response means, response standard deviations, and all CDF/CCDF response-probability-reliability
levels from a single evaluation of response functions and their gradients at the uncertain variable means. This approxima-
tion can have acceptable accuracy when the response functions are nearly linear and their distributions are approximately
Gaussian, but can have poor accuracy in other situations.

With the introduction of second-order limit state information, a second-order mean can be calculated. This is com-
monly combined with a first-order variance, since second-order variance involves higher order distribution moments (skew-
ness, kurtosis) which are often unavailable. The expressions for approximate response mean (4, approximate response
standard deviation o4, response target to approximate probability/reliability level mapping (2 — p, ), and probabil-
ity /reliability target to approximate response level mapping (p, 3 — z) are

1 . d%g
g = glme) +5 ) D> Covlinf)——(ix) (1)
i g v
d d
7 = 3032 Conling) g () g (nx) (2)
i ¢
Bedr = ? (3)
g

ﬁccdf = Z;guq (4)
z = ﬂg*‘fg?cdf (5)
z = /lg‘f‘o'gﬁccdf (6)

respectively, where x are the uncertain values in the space of the original uncertain variables (“x-space”) and g(x) is the
limit state function (the response function for which probability-response level pairs are needed). The CDF reliability
index B.qr, CCDF reliability index Bccqs, first-order CDF probability p(g < z), and first-order CCDF probability p(g > z)
are related to one another through

plg<z) = O(—Lear) (7)
plg>2) = (—PBecar) (8)
Bear = —0 ' (plg <2)) (9)
Beear = —2 (plg > 2)) (10)
Bear = —Pecds (11)
plg<z) = 1-p(g>=2) (12)

where ®() is the standard normal cumulative distribution function. A common convention in the literature is to define g
in such a way that the CDF probability for a response level z of zero (i.e., p(g < 0)) is the response metric of interest.
The formulations in this paper are not restricted to this convention and are designed to support CDF or CCDF mappings
for general response, probability, and reliability level sequences.
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B. MPP Search Methods

All other reliability methods solve a nonlinear optimization problem to compute a most probable point (MPP) and then
integrate about this point to compute probabilities. The MPP search is performed in uncorrelated standard normal space
(“u-space”) since it simplifies the probability integration: the distance of the MPP from the origin has the meaning
of the number of input standard deviations separating the mean response from a particular response threshold. The
transformation from correlated non-normal distributions (x-space) to uncorrelated standard normal distributions (u-space)
is denoted as u = T'(x) with the reverse transformation denoted as x = T~1(u). These transformations are nonlinear
in general, and possible approaches include the Rosenblatt,?® Nataf,” and Box-Cox* transformations. The nonlinear
transformations may also be linearized, and common approaches for this include the Rackwitz-Fiessler?? two-parameter
equivalent normal and the Chen-Lind® and Wu-Wirsching3® three-parameter equivalent normals. The results in this paper
employ the Nataf nonlinear transformation which occurs in the following two steps. To transform between the original
correlated x-space variables and correlated standard normals (“z-space”), the CDF matching condition is used:

®(z;) = F(x:) (13)

where F() is the cumulative distribution function of the original probability distribution. Then, to transform between
correlated z-space variables and uncorrelated u-space variables, the Cholesky factor L of a modified correlation matrix is
used:

z=Lu (14)

where the original correlation matrix for non-normals in x-space has been modified for z-space.”

The forward reliability analysis algorithm of computing CDF/CCDF probability /reliability levels for specified response
levels is called the reliability index approach (RIA), and the inverse reliability analysis algorithm of computing response
levels for specified CDF/CCDF probability/reliability levels is called the performance measure approach (PMA).2” The
differences between the RIA and PMA formulations appear in the objective function and equality constraint formulations
used in the MPP searches. For RIA, the MPP search for achieving the specified response level Z is formulated as

minimize uTu

subject to G(u) =2z (15)
and for PMA, the MPP search for achieving the specified reliability /probability level 3, is formulated as

minimize  +G(u)
subject to ufu = 3? (16)

where u is a vector centered at the origin in u-space and g(x) = G(u) by definition. In the RIA case, the optimal MPP
solution u* defines the reliability index from 8 = =£|lu*||2, which in turn defines the CDF/CCDF probabilities (using
Eqgs. 7-8 in the case of first-order integration). The sign of 3 is defined by

G(u") > G(0) : Begs <0, Becar > 0 (17)
G(u*) < G(O) : ﬂcdf > Ovﬂccdf <0 (18)

where G(0) is the median limit state response computed at the origin in u-space (where Bcqr = Becqr = 0 and first-order
p(g < z) = p(g > z) = 0.5). In the PMA case, the sign applied to G(u) (equivalent to minimizing or maximizing G(u))
is similarly defined by

Bed < 0, Becar > 0 : maximize G(u) (19)
Beap > 0, Becar < 0 : minimize G(u) (20)

and the limit state at the MPP (G(u*)) defines the desired response level result.

When performing PMA with specified p, one must compute  to include in Eq. 16. While this is a straightforward one-
time calculation for first-order integrations (Egs. 9-10), the use of second-order integrations complicates matters since the
3 corresponding to the prescribed p is a function of the Hessian of G (see Eq. 33), which in turn is a function of location in
u-space. A generalized reliability index (Eq. 48), which would allow a one-time calculation, may not be used since equality
with u”'u is not meaningful. The (3 target must therefore be updated in Eq. 16 as the minimization progresses (e.g., using
Newton’s method to solve Eq. 33 for 3 given p and k;). This works best when 3 can be fixed during the course of an
approximate optimization, such as for the AMV?2+ and TANA methods described in Section II1.B.1. For PMA without
limit state approximation cycles (i.e., PMA SORM), the constraint must be continually updated and the constraint
derivative should include V /3, which would require third-order information for the limit state to compute derivatives of
the principal curvatures. This is impractical, so the PMA SORM constraint derivatives are only approximated analytically
or estimated numerically. Potentially for this reason, PMA SORM has not been widely explored in the literature.
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1. Limit state approximations

There are a variety of algorithmic variations that can be explored within RIA/PMA reliability analysis. First, one may
select among several different limit state approximations that can be used to reduce computational expense during the
MPP searches. Local, multipoint, and global approximations of the limit state are possible. Ref. 11 focused on local
first-order limit state approximations. This paper will focus on local second-order and multipoint approximations:

1. a single second-order Taylor series per response/reliability /probability level in x-space centered at the uncertain
variable means (named AMV? due to its extension of the Advanced Mean Value (AMV) method).

006) = (1) + Vg (¢ — 1) + 5 (6 — ) V201) (3 — ) (21)

2. same as AMV?, except that the Taylor series is expanded in u-space. This option has been termed the u-space
AMV? method (note: iy = T'(j1x) and is nonzero in general).

G(u) = G(pu) + qu(ﬂu)T(u — Hu) + %(u - uu)TViG(uu)(u — fu) (22)

3. an initial second-order Taylor series approximation in x-space at the uncertain variable means, with iterative ex-
pansion updates at each MPP estimate (x*) until the MPP converges (named AMV?2+ due to its extension of the
AMV+ method).

9(x) 2 g(x") + Vieg(x*)" (x —x*) + %(X —x") T V3g(x)(x — x7) (23)

4. same as AMV?+, except that the expansions are performed in u-space. This option has been termed the u-space
AMV?24 method.

G(u) = G(u") + VyG ()" (u —u*) + %(u —u)'ViG(u*)(u—u) (24)

5. a multipoint approximation in x-space. This approach involves a Taylor series approximation in intermediate
variables where the powers used for the intermediate variables are selected to match information at the current and
previous expansion points. Based on the two-point exponential approximation concept (TPEA!2), the two-point
adaptive nonlinearity approximation (TANA-33*%) approximates the limit state as:

g0 = glxa) + 3 5 ca) "l = all) e Y (el —alh)? (25)

where n is the number of uncertain variables and:

dg < )
pi = 1+In %wi( ) /ln [%,1] (26)
7o (x2) T2
H
e(x) = = . v o - - 27
S S N ) S SN A )
n ag xl—pi
4,2 i i
o= 2lg<xl>—g<xQ>—Z 2 (x) 12 <x§il—w22>] (28)
i—1 i %

and x5 and x; are the current and previous MPP estimates in x-space, respectively. Prior to the availability of two
MPP estimates, x-space AMV+ is used.

6. a multipoint approximation in u-space. The u-space TANA-3 approximates the limit state as:

n oG ulgm 1 n
2 i i i i \2
Glu) 2 Gl + 3 o) =5 (ul” = uly) + Ge(w) S —ufy) (29)
where:
aG
111) Ui 1
;= 1+1n|2u /ln {—} 30
g B u2)] Ui,z 30)
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n 1—p;
oG Ui2 i i
H = 2|G(u)—G(ug) — 9, (ug) b (uf_’1 — uf’Q) (32)

i=1

and uy and u; are the current and previous MPP estimates in u-space, respectively. Prior to the availability of two
MPP estimates, u-space AMV+ is used.

