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Abstract

The DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) toolkit
provides a flexible and extensible interface between simulation codes and iterative analysis
methods. DAKOTA contains algorithms for optimization with gradient and nongradient-based
methods; uncertainty quantification with sampling, analytic reliability, and stochastic finite
element methods; parameter estimation with nonlinear least squares methods; and sensitivity
analysiswith design of experiments and parameter study methods. These capabilities may be used
on their own or as components within advanced strategies such as surrogate-based optimization,
mixed integer nonlinear programming, or optimization under uncertainty. By employing object-
oriented design to implement abstractions of the key components required for iterative systems
analyses, the DAKOTA toolkit provides aflexible and extensible problem-solving environment
for design and performance analysis of computational models on high performance computers.

This report serves as a user's manual for the DAKOTA software and provides capability
overviews and procedures for software execution, as well as a variety of example studies.
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Preface

The DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) project
started in 1994 as an internal research and development activity at Sandia National Laboratories
in Albuquerque, New Mexico. The original goal of this effort was to provide a common set of
optimization tools for a group of engineers who were solving structural analysis and design
problems. Prior to the start of the DAKOTA project, there was not a focused effort to archive the
optimization methods for reuse on other projects. Thus, for each new project the engineers found
themselves custom building new interfaces between the engineering analysis software and the
optimization software. This was a particular burden when attempts were made to use parallel
computing resources, where each project required the development of a unigue master program
that coordinated concurrent simulations on a network of workstations or a parallel computer. The
initial DAKOTA toolkit provided the engineering and analysis community at Sandia Labs with
access to avariety of different optimization methods and algorithms, with much of the
complexity of the optimization software interfaces hidden from the user. Thus, the engineers
were easily able to switch between optimization software packages simply by changing afew
linesin the DAKQOTA input file. In addition to applications in structural analysis, DAKOTA has
been applied to applications in computational fluid dynamics, nonlinear dynamics, shock
physics, heat transfer, and many others.

DAKOTA has grown significantly beyond its original focus as atoolkit of optimization methods.
In addition to having many state-of-the-art optimization methods, DAKOTA now includes
methods for sensitivity analysis, parameter estimation, design-of-experiments, uncertainty
guantification, and multidimensional surface mapping. Underlying all of these methodsis
support for parallel computation; ranging from the level of a desktop multiprocessor computer up
to massively parallel computers found at national laboratories and supercomputer centers.

The objective of the public release of the DAKOTA software is to facilitate collaborations
among the developers of DAKOTA at Sandia National Laboratories and other institutions,
including academic, governmental, and corporate entities. We are interested in devel oping
relationships with persons or groups who would like to assist us in extending the capabilities of
DAKOTA. Wefed that this goal is best pursued by making the source code of our software
freely available to others. In doing so, we expect that some of our errors will be found and
corrected, and that new capabilities will be added to future versions of DAKOTA. Currently,
DAKOTA islicensed for public release under a GNU General Public License. See
http://ww. gnu. org/licenses/gpl.htm for moreinformation on the GPL
software use agreement.

The core DAKOTA framework developers are Mike Eldred, Tony Giunta, Mario Alleva, Steve
Wojtkiewicz, Bart van Bloemen Waanders, and Roscoe Bartlett. In addition, Bill Hart and Pam
Williams develop and maintain DAKOTA'’ sinterfaces to the SGOPT/COLINY, PICO, UTILIB,
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OPT++, DDACE, and APPS libraries. Additional contributors to these libraries include Patty
Hough, Tammy Kolda, Monica Martinez-Canales, Cindy Phillips, and John Red-Horse from
Sandia, as well as Prof. Roger Ghanem from Johns Hopkins University, Prof. Jonathan Eckstein
from Rutgers University, and Prof. Virginia Torczon from the College of William and Mary.

Contact Information:

Michael Eldred, Principal Investigator - DAKOTA Project
Sandia National Laboratories

PO. Box 5800

Mail Stop 0847

Albuquerque, NM 87185-0847

email: dakota@sandia.gov
web: http://endo.sandia.gov/DAKOTA
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1.0 Introduction

1.1 Motivation for DAKOTA Development

Computational models are commonly used in engineering design activities for simulating
complex physical systemsin disciplines such as fluid mechanics, structural dynamics, heat
transfer, nonlinear structural mechanics, shock physics, and many others. These simulators can
be an enormous aid to engineers who want to develop an understanding and/or predictive
capability for the complex behaviors that are often observed in the respective physical systems.
Often, these ssimulators are employed as virtual prototypes, where a set of predefined system
parameters, such as size or location dimensions and material properties, are adjusted to improve
or optimize the performance of a particular system, as defined by one or more system
performance objectives. Optimization of the virtual prototype then requires execution of the
simulator, evaluation of the performance objective(s), and adjustment of the system parametersin
an iterative and directed way, such that an improved or optimal solution is obtained for the
simulation as measured by the performance objective(s). System performance objectives can be
formulated, for example, to minimize weight, cost, or defects; to limit a critical temperature,
stress, or vibration response; or to maximize performance, reliability, throughput, agility, or
design robustness.

One of the primary motivations for the devel opment of DAKOTA (Design Analysis Kit for
Optimization and Terascale Applications) has been to provide engineers with a systematic and
rapid means of obtaining improved or optimal designs using their simulator-based models.
Making this capability available to engineers generally leads to better designs and improved
system performance at earlier stages of the design phase, and eliminates some of the dependence
on real prototypes and testing, thereby shortening the design cycle and reducing overall product
development costs. In addition to providing this environment for answering systems performance
questions, the DAKOTA toolkit also provides an extensible platform for the research and rapid
prototyping of customized methods and strategies [23].

1.2 Capabilities of DAKOTA

The DAKOTA toolkit provides aflexible, extensible interface between your simulation code and
avariety of iterative methods and strategies. While DAKOTA was originally conceived as an
easy-to-use interface between simulation codes and optimization algorithms, recent versions
have been expanded to interface with other types of iterative analysis methods such as
uncertainty quantification with nondeterministic propagation methods, parameter estimation with
nonlinear least squares solution methods, and sensitivity analysis with general-purpose design of
experiments and parameter study capabilities. These capabilities may be used on their own or as
building blocks within more sophisticated strategies such as hybrid optimization, surrogate-based
optimization, mixed integer nonlinear programming, or optimization under uncertainty.
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Thus, one of the primary advantages that DAKOTA has to offer is that access to a very broad
range of iterative capabilities can be obtained through a single, relatively ssmple interface
between DAKOTA and your simulator. Should you want to try a different type of iterative
method or strategy with your simulator, it is only necessary to change afew commandsin the
DAKOTA input and start a new analysis. The need to learn a completely different style of
command syntax and the need to construct a new interface each time you want to use a new
algorithm are eliminated.

1.3 How Does DAKOTA Work?

Figure 1.1 depicts the loosely-coupled, or “black-box,” relationship between DAKOTA and the
simulation code(s). Thisloose coupling is the simplest approach and is the one that most
DAKOTA userswill employ. Data is exchanged between DAKOTA and the simulation code by
reading and writing short data files, and DAKOTA does not require access to the source code of
the user’s simulation software. DAKQOTA is executed using commands that the user suppliesin
an input file (not shown in Figure 1.1) which specify the type of analysis to be performed (e.g.,
parameter study, optimization, uncertainty estimation, etc.), along with the file names associated
with the user’s simulation code. During its operation, DAKOTA automatically executes the user’s
simulation code by creating a separate UNIX process that is external to DAKOTA.

The solid linesin Figure 1.1 denote file input/output (1/O) operations that are part of DAKOTA or
the user’s simulation code. The dotted lines indicate the passing of information that must be
handled by the user. As DAKQOTA isrunning, it writes out a parameters file that contains the
values of the current variables. DAKOTA then starts the user’s simulation code (or, often, a short
driver script), and when the simulation has completed, DAKOTA reads in the response data from

DAKOTA =
DAKQOTA DAKOTA
Parameters File Results File
| Data Data A
‘ Pre-processing Post-processing |
Simulation Simuiation
Input File Usar's Output File
Simulation )
Code

Figurell  Theloosely-coupled or “black-box” interface between DAKOTA
and a user-supplied simulation code.
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aresultsfile. Thisprocessis repeated until al of the simulation code runs required by the
iterative study have been completed.

In some cases it is advantageous to have a close coupling between DAKOTA and the user’s
simulation code. This close coupling is an advanced feature of DAKOTA and is accomplished
through either a direct interface or a SAND (simultaneous analysis and design) interface. For the
direct interface, the user’s simulation code is modified to behave as a function or subroutine
under DAKQOTA. Thisinterface can be considered to be “semi-intrusive” in that it requires
relatively minor modifications to the simulation code. Its major advantage is the elimination of
the overhead resulting from file 1/0 and UNIX process creation. It can also be a useful tool for
parallel processing, by encapsulating everything within a single executable. The SAND interface
approach is“fully intrusive” in that it requires further modifications to the simulation code so
that DAKQOTA has access to the internal vectors and matrices computed by the smulation code.
With the SAND approach, both the optimization method in DAKOTA and a nonlinear simulation
code are converged simultaneously. While this approach can greatly reduce the computational
expense of optimization, considerable software devel opment effort must be expended to achieve
this intrusive coupling between SAND optimization methods and the simulation code.

1.4 Background and Mathematical Formulations

This section provides a basic introduction to the mathematical formulation of optimization,
nonlinear least squares, sensitivity analysis, design of experiments, and uncertainty
guantification problems. The primary goal of this section isto introduce terms relating to these
topics, and is not intended to be a description of theory or numerical algorithms. There are
numerous sources of information on these topics ([3],[32],[40],[41],[55],[66]) and the interested
reader is advised to consult one or more of these texts.

1.4.1 Optimization

A general optimization problem is formulated as follows:
minimize: f (X)
xoo"
subject to: g, <g(X)<gy
h(x) = ht (1)
a <A Xxsay
AgX = a4

XLSX SXU
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where vector and matrix terms are marked in bold typeface. In this formulation,
X = [X[, Xy, ...,X,] isann-dimensional vector of real-valued design variables or design

parameters. The n-dimensional vectors, x, and X ;, are the lower and upper bounds,

respectively, on the design parameters. These bounds define the alowable values for the
elements of x , and the set of all alowable valuesistermed the design space or the parameter

space. A design point or asample point isa set of valuesfor x that fall within the parameter
space.

