
Strategies for Multi�delity Optimization with VariableDimensional Hierarchical ModelsT. D. Robinsonk�, M. S. Eldred��y, K. E. Willcoxkz, R. HaimeskxkAerospace Computational Design LaboratoryMassachusetts Institute of Technology, Cambridge, MA, 02139��Optimization and Uncertainty Estimation DepartmentSandia National Laboratories{, Albuquerque, NM 87185Surrogate-based-optimization methods are increasingly used to minimize expensive high-�delity models and therefore reduce the computational cost. The methods are useful in problemsfor which two models of the same physical system exist: a high-�delity model which is accurateand expensive, and a low-�delity model which is cheaper but less accurate. A number ofmodel management techniques have been developed and shown to work well for the case inwhich both models are de�ned over the same design space. However, many systems existwith variable �delity models for which the design variables are de�ned over di�erent spaces,and a mapping is required between the spaces. Three mapping methods are presented: spacemapping, corrected space mapping, and proper orthogonal decomposition (POD) mapping.The methods are used within a trust-region model-management framework. They are appliedto three example problems: a �xed-dimension analytic problem, a variable-dimension analyticproblem, and a variable-dimension airfoil design problem. Both corrected space mapping andPOD mapping are provably convergent to an optimum of the high-�delity problem, and for theairfoil design problem considered, the POD mapping yields signi�cant computational savingsover direct optimization on the high-�delity model.I. IntroductionDesigners of engineering systems are increasingly using numerical optimization methods. These methodsenable many design options to be explored systematically, thus o�ering the potential of increased productperformance and pro�tability. While optimization methods have predominantly been used in the preliminaryand detailed design phases, there is an increasing need to include higher-�delity models, such as simulation-basedphysics models, earlier in the design process. However, these models tend to have high computational cost evenfor the evaluation of a single design. Therefore, optimization, which requires a large number of evaluations, canbe prohibitively expensive. One method to reduce the cost of optimization is to use surrogate-based-optimization(SBO) methods. This paper presents new methodology for extending SBO methods to handle a broader hierarchyof design models that may encountered in conceptual and preliminary design.Low-�delity models can be roughly divided into three categories: data �ts, typically using interpolation orregression of the high-�delity model evaluated at one or more sample points;1 reduced-order models, derived usingtechniques such as modal analysis2, 3 and proper orthogonal decomposition (POD);4, 5 and hierarchical models,�Graduate Student, Student Member AIAA, robinst@mit.eduyPrincipal Member of Technical Sta�, Associate Fellow AIAAzAssociate Professor of Aeronautics and Astronautics, Senior Member AIAAxPrincipal Research Engineer, Member AIAA{Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the United StatesDepartment of Energy under Contract DE-AC04-94AL85000. 1 of 19American Institute of Aeronautics and Astronautics
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also called multi�delity, variable-�delity, or variable-complexity models. In this last case, a physics-based modelof lower accuracy and reduced computational cost is used in conjunction with the high-�delity model. Themulti�delity case can be further divided based on the means by which the �delity is reduced. The low-�delitysurrogate can be the same as the high-�delity, but converged to a higher residual tolerance; for �nite elementmodels, it can use a lower basis function order than the high-�delity model; it can be the same model on acoarser grid;6, 7 or it can use a simpler engineering model that neglects some physics modeled by the high-�delitymethod.8In the latter two cases, sometimes the lower-�delity model requires a di�erent number of design variables thanthe higher-�delity model. In the variable-grid-size case, the design variables can be discretized in the same manneras the grid, leading to more design variables on the �ner grid. In the neglected-physics case, the two models oftenuse entirely di�erent sets of design variables. For example, in aircraft design a range of aerodynamic modelscan be used, from high-�delity computational 
uid dynamics (CFD) models to lower �delity predictions usingclassical aerodynamic theory or vortex-lattice models. The corresponding parameterization of the design vectoralso varies. For example, a detailed description of aircraft geometric parameters such as airfoil cross-sectionalshapes may be used in conjunction with a CFD model, while higher level design variables, such as wing area,aspect ratio and wing sweep, are appropriate for use with lower �delity models.9Surrogate models can be rigorously incorporated into design optimization through the use of a formal modelmanagement strategy. One such strategy is a trust-region model-management (TRMM) framework.10 By usingcorrections to ensure that the surrogate model is at least �rst-order accurate at the center of the trust region, thismethod is provably convergent to a local minimum of the high-�delity function. The TRMM framework is widelyused, having been adapted for multi-objective optimization11 and multidisciplinary optimization,12 in cases whenthe design vector is the same between the high-�delity and low-�delity models.A general unconstrained design problem can be posed using the following nonlinear optimization formulation:minimize f(x); (1)where f 2 IR represents the scalar objective to be minimized and x 2 IRn is the vector of n design variables thatdescribe the design. A low-�delity model of f(x) is denoted g(~x), where ~x 2 IR~n is the low-�delity design vectorof dimension ~n. Many authors use the terms \surrogate" and \low-�delity model" interchangeably. However, inthis work, a surrogate model ~f(x) is a model de�ned over the same design variable space x as the high-�delitymodel, and that meets certain consistency conditions with respect to the high-�delity model.13 A low-�delitymodel g(~x) is a model of the same physical system, but can be de�ned over a di�erent design space, ~x 6= x.SBO methods have until now been applicable only to models in which both the high-�delity model f(x) andthe low-�delity model g(~x) are de�ned over the same design variable space, x = ~x. The work presented in thispaper provides new methodology that �lls the need to extend these existing variable-�delity optimization methodsto the case when the low-�delity model uses a di�erent set of design variables ~x 6= x. This methodology allowsvariable-�delity optimization methods to be applied more broadly across a hierarchy of design models.This paper begins by presenting some necessary background for the work: trust-region model managementmethods and the corrections necessary to make those methods convergent. Three methods for mapping betweenvariable-dimensional spaces are introduced: space mapping, corrected space mapping, and POD mapping. Themapping methods are implemented in a multi�delity optimization framework that uses TRMM. The multi�delitymethods are experimentally compared with one another and with optimization applied directly to the high-�delityproblem for three examples. Finally, the relative advantages and disadvantages of the methods are discussed andrecommendations for their use are presented.II. BackgroundA. Trust-region model managementSurrogate-based optimization methods can be implemented within a TRMM framework. At each iteration, asurrogate for the high-�delity model is optimized within a trust region. For the next iteration, the size of the trustregion grows if the surrogate is accurately predicting the performance of the high-�delity model, or shrinks if thesurrogate is inaccurate. The TRMM framework used in this work is adapted from Ref. 10. TRMM can be appliedto both unconstrained and constrained optimization problems, and future work will apply constrained TRMM2 of 19American Institute of Aeronautics and Astronautics