7. the MPP search on the original response functions without the use of any approximations.

The Hessian matrices in AMV? and AMV?+ may be available analytically, estimated numerically, or approximated
through quasi-Newton updates. The quasi-Newton variant of AMV?2+ is conceptually similar to TANA in that both
approximate curvature based on a sequence of gradient evaluations. TANA estimates curvature by matching values and
gradients at two points and includes it through the use of exponential intermediate variables and a single-valued diagonal
Hessian approximation. Quasi-Newton AMV?2+ accumulates curvature over a sequence of points and then uses it directly
in a second-order series expansion. Therefore, these methods may be expected to exhibit similar performance.

The selection between x-space or u-space for performing approximations depends on where the approximation will be
more accurate, since this will result in more accurate MPP estimates (AMV?) or faster convergence (AMV?2+, TANA).
Since this relative accuracy depends on the forms of the limit state g(z) and the transformation T'(z) and is therefore
application dependent in general, DAKOTA/UQ supports both options. A concern with approximation-based iterative
search methods (i.e., AMV2+ and TANA) is the robustness of their convergence to the MPP. It is possible for the
MPP iterates to oscillate or even diverge. However, to date, this occurrence has been relatively rare, and DAKOTA/UQ
contains checks that monitor for this behavior. Another concern with TANA is numerical safeguarding. First, there is the
possibility of raising negative x; or u; values to nonintegral p; exponents in Eqs. 25, 27-29, and 31-32. This is particularly
likely for u-space. Safeguarding techniques include the use of linear bounds scaling for each z; or u;, offseting negative x;
or u;, or promotion of p; to integral values for negative x; or u;. In numerical experimentation, the offset approach has
been the most effective in retaining the desired data matches without overly inflating the p; exponents. Second, there
are a number of potential numerical difficulties with the logarithm ratios in Eqgs. 26 and 30. In this case, a safeguarding
strategy is to revert to either the linear (p; = 1) or reciprocal (p; = —1) approximation based on which approximation

has lower error in aaTi(Xl) or 887?,-(“1)'

2. Probability integrations

The second algorithmic variation involves the integration approach for computing probabilities at the MPP, which can be
selected to be first-order (Egs. 7-8) or second-order integration. Second-order integration involves applying a curvature
correction.® 1718 Breitung applies a correction based on asymptotic analysis:®

n—1

1
=o(—f -
p ( p)ll;[l /71_‘_@)&

where k; are the principal curvatures of the limit state function (the eigenvalues of an orthonormal transformation of
V2@, taken positive for a convex limit state) and 3, > 0 (select CDF or CCDF probability correction to obtain correct

sign for 8,). An alternate correction in Ref. 17 is consistent in the asymptotic regime (8, — oco) but does not collapse to
first-order integration for 3, = 0:

(33)

n—1
1
p=2=5) || (34)
il;[l 1+ 7/’(_@7)’%
where () = g—?) and ¢() is the standard normal density function. Ref. 18 applies further corrections to Eq. 34 based on
point concentration methods.
To invert a second-order integration and compute [, given p and k; (e.g., for second-order PMA as described in
Section II.B, Newton’s method can be applied using the recursion

oyt = op - 202 )
in order to drive f(8,) — 0, where for Breitung’s correction (Eq. 33)
n—1
fBp) = »p H L+ Bpri — ©(—Pp) (36)
i=1
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H V14 Borij | +6(=5,) (37)

]?’51
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An initial guess of ﬁg = —®1(p) is used (again, select CDF or CCDF probability to obtain nonnegative 62)7 and a
backtracking line search is employed to provide globalization of Newton’s method by verifying reduction in f(5,).
Combining the no-approximation option of the MPP search with first-order and second-order integration approaches
results in the traditional first-order and second-order reliability methods (FORM and SORM). Additional probability
integration approaches can involve importance sampling in the vicinity of the MPP,'7:32 but are outside the scope of
this paper. While second-order integrations could be performed anywhere a limit state Hessian has been computed, the
additional computational effort is most warranted for fully converged MPPs from AMV?24, TANA, and SORM, and is of
reduced value for MVSOSM or AMV2. The results in this paper follow this guidance in that all probabilities presented for
AMV?+, TANA, and SORM are second-order, and all probabilities presented for MVSOSM and AMV? are first-order.

3. Hessian approrimations

To use a second-order Taylor series or a second-order integration when second-order information (V2g, VZG, and/or k)
is not directly available, one can estimate the missing information using finite differences or approximate it through use
of quasi-Newton approximations. These procedures will often be needed to make second-order approaches practical for
engineering applications.

In the finite difference case, numerical Hessians are commonly computed using either first-order forward differences of
gradients using
Vg(x + he;) — Vg(x)

h

to estimate the i** Hessian column when gradients are analytically available, or second-order differences of function values
using

Vig(x) = (38)

vgg(x) o g(x+he7;+hej)—g(x+he7¢—hejl;é](x—heri-hej)+g(x—he1,—hej) (39)

to estimate the 75" Hessian term when gradients are not directly available. This approach has the advantage of locally-

accurate Hessians for each point of interest (which can lead to quadratic convergence rates in discrete Newton methods),
but has the disadvantage that numerically estimating each of the matrix terms can be expensive.

Quasi-Newton approximations, on the other hand, do not reevaluate all of the second-order information for every
point of interest. Rather, they accumulate approximate curvature information over time using secant updates. Since they
utilize the existing gradient evaluations, they do not require any additional function evaluations for evaluating the Hessian
terms. The quasi-Newton approximations of interest include the Broyden-Fletcher-Goldfarb-Shanno (BFGS) update

T T
Bisksy Br | yrYi
siBsy Vi sk

B =By — (40)

which yields a sequence of symmetric positive definite Hessian approximations, and the Symmetric Rank 1 (SR1) update

(yr — Bese)(yx — Bisi)”
(yr — Brsg) s

Bii1 =B + (41)

which yields a sequence of symmetric, potentially indefinite, Hessian approximations. By is the k' approximation to
the Hessian V2g, sp = Xp41 — Xy is the step and y, = Vgry1 — Vgx is the corresponding yield in the gradients. The
selection of BFGS versus SR1 involves the importance of retaining positive definiteness in the Hessian approximations; if
the procedure does not require it, then the SR1 update can be more accurate if the true Hessian is not positive definite.
In both cases, an initial scaling of yiyy/yisiI is used for By prior to the first update®® and safeguarding against
numerical failures is required. A common safeguard for BFGS is to use the damped BFGS approach when the curvature
condition y%sk > 0 is (nearly) violated.?? However, while this is appropriate for Newton-like optimization algorithms,
numerical experience indicates that the damped BFGS update can degrade performance when the steps generated are
not generally Newton-like, resulting in frequent violations of the curvature condition. A more effective approach in this
case is to ignore the curvature condition and simply safeguard against small denominators in Eq. 40, skipping the update
if |[yFsk| < 107%sIBysy. In the SR1 case, the update is similarly skipped when the denominator in Eq. 41 is small, in
particular when |(y; — Bsk)Tsk| < 1075||sk||2||yx — Brskl|2-
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4. Optimization algorithms

The next algorithmic variation involves the optimization algorithm selection for solving Eqgs. 15 and 16. The Hasofer-
Lind Rackwitz-Fissler (HL-RF) algorithm!® is a classical approach that has been broadly applied. It is a Newton-
based approach lacking line search/trust region globalization, and is generally regarded as computationally efficient but
occasionally unreliable. DAKOTA /UQ takes the approach of employing robust, general-purpose optimization algorithms
with provable convergence properties. This paper employs the sequential quadratic programming (SQP) and nonlinear
interior-point (NIP) optimization algorithms from the NPSOL'? and OPT++2! libraries, respectively.

5. Warm Starting of MPP Searches

The final algorithmic variation involves the use of warm starting approaches for improving computational efficiency. Ref. 11
describes the acceleration of MPP searches through warm starting with approximate iteration increment, with z/p/3 level
increment, and with design variable increment. Warm started data includes the expansion point and associated response
values and the MPP optimizer initial guess. Projections are used when an increment in z/p/( level or design variables
occurs. Warm starts were consistently effective in Ref. 11 and are adopted for all computational experiments in this

paper.

III. Reliability-Based Design Optimization

Reliability-based design optimization (RBDO) methods are used to perform design optimization accounting for relia-
bility metrics. The reliability analysis capabilities described in Section II provide a rich foundation for exploring a variety
of RBDO formulations. This paper will present second-order methods for bi-level and sequential RBDO.

A. Bi-level RBDO

The simplest and most direct RBDO approach is the bi-level approach in which a full reliability analysis is performed for
every optimization function evaluation. This involves a nesting of two distinct levels of optimization within each other,
one at the design level and one at the MPP search level.