The optimization goal isto minimize the objective function, f (x), while satisfying the
constraints. Constraints can be categorized as either linear or nonlinear and as either inequality or
equality. The nonlinear inequality constraints, g(x), are“2-sided,” in that they have both lower

and upper bounds, g, and g, respectively. The nonlinear equality constraints, h(x), have

target values specified by h, . Thelinear inequality constraints create alinear system A; X,
where A; isthe coefficient matrix for the linear system. These constraints are also 2-sided as

they have a; and a; aslower and upper bounds, respectively. The linear equality constraints

create alinear system A.x, where A, is the coefficient matrix for the linear system and a, are

the target values. The constraints partition the parameter space into feasible and infeasible
regions. A design point is said to be feasible if and only if it satisfies all of the constraints.
Correspondingly, adesign point is said to be infeasible if it violates one or more of the
constraints.

Many different methods exist to solve the optimization problem given by Equation 1, all of
which iterate on x in some manner. That is, an initial value for each parameter in x is chosen,
the response quantities, f (x), g(x), h(x), are computed, and some algorithm is applied to
generate anew x that will either reduce the objective function, reduce the amount of
infeasibility, or both. To facilitate a general presentation of these methods, three criteriawill be

used in the following discussion to differentiate them: optimization problem type, search goal,
and search method.

The optimization problem type can be characterized both by the types of constraints present in
the problem and by the linearity or nonlinearity of the objective and constraint functions. For
constraint categorization, a hierarchy of complexity exists for optimization algorithms, ranging
from simple bound constraints, through linear constraints, to full nonlinear constraints. By the
nature of thisincreasing complexity, optimization problem categorizations are inclusive of all
constraint types up to a particular level of complexity. That is, an unconstrained problem has no
constraints, a bound-constrained problem has only lower and upper bounds on the design
parameters, a linearly-constrained problem has both linear and bound constraints, and a

DAKOTA Users Manud - Introduction 15



nonlinearly-constrained problem may contain the full range of nonlinear, linear, and bound
constraints. If al of the linear and nonlinear constraints are equality constraints, then thisis
referred to as an equality-constrained problem, and if all of the linear and nonlinear constraints
areinequality constraints, then thisis referred to as an inequality-constrained problem. Further
categorizations can be made based on the linearity of the objective and constraint functions. A
problem where the objective function and all constraints are linear is called alinear
programming (LP) problem. These types of problems commonly arise in scheduling, logistics,
and resource allocation applications. Likewise, a problem where at least some of the objective
and constraint functions are nonlinear is called a nonlinear programming (NLP) problem. These
NL P problems predominate in engineering applications and are the primary focus of DAKOTA.

The search goal refers to the ultimate objective of the optimization algorithm, i.e., either global
or local optimization. In global optimization, the goal is to find the design point that gives the
lowest feasible objective function value over the entire parameter space. In contrast, in local
optimization, the goal isto find a design point that is lowest relative to a*“ nearby” region of the
parameter space. In almost all cases, global optimization will be more computationally expensive
than local optimization. Thus, the user must choose an optimization algorithm with an
appropriate search scope that best fits the problem goals and the computational budget.

The search method refers to the approach taken in the optimization algorithm to locate a new
design point that has alower objective function or is more feasible than the current design point.
The search method can be classified as either gradient-based or nongradient-based. In a
gradient-based algorithm, gradients of the response functions are computed to find the direction
of improvement. Gradient-based optimization is the search method that underlies many efficient
local optimization methods. However, a drawback to this approach is that gradients can be
computationally expensive, inaccurate, or even nonexistent. In such situations, nongradient-
based search methods may be useful. There are numerous approaches to nongradient-based
optimization. Some of the more well known of these include pattern search methods
(nongradient-based local techniques) and genetic algorithms (nongradient-based global
techniques).

The overview of optimization methods presented above underscores that thereis no single
optimization method or algorithm that works best for all types of optimization problems. Chapter
17 provides some guidelines on choosing which DAKOTA optimization algorithm is best
matched to your specific optimization problem.

1.4.2 Nonlinear Least Squares for Parameter Estimation

Specialized least squares solution algorithms can exploit the structure of a sum of the squares
objective function for problems of the form:
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minimize: f (X) = i [T, (X)]2
=1

xoo"
subject to: g, <g(X)<gy

h(x) = h,

(2)

al_sAi xsaU
Aex = a
X SX X

where f (x) isthe objective function to be minimized and T; (x) isthe it |east squares term.

The bound, linear, and nonlinear constraints are the same as described previously for (1).
Specialized least squares algorithms are generally based on the Gauss-Newton approximation.

When differentiating f (x) twice, termsof T, (x)T; "(x) and [T, '(x)]2 result. By assuming
that the former term tends toward zero near the solution since T; (x) tendstoward zero, then the
Hessian matrix of second derivatives of f (x) can be approximated using only first derivatives of
T, (x) . Asaresult, Gauss-Newton algorithms exhibit quadratic convergence rates near the

solution for those cases when the Hessian approximation is accurate, i.e. the residuals tend
towards zero at the solution. Thus, by exploiting the structure of the problem, the second order
convergence characteristics of afull Newton algorithm can be obtained using only first order
information from the least squares terms.

A common example for T; (x) might be the difference between experimental data and model
predictions for aresponse quantity at a particular location and/or time step, i.e.

T, (x) = R (X)—ﬁ ©)

where R, (x) isthe response quantity predicted by the model and R_I is the corresponding

experimental data. In this case, x would have the meaning of model parameters which are not
precisely known and are being calibrated to match available data. This class of problem is known
by the terms parameter estimation, system identification, model calibration, test/analysis
reconciliation, etc.
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1.4.3 Senditivity Analysis and Parameter Studies

In many engineering design applications, sensitivity analysis techniques and parameter study
methods are useful in identifying which of the design parameters have the most influence on the
response quantities. Thisinformation is helpful prior to an optimization study asit can be used to
remove design parameters that do not strongly influence the responses. In addition, these
techniques can provide assessments as to the behavior of the response functions (smooth or
nonsmooth, unimodal or multimodal) which can be invaluable in algorithm selection for
optimization, uncertainty quantification, and related methods. In a post-optimization role,
sengitivity information is useful is determining whether or not the response functions are robust
with respect to small changes in the optimum design point.

In some instances, the term sensitivity analysisis used in alocal sense to denote the computation
of response derivatives at a point. These derivatives are then used in asimple analysis to make
design decisions. DAKQOTA supports this type of study through numerical finite-differencing or
retrieval of analytic gradients computed within the analysis code. The desired gradient datais
specified in the responses section of the DAKOTA input file and the collection of thisdata at a
single point is accomplished through a parameter study method with no steps. This approach to
sensitivity analysis should be distinguished from the activity of augmenting analysis codes to
internally compute derivatives using techniques such as direct or adjoint differentiation,
automatic differentiation (e.g., ADIFOR), or complex step modifications. These sensitivity
augmentation activities are completely separate from DAKOTA and are outside the scope of this
manual. However, once completed, DAKOTA can utilize these analytic gradients to perform
optimization, uncertainty quantification, and related studies more reliably and efficiently.

In other instances, the term sensitivity analysisis used in amore global sense to denote the
investigation of variability in the response functions. DAKOTA supports this type of study
through computation of response data sets (typically function values only, but all data sets are
supported) at a series of pointsin the parameter space. The series of pointsis defined using either
avector, list, centered, or multidimensional parameter study method. For example, a set of
closely-spaced points in avector parameter study could be used to assess the smoothness of the
response functions in order to select afinite difference step size, and a set of more widely-spaced
points in a centered or multidimensional parameter study could be used to determine whether the
response function variation is likely to be unimodal or multimodal. See Chapter 8 for additional
information on these methods. These more global approaches to sensitivity analysis can be used
to obtain trend data even in situations when gradients are unavailable or unreliable, and they are
conceptually similar to the design of experiments methods and sampling approaches to
uncertainty quantification described in the following sections.

1.4.4 Design of Experiments

Classical design of experiments (DoE) methods and the more modern design and analysis of

computer experiments (DACE) methods are both techniques which seek to extract as much trend
data from a parameter space as possible using alimited number of sample points. Classical DoE
techniques arose from technical disciplines that assumed some randomness and nonrepestability
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in field experiments (e.g., agricultural yield, experimental chemistry). DoE approaches such as
central composite design, Box-Behnken design, and full and fractional factorial design generally
put sample points at the extremes of the parameter space, since these designs offer more reliable
trend extraction in the presence of nonrepeatability. DACE methods are distinguished from DoE
methods in that the nonrepeatability component can be omitted since computer simulations are
involved. In these cases, space filling designs such as orthogonal array sampling and latin
hypercube sampling are more commonly employed in order to accurately extract trend
information.

DAKOTA supports both DoE and DACE techniques. In common usage, only parameter bounds
are used in selecting the samples within the parameter space. Thus, DoE and DACE can be
viewed as specia cases of the more general probabilistic sampling for uncertainty quantification
(seefollowing section), in which the DOE/DACE parameters are treated as having uniform
probability distributions. The DoE/DACE techniques are commonly used for investigation of
global response trends, identification of significant parameters (e.g., main effects), and as data
generation methods for building response surface approximations.

1.4.5 Uncertainty Quantification

Uncertainty quantification (UQ) is related to sensitivity analysisin that the common goal isto
gain an understanding of how variations in the parameters affect the response functions of the
engineering design problem. However, for uncertainty quantification, some or all of the

components of the parameter vector, X , are considered to be uncertain and not precisely known.
The uncertain parameter values are specified by a probability distribution (e.g., normal/Gaussian)
rather than a unique value.

