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Abstract

This report documents the results for an FY06 ASC Algorithms Level 2 milestone
combining error estimation and adaptivity, uncertainty quantification, and probabilis-
tic design capabilities applied to the analysis and design of bistable MEMS. Through
the use of error estimation and adaptive mesh refinement, solution verification can
be performed in an automated and parameter-adaptive manner. The resulting un-
certainty analysis and probabilistic design studies are shown to be more accurate,
efficient, reliable, and convenient.
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Executive Summary

An important component of verification and validation of computational models is
solution verification, which focuses on the convergence of the desired solution quan-
tities as one refines the spatial and temporal discretizations and iterative controls.
Uncertainty analyses often treat solution verification as a separate issue, hopefully
through the use of a priori grid convergence studies and selection of numerical models
with acceptable discretization errors. When these convergence analyses are performed
off-line, they may result in a relatively expensive model that has been verified for a
single set of nominal design/uncertain parameters. With the advent of finite element
error estimation techniques, approaches for on-line and parameter-adaptive solution
verification become possible and hold potential for improving overall accuracy and
efficiency.

In this milestone, a tighter connection between solution verification and uncertainty
quantification is investigated. In particular, error estimation techniques, using global
norm and quantity of interest error estimators, are applied to the nonlinear struc-
tural analysis of microelectromechanical systems (MEMS). Two primary approaches
for uncertainty quantification are then developed: an error-corrected approach, in
which simulation results are directly corrected for discretization errors, and an error-
controlled approach, in which estimators are used to drive adaptive h-refinement of
mesh discretizations. The former requires quantity of interest error estimates that
are quantitatively accurate, whereas the latter can employ any estimator that is
qualitatively accurate. Combinations of these error-corrected and error-controlled
approaches are also explored. Each of these techniques treats solution verification
and uncertainty analysis as a coupled problem, recognizing that the simulation errors
may be influenced by, for example, conditions present in the tails of input probabil-
ity distributions. The most effective and affordable of these approaches are carried
forward in probabilistic design studies for robust and reliable operation of a bistable
MEMS device.

The key milestone conclusion is that on-line solution verification approaches show
significant promise. In terms of accuracy, controlling or correcting for errors leads
to higher confidence in the uncertainty analysis and probabilistic design recommen-
dations. In terms of computational expense, the use of error-correction on coarse
meshes (from adjoint-based quantity of interest error estimates) is shown to result
in less than 10% of the simulation expense of fully converged meshes with compara-
ble accuracy. In terms of computational reliability, the parameter-adaptive nature of
the on-line approach precludes the possibility of using computational model results
that are converged for one set of parameters, but not for another. And in terms of
convenience, the potential elimination of the need for manual convergence studies
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should significantly reduce overhead for analysts and designers. Future directions for
developing a more seamless production capability are also identified.

This milestone crosscuts multiple centers, with components including the uncertainty
analysis and probabilistic design capabilities from DAKOTA (1400), global norm and
quantity of interest error estimates from Coda (1500), nonlinear mechanics analysis
from Aria (1500), data structures and h-refinement algorithms from SIERRA (1500),
and MEMS model development and MESA program relevance (1700). Many new
capabilities have been developed within these codes for use in this milestone.
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Chapter 1

Introduction and Motivation

Verification and validation of computational models is an increasingly important mis-
sion objective as the Department of Energy shifts from primarily test-based certifica-
tion approaches to approaches based more on modeling and simulation. An important
component of verification and validation is the area of solution verification, which fo-
cuses on the convergence of the desired solution quantities as one refines the spatial
and temporal discretizations and iterative controls [47, 3, 11]. Uncertainty analyses
often treat solution verification as a separate issue, hopefully through the use of a
priori grid convergence studies and selection of numerical models with acceptable
discretization errors. When these convergence analyses are performed off-line, they
may result in a relatively expensive model that has been verified for a single set
of nominal design and/or uncertain parameters. With the advent of finite element
error estimation techniques, approaches for on-line and parameter-adaptive solution
verification become possible and hold potential for improving overall accuracy and
efficiency.

In this milestone, a tighter connection between solution verification and uncertainty
quantification is investigated. In particular, error estimation techniques, using energy
norm and quantity of interest error estimators, are applied to the nonlinear struc-
tural analysis of microelectromechanical systems (MEMS). Two primary approaches
for uncertainty quantification are then developed: an error-corrected approach, in
which simulation results are directly corrected for discretization errors, and an error-
controlled approach, in which estimators are used to drive uniform and adaptive
h-refinement of mesh discretizations. The former requires quantity of interest error
estimates that are quantitatively accurate, whereas the latter can employ any esti-
mator and only requires qualitative accuracy. Combinations of these error-corrected
and error-controlled approaches are also explored. Each of these techniques treats
solution verification and uncertainty analysis as a coupled problem, recognizing that
the simulation errors may be influenced by, for example, conditions present in the
tails of input probability distributions.

The most effective and affordable of these solution-verified uncertainty quantification
approaches are carried forward in probabilistic design optimization studies. Reliability-
based design optimization (RBDO) methods are employed to optimize the shape of
a bistable MEMS device and obtain designs that are both robust and reliable with
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respect to manufacturing uncertainties.

1.1 Reliability Analysis and Design

The technique selected for performing uncertainty quantification in this study is re-
liability analysis. Reliability analysis methods are probabilistic algorithms for quan-
tifying the effect of input uncertainties on response metrics of interest. In particular,
they compute approximate response function distribution statistics based on specified
probability distributions for input random variables. These methods are often more
efficient at computing statistics in the tails of the response distributions (events with
low probability) than sampling-based approaches because the number of samples re-
quired to resolve a low probability can be prohibitive. Thus, these methods, as their
name implies, are often used in a reliability context for assessing the probability of
failure of a system when confronted with an uncertain environment.

A reliability analysis that captures the effect of random variables on response metrics
for an inaccurate, inappropriate, or unconverged model is of limited utility. For
this reason, it is prudent to first perform verification and validation activities for
the computational model of interest. One portion of this is the area of solution
verification, as described previously. Using finite element error estimation techniques,
a number of different conceptual formulations are possible for incorporating solution
verification within uncertainty analysis. If the discretization errors are not driven
toward zero through the use of mesh refinement (in an error-controlled approach),
then they need to be included within the uncertainty analysis (in an error-corrected
approach) using one of the following conceptual models:

1. given error estimates for the response quantities of interest, model the discretiza-
tion error as a deterministic quantity that can correct results for a particular
mesh discretization. The results generated from the uncertainty analysis are
then projected towards the fully converged results, but uncertainties in the ac-
curacy of the error estimates are not modeled.

2. given error estimates for the response quantities of interest, model the true dis-
cretization error as being uncertain since the estimate will not in general be ex-
act. In particular, model the discretization error as a random variable for which
the deterministic error estimate generated for the current mesh discretization
is interpreted as a realization (e.g., the expected value) of the random variable.

3. given error bounds for the response quantities of interest, model the true dis-
cretization error as an additional uncertainty using a bounded distribution
within the UQ analysis. Given no additional data on the error distribution,
modeling the error as an interval distribution and using epistemic uncertainty
analysis approaches would be appropriate (which could then be combined with
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the aleatoric components within an approach such as second-order/imprecise
probability).

Put another way, one can attempt to eliminate the errors (through uniform or adaptive
mesh refinement), account for the errors deterministically (approach 1), or account for
the errors probabilistically (approaches 2 and 3). In this study, we employ approach
1, and do not model the discretization error as a random quantity. In addition, error
bounds are much more challenging to obtain and are outside the scope of this report.
Approaches 2 and 3 are directions for future research.

Classical reliability analysis methods include Mean-Value First-Order Second-Moment
(MVFOSM), First-Order Reliability Method (FORM), and Second-Order Reliability
Method (SORM) [38]. More recent methods seek to improve the efficiency of FORM
analysis through limit state approximations, including the local and multipoint ap-
proximations of Advanced Mean Value methods (AMV/AMV+) [72] and Two-point
Adaptive Nonlinearity Approximation-based methods (TANA) [66, 75], respectively.
Each of the FORM-based methods can be employed for “forward” or “inverse” relia-
bility analysis through the reliability index approach (RIA) or performance measure
approach (PMA), respectively [64]. Recent algorithmic advances in reliability analysis
are described in [26] and [27], and are summarized in Section 2.3.

The capability to assess reliability is broadly useful within a design optimization
context, and reliability-based design optimization methods are popular approaches
for designing systems while accounting for uncertainty. RBDO approaches may be
broadly characterized as bi-level (in which the reliability analysis is nested within
the optimization) [5], sequential (in which iteration occurs between optimization and
reliability analysis) [73, 24], or unilevel (in which the design and reliability searches
are combined into a single optimization) [2]. Bi-level RBDO methods are simple and
general-purpose, but can be computationally demanding. Sequential and unilevel
methods seek to reduce computational expense by breaking the nested relationship
through the use of iterated/surrogate or simultaneous approaches, respectively. Due
to the analytic structure of the reliability analysis formulations, each of these tech-
niques can take advantage of analytic sensitivities of the reliability results with respect
to design variables, for cases where the design variables either define distribution pa-
rameters for the uncertain variables or are separate from the uncertain variables.
Recent algorithmic advances in bi-level and sequential RBDO are described in [26]
and [27], and Section 2.4 summarizes these algorithms. The design studies in this
report focus on bilevel RBDO methods using semi-analytic design sensitivities of the
reliability metrics with respect to the design variables.
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1.2 Error Estimation

Our test problem for solution-verified reliability analysis comes from the structural
mechanics simulation of a bistable MEMS switch. The geometric nonlinearity and
large displacements of the problem motivate a fully nonlinear finite strain 2D elasticity
model for the bistable switch. In order to compute an estimate of the error in the force
at each displacement step resulting from the mesh discretization, an a posteriori error
estimate was derived for this quantity of interest. This “goal-oriented” estimator is
defined by integrating the finite element residual weighted by the error in an associated
global linearized adjoint problem. Local element contributions to the global error
estimate can then be used to drive adaptive mesh refinement. In this case, the
mesh is adapted to minimize the error in the force, which is known as goal-oriented
adaptivity.

When mathematical models are approximated by discrete numerical methods such
as finite elements, finite differences, finite volumes, etc., it is natural and essential to
quantify and minimize the numerical error resulting from the discrete approximation.
The total error in a calculation can include components from model selection error,
geometry error, initial and boundary condition error, material coefficient error, mesh
discretization error, linearization error, quadrature error, iterative solver error, and
roundoff error, to name a few. The task of controlling mesh discretization error is
accomplished by methods for a posteriori error estimation and adaptivity, which seek
to provide computable estimates of the numerical error as well as adaptive procedures
for reducing the error. The error estimates can be for global norms of the solution error
or for error in functionals of the solution, known as quantities of interest. In the case of
finite element methods, the adaptive procedures include local refinement/coarsening
of the mesh (h–adaptivity), local enrichment of the finite element shape functions (p–
adaptivity), and local adjustment of the mesh topology and locations (r–adaptivity).

Development of finite element based error estimates for the error in global norms
begin in the 1970s with the work of Carey [18], Babuška and Rheinboldt [10], and
others [7, 12]. Major types of error estimators for global norms include explicit
residual, implicit residual, and recovery estimators (for a complete discussion see [3,
11, 19] and the references within). In the 1990s, a new class of error estimators began
to be developed which are designed to provide error estimators in various outputs
computed from the finite element solution, the so–called quantity of interest or goal–
oriented error estimators. Early work by Babuška and Miller [8, 9] and Eriksson and
Johnson [32] led the way to the use of an auxiliary problem, the so–called dual or
adjoint problem. Eventually, a number of authors including Estep [33, 35], Becker
and Rannacher [13], Rannacher [56], Prudhomme and Oden [52], Paraschivoiu and
Patera [51], and Larsson et al. [45] introduced various error estimators based on the
adjoint approach. In almost all of these cases, the error in the quantity is represented
by a weighted residual expression, where the weights are the error in the adjoint
problem.
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For the MEMS application that we study in this work, the quantity of interest is the
force needed to move the beam for a prescribed displacement. Since the displacement
and force are both specified on a surface of the beam, the quantity is a surface
integral of the force along this surface in a particular direction. Such a quantity does
not fit directly in the standard theory of error estimators for the quantity of interest
due to a technical problem with the solution space containing the solutions to the
continuous variational form of the elasticity equations. However, this problem can be
avoided by using the well–known technique in solid mechanics of postprocessing the
stress to get a more accurate surface force. In this case, we replace the exact surface
integral of the normal stress with a volume integral of the stress against a particular
weight function that vanishes away from the surface. Such postprocessing techniques
were used with error estimation by Babuška and Miller [8, 9] in the case of point
values of displacement and stress, and in the case of stress intensity factors for crack
singularities. Other approaches to this problem include regularization of the surface
integral by integrating over a thin volume adjacent to the surface [13] or direct use
of the surface integral of the force [57]. Recently, Wildey et al. [67] used an adjoint
problem with a prescribed Dirichlet boundary condition along the surface. The form
of the error estimate used the dual solution along with integration by parts to derive
an estimate for the surface integral of the force. We have modified this approach for
use with the postprocessed volume integral of the surface force and to handle the
nonlinearities of our elasticity model.

An important issue with quantity of interest estimators is the approximation of the
solution of the adjoint problem [45]. Several authors have proposed that the adjoint
solution be approximated using a higher order discretization than the one used for
the original model [34, 67]. However, it has also been proposed to solve the adjoint
problem using the same discretization as the original problem [13, 56, 52]. In the
latter case, some postprocessing of the adjoint solution is needed in order to derive
a useful error estimate. In this work we solve the adjoint problem using the same
approximation space as for the original problem and use a gradient recovery operator
to recover a higher order gradient. This choice is justified since the only term in the
weighted residual involves the error in the gradient of the adjoint solution.

1.3 Motivating Application: Bistable MEMS

Pre-fabrication design optimization of microelectromechanical systems (MEMS) is an
important emerging application of uncertainty quantification (UQ) and reliability-
based design optimization (RBDO). Typically crafted of silicon, polymers, metals, or
a combination thereof, MEMS serve as micro-scale sensors, actuators, switches, and
machines with applications including robotics, biology and medicine, automobiles, RF
electronics, and optical displays [4]. Design optimization of these devices is crucial
due to high cost and long fabrication times. Uncertainty in the micromachining and
etching processes used to manufacture MEMS can lead to large uncertainty in the
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behavior of the finished products. RBDO, coupled with computational mechanics
models of MEMS, offers a means to quantify this uncertainty and determine a priori
the most reliable and robust design that meets performance criteria [1].

Uncertainty and sensitivity analysis techniques [21, 60] that predate modern reliability
methods have historically been used to understand variability in systems and these
have natural application to MEMS. Recently, Monte Carlo and robust optimization
techniques have been explored in this context as well [61]. These tools analyze the
expected performance variability or robustness for a particular design.

A compelling technical advantage of microsystems is that, like integrated circuits,
they can be batch fabricated for high volume applications. Designing MEMS that
are less sensitive to manufacturing process variations results in higher yield of reli-
able devices. Recognizing the importance of designing reliable and robust systems,
researchers have coupled uncertainty analysis and reliability methods with design opti-
mization for MEMS. Many have considered design problems similar to those presented
in this paper. For example, Liu, et al., sought designs robust to width variations [46]
and Mawardi and Pitchumanu applied robust optimization to resonators [49]. Com-
pliant MEMS were also explored by Maute and Frangopol who investigated topology
optimization with reliability-based design methods [48]. Wittwer, et al., united mod-
ern uncertainty analysis, model validation, and robust optimization techniques in a
comprehensive design method accounting for process uncertainties [69].

In this report, a new tapered beam topology for a fully compliant bistable mecha-
nism is presented. The uncertainty quantification and reliability analysis algorithms
in DAKOTA are applied to finite element-based simulations of a compliant bistable
micromechanism. Results presented in Sections 3.4 and 3.5 include uncertainty analy-
sis for a particular beam design and RBDO where the beam geometry is optimized to
reliably achieve a specified actuation force, while simultaneously reducing predicted
force variability due to material properties and manufacturing.

MEMS bistable mechanisms toggle between two stable positions, making them use-
ful as micro switches, relays, and nonvolatile memory. In particular, the focus here
is on shape optimization of compliant bistable mechanisms, where instead of me-
chanical joints, material elasticity and geometry enable the bistability of the mecha-
nism [44, 6, 42]. Figure 1.1 contains an electron micrograph of a MEMS compliant
bistable mechanism in its second stable position. The first stable position is the
as-fabricated position. Transfer between stable states (moving the shuttle past an
unstable equilibrium) is achieved by applying force to the center shuttle via a ther-
mal actuator, electrostatic actuator, or other means.