Since an RBDO problem will typically specify both the Z level and the p/3 level, one can use either the RIA or the
PMA formulation for the UQ portion and then constrain the result in the design optimization portion. In particular, RIA
reliability analysis maps z to p/8, so RIA RBDO constrains p/3:

minimize f
subject to 3> (3
or p<p (42)

And PMA reliability analysis maps p/3 to z, so PMA RBDO constrains z:
minimize f
subject to z>Z (43)

where z > Z is used as the RBDO constraint for a cumulative failure probability (failure defined as z < z) but z <
would be used as the RBDO constraint for a complementary cumulative failure probability (failure defined as z > z). It
is worth noting that DAKOTA is not limited to these types of inequality-constrained RBDO formulations; rather, they
are convenient examples. DAKOTA supports general optimization under uncertainty mappings® which allow flexible use
of statistics within multiple objectives, inequality constraints, and equality constraints.

An important performance enhancement for bi-level methods is the use of sensitivity analysis to analytically compute
the design gradients of probability, reliability, and response levels. When design variables are separate from the uncertain
variables (i.e., they are not distribution parameters), then the following first-order expressions may be used:3 16:19

Vaz = Vayg (44)
1
Vdﬁcdf mvdg (45)
Vapeqy = —(—Pedr)VaBear (46)
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where it is evident from Eqgs. 11-12 that VqfBceqs = —VdBear and Vapeedr = —Vdapear- In the case of second-order
integrations, Eq. 46 must be expanded to include the curvature correction. For Breitung’s correction (Eq. 33),

n—1 —k; n—1 1 n—1 1
Vapear = | 2(—Bp) ; m e \/TTI@ — (=) H \/ﬁ VaPBedr (47)
JFi

where Vgxk; has been neglected and 3, > 0 (see Section II.B.2). Other approaches assume the curvature correction is
nearly independent of the design variables,?* which is equivalent to neglecting the first term in Eq. 47.

To capture second-order probability estimates within an RIA RBDO formulation using well-behaved § constraints, a
generalized reliability index can be introduced where, similar to Eq. 9,

Biap = =@ (pear) (48)

for second-order p.qr. This reliability index is no longer equivalent to the magnitude of u, but rather is a convenience
metric for capturing the effect of more accurate probability estimates. The corresponding generalized reliability index
sensitivity, similar to Eq. 46, is

VaBiy = ) Vdapedr (49)

1
o(— edf
where Vapeqr is defined from Eq. 47. Even when V4g is estimated numerically, Eqs. 44-49 can be used to avoid numerical
differencing across full reliability analyses.
When the design variables are distribution parameters of the uncertain variables, V4g is expanded with the chain rule
and Egs. 44 and 45 become

Vaz = VaxVykg (50)

1
c T AT x 51
VaBear NAE ”VdXV g (51)

where the design Jacobian of the transformation (Vgx) may be obtained analytically for uncorrelated x or semi-analytically
for correlated x (V4L is evaluated numerically) by differentiating Eqgs. 13 and 14 with respect to the distribution param-
eters. Eqs. 46-49 remain the same as before. For this design variable case, all required information for the sensitivities is
available from the MPP search.

Since Eqgs. 44-51 are derived using the Karush-Kuhn-Tucker optimality conditions for a converged MPP, they are
appropriate for RBDO using AMV?24-, TANA, and SORM, but not for RBDO using MVSOSM or AMV?2.

B. Sequential/Surrogate-based RBDO

An alternative RBDO approach is the sequential approach, in which additional efficiency is sought through breaking
the nested relationship of the MPP and design searches. The general concept is to iterate between optimization and
uncertainty quantification, updating the optimization goals based on the most recent probabilistic assessment results.
This update may be based on safety factors®? or other approximations.®

A particularly effective approach for updating the optimization goals is to use the p/3/z sensitivity analysis of Eqs. 44-
51 in combination with local surrogate models.?® In Ref. 11, first-order Taylor series approximations were explored, and in
this paper, second-order Taylor series approximations are investigated. In both cases, a trust-region model management
framework!* is used to adaptively manage the extent of the approximations and ensure convergence of the RBDO process.
Surrogate models are used for both the objective function and the constraints, although the use of constraint surrogates
alone is sufficient to remove the nesting.

In particular, RIA trust-region surrogate-based RBDO employs surrogate models of f and p/ within a trust region
AF centered at d..:

minimize  f(d,) + Vaf(d)7(d — d,) + }(d - d,)TV3(d.)(d - d)
subject to A(d.) + Vaf(de)"(d - de) + 3(d — d.)"V36(de)(d — de) > 3
or  p(de) + Vap(de)"(d - dc) + 5(d — de)" Vp(de)(d —de) < p
Id—d |l <A (52)
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and PMA trust-region surrogate-based RBDO employs surrogate models of f and z within a trust region A* centered at
d.:

wminimize  £(d,) + Vaf(de)7(d - dg) + 1(d — d)TV3f(d,)(d - d,)
subject to  z(d.) + Vaz(de)T(d — de) + 5(d — d.)"Viz(do)(d — d.) > z
Id—dc | <AF (53)

where the sense of the z constraint may vary as described previously. The second-order information in Eqgs. 52-53 will
typically be approximated with quasi-Newton updates.

IV. Computational Experiments

The algorithmic variations of interest in second-order reliability analysis include the limit state approximation ap-
proaches (MVSOSM, x-/u-space AMV?, x-/u-space AMV?2+, x-/u-space TANA, and SORM), integration approaches
(first- /second-order), Hessian calculation approaches (analytic, finite difference, BFGS, or SR1), and MPP optimization
algorithm selections (SQP or NIP). RBDO algorithmic variations of interest include use of bi-level or sequential ap-
proaches, use of RIA or PMA formulations for the underlying UQ, and the specific z/p/# mappings that are employed.
Relative performance of these algorithmic variations will be presented in this section for a number of computational
experiments performed using the DAKOTA /UQ software.?? DAKOTA/UQ is the uncertainty quantification component
of DAKOTA,'? an open-source software framework for design and performance analysis of computational models on high
performance computers. Deployment of these algorithms to realistic engineering problems is explored separately in Ref. 1
through the probabilistic analysis and design of micro-electro-mechanical systems (MEMS).

A. Lognormal ratio
This test problem has a limit state function defined by the ratio of two lognormally-distributed random variables.

gx) =2 (54)
T

The distributions for both x; and x5 are Lognormal(1, 0.5) with a correlation coefficient between the two variables of 0.3.

1. Uncertainty quantification

For RIA, 24 response levels (.4, .5, .55, .6, .65, .7, .75, .8, .85, .9, 1, 1.05, 1.15, 1.2, 1.25, 1.3, 1.35, 1.4, 1.5, 1.55, 1.6,
1.65, 1.7, and 1.75) are mapped into the corresponding cumulative probability levels using first-order (for MVSOSM
and AMV?) or second-order (for AMV?2+, TANA, and SORM) integrations. For PMA, these 24 probability levels (the
fully converged first-order or second-order results from RIA FORM/SORM) are mapped back into the original response
levels. As described in Section II.B, second-order PMA with prescribed probability levels involves the use of updating
schemes for 3 in Eq. 16 and is the more challenging PMA case. Tables 1 and 3 show the computational results for each
of the primary RIA and PMA method variants using analytic limit state gradients and Hessians, and Tables 2 and 4
show the computational results for RIA and PMA with AMV?2+ using either numerical Hessians or quasi-Newton Hessian
updates. Duplicate function evaluations (detected by DAKOTA’s evaluation cache) are not included in the totals, an
AMV?+ /TANA convergence tolerance of || u*+1) —u®) ||, < 107 is used to give comparable accuracy to the SORM
converged results, and an asterisk (x) is used to indicate when one or more levels fails to converge to full accuracy. The
RIA p error norms and PMA z error norms are measured relative to the corresponding fully-converged FORM or SORM
results. That is, the inherent reliability analysis errors (e.g., RIA SORM p error norm of 0.05469 and PMA SORM 2z
error norm of 0.03775) relative to a Latin Hypercube reference solution of 10° samples are not included in order to avoid
obscuring the relative errors. Figure 1 overlays the computed CDF values for each of the eight primary method variants
corresponding to Tables 1 and 3 as well as the Latin Hypercube reference solution (any unconverged CDF values, as
denoted by * in the tables, are omitted for clarity). Figure 2 displays the convergence rates for different x-space MPP
search methods in converging to the first RIA or PMA level.

It is evident that, relative to the fully-converged SORM results, MVSOSM has relatively poor accuracy across the
full range. AMV? is reasonably accurate over the full range, although with mild offsets from the target response lev-
els, and AMV2+ and TANA have full accuracy with reductions in expense (on average) relative to SORM. For this
problem, AMV?2+ with analytic Hessians and TANA are comparable, and x-space AMV?2+ is the top performer. When
approximating Hessians for AMV?2+, numerical Hessians are accurate although too expensive to be competitive, whereas
SR1 quasi-Newton updates are accurate, competitive, and superior to BFGS updates (it is more important to accurately
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Table 1. RIA results for lognormal ratio problem using analytic Hessians.