to problems with variable design space models. The discussion below, however, considers only an unconstrainedproblem.In order to solve the general nonlinear programming problem given in (1), the method solves a sequenceof trust region optimization subproblems. In this approach, the design variables of each subproblem are thesame as those of the original high-�delity problem. The surrogate model can change from iteration to iteration;normally it is the same low-�delity model incorporating di�erent corrections, as described in Section II. B. Thekth subproblem takes the form minimize ~fk(x)subject to k x� xkc k1 � �k;where ~fk denotes the kth surrogate model, xkc is the solution to the previous subproblem and the center point ofthe trust region for subproblem k, �k is the size of the trust region for subproblem k, and the initial trust-regionsize �0 is user-selected. The solution to the kth subproblem is denoted xk� . After each of the k iterations in theTRMM strategy, the predicted step is validated by computing the trust region ratio �k as�k = f(xkc )� f(xk�)~f(xkc )� ~f(xk�) ; (2)which is the ratio of the actual improvement in the objective function to the improvement predicted by optimiza-tion on the surrogate model. This ratio measures the performance of the corrected low-�delity model in �ndingnew iterates that improve the high-�delity objective. The value for � then de�nes the step acceptance and thenext trust region size �k using the following logic:1. �k � 0 : The surrogates are inaccurate. Reject the step and shrink the trust region by half to improvesurrogate accuracy.2. 0 < �k � r1 : The surrogates are marginally accurate. Accept the step but shrink the trust region size byhalf.3. r1 < �k < r2 : The surrogates are moderately accurate. Accept the step and maintain the current trustregion size.4. r2 � �k : The surrogates are accurate. Accept the step and increase the trust region size by a factor of two.This work uses r1 = 10�5 and r2 = 0:8. The algorithm calls the high-�delity analysis method once per iterationand the surrogate analysis method many times per iteration. The TRMM method is provably convergent to alocal minimum of the high-�delity function if the surrogate is at least �rst-order accurate at the center of the trustregion.14 First-order accuracy can be guaranteed through the use of corrections, as described in the followingsubsection.B. CorrectionsAn appropriate surrogate model ~f(x), is one that is at least �rst-order accurate at the center of the trust region.Given any low-�delity model g(x) that approximates f(x), a consistent surrogate model can be derived throughthe use of corrections.A variety of relationships between the high- and low-�delity models can be used in deriving correction ap-proaches. The primary two of interest are A(x) = f(x)� g (x) (3)B(x) = f(x)g (x) ; (4)which correspond to the (exact) additive correction f(x) = g (x)+A(x) and to the (exact) multiplicative correctionf(x) = g (x)B(x). Approximations to the exact correction functions A(x) and B(x) are denoted �(x) and �(x)respectively. 3 of 19American Institute of Aeronautics and Astronautics