Bistable switch actuation characteristics depend on the relationship between actua-
tion force and shuttle displacement for the manufactured switch. Figure 1.2 contains
a schematic of a typical force–displacement curve for a bistable mechanism. The
switch characterized by this curve has three equilibria: E1 and E3 are stable equilib-
ria whereas E2 is an unstable equilibrium (arrows indicate stability). A device with
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anchors

vernier

shuttle

actuation force

Figure 1.1. Scanning electron micrograph of a MEMS
bistable mechanism in its second stable position. The at-
tached vernier provides position measurements [68].

such a force–displacement curve could be used as a switch or actuator by setting the
shuttle to position E3 as shown in Figure 1.1 (requiring large actuator force Fmax) and
then actuating by applying the comparably small force Fmin in the opposite direction
to transfer back through E2 toward the equilibrium E1. One could utilize this force
profile to complete a circuit by placing a switch contact near the displaced position
corresponding to maximum (closure) force as illustrated. Repeated actuation of the
switch relies on being able to reset it with actuation force Fmax.

switch

1

Fmax

Fmin

E2 E3

force

displacement

contact

E

Figure 1.2. Schematic of force–displacement curve for
bistable MEMS mechanism. The arrows indicate stability
of equilibria E1 and E3 and instability of E2.

The device design considered in this paper is similar to that in the electron micro-
graph in Figure 1.1, for which design optimization has been previously considered [42],
as has robust design under uncertainty with mean value methods [69]. The primary
structural difference in the present design is the tapering of the legs, shown schemati-
cally in Figure 1.3. This topology is a cross between Jensen’s fully compliant bistable
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Figure 1.3. Schematic of a tapered beam bistable mecha-
nism in as-fabricated position (not to scale).

mechanism [42] and Qiu’s thickness-modulated curved beam [53]. As described in the
optimization problem below, this tapered geometry offers many degrees of freedom
for design.

An appropriately designed bistable switch actuates predictably with prescribed force
F̄min and is robust to fabrication variations. The switch investigated here is subject
to the following design criteria:

• reliably achieves specified actuation force F̄min = −5µN;

• is bistable (Fmax > 0 and Fmin < 0);

• attains at least 50µN force Fmax at switch contact to reduce electrical contact
resistance, but requires no more than 150µN actuation force to set;

• unstable point E2 occurs at no more than 8µm (limited by the actuator dis-
placement); and

• maximum stress no more than 1200 MPa.

The maximum stress constraint is removed in the analysis and optimization conducted
here, since the mathematical model contains singularities where the stress may be
infinite. The actual device has stress-reducing fillets, which in a more rigorous analysis
would be modeled and therefore accounted for during design optimization. The force–
displacement profile of a compliant bistable MEMS device is highly sensitive to design
geometry, so one can vary manufactured geometry to achieve these design criteria.

Bistable MEMS devices are often characterized in terms of their structural response
at specific points on the device over some operational range. In order to evaluate
the bistable MEMS device studied here, Figure 1.1, one must characterize the rela-
tionship between actuation force and shuttle displacement over device configurations
that include several equilibrium positions. Rather than study the structural displace-
ment response to actuation force, the approach used here is to study the actuation
force corresponding to a series of quasi-statically prescribed shuttle displacements,
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Figure 1.2. In achieving these configurations the MEMS device experiences finite
deformations and large rotations.

1.4 Numerical Challenges

Engineering design problems can present significant challenges for reliability analysis
methods. In Figure 1.4, we see the results of parameter studies performed in ear-
lier work [1] for the metric Fmin(d,x) as a function of the uncertain variables x for
two fixed sets of design variables d. Since the uncertain variables are both normal,
the transformation to u-space used by MPP search methods is linear. For the de-
sign variable set associated with the left plot the limit state is relatively linear and
well-behaved in the range of interest. First-order probability integrations would be
sufficiently accurate. For the second design variable set, however, multiple computa-
tional challenges are evident. In this case, the limit state has significant nonlinearity
(requiring more sophisticated probability integrations) and its simulation can be seen
to be unreliable in the left tail of the edge bias (resulting from too flimsy a struc-
ture). This highlights a number of difficulties common in engineering applications:
nonlinear, nonsmooth, and multimodal limit states and simulation failures caused by,
e.g., evaluations in the tails of input distributions. This also implies that error esti-
mates may have a significant parameter dependence (especially for shape parameters
evaluated in the tails of probability distributions), such that one could be misled by
off-line mesh convergence analyses that are performed for only a single set of nominal
parameters.
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Figure 1.4. Contour plot of Fmin(d,x) as a function of
uncertain variables for different design variable sets. Dashed
line shows where limit state g(x) = Fmin(x) = 0.
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In the remainder of this report, Chapter 2 overviews the various technical components
of the milestone, Chapter 3 presents computational results, and Chapter 4 provides
concluding remarks and future directions.
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Chapter 2

Technical Components

2.1 Elasticity Model

The underlying mathematical model for the bistable MEMS problem is that of planar
elasticity; because the problem contains geometric nonlinearities, we must consider
large displacements and finite strains. In this analysis the material behavior is mod-
eled using a nonlinear neo-Hookean model. In this section we provide a brief overview
of the equations of nonlinear elasticity, develop the weak variational form of the equa-
tions, and define the finite element approximation.

Suppose that the reference configuration of a body at some initial state is the do-
main Ωa. The physical domain after deformation Ω is the image of the reference
configuration of the body Ωa under the deformation map

(xa, t) 7→ x ≡ φ(xa, t). (2.1)

Since we are only interested in quasi-static problems in this work, time dependence
and the variable t is neglected in what follows. We denote derivatives with respect to
x as ∇ and derivatives with respect to xa as ∇a.

The deformation map φ can also be expressed using the displacement map u(xa)
which is defined as

u(xa) ≡ x − xa = φ(xa) − xa, xa ∈ Ωa. (2.2)

The derivative of the deformation map φ is the deformation gradient

F ≡ ∇aφ = ∇a(xa + u) = I + ∇au. (2.3)

The equation for conservation of linear momentum in the current configuration is
given by

−∇ · T = f , x ∈ Ω. (2.4)

Here T is the Cauchy stress tensor which is defined in the deformed configuration
x ∈ Ω. Also (∇·) is the divergence operator with respect to the coordinate x, and f

is the body force vector.
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In our analysis of the MEMS beam, we utilize the hyperelastic neo-Hookean model
for stress [62, 63]

T ≡
µ

|F |

(

FF T − I
)

+
λ ln |F |

|F |
I, (2.5)

where λ and µ are the usual Lamé coefficients and | · | denotes the determinant.

In addition to the stresses resulting from external loading, we also include residual
stresses that might arise from the manufacturing process. These stress contributions
are assumed to be of the form

T residual ≡ Sr I, (2.6)

where the scalar Sr has units of stress. The residual stress is added into the Cauchy
stress tensor in order to get the expression for the total stress.

The nonlinearities in this problem arise from several sources. Since the neo-Hookean
material model depends upon the equilibrium configuration it is a highly nonlinear
function of the unknown displacement u. Moreover, the domain Ω and hence all
spatial derivative operators are also functions of displacement.

In order to derive a weak variational formulation, we begin by multiplying the vector-
valued conservation law in (2.4) by a vector-valued test function v. Integrating by
parts over Ω we derive the equation

∫

Ω

T : ∇v dΩ −

∫

Γ

(T n) · v dΓ =

∫

Ω

f · v dΩ, (2.7)

which is naturally coupled to the neo-Hookean stress law (2.5) in the reference con-
figuration. Here the notation A : B denotes the tensor inner product

A : B ≡
∑

i,j

Aij Bji.

We assign Dirichlet boundary conditions to a portion of the domain boundary ΓD

u = uD, (2.8)

from which we impose the condition v = 0 for the test functions on ΓD. Neumann
boundary conditions are specified along ΓN , the remainder of the domain boundary
Γ,

T n = gN . (2.9)

Substituting these boundary conditions into (2.7), we obtain the variational problem
for u satisfying (2.8) and

∫

Ω

T : ∇v dΩ =

∫

Ω

f · v dΩ +

∫

ΓN

gN · v dΓ, (2.10)

for all test functions v that vanish on ΓD.
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Now we can see that the variational problem is a nonlinear function of the displace-
ment, through the stress relation in (2.5) and the various terms depending on u

in (2.10). Although this problem can be explicitly linearized, instead we define an
abstract nonlinear variational problem using the residual defined by (2.10) in order
to simplify the equations needed in the next section. Given an appropriate Sobolev
space of functions V as described in [17], we can define a subspace V as

V ≡ {v ∈ V |v|ΓD
= 0}.

We will also use the notation

〈τ,v〉V∗,V = 〈τ,v〉 , τ ∈ V∗,v ∈ V ,

to denote the duality pairing between a linear functional τ in the dual space V ∗ and
a function v ∈ V . The exact form of value of 〈τ,v〉 depends on the functional τ , and
may include, for example, integrals of τ and v and their derivatives over Ω. This
notation is convenient for representing variational forms in a generic way as we will
do in (2.12). Finally let uD denote any function in V that satisfies (2.8), using the
same notation as the boundary data uD. The variational problem is then defined
abstractly as: find u ∈ uD + V :

〈R(u),v〉 = 0, v ∈ V, (2.11)

where the residual functional R is the nonlinear map from u ∈ V to R(u) ∈ V ∗

defined by

〈R(u),v〉 ≡

∫

Ω

T : ∇v dΩ −

∫

Ω

f · v dΩ −

∫

ΓN

gN · v dΓ, u,v ∈ V . (2.12)

For the finite element approximation, we choose a family of finite-dimensional sub-
spaces Vh of V . Such a space is typically defined by a mesh Th of elements that
cover the reference domain Ωa and a space of shape functions Vh(K) on each element
K ∈ Th. For conforming (Galerkin) finite elements, the global space Vh is then defined
by

Vh ≡ {v ∈ V : v|K ∈ Vh(K), ∀ K ∈ Th}.

Given such a family of spaces Vh, the Galerkin finite element approximation is the
solution to the problem: find uh ∈ uDh + Vh:

〈R(uh),vh〉 = 0, vh ∈ Vh, (2.13)

where uDh is an approximation of uD using the finite element shape functions.

This nonlinear system of equations for the discrete displacement variables can be
solved using a nonlinear iterative solver coupled with a linear solver for the resulting
sequence of linear systems of equations. For all of the MEMS beam calculations in
this work, we used Aria, a Galerkin finite element-based program for coupled-physics
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problems implemented in Sandia National Laboratories’ Sierra framework of multi-
physics codes [25]. In order to solve the nonlinear elasticity model, a neo-Hookean
material model (2.5) and a surface force post-processor (described in Section 2.2) was
added to Aria.

The simulations are done on quadrilateral meshes using bilinear or biquadratric el-
ements. The nonlinear solver is a Newton iteration with analytical sensitivities and
the linear solver is a direct LU solver. When adaptive mesh refinement is used, the
continuity of the displacement at hanging nodes is maintained by enforcing hanging
node constraints internally in the linear solver.

2.2 Error Estimation

Our goal in this section is to derive an error estimator for the surface force over a
portion of the boundary. Although there are a wide variety of other design quantities
of interest, the surface force has direct relevance to bistable MEMS devices, since they
are characterized through an accurate calculation of the nonlinear force-displacement
response curves.

2.2.1 Surface Force Quantity of Interest

We consider a nonlinear functional Q which is defined to be the i-th component of
the integrated surface force

Q(u) ≡

∫

Γ0

(T (u) n) · ei dΓ, (2.14)

where ei is the i-th unit vector and Γ0 is a subset of the Dirichlet boundary (Γ0 ⊂ ΓD).
When directly evaluating the approximate force as Q(uh), this expression is not
typically accurate enough for practical use, because it depends on the finite element
gradients on Γ0 through the stress. Instead, a post-processed surface force may be
calculated using the nodal shape functions supported on Γ0. First we define a mesh-
dependent function ψh by setting the value for component i to one at the nodes on Γ0

and zero at all other nodes and components. Then the post-processed surface force
functional Qh is defined as

Qh(u) ≡

∫

Ω

T (u) : ∇ψh dΩ −

∫

Ω

f · ψh dΩ +

∫

ΓN

gN · ψh dΓ = 〈R(u), ψh〉 . (2.15)

When evaluated at the exact solution u to (2.11), we have the equality

Q(u) = Qh(u).
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Thus it is reasonable to use either Q or Qh to compute the surface force for the
approximate solution uh. In fact, any function that agrees with ψh on ΓD will also
produce the exact surface force when u is the exact solution.

Because Qh(uh) is generally more accurate than Q(uh), we will focus only on Qh for
the remainder of this work. However, our method should be applicable to the choice
of Q as the surface force with some minor modifications.

2.2.2 A Posteriori Error Estimation for the Surface Force

We now derive an error estimator for the error in the surface force Qh defined in (2.15).
Specifically, we wish to derive a quantity ηQ, which is computable using only the
approximate solution uh and the data in (2.12). Ideally ηQ should approximate the
exact error, which is defined as

E ≡ Qh(u) −Qh(uh) = 〈R(u) −R(uh), ψh〉 .

The efficiency and reliability of such an estimator is measured by the global effectivity
index, or simply the effectivity, which we define as

θ ≡
ηQ

E
. (2.16)

We say that ηQ is reliable (efficient) if there exists a mesh-independent constant
C > 0, such that θ ≥ C (θ ≤ C).

In order to define the error estimator, we introduce a linearized adjoint problem, of
the form suggested by Wildey et al. [67]. First we define the adjoint Dirichlet data
on the Dirichlet part of the boundary ΓD by

zD =

{

ei, s ∈ Γ0,
0, s ∈ ΓD/Γ0.

(2.17)

Here we note that zD agrees with ψh on ΓD. Next we define the linearized residual
operator DR(u) as the Gateaux derivative of the residual operator R defined by

〈DR(u)w,v〉 ≡ lim
ε→0+

ε−1 〈R(u + εw) −R(u),v〉 , u,v,w ∈ V . (2.18)

Now we are ready to define the adjoint problem: find z ∈ zD + V :

〈DR(uh)v, z〉 = 0, v ∈ V. (2.19)

Note that since the order of z and v is reversed from the usual order, z is formally
the solution of the linear adjoint problem, written abstractly as

DR(uh)
∗ z = 0,
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where 〈DR(uh)
∗z,v〉 ≡ 〈DR(uh)v, z〉. Let zh be the finite element approximation

to z, defined by: find zh ∈ zD + Vh:

〈DR(uh)vh, zh〉 = 0, vh ∈ Vh. (2.20)

When a Newton iteration is being used to solve (2.13) for uh, the transpose of the
Jacobian matrix evaluated at uh is exactly the matrix corresponding to the linear
system in (2.20). This allows re-use of the underlying matrix assembly that was used
to compute uh.

Because z − ψh ∈ V and zh − ψh ∈ Vh, we can use (2.11) and (2.13) to obtain

〈R(u), z − ψh〉 = 0. (2.21)

and
〈R(uh), zh − ψh〉 = 0. (2.22)

Assuming that R is sufficiently smooth, we can use (2.19), (2.21), and (2.22) to
estimate the error in E as

E = Qh(u) −Qh(uh)

= 〈R(u), ψh〉 − 〈R(uh), ψh〉

= 〈R(u), z〉 − 〈R(uh), zh〉

= 〈R(uh) +DR(uh) (u − uh), z〉 − 〈R(uh), zh〉 + h.o.t.

= 〈R(uh), z − zh〉 + h.o.t..

(2.23)

Now we use (2.12) to return to the specific form of the residual R. Expanding (2.23)
we get the terms

E =

∫

Ω

T (uh) : ∇(z−zh) dΩ−

∫

Ω

f ·(z−zh) dΩ−

∫

ΓN

gN ·(z−zh) dΓ+h.o.t.. (2.24)

At this point we have an error estimator that is accurate up to higher order terms.
However, it still contains the exact solution z to the adjoint problem in (2.19). Be-
cause we are solving zh in the same approximation space as uh, we choose to approx-
imate z and ∇z using a recovery technique. Since the data f and gN are zero in our
MEMS problem, we will only need a gradient recovery operator for ∇z.

2.2.3 Gradient Recovery Operator

The gradient recovery operator G defines a C0 representation of the displacement
gradient. Because in a displacement formulation the finite element displacement field
solution is C0-represented as piecewise linear or quadratic using Lagrange polynomial
elements, the resulting gradients have jumps between elements. In practice, and in
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many finite element codes, the gradients, strains, or stresses are frequently postpro-
cessed to recover a smoothed C0 field. This recovery is typically computed by various
recipes involving nodal averaging, projections, or weighted projections.

In Aria, the recovered gradient is computed in a two step process. First, nodal values
for the gradient are computed for each node in the mesh by evaluating a local linear
least squares fit of the gradient of the finite element solution. The sampling points
of the least squares projection for a given node are the quadrature points in elements
that depend on the node. Second, a C0 representation of the gradients is formed by
using these nodal values as coefficients of the same Lagrange polynomial nodal basis
functions used for the displacement approximation. Below, we examine the first step
in more detail.