The impact on the response functions due to the probabilistic nature of the parametersis often
estimated using a sampling-based approach such as Monte Carlo sampling or one of its variants
(latin hypercube, quasi-Monte Carlo, Markov-chain Monte Carlo, etc.). In these sampling
approaches, arandom number generator is used to select different values of the parameters with
probability specified by their probability distributions. Thisis the point that distinguishes UQ
sampling from DoE/DACE sampling, in that the former supports general probabilistic
descriptions of the parameter set and the latter generally supports only a bounded parameter
space description (i.e., uniform probabilities). A particular set of parameter values is often called
asample point, or simply a sample. After a user-selected number of sample points has been
generated, the response functions for each sample are evaluated. Then, a statistical analysisis
performed on the response function values to yield information on their characteristics. While
this approach is straightforward, and readily amenable to parallel computing, it can be
computationally expensive depending on the accuracy requirements of the statistical information
(which links directly to the number of sample points).

When sampling methods are too expensive to apply, various analytic and quasi-analytic
reliability methods can be applied to UQ problems. These include the Advanced Mean Value
(AMV) and AMV+ agorithms, along with the first-order reliability method (FORM) and the
second-order reliability method (SORM) [41]. These techniques all solve internal optimization

DAKOTA Users Manud - Introduction 19



problems in order to locate the most probable point (MPP) of failure. The MPP isthen used as
the point about which approximate probabilities are integrated.

In addition, stochastic finite element (SFE) approaches using polynomial chaos expansions are
also available for characterizing the response of systems whose governing equations involve
stochastic coefficients. The sampling, analytic reliability, and SFE approaches are described in
more detail in Chapter 10.

1.5 Using thisManual

The previous sections in this chapter have provided a brief overview of the capabilitiesin
DAKOTA, and have introduced some of the common terms that are used in the fields of
optimization, parameter estimation, sensitivity analysis, design of experiments, and uncertainty
quantification. The DAKOTA user that is new to these techniquesis advised to consult the
references cited earlier in this chapter to obtain more detailed descriptions of methods and
algorithmsin these disciplines.

Chapter 2 provides information on how to obtain, install, and use DAKQOTA. In addition,
example problems are presented in this chapter to demonstrate some of DAKOTA's capabilities
for parameter studies, optimization, and UQ. Chapter 3 provides a brief overview of all of the
different software packages and capabilitiesin DAKOTA. Chapter 4 through Chapter 6 provide
information on model components which are involved in parameter to response mappings and
Chapter 7 describes the output created by DAKOTA. Chapter 8 through Chapter 12 provide
details on the iterative algorithms supported in DAKOTA, and Chapter 13 describes DAKOTA's
advanced optimization strategies. Chapter 14 describes the approximation methods available in
DAKOTA, Chapter 15 covers DAKOTA's parallel computing capabilities, Chapter 16 provides
information on interfacing DAKOTA with engineering simulation codes, and Chapter 17
provides some usage guidelines for selecting DAKOTA algorithms. Finally, Chapter 18 through
Chapter 20 describe restart utilities, failure capturing facilities, and additional test problems,
respectively.
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2.0 Getting Started with DAKOTA

2.1 Installation Guide

DAKQOTA can be compiled for most common computer systems that run the UNIX and LINUX
operating systems. The computers and operating systems actively supported by the DAKOTA
project include:

* Sun Solaris 2.8
* SGI IRIX 6.5
» Compag/DEC OSF 5.1
* IBM AIX 5.1
* Intel PC Redhat LINUX versions 7.x
* ASCI Red
In addition, partial support is provided for Cplant, PC Windows (via Cygwin), Mac OSX, and

HP HPUX. Additional details are provided in thefile/ Dakot a/ READVE in the distribution
(see the following section for download instructions).

2.1.1 How to Obtain DAKOTA - External to Sandia Labs

If you are outside of Sandia National Laboratories, the DAKOTA binary executable files and
source code files are available through the following web site:
http://endo. sandi a. gov/ DAKOTA

To receive the binary or source code files, you are asked to fill out a short online registration
form. Thisinformation will be used by the DAKOTA devel opment team to collect software usage
metrics and, if desired, to register you for update announcements.

If you are anew DAKOTA user, we suggest that you download one of the binary executable
distributions rather than the source code distribution. The compilation process can be somewhat
involved, and it will be easier for you to first gain an understanding of DAKOTA by running the
example problems that are provided with one of DAKOTA’s binary distributions. For more
experienced users, DAKOTA can be customized with additional packages and ported to
additional computer platforms when building from the source code.

2.1.2 How to Obtain DAKOTA - Internal to Sandia Labs

DAKOTA hinary executable files have been compiled and distributed to SCICO LAN and
common compute servers at Sandia, Los Alamos, and Lawrence Livermore. Common locations
include/ usr /1 ocal / bi n/ dakot a and/ pr oj ect s/ dakot a/ bi n/ dakot a. To seeif
DAKOTA isavailable on your computer system and accessible in your UNIX environment path
settings, type the command whi ch dakot a at the UNIX prompt. If the DAKOTA executable
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fileisin your path, its location will be echoed to the terminal. If the DAKOTA executablefileis
available on your system but not in your path, then you will need to locate it and add its directory
to your path (the UNIX wher ei s and f i nd commands can be useful for locating the
executable).

If DAKQOTA isnot available on your system, the current preferred options are to either get an
account on one of the common compute servers where DAKOTA is maintained, or if thisis not
practical, contact one of the DAKOTA team members so that we can provide you with DAKOTA
executable files that are as complete as possible (i.e., that include Sandia-specific and site-
licensed software that is not yet publicly available). Alternatively, you can follow the instructions
given in the previous section to obtain the public version of the DAKOTA binary and/or source
codesfiles. In the future, a download facility on Sandia's internal restricted network may be
added to simplify internal distributions.

2.1.3 Installing DAKOTA - Binary Executable Files

Once you have downloaded a binary distribution from the web site listed above, you will have a
UNIX tar file that has aname similar to Dakot a_3_x. OSver si on. tar. gz.

[Note to Windows Users. Some users have found that the name of the tar file gets corrupted
when downloading the tar file to a PC running Windows. Before proceeding, verify that the name
of the downloaded tar file is the same as the name listed on the DAKOTA web site. If thefile
name has been corrupted, rename it before attempting the steps listed below.]

Usethe UNIX utility gunzi p to uncompressthe tar file and the UNIX t ar utility to extract the
files from the archive by executing the following commands:

gunzi p Dakota 3 x.(OSversion.tar.gz

tar -xvf Dakota 3 x.OSversion.tar
The tar utility will create a subdirectory named / Dakot a in which the DAKOTA executables
and example fileswill be stored. The executablesarein/ Dakot a/ bi n, and the example
problemsarein/ Dakot a/ Get ti ngSt art ed/ Exanpl es andin/ Dakot a/ t est .

2.1.4 Installing DAKOTA - Source Code Files

The installation process for the DAKOTA source code files is more involved than the installation
process for the binary files. Detailed instructions for installing DAKOTA are given in thefile
/ Dakot a/ | NSTALL.

2.1.5 Running DAKOTA

The DAKOTA executablefile is named dakot a. If this command is entered at the UNIX
prompt without any arguments, the following usage message is returned to the user:

usage: dakota [options and <args>]
-help (Print this sunmary)
-version (Print DAKOTA version nunber)
-input <$val > (REQUI RED DAKOTA input file $val)
-out put <$val > (Redirect DAKOTA standard output to file $val)
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-error <$val > (Redirect DAKOTA standard error to file $val)
-read_restart <$val > (Read an existing DAKOTA restart file $val)
-stop_restart <$val > (Stop restart file processing at eval uati on $val)
-write_restart <$val> (Wite a new DAKOTA restart file $val)

Of these available command line inputs, only the “- i nput ” option isrequired; al othersare
optional. The “- hel p” option prints the usage message above. The“- ver si on” option prints
the version number of the executable. The “- i nput ” option provides the name of the DAKOTA
input file. The“- out put ” and “- er r or ” options provide file names for redirection of the
DAKOTA standard output (stdout) and standard error (stderr), respectively. The
“-read_restart”and“-write_restart” command lineinputs provide the names of
restart databases to read from and write to, respectively. The“- st op_r est art” command line
input limits the number of function evaluations read from the restart database (the default is all
the evaluations) for those cases in which some evaluations were erroneous or corrupted. Restart
management is an important technigue for retaining data from expensive engineering
applications. Thisis an advanced topic that is discussed in detail in Chapter 17. Note that these
command line inputs can be abbreviated so long as the abbreviation is unique (the current set of
command line options do not have any possibility for abbreviation ambiguity). That is, “- h”,
oyt - =07, "-e”, -7 - 87, and “- W are commonly used in place of the longer forms
of the command line inputs.

To run DAKQOTA with a particular input file, the following syntax can be used:
dakota -i dakota.in

Thiswill echo the standard output (stdout) and standard error (stderr) messagesto the terminal.
To redirect stdout and stderr to separate files, the - 0 and - e command line options may be used:
dakota -i dakota.in -o dakota.out -e dakota.err

Alternatively, any of avariety of UNIX redirection variants can be used. The simplest of these
redirects stdout to another file:
dakota -i dakota.in > dakota. out

To append to afile rather than overwriteit, “>>" isused in place of “>". To redirect stderr as well
as stdout, a“&” is appended with no embedded space, i.e. “>&” or “>>&” isused. To override
the noclobber environment variable (if set) in order to allow overwriting of an existing output file
or appending of afilethat does not yet exist, a“!” is appended with no embedded space, i.e.
“SITUS&NT US> or “>>& 17 isused.

To run the dakota process in the background, append an ampersand symbol (&) to the command
with an embedded space, e.g.:
dakota -i dakota.in > dakota.out &

Refer to [1] for more information on UNIX redirection and background commands.
2.2 Rosenbrock and Textbook Test Problems

Many of the example problems in this chapter use the Rosenbrock function [32], which has the
form:
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_ 2,2 2
f (X, X,) = 100(x,=x,") +(1-=x,) 4

A three-dimensional plot of this function is shown in Figure 2.1, where both x; and x, rangein

value from -2 to 2. Figure 2.2 shows a contour plot for Rosenbrock’s function. An optimization
problem using Rosenbrock’s function is formulated as follows:

minimize: f (X, X,)

x 007
subject to: =2 <X <2

()

—2sx232

Note that there are no linear or nonlinear constraints in this formulation, so thisis a bound
constrained optimization problem. The unique solution to this problem lies at the point (X4, X5) =

(1,1) where the function value is zero.