The second-order Taylor series expansions of A and B around xc are:�(x) = A(xc) +rA(xc)T (x � xc) + 12(x� xc)Tr2A(xc)(x � xc) (5)�(x) = B(xc) +rB(xc)T (x� xc) + 12(x� xc)Tr2B(xc)(x� xc) (6)where, by di�erentiating equation (3), A(xc) = f(xc)� g (xc) (7)rA(xc) = rf(xc)�rg(xc) (8)r2A(xc) = r2f(xc)�r2g(xc): (9)Similarly, by di�erentiating equation (4),B(xc) = f(xc)g(xc) (10)rB(xc) = 1g(xc)rf(xc)� f(xc)[g(xc)]2rg(xc) (11)r2B(xc) = 1g(xc)r2f(xc)� f(xc)[g(xc)]2r2[g(xc)] + 2f(xc)[g(xc)]3rg(xc)rgT (xc)�1[g(xc)]2 �rg(xc)rfT (xc) +rf(xc)rgT (xc)� : (12)The corrected low-�delity function in the additive case is then given by~f�(x) = g(x) + �(x) (13)and in the multiplicative case by ~f�(x) = g(x)�(x); (14)where �(x) and �(x) are de�ned in equations (5) and (6).These derivations have shown second-order corrections. For engineering problems, exact Hessian matricesr2f(xc) and r2g(xc) are often unavailable. They can be estimated using �nite di�erences or approximatedthrough quasi-Newton approximations,13 such as the Broyden-Fletcher-Goldfarb-Shanno (BFGS)15{18 update.For �rst-order corrections (su�cient to ensure provable convergence of the SBO method), r2A(xc) and r2B(xc)are neglected in equations (5) and (6). In this work, all low-�delity functions are corrected to quasi-second-orderaccuracy using the BFGS approximation to the Hessian matrix. The additive correction was chosen over themultiplicative because it has been shown to be appropriate in a wider variety of problems.13III. Mapping between variable-dimensional spacesSBO methods have until now been applicable only to models in which both the high-�delity model f(x) andthe low-�delity model g(~x) are de�ned over the same space x = ~x. In order to use a low-�delity model witha di�erent number of design variables as the high-�delity function to be optimized, it is necessary to �nd arelationship between the two sets of design vectors, that is, ~x = P (x) or x = Q(~x). Normally, the �rst mappingis more useful, as it allows the optimization algorithm to work in high-�delity space. That is, g(P (x)) can becorrected to a surrogate for f(x). In the second case, the optimization is performed in the low-�delity space, andg(~x) is corrected to a surrogate for f(Q(~x)).In some cases, the mapping can be obvious and problem-speci�c. For instance, if the high- and low-�delitymodels are the same set of physical equations, but on a �ne and coarse grid, and the design vectors in each caseare geometric parameters de�ned on that grid, the low-�delity design vector can be a subset of the high-�delitydesign vector, or the high-�delity design vector can be an interpolation of the low-�delity design vector. However,in other problems, there is no obvious mathematical relationship between the design vectors. In this case, anempirical mapping is needed. 4 of 19American Institute of Aeronautics and Astronautics