Our initial interest lies in finding a value of the displacement gradient at node k with
coordinates (xk, yk) in a mesh of linear quadrilateral elements. Let

∂∗jui(x, y) = a1 + a2x+ a3y + a4xy (2.25)

be a bilinear representation of the jth partial derivative of the ith component of the
displacement in the neighborhood of node k. Here, {al | l = 1, . . . , 4} are coefficients
to be determined by a least squares fit, and ∂∗

jui(xk, yk) will be the desired nodal
value of the gradient. Thus, the least squares problem is

minimize
N
∑

q=1

[

∂juhi(xq, yq) − ∂∗jui(xq, yq; a)
]2

a ∈ R
4

(2.26)

where ∂juhi(xq, yq), q = 1, . . . , N are values of the finite element solution gradient
sampled at the quadrature points (xq, yq) of the elements that depend on node k.
Figure 2.1 depicts a set of the quadrature points contained in a typical patch of
elements defined by a node.

The recovered gradient G(∇uh) is then defined componentwise as

Gji(∇uh) ≡
nodes
∑

k=1

∂∗jui(xk, yk)φk (2.27)

where φk are the scalar valued basis functions associated with the nodes of the La-
grange finite elements.

2.2.4 Surface Force Error Estimator

Now that we have an a posteriori error estimate and a gradient recovery operator,
we are ready to combine them to define a computable error estimator for the surface
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Figure 2.1. A typical nodal patch defining the input data
for the recovery of a gradient value for a node k. The patch
consists of the set of elements that depend on node k (note
that this set includes those elements with hanging nodes that
in turn depend on the node k. The quadrature points of the
elements are the sampling points for the least squares fit.

force. We assume henceforth that f = gN = 0, so that (2.24) contains only the
leading term containing the stress T (uh). Replacing the exact gradient of z in (2.24)
by the gradient recovery operator applied to ∇zh, we derive the error estimator for
the surface force quantity of interest

ηQ ≡

∫

Ω

T (uh) : (G(∇zh) − ∇zh) dΩ. (2.28)

This error estimator for E can be computed by calculating element contributions

ηQ
K ≡

∫

K

T (uh) : (G(∇zh) − ∇zh) dK, K ∈ Th, (2.29)

and summing to obtain

ηQ =
∑

K∈Th

ηQ
K .

We note that our work is related to the work of Wildey, et al. [67], who developed
an error estimator for the surface flux for a scalar linear elliptic problem. However,
while Wildey, et al., chose to solve the associated dual problem using higher order
quadratic elements, we have used the same order linear elements combined with gra-
dient recovery.

2.2.5 Global ZZ Estimator

The gradient recovery operator is also used to compute a global error indicator related
to the Zienkiewicz and Zhu (ZZ) estimator [76]. Given the finite element solution,
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this estimator provides a global error indicator

ηZZ ≡

[∫

Ω

|G(∇uh) − ∇uh|
2 dΩ

]1/2

. (2.30)

Again the error estimator ηZZ can be computed by calculating element contributions

ηZZ
K ≡

[∫

K

|G(∇uh) − ∇uh| dK

]1/2

, K ∈ Th, (2.31)

and summing to obtain

ηZZ =

[

∑

K∈Th

(

ηZZ
K

)2
]1/2

.

2.2.6 Adaptive Mesh Refinement Strategy

Computing either η = ηQ or η = ηZZ results in a local quantity ηK defined on
each element K of the mesh, defined by (2.29) or (2.31). These can be understood as
local contributions to the total error, although they may not represent the actual local
error in the solution or the quantity of interest. The goal of adaptive mesh refinement
(AMR) is to use these local error indicators to drive the local mesh refinement process.
In this work, we will only focus on h-adaptivity, which consists of element refinement
(subdivision of an element into multiple elements) and coarsening (aggregation of
several elements into one).

In order to decide which elements to refine/coarsen, the element indicators {ηK}
are used in a marking strategy that assigns to each element a flag denoting refine,
coarsen, or do nothing. Since the element indicators can be negative for the case
of a quantity of interest error estimator, the absolute values of the local indicators
are used in the marking algorithms discussed below. Once a preliminary marking
has been performed, it is then revised in order that the new mesh satisfy certain
consistency requirements, such as the 2-1 rule [3]. Then the mesh is modified and the
finite element fields are prolongated into new fields on the new mesh.

One popular and inexpensive marking strategy is to mark elements based on the global
maximum element error indicator. This method requires two parameters γrefine and
γcoarsen, which lie in the interval [0, 1] and whose sum is less than one. Elements are
marked for refinement if

|ηK | > γrefine max
K

|ηK |,

and for coarsening if
|ηK | < γcoarsen max

K
|ηK |.

Another marking strategy is based on marking the elements with the largest con-
tributions to a fixed fraction of the global error. First the indicators are sorted in
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decreasing order
|ηK1

| ≥ |ηK1
| ≥ · · · ≥ |ηKN

|.

Then an element Ki is marked for refinement if

i
∑

j=1

|ηKj
| < (1 − γrefine)

N
∑

j=1

|ηKj
|,

and marked for coarsening if

N
∑

j=i

|ηKj
| < γcoarsen

N
∑

j=1

|ηKj
|.

This second strategy is designed to attempt to insure that a given fraction of the
error is reduced between the current mesh and the mesh resulting from the mesh
adaptivity. Such an approach can be more robust in practice than marking using the
maximum element error indicator strategy.

Finally, we need a stopping criterion for terminating the adaptive refinement. We use
a simple global tolerance criterion which is relative for ηZZ

|ηZZ | ≤ GTOL

(∫

K

|∇uh|
2 dx

)1/2

,

and absolute for ηQ

|ηQ| ≤ QTOL.

2.2.7 Error Correction of the Surface Force

We conclude this section with some brief remarks on the possibility of using the error
estimator ηQ to correct the quantity of interest. If the error estimator is reasonably
accurate, then we expect to have the approximation

ηQ ≈ E = Qh(u) −Qh(uh).

It follows that it is reasonable to correct the quantity by adding the error estimator
to the computed quantity

Qh(u) ≈ Qcorr
h (uh) ≡ Qh(uh) + ηQ.

While we anticipate that Qcorr
h (uh) will be more accurate than Qh(uh), it is difficult

to prove a priori that the corrected force is more accurate. This problem is equivalent
to estimating the error in the error estimator

Qh(u) −Qcorr
h (uh) = E − ηQ.

In the next section we will provide some numerical evidence to suggest that the
corrected quantity is generally more accurate and may converge at a faster rate than
the quantity itself.
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2.3 Reliability Analysis

Reliability methods are probabilistic algorithms for quantifying the effect of uncertain-
ties in simulation input on response metrics of interest. In particular, they perform
uncertainty quantification (UQ) by computing approximate response function distri-
bution statistics based on specified probability distributions for input random vari-
ables. These response statistics include response mean, response standard deviation,
and cumulative or complementary cumulative distribution function (CDF/CCDF)
pairings of response levels and either probability or reliability levels. These methods
are often more efficient at computing statistics in the tails of the response distributions
(events with low probability) than sampling-based approaches since the number of
samples required to resolve a low probability can be prohibitive. Thus, these meth-
ods, as their name implies, are often used in a reliability context for assessing the
probability of failure of a system when confronted with an uncertain environment.

A number of classical reliability analysis methods are discussed in [38], including
Mean-Value First-Order Second-Moment (MVFOSM), First-Order Reliability Method
(FORM), and Second-Order Reliability Method (SORM). More recent methods which
seek to improve the efficiency of FORM analysis through limit state approximations
include the use of local and multipoint approximations in Advanced Mean Value meth-
ods (AMV/AMV+ [72]) and Two-point Adaptive Nonlinearity Approximation-based
methods (TANA [66, 75]), respectively. Each of the FORM-based methods can be
employed for “forward” or “inverse” reliability analysis through the reliability index
approach (RIA) or performance measure approach (PMA), respectively, as described
in [64].

In order to provide access to a variety of uncertainty quantification capabilities for
analysis of large-scale engineering applications on high-performance parallel comput-
ers, the DAKOTA project [30] at Sandia National Laboratories has developed a suite
of algorithmic capabilities known as DAKOTA/UQ [70]. This package contains the
reliability analysis capabilities described in this report and enables the RBDO ap-
proaches, and is freely available for download worldwide through an open source
license.

This section overviews a variety of approaches for performing reliability analysis. In
particular, forward and inverse reliability analyses are presented using multiple limit
state approximation, probability integration, warm starting, Hessian approximation,
and optimization algorithm selections. These uncertainty quantification capabilities
have also provided a foundation for exploring bi-level and sequential RBDO formula-
tions, as described in Sections 2.4.
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2.3.1 Mean Value

The Mean Value method (MV, also known as MVFOSM in [38]) is the simplest,
least-expensive reliability method because it estimates the response means, response
standard deviations, and all CDF/CCDF response-probability-reliability levels from
a single evaluation of response functions and their gradients at the uncertain vari-
able means. This approximation can have acceptable accuracy when the response
functions are nearly linear and their distributions are approximately Gaussian, but
can have poor accuracy in other situations. The expressions for approximate response
mean µg, approximate response standard deviation σg, response target to approximate
probability/reliability level mapping (z̄ → p, β), and probability/reliability target to
approximate response level mapping (p̄, β̄ → z) are

µg = g(µx) (2.32)

σg =
∑

i

∑

j

Cov(i, j)
dg

dxi

(µx)
dg

dxj

(µx) (2.33)

βcdf =
µg − z̄

σg

(2.34)

βccdf =
z̄ − µg

σg

(2.35)

z = µg − σgβ̄cdf (2.36)

z = µg + σgβ̄ccdf (2.37)

respectively, where x are the uncertain values in the space of the original uncertain
variables (“x-space”), g(x) is the limit state function (the response function for which
probability-response level pairs are needed), and βcdf and βccdf are the CDF and CCDF
reliability indices, respectively.

With the introduction of second-order limit state information, MVSOSM calculates
a second-order mean as

µg = g(µx) +
1

2

∑

i

∑

j

Cov(i, j)
d2g

dxidxj

(µx) (2.38)

This is commonly combined with a first-order variance (2.33), since second-order
variance involves higher order distribution moments (skewness, kurtosis) [38] which
are often unavailable.

The first-order CDF probability p(g ≤ z), first-order CCDF probability p(g > z),
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βcdf , and βccdf are related to one another through

p(g ≤ z) = Φ(−βcdf ) (2.39)

p(g > z) = Φ(−βccdf ) (2.40)

βcdf = −Φ−1(p(g ≤ z)) (2.41)

βccdf = −Φ−1(p(g > z)) (2.42)

βcdf = −βccdf (2.43)

p(g ≤ z) = 1 − p(g > z) (2.44)

where Φ() is the standard normal cumulative distribution function. A common con-
vention in the literature is to define g in such a way that the CDF probability for
a response level z of zero (i.e., p(g ≤ 0)) is the response metric of interest. The
formulations in this report are not restricted to this convention and are designed to
support CDF or CCDF mappings for general response, probability, and reliability
level sequences.

2.3.2 MPP Search Methods

All other reliability methods solve a nonlinear optimization problem to compute a
most probable point (MPP) and then integrate about this point to compute proba-
bilities. The MPP search is performed in uncorrelated standard normal space (“u-
space”) since it simplifies the probability integration: the distance of the MPP from
the origin has the meaning of the number of input standard deviations separating
the mean response from a particular response threshold. The transformation from
correlated non-normal distributions (x-space) to uncorrelated standard normal distri-
butions (u-space) is denoted as u = T (x) with the reverse transformation denoted as
x = T−1(u). These transformations are nonlinear in general, and possible approaches
include the Rosenblatt [58], Nataf [23], and Box-Cox [15] transformations. The non-
linear transformations may also be linearized, and common approaches for this include
the Rackwitz-Fiessler [55] two-parameter equivalent normal and the Chen-Lind [20]
and Wu-Wirsching [74] three-parameter equivalent normals. The results in this re-
port employ the Nataf nonlinear transformation which occurs in the following two
steps. To transform between the original correlated x-space variables and correlated
standard normals (“z-space”), the CDF matching condition is used:

Φ(zi) = F (xi) (2.45)

where F () is the cumulative distribution function of the original probability distri-
bution. Then, to transform between correlated z-space variables and uncorrelated
u-space variables, the Cholesky factor L of a modified correlation matrix is used:

z = Lu (2.46)
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where the original correlation matrix for non-normals in x-space has been modified
to represent the corresponding correlation in z-space [23].

The forward reliability analysis algorithm of computing CDF/CCDF probability/reliability
levels for specified response levels is called the reliability index approach (RIA), and
the inverse reliability analysis algorithm of computing response levels for specified
CDF/CCDF probability/reliability levels is called the performance measure approach
(PMA) [64]. The differences between the RIA and PMA formulations appear in the
objective function and equality constraint formulations used in the MPP searches.
For RIA, the MPP search for achieving the specified response level z̄ is formulated as

minimize uTu

subject to G(u) = z̄ (2.47)

and for PMA, the MPP search for achieving the specified reliability/probability level
β̄, p̄ is formulated as

minimize ±G(u)

subject to uTu = β̄2 (2.48)

where u is a vector centered at the origin in u-space and g(x) ≡ G(u) by definition.
In the RIA case, the optimal MPP solution u∗ defines the reliability index from
β = ±‖u∗‖2, which in turn defines the CDF/CCDF probabilities using (2.39)–(2.40)
in the case of first-order integration. The sign of β is defined by

G(u∗) > G(0) : βcdf < 0, βccdf > 0 (2.49)

G(u∗) < G(0) : βcdf > 0, βccdf < 0 (2.50)

where G(0) is the median limit state response computed at the origin in u-space
(where βcdf = βccdf = 0 and first-order p(g ≤ z) = p(g > z) = 0.5). In the PMA case,
the sign applied to G(u) (equivalent to minimizing or maximizing G(u)) is similarly
defined by β̄

β̄cdf < 0, β̄ccdf > 0 : maximize G(u) (2.51)

β̄cdf > 0, β̄ccdf < 0 : minimize G(u) (2.52)

and the limit state at the MPP (G(u∗)) defines the desired response level result.

When performing PMA with specified p̄, one must compute β̄ to include in (2.48).
While this is a straightforward one-time calculation for first-order integrations (2.41)–
(2.42), the use of second-order integrations complicates matters since the β̄ corre-
sponding to the prescribed p̄ is a function of the Hessian of G, see (2.69), which in turn
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is a function of location in u-space. A generalized reliability index (2.81), which would
allow a one-time calculation, may not be used since equality with uTu is not meaning-
ful. The β̄ target must therefore be updated in (2.48) as the minimization progresses
(e.g., using Newton’s method to solve (2.69) for β̄ given p̄ and κi). This works best
when β̄ can be fixed during the course of an approximate optimization, such as for
the AMV2+ and TANA methods described in Section 2.3.2.1. For second-order PMA
without limit state approximation cycles (i.e., PMA SORM), the constraint must be
continually updated and the constraint derivative should include ∇uβ̄, which would
require third-order information for the limit state to compute derivatives of the prin-
cipal curvatures. This is impractical, so the PMA SORM constraint derivatives are
only approximated analytically or estimated numerically. Potentially for this reason,
PMA SORM has not been widely explored in the literature.

2.3.2.1 Limit state approximations

There are a variety of algorithmic variations that can be explored within RIA/PMA
reliability analysis. First, one may select among several different limit state approxi-
mations that can be used to reduce computational expense during the MPP searches.
Local, multipoint, and global approximations of the limit state are possible. [26]
investigated local first-order limit state approximations, and [27] investigated local
second-order and multipoint approximations. These techniques include:

1. a single Taylor series per response/reliability/probability level in x-space cen-
tered at the uncertain variable means. The first-order approach is commonly
known as the Advanced Mean Value (AMV) method:

g(x) ∼= g(µx) + ∇xg(µx)
T (x − µx) (2.53)

and the second-order approach has been named AMV2:

g(x) ∼= g(µx) + ∇xg(µx)
T (x − µx) +

1

2
(x − µx)

T∇2
x
g(µx)(x − µx) (2.54)

2. same as AMV/AMV2, except that the Taylor series is expanded in u-space. The
first-order option has been termed the u-space AMV method:

G(u) ∼= G(µu) + ∇uG(µu)T (u − µu) (2.55)

where µu = T (µx) and is nonzero in general, and the second-order option has
been named the u-space AMV2 method:

G(u) ∼= G(µu) + ∇uG(µu)T (u − µu) +
1

2
(u − µu)T∇2

u
G(µu)(u − µu) (2.56)
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3. an initial Taylor series approximation in x-space at the uncertain variable means,
with iterative expansion updates at each MPP estimate (x∗) until the MPP
converges. The first-order option is commonly known as AMV+:

g(x) ∼= g(x∗) + ∇xg(x
∗)T (x − x∗) (2.57)

and the second-order option has been named AMV2+:

g(x) ∼= g(x∗) + ∇xg(x
∗)T (x − x∗) +

1

2
(x − x∗)T∇2

x
g(x∗)(x − x∗) (2.58)

4. same as AMV+/AMV2+, except that the expansions are performed in u-space.
The first-order option has been termed the u-space AMV+ method.