Figure2.1 A 3-D plot of Rosenbrock’s function.
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Figure2.2  Contoursof Rosenbrock’s function with variable x; on the bottom
axis.

The two-variable version of the “textbook” example problem provides a nonlinearly constrained
optimization test case. It isformulated as:

mnimze
f = (x,=1)*+(x,-1)* (6)
subj ect to
X
g, =x]-5 <0 (7)
X
9, =%, -5 <0 (8)
0.5<x,<58 9
—2.9<x,<2.9 (10)

Contours of this example problem areillustrated in Figure 2.3, with a close-up view of the
feasible region given in Figure 2.4.
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Figure2.3  Contours of the textbook optimization problem showing
constraintsg, (solid) and g, (dashed). Thefeasibleregion liesat the
inter section of the two constraints.

1

0.5

_1pN
-1 -0.5 0 0.5 1

Figure2.4 A close-up view of thefeasibleregion for the textbook example
problem. The constrained optimum point isat (x4, X5) = (0.5, 0.5).
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For the textbook example problem, the unconstrained minimum occurs at (X4, Xo) = (1,1).
However, the inclusion of the constraints moves the minimum to (x4, X,) = (0.5, 0.5).

Several other example problems are available. See Chapter 20 for a description of these example
problems as well as further discussion of the Rosenbrock and textbook example problems.

2.3 DAKOTA Input File Format

All of the DAKOTA input files for the simple example problems presented here are included in
the distribution tar files within the directory / Dakot a/ Get ti ngSt ar t ed/ Exanpl es. A
simple DAKOTA input file for atwo-dimensional parameter study on Rosenbrock’s function is
shown in Figure 2.5 (filename: dakot a_r osenbr ock_2d. i n). Thisinput file will be used to
describe the basic format and syntax used in all DAKOTA inpuit files.

There are five specification blocks that may appear in DAKOTA input files. These are identified
in the input file using the following keywords: variables, interface, responses, method, and
strategy. These keyword blocks can appear in any order in aDAKOTA input file. At least one
variables, interface, responses, and method specification must appear, and no more than one
strategy specification should appear. In Figure 2.5, one of each of the keyword blocksis used.
Additional syntax features include the use of the backslash symbol (\) to escape the newline
character in order to split a keyword onto multiple lines for readability, use of the # symbol to
indicate a comment, use of single quotes for string inputs (e.g., ‘x1"), the use of commas and/or
white space for separation of specifications, and the use of “=" symbolsto optionally enhance the

# DAKOTA exanpl e problem 2-D paraneter study on
# Rosenbrock's function
vari abl es, \
conti nuous_design = 2 \
cdv_descri ptor ' x1' ' x2' \
cdv_| ower _bounds 2.0 -2.0 \
cdv_upper _bounds 2.0 2.0
interface, \
application direct, \
anal ysis_driver = 'rosenbrock’
responses, \
num obj ective_functions = 1 \
no_gradients \
no_hessi ans
nmet hod, \
nmul ti di m par anet er _st udy \
partitions = 8 8
strat egy, \
si ngl e_net hod \
# gr aphi cs \
t abul ar _graphi cs_data

Figure25 TheDAKOTA input filefor the 2-D parameter study
example problem.
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association of supplied data. See the DAKOTA Reference Manual [17] for additional details on
thisinput file syntax.

The variables section of the input file specifies the characteristics of the parameters that will be
used in the problem formulation. The variables can be continuous or discrete, and can be
classified as design variables, uncertain variables, or state variables. See Chapter 4 for more
information on the types of variables supported by DAKOTA. The variables section shown in
Figure 2.5 specifies that there are two continuous design variables. The sub-specifications for
continuous design variables use the abbreviation cdv in theinput file and include the descriptors
“x1” and “x2" aswell aslower and upper bounds for these variables. The information about the
variablesis organized in column format for readability. So, both variables x; and x, have alower

bound of -2.0 and an upper bound of 2.0.

The interface section of the input file specifies what approach will be used to map variablesinto
responses as well as details on how DAKOTA will pass datato and from a simulation code. In
this example, atest function internal to DAKOTA is used, but the data may also be obtained from
asimulation code that is external to DAKOTA. The keyword appl i cat i on indicates the use
of an interface to an application code (as opposed to an appr oxi mat i on interface) and the
keyword di r ect indicates the use of afunction linked directly into DAKOTA. The

anal ysi s_dri ver keyword indicates the name of the test function. Thisis all that is needed
since fileswill not be used to pass data between DAKOTA and the simulation code.

The responses section of the input file specifies the types of datathat the interface will return to
DAKQOTA. For the example shown in Figure 2.5, there is only one objective function, as
indicated by the keyword num obj ecti ve_functi ons = 1. Sincethereare no constraints
associated with Rosenbrock’s function, the keywords associated with constraint specifications are
omitted. The keywordsno_gr adi ent s and no_hessi ans indicate that gradient and
Hessian data are not needed.

The method section of the input file specifies the iterative technique that DAKOTA will employ,
such as a parameter study, optimization method, data sampling technique, etc. In Figure 2.5, the
keyword mul t i di m_par anet er _st udy specifies amultidimensional parameter study,
whilethe keyword par ti t i ons denotes the number of intervals per variable. In this case, there
will be eight intervals (nine data points) evaluated between the lower and upper bounds of both
variables (bounds provided previously in the variables section), for atotal of 81 response
function evaluations.

The final section of the input file shown in Figure 2.5 is the strategy section. This keyword
section is used to specify some of DAKOTA’s advanced meta-procedures such as multi-level
optimization, surrogate-based optimization, branch-and-bound optimization, and optimization
under uncertainty. See Chapter 13 for more information on these meta-procedures. The strategy
section also contains the settings for DAKOTA's graphical output (viathe gr aphi c¢s flag) and
the tabular data output (viathet abul ar _gr aphi cs_dat a keyword).
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2.4 Example Problems

2.4.1 Two-Dimensiona Parameter Study

The 2-D parameter study example problem listed in Figure 2.5 is executed by DAKOTA using
the following command:
dakota -i dakota_rosenbrock 2d.in > 2d. out

The output of the DAKQOTA run isdirected to the file named 2d. out . For comparison, thefile
2d. out . sav isincludedinthe/ Dakot a/ Get t i ngSt art ed/ Exanpl es directory. Asfor
many of the examples, DAKOTA provides areport on the best design point located during the
study at the end of these output files.

This 2-D parameter study produces the grid of data samples shown in Figure 2.6. Note that the
gr aphi cs flagin the strategy section of the input file has been commented out since, for this
example, the iteration history plots created by DAKQOTA are not particularly instructive. More
interesting visualizations can be created by importing DAKOTA’s tabular datainto an external
graphics/plotting package. Common graphics and plotting packages include Mathematica,
Matlab, Microsoft Excel, Origin, Tecplot, and many others (Sandia National Laboratories and the
DAKOTA developers do not endorse any of these commercia products).

_1 0 1

Figure2.6  Thedotsindicatethelocation of the design
points evaluated in the 2-D parameter study.
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2.4.2 VVector Parameter Study

In addition to the multidimensional parameter study, DAKOTA can perform a vector parameter
study, i.e., a parameter study between any two design points in an n-dimensional parameter
space.

Aninput file for the vector parameter study is shown in Figure 2.7. The primary differences
between thisinput file and the previous input file are found in the variables and method sections.
In the variables section, the keywords for the bounds are removed and replaced with the keyword
cdv_initial _point that specifiesthe starting point for the parameter study. In the method
section, thevect or _par anet er _st udy keywordisused. Thef i nal _poi nt keyword
indicates the stopping point for the parameter study, and num st eps specifies the number of
steps taken between the initial and final pointsin the parameter study.

# DAKOTA exanpl e problem vector paraneter
# study on Rosenbrock's function

vari abl es, \
conti nuous_design = 2 \
cdv_initial _point -0.3 0.2 \
cdv_descriptor ' x1' ''x2
i nterface, \
application direct, \
anal ysi s_driver = 'rosenbrock’
responses, \
num obj ective_functions = 1 \
no_gradi ents \
no_hessi ans
net hod, \
vect or _par amet er study \
final p0|nt =1.1 1.3 \
num steps = 10
strat egy, \
si ngl e_met hod \
tabul ar _graphi cs_data \
gr aphi cs

Figure2.7  The DAKOTA input filefor the vector parameter
study example problem.

The vector parameter study example problem is executed using the command
dakota -i dakota_rosenbrock vector.in > vector. out

Figure 2.8 shows the graphics output created by DAKOTA.. For this study, the simple DAKOTA
graphics are more useful for visualizing the results. Figure 2.9 shows the locations of the 11
sample points generated in this study. It is evident from these figures that the parameter study
starts within the banana-shaped valley, marches up the side of the hill, and then returns to the
valey. The output filevect or . out . sav isprovided inthe/ Dakot a/ Get ti ngSt art ed/
Exanpl es directory.

In addition to the vector and multidimensional examples shown, DAKOTA also supports list and
centered parameter study methods. Refer to Chapter 8 for additional information.
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Figure2.8 A screen capture of the DAKOTA graphicsthat are
generated from the vector parameter study

1 0

Figure2.9  Thedotsindicatethelocation of the design
pointsevaluated in the vector parameter study.