One example of a problem without an obvious mapping is the airfoil design problem described in Section IV. C.Another is the multi�delity supersonic business jet problem used by Choi, Alonso, and Kroo.9 That problem isto optimize the aerodynamic performance of a low-supersonic-boom aircraft. The low-�delity model uses classicalsupersonic aerodynamics and vortex lattice-methods, and operates on an aircraft de�ned by 16 design variables:the wing area, aspect ratio, and sweep, the location of the wing root leading edge, the thickness to chord ratio atthree locations on the wing, the minimum cockpit diameter, the minimum cabin diameter, and the fuselage radiiat six locations. The high-�delity model uses 126 design variables: leading and trailing edge droop, twist, and 15camber Hicks-Henne bumps at each of 7 locations on the wing. The high-�delity analysis uses the Euler equationsand provides the gradient through the adjoint method. Choi et al. used the two models sequentially, optimizing�rst using the low-�delity model, with Kriging corrections applied, and using the result of that optimization as astarting point for optimization using the high-�delity model.When applying mapping, the corrections must be modi�ed to include the mapping and the Jacobians. Forexample, for optimization in the high-�delity space, equation (8) becomesrxA(xc) = rxf(xc)� @P@x Tr~xg [P (xc)] (15)where @P@x is the Jacobian matrix of the mapping and rx and r~x denote derivatives with respect to x and ~x,respectively.In the following subsections, three methods of mapping between spaces of di�erent dimension are presented:space mapping, corrected space mapping, and POD-based mapping.A. Space mappingSpace mapping19, 20 is a method of linking variable-�delity models developed in the microwave circuit designcommunity. In that application area, it is often appropriate to make corrections to the input of a model, ratherthan to its output. Space mapping has been suggested as a method for mapping between models of di�erentdimensionality,19 although the examples available in the literature consider only the case where the design vectorshave the same length. In space mapping, a particular form is assumed for the relationship P between the high-and low-�delity design vectors. This form is described by some set of parameters, contained here in a vector p,that are found by solving an optimization problemp = argminp SXi=1 �jjf(xi)� g �P (xi;p)� jj2� : (16)This optimization problem seeks to minimize the di�erence between the high-�delity function f(x) and thecorresponding low-�delity function g (~x) = g (P (x; p)) over a set of S sample points xi, where xi denotes the ithsample (or control) point. Both the choice of sample points and the particular form of the mapping P is left tothe implementation. Because the method does not ensure �rst-order accuracy, the proofs of convergence of trust-region methods do not extend to those methods using space mapping. However, Madsen and S�ndergaard21 havedeveloped a provably convergent algorithm by using a hybrid method in which the surrogate model is a convexcombination of the space-mapped low-�delity function and a Taylor series approximation to the high-�delityfunction.In the implementation employed in this paper, the sample points used in equation (16) are the previous Ssolutions of the trust region subproblems, xk� , at which high-�delity function values are already available, and alinear relationship is chosen for the mapping P :~x = P (x) =Mx+ b; (17)where M is a matrix with n� ~n elements and b is a vector of length ~n for a total of ~n� (n+ 1) space-mappingparameters. It should be noted that other forms of the mapping could also be used. The space mapping parametersmust be determined at each iteration of the TRMM method by solving the optimization problem (16).5 of 19American Institute of Aeronautics and Astronautics



B. Corrected space mappingBecause space mapping does not provide provable convergence within a TRMM framework, but any surrogate thatis �rst-order accurate does, one approach is to correct the space-mapping framework to at least �rst order. Thiscan be done with any of the corrections in Section II. B. However, if the input parameters are �rst selected in orderto match the output function at some number of control points, and a correction (either additive or multiplicative)is subsequently applied, it is likely that the correction will unnecessarily distort the match performed in the space-mapping step. This can be resolved by performing the space mapping and correction steps simultaneously, whichis achieved by embedding the correction within the space mapping.
Data points
Trust region center
Least squares fit
Fit with additive correction
Constrained fit

Figure 1. Demonstration of simultaneous vs. sequential data �tting and enforcement of �rst-order accuracyThis concept is illustrated in Figure 1. In this �gure, the available data points are marked with black circles,and the center of the trust region with a red 'x'. The dotted magenta curve is a cubic function found with aleast-squares �t to the available data. It provides no consistency at the trust region center. The dashed cyancurve shows the result of adding a linear additive correction to that �t, in order to enforce �rst-order accuracyat the center of the trust region. The local correction distorts the global data �tting. The solid blue curve is alsoa cubic, generated by �rst enforcing �rst-order accuracy at the center, and then performing a least-squares �twith the remaining degrees of freedom. This last curve is more globally accurate than the sequential �tting andcorrection steps.Using this concept, the corrected space-mapping method performs the space mapping and correction stepssimultaneously. That is, it incorporates a correction, and with the remaining degrees of freedom, performs the bestmatch possible to the control points by varying the input mapping. The corrected surrogate to the high-�delityfunction in the additive case is ~f(x) = g (P (x;p)) + �(x;p); (18)where � is de�ned in (5) and p is the solution to the corrected space-mapping problemp = argminp kXi=1 jjf(xi)� ~f(xi;p)jj2: (19)It should be noted that the correction function, �(x;p), must be re-evaluated with each new value of p, asthe low-�delity function value and gradient and the Jacobian of the mapping change with the space-mappingparameters. Since the resulting corrected function (18) is at least �rst-order accurate at the center of the trustregion, the resulting trust-region optimization is provably convergent to a local minimum of the high-�delityproblem. 6 of 19American Institute of Aeronautics and Astronautics