G(u) ∼= G(u∗) + ∇uG(u∗)T (u − u∗) (2.59)

and the second-order option has been named the u-space AMV2+ method:

G(u) ∼= G(u∗) + ∇uG(u∗)T (u − u∗) +
1

2
(u − u∗)T∇2

u
G(u∗)(u − u∗) (2.60)

5. a multipoint approximation in x-space. This approach involves a Taylor series
approximation in intermediate variables where the powers used for the interme-
diate variables are selected to match information at the current and previous
expansion points. Based on the two-point exponential approximation concept
(TPEA, [36]), the two-point adaptive nonlinearity approximation (TANA-3,
[75]) approximates the limit state as:

g(x) ∼= g(x2) +
n
∑

i=1

∂g

∂xi

(x2)
x1−pi

i,2

pi

(xpi

i − xpi

i,2) +
1

2
ε(x)

n
∑

i=1

(xpi

i − xpi

i,2)
2 (2.61)

where n is the number of uncertain variables and:

pi = 1 + ln

[

∂g
∂xi

(x1)
∂g
∂xi

(x2)

]

/

ln

[

xi,1

xi,2

]

(2.62)

ε(x) =
H

∑n
i=1(x

pi

i − xpi

i,1)
2 +
∑n

i=1(x
pi

i − xpi

i,2)
2

(2.63)

H = 2

[

g(x1) − g(x2) −
n
∑

i=1

∂g

∂xi

(x2)
x1−pi

i,2

pi

(xpi

i,1 − xpi

i,2)

]

(2.64)

and x2 and x1 are the current and previous MPP estimates in x-space, respec-
tively. Prior to the availability of two MPP estimates, x-space AMV+ is used.
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6. a multipoint approximation in u-space. The u-space TANA-3 approximates the
limit state as:

G(u) ∼= G(u2) +
n
∑

i=1

∂G

∂ui

(u2)
u1−pi

i,2

pi

(upi

i − upi

i,2) +
1

2
ε(u)

n
∑

i=1

(upi

i − upi

i,2)
2 (2.65)

where:

pi = 1 + ln

[

∂G
∂ui

(u1)
∂G
∂ui

(u2)

]

/

ln

[

ui,1

ui,2

]

(2.66)

ε(u) =
H

∑n
i=1(u

pi

i − upi

i,1)
2 +
∑n

i=1(u
pi

i − upi

i,2)
2

(2.67)

H = 2

[

G(u1) −G(u2) −
n
∑

i=1

∂G

∂ui

(u2)
u1−pi

i,2

pi

(upi

i,1 − upi

i,2)

]

(2.68)

and u2 and u1 are the current and previous MPP estimates in u-space, re-
spectively. Prior to the availability of two MPP estimates, u-space AMV+ is
used.

7. the MPP search on the original response functions without the use of any ap-
proximations.

The Hessian matrices in AMV2 and AMV2+ may be available analytically, estimated
numerically, or approximated through quasi-Newton updates. The quasi-Newton vari-
ant of AMV2+ is conceptually similar to TANA in that both approximate curvature
based on a sequence of gradient evaluations. TANA estimates curvature by matching
values and gradients at two points and includes it through the use of exponential inter-
mediate variables and a single-valued diagonal Hessian approximation. Quasi-Newton
AMV2+ accumulates curvature over a sequence of points and then uses it directly
in a second-order series expansion. Therefore, these methods may be expected to
exhibit similar performance.

The selection between x-space or u-space for performing approximations depends on
where the approximation will be more accurate, since this will result in more accurate
MPP estimates (AMV, AMV2) or faster convergence (AMV+, AMV2+, TANA).
Since this relative accuracy depends on the forms of the limit state g(x) and the
transformation T (x) and is therefore application dependent in general, DAKOTA/UQ
supports both options. A concern with approximation-based iterative search methods
(i.e., AMV+, AMV2+ and TANA) is the robustness of their convergence to the MPP.
It is possible for the MPP iterates to oscillate or even diverge. However, to date, this
occurrence has been relatively rare, and DAKOTA/UQ contains checks that monitor
for this behavior. Another concern with TANA is numerical safeguarding. First,
there is the possibility of raising negative xi or ui values to nonintegral pi exponents
in (2.61), (2.63)–(2.65), and (2.67)–(2.68). This is particularly likely for u-space.
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Safeguarding techniques include the use of linear bounds scaling for each xi or ui,
offsetting negative xi or ui, or promotion of pi to integral values for negative xi or
ui. In numerical experimentation, the offset approach has been the most effective in
retaining the desired data matches without overly inflating the pi exponents. Second,
there are a number of potential numerical difficulties with the logarithm ratios in
(2.62) and (2.66). In this case, a safeguarding strategy is to revert to either the linear
(pi = 1) or reciprocal (pi = −1) approximation based on which approximation has
lower error in ∂g

∂xi
(x1) or ∂G

∂ui
(u1).

2.3.2.2 Probability integrations

The second algorithmic variation involves the integration approach for computing
probabilities at the MPP, which can be selected to be first-order (2.39)–(2.40) or
second-order integration. Second-order integration involves applying a curvature cor-
rection [16, 40, 41]. Breitung applies a correction based on asymptotic analysis [16]:

p = Φ(−βp)
n−1
∏

i=1

1
√

1 + βpκi

(2.69)

where κi are the principal curvatures of the limit state function (the eigenvalues of
an orthonormal transformation of ∇2

u
G, taken positive for a convex limit state) and

βp ≥ 0 (select CDF or CCDF probability correction to obtain correct sign for βp).
An alternate correction in [40] is consistent in the asymptotic regime (βp → ∞) but
does not collapse to first-order integration for βp = 0:

p = Φ(−βp)
n−1
∏

i=1

1
√

1 + ψ(−βp)κi

(2.70)

where ψ() = φ()
Φ()

and φ() is the standard normal density function. [41] applies further

corrections to (2.70) based on point concentration methods.

To invert a second-order integration and compute βp given p and κi (e.g., for second-
order PMA as described in Section 2.3.2), Newton’s method can be applied as de-
scribed in [27]. Combining the no-approximation option of the MPP search with
first-order and second-order integration approaches results in the traditional first-
order and second-order reliability methods (FORM and SORM). Additional proba-
bility integration approaches can involve importance sampling in the vicinity of the
MPP [40, 71], but are outside the scope of this report. While second-order integra-
tions could be performed anywhere a limit state Hessian has been computed, the
additional computational effort is most warranted for fully converged MPPs from
AMV+, AMV2+, TANA, FORM, and SORM, and is of reduced value for MVFOSM,
MVSOSM, AMV, or AMV2.

42



2.3.2.3 Hessian approximations

To use a second-order Taylor series or a second-order integration when second-order
information (∇2

x
g, ∇2

u
G, and/or κ) is not directly available, one can estimate the

missing information using finite differences or approximate it through use of quasi-
Newton approximations. These procedures will often be needed to make second-order
approaches practical for engineering applications.

In the finite difference case, numerical Hessians are commonly computed using either
first-order forward differences of gradients using

∇2g(x) ∼=
∇g(x + hei) −∇g(x)

h
(2.71)

to estimate the ith Hessian column when gradients are analytically available, or
second-order differences of function values using

∇2g(x) ∼=
g(x+hei+hej)−g(x+hei−hej)−g(x−hei+hej)+g(x−hei−hej)

4h2
(2.72)

to estimate the ijth Hessian term when gradients are not directly available. This
approach has the advantage of locally-accurate Hessians for each point of interest
(which can lead to quadratic convergence rates in discrete Newton methods), but
has the disadvantage that numerically estimating each of the matrix terms can be
expensive.

Quasi-Newton approximations, on the other hand, do not reevaluate all of the second-
order information for every point of interest. Rather, they accumulate approximate
curvature information over time using secant updates. Since they utilize the exist-
ing gradient evaluations, they do not require any additional function evaluations for
evaluating the Hessian terms. The quasi-Newton approximations of interest include
the Broyden-Fletcher-Goldfarb-Shanno (BFGS) update

Bk+1 = Bk −
Bksks

T
k Bk

sT
k Bksk

+
yky

T
k

yT
k sk

(2.73)

which yields a sequence of symmetric positive definite Hessian approximations, and
the Symmetric Rank 1 (SR1) update

Bk+1 = Bk +
(yk − Bksk)(yk − Bksk)

T

(yk − Bksk)T sk

(2.74)

which yields a sequence of symmetric, potentially indefinite, Hessian approximations.
Bk is the kth approximation to the Hessian ∇2g, sk = xk+1 − xk is the step and
yk = ∇gk+1−∇gk is the corresponding yield in the gradients. The selection of BFGS
versus SR1 involves the importance of retaining positive definiteness in the Hessian
approximations; if the procedure does not require it, then the SR1 update can be
more accurate if the true Hessian is not positive definite. Initial scalings for B0 and
numerical safeguarding techniques (damped BFGS, update skipping) are described
in [27].
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2.3.2.4 Optimization algorithms

The next algorithmic variation involves the optimization algorithm selection for solv-
ing (2.47) and (2.48). The Hasofer-Lind Rackwitz-Fissler (HL-RF) algorithm [38] is
a classical approach that has been broadly applied. It is a Newton-based approach
lacking line search/trust region globalization, and is generally regarded as compu-
tationally efficient but occasionally unreliable. DAKOTA/UQ takes the approach
of employing robust, general-purpose optimization algorithms with provable conver-
gence properties. This report employs the sequential quadratic programming (SQP)
and nonlinear interior-point (NIP) optimization algorithms from the NPSOL [37] and
OPT++ [50] libraries, respectively.

2.3.2.5 Warm starting of MPP searches

The final algorithmic variation involves the use of warm starting approaches for
improving computational efficiency [26] describes the acceleration of MPP searches
through warm starting with approximate iteration increment, with z/p/β level incre-
ment, and with design variable increment. Warm started data includes the expansion
point and associated response values and the MPP optimizer initial guess. Projections
are used when an increment in z/p/β level or design variables occurs. Warm starts
were consistently effective in [26], with greater effectiveness for smaller parameter
changes, and are used for all computational experiments presented in this report.

2.4 Reliability-Based Design Optimization

The capability to assess reliability is broadly useful within a design optimization
context, and reliability-based design optimization (RBDO) methods are popular ap-
proaches for designing systems while accounting for reliability metrics. RBDO ap-
proaches may be broadly characterized as bi-level (in which the reliability analysis is
nested within the optimization, e.g. [5]), sequential (in which iteration occurs between
optimization and reliability analysis, e.g. [73, 24]), or unilevel (in which the design and
reliability searches are combined into a single optimization, e.g. [2]). Bi-level RBDO
methods are simple and general-purpose, but can be computationally demanding.
Sequential and unilevel methods seek to reduce computational expense by breaking
the nested relationship through the use of iterated or simultaneous approaches.

The reliability analysis capabilities described in Section 2.3 provide a rich founda-
tion for exploring a variety of RBDO formulations. [26] investigated bi-level, fully-
analytic bi-level, and first-order sequential RBDO approaches employing underlying
first-order reliability assessments. [27] investigated fully-analytic bi-level and second-
order sequential RBDO approaches employing underlying second-order reliability as-
sessments. These methods are overviewed in the following sections.
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2.4.1 Bi-level RBDO

The simplest and most direct RBDO approach is the bi-level approach in which a
full reliability analysis is performed for every optimization function evaluation. This
involves a nesting of two distinct levels of optimization within each other, one at the
design level and one at the MPP search level.

Since an RBDO problem will typically specify both the z̄ level and the p̄/β̄ level,
one can use either the RIA or the PMA formulation for the UQ portion and then
constrain the result in the design optimization portion. In particular, RIA reliability
analysis maps z̄ to p/β, so RIA RBDO constrains p/β:

minimize f

subject to β ≥ β̄

or p ≤ p̄ (2.75)

And PMA reliability analysis maps p̄/β̄ to z, so PMA RBDO constrains z:

minimize f

subject to z ≥ z̄ (2.76)

where z ≥ z̄ is used as the RBDO constraint for a cumulative failure probability
(failure defined as z ≤ z̄) but z ≤ z̄ would be used as the RBDO constraint for a
complementary cumulative failure probability (failure defined as z ≥ z̄). It is worth
noting that DAKOTA is not limited to these types of inequality-constrained RBDO
formulations; rather, they are convenient examples. DAKOTA supports general opti-
mization under uncertainty mappings [31] which allow flexible use of statistics within
multiple objectives, inequality constraints, and equality constraints.

An important performance enhancement for bi-level methods is the use of sensitivity
analysis to analytically compute the design gradients of probability, reliability, and
response levels. When design variables are separate from the uncertain variables (i.e.,
they are not distribution parameters), then the following first-order expressions may
be used [39, 43, 5]:

∇dz = ∇dg (2.77)

∇dβcdf =
1

‖ ∇uG ‖
∇dg (2.78)

∇dpcdf = −φ(−βcdf )∇dβcdf (2.79)

where it is evident from (2.43)–(2.44) that ∇dβccdf = −∇dβcdf and ∇dpccdf = −∇dpcdf .
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In the case of second-order integrations, (2.79) must be expanded to include the cur-
vature correction. For Breitung’s correction (2.69),

∇dpcdf =






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(2.80)
where ∇dκi has been neglected and βp ≥ 0 (see Section 2.3.2.2). Other approaches
assume the curvature correction is nearly independent of the design variables [54],
which is equivalent to neglecting the first term in (2.80).

To capture second-order probability estimates within an RIA RBDO formulation
using well-behaved β constraints, a generalized reliability index can be introduced
where, similar to (2.41),

β∗
cdf = −Φ−1(pcdf ) (2.81)

for second-order pcdf . This reliability index is no longer equivalent to the magnitude
of u, but rather is a convenience metric for capturing the effect of more accurate prob-
ability estimates. The corresponding generalized reliability index sensitivity, similar
to (2.79), is

∇dβ
∗
cdf = −

1

φ(−β∗
cdf )

∇dpcdf (2.82)

where ∇dpcdf is defined from (2.80). Even when ∇dg is estimated numerically, (2.77)–
(2.82) can be used to avoid numerical differencing across full reliability analyses.

When the design variables are distribution parameters of the uncertain variables, ∇dg
is expanded with the chain rule and (2.77) and (2.78) become

∇dz = ∇dx∇xg (2.83)

∇dβcdf =
1

‖ ∇uG ‖
∇dx∇xg (2.84)

where the design Jacobian of the transformation (∇dx) may be obtained analytically
for uncorrelated x or semi-analytically for correlated x (∇dL is evaluated numeri-
cally) by differentiating (2.45) and (2.46) with respect to the distribution parameters.
Meanwhile (2.79)–(2.82) remain the same as before. For this design variable case, all
required information for the sensitivities is available from the MPP search.

Since (2.77)–(2.84) are derived using the Karush-Kuhn-Tucker optimality conditions
for a converged MPP, they are appropriate for RBDO using AMV+, AMV2+, TANA,
FORM, and SORM, but not for RBDO using MVFOSM, MVSOSM, AMV, or AMV2.
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2.4.2 Sequential/Surrogate-based RBDO

An alternative RBDO approach is the sequential approach, in which additional ef-
ficiency is sought through breaking the nested relationship of the MPP and design
searches. The general concept is to iterate between optimization and uncertainty
quantification, updating the optimization goals based on the most recent probabilis-
tic assessment results. This update may be based on safety factors [73] or other
approximations [24].

A particularly effective approach for updating the optimization goals is to use the
p/β/z sensitivity analysis of (2.77)–(2.84) in combination with local surrogate mod-
els [77]. In [26] and [27], first-order and second-order Taylor series approximations
were employed within a trust-region model management framework [28] in order to
adaptively manage the extent of the approximations and ensure convergence of the
RBDO process. Surrogate models were used for both the objective function and the
constraints, although the use of constraint surrogates alone is sufficient to remove the
nesting.