RIA SQP Function Evals NIP Function Evals CDF p Target z
Approach (val/grad/Hessian)  (val/grad/Hessian) Error Norm Offset Norm
MVSOSM 1(1/1/1) 1(1/1/1) 0.3683 0.0
x-space AMV? 26 (26/1/1) 26 (26/1/1) 0.01369 0.1353
u-space AMV? 26* (26/1/1) 26 (26/1/1) 0.02438 0.1049
x-space AMV?2+ 70 (70/69/69) 75 (75/74/74) 0.0 0.0
u-space AMV2+ 102 (102/101/101) 108 (108/107/107) 0.0 0.0
x-space TANA 83 (83/82/24) 85 (85/84/24) 0.0 0.0
u-space TANA 86 (86/85/24) 86 (86/85/24) 0.0 0.0
SORM 330 (306/305/24) 123 (99/98/24) 0.0 0.0

Table 2. RIA results for lognormal ratio problem using numerical Hessians (NH) and quasi-Hessians (QH).

RIA SQP Function Evals NIP Function Evals CDF p Target z
Approach (val/grad/Hessian)  (val/grad/Hessian) Error Norm Offset Norm
x-space AMV?2+ NH 217 (73/216/0) 223 (75/222/0) 1.657e-6 0.0
u-space AMV?+ NH 304 (102/303/0) 322 (108/321/0) 1.806e-6 0.0
x-space AMV?+ QH SR1 78 (78/77/0) 84 (84/83/0) 0.001063 0.0
u-space AMV?+ QH SR1 98 (98/97/0) 105 (105/104/0) 5.731e-7 0.0
x-space AMV?2+ QH BFGS 147 (147/146/0) 123 (123/122/0) 1.073e-4 0.0
u-space AMV?2+ QH BFGS 163 (163/162/0) 139 (139/138/0) 4.530e-5 0.0
Table 3. PMA results for lognormal ratio problem using analytic Hessians.
PMA SQP Function Evals NIP Function Evals CDF 2z Target p
Approach (val/grad/Hessian)  (val/grad/Hessian) Error Norm Offset Norm
MVSOSM 1(1/1/1) 1(1/1/1) 0.6277 0.0
x-space AMV? 26 (26/1/1) 26 (26/1/1) 0.4024 0.008609
u-space AMV? 26 (26/1/1) 26 (26/1/1) 0.04915 0.008423
x-space AMV?2+ 77 (77/76/76) 80 (80/79/79) 0.0 0.0
u-space AMV?2+ 92 (92/91/91) 112 (112/111/111) 0.0 0.0
x-space TANA 135% (135/134/24) 135% (135/134/24) 0.01869 0.007251
u-space TANA  111% (111/110/24)  115*% (115/114/24)  0.01869 0.007251
SORM 698* (698/697/697) 106* (106/105/105) 0.01902 0.007701

Table 4. PMA results for lognormal ratio problem using numerical Hessians (NH) and quasi-Hessians (QH).

PMA SQP Function Evals NIP Function Evals CDF =z Target p
Approach (val/grad/Hessian)  (val/grad/Hessian) Error Norm Offset Norm
x-space AMVZ2+ NH 229 (77/228/0) 238 (80/237/0) 7.460e-6 4.7160-6
u-space AMV2+ NH 274 (92/273/0) 334 (112/333/0) 1.012¢-5 6.627¢-6
x-space AMV2+ QH SR1 143 (143/142/0) 146 (146/145/0) 0.002518 3.604e-4
u-space AMV?2+ QH SR1 178 (178/177/0) 167 (167/166/0) 0.001099 7.716e-4
x-space AMV?2+ QH BFGS 169 (169/168/0) 172 (172/171/0) 0.1470 0.09317
u-space AMV?2+ QH BFGS 208 (208/207/0) 219 (219/218/0) 0.4932 0.4104
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Figure 1. Lognormal ratio cumulative distribution function, RIA/PMA methods with analytic Hessians.
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estimate curvature than to retain positive definiteness). For second-order PMA, the AMV?2+ approaches consistently find
the correct solution, whereas SORM and TANA approaches have minor convergence difficulties (for the first probability
level only). When looking more closely at convergence for the first RIA and PMA levels, Figure 2 shows rates that are
quadratic in nature for second-order RIA, but which are more linear in nature for the successful PMA methods due to
the p — 3 updates. Quadratic rates (and more consistent convergence) would be expected for PMA with prescribed 3
levels. Finally, optimizer selection has a large effect when not employing approximations, and the NIP option can be seen
to significantly outperform the SQP option and remain competitive with the approximation-based approaches.

In comparison with first-order method performance presented in Ref. 11, most of the new second-order methods show
significant improvement. With the addition of analytic Hessians, AMV? shows improved accuracy (e.g., a 5x reduction
in RIA z offset error on average) and AMV?2+ shows faster convergence (e.g., a 35% reduction in function evaluations
for x-space AMV?2+). More importantly for practical applications, quasi-Newton SR1 x-space AMV?2+ shows a 24%
reduction in expense over first-order AMV+ with no additional data requirements.

B. Short column

This test problem involves the plastic analysis and design of a short column with rectangular cross section (width b and
depth h) having uncertain material properties (yield stress Y') and subject to uncertain loads (bending moment M and
axial force P).20 The limit state function is defined as:

(x) =1 aM P2

X)=1— = — 55—
g bh2Y  b2h2Y2
The distributions for P, M, and Y are Normal(500, 100), Normal(2000, 400), and Lognormal(5, 0.5), respectively, with

a correlation coefficient of 0.5 between P and M (uncorrelated otherwise). The nominal values for b and h are 5 and 15,
respectively.

(55)

1. Uncertainty quantification

For RIA, 43 response levels (-9.0, -8.75, -8.5, -8.0, -7.75, -7.5, -7.25, -7.0, -6.5, -6.0, -5.5, -5.0, -4.5, -4.0, -3.5, -3.0, -2.5,
-2.0,-1.9, -1.8,-1.7,-1.6, -1.5, -1.4, -1.3, -1.2, -1.1, -1.0, -0.9, -0.8, -0.7, -0.6, -0.5, -0.4, -0.3, -0.2, -0.1, 0.0, 0.05, 0.1, 0.15,
0.2, 0.25) are mapped into the corresponding cumulative probability levels using first-order (for MVSOSM and AMV?) or
second-order (for AMV?+, TANA, and SORM) integrations. For PMA, these 43 probability levels (the fully converged
first-order or second-order results from RIA FORM/SORM) are mapped back into the original response levels (using
updating schemes in the second-order case for 3(p)). Tables 5 and 7 show the computational results for each of the
primary RIA and PMA method variants using analytic limit state gradients and Hessians, and Tables 6 and 8 show the
computational results for RIA and PMA with AMV?2+ using either numerical Hessians or quasi-Newton Hessian updates.
The RIA p error norms and PMA 2z error norms are measured relative to the corresponding fully-converged FORM or
SORM results. That is, the inherent reliability analysis errors (e.g., RTA SORM p error norm of 0.01593 and PMA SORM
z error norm of 0.2181) relative to a Latin Hypercube reference solution of 10 samples are omitted in order to avoid
obscuring the relative errors. Figure 3 overlays the computed CDF values for each of the eight primary method variants
corresponding to Tables 5 and 7 as well as the Latin Hypercube reference solution.

Table 5. RIA results for short column problem using analytic Hessians.

RIA SQP Function Evals NIP Function Evals CDF p Target z
Approach (val/grad/Hessian)  (val/grad/Hessian) Error Norm Offset Norm
MVSOSM 1(1/1/1) 1(1/1/1) 0.1127 0.0
x-space AMV? 45 (45/1/1) 45 (45/1/1) 0.002063 2.482
u-space AMV? 45 (45/1/1) 45 (45/1/1) 0.001410 2.031
x-space AMV2+ 125 (125/124/124) 131 (131/130/130) 0.0 0.0
u-space AMV2+ 122 (122/121/121) 130 (130/129/129) 0.0 0.0
x-space TANA 245 (245/244/43) 246 (246,245 /43) 0.0 0.0
u-space TANA  206* (296/295/43)  278* (278/277/43)  6.982¢-5 0.08014
SORM 669 (626/625/43) 219 (176/175/43)) 0.0 0.0

Relative to the fully-converged SORM results, MVSOSM is now reasonably accurate and greatly improved over the
lognormal ratio test problem. AMV? improves on the MVSOSM results, although with significant offsets in the RIA
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Table 6. RIA results for short column problem using numerical Hessians (NH) and quasi-Hessians (QH).