C. POD mappingThe third mapping methodology is based on the \gappy" POD method of reconstructing data sets, which isa modi�cation of the standard POD method to handle incomplete data sets. The POD method, which is alsoknown as principal components analysis or Karhunen-Lo�eve expansions, yields a set of basis vectors that providesthe least-squares optimal representation of a given data set.The method of snapshots, developed by Sirovich,5 derives a set of POD basis vectors empirically. In thismethod, a set of q snapshots x1;x2; : : : ;xq , or column vectors describing di�erent states of a system, is computed.The snapshot matrix X is then formed asX = h�x1 � �x� �x2 � �x� � � � [xq � �x]i ; (20)where �x is the mean of the snapshots and the ith column of X contains the ith snapshot minus the mean. ThePOD basis vectors, �j ; j = 1; 2; : : : ; q, can then be computed as the left singular vectors of the matrix X.The POD basis is chosen to comprise the r singular vectors that correspond to the largest singular values. Alow-dimensional representation of a solution x is then given byx � �x+ rXj=1 �j�j ; (21)where �j is the coe�cient describing the contribution of the jth POD mode �j to the solution x.It can be shown that, for a given basis size r, the POD basis yields the optimal representation of the givensnapshot set in a least-squares sense. De�ning for a snapshot xi, the 2-norm of the error in the low dimensionalapproximation as ei = ������������xi � �x� rXj=1 �ij�j������������2 ; (22)then the total sum of squared errors over all snapshots is minimized and is given by the sum of the singular valuescorresponding to the omitted q � r singular vectors,qXi=1 �ei�2 = qXj=r+1 �j ; (23)where �j is the jth largest singular value of the matrix X.The gappy POD method, developed by Everson and Sirovich,22 allows one to reconstruct data from a \gappy"data set, that is, a set in which some of the data are unknown or missing.23 The �rst step is to de�ne a maskvector, which describes for a particular solution vector where data are available and where data are missing. Forthe solution xj , the corresponding mask vector n is de�ned as follows:ni = 0 if xi is missingni = 1 if xi is known;where xi denotes the ith element of the vector x. Pointwise multiplication is de�ned as (n;x)i = nixi. Then thegappy inner product is de�ned as (u;v)n = ((n;u); (n;v)), and the induced norm is (kvkn)2 = (v;v)n.For a vector u that has some unknown components, it is assumed that the repaired vector û can be representedby the expansion (21). In this representation, the POD coe�cients �i are chosen to minimize the error betweenthe available and reconstructed data. This error can be de�ned as� = ku� ûk2n (24)using the gappy norm so that only the original existing data elements in u are compared. The coe�cients �i thatminimize the error � can be found by di�erentiating (24) with respect to each of the �i in turn. This leads to thelinear system of equations E� = w; (25)7 of 19American Institute of Aeronautics and Astronautics



where the ijth component of E is given by Eij = ��i; �j�n (26)and the ith component of w is given by wi = �u; �i�n : (27)Solving equation (25) for �, the missing elements of u can be obtained using the expansion (21).The gappy POD method provides a way to map between high- and low-�delity design space data: the high-�delity vector is treated as the known data, and the low-�delity as the unknown data, or vice versa. In themapping application, the POD basis vectors must span both low- and high-�delity design space. This is achievedby generating a set of q training pairs, for which the low- and the high-�delity vectors describe the same physicalsystem. These training pairs are combined in the following way to form the snapshot matrix:X = 264�~x1 � �~x� �~x2 � �~x� � � � �~xr � �~x�{ { {[x1 � �x] [x2 � �x] � � � [xr � �x]375 ; (28)where now the ith column of X contains both the ith low- and the ith high-�delity snapshots, and �~x denotes themean of the low-�delity snapshot set.The left singular vectors of this snapshot matrix provide the corresponding POD basis vectors, which arepartitioned in the same way as the snapshot vectors. Therefore, equation (21) can be decomposed into twoequations x = �x+ qXi=1 �i�i (29)~x = �~x+ qXi=1 �i ~�i; (30)where �i is the portion of the ith POD basis vector corresponding to x and ~�i is the portion corresponding to ~x.Using the gappy POD formulation, equation (29) can be solved in a least-squares sense in order to �nd thecoe�cients � that best represent a given high-�delity vector x. Those coe�cients can then be used in equation(30) to calculate the low-�delity vector. Alternatively, if a mapping is desired from the low-�delity space to thehigh-�delity space, the coe�cients are found from equation (30) and used in (29). Since POD mapping operatesexclusively on the input variables, an additive or multiplicative output correction must be applied separately toensure at least �rst-order consistency within the TRMM framework.IV. Example problemsThree example problems are used to demonstrate the methods: an analytic problem in which the dimensionsof the low- and high-�delity models are the same, an analytic problem with variable-dimensional models, and anairfoil design problem with variable-dimensional models. The analytic problems are chosen to be Rosenbrock func-tions, which are commonly used challenging analytic optimization test cases. The trust-region model-managementalgorithm is applied with each of the three mapping methods and compared with the results from applying op-timization directly on the high-�delity model. Direct optimization of the high-�delity problem was carried outusing a quasi-Newton method with a BFGS approximation to the Hessian matrix.A. Analytic problem: Rosenbrock function with the same dimensionFor the �rst example, the dimension of the problem is the same in both the high-�delity and low-�delity models.The high-�delity problem is a form of the Rosenbrock functionf(x) = (x1 � 1)2 + 4(x2 � x21)2; (31)8 of 19American Institute of Aeronautics and Astronautics