In particular, RIA trust-region surrogate-based RBDO employs surrogate models of
f and p/β within a trust region ∆k centered at dc. For first-order surrogates:

minimize f(dc) + ∇df(dc)
T (d − dc)

subject to β(dc) + ∇dβ(dc)
T (d − dc) ≥ β̄

or p(dc) + ∇dp(dc)
T (d − dc) ≤ p̄

‖ d − dc ‖∞ ≤ ∆k (2.85)

and for second-order surrogates:

minimize f(dc) + ∇df(dc)
T (d − dc) + 1

2
(d − dc)

T∇2
d
f(dc)(d − dc)

subject to β(dc) + ∇dβ(dc)
T (d − dc) + 1

2
(d − dc)

T∇2
d
β(dc)(d − dc) ≥ β̄

or p(dc) + ∇dp(dc)
T (d − dc) + 1

2
(d − dc)

T∇2
d
p(dc)(d − dc) ≤ p̄

‖ d − dc ‖∞ ≤ ∆k (2.86)

For PMA trust-region surrogate-based RBDO, surrogate models of f and z are em-
ployed within a trust region ∆k centered at dc. For first-order surrogates:

minimize f(dc) + ∇df(dc)
T (d − dc)

subject to z(dc) + ∇dz(dc)
T (d − dc) ≥ z̄

‖ d − dc ‖∞ ≤ ∆k (2.87)
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and for second-order surrogates:

minimize f(dc) + ∇df(dc)
T (d − dc) + 1

2
(d − dc)

T∇2
d
f(dc)(d − dc)

subject to z(dc) + ∇dz(dc)
T (d − dc) + 1

2
(d − dc)

T∇2
d
z(dc)(d − dc) ≥ z̄

‖ d − dc ‖∞ ≤ ∆k (2.88)

where the sense of the z constraint may vary as described previously. The second-order
information in (2.86) and (2.88) will typically be approximated with quasi-Newton
updates.
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Chapter 3

Computational Model and Results

3.1 MEMS Computational Model

In Section 1.3, design issues with bistable MEMS are overviewed. In this section
the specific MEMS tapered beam model is presented, including design parameters,
uncertain parameters, geometry, boundary conditions, and the relevant Aria solver
parameters. We conclude with some baseline results for the force–displacement curve,
the beam displacement, and stress distribution.

3.1.1 Geometry, Design and Uncertain Variables, and Bound-

ary Conditions

Figure 3.1 shows a drawing of one tapered beam leg (one quarter of the full switch sys-
tem). A single leg is approximately 100 µm wide and 5–10 µm tall and is parametrized
by the 13 design variables d indicated in Figure 3.1, including widths Wi and lengths
Li of beam segments as well as angles θi between segments. Along the right surface
(x = 0) the x displacement is fixed, and a y displacement is applied in the negative di-
rection. A fixed displacement condition is applied to the left surface (see Figure 3.2).
The reaction force is the integral of the y component of the normal stress integrated
along the right surface (x = 0). With appropriate scaling of reaction force (to account
for device thickness and number of legs), these allow the quarter model to reasonably
represent the full four-leg switch system.

Due to manufacturing processes, fabricated geometry can deviate significantly from
design-specified beam geometry. As a consequence of photo lithography and etching
processes, fabricated in-plane geometry edges (contributing to widths and lengths)
can be 0.1 ± 0.08µm less than specified. This uncertainty in the manufactured ge-
ometry leads to substantial uncertainty in the positions of the stable equilibria and
in the maximum and minimum force on the force–displacement curve. The manu-
factured thickness of the device is also uncertain, though this does not contribute as
much to variability in the force–displacement behavior. Uncertain material properties
such as Young’s modulus and residual stress also influence the characteristics of the
fabricated beam. For this application, two key uncertain variables are considered:
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Figure 3.1. Design parameters for the tapered-beam fully-
compliant bistable mechanism (geometry not to scale). Dis-
placement is applied in the negative y direction at the right
face (x = 0), while at the left face, a fixed displacement con-
dition is enforced.

∆W (effect of edge bias, applied ∆W
2

to each edge, yielding effective manufactured
widths Wi + ∆W, i = 0, . . . , 4) and Sr (residual stress in the manufactured device),
with distributions shown in Table 3.1.

Table 3.1. Uncertain variables x = [∆W, Sr] used in UQ
and RBDO.

variable mean (µ) std. dev. distribution

∆W (width bias) -0.2 µm 0.08 normal
Sr (residual stress) -11 Mpa 4.13 normal

Iterative uncertainty quantification, reliability analysis, and design optimization are
performed with DAKOTA. Throughout UQ or RBDO, for each set of specified geo-
metric design parameters and realizations of uncertain variables, we create and mesh
the tapered beam geometry using Sandia’s FASTQ in batch mode [22].

In Section 2.2, for the error estimator studies, the geometric variables are fixed and the
uncertain variables are taken to be their mean values. Then in Section 3.4, uncertainty
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Figure 3.2. Boundary conditions and location of surface
where force is calculated

quantification is performed for fixed geometry, considering the effect of the uncertain
variables x = [∆W,Sr] on the reaction force For these studies, beam geometry is fixed
at the baseline values shown in Table 3.2. In contrast, in Section 3.5, the beam is
iteratively simulated with varying values of the geometric variables during RBDO.

3.1.2 Bistable MEMS Simulation and Baseline Results

In this section we describe the computations for bistable MEMS beam simulation and
present baseline results, where the design parameters are fixed at the baseline values
in Table 3.2 and the uncertain parameters are set at the mean values in Table 3.1. For
all computational results in this report, finite element analysis is performed using the
model described in Section 2.1, as implemented in the SIERRA code Aria, to simulate
the nonlinear elastic deformation of the beam through discrete displacement steps to
produce a force–displacement curve. Nonlinear solves employ a Newton method with
the following parameters

Maximum Nonlinear Iterations = 20

Nonlinear Residual Tolerance = 1e-8

Nonlinear Correction Tolerance = 1e-4

Nonlinear Relaxation Factor = 1.0
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Table 3.2. Values of tapered beam geometric parameters d

used in UQ studies. Parameters are identified in Figure 3.1.

parameter value
L1 2.803411216948874e+01
L2 2.441718869610307e+01
L3 3.057800292245615e+01
L4 3.055180849252218e+01
θ1 4.200263518351102e+00
θ2 2.480682485407754e+00
θ3 2.464573895851033e+00
θ4 2.384172184484739e+00
w0 1.355040383611968e+00
w1 1.274677949068451e+00
w2 3.480576539521997e+00
w3 2.006017307477350e+00
w4 1.332643531136223e+00

using a direct solver (amesos-superlu) for the required linear solves. Maximum and
minimum force values as well as displacement equilibria are determined from the
force-displacement curve. Maximum stress Smax is calculated as the maximum Von
Mises stress over all nodes and all displacement steps. All switch simulations employ
the quarter model (single beam) system described above, with appropriate boundary
conditions and multipliers to recover the full system.

In all results, units of force are µN and units of displacement (including equilibrium
positions) are µm. We plot in Figure 3.3 the force-displacement curve for the baseline
case. Selected points are labeled for further investigation in Section 3.2. In Figure 3.4
we plot the nodal Von Mises stress for the displacement positions labeled in Figure 3.3.
For these solutions, a uniform mesh of 12,800 linear elements was used. We observe
large displacements and rotations of the beam, as well as localized large stresses at
the corners.
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Figure 3.4. Von Mises stress on displaced beam for selected
time steps (y axis scaled by 10). Meshes contain 12,800 linear
quadrilateral elements.
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3.2 Error Estimation Results

In this section we present basic results to illustrate the error estimators described in
Sec. 2.2. We test using both uniform and adaptive refinement, and compare the per-
formance of the error estimators. As in Section 3.1.2, we fix the geometry parameters
to be the default values and the uncertain parameters to be the mean values.

3.2.1 Error Estimation for Uniform Meshes

For any fixed mesh, we can compute the entire force–displacement curve and simul-
taneously compute an estimate of the error in the surface force at each step using
ηQ. We plot our coarsest uniform mesh in Figure 3.5 for reference. Since the global

Figure 3.5. Coarse uniform 200 element mesh. (y axis
scaled by 10)

estimator ηZZ does not produce an estimate for the error in the surface force, we will
not use it until the next section on mesh adaptivity. We first perform a study of
the accuracy of the error estimator using a sequence of uniform meshes, which can
be produced by uniformly refining the initial coarse mesh in Figure 3.5. Uniform
mesh refinement is typically used in evaluating the performance of a posteriori error
estimators for meshes that are fairly regular. This is also be useful for circumstances
where one would like to use the error estimator as an error correction, such as in an
optimization or uncertainty quantification algorithm. In contrast, in the next section
we will evaluate the behavior of the estimators under local adaptive mesh refine-
ment, which is generally a more stringent test of the estimator, because of the mesh
irregularities.
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Let us introduce the term “exact” error, which we define as the difference between
the computed surface force and the force computed using a reference solution; the
reference solution is computed on a fine mesh of 3200 quadratic elements. Let Q̄
denote the surface force computed on the reference discretization. In order to assess
the accuracy of the estimator, we compute the ratio of the estimator to the exact
error. The ratio which is the global effectivity θ that was defined in (2.16). When θ
is close to one, then the estimator is a reasonable predictor of the exact error in the
surface force. Even if θ is only bounded in some interval

0 < c1 ≤ θ ≤ c2,

where c1 and c2 are mesh–independent, then the estimator can be used to estimate
the order of magnitude in the exact error or in adaptive mesh refinement algorithms.

Before we present results on the performance of the error estimator, we plot an
example of the approximate dual solution zh, defined in (2.20). Because the dual
displacements z do not vary as much as the primal displacements u, we only plot zh

near the minimum force (time step 32 in Figure 3.3). We see in Figure 3.6 that the
y component of the solution has a strong linear variation in the x direction, and that
the x component has a small linear variation in the y direction.

–0.025 –0.020 –0.015 –0.010 –0.005 0.0 0.20.10.0 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

(a) X component (b) Y component

Figure 3.6. Dual displacement solution on displaced beam
for time step 32 (y axis scaled by 10). Mesh contains 12,800
linear quadrilateral elements.

In Figure 3.7(a) we plot the force–displacement curves computed using a sequence of
uniformly refined meshes of linear elements along with a fine mesh of 3200 quadratic
elements, which is used as a reference solution. Looking at the entire curve, only the
curves from the two coarsest meshes are distinguishable from the finer grids. However,
on closer inspection in a region near the minimum force value, we see in Figure 3.7(b)
that the rate of convergence to the reference curve is superlinear. By measuring the
error rates versus the number of nodes (or elements) in the mesh at fixed time values,
we can estimate the rate more precisely (see Figure 3.10 below).
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Figure 3.7. Force–displacement curves for uniform meshes
of linear elements and a fine mesh of quadratic elements. Top
figure is entire curve, bottom figure is curve near minimum
force.

57



In Figure 3.8 we plot the error estimator ηQ and the exact error in the surface force
computed using linear elements for each displacement step. We can see that both the
estimator and the exact error are typically negative, and converge to zero in absolute
value as the mesh is refined. Again the error rate appears to be superlinear.

In order to quantify the accuracy of ηQ, we plot in Figure 3.9 the global effectivity
θ for each displacement step. It is clear that this ratio is always between 0.7 and
1.4, and tends to one as the mesh is refined. Thus we have demonstrated that for
sequences of uniform meshes, the estimator ηQ is a reasonable predictor of the error
in the surface force for our MEMS application problem. Furthermore, the predictive
capability improves as the meshes are refined.

Finally, in order to assess the rate of convergence of the exact force error and the
effectivity of the error estimator, we select a subset of time steps at which we plot
the exact error and effectivity versus the number of nodes as the mesh is uniformly
refined. These are chosen near local maxima, minima, and inflection points as seen
in Figure 3.3. In Figure 3.10 we plot the exact error rates and global effectivity index
versus the number of nodes in the mesh for each of the four selected time steps. Since
the relation between the mesh size h and number of nodes N for a uniform mesh in
d dimensions is

h ≈ N−1/d,

a second order error rate for our 2d problem would have a slope of (−2/d = −1) in a
log–log plot of error versus the number of unknowns. We have plotted a line with this
slope in Figure 3.10(a) in order to compare the actual slopes with the formal second
order slope. Upon inspection of the slopes in Figure 3.10(a), we see that the rate is
nearly second order as a function of the mesh size. We also compare the effectivity
index of the error estimator under uniform refinement in Figure 3.10(b) and see that
it tends to one, as in Figure 3.9.
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Figure 3.8. Estimated (top) and exact (bottom) error in
the surface force for uniform meshes of linear elements.
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Figure 3.9. Force error effectivity for uniform meshes of
linear elements.
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Figure 3.10. Exact error and effectivity for uniform meshes
at selected time steps.
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3.2.2 Adaptive Mesh Refinement

We now turn to calculations with the error estimators ηQ and ηZZ in an adaptive mesh
refinement algorithm. In these calculations, the nonlinear solve at each time step is
wrapped in an outer adaptive iteration. The adaptive iteration proceeds through the
following steps:

1. Solve the nonlinear system for uh

2. Calculate the error estimator η = ηQ or ηZZ

3. If the error estimator exceeds the given tolerance, then apply the marking algo-
rithm to mark elements for refinement/coarsening; otherwise exit the adaptive
loop

4. Adapt the mesh based on the markers and prolongate all fields (coordinates,
displacements, etc.) onto the new mesh.

The adaptive iteration can also be terminated or skipped if the total number of
elements exceeds some specified maximum, or if the current time step is outside some
specified time interval.

The default parameters for the adaptive mesh refinement are given in Table 3.3. We
note that the tolerances are different for the two estimators. For the quantity of
interest estimator, the tolerance is in absolute units of the surface force, and is thus
directly relevant to the overall accuracy of any calculation using the force quantity.
Choice of this tolerance depends on various factors, such as, for example, the the
relative size of the uncertainties in the problem parameters. On the other hand, the
tolerance for ηZZ is based on a relative error in some global measure of the error in
the displacement gradients. Because its relation to the error in the surface force is
unknown, it can only be understood as a parameter that can be adjusted to produce
various levels of adaptive mesh refinement. In particular, the value in Table 3.3 was
chosen by trial and error for the application problem of interest. The refinement

γrefine γcoarsen TOL
ηQ 0.50 0.01 0.5
ηZZ 0.50 0.01 0.0015

Table 3.3. Default parameters for adaptive mesh refine-
ment

parameter γrefine was chosen in order to produce fairly aggressive refinement, min-
imizing the number of adaptive iterations required to reach the specified tolerance.
The coarsening parameter γcoarsen was chosen to be fairly small, so as to allow some
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coarsening in the mesh as the solution changes in time. In all cases, the marking
strategy was based on the fixed fraction criteria defined in Section 2.2.6.

We plot the exact force error (in absolute value) obtained using adaptivity and
the estimators ηQ and ηZZ using a coarse uniform mesh (200 elements) and vari-
ous error tolerances in Figure 3.11. These tolerances were chosen to be QTOL =
{4, 2, 1, 0.5, 0.25, 0.0125} for ηQ and GTOL = {0.008, 0.006, 0.004, 0.002, 0.001} for
ηZZ . As the error tolerance – indicated by the horizontal line in Figure 3.11(a) – is
varied, we see that when using ηQ, the exact error is nearly always reduced below the
specified tolerance. In contrast, the adaptive tolerance for the global estimator ηZZ

does not control the error in the surface force directly. Instead, we see that as the
tolerance is reduced, adaptivity based on the global error estimator gradually reduces
the exact error in the force, through a much less smooth process than can be obtained
using the quantity of interest estimator. The ability to adapt the mesh so that the
exact error is near or below a specified tolerance is directly related to the accuracy of
the error estimator. In Figure 3.12 we plot the global effectivity of the estimator ηQ.
We see that even under the conditions of local mesh refinement, the error estimator
is still quite accurate throughout the series of displacement steps.

We can also illustrate each actual adaptive iteration, as defined above, by plotting
all of the error–displacement data points on the same graph. This means that for a
given displacement step, there can be multiple output points as the adaptive algorithm
adapts the mesh to minimize the global error estimator. In Figure 3.13 we plot such
a data set for the exact and estimated error computed using the estimator ηQ and
various refinement tolerances. For this example we have increased the refinement
parameter γrefine to the value 0.9 in order to allow for more adaptive refinement
steps. Looking at any fixed displacement step, we can also see the number of adaptive
iterations taken indicated by the points on the same vertical line. Also, we can
see where the error decreases, typically from refinement of elements, and where it
sometimes increases, typically from coarsening of elements. We see that while the
estimator is reduced below the tolerance at each displacement step, the exact error
may not be less than the tolerance. This is related to the accuracy of the estimator,
which improves as the error tolerance is decreased. However, the adaptive algorithm
maintains the estimated error to be less than the error tolerance in absolute value.
We can also plot the data for the exact error obtained using the global estimator ηZZ .
In Figure 3.14 we see that the exact error in the force is reduced by the adaptive
refinement iterations. However, because the estimator is not based on the error in
the force, there is no reliable criteria to start or stop the adaptivity. As a result, the
error generally tends to zero as the refinement tolerance is reduced, but not in a way
that can be predicted or controlled.