2.4.3 Gradient-based Unconstrained Optimization

A DAKOQOTA input file for a gradient-based optimization of Rosenbrock’s functionislisted in
Figure 2.10. The format of the input fileis similar to that used for the parameter studies, but there
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are some new keywords in the responses and method sections. First, in the responses section of
theinput file, the keyword block starting with nuner i cal _gr adi ent s specifiesthat afinite
difference method will be used to compute gradients for the optimization algorithm. Note that the
Rosenbrock function evaluation code inside DAKOTA has the capability to give analytical
gradient values. To switch from finite difference gradient estimates to analytic gradients,
uncomment theanal yti c_gr adi ent s keyword and comment out the four lines associated
with thenuner i cal _gr adi ent s specification. Next, in the method section of the input file,
several new keywords have been added. In this section, the keyword conm n_f r cg indicates
the use of the Fletcher-Reeves conjugate gradient algorithm in the CONMIN optimization
software package [65] for bound-constrained optimization. The keyword max_iterati ons is
used to indicate the computational budget for this optimization (in this case, asingle iteration
includes multiple evaluations of Rosenbrock’s function for the gradient computation steps and
the line search steps). The keyword conver gence_t ol er ance isused to specify one of
CONMIN'’s convergence criteria (here, CONMIN terminates if the objective function value
differs by less than the absolute value of the convergence tolerance for three successive
iterations). And, finally, the out put verbosity isset to qui et .

# DAKOTA exanpl e probl em gradient-based unconstrai ned
# optimzation study on Rosenbrock's function

vari abl es,
conti nuous_design = 2
cdv_descri ptor ' x1'
cdv_initial _point 1.2
cdv_| ower bounds -2.0 -
cdv_upper _bounds 2.0

————_

NNE
coonN

i nterface, \
appl i cation direct, \
anal ysis_driver = 'rosenbrock’

responses,
num obj ective_functions = 1
# anal ytic_gradients
numeri cal _gradients
nmet hod_sour ce dakot a
interval type forward
fd_step_size = .00001
no_hessi ans

——————__

met hod,
# dot _bfgs
conm n_frcg
convergence_tol erance = 1.0e-4
max_iterations = 100
out put qui et

———_

strategy, \
si ngl e_met hod \
t abul ar _graphi cs_data \

gr aphi cs

Figure2.10 TheDAKOTA input filefor the gradient-based
optimization example problem.

This DAKQOTA input file is executed using the following command:
dakota -i dakota_rosenbrock grad opt.in > grad_opt. out
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A sample output filenamed gr ad_opt . out . sav isincluded inthe/ Dakot a/
GettingStart ed/ Exanpl es directory. When this example problem is executed, DAKOTA
creates some iteration history graphics similar to the screen capture shown in Figure 2.11. These
plots show how the objective function and design parameters change in value during the
optimization steps. The scaling of the horizontal and vertical axes can be changed by moving the
scroll knobs on each plot. Also, the “Options’ button allows the user to plot the vertical axes
using alogarithmic scale. Note that log-scaling is only allowed if the values on the vertical axis
are strictly greater than zero.

Figure2.11 A screen capture of the DAKOTA output graphics showing the
iteration history for the gradient-based optimization example.

Figure 2.12 shows the iteration history of the optimization agorithm. The optimization starts at
the point (x4, X5) = (-1.2, 1.0) as given in the DAKOTA input file. Subsequent iterations follow
the banana-shaped valley that curves around toward the minimum point at (X4, x5) = (1.0, 1.0).
Note that the function evaluations associated with the line search phase of each CONMIN
iteration are not shown on the plot. At the end of the DAKOTA run, information is written to the
output file to provide data on the optimal design point. This data includes the optimum design
point parameter values, the optimum objective and constraint function values (if any), plusthe
number of function evaluations that occurred and the amount of time that elapsed during the
optimization study.
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Figure2.12 The sequence of design pointsevaluated during the gradient-based
optimization of Rosenbrock’s function (line search points omitted).

2.4.4 Gradient-based Constrained Optimization

This example demonstrates the use of a gradient-based optimization algorithm on a nonlinearly
constrained problem. The “textbook” example problem (see Section 2.2) is used for this purpose
and the DAKQOTA input file for this example problem is shown in Figure 2.13. Thisinput fileis
similar to the input file for the unconstrained gradient-based optimization example problem
involving the Rosenbrock function. Note the addition of commands in the responses section of
the input file that identify the number and type of constraints, along with the upper bounds on
these constraints. The commandsdi r ect andanal ysis_driver = 'text book’
specify that DAKOTA will execute itsinternal version of the textbook problem.

This example problem is executed by using the following command:
dakota -i dakota_textbook.in > textbook. out

For comparison purposes, thefilet ext book. out . sav isincluded in/ Dakot a/

Get ti ngSt art ed/ Exanpl es. Theresults of the optimization example problem are listed at
the end of thet ext book. out file. Thisinformation shows that the optimizer stopped at the
point (X1, X5) = (0.5, 0.5), where both constraints are satisfied, and where the objective function
valueis 0.125. This progress of the optimization algorithm is shown in Figure 2.14 where the
dots correspond to end point of each iteration in the algorithm. The starting point is (X4, Xp) =

(4.0, 0.0) where constraint g, is violated and constraint g, is satisfied. The optimizer takes a
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sequence of steps to minimize the objective function while reducing the infeasibility of g, and
retaining the feasibility of g,. The optimization graphics are aso shown in Figure 2.15.

# DAKOTA exanpl e probl em gradient-based constrai ned
# optim zation using the “textbook” exanple problem

strategy, \
si ngl e_net hod \
graphi cs tabul ar_graphi cs_data

met hod,
conmi n_nfd
mex_iterations = 50
convergence_tol erance = le-4

——_

vari abl es,
conti nuous_design = 2
cdv_initial _point 4.
cdv_upper _bounds 5.
cdv_| ower _bounds 0.
cdv_descri ptor £ X

RUIoO
'

NN O

N©©o
————_

interface, \
application direct \
anal ysi s_driver = 'text_book’

responses,
num obj ective_functions = 1
num nonl i near _i nequal ity_constraints = 2
nunerical _gradients
met hod_sour ce dakot a
interval _type centra
fd_step_size = .00001
no_hessi ans

Figure2.13 The DAKOTA input filefor the nonlinearly constrained
gradient-based optimization example problem.

! v X

——————__

=
0 1 2 3 4

Figure2.14 Iteration history of the textbook example problem
(iterations marked by solid dots).
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File Wiew

J0et IEEEHD |pt. | IEEEHD |Opt. | IEEA]| >

|Opt, | AIREEHD |pt. | IEEE]| >

Figure2.15 Theiteration history of thetextbook example problem shows how the objective
function was reduced during the search for a feasible design point.

2.4.5 Nonlinear Least Squares M ethods for Optimization

Both the Rosenbrock and textbook example problems can be formulated as |east squares
minimization problems (see Section 20.1 and Section 20.2). For example, the Rosenbrock
problem can be cast as:

mninize (f1)2 + (f,)?

wheref ; = 10( X5- x12) andf, = (1-x7).Whenusing aleast squares approach to
minimize a function, each of the least squarestermsfy, f,,... isdriven to zero. This formulation
permits the use of specialized algorithms that can be more efficient than general purpose
optimization algorithms. See Chapter 12 for more detail on the algorithms used for least squares
minimization, as well as a discussion on the types of engineering design problems (e.g.,
parameter estimation) that can make use of the least squares approach.

Figure 2.16 isalisting of the DAKOTA input filedakot a_r osenbr ock_I s. i n. Thisinput
file differs from the input file shown in Figure 2.10 in several key areas. The responses section of
the input file uses the keyword num | east _squares_terns = 2 instead of the

DAKOTA Users Manual - Getting Started with DAKOTA 36



num obj ecti ve_functions = 1. Thekeywordsin the interface section show that the
UNIX syst emcall method is used to run the C++ analysis code named r osenbr ock | s.
The method section of the input file shows that the Gauss-Newton agorithm from the OPT++
library [50] (opt pp_g_new on) isused in this example. For DAKOTA Version 3.1, the Gauss-
Newton and NLSSOL SQP algorithms are available for exploiting the specia mathematical
structure of |east squares minimization problems.

# DAKOTA exanpl e problem a |east squares
# approach to mnim ze Rosenbrock's function

strategy, \
si ngl e_met hod \
gr aphics

nmet hod,

opt pp_g_newt on,
max_lIterations = 50
convergence_tol erance = le-4

—_—

vari abl es,
conti nuous_design = 2
cdv_initial_point -1.
cdv_| ower _bounds -2
cdv_upper _bounds 2.
cdv_descri ptor ' X

]
NN
————_

RroonN
Nooo

i nterface,
application system
anal ysi s_driver = ' rosenbr ock’
anal ysi s_driver = 'rosenbrock_| s’

—_—

responses,

# num obj ective_functions
num | east _squares_terns
anal ytic_gradients
no_hessi ans

\
1 \
2 \
\

Figure2.16 DAKOTA input file for minimizing the Rosenbrock
function using a least squares for mulation.

Theinput filelisted in Figure 2.16 is executed using the command:
dakota -i dakota rosenbrock |s.in > | eastsquares. out

Thefilel east squar es. out . sav isincluded in the directory / Dakot a/

CGettingStart ed/ Exanpl es. The optimization results at the end of thisfile show that the
least squares minimization approach has found the same optimum design point, (X4, X,) = (1.0,
1.0), as was found using the conventional gradient-based optimization approach. The iteration
history of the least squares minimization is given in Figure 2.17, and shows that 90 function
evaluations were needed for convergence. In this example the least squares approach required
about the same number of function evaluations as did conventional gradient-based optimization.
However, in many cases the least squares algorithm will converge more rapidly in the vicinity of
the solution.
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Figure2.17 Theiteration history for least squarestermsf; and
f> when minimizing the Rosenbrock function.

2.4.6 Nongradient-based Optimization via Pattern Search

In addition to gradient-based optimization algorithms, DAKOTA also contains a variety of
nongradient-based algorithms. One particular nongradient-based algorithm for local optimization
is known as pattern search (see Chapter 1 for a discussion of local versus global optimization).
The DAKOTA input file shown in Figure 2.18 applies a pattern search method to minimize the
Rosenbrock function. While this provides for an interesting comparison to the previous example
problems in this chapter, the Rosenbrock function is not the best test case for a pattern search
method. That is, pattern search methods are better suited to problems where the gradients are too
expensive to evaluate, inaccurate, or nonexistent; situations common among many engineering
optimization problems. It also should be noted that nongradient-based algorithms generally are
applicable only to unconstrained or bound-constrained optimization problems, although the
inclusion of general linear and nonlinear constraints in nongradient-based algorithmsis an active
area of research in the optimization community. For most users who wish to use nongradient-
based algorithms on constrained optimization problems, the easiest route is to create a penalty
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function, i.e., acomposite function that contains the objective function and the constraints,
external to DAKOTA and then optimize on this penalty function. Most optimization textbooks
will provide guidance on selecting and using penalty functions.