and the low-�delity model is a quadratic functiong(~x) = ~x21 + ~x22: (32)The optimal solution of the high-�delity problem is x1 = 1, x2 = 1, with an optimal objective function value ofzero. Since, in this case, the sum of the quadratic low-�delity function and a quasi-second-order additive correctionstill provides a quadratic model, one would expect the convergence rate of the variable-�delity TRMM frameworkto be the same as that of the direct high-�delity optimization, which uses approximations based on a quasi-second-order Taylor series. The multi�delity methods are therefore not expected to provide any computationalsavings for this case, nor is a mapping from high- to low-�delity space required in this simple case where x = ~x;however, application of the methods to this simple problem highlights the importance of using corrections in thevariable-�delity setting. For all presented results, an initial guess of x = (�2;�2) was used.
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Figure 2. Multi�delity optimization, with and without space mapping, with no corrections, �rst-order corrections,and quasi-second-order corrections, on the two-dimensional Rosenbrock problem.Figure 2 shows the multi�delity method using space-mapping with no corrections, �rst-order corrections,and BFGS corrections. At each iteration, the space-mapping parameters are selected by solving a minimizationproblem of the form (16). For this example, which has n = ~n = 2, the linear mapping requires six parameters.The space-mapping minimization is performed using the previous eight iterates as sample points. The curveslabeled \unmapped" use no mapping (since a mapping is not necessary when the dimension of the two �delitiesis the same) but use ~x = x and correct the surrogate to the indicated order of consistency.Uncorrected space mapping does not converge on this problem. With �rst-order corrections, the methodsconverge linearly. The addition of quasi-second-order corrections improves the convergence rate. As expected,the convergence rates of the BFGS corrected multi�delity methods are essentially the same as the quasi-Newtonalgorithm. It is also interesting to note that the convergence of the �rst-order corrected space mapping methodis much faster than the unmapped method with a �rst-order correction, and almost as good as the quasi-second-order methods. One interpretation of this result is that the corrected space mapping, since it seeks a global matchusing information from a number of past iterations, captures some measure of curvature consistency, even thoughit is only formally corrected to �rst order.Figure 3 shows comparisons between the multi�delity method with both POD mapping and space mappingapplied. Corrected space mapping and POD mapping both use quasi-second-order corrections. The multi�delitywith POD mapping shows a slight advantage on the �rst step, on which substantial progress is made due tothe appropriate selection of the initial trust-region size, �0. Numerical experiments show that, despite somedependence in early iterations on the initial trust region size, the adaptive modi�cation of the size of the trustregions as the TRMM algorithm progresses yields convergence rates that are essentially independent of the9 of 19American Institute of Aeronautics and Astronautics
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Figure 3. Comparison of optimization methods on the two-dimensional Rosenbrock problem. The corrected mul-ti�delity methods use quasi-second-order corrections.selection of �0. As expected for this problem, Figure 3 shows that the convergence rates for the correctedmulti�delity methods and the quasi-Newton method are very similar.B. Analytic problem: Rosenbrock function with variable dimensionThe second example is a simple analytic problem for which the high- and low-�delity design vectors have di�erentdimension. The high-�delity problem is a ten-dimensional extended Rosenbrock functionf(x) = (x1 � 1)2 + 4 10Xi=2(xi � x2i�1)2; (33)and the low-�delity model is a two-dimensional Rosenbrock functiong(~x) = (~x1 � 1)2 + 4(~x2 � ~x21)2: (34)For all presented results, an initial guess of xi = �2; i = 1; 2; : : : ; 10 was used.In order to generate the snapshots required for the POD basis computation, the low-�delity vector was variedover the grid �3 � ~x1 � 3, �3 � ~x2 � 3. A total of 16 snapshots were computed at equally spaced locations onthis grid. The snapshots were generated usingx1 = ~x1x2 = ~x2 (35)xi = 0; i = 3; 4; : : : ; 10for the relationship between the high- and low-�delity design vectors. It should be noted that in this example,where the mapping is a simple linear relationship, computing all these snapshots is unnecessary and the relevantinformation can be captured with just two snapshots. However, the computation of the POD basis systematicallyidenti�es redundant information, yielding in this case only two non-zero singular values of the snapshot matrix.Figure 4 shows the convergence of the multi�delity algorithm with each of the mapping methods, in additionto the standard quasi-Newton method. Because of the inherent di�culties of solving Rosenbrock optimizationproblems, particularly in this higher dimensional case, very slow convergence is observed for optimization applieddirectly to the high-�delity problem. The quasi-Newton method is expected to eventually exhibit superlinear10 of 19American Institute of Aeronautics and Astronautics
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Figure 4. Comparison of optimization methods on the ten-dimensional extended Rosenbrock problem. The cor-rected multi�delity methods use quasi-second-order corrections.convergence; however, it takes a very large number of iterations to do so. In contrast, the multi�delity method,with both POD mapping and corrected space mapping, converges much more quickly and is able to reach theoptimal solution in less than 600 iterations. As expected, the multi�delity method with uncorrected space mappingdoes not converge at all, decreasing only slightly from the initial point and then failing to make additional progress.For the results shown in Figure 4, the POD mapping uses two basis vectors computed from the set of 16 snapshots.Although the example is simple, it demonstrates the potential computational savings that can be achieved byusing a low-�delity model tailored to the problem at hand. In this case, the two-dimensional Rosenbrock functionprovides a much better low-�delity approximation than the quadratic function that underlies the quasi-Newtonmethod.C. Airfoil designThe third problem tested was chosen to represent a realistic engineering design problem with a low-�delity modelthat neglects physics contained in the high-�delity model. This problem has a variable number of design variablesdue to di�erences in the geometric parametrization of the problem. The di�erence in the number of designvariables is signi�cant: the low-�delity model has two, and the high-�delity model has thirty-six.The objective of this problem is to design an airfoil that matches a desired pressure distribution. The pressuredistribution of the NACA 2412 airfoil was chosen as the goal. The objective function isf = Z 10 �CP � CPtarget�2 ds (36)where CP is the coe�cient of pressure and CPtarget is the coe�cient of pressure of the goal airfoil. The integral isover the unit chord and is approximated using trapezoidal integration. The gradient was calculated using �nitedi�erences. The initial and goal airfoils, and the corresponding coe�cient of pressure distributions, are shown inFigure 5.The low-�delity analysis is an analytic solution to a Joukowski transform.24 The Joukowski transform is aconformal map that maps the points on a unit circle to points on the surface of an airfoil. Only two variables areneeded to describe a Joukowski airfoil: �x and �y, the x and y coordinates of the center of the circle used in theJoukowski transform. Figure 6 shows one Joukowski airfoil and the corresponding circle.The high-�delity analysis uses XFOIL.25 The inviscid formulation of XFOIL uses a linear-vorticity streamfunction panel method. A �nite trailing edge thickness is modeled with a source panel. The equations are closed11 of 19American Institute of Aeronautics and Astronautics
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Figure 5. Initial and goal airfoils, along with their coe�cient of pressure distributions.
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with an explicit Kutta condition. The high-�delity geometry vector consists of the magnitudes of 36 Hicks-Hennebump parameters,26 18 of which perturb the camber of the airfoil and 18 of which perturb the thickness, as shownin Figure 7. They are evenly distributed across the airfoil at 18 control points. Therefore, this problem is a goodexample of a variable-�delity problem in which the length and nature of the design vector varies signi�cantlybetween the two �delities.
Exaggerated bump function in camber