As we did for the case of uniform mesh refinement, we present in Figure 3.15 the
error rates for both estimators obtained using adaptivity at our sample points on the
force–displacement curve. At the selected time steps, the number of nodes, estimated
error, exact error, and effectivity were computed for ηQ. For ηZZ only the number of
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Figure 3.11. Exact error for adaptive meshes using ηQ

(top) and ηZZ (bottom).
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Figure 3.12. Effectivity for adaptive meshes using ηQ.

nodes and exact error were computed. As in the case of linear elements and uniform
refinement in the previous section (Figure 3.10), we see nearly a second order rate of
convergence. We also plot the effectivity for adaptivity with ηQ in Figure 3.16. In the
adaptive case, the effectivity is typically less than one, indicating that the estimator
is underestimating the exact error. However, the effectivity is between 0.65 and 1.3
and tends to one, as in the case of uniform mesh refinement.

In order to gain some understanding of the local mesh adaptivity that is driven by the
local element error estimators ηQ

K , in Figure 3.17 we plot the meshes near the right
side of the beam in the reference configuration for four error tolerances. Since this
is where the postprocessed surface force is calculated, we expect that the computed
surface force will be sensitive to the mesh in this region. The plots of the meshes
show a gradual refinement into the surface, with a very localized refinement occurring
in the upper right corner of the beam. Similarly, we can plot a sequence of adapted
meshes obtained from using the local element error indicators ηZZ

K . In Figure 3.18 we
see that the mesh refinement grades the mesh towards the end of the beam where the
force is measured. However, the refinement is nearly uniform within patches, without
any of the local features that are seen in Figure 3.17 when adapting with ηQ

K .
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We conclude this section with some results that relate to the UQ/RBDO calculations
in Sections 3.4 and 3.5. We first explore the possibility of adding the quantity of
interest error estimator ηQ to the computed force. This can be done in both uniform
and adaptive refinement, in order to compute a more accurate force as we see in our
examples. In Figure 3.19 we plot the exact error in the force using either just the
postprocessed force defined in (2.15) or else the corrected force defined as the sum of
the postprocessed force and the error estimator ηQ. We can see that the corrected
force is always more accurate than the simple postprocessed force, under both uniform
and adaptive refinement. Moreover, for some points under uniform refinement in
Figure 3.19(a), the error in the corrected force appears to be converging at a higher
rate than that of the simple force. This effect is even stronger under adaptivity, as seen
in Figure 3.19(b), where the rate for the corrected force appears to be approximately
O(N−2), or twice the rate of the simple force.

Because we plan to use the error estimator ηQ as a correction to the force, we are
also interested in the possibility that the corrected force curve will avoid the non–
smooth behavior that can occur when the mesh is adapted and the force may change
significantly. In Figure 3.20 we plot some portions of the force–displacement curve
to illustrate the smoothing effect of using the corrected force instead of the simple
force in the case of adaptivity. The kinks in the simple force–displacement curve
arise from the adaptive iterations which become active when the error tolerance is
not maintained. However, the corrected force is less sensitive to the mesh adaptivity,
and therefore produces a smoother force–displacement curve.
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Figure 3.13. Exact (top) and estimated (bottom) error for
adaptive meshes using ηQ for all iterations.
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Figure 3.14. Exact error for adaptive meshes using ηZZ

for all iterations.

(a) using ηQ (b) using ηZZ

Figure 3.15. Exact error for meshes adapted using ηQ and
ηZZ at selected time steps.
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Figure 3.16. Effectivity for adaptive meshes using ηQ at
selected time steps.
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Figure 3.17. Refined meshes near the right side of the
beam at time step 32. Adapted using ηQ and various global
error tolerances (given in units of force).
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Figure 3.18. Refined meshes near the right side of the
beam at time step 32. Adapted using ηZZ and various global
error tolerances (given in relative units).
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Figure 3.19. Error rates for corrected force at selected
time steps using ηQ with uniform meshes (top) and adapted
meshes (bottom).
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(a) displacement interval [0.5, 2.5]

(b) displacement interval [8.0, 9.0]

Figure 3.20. Smoothing by error correction for meshes
adapted using ηQ
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3.3 Parameter Study Results

This section investigates the dependence of discretization errors on model input pa-
rameters. Section 3.3.1 presents parameter study results for the two uncertain vari-
ables, and Section 3.3.2 presents results for the thirteen design variables. The intent
is to assess the need for parameter adaptive approaches to solution verification.

3.3.1 Uncertain variables

For the 800 linear element mesh, Figure 3.21 shows the variation of the quantity of
interest error estimates ηQ as a function of the two uncertain variables. Results are
presented for the four simulation displacement steps indicated in Figure 3.3 and the
parameter range is ±3 standard deviations. Figure 3.22 shows similar plots for the
exact error when using the 800 linear element mesh (error measured relative to the
3200 quadratic element reference mesh). The trends in the error estimates are nearly
identical to the trends in the exact errors, suggesting that the quantity of interest
error estimator is a reasonable predictor of true error across a range of uncertain
variable values.

The regions in parameter space where the error is largest are not consistent across
timesteps. For example, in Figure 3.21, for t = 6 (northwest plot), the largest errors
correspond to the most negative variable values, but for the other timesteps they
correspond to the most positive variable values. This is likely because errors in force
are strongly dependent on the total stress field, resulting from the sum of the residual
pre-stress and the stress induced from the applied displacement. As expected, residual
stress is an influential variable, but the sense is inconsistent for different steps since
the residual pre-stress may alternate between augmenting or reducing the total stress.

Figure 3.23 shows the error estimate relative to the force predicted by the reference
mesh. The relative error plots are more qualitatively consistent across most displace-
ment steps, however for the displacement at t = 32 (southwest plot), the region of
largest error corresponds to the most positive variable values, in contrast to the other
three time steps, where it occurs for the most negative values. The relative error has
significantly greater sensitivity to residual stress than to width bias.

Overall, the most important conclusion is that the error estimates are significant
functions of the uncertain variables. Relative errors vary by a factor of two or more
over the uncertain parameter ranges.
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Figure 3.21. Estimated error in force as a function of
uncertain variables.
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Figure 3.22. Exact error in force as a function of uncertain
variables.
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Figure 3.23. Estimated force error relative to force mag-
nitude as a function of uncertain variables.
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3.3.2 Design variables

Figure 3.24 shows the variation of the quantity of interest error estimates as a function
of the thirteen design variables. Each line represents a one-dimensional parameter
study, wherein one variable varies between the bounds listed in Table 3.6 and the
others are anchored at nominal values (each taken to be the midpoint of the [l.b., u.b.]
intervals in Table 3.6). Again, results are presented for four different displacement
steps from the simulation.
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Figure 3.24. Estimated error in force as a function of
design variables.

Once again, error estimates vary by a factor of two or more over the parameter ranges.
Thus, a model with acceptable discretization errors for one set of design or uncertain
parameters could have a significantly higher level of error for another. This validates
the need for solution verification approaches which adapt for changing error levels as
uncertainty quantification and optimization algorithms vary parameter values.
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3.4 Uncertainty Quantification Results

This section describes uncertainty quantification for the bistable microelectromechan-
ical system through the application of reliability analysis algorithms described in Sec-
tion 2.3. The effect of uncertain variables on the response z = Fmin is evaluated using
the model of the MEMS from Section 3.1, both with and without error estimation
techniques from Section 2.2.

Most results in this section are generated using performance measure approach (PMA)
reliability analysis (2.48) to determine the response levels z = Fmin corresponding to
13 specified probability levels

p̄ ∈ {0.01, 0.05, 0.1, 0.2, . . . , 0.8, 0.9.0.95, 0.99} .

The required MPP search employs the AMV2+ approximation to the limit state, as
described by (2.60), with SR1 quasi-Hessians (2.74). When needed, gradients with
respect to the uncertain variables x are computed using central differences with a
0.1% relative step size. These PMA results are compared to those resulting from
Latin Hypercube Sampling (LHS) over the uncertain variable space.

For further comparison purposes, RIA formulations (2.47) are also considered, map-
ping specified response levels z̄ to corresponding probability levels. The AMV2+
approximation is again used to speed the convergence of the MPP search. In the
RIA case, both first- and second-order probability integrations are considered, as
contrasted in Section 2.3.2.2. Second-order probabilities are informed by either SR1
quasi-Hessians or full finite difference Hessians (2.72).

Cumulative distribution functions (CDFs) are used to display the results from PMA-
and RIA-based reliability analyses, considering the effect of uncertain variables on
the minimum force. The effect of choice of finite element meshes, polynomial degree
of elements, use of quantity of interest error correction, and use of adaptivity on
these CDFs is explored. We illustrate the array of potential discretization options in
Figure 3.25. In the following results, “reference” denotes a fine mesh of 3200 quadratic
elements.

Figure 3.26 shows CDFs generated with the reference mesh and a sequence of meshes
with linear elements (200, 800, 3200, 12800) to demonstrate the convergence of CDFs
under uniform refinement. Table 3.4 shows the computational time required for each
of these analyses in terms of both function evaluations and average time per evaluation
as well as the z-space discrete L2 error between the various approximations and the
reference CDF, calculated over the 13 requested probability levels p̄i as

√

√

√

√

1

13

13
∑

i=1

∣

∣

∣z
ref
p̄i

− zapprox
p̄i

∣

∣

∣

2

. (3.1)

We plot this error versus number of nodes in Figure 3.27 for the AMV2+ data in
Table 3.4. The L2 error for the finest linear mesh considered (12800 elements) is
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Figure 3.25. Possible paths used to compute approximate
and reference force-displacement curves.

3.1199e-02 µN, with Aria evaluations requiring, on average, 388 seconds. Using the
error correction on a linear mesh with only 800 elements yields an error of 7.6341e-
02 µN, with evaluations averaging 35 seconds, less than 10% of the cost. The linear
elements converge at approximately second order, while the error-corrected linear
elements and quadratic elements converge at approximately fourth order.

The use of quadratic elements can result in more accurate solutions without drastic
increase in computational expense. Figure 3.28 includes CDFs generated for three
meshes with quadratic elements. While visually indistinguishable, the L2 errors re-
ported in Table 3.4 reveal rapid convergence as the mesh is uniformly refined (h-
refinement), with, e.g., L2 error 3.5667e-04 µN for an 800 element mesh. A compar-
ison of average computation times reveals that a specified error tolerance can likely
be achieved more efficiently through the use of quadratic rather than linear basis
functions.

Using linear elements in conjunction with the quantity of interest error estimator ηQ

to correct the force output yields results comparable to the reference quadratic mesh.
In Figures 3.29 and 3.30, CDFs are shown for two coarse (200 and 800 element) and
two fine (3200 and 12800 element) meshes, respectively. The solid lines denote linear
element solutions without error correction, and dashed lines indicate the correspond-
ing quantity of interest (ηQ) corrected solutions. It is evident that the CDFs result
from 800 linear element error-corrected simulations and the reference (3200 quadratic
elements) simulations are quite similar. The error-corrected coarse mesh achieves
this agreement at less than 8% of the cost per Aria simulation (Table 3.4). Since the
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Figure 3.26. CDFs generated using AMV2+ PMA with
reference mesh (3200 quadratic elements) and 200, 800, 3200,
and 12800 linear element meshes to demonstrate convergence
under uniform refinement.
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Figure 3.27. Plots of CDF error versus nodes using
AMV2+ from Table 3.4. Error rates for linear elements are
second order, and for error–corrected linear and quadratic
elements, the rates are fourth order.
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Figure 3.28. CDFs generated using AMV2+ PMA with
quadratic element meshes (200, 800, and 3200 elements).
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Table 3.4. Computational cost and error for 13 point CDF
generated with various methods and meshes. Time per eval-
uation is time per Aria solve, averaged across all evaluations.
L2 error relative to reference mesh is computed by (3.1).

FEA UQ num. num. func. time per L2 error in
type method elts. nodes evals eval (sec) z = Fmin

linear AMV2+ 200 303 340 5.7767 3.1758e+00
linear w/EE AMV2+ 200 303 485 8.5953 9.2555e-01
linear AMV2+ 800 1005 410 23.4885 5.8753e-01
linear w/EE AMV2+ 800 1005 445 34.6055 7.6341e-02
linear AMV2+ 3200 3609 475 93.2751 1.2985e-01
linear w/EE AMV2+ 3200 3609 420 136.2651 6.0263e-03
linear AMV2+ 12800 13617 425 388.3487 3.1199e-02
linear w/EE AMV2+ 12800 13617 470 568.3060 7.0266e-04

quadratic AMV2+ 200 1005 505 28.4588 4.4020e-03
quadratic AMV2+ 800 3609 475 116.6080 3.5667e-04
quadratic AMV2+ 3200 13617 360 477.8220

quadratic LHS 3200 13617 1000 482.5398
quadratic RIA 3200 13617 500 481.3034
quadratic RIA 2nd QH 3200 13617 460 482.0395
quadratic RIA 2nd FDH 3200 13617 1976 480.4406

inclusion of adjoint error estimation calculations only adds 46–49% to the nominal
per-simulation cost, a quantitatively-predictive error correction on a coarse mesh sig-
nificantly outperforms a fully-converged fine mesh (which can be orders of magnitude
more expensive).

Comparing refinement to error-correction strictly with linear elements, the 800 ele-
ment linear mesh with error correction costs 35 seconds of CPU time, yet has CDF
error (7.63e-02) that is consistent with a refined mesh without error correction con-
sisting of somewhere in-between 3200 linear elements (error of 1.30e-01, costing 93
seconds) and 12800 linear elements (error of 3.12e-02, costing 388 seconds). In the
linear basis cases considered, using error correction has similar effect to quadrupling
the number of elements through uniform refinement, but at substantially less cost.

Error estimates are not always quantitatively predictive for insufficiently refined
meshes. The 200 linear element results (with and without error correction, Fig-
ure 3.29) demonstrate that a level of mesh convergence is still required for the error
estimate ηQ to be predictive. Nonetheless, the level of mesh convergence required
with error estimates is much lower than without.

In Figure 3.31, CDFs generated with PMA are compared to those generated with RIA
using first-order probability integrations (denoted RIA AMV2+) and second-order

83



−9 −8 −7 −6 −5 −4 −3 −2 −1 0 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
min

 (µN)

pr
ob

ab
ili

ty

 

 

linear_200
linear_200_ee
linear_800
linear_800_ee
reference

Figure 3.29. CDFs generated using AMV2+ PMA with
reference mesh (3200 quadratic elements) and two coarse lin-
ear element meshes, with and without quantity of interest
error-correction. Note that the 800 linear element mesh per-
forms similarly to the reference mesh.
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Figure 3.30. CDFs generated using AMV2+ PMA with
reference mesh (3200 quadratic elements) and two fine linear
element meshes, with and without quantity of interest error-
correction. Note that the 800 linear element mesh performs
similarly to the reference mesh.
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Figure 3.31. CDFs generated with reference mesh (3200
quadratic elements) using AMV2+ PMA reliability method,
LHS sampling method with 1000 samples, and AMV2+ RIA
reliability methods using first and second order integrations
(latter with both SR1 quasi-Hessians (QH) and full finite
difference Hessians (FDH).

probability integrations using SR1 quasi-Hessians and full finite difference Hessians
(denoted RIA AMV2+ 2nd QH and 2nd FDH, respectively) within the Hohenbichler-
Rackwitz correction of (2.70). When using first-order integrations, the CDFs com-
puted with PMA and RIA formulations agree. Second order probability integrations
can better capture nonlinearity in limit states (such nonlinearity has been observed
for this MEMS application) and yield more accurate estimates of probabilities (at
least locally) at converged MPPs. It is evident that there is substantial curvature to
the limit state, since the CDFs generated with RIA using second-order probability in-
tegrations have significant differences from the first-order results. The CDF generated
using SR1 quasi-Hessians appears noisy. Changing to full finite difference Hessians
(at quadruple the computational cost) smooths the second-order results. For the left
tail of the CDF, the second-order probabilities are in good agreement with the LHS
solution, created using 1000 samples of the uncertain variables. For the right tail,
the principal curvatures are large and negative, causing numerical issues with the
square root in (2.70) which result in the algorithm resorting back to the first-order
probability integration for the problematic levels.
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As described in Section 2.2.6, error estimates (global or quantity of interest) can
also be used to drive mesh adaptivity. Figures 3.32 and 3.33 depict CDFs generated
with adaptivity driven by global error (ηZZ) estimation and quantity of interest error
(ηQ) estimation, respectively. The computational cost and CDF errors for these
simulations is shown in Table 3.5. While the 200 linear element CDF in Figure 3.32
is improved over that in Figure 3.26, it is evident that the discretization errors are
still significant and that the convergence behavior of the PMA reliability analysis
has been adversely affected. The ηQ error estimator, which directly controls error
in force (the quantity of interest), proved a much more effective control for mesh
adaptivity. Not only do these error estimates allow more tailored mesh refinements,
they also allow the use of error corrections which are not possible with global error
estimates. Whereas both adapted but uncorrected CDFs in Figure 3.33 still exhibit
some convergence difficulties, the adapted and corrected CDFs converge more reliably
and efficiently. The total number of function evaluations needed in the error-corrected
cases was 16–24% less than in the non-error-corrected cases and the resulting L2

errors are 1–2 orders of magnitude smaller when correcting the force. The observed
improvement in convergence behavior with error correction stems from the numerical
finite differencing in the presence of changing meshes. When a small parameter offset
results in a differently adapted mesh, the numerical gradient can be corrupted by
the discontinuity in discretization level. This is mitigated to some degree by the
use of error-correction, since the corrections can self-compensate for differing meshes
(i.e., the same convergence enhancements observed under uniform refinement apply
to differencing simulation results across dissimilarly adapted meshes).