This DAKQOTA input file shown in Figure 2.18 is similar to the input file for the gradient-based
optimization, except it has a different set of keywords in the method section of the input file and
the gradient specification in the responses section has been changed tono_gr adi ent s. The
pattern search optimization algorithm used is part of the SGOPT library [42]. See the DAKOTA
Reference Manual [17] for more information on the methods section commands that can be used
with SGOPT algorithms.

# DAKOTA exanpl e probl em nongradi ent-based pattern
# search optimzation

variabl es, _
conti nuous_design = 2

————_

cdv_initial _point 0.0 0.0

cdv_| ower _bounds -2.0 -2.0

cdv_upper _bounds 2.0 2.0

cdv_descri ptor "x1' ' x2'
interface, \
application direct, \

anal ysi s_driver = 'rosenbrock’
responses, \
num obj ective_functions = 1 \
no_gr adi ents \

no_hessi ans

nmet hods \
sgopt _pattern_search \
max_Iterations = 1000 \
max_functi on_eval uati ons = 2000 \
sol ution_accuracy = 1.0e-4 \
initial _delta = 0.05 \
threshold delta = 1.0e-8 \
expl oratory_noves best _all \
contraction_factor = 0.75

strategy, \
si ngl e_net hod \
t abul ar _graphi cs_dat a \

gr aphi cs

Figure2.18 A DAKOTA input file for a nongradient-based
optimization example.

This DAKQOTA input file is executed using the following command:

dakota -i dakota_rosenbrock ps _opt.in > ps_opt. out

Thefileps_opt . out. sav isincluded inthe/ Dakot a/ Getti ngSt art ed/ Exanpl es
directory. For this run, the optimizer was given an initial design point of (x4, X,) = (0.0, 0.0) and
was limited to 2000 function evaluations. In this case, the pattern search algorithm stopped short
of the optimum at (x4, X5) = (1.0, 1,0), although it was making progress in that direction when it
was terminated (eventually, it would have reached the minimum point).
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The iteration history is provided in Figure 2.19 which shows the locations of the function
evaluations used in the pattern search agorithm. Figure 2.20 provides a close-up view of the
pattern search function evaluations used at the start of the algorithm. The simplex patternis
clearly visible at the start of the iteration history, and the decreasing size of the simplex pattern is
evident at the design points move toward (X4, X5) = (1.0, 1.0).

xS : :

1 0

Figure2.19 The sequence of design points evaluated during a nongradient-
based pattern search optimization of Rosenbrock’s function.

While pattern search algorithms are useful in many optimization problems, this example shows
some of the drawbacks to this algorithm. While a pattern search method may make good initial
progress towards an optimum, it is often slow to converge. On a smooth, differentiable function
such as Rosenbrock’s function, a nongradient-based method will not be as efficient as a gradient-
based method. However, there are many engineering design applications where gradient
information is inaccurate or unavailable, which renders gradient-based optimizers ineffective.
Thus, pattern search algorithms (and other nongradient-based algorithms such as genetic
algorithms and simulated annealing) are often good choices in complex engineering applications
when the quality of gradient data is suspect.

2.4.7 Nongradient-based Optimization via Genetic Algorithm

In contrast to pattern search algorithms, which are local optimization methods, genetic
algorithms (GA) are global optimization methods. As was described above for the pattern search
algorithm, the Rosenbrock function is not an ideal test problem for showcasing the capabilities of
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Figure2.20 A close-up view showsthe shape of thesimplex pattern
used at the start of the pattern search algorithm.
genetic algorithms. Rather, GAs are best suited to optimization problems that have multiple local
optima, and where gradients are either too expensive to compute or do not exist.

Genetic algorithms, also known as Evolutionary Algorithms (EAS), are based on Darwin’s theory
of survival of thefittest. The GA agorithm starts with arandomly selected population of design
points in the parameter space, where the values of the design parameters form a*“ genetic string,”
which is analogous to DNA in abiological system, that uniquely represents each design point in
the population. The GA then follows a sequence of generations, where the best design pointsin
the population (i.e., those having low objective function values) are considered to be the most
“fit” and are allowed to survive and reproduce. The GA simulates the evolutionary process by
employing the mathematical analogs of processes such as natural selection, breeding, and
mutation. Ultimately, the GA identifies adesign point, or afamily of design points, that
minimize the objective function of the optimization problem. An extensive discussion of GAsis
beyond the scope of this text, but may be found in avariety of sources (cf., [40] pp. 149-158;
[37]). Detailed information on the GA algorithms available in DAKOTA isgiven in the
DAKOTA Reference Manual [17]. The SGOPT library, which provides the GA software that has
been linked into DAKOTA, is described in Reference [42].

Figure 2.21 shows a DAKQOTA input file that uses a genetic algorithm to minimize the
Rosenbrock function. For this example the GA has a population size of 50. At the start of thefirst
generation, arandom number generator is used to select 50 design points that will comprise the
initial population. [ A specific seed value is used in this example to generate repeatabl e results,
although, in general, one should use the default setting which allows the GA to choose a random

DAKOTA Users Manual - Getting Started with DAKOTA 41



seed.] A two-point crossover technique is used to exchange genetic string values between the
members of the population during the GA breeding process. The result of the breeding processis
apopulation comprised of the 10 best “parent” design points (elitist strategy) plus 40 new “child”
design points. The GA optimization process will be terminated after either 6,000 iterations
(generations of the GA) or 10,000 function evaluations. The GA software available in DAKOTA
provides the user with much flexibility in choosing the settings used in the optimization process.
See[17] and [42] for details on these settings.

# DAKOTA Exanpl e problem genetic algorithm
# used to mnimze Rosenbrock's function

vari abl es,
conti nuous_design = 2
cdv_| ower _bounds -2
cdv_upper _bounds 2.
cdv_descri ptor ' X

—_——_

0-2.0
02.0 \
1" 'x2
interface, \

application direct, \
anal ysis_driver = ' rosenbr ock’

responses,
num obj ective_functions = 1
no_gradi ents
no_hessi ans

—_——_

net hod
sgopt _pga_rea
seed = 11011011
popul ation_size = 50
repl acenent _type elitist = 10
crossover_type two_point
max_i terati ons = 6000
max_functi on_eval uati ons = 10000
# out put verbose

—— = ———__

strat egy,

si ngl e_net hod

tabul ar _graphi cs_dat a
# gr aphics

——_

Figure2.21 A DAKOTA input filethat specifiesthe use of a genetic
algorithm for optimizing Rosenbrock’s function.

Theinput fileis executed by DAKOTA using the following command:
dakota -i dakota_rosenbrock ga opt.in >! ga_opt. out

wherethefilega_opt . out . sav hasbeenincludedin/ Dakot a/ Get ti ngSt art ed/
Exanpl es. The GA optimization results printed at the end of this file show that the best design
point found was (X4, X5) = (0.96, 0.93). Thefilega_t abul ar. dat . sav providesalisting of
the design parameter values and objective function values for al 10,000 design points evaluated
during the running of the GA. Figure 2.22 shows the population of 50 randomly selected design
points that comprise the first generation of the GA, and Figure 2.23 shows the final population of
50 design points, where most of the 50 points are clustered near (x4, X5) = (0.96, 0.93).
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Figure2.22 The50 design pointsin theinitial population
selected by the genetic algorithm.

20 /

Figure2.23 The50 design pointsin the final population selected by the genetic
algorithm. Most of the pointsare clustered near (x4, X5) = (0.96, 0.93).
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As described above, a GA is not well-suited to an optimization problem involving a smooth,
differentiable objective such as the Rosenbrock function. Rather, GAs are better suited to
optimization problems where conventional gradient-based optimization fails, such as situations
where there are multiple local optima and/or gradients cannot be computed. In such cases, the
computational expense of a GA iswarranted since other optimization methods are not applicable
or impractical. In many optimization problems, GAs often quickly identify promising regions of
the design space where the global minimum may be located. However, a GA can be slow to
converge to the optimum. For this reason, it can be an effective approach to combine the global
search capabilities of a GA with the efficient local search of a gradient-based algorithm in a
multilevel hybrid optimization strategy. In this approach, the optimization starts by using afew
iterations of a GA to provide the initial search for a good region of the parameter space (low
objective function and/or feasible constraints), and then it switches to a gradient-based algorithm
(using the best design point found by the GA asiits starting point) to perform an efficient local
search for an optimum design point. More information on this multilevel hybrid approachis
provided in Chapter 13.

2.4.8 .Monte Carlo Sampling

Figure 2.24 shows the DAKOTA input file for an example problem which demonstrates some of
the random sampling capabilities available in DAKOTA. In this example, the design parameters,
X1 and Xo, will be treated as uncertain parameters that have uniform distributions over the interval
[-2, 2]. Thisis specified in the variables section of the input file, beginning with the keyword

uni f or m_uncert ai n. For comparison, the keywords from the previous examples are
retained, but have been commented out. Another change in the input file occursin the responses
section where the keyword num r esponse_f unct i ons isused in place of

num obj ecti ve_functi ons. Thefina changesto the input file occur in the method
section, where the keyword nond_sanpl i ng (nond is an abbreviation for nondeterministic) is
used. The other keywords in the methods section of the input file specify the number of samples
(200), the seed for the random number generator (17), the sampling method (random), and the
response threshold (100.0). The seed specification alows a user to obtain repeatable results
from multiple runs. If aseed value is not specified, then DAKOTA's sampling methods are
designed to generate nonrepeatable behavior (by initializing the seed using a system clock). The
keyword r esponse_t hr eshol ds allowsthe user to specify threshold values for which
DAKOTA will compute statistics on the response function output. Note that a unique threshold
value can be specified for each response function.

In this example, DAKOTA will select 200 design points from within the parameter space,
evaluate the value of Rosenbrock’s function at all 200 points, and then perform some basic
statistical calculations on the 200 response val ues.