RIA SQP Function Evals NIP Function Evals CDF p Target z
Approach (val/grad/Hessian)  (val/grad/Hessian) Error Norm Offset Norm
x-space AMV?2+ NH 481 (121/480/0) 521 (131/520/0) 4.156e-7 4.341e-8
u-space AMV2+ NH 513 (129/512/0) 517 (130/516/0) 4.195¢-7 4.355¢-8
x-space AMV2+ QH SR1 137 (137/136/0) 137 (137/136/0) 4.748¢-5 4.372¢-8
u-space AMV?+ QH SR1 139 (139/138/0) 138 (138/137/0) 1.164e-4 4.317¢-8
x-space AMV2+ QH BFGS  200% (290/280/0)  227* (227/226/0) 1.001 12.70
u-space AMV2+ QH BFGS  204* (294/293/0)  240* (240,/239/0) 1.121 13.85

Table 7. PMA results for short column problem using analytic Hessians.

PMA SQP Function Evals NIP Function Evals CDF 2z Target p
Approach (val/grad/Hessian)  (val/grad/Hessian) Error Norm Offset Norm
MVSOSM 1(1/1/1) 1(1/1/1) 6.823 0.0
x-space AMV? 45 (45/1/1) 45 (45/1/1) 2.730 0.0
u-space AMV? 45 (45/1/1) 45 (45/1/1) 2.828 0.0
x-space AMV2+ 135 (135/134/134) 142 (142/141/141) 0.0 0.0
wspace AMV2+ 132 (132/131/131) 139 (139/138/138) 0.0 0.0
x-space TANA  293* (293/202/43) 272 (272/271/43) 0.04259 1.598¢-4
u-space TANA  325% (325/324/43)  311* (311/310/43) 2.208 5.600¢-4
SORM 535 (535/534/534)  101* (191/190/190)  2.410 6.522¢-4

Table 8. PMA results for short column problem using numerical Hessians (NH) and quasi-Hessians (QH).

PMA SQP Function Evals NIP Function Evals CDF =z Target p
Approach (val/grad/Hessian)  (val/grad/Hessian) Error Norm Offset Norm
x-space AMV?2+ NH 537 (135/536/0) 565 (142/564/0) 5.020e-6 7.556e-8
u-space AMV2+ NH 525 (132/524/0) 553 (139/552/0) 4.628¢-6 1.101e-7
x-space AMV2+ QH SR1 255% (255/254/0) 252 (252/251/0) 0.004965 5.924e-5
u-space AMV2+ QH SR1 252 (252/251/0) 250 (250/249/0) 0.08599 2.093¢-4
x-space AMV2+ QH BFGS  336* (336/335/0) 345 (345/344/0) 0.3979 6.133¢-4
u-space AMV2+ QH BFGS  316* (316/315/0)  342* (342/341/0) 0.2178 0.003301
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Figure 3. Short column cumulative distribution function, RIA/PMA methods with analytic Hessians.

case from the target response levels. In the RIA case, AMV?+ and TANA have full accuracy and AMV?+ with analytic
Hessians reduces expense by a factor of 2.1 on average in comparison to TANA and by a factor of 3.5 on average in
comparison to SORM. For PMA, AMV?2+ with analytic Hessians is both the most robust and the most efficient approach.
For AMV?2+ with approximated Hessians, SR1 updating is again the best approach.

In comparison with first-order AMV+ performance presented in Ref. 11, AMV?+ for RIA reduces function evaluation
counts by 36% with analytic Hessians and by 31% in the quasi-Newton SR1 case, on average. For PMA, where the second-
order case is more challenging than the first-order case in converging to a prescribed p, AMV?2+ reduces function evaluation
counts by 27% for PMA with analytic Hessians, but increases function evaluation counts by 34% in the quasi-Newton
SR1 case, on average.

2. Reliability-based design optimization

The short column example problem is also amenable to RBDO. An objective function of cross-sectional area and a target
reliability index of 2.5 are used in the design problem:

min bh
s.t. 06>25
5.0<b<15.0
15.0 < h <25.0 (56)

It is important to note that only a single response/probability mapping is needed for each uncertainty analysis (instead of
the 43 used previously in generating a full CDF). As is evident from the UQ results shown in Figure 3, the nominal design
of (b,h) = (5,15) is infeasible (p(g < 0) > 0.9) and the optimization must add material to obtain the target reliability at
the optimal design (b, h) = (8.669, 25.00). Eq. 56 corresponds to an RIA Z — [ approach, whereas an RIA z — p approach
would constrain p and PMA 3 — z and p — z approaches would constrain z. The second-order cumulative probability
corresponding to the optimal solution (used for level specification in PMA p — z and for the constraint allowable in RTA
z — p) is p(g < 0) = 0.005992, which is relatively close to the corresponding first-order probability of 0.006210.

Table 9 shows the results for fully-analytic bi-level second-order RBDO employing the gradient expressions for z,
B3, and p (Egs. 44-45 and 47). Constraint violations are raw norms (not normalized by allowable). SQP is used for
optimization at both levels. In this case, MVSOSM and AMV? variants for RIA/PMA RBDO are not allowed, since the
sensitivity expressions require a fully-converged MPP. The function evaluation tabulations indicate that AMV?2+4-based
RBDO significantly outperforms SORM-based RBDO by a factor of 6.2 on average. Applying reliability constraints is more
computationally efficient than applying probability constraints in the RIA RBDO formulation of Eq. 42 (expense reduced
by a factor of 2.0 on average), since [ tends to be more linear and well-scaled than p; however, only the formulations
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employing p capture the second-order probability corrections. That is, second-order RBDO with probability constraints
is more challenging and expensive, but can be more precise in achieving desired probabilistic performance.

Table 9. Analytic bi-level RBDO results, short column test problem.

RBDO Function Evals Objective  Constraint
Approach (val/grad/Hessian) ~ Function  Violation
RIA Z — p x-space AMV2+ 129 (131/129/111) 217.1 0.0
RIA z — p u-space AMV?2+ 130 (132/130/112) 217.1 0.0
RIA z — p SORM 1204 (1161/1159/25)  217.1 0.0
RIA z — 8 x-space AMV?2+ 67 (66/67/45) 216.7 0.0
RIA z — 3 u-space AMV?2+ 67 (66/67/45) 216.7 0.0
RIA Z — 8 SORM 601 (591/592/0) 216.7 0.0
PMA p — z x-space AMV?+ 98 (97/98/84) 216.8 0.0
PMA p — z u-space AMV?+ 98 (97/98/84) 216.8 0.0
PMA 5 — z SORM 306 (292,/293/266) 217.2 0.0
PMA 3 — z x-space AMV?2+ 98 (97/98/62) 216.8 0.0
PMA 3 — z u-space AMV2+ 97 (96/97/63) 216.8 0.0
PMA 3 — = SORM 329 (315/316/0) 216.8 0.0

Table 10 shows the results for sequential RBDO using a trust-region surrogate-based approach with an initial trust
region size of 20%. The surrogates are second-order Taylor-series using the same analytic gradients of z, 8, and p in
combination with SR1 quasi-Newton Hessian updates. The sequential case is consistently more efficient than the fully-
analytic bi-level case, with expense reduced by 31% on average for this default initial trust region case. With tuning of the
initial trust region, an initial size of 80% solves the problem in as few as 35 function evaluations. Relative to first-order
sequential RBDO performance presented in Ref. 11, second-order approaches (analytic second-order Taylor-series at the
reliability level and quasi-Newton second-order Taylor-series at the design level) save 8.7% on average and can be more
precise.

Table 10. Surrogate-based RBDO results, short column test problem.

RBDO Function Evals Objective  Constraint
Approach (val/grad/Hessian)  Function  Violation
RIA z — p x-space AMV2+ 86 (75/86/64) 218.7 0.0
RIA z — p u-space AMV?2+ 94 (82/94/70) 216.3 2.168e-4
RIA zZ — p SORM 718 (670/681/26) 216.5 1.110e-4
RIA z — 8 x-space AMV?2+ 51 (45/51/30) 216.7 0.0
RIA z — 3 u-space AMV?2+ 58 (51/58/34) 216.7 0.0
RIA z —  SORM 560 (545/554/0) 216.7 0.0
PMA p — z x-space AMV?+ 58 (50/58/44) 216.8 0.0
PMA p — z u-space AMV?+ 55 (48/55/42) 216.8 0.0
PMA j — » SORM 128 (116/122/104)  217.2 0.0
PMA (3 — z x-space AMV?2+ 79 (68/79/40) 216.8 0.0
PMA 3 — z u-space AMV?+ 79 (68/79/40) 216.8 0.0
PMA (3 — z SORM 171 (159/165/0) 216.8 0.0

C. Cantilever beam
The next test problem involves the simple uniform cantilever beam?% 33 shown in Figure 4.
Random variables in the problem include the yield stress R of the beam material, the Young’s modulus E of the

material, and the horizontal and vertical loads, X and Y, which are modeled with normal distributions using N(40000,
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Figure 4. Cantilever beam test problem.