Exaggerated bump function in thickness

Figure 7. For the high-�delity model, Hicks-Henne bump functions are used to parameterize the airfoil geometry.100 snapshots were created using a grid in the Joukowski parameter space, varying �x from 0.01 to 0.3, and �yfrom 0 to 0.5. The corresponding high-�delity design vectors were produced by solving an optimization problemto determine the magnitudes of the 36 Hicks-Henne bump functions that best matched the desired Joukowskiairfoil. Speci�cally, the bump functions were chosen so as to minimize the integral over the chord length of thesquare of the di�erence between the airfoils de�ned in each space. The snapshots were then combined into asnapshot matrix as described in Section III. C. The mean of the snapshots was subtracted before performing thesingular value decomposition.Figure 8 shows the singular values of the POD snapshot matrix. The relative magnitudes of the singularvalues indicate the importance of the corresponding POD basis vectors in representing the snapshot data. The�rst two singular values are more than an order of magnitude larger than the third; therefore, only the �rst twobasis vectors were used in the POD mapping.Figures 9 { 11 show the behavior of the objective function for some selected cuts in the high-�delity designspace. These cuts correspond to an iterate near the end of the optimization process, that is, for an airfoil that isclose to the goal airfoil. Figures 9 and 10 show the variation of the objective function with the variable x23, whichcorresponds to the magnitude of a thickness bump function located approximately a third of the chord behind theleading edge, near the thickest part of the airfoil. Figure 9 shows that the corrected low-�delity function matchesthe high-�delity function well over a range of values. Figure 10 shows a more detailed section of the same plot{ it can be seen that the high-�delity function is noisy, while the corrected low-�delity function is smooth. Thecorrected low-�delity model is able to capture the second-order trend of the data even when noise is signi�cant.Further interrogation of the design space shows that the high-�delity function is even noisier along variablesde�ning the leading and trailing edges than those near the center of the airfoil. Figure 11 shows the variations inthe corrected low-�delity and high-�delity functions with the variable x1, which corresponds to a bump functionin camber near the leading edge. Compared with Figure 10, the oscillations in the high-�delity function are muchmore signi�cant in magnitude.Figures 9 { 11 indicate that it is unrealistic to expect an optimization method to result in objective functionvalues of lower than O(10�4) for this problem. At this point, the noise in the high-�delity function becomessigni�cant and the progress of the optimization method is likely to be impaired due to an inability to compute13 of 19American Institute of Aeronautics and Astronautics
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Figure 8. Singular values of the snapshot matrix for the airfoil design problem, showing that the �rst two are muchmore signi�cant than the others.
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Figure 9. The high-�delity and corrected low-�delity functions as a function of variable x23 for an airfoil close tothe goal airfoil.
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Figure 10. The high-�delity and corrected low-�delity functions as a function of variable x23 for an airfoil close tothe goal airfoil, over a smaller range than Figure 9.gradient information accurately with �nite di�erences. A convergence criteria of 10�4 was therefore applied tooptimization results.Figure 12 shows the multi�delity method with each of corrected space mapping and POD mapping, alongwith the standard quasi-Newton method. The standard method takes 25 iterations to get to an objective functionvalue of 10�4. The multi�delity method with corrected space mapping takes 22 iterations to get to the samevalue, which is a small savings, and the multi�delity method with POD mapping takes 15 iterations, a savings of40%.Figure 13 shows the varying rates of convergence of the POD method as the number of basis vectors is varied.The curve labeled nbasis = 0 e�ectively uses a constant for the low-�delity analysis. With zero basis vectors,the low-�delity analysis always evaluates the mean airfoil. Thus, the resulting corrected surrogate function is asecond-order Taylor series about the center of the trust region using the BFGS approximation to the Hessianmatrix. The remaining curves show convergence with increasing numbers of basis vectors. This shows that nearlythe entire mapping relationship is captured by the �rst basis vector and the remaining basis vectors add verylittle information and do not signi�cantly improve the convergence rate.As is generally true for gradient-based optimization of non-convex functions, the ability of the optimizer toconverge to the optimal solution depends on the initial choice of design variables. The convergence rates of themulti�delity methods presented here also depend on the initial solution. In most cases, the multi�delity methodswere found to yield substantial computational savings when compared with direct high-�delity optimization;however, for some choices of initial design the improvement was not signi�cant. The multi�delity method wasapplied to a number of di�erent initial designs. Figure 14 shows four representative convergence plots. It can beseen that the POD multi�delity method is more e�cient the quasi-Newton method for these cases, although forthe second case there is almost no improvement.V. ConclusionNew methodology has been presented that extends SBO methods to handle a hierarchy of design models inthe case where the design vector varies between the high-�delity and low-�delity models. The results demonstratethe importance of corrections within a trust-region model-management framework in order to obtain provableconvergence to a minimum of the high-�delity model. For the variable-dimensional examples considered, mul-15 of 19American Institute of Aeronautics and Astronautics
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Figure 13. Convergence of multi�delity with POD mapping on airfoil design problem varying the number of basisvectors

0 10 20 30
10

−5

10
0

0 10 20 30
10

−5

10
0

0 10 20 30 40
10

−6

10
−4

10
−2

10
0

10
2

0 10 20 30 40
10

−5

10
0

Quasi−Newton
Multifidelity with POD mapping

Quasi−Newton
Multifidelity with POD mapping

Quasi−Newton
Multifidelity with POD mapping

Quasi−Newton
Multifidelity with POD mapping

Figure 14. Convergence of multi�delity with POD mapping and a quasi-Newton method in high-�delity spacestarting at four di�erent initial airfoils
17 of 19American Institute of Aeronautics and Astronautics
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