This DAKQOTA input file is executed using the following command:
dakota -i dakota_rosenbrock _nond.in > nond. out
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# DAKOTA exampl e problem Mnte Carlo sanpling
# study on Rosenbrock's function

vari abl es,

conti nuous_design = 2
cdv_initial _point 0.0 O
cdv_| ower _bounds -2.0 -2.
cdv_upper _bounds 2.0 2
cdv_descri ptor x1

uni formuncertain = 2
uuv_di st _| ower bound
uuv_di st _upper _bound
uuv_descriptor =

HHEHRHH
—— e ————__

" wn

interface, \
application direct, \
anal ysi s_driver = ' rosenbrock

responses
# num obj ective_functions = 1
num response_functions =1
no_gradi ents
no_hessi ans

———_

met hod,
nond_sanpl i ng
sanmpl es = 200
seed = 17
sanpl e_type random
response_t hreshol ds = 100.0

————_

strategy, \
si ngl e_net hod \
tabul ar _graphi cs_data \
gr aphi cs

Figure2.24 The DAKOTA input filefor the Monte Carlo
sampling example problem.

Seethefilenond. out . sav in/ Dakot a/ Getti ngSt art ed/ Exanpl es for comparison
to the results produced by DAKOTA. Note that your results will differ from those in thisfile if
your seed value differsor if no seed is specified.

The statistical data on the 200 Monte Carlo samplesis printed at the end of the output file in the
section that starts with “ Statistics for each response function....” In this section, DAKOTA
outputs the mean, standard deviation, coefficient of variation, and 95% confidence intervals for
each of the response functions, followed by the percentages of the response function values that
are above and below the response threshold values specified in the input file. Figure 2.25 shows
the locations of the 200 sample sites within the parameter space of the Rosenbrock function.
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Figure2.25 Locationsin the parameter space of the 200 Monte Carlo samples
using a uniform distribution for both x; and x,.

2.4.9 Optimization with a User-Supplied Simulation Code - Case 1

Many of the previous examples made use of thedi r ect interface to access the Rosenbrock and
textbook test functions that are compiled into DAKOTA. In engineering applications, it is much
more common to use the syst emor f or k interface approaches within DAKOTA to manage
external simulation codes. In both of these cases, the communication between DAKOTA and the
external code is conducted through the reading and writing of short text files. For this example,
the C++ program r osenbr ock. Cin/ Dakot a/ t est isused asthe simulation code. Thisfile
iscompiled to create the stand-aloner osenbr ock executable that is referenced as the

anal ysi s_dri ver inFigure 2.26. This stand-alone program performs the same function
evaluations as DAKOTA's internal Rosenbrock test function.

Figure 2.26 shows the text of the DAKOTA input file named

dakot a_r osenbrock_syscal | . i n that isprovided in the directory / Dakot a/

Get ti ngSt art ed/ Exanpl es. The only differences between thisinput file and the onein
Figure 2.10 occur in the interface keyword section. The keyword sy st emindicates that
DAKOTA will use system callsto create separate UNIX processes for executions of the user-
supplied ssmulation code. The name of the simulation code, and the names for DAKOTA’s
parameters and results file are specified using theanal ysi s_dri ver,paraneters _fil e,
andresul ts_fil e keywords, respectively.

DAKOTA Users Manual - Getting Started with DAKOTA 46



# DAKOTA exanpl e problem The systemcal
# interface nmethod is denonstrated on a
# gradi ent - based unconstrai ned optim zation
# of Rosenbrock’s function
vari abl es \
conti nuous_design = 2 \
cdv_descriptor "x1' 'x2 \
cdv_initial _point -1.2 1.0 \
cdv_| ower _bounds -2.0 -2.0 \
cdv_upper _bounds 2.0 2.0
i nterface, \
application system \
anal ysi s_driver = 'rosenbrock’ \
parameters _file = 'paranms.in’ \
results file = 'resul ts.out’ \
# file_tag \
# file save
responses, \
num obj ective_functions = 1 \
numeri cal _gradients \
nmet hod_sour ce dakot a \
interval _type forward \
fd_step_size = .000001 \
no_hessi ans
met hod, \
# dot _bfgs \
conm n_frcg \
convergence_tol erance = 1.0e-4 \
max_iterations = 100 \
out put qui et
strategy, \
si ngl e_met hod \
gr aphi cs \
t abul ar _graphi cs_data

Figure2.26 DAKOTA input filefor gradient-based optimization using
the system call interfaceto an external rosenbrock simulator.

This example problem is executed using the command:
dakota -i dakota_rosenbrock syscall.in > syscall. out

Thisrun of DAKQOTA takes longer to complete than the previous gradient-based optimization
example since the sy st eminterface method has additional process creation and file 1/0
overhead, as compared to the internal communication that occurs when thedi r ect interface
method isused. Thefilesyscal | . out . sav isprovided inthe/ Dakot a/

CettingStart ed/ Exanpl es directory for comparison to the output results produced when
executing the command given above.

To gain a better understanding of what exactly DAKOTA is doing with the syst eminterface
method, edit the input file to remove the comment symbols that are in front of the keywords
file tagandfil e_save andre-run DAKOTA. Check the listing of the local directory and
you will see many new files with names such aspar ans. i n. 1, par ans. i n. 2, etc., and
results.out.1,results.out. 2, etc. Thereisonepar ans. i n. Xfileand one
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resul ts. out. Xfilefor each of the function evaluations performed by DAKOTA. Thisisthe
filelisting for par ans. i n. 1:

2 variables 1 functions
-1.2000000000e+00 x1

1. 0000000000e+00 x2

1 ASV_1

The first line gives the number of variables and the number of response functions. For
optimization on Rosenbrock’s function, there are two variables (x; and x,) and one function (the
objective function). The values of the variables are listed next in the file, with the descriptor tag
(‘x1" or ‘x2' from the DAKOTA input file) following the numerical value. The last line of the
parametersfile is the syntax for DAKOTA's active set vector (ASV). Thereisone ASV line
printed in the parameters file for each response function. In this case, the ASV value of 1
indicates that DAKOTA is requesting that the simulation code return the response function value
tothefileresul t s. out . X. (ASV syntax: 1 = value of response function, 2 = gradient of
response function, 4 = Hessian of response function, and any combination up to 7 = value,
gradient, and Hessian of the response function. See Section 4.7 for more detail.)

The executable program r osenbr ock readsin thepar ans. i n. Xfile and evaluates the

objective function at the given values for x, and x,. Then, r osenbr ock writes out the objective

function datato ther esul t s. out . Xfile. Hereisthelisting for thefiler esul t s. out . 1:
2.4200000000e+01 f

The value shown above is the value of the objective function, and the descriptor ‘f’ is an optiona
tag returned by the simulation code. When the system call has completed, DAKOTA readsin the
datafromther esul t s. i n. Xfile. Then, DAKOTA continues with executions of the

r osenbr ock program until the optimization process is complete.

2.4.10 Optimization with a User-Supplied Simulation Code - Case 2

In many situations the user-supplied simulation code cannot be modified to read and write the
par ans. i n. Xfileandther esul t s. out . Xfile, asdescribed above. Typically, this occurs
when the simulation code is a commercial or proprietary software product that has specific input
file and output file formats. In such cases, it is common to replace the executable program name
in the DAKOTA input file with the name of a UNIX shell script containing a sequence of
commands that read and write the necessary files and run the simulation code. For example, the
executable program named r osenbr ock listed in Figure 2.26 could be replaced by aUNIX C-
shell script named si nmul at or _scri pt, with the script containing a sequence of commands
to perform the following steps: insert the data from the par anet er s. i n. Xfile into the input
file of the smulation code, execute the simulation code, post process the files generated by the
simulation code to compute response data, and return the response datato DAKOTA in the
resul ts. out. Xfile. The steps that are typically used in constructing and using a UNIX shell
script are described in Section 16.1.
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2.5Whereto Gofrom Here

This chapter has provided an introduction to the basic capabilities of DAKOTA including
parameter studies, various types of optimization, and Monte Carlo sampling. More information
on the DAKOTA input file syntax is provided in the remaining chaptersin thistext and in the
DAKOTA Reference Manual [17]. Additional example problems that demonstrate some of
DAKOTA's advanced capabilities are provided in Chapter 10, Chapter 13, Chapter 16, and
Chapter 20.
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3.0 DAKQOTA Capabilities

3.1 Overview

This chapter provides a brief, but comprehensive, overview of DAKOTA’s capabilities.
Additional details and example problems are provided in subsequent chapters in this manual.

3.2 Parameter Study Methods

Parameter studies are often performed to explore the effect of parametric changes within
simulation models. DAKOTA provides four parameter study methods that may be selected by the
user.

Multidimensional: Forms aregular lattice or grid in an n-dimensional parameter space, where
the user specifies the number of intervals used for each parameter.

Vector: Performs a parameter study along aline between any two points in an n-dimensional
parameter space, where the user specifies the number of steps used in the study.

Centered: Given apoint in an n-dimensional parameter space, this method eval uates nearby
points along the coordinate axes of the parameter space. The user selects the number of steps and
the step size.

List: The user suppliesalist of pointsin an n-dimensiona space where DAKOTA will evaluate
response data from the simulation code.

Additional information on these methods is provided in Chapter 8.

3.3 Sampling Methods and Design of Experiments

Sampling methods and design of experiments are often used to explore the parameter space of an
engineering design problem. Two software packages are available in DAKOTA for performing
these studies, LHS and DDACE, both of which were developed at Sandia Labs.

LHS (Latin Hypercube Sampling): This package provides both Monte Carlo (random)
sampling and latin hypercube sampling methods, which can be used with probabilistic variables
in DAKQOTA that have the following distributions: Gaussian (normal), lognormal, uniform,
loguniform, Weibull, and user-supplied histograms. In addition, the user can supply a correlation
matrix for the variables to account for correlations among the variables [45]. The LHS package
currently serves two purposes. (1) it can be used for uncertainty quantification by sampling over
uncertain variables characterized by probability distributions (see Section 3.4), or (2) it can be
used in a DACE mode in which any design and state variables are treated as having uniform
distributions (seetheal | _vari abl es flag in the Reference Manual [17]). The LHS package
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comesin two versions: “old” (circa 1980) and “new” (circa 1998), where only the former may
currently be distributed externally.