2000), N(2.9E7, 1.45E6), N(500, 100), and N(1000, 100), respectively. Problem constants include L = 100 in. and Dy =
2.2535 in. The constraints on beam response have the following analytic form:

600 600
stress = WY + EX <R (57)
413 Y X
displacement = Tt (t_2)2 + (F)Q < Dy (58)
or when scaled:
stress
gs = r 1<0 (59)
P displacement 1<0 (60)
Dy

1. Uncertainty quantification

For RIA, 11 levels (0.0 to 1.0 in 0.1 increments) are employed for each limit state function (gs and gp) and are mapped
into the corresponding cumulative probability levels using first-order (for MVSOSM and AMV?) or second-order (for
AMV?24, TANA, and SORM) integrations. For PMA, these probability levels (the fully converged first-order or second-
order results from RIA FORM/SORM) are mapped back into the original response levels (using updating schemes in the
second-order case for 3(p)). Tables 11 and 13 show the computational results for each of the primary RIA and PMA
method variants using analytic gradients and Hessians, and Tables 12 and 14 show the computational results for RIA and
PMA with AMV?2+ using either numerical Hessians or quasi-Newton Hessian updates. In this problem, since all uncertain
variables are normally distributed and uncorrelated, the x-space and u-space linearization approaches are equivalent. The
RIA p error norms and PMA z error norms are measured relative to the corresponding fully-converged FORM or SORM
results. That is, the inherent reliability analysis errors (e.g., RIA SORM p error norm of 0.02943 and PMA SORM =z
error norm of 0.04198) relative to a Latin Hypercube reference solution of 10 samples are not included in order to avoid
obscuring the relative errors. Figure 5 overlays the computed CDF values for each of the method variants as well as the
Latin Hypercube reference solution (any unconverged CDF values as denoted by * in the tables are omitted for clarity).

Table 11. RIA results for cantilever problem using analytic Hessians.

RIA SQP Function Evals NIP Function Evals CDF p Target z
Approach (val/grad/Hessian)  (val/grad/Hessian) Error Norm Offset Norm
MVSOSM 1(2/2/2) 1(2/2/2) 0.04064 0.0
x-/u-space AMV? 23 (24/2/2) 23 (24/2/2) 8.763e-6 0.007661
x-/u-space AMV?2+ 59 (60,/60/60) 67 (68/68/68) 0.0 0.0
x-/u-space TANA 116 (117/117/22) 123 (124/124/22) 0.0 0.0
SORM 187 (166,/164/22) 117 (96/94/22) 0.0 0.0

Relative to the fully-converged SORM results, MVSOSM and AMV? are quite accurate for this problem. In the RIA
case, AMV?2+ and TANA have full accuracy and AMV?2+ with analytic Hessians outperforms TANA and SORM (reduces
function evaluations by factors of 1.9 and 2.5, respectively). For PMA, AMV?2+ with analytic Hessians is again the most
robust and efficient approach. For AMV?2+ with approximated Hessians, SR1 updating is again the best approach.

In comparison with first-order AMV+ performance presented in Ref. 11, AMV?2+ for RIA reduces function evaluation
counts by 31% with analytic Hessians and by 16% in the quasi-Newton SR1 case, on average. For PMA, where converging
to a prescribed second-order p is more challenging than the first-order case, AMV?+ reduces function evaluation counts
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Table 12. RIA results for cantilever problem using numerical Hessians (NH) and quasi-Hessians (QH).

RIA SQP Function Evals NIP Function Evals CDF p Target z
Approach (val/grad/Hessian)  (val/grad/Hessian) Error Norm Offset Norm
x-/u-space AMV2+ NH 270 (55/275/0) 335 (68/340/0) 1.202¢-7 1.662e-7
x-/u-space AMV2+ QH SR1 75 (76/76/0) 78 (79/79/0) 0.001014 3.070e-6
x-/u-space AMV2+ QH BFGS 114 (115/115/0) 107* (108/108/0) 1.145 1.011

Table 13. PMA results for cantilever problem using analytic Hessians.

PMA SQP Function Evals NIP Function Evals CDF =z Target p
Approach (val/grad/Hessian)  (val/grad/Hessian) Error Norm Offset Norm
MVSOSM 1(2/2/2) 1(2/2/2) 0.1025 0.0
x-/u-space AMV? 23 (24/2/2) 23 (24/2/2) 0.4044 0.006347
x-/u-space AMV2+ 68 (69/69/69) 71 (72/72/72) 0.0 0.0
x-/uspace TANA 118 (119/119/22) 115 (116/116/22)  0.003029 4.137e-4
SORM 248% (249/247/247)  150% (151/149/149)  0.4176 0.006159

Table 14. PMA results for cantilever problem using numerical Hessians (NH) and quasi-Hessians (QH).

PMA SQP Function Evals NIP Function Evals CDF =z Target p
Approach (val/grad/Hessian)  (val/grad/Hessian) Error Norm Offset Norm
x-/u-space AMV2+ NH 340 (69/345/0) 355 (72/360,0) 2.1520-7 1.806¢-8
x-/u-space AMV2+ QH SR1 102 (103/103/0) 108 (109/109/0) 0.01348 0.005450
x-/uspace AMV2+ QH BFGS  159% (160/160/0)  156* (157/157/0) 10.657 0.5833
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Figure 5. Cantilever beam cumulative distribution functions, analytic Hessians.
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by 10% for PMA with analytic Hessians, but increases function evaluation counts by 35% in the quasi-Newton SR1 case,
on average.

2. Reliability-based design optimization

The design problem is to minimize the weight (or, equivalently, the cross-sectional area) of the beam subject to the
displacement and stress constraints. If the random variables are fixed at their means, the resulting deterministic design
problem (with constraints gs < 0 and gp < 0) has the solution (w, t) = (2.352, 3.326) with an objective function of 7.824.
When seeking reliability levels of 3.0 for these constraints, the design problem becomes:

min wt
s.t. Op > 3.0
Bs > 3.0
1.0<w<4.0
1.0<t<4.0 (61)

which has the solution (w, t) = (2.451, 3.884) with an objective function of 9.520. This formulation corresponds to an
RIA z — [ approach, whereas an RIA Z — p approach would constrain p and PMA 3 — z and p — z approaches
would constrain z. The second-order complementary cumulative probabilities corresponding to the optimal solution (used
for level specification in PMA p — z and for the constraint allowable in RIA z — p) are p(gs > 0) = 0.001350 and
p(gp > 0) = 0.001145, which are equal and similar, respectively, to the corresponding first-order probabilities of 0.001350.

Table 15 shows the results for fully-analytic bi-level second-order RBDO employing the gradient expressions for z,
B, and p (Eqs. 44-45 and 47). Constraint violations are raw norms (not normalized by allowable), and SQP is used for
optimization at both levels. AMV?+-based RBDO reduces expense relative to SORM-based RBDO by a factor of 2.9 on
average. (-based formulations are again more computationally efficient, but lack the precision of second-order probability
integrations.

Table 15. Analytic bi-level RBDO results, cantilever test problem.

RBDO Function Evals Objective  Constraint
Approach (val/grad/Hessian)  Function  Violation
RIA z — p x-/u-space AMV?+ 258 (279/312/279) 9.562 0.0
RIA 7 — p SORM 625 (551/530/58)  9.562 0.0
RIA % — (3 x-/u-space AMV2+ 183 (189/213/143)  9.520 0.0
RIA z — 8 SORM 335 (326/320/0) 9.520 0.0
PMA j — 2 x-/u-space AMV2+ 262 (278/302/278)  9.519 2.2450-4
PMA  — z SORM 853 (849/833/789)  9.519  2.027e-4
PMA (3 — z x-/u-space AMV2+ 208 (224/248/174) 9.521 0.0
PMA 3 — = SORM 855 (851,/835/0) 9.521 0.0

Table 16 shows the results for sequential RBDO using a trust-region surrogate-based approach with an initial trust re-
gion size of 20%. The surrogates are again second-order Taylor-series using analytic gradients of z, 3, and p in combination
with SR1 quasi-Newton Hessian updates. The sequential case is more efficient than the fully-analytic bi-level case, with
expense reduced by 41% on average. With tuning of the initial trust region, an initial size of 10% solves the problem in as
few as 75 function evaluations. Relative to first-order sequential RBDO performance presented in Ref. 11, second-order
approaches (analytic second-order Taylor-series at the reliability level and quasi-Newton second-order Taylor-series at the
design level) save 29% on average and can be more precise.

D. Steel Column

The final test problem involves the trade-off between cost and reliability for a steel column.2? The cost is defined as
Cost = bd + 5h (62)

where b, d, and h are the means of the flange breadth, flange thickness, and profile height, respectively. Nine uncorrelated

random variables are used in the problem to define the yield stress F (lognormal with /o = 400/35 MPa), dead weight
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Table 16. Surrogate-based RBDO results, cantilever test problem.