Table 3.5. Computational cost and error for 13 point CDF
generated with AMV2+ PMA on various adaptive meshes
using linear elements. Time per evaluation is time per Aria
solve, averaged across all evaluations. L2 error relative to
reference mesh is computed by (3.1).

adaptivity initial func. time per L2 error in
type method num. elts. evals eval (sec) z = Fmin

ηZZ AMV2+ 200 930 53.7512 5.4032e-01
ηQ AMV2+ 200 1005 330.0198 9.6689e-01
ηQ AMV2+ w/EE 200 845 329.8274 1.3126e-01
ηQ AMV2+ 800 1235 286.4653 3.8277e-01
ηQ AMV2+ w/EE 800 940 285.7942 3.3628e-02

Finally, we investigate the interactions between numerical gradient accuracy and the
mesh adaptivity process. We plot the central differences obtained at the point

(∆W,Sr) = (−1.6921634025e−01,−2.0475471758e+01)

using a relative step size of 0.1%. We see in Figure 3.34 that as the refinement
tolerance QTOL goes to zero, the finite differences converge to the values of the
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Figure 3.32. CDFs generated using AMV2+ PMA with
reference mesh (3200 quadratic elements) and ηZZ-adaptive
mesh with 200 initial linear elements.
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Figure 3.33. CDFs generated using AMV2+ PMA with
reference mesh (3200 quadratic elements) and ηQ-adaptive
meshes with 200 and 800 initial linear elements meshes, with
and without error correction in force.
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reference solution (at QTOL = 0). However, the finite differencing may fail to be
robust, as is seen when QTOL = 0.5. This is believed to occur when the mesh
is changing locally due to adaptivity, causing a change in the minimum force that
are greater than the change expected from the finite differencing using the reference
solution. This leads to a recommendation for stricter control of mesh adaptivity in
the presence of numerical finite differencing, as described in Section 4.2.
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Figure 3.34. Central finite differences for surface force and
adaptivity using ηQ
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3.5 Probabilistic Design Results

Given the 13 geometric design variables

d = [L1, L2, L3, L4, θ1, θ2, θ3, θ4,W0,W1,W2,W3,W4]

(described in Section 3.1 and subject to the bound constraints listed in Table 3.6)
and the specified uncertain variables x = [∆W,Sr], we formulate a reliability-based
design optimization problem to achieve a design that actuates reliably with at least
5 µN force. The RBDO formulation is uses the limit state

g(x) = Fmin(x) (3.2)

and failure is defined to be actuation force with magnitude less than 5.0 µN (Fmin >
−5.0). Reliability index βccdf ≥ 2 is required. The RBDO problem utilizes the RIA
z̄ → β approach (2.75) with z̄ = −5.0:

max E [Fmin(d,x)]
s.t. 2 ≤ βccdf (d)

50 ≤ E [Fmax(d,x)] ≤ 150
E [E2(d,x)] ≤ 8

(3.3)

although the PMA β̄ → z approach (2.76) could also be used. The use of the Fmin

metric in both the objective function and the reliability constraint results in a pow-
erful problem formulation, because in addition to yielding a design with specified
reliability, it also produces a robust design. By forcing the expected value of Fmin

toward the −5.0 target while requiring two standard deviations of surety, the opti-
mization problem favors designs with less variability in Fmin. This renders the design
performance less sensitive to uncertainties. The response PDF control is depicted in
Figure 3.35, where the mean is maximized subject to a reliability constraint on the
right tail. Alternatively, the response PDF control depicted in Figure 3.36 could be
employed by maximizing the PMA z level corresponding to β̄ = −2. This has the
advantage of controlling both sides of the response PDF, but it is more computation-
ally expensive since it requires the solution of two MPP optimization problems per
design cycle instead of one. For this reason, the RIA RBDO formulation in (3.3) is
used for all results in this section.

The optimization problem is solved by applying the DAKOTA software in the bi-
level (nested) RBDO approach of Section 2.4.1. Design variable optimization is per-
formed with the DOT optimizer using the modified method of feasible directions
(MMFD) [65] and, for each design iterate, a complete uncertainty analysis is per-
formed with DAKOTA’s reliability methods. For this optimization, each RIA analy-
sis is performed using AMV2+ approximations with SR1 quasi-Hessians to solve the
MPP optimization subproblems. This method is advantaged by its ability to provide
(semi-)analytic derivatives of reliability metrics with respect to design variables for
the optimizer. That is, while the derivatives of the simulation response functions
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Figure 3.35. Response PDF control of mean and right tail.

(e.g., Fmin) must be evaluated numerically, the derivatives of the reliability metrics
are defined as analytic functions of these simulation response function derivatives
(see Section 2.4.1). Since a primary goal of the present work is to evaluate the effect
of mesh choice and error estimation on reliability analysis, the initial iterate for the
gradient-based MMFD is taken to be an optimal design point from Adams, et al. [1].
Optimization is performed for various discretizations and error corrections, each using
the same initial iterate. When needed, gradients of the simulation response functions
with respect to the uncertain variables x or design variables d are computed using
central differences with a 0.1% relative step size.

Table 3.6 contains optimal RBDO designs corresponding to the coarse (800 element)
linear mesh, with and without ηQ error correction, the finest (12800 element) linear
mesh, and the reference quadratic mesh. In all except the reference mesh case, the
optimizer progresses to an optimal solution where the reliability constraint β is active
and the expected value of Fmin is maximized. The optimizer progresses when using the
reference mesh, but does not yield as good a value for Fmin, nor as tight a constraint
on the reliability metric β.

For all meshes considered, reliability-based design optimization finds device designs
more robust to input uncertainties by the means depicted in Figure 3.35. The initial
bistable MEMS design reported in Adams, et al. [1], had variability in Fmin of 5.6

µN per input standard deviation, calculated as E[Fmin]−F̄min

β
. As shown in Table 3.6,

the optimal designs found with the present methods have variability 0.59–0.62 µN
per input standard deviation, indicating less sensitivity to input uncertainties.

As with CDF generation in Section 3.4, the error-corrected coarse mesh requires fewer
iterations to converge than that without error correction, with modest per-simulation
cost increase. The error-corrected 800 element coarse mesh yields a similar solution
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Figure 3.36. Response PDF control of both tails.

to the 12800 element fine mesh, but at less than 10% of the total computational cost
(27 versus 373 compute hours).

Figure 3.37 depicts the force–displacement curves for the optimal designs resulting
from each linear mesh. The lower panel zooms in on the area near the minimum and
demonstrates the quadratic interpolation used to accurately locate the displacement,
minimum force pair. There is good agreement between the refined linear solution and
the ηQ error-corrected coarse solution.

Figure 3.38 shows curves generated using the reference mesh for each of the optimal
design parameter sets from Table 3.6. These “reference-verified” force-displacement
curves further confirm that RBDO using the 800 linear element mesh, with ηQ error-
correction, yields an optimal design similar to the finest (12800 element) mesh. More-
over, the difference between curves in Figures 3.37 and 3.38 corresponding to the 800
linear element uncorrected case suggests caution when performing RBDO with insuf-
ficiently refined meshes.
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Table 3.6. RBDO results for MEMS bistable mechanism:
design variable bounds and optimal designs resulting from
analysis with four meshes using AMV2+.

initial optimal
variable or metric quadratic linear linear linear quadratic

l.b. name u.b. 3200 800 800 w/EE 12800 3200

10 L1 (µm) 35 28.06 28.33 28.07 28.04 28.08

10 L2 (µm) 35 24.50 24.61 24.44 24.42 24.47

10 L3 (µm) 35 30.83 31.05 30.63 30.59 30.72

10 L4 (µm) 35 30.83 31.08 30.61 30.56 30.70

0 θ1 (deg.) 5 4.167 4.170 4.195 4.198 4.184

0 θ2 (deg.) 5 2.500 2.514 2.485 2.482 2.491

0 θ3 (deg.) 5 2.500 2.523 2.472 2.467 2.484

0 θ4 (deg.) 5 2.400 2.410 2.387 2.385 2.393

1 W0 (µm) 3 1.333 1.313 1.349 1.354 1.342

1 W1 (µm) 3 1.253 1.233 1.268 1.273 1.260

2 W2 (µm) 5 3.500 3.505 3.485 3.482 3.491

1 W3 (µm) 3 2.000 1.993 2.005 2.006 2.004

1 W4 (µm) 3 1.333 1.327 1.334 1.333 1.334

E [Fmin] (µN) -6.645 -6.208 -6.231 -6.188 -6.288

2 β 2.172 1.998 1.998 2.002 2.094

50 E [Fmax] (µN) 150 57.05 59.19 57.65 57.87 57.11

E [E2] (µm) 8 6.019 6.156 6.002 5.996 6.021

var. in Fmin per β 0.76 0.60 0.62 0.59 0.62

num. func. evals. - 3581 2822 3149 1750

avg. time/eval (sec) - 24.0552 34.4634 425.8951 479.9207
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Figure 3.37. Optimal force–displacement curves resulting
from RBDO with various meshes.
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Figure 3.38. Verified force–displacement curves generated
using reference mesh (3200 quadratic elements) with optimal
geometries resulting from RBDO with various meshes.
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Chapter 4

Accomplishments and Conclusions

This report explores the deployment of reliability analysis and error estimation capa-
bilities to probabilistic analysis and design of microelectromechanical systems (MEMS).
An error estimator is developed for the error in the surface force in finite element
approximations of nonlinear elasticity models. Numerical results verify that the esti-
mator produces accurate error estimates using both uniform and adaptively refined
meshes. Error-corrected and error-controlled reliability analysis using the estimator
are applied to address solution verification in an automated, on-line manner. Any
dependence of solution discretization errors on random or design variables, which can
occur particularly when varying geometric shape parameters, is captured. The most
effective and affordable of these approaches are carried forward in probabilistic design
studies for robust and reliable operation of a bistable MEMS device.

The key milestone conclusion is that on-line solution verification approaches show
significant promise. In terms of accuracy, controlling or correcting for errors (or
both) leads to higher confidence in the uncertainty analysis and probabilistic design
recommendations. In terms of computational expense, the use of error-correction on
coarse meshes (from adjoint-based quantity of interest error estimates) was shown
to result in less than 10% of the simulation expense of fully converged meshes with
comparable accuracy. In terms of computational reliability, the ability of the on-line
approach to be parameter-adaptive precludes the possibility of using model results
that are converged for one set of parameters, but not for another. And in terms of
convenience, the potential elimination of the need for manual convergence studies
should significantly reduce overhead for analysts and designers.

Table 4.1 summarizes these characteristics for different approaches to solution verifi-
cation within UQ/RBDO studies, including no solution verification, off-line solution
verification at the simulation level (e.g., Figure 3.7), off-line solution verification at
the UQ/RBDO study level (e.g., Figure 3.26), and on-line solution verification us-
ing error estimation and adaptivity. Of these possibilities, the no verification and
simulation-level off-line approaches are believed to be the two most common practices
at this time. The on-line approaches are clearly the most desirable, but are obtained
at the price of additional simulation development to support error estimation and
adaptivity.
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no simulation-level study-level on-line
verification off-line off-line EE/Adapt

Accuracy L M H H
Efficiency H M L H
Reliability L M H H
Convenience H M L H

Table 4.1. Comparison of solution verification strategies:
H = high, M = medium, L = low

4.1 Observations on error estimation and adaptiv-

ity

Individual observations for error estimation and adaptivity include:

• The surface force computed by Aria on sequences of uniform meshes of linear
or quadratic elements converges at the formal rate O(h2 p) = O(N−p), where h
is element size, N is the number of nodes, and p = 1, 2 is the polynomial degree.
The surface force computed by Aria on adaptive sequences of meshes of linear
elements (p = 1) converges at O(N−1) which agrees with the observed rate
for uniform refinement. This is expected behavior for this particular problem
geometry and set of boundary conditions, because the input data is smooth,
resulting in a relatively smooth solution. For more complex input data, e.g., re-
entrant corners, nonsmooth boundary conditions, or material interfaces, adap-
tivity would be expected to provide a similar rate of convergence, while uniform
meshes would have a lower order of convergence.

• The a posteriori estimator for the quantity of interest is sufficiently accurate
for the bistable MEMS problem. On the specific sets of meshes used in this
study, the ratio of the estimated to the exact error (effectivity) fell in the range
[0.7, 1.4] on uniform meshes, and [0.65, 0.95] on adaptive meshes. The accuracy
of the estimator, measured by the effectivity, appeared to increase as the meshes
were refined.

• The computational cost of the quantity of interest error estimator is relatively
small in the bistable MEMS problem, due to the relatively small problem size
(less than 20,000 elements) and the use of a direct solver. In the formulation
used in the milestone, the linearized adjoint problem is solved using the same
matrix as the primal problem (which, with a proper implementation, may be
formulated as solving an extra right hand side of the linearized primal problem),
and the gradient recovery scales as O(N). For large scale problems (greater than
100,000 elements), the cost of the adjoint solve will grow with the linear solve
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for the displacement. However, in a nonlinear problem such as this, the cost will
be the same as an additional nonlinear iteration. The cost of the adjoint solve
can be reduced through the use of an iterative solver with a looser tolerance or
re-use of the preconditioner from the last linear solve for the displacements.

• The adaptive meshes based on the quantity of interest indicator generally ex-
hibit smaller errors for the same number of nodes versus the meshes generated
using the global indicator. The quantity of interest indicator produced more
local mesh refinement near the surface of interest, while the global indicator
tended to produce more uniform patches of elements. The advantage of the
quantity of interest estimator would be stronger in more complicated boundary
value problems.

• The sum of the surface force and the quantity of interest error estimate was
always more accurate than the force itself, and this sum converged at a faster
rate for both uniform and adaptive sequences of meshes.

• In this milestone, the quadratic elements provided a means to an inexpensive
“overkill,” or reference solution. This is a result of the fact that, for sufficiently
smooth problems, elements of higher polynomial order than linear converge
much more quickly to the exact solution.

4.2 Observations on UQ and RBDO

Individual observations for uncertainty quantification and probabilistic design include:

• Discretization errors were demonstrated to have a significant parameter depen-
dence with respect to both the design and uncertain variables for this MEMS
application. While one might assume that discretization error would primarily
be a function of mesh density, it has been shown to also be a strong function
of the internal states of the simulation. This makes a strong case for parame-
ter adaptive approaches to solution verification for use within uncertainty and
design studies.

• Our probabilistic design results satisfied the prescribed reliability (β ≥ 2) and
improved robustness with respect to the modeled uncertainties (reducing vari-
ability in force from 5.6 µN per input standard deviation in the initial design
to 0.59–0.62 in the final designs). However, additional uncertainties should be
included in future studies to prevent a lack of robustness with respect to other
shape and material variabilities. In particular, width bias should be augmented
to include manufacturing uncertainties in lengths and angles (the other design
variables), and small symmetry imperfections (requiring a full switch model)
could have a significant effect on buckling performance.

99



• Reliability analysis and design methods are a good match for applications in-
volving MEMS. For the physics studied to date, simulation results have been
smooth and gradients of response metrics with respect to design and uncertain
parameters have been reliable, so long as mesh changes while finite differenc-
ing are not large. Nongradient-based approaches for optimization or UQ would
have been significantly more expensive.

• Our shape optimization approach regenerated structured meshes for each new
set of shape parameters using FASTQ. Future enhancements will focus on
smooth mesh movement using tools such as DDRIV and MESQUITE. This ap-
proach is distinct from topology optimization, which is a large-scale approach
that designs the material density for every element in a computational domain.

• Numerical differencing for gradients requires tight control of mesh schedules
employed during adaptive refinement procedures. For example, multiple Aria
simulations are performed as a part of the finite–difference approximation to
the derivative of Fmin with respect to a given design or uncertain parameter.
The introduction of dynamic adaptivity means that these simulations may be
performed for different mesh schedules due to the parameter change. It has
been shown in this work that this may lead to inaccurate finite–difference ap-
proximations in some situations. A possible future remedy would be for Aria to
re-use a previously generated adaptive mesh schedule while finite differencing,
such that one can be assured of differencing simulation results across the same
discretization. Support for analytic gradients would also address this issue.