RBDO Function Evals Objective  Constraint
Approach (val/grad/Hessian)  Function  Violation
RIA 7 — p x-/uspace AMV2+ 174 (163/202/163)  9.618 0.0
RIA 7 — p SORM 324 (265/274/38)  9.534  2.570e-5
RIA 7 — § x-/uspace AMV2+ 118 (110/134/83)  9.521 0.0
RIA Z — 3 SORM 213 (198,/205/0) 9.521 0.0
PMA 5 — z x-/u-space AMV2+ 134 (125/148/125)  9.521 0.0
PMA 5 — 2 SORM 515 (501/508/480)  9.521 0.0
PMA 3 — 2 x-/u-space AMV2+ 102 (95/116/69) 9.522 2.525¢-3
PMA 3 — = SORM 558 (549/549/0) 9.522 0.0

load P; (normal with p/o = 500000/50000 N), variable load Py (gumbel with p/o = 600000/90000 N), variable load P
(gumbel with p/o = 600000/90000 N), flange breadth B (lognormal with /o = b/3 mm), flange thickness D (lognormal
with u/o = d/2 mm), profile height H (lognormal with p/o = h/5 mm), initial deflection Fy (normal with /0 = 30/10
mm), and youngs modulus E (weibull with /0 = 21000/4200 MPa). The limit state has the following analytic form:

1 Fo B,
_F_p 63
g (2BD+BDHEb—P> (63)
where

P = P +P+Ps (64)

72EBDH?

B, = T2
b 212 (65)

and the column length L is 7500 mm.

1. Reliability-based design optimization

This design problem demonstrates design variable insertion into random variable distribution parameters through the
design of the mean flange breadth, flange thickness, and profile height. The following RBDO formulation maximizes the
reliability subject to a cost constraint:

max 16
S.t. Cost < 4000.
200.0 < b <400.0
10.0 < d < 30.0
100.0 < A < 500.0 (66)

which has the solution (b, d, h) = (200.0, 17.50, 100.0) with a maximal reliability of 3.132. This corresponds to an RTA
Z — 3 approach, where the RIA Z — p approach would minimize p and the PMA 3 — z and § — z approaches would
maximize z. The second-order cumulative probability corresponding to the optimal solution (used for PMA p — z) is
p(g < 0) =0.001309, which differs significantly from the corresponding first-order probability of 8.678e-4.

Table 17 shows the results for fully-analytic bi-level second-order RBDO employing the gradient expressions for z, 3,
and p (Egs. 47-51). Constraint violations are raw norms (not normalized by allowable), and SQP and NIP are used for
optimization at the design and MPP search levels, respectively. With the use of NIP at the reliability level, the benefits
of AMV?+-based RBDO relative to SORM-based RBDO are less pronounced, with average reductions in expense of 17%
on average. (-based formulations are again more computationally efficient (although less precise with the omission of
second-order probability integrations) and are also more robust since second-order PMA with p had some difficulty: while
it located the correct optimal solution, the final response level (marked with “*”) was incorrect due to inaccurate p — 3
inversions.

Table 18 shows the results for sequential RBDO using a trust-region surrogate-based approach with an initial trust
region size of 20%. The surrogates are second-order Taylor-series using analytic gradients of z, 3, and p in combination
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Table 17. Analytic bi-level RBDO results, steel column test problem.

RBDO Function Evals Objective  Constraint
Approach (val/grad/Hessian)  Function  Violation
RIA z — p x-space AMV2+ 315 (315/272/229)  0.001300 0.0
RIA 7 — p uspace AMV24+ 311 (311/268/225)  0.001309 0.0
RIA z — p SORM 322 (279/236/43) 0.001309 0.0
RIA z — (3 x-space AMV?+ 90 (90/78/54) 3.132 0.0
RIA z — 3 u-space AMV?+ 88 (88/76/52) 3.132 0.0
RIA % — 8 SORM 90 (90,/78/0) 3.132 0.0

PMA p — z x-space AMV?+ 52 (52/45/38) 0.001481 0.0
PMA p — z u-space AMV?+ 53 (53/46/39) 0.001481 0.0
PMA p — z SORM 67 (67/60/53) 7.401% 0.0
PMA (3 — z x-space AMV?2+ 49 (49/42/28) 0.005223 0.0
PMA 3 — z u-space AMV2+ 48 (48/41/27) 0.005223 0.0
PMA 3 — z SORM 83 (83/76/0) 0.005221 0.0

with SR1 quasi-Newton Hessian updates. The sequential and bi-level cases are more competitive in this problem, but
sequential is still more efficient with expense reduced by 13% on average. Second-order PMA with p again had difficulty.
With tuning of the initial trust region, an initial size of 80% solves the problem in as few as 45 function evaluations.

Table 18. Surrogate-based RBDO results, steel column test problem.

RBDO Function Evals Objective  Constraint
Approach (val/grad/Hessian)  Function  Violation
RIA z — p x-space AMV?+ 62 (62/49/44) 0.001309 0.0
RIA z — p u-space AMV?2+ 62 (62/49/44) 0.001309 0.0
RIA z — p SORM 81 (72/59/9) 0.001309 0.0
RIA z — 8 x-space AMV?2+ 67 (67/52/37) 3.132 0.0
RIA z — 3 u-space AMV?+ 67 (67/52/37) 3.132 0.0
RIA z — 8 SORM 78 (78/63/0) 3.132 0.0
PMA p — z x-space AMV?+ 64 (64/49/44) 0.001500 0.0
PMA p — z u-space AMV?+ 63 (63/48/43) 0.001500 0.0
PMA p — z SORM 86 (86/71/66) 7.401%* 0.0
PMA (3 — z x-space AMV?2+ 62 (62/47/32) 0.005223 0.0
PMA 3 — z u-space AMV?+ 60 (60/45/30) 0.005223 0.0
PMA 3 — z SORM 102 (102/87/0) 0.005223 0.0

V. Conclusions

The effectiveness of first-order approximations, both in limit state linearization within reliability analysis and in
surrogate-based RBDO, has led to additional work in second-order approximations which seek improved accuracy in
probability integrations and improved computational efficiency through accelerated convergence rates.

This paper explores second-order RIA and PMA formulations using various limit state approximation (MVSOSM, x-/u-
space AMV?, x-/u-space AMV?2+, x-/u-space TANA, and SORM), probability integration (first-order or second-order),
Hessian approximation (finite difference, BFGS, or SR1), and MPP optimization algorithm (SQP or NIP) selections.
When performing the p — z PMA mapping, an updating scheme for 3 is used to account for changes in the limit state
curvature.

Reliability analysis results for the lognormal ratio, short column, and cantilever test problems indicate several trends.
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MVSOSM and AMV? are significantly less expensive than AMV?2+, TANA, and SORM, but come with corresponding
reductions in accuracy. In combination, these methods provide a useful spectrum of accuracy and expense that allow
the computational effort to be balanced with the precision desired for particular applications. In addition, support for
forward and inverse mappings (RIA and PMA) provide the flexibility to support different UQ analysis needs. The AMV?2+
approaches were shown to be the most efficient for second-order RIA analysis and both the most robust and the most
efficient for second-order PMA analysis with prescribed probability levels. Analytic Hessians were highly effective in
AMV?2+, but since they are often unavailable in practical applications, finite-difference numerical Hessians and quasi-
Newton Hessian approximations were also demonstrated, with SR1 quasi-Newton updates being shown to be sufficiently
accurate and competitive with analytic Hessian performance. Relative to first-order AMV+ performance, AMV?2+ with
analytic Hessians had consistently superior efficiency, and AMV?2+ with quasi-Newton Hessians had improved performance
in most cases (it was more expensive than AMV+ only when a more challenging second-order p problem was being solved).

An important question is how Taylor-series based limit state approximations (such as AMV+ and AMV?2+) can
frequently outperform the best general-purpose optimizers (such as SQP and NIP). The answer likely lies in the exploitation
of the structure of the RIA and PMA MPP problems. By approximating the limit state but retaining u”u explicitly,
specific problem structure knowledge is utilized in formulating a mixed surrogate/direct approach.

These reliability analysis capabilities provide a substantial foundation for RBDO formulations, and bi-level and sequen-
tial RBDO approaches have been investigated. Both approaches have utilized analytic gradients for z, 3, and second-order
p with respect to augmented and inserted design variables, and sequential RBDO has additionally utilized a trust-region
surrogate-based approach to manage the extent of the second-order Taylor-series approximations.

RBDO results for the short column, cantilever, and steel column test problems build on the reliability analysis trends.
In bi-level and sequential RBDO, the AMV?4 approaches were consistently more efficient than the SORM-based ap-
proaches. In addition, sequential RBDO approaches demonstrated computational savings over the corresponding bi-level
RBDO approaches. The combination of sequential RBDO using AMV?2+ was the most effective of all of the approaches.
With initial trust region size tuning, RBDO computational expense for these test problems was shown to be as low as
approximately 40 function evaluations per limit state (35 for a single limit state in short column, 75 for two limit states
in cantilever, and 45 for a single limit state in steel column). Second-order RBDO with probability constraints was shown
to be more challenging and expensive, but could be more precise in achieving the desired probabilistic performance.

Overall, second-order reliability analysis and design approaches appear to serve multiple synergistic needs. The same
Hessian information that allows for more accurate probability integrations can also be applied to making MPP solutions
more efficient and more robust. Conversely, limit state curvature information accumulated during an MPP search can
be reused to improve the accuracy of probability estimates. Future algorithmic directions include sequential RBDO with
mixed surrogate and direct models (for probabilistic and deterministic components, respectively). Initial deployment of
these algorithmic capabilities within Sandia labs is targeting probabilistic analysis and design of micro-electro-mechanical
systems (MEMS).

VI. Acknowledgments

The authors would like to express their thanks to the Sandia Computer Science Research Institute (CSRI) for support
of this collaborative work between Sandia National Laboratories and Vanderbilt University.

References

1 Adams, B.M., Eldred, M.S., Wittwer, J.W., and Massad, J.E., Reliability-Based Design Optimization for Shape Design of Compliant Micro-
Electro-Mechanical Systems, to appear in Proceedings of the 11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference,
Portsmouth, VA, Sept. 6-8, 2006.

2Agarwal, H., Renaud, J.E., Lee, J.C., and Watson, L.T., A Unilevel Method for Reliability Based Design Optimization, paper AIAA-2004-
2029 in Proceedings of the 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Palm Springs,
CA, April 19-22, 2004.

3Allen, M. and Maute, K., Reliability-based design optimization of aeroelastic structures, Struct. Multidiscip. O., Vol. 27, 2004, pp. 228-242.

4Box, G.E.P. and Cox, D.R., An Analysis of Transformations, J. Royal Stat. Soc., Series B, Vol. 26, 1964, pp. 211-252.

5Breitung, K., Asymptotic approximation for multinormal integrals, J. Eng. Mech., ASCE, Vol. 110, No. 3, 1984, pp. 357-366.

6Chen, X., and Lind, N.C., Fast Probability Integration by Three-Parameter Normal Tail Approximation, Struct. Saf., Vol. 1, 1983, pp.
269-276.

"Der Kiureghian, A. and Liu, P.L., Structural Reliability Under Incomplete Probability Information, J. Eng. Mech., ASCE, Vol. 112, No.
1, 1986, pp. 85-104.

8Du, X. and Chen, W., Sequential Optimization and Reliability Assessment Method for Efficient Probabilistic Design, J. Mech. Design,
Vol. 126, 2004, pp.225-233.

9Eldred, M.S., Giunta, A.A., Wojtkiewicz, S.F., Jr., and Trucano, T.G., Formulations for Surrogate-Based Optimization Under Uncertainty,

22 of 23

American Institute of Aeronautics and Astronautics



paper ATAA-2002-5585 in Proceedings of the 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Atlanta, GA,
Sept. 4-6, 2002.

10Eldred, M.S., Giunta, A.A., van Bloemen Waanders, B.G., Wojtkiewicz, S.F., Jr., Hart, W.E., and Alleva, M.P., DAKOTA, A Multilevel
Parallel Object-Oriented Framework for Design Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis.
Version 3.1 Users Manual. Sandia Technical Report SAND2001-3796, Revised April 2003, Sandia National Laboratories, Albuquerque, NM.

1 Eldred, M.S., Agarwal, H., Perez, V.M., Wojtkiewicz, S.F., Jr., and Renaud, J.E., Investigation of Reliability Method Formulations in
DAKOTA/UQ, (to appear) Structure & Infrastructure Engineering: Maintenance, Management, Life-Cycle Design & Performance, Taylor &
Francis Group.

12Fadel, G.M., Riley, M.F., and Barthelemy, J.-F.M., Two Point Exponential Approximation Method for Structural Optimization, Struc-
tural Optimization, Vol. 2, No. 2, 1990, pp. 117-124.

13Gill, P.E., Murray, W., Saunders, M.A., and Wright, M.H., User’s Guide for NPSOL 5.0: A Fortran Package for Nonlinear Programming,
System Optimization Laboratory, Technical Report SOL 86-1, Revised July 1998, Stanford University, Stanford, CA.

M Giunta, A.A. and Eldred, M.S., Implementation of a Trust Region Model Management Strategy in the DAKOTA Optimization Toolkit,
paper ATAA-2000-4935 in Proceedings of the 8th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization,
Long Beach, CA, September 6-8, 2000.

15Haldar, A. and Mahadevan, S., Probability, Reliability, and Statistical Methods in Engineering Design, 2000 (Wiley: New York).

16Hohenbichler, M. and Rackwitz, R., Sensitivity and importance measures in structural reliability, Civil Eng. Syst., Vol. 3, 1986, pp.
203-209.

17Hohenbichler, M. and Rackwitz, R., Improvement of second-order reliability estimates by importance sampling, J. Eng. Mech., ASCE,
Vol. 114, No. 12, 1988, pp. 2195-2199.

18Hong, H.P., Simple Approximations for Improving Second-Order Reliability Estimates, J. Eng. Mech., ASCE, Vol. 125, No. 5, 1999, pp.
592-595.

19Karamchandani, A. and Cornell, C.A., Sensitivity estimation within first and second order reliability methods, Struct. Saf., Vol. 11,
1992, pp. 95-107.

20Kuschel, N. and Rackwitz, R., Two Basic Problems in Reliability-Based Structural Optimization, Math. Method Oper. Res., Vol. 46,
1997, pp.309-333.

21Meza, J.C., OPT+4+: An Object-Oriented Class Library for Nonlinear Optimization, Sandia Technical Report SAND94-8225, Sandia
National Laboratories, Livermore, CA, March 1994.

22Nocedal, J., and Wright, S.J., Numerical Optimization, Springer, New York, 1999.

23Rackwitz, R., and Fiessler, B., Structural Reliability under Combined Random Load Sequences, Comput. Struct., Vol. 9, 1978, pp.
489-494.

24Rackwitz, R., Optimization and risk acceptability based on the Life Quality Index, Struct. Saf., Vol. 24, 2002, pp. 297-331.

25Rosenblatt, M., Remarks on a Multivariate Transformation, Ann. Math. Stat., Vol. 23, No. 3, 1952, pp. 470-472.

26Sues, R., Aminpour, M. and Shin, Y., Reliability-Based Multidisciplinary Optimization for Aerospace Systems, paper AIAA-2001-1521
in Proceedings of the 42rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Seattle, WA, April
16-19, 2001.

27Ty, J., Choi, K.K., and Park, Y.H., A New Study on Reliability-Based Design Optimization, J. Mech. Design, Vol. 121, 1999, pp.557-564.

28Wang, L. and Grandhi, R.V., Efficient Safety Index Calculation for Structural Reliability Analysis, Comput. Struct., Vol. 52, No. 1, 1994,
pp. 103-111.

29Wojtkiewicz, S.F., Jr., Eldred, M.S., Field, R.V., Jr., Urbina, A., and Red-Horse, J.R., A Toolkit For Uncertainty Quantification In Large
Computational Engineering Models, paper ATAA-2001-1455 in Proceedings of the 42nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural
Dynamics, and Materials Conference, Seattle, WA, April 16-19, 2001.

30Wu, Y.-T., and Wirsching, P.H., A new algorithm for structural reliability estimation, J. Eng. Mech., ASCE, Vol. 113, 1987, pp.
1319-1336.

31Wu, Y.-T., Millwater, H.R., and Cruse, T.A., Advanced Probabilistic Structural Analysis Method for Implicit Performance Functions,
AIAA J., Vol. 28, No. 9, 1990, pp. 1663-1669.

32Wu, Y.-T., Computational Methods for Efficient Structural Reliability and Reliability Sensitivity Analysis, ATAA J., Vol. 32, No. 8,
1994, pp. 1717-1723.

33Wu, Y.-T., Shin, Y., Sues, R., and Cesare, M., Safety-Factor Based Approach for Probability-Based Design Optimization, paper ATAA-
2001-1522 in Proceedings of the 42rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Seattle,
WA, April 16-19, 2001.

34Xu, S., and Grandhi, R.V., Effective Two-Point Function Approximation for Design Optimization, AIAA J., Vol. 36, No. 12, 1998, pp.
2269-2275.

35Zou, T., Mahadevan, S., and Rebba, R., Computational Efficiency in Reliability-Based Optimization, Proceedings of the 9th ASCE
Specialty Conference on Probabilistic Mechanics and Structural Reliability, Albuquerque, NM, July 26-28, 2004.

23 of 23

American Institute of Aeronautics and Astronautics