• Second-order reliability analysis methods were more efficient and robust than
standard first-order techniques. The Sandia-developed AMV2+ method using
SR1 Hessian updates was successful at converging to MPPs when the industry-
standard AMV+ technique was not. Future work will extend AMV+ and
AMV2+ to use trust-region management of surrogate limit state models, which
will further improve their robustness.

• Optimizers are highly proficient at locating weaknesses in a computational
model and exploiting them in seeking designs which better satisfy the objective
and constraints. The probability integration within a reliability analysis is such
a weakness, since a first-order or partial second-order approximation to the limit
state centered at the MPP can be an inaccurate representation of the true limit
state and associated failure probability. In particular, a design problem with
active reliability constraints will approach the failure domain as tightly as pos-
sible, and points where the failure region encircles the design (e.g., Figure 1.4b)
will not have their reliability represented accurately by low-order approxima-
tions. While this situation may be relatively uncommon for uncertainty analysis
by itself, we have found that it is much more prevalent for designs that are op-
timized for probabilistic performance. That is, standard integration approaches
will often be fine for uncertainty analysis, but need to be “hardened” for use
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in RBDO to prevent optimizer exploitation and resulting under-estimation of
failure probabilities. Future work in this area is described in [14].

• The error-corrected approach was the most efficient for both UQ and RBDO.
However, the possibility of having error-corrected results that are not yet con-
verged (e.g., the linear 200 corrected case in Figure 3.29) is a concern. The
combination of error-controlled and error-corrected approaches, while not as
efficient as error-corrected alone, addresses this concern and provides a higher
confidence in the UQ/RBDO results. Tuning the combination of error-control
and error-correction for improved computational efficiency (e.g., by limiting
adaptivity cycles) appears to be a fruitful direction.

• The use of error-corrected approaches to UQ and RBDO is related to the area
of multifidelity surrogate-based optimization (SBO). In multifidelity SBO, cor-
rection factors are periodically computed using the difference between low and
high fidelity models [29]. In the error-corrected UQ and RBDO approaches from
this report, a single-fidelity approach is used where a low fidelity, unconverged
model is continuously corrected based on error estimates to approximate fully-
converged results. Since multifidelity SBO updates the correction factors infre-
quently in order to minimize use of the expensive high fidelity model, continuous
correction factors from error estimation could accelerate the SBO process and
remove the need for trust-region management.

• More robust determination of values and derivatives with respect to design
parameters of key points of interest in the response function could improve
performance and accuracy. Aria is capable of using the LOCA package [59]
for automated parameter continuation, turning point tracking and sensitivity
analysis. The LOCA package is capable of providing very accurate locations of
stability turning points as well as tracking those turning points across variations
of other design parameters (“turning point tracking and continuation”). Signifi-
cant improvements in performance and accuracy would be possible if Aria would
better expose the LOCA features to improve interoperability with DAKOTA.

4.3 Accomplishments and Capability Development

This milestone crosscuts multiple centers, with components including the uncertainty
analysis and probabilistic design capabilities from DAKOTA (1400), global norm and
quantity of interest error estimates from Coda (1500), nonlinear mechanics analysis
from Aria (1500), data structures and h-refinement algorithms from SIERRA (1500),
and MEMS model development and MESA program relevance (1700). New capabil-
ities have been developed and tested within the codes by their respective teams for
use in this milestone, including:

• nonlinear elasticity model for large displacements
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• postprocessed reaction forces on domain boundaries

• mesh h-adaptivity with hanging nodes

• quantity of interest error estimator for reaction forces in nonlinear elastic prob-
lems

• capability to solve linearized adjoint approximation on same mesh

• least squares based gradient recovery and ZZ indicator

• adaptive control of surface force error in a transient nonlinear quasistatic prob-
lem – the capability to adapt the mesh to ensure the accuracy of the reaction
force within a user specified tolerance

• capability to compute CDF using uncorrected and error corrected output on
both uniform and adaptive meshes

• second-order surrogate-based reliability analysis and design methods and semi-
analytic probabilistic design sensitivities in DAKOTA.
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[12] I .Babuška, O. C. Zienkiewicz, and J. Gago, editors. Accuracy estimates and
adaptive refinements in finite element computations, Wiley Series in Numerical
Methods in Engineering. John Wiley & Sons, 1984.

103



[13] R. Becker and R. Rannacher. A feed-back approach to error control in finite
element methods: basic analysis and examples. East-West J. Numer. Math.,
4(4):237–264, 1996.

[14] B. J. Bichon, M. S. Eldred, L. P. Swiler, S. Mahadevan, and J. M. McFarland.
Multimodal reliability assessment for complex engineering applications using effi-
cient global optimization. In abstract submitted for 9th AIAA Non-Deterministic
Approaches Conference, Honolulu, HI, April 23–26, 2007.

[15] G. E. P. Box and D. R Cox. An analysis of transformations. J. Royal Stat. Soc.,
26:211–252, 1964.

[16] K. Breitung. Asymptotic approximation for multinormal integrals. J. Eng.
Mech., ASCE, 110(3):357–366, 1984.

[17] S. C. Brenner and L. R. Scott. The Mathematical Theory of Finite Element
Methods. Springer, New York, 2nd edition, 2002.

[18] G. F. Carey. A mesh-refinement scheme for finite element computations. Comput.
Mech. App. Mech. Engrg., 17/18:541–560, 1976.

[19] G. F. Carey. Computational grids: generation, adaptation, and solution strate-
gies. Taylor & Francis, 1997.

[20] X. Chen and N .C. Lind. Fast probability integration by three-parameter normal
tail approximation. Struct. Saf., 1:269–276, 1983.

[21] H. W. Coleman and W. G. Steele. Experimentation and Uncertainty Analysis
for Engineers. Wiley, New York, 2nd edition, 1999.

[22] T. D.Blacker. FASTQ users manual, version 1.2. Technical Report SAND88-
1326, Sandia National Laboratories, Albuquerque, NM, July 1998.

[23] A. Der Kiureghian and P. L. Liu. Structural reliability under incomplete proba-
bility information. J. Eng. Mech., ASCE, 112(1):85–104, 1986.

[24] X. Du and W. Chen. Sequential optimization and reliability assessment method
for efficient probabilistic design. J. Mech. Design, 126:225–233, 2004.

[25] H. C. Edwards. Sierra framework for massively parallel adaptive multiphysics
application. Technical Report SAND2004-6277C, Sandia National Laboratories,
Albuquerque, NM, July 2005.

[26] M. S. Eldred, H. Agarwal, V. M. Perez, S. F. Wojtkiewicz, Jr., and J. E. Re-
naud. Investigation of reliability method formulations in DAKOTA/UQ. Struc-
ture & Infrastructure Engineering: Maintenance, Management, Life-Cycle De-
sign & Performance. to appear.

[27] M. S. Eldred and B. J. Bichon. New second-order reliability formulations for
reliability analysis and design. in preparation.

104



[28] M. S. Eldred and A. A. Giunta. Implementation of a trust region model man-
agement strategy in the DAKOTA optimization toolkit. In Proceedings of the
8th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and
Optimization, number AIAA-2000-4935, Long Beach, CA, September 6–8, 2000.

[29] M. S. Eldred, A. A. Giunta, and S. S. Collis. Second-order corrections for
surrogate-based optimization with model hierarchies. In Proceedings of the 10th
AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Albany,
NY,, Aug. 30–Sept. 1, 2004. AIAA Paper 2004-4457.

[30] M. S. Eldred, A. A. Giunta, B. G. van Bloemen Waanders, S. F. Wojtkiewicz,
Jr., W. E. Hart, and M. P. Alleva. DAKOTA, a multilevel parallel object-
oriented framework for design optimization, parameter estimation, uncertainty
quantification, and sensitivity analysis. version 3.1 users manual. Technical Re-
port SAND2001-3796, Sandia National Laboratories, Albuquerque, NM, Revised
April 2003.

[31] M. S. Eldred, A. A. Giunta, S. F. Wojtkiewicz Jr., and T. G. Trucano. Formula-
tions for surrogate-based optimization under uncertainty. In Proceedings of the
9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization,
number AIAA-2002-5585, Atlanta, GA, September 4–6, 2002.

[32] K. Eriksson and C. Johnson. Adaptive methods for parabolic problems i: a linear
model problem. SIAM J. Numer. Anal., 1991.

[33] D. Estep. A posteriori error bounds and global error control for approximation
of ordinary differential equations. SIAM J. Numer. Anal., 32(1):1–21, 1995.

[34] D. Estep, M. Holst, and M. Larson. Generalized green’s functions and the effec-
tive domain of influence. SIAM J. Sci. Comput., 26(4):1314–1339, 2005.

[35] D. Estep, M. Holst, and D. Mikulencak. Accounting for stability: a posteriori
error estimates based on residuals and variational analysis. Comun. Numer.
Meth. Engrg., 18(1):15–30, 2002.

[36] G. M. Fadel, M. F. Riley, and J.-F. M. Barthelemy. Two point exponential
approximation method for structural optimization. Structural Optimization,
2(2):117–124, 1990.

[37] P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright. User’s guide for npsol
5.0: A fortran package for nonlinear programming. Technical Report SOL 86-1,
System Optimization Laboratory, Stanford University, Stanford, CA, Revised
July 1998.

[38] A. Haldar and S. Mahadevan. Probability, Reliability, and Statistical Methods in
Engineering Design. Wiley, New York, 2000.

[39] M. Hohenbichler and R. Rackwitz. Sensitivity and importance measures in struc-
tural reliability. Civil Eng. Syst., 3:203–209, 1986.

105



[40] M. Hohenbichler and R. Rackwitz. Improvement of second-order reliability esti-
mates by importance sampling. J. Eng. Mech., ASCE, 114(12):2195–2199, 1988.

[41] H. P. Hong. Simple approximations for improving second-order reliability esti-
mates. J. Eng. Mech., ASCE, 125(5):592–595, 1999.

[42] B. D. Jensen, M. B. Parkinson, K. Kurabayashi, L. L. Howell, and M. S. Baker.
Design optimization of a fully-compliant bistable micro-mechanism. In Proc.
2001 ASME Intl. Mech. Eng. Congress and Exposition, New York, NY, November
11–16, 2001.

[43] A. Karamchandani and C. A. Cornell. Sensitivity estimation within first and
second order reliability methods. Struct. Saf., 11:95–107, 1992.

[44] D. C. Kemeny, L. L Howell, and S. P Magleby. Using compliant mechanisms
to improve manufacturability in MEMS. In Proc. 2002 ASME DETC, number
DETC2002/DFM-34178, 2002.

[45] F. Larsson, P. Hansbo, and K. Runesson. Strategies for computing goal–oriented
a posteriori error measures in non–linear elasticity. Int. J. Numer. Meth. Engrg.,
55:879–894, 2002.

[46] R. Liu, B. Paden, and K. Turner. MEMS resonators that are robust to process-
induced feature width variations. J. Microelectromech. Syst., 11:505–551, 2002.

[47] R. W. Logan and C. K. Nitta. Comparing 10 methods for solution verification,
and linking to model validation. Journal of Aerospace Computing, Information,
and Communication, 3:354–373, 2006.

[48] K. Maute and D. M. Frangopol. Reliability-based design of MEMS mechanisms
by topology optimization. Comput. Structures, 81:813–824, 2003.

[49] A. Mawardi and R. Pitchumani. Design of microresonators under uncertainty.
J. Microelectromech. Syst., 14:63–69, 2005.

[50] J. C. Meza. OPT++: An object-oriented class library for nonlinear optimization.
Technical Report SAND94-8225, Sandia National Laboratories, Albuquerque,
NM, March 1994.

[51] M. Paraschivoiu and A. Pater. A hierarchical duality approach to bounds for
the outputs of partial differential equations. Comput. Meth. Appl. Mech. Engrg.,
158:389–407, 1998.

[52] S. Prudhomme and J. T. Oden. On goal-oriented error estimation for elliptic
problems: application to the control of pointwise errors. Comput. Meth. Appl.
Mech. Engin., 176(1–4):313–331, 1999.

[53] J. Qiu and A. H. Slocum. A curved-beam bistable mechanism. J. Microelec-
tromech. Syst., 13(2):137–146, 2004.

106



[54] R. Rackwitz. Optimization and risk acceptability based on the Life Quality
Index. Struct. Saf, 24:297–331, 2002.

[55] R. Rackwitz and B. Fiessler. Structural reliability under combined random load
sequences. Comput. Struct., 9:489–494, 1978.

[56] R. Rannacher. Adaptive galerkin finite element methods for partial differential
equations. J. Comput. App. Math., 128:205–233, 2001.

[57] R. Ranncher and F.-T. Suttmeirer. A feed–back approach to error control in finite
element methods: application to linear elasticity. Comput. Mech., 19:434–446,
1997.

[58] M. Rosenblatt. Remarks on a multivariate transformation. Ann. Math. Stat.,
23(3):470–472, 1952.

[59] A.G. Salinger, E.A. Burroughs, R.P. Pawlowski, E.T. Phipps, and L.A. Romero.
Bifurcation tracking algorithms and software for large scale applications. Intl. J.
Bifurcation Chaos, 15(3):1015–1032, 2005.

[60] A. Saltelli, K. Chan, and E. M Scott. Sensitivity Analysis. Wiley, New York,
2000.

[61] L. Schenato, W. C. Wu, L. E. Ghaoui, and K. Pister. Process variation analysis
for MEMS design. Proc. SPIE, 4236:272–279, 2001.

[62] L. R. G Treloar. The elasticity of a network of long-chain molecules I. Trans.
Faraday Soc., 39:36–41, 1943.

[63] L. R. G Treloar. The elasticity of a network of long-chain molecules II. Trans.
Faraday Soc., 39:241–246, 1943.

[64] J. Tu, K. K. Choi, and Y. H. Park. A new study on reliability-based design
optimization. J. Mech. Design, 121:557–564, 1999.

[65] Vanderplaats Research and Development, Inc., Colorado Springs, CO. DOT
Users Manual, Version 4.20, 1995.

[66] L. Wang and R. V. Grandhi. Efficient safety index calculation for structural
reliability analysis. Comput. Struct., 52(1):103–111, 1994.

[67] T. Wildey, S. Tavener, and D. Estep. A posteriori error estimation of approxi-
mate boundary fluxes. in preparation.

[68] J. W. Wittwer. Simulation-based Design under Uncertainty for Compliant Mi-
croelectromechanical Systems. PhD thesis, Brigham Young University, Salt Lake
City, UT, April 2005.

107



[69] J. W. Wittwer, M. S. Baker, and L. L. Howell. Robust design and model valida-
tion of nonlinear compliant micromechanisms. J. Microelectromechanical Sys.,
15(1), 2006. to appear.

[70] S. F. Wojtkiewicz, Jr., M. S. Eldred, R. V. Field, Jr., A. Urbina, and J. R. Red-
Horse. A toolkit for uncertainty quantification in large computational engineering
models. In Proceedings of the 42rd AIAA/ASME/ASCE/AHS/ASC Structures,
Structural Dynamics, and Materials Conference, number AIAA-2001-1455, Seat-
tle, WA, April 16–19, 2001.

[71] Y.-T. Wu. Computational methods for efficient structural reliability and relia-
bility sensitivity analysis. AIAA J., 32(8):1717–1723, 1994.

[72] Y.-T. Wu, H. R. Millwater, and T. A. Cruse. Advanced probabilistic structural
analysis method for implicit performance functions. AIAA J., 28(9):1663–1669,
1990.

[73] Y.-T. Wu, Y. Shin, R. Sues, and M. Cesare. Safety-factor based ap-
proach for probability-based design optimization. In Proceedings of the 42rd
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materi-
als Conference, number AIAA-2001-1522, Seattle, WA, April 16–19, 2001.

[74] Y.-T. Wu and P. H. Wirsching. A new algorithm for structural reliability esti-
mation. J. Eng. Mech., ASCE, 113:1319–1336, 1987.

[75] S. Xu and R. V. Grandhi. Effective two-point function approximation for design
optimization. AIAA J., 36(12):2269–2275, 1998.

[76] O. C. Zienkiewicz and J. Z. Zhu. A simple error estimator and adaptive procedure
for practical engineering analysis. Int. J. Num. Meth. Eng., 24:337–357, 1987.

[77] T. Zou, S. Mahadevan, and R. Rebba. Computational efficiency in reliability-
based optimization. In Proceedings of the 9th ASCE Specialty Conference on
Probabilistic Mechanics and Structural Reliability, Albuquerque, NM, July 26–
28, 2004.

108



DISTRIBUTION:

1 Ivo Babuška
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