DDACE (Distributed Design and Analysis of Computer Experiments): The DACE package
includes both stochastic sampling methods and classical design of experiments methods [64].
The stochastic methods are Monte Carlo (random) sampling, latin hypercube sampling, and
orthogonal array sampling. The DDACE package currently supports variables that have either
normal or uniform distributions. However, only the uniform distribution is available in the
DAKOTA interface to DDACE. The classical design of experiments methods in DDACE are
central composite design (CCD) and Box-Behnken (BB) sampling. A grid-based sampling
method also is available. DDACE is available under a GNU Lesser General Public Licenseand is
distributed with DAKOTA.

Additional information on these methods is provided in Chapter 9.

3.4 Uncertainty Quantification

Uncertainty quantification methods (also referred to as nondeterministic analysis methods)
involve the computation of probabilistic information about response functions based on sets of
simulations taken from the specified probability distributions for uncertain input parameters. Put
another way, these methods perform a forward uncertainty propagation in which probability
information for input parametersis mapped to probability information for output response
functions. The UQ methods in DAKQOTA include various sampling-based approaches (e.g.,
Monte Carlo and Latin hypercube sampling) discussed previously in Section 3.3, along with
analytic reliability methods and stochastic finite element methods.

Analytic Reliability Methods: This suite of methods includes the Advanced Mean Value
Method (AMV), the iterated Advanced Mean Value Method (AMV +), and the First Order
Reliability Method (FORM). Efforts are currently underway to implement the Second Order
Reliability Method (SORM). Currently the AMV and AMV + methods are dependent on the
NPSOL optimization software package. This dependence will be remedied in afuture version of
DAKOTA.

Stochastic Finite Element M ethods: The objective of these techniquesis to characterize the
response of systems whose governing equations involve stochastic coefficients. The development
of these techniques mirrors that of deterministic finite element analysis utilizing the notions of
projection, orthogonality, and weak convergence [29], [30].

Additional information on these methods is provided in Chapter 10.

3.5 Optimization Software Packages

Several optimization software packages have been integrated with DAKOTA. These include
freely-avail able software packages developed by research groups external to Sandia Labs,
Sandia-devel oped software that has been released to the public under GNU licenses, and
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commercially-devel oped software. These optimization software packages provide the DAKOTA
user with accessto well-tested, proven methods for use in engineering design applications, as
well as access to some of the newest developments in optimization algorithm research.

CONMIN (CONstrained MINimization): Methods for gradient-based constrained and
unconstrained optimization [65]. The constrained optimization algorithm is the method of
feasible directions (MFD) and the unconstrained optimization algorithm is the Fletcher-Reeves
conjugate gradient (CG) method. This software is freely available to the public from NASA, and
the CONMIN source codeisincluded with DAKOTA.

SGOPT (Stochastic Global OPTimization): Methods for nongradient-based bound-constrained
optimization including pattern search methods and genetic (evolutionary) algorithms [42]. This
software is available to the public under a GNU Lesser General Public License (LGPL) and the
source code for SGOPT isincluded with DAKOTA (web page: www.cs.sandia.gov/SGOPT).

COLINY: Methods for nongradient-based optimization which utilize the Common Optimization
Library INterface (COLIN). Thisalgorithm library will eventually supersede SGOPT. COLINY
algorithms not available in SGOPT currently include APPS and DIRECT. This software is not
yet available to the public.

PICO (Parallel Integer Combinatorial Optimization): PICO’s branch-and-bound algorithm is
available in DAKQOTA for use on nonlinear optimization problems involving discrete variables or
a combination of continuous and discrete variables [16]. PICO is available to the public under the
GNU LGPL and the source code isincluded with DAKOTA (web page: www.cs.sandia.gov/
PICO). Note: PICO’s methods for linear programming are not available under DAKOTA.

APPS (Asynchronous Parallel Pattern Search): Advanced pattern search (nongradient-based)
methods that are capable of fully asynchronous operation on parallel computers [44]. The APPS
algorithms are availabl e to the public under the GNU LGPL (web page: csmr.ca.sandia.gov/
projects/apps.html) and will be included with the COLINY distribution (see above) for use in
DAKOQOTA.

OPT ++: Methods for gradient-based and nongradient-based optimization of unconstrained,
bound-constrained, and nonlinearly constrained optimization problems [50]. OPT++ includes a
variety of Newton-based methods (quasi-Newton, finite-difference Newton, Gauss-Newton, and
full-Newton), as well as the Polak-Ribeire CG method and the parallel direct search (PDS)
method. OPT++ is an active research tool and new optimization capabilities are continually
being added to its suite of capabilities. OPT++ is available to the public under the GNU LGPL
and the source code is included with DAKOTA (web page: csmr.ca.sandia.gov/projects/opt++/
opt++.html).

MOOCHO (Multifunctional Object-Oriented ar CHitecture for Optimization): formerly
known as rSQP++, MOOCHO provides both general-purpose gradient-based algorithms for
nested analysis and design (NAND) and large-scale gradient-based optimization algorithms for
simultaneous analysis and design (SAND). This software is not yet available to the public.
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NPSOL : Methods for gradient-based constrained and unconstrained optimization problems
using a sequential quadratic programming (SQP) algorithm [31]. NPSOL isacommercial
software product of Stanford University (web site: www.sbsi-sol-optimize.com). Sandia National
Laboratories, Lawrence Livermore National Laboratory, and Los Alamos National Laboratory all
have site licenses for NPSOL. Other users may obtain their own copy of NPSOL and compile it
with the DAKOTA source code by following the steps given in the file /Dakota/INSTALL.

DOT (Design Optimization Tools): Methods for gradient-based optimization for constrained
and unconstrained optimization problems [67]. The algorithms available for constrained
optimization are modified-MFD, SQP, and sequential linear programming (SLP). The algorithms
available for unconstrained optimization are the Fletcher-Reeves CG method and the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton technique. DOT is acommercial software
product of Vanderplaats Research and Development, Inc. (web page: www.vrand.com). Sandia
National Laboratories and Los Alamos National Laboratory have limited seats for DOT. Other
users may obtain their own copy of DOT and compile it with the DAKOTA source code by
following the steps given in the file /Dakota/INSTALL.

Additional information on these methods is provided in Chapter 11.

3.6 Additional Optimization Capabilities

The optimization software packages described above provide algorithms to handle awide variety
of optimization problems. This includes algorithms for constrained and unconstrained
optimization, as well as algorithms for gradient-based and nongradient-based optimization.
Listed below are additional optimization capabilities that are available in DAKOTA.

M ultiobjective Optimization: In multiobjective optimization, a composite objective function is
constructed from a set of individual objective functions. The user can specify the scalar weight
factorsthat are applied to the individual objective functionsin computing the composite
objective function. This approach works with any of the optimization methods listed in Section
3.5. Also, both constrained and unconstrained multiobjective optimization problems can be
formulated and solved with DAKOTA. Note that multiobjective optimization is related to the
Pareto-set optimization strategy described in Section 3.8, with the difference that the former
computes a single optimum and the latter computes a set of optimain order to generate a Pareto
trade-off surface.

Simultaneous Analysisand Design (SAND): In SAND, one converges the optimization process
at the same time as converging a nonlinear simulation code. In this approach, the solution of the
simulation code (often a system of ordinary or partial differential equations) is posed as a set of
equality constraintsin the optimization problem and these equality constraints are only satisfied
by the optimizer in the limit. This formulation necessitates a close coupling between DAKOTA
and the simulation code so that the internal vectors and matrices from the ssmulation code (in
particular, the residual vector and its state and design Jacobian matrices) are available to the
SAND optimizer. This approach has the potential to reduce the cost of optimization significantly
since the nonlinear simulation is only converged once, instead of on every function evaluation.

DAKOTA Users Manual - DAKOTA Capabilities 53



The drawback is that this approach requires substantial software modifications to the simulation
code; something that can be impractical in some cases and impossible in others. A new SAND
capability employing the MOOCHO library is under development that will intrusively couple
DAKOTA with multiphysics simulation frameworks under development at Sandia.

Additional information on these methods is provided in Chapter 11.

3.7 Nonlinear Least Squaresfor Parameter Estimation

Nonlinear least squares methods are optimization algorithms which exploit the special structure
of aleast squares objective function (see Section 1.4.2). These problems commonly arisein
parameter estimation and test/analysis reconciliation. In practice, least squares solvers will tend
to converge more rapidly than general-purpose optimization algorithms when the residual terms
in the least squares formulation tend towards zero at the solution. Least squares solvers may
experience difficulty when the residuals at the solution are significant.

Gauss-Newton: DAKOTA's Gauss-Newton a gorithm utilizes the Hessian approximation
described in Section 1.4.2. The exact objective function value, exact objective function gradient,
and the approximate objective function Hessian are defined from the least squares term values
and gradients and are passed to the full-Newton optimizer from the OPT++ software package. As
for al of the Newton-based optimization algorithms in OPT++, unconstrained, bound-
constrained, and generally-constrained problems are supported. However, for the generally-
constrained case, a derivative order mismatch existsin that the nonlinear interior point full
Newton algorithm will require second-order information for the nonlinear constraints whereas
the Gauss-Newton approximation only requires first order information for the least squares
terms.

NL SSOL : the NLSSOL agorithm isacommercial software product of Stanford University (web
site: www.sbsi-sol-optimize.com) that is bundled with current versions of the NPSOL library. It
uses an SQP-based approach to solve generally-constrained nonlinear least squares problems. It
periodically employs the Gauss-Newton Hessian approximation to accelerate the search. It
requires only first-order information for the least squares terms and nonlinear constraints. Sandia
National Laboratories, Lawrence Livermore National Laboratory, and Los Alamos National
Laboratory all have site licenses for NLSSOL. Other users may obtain their own copy of
NLSSOL and compileit with the DAKOTA source code by following the NPSOL installation steps
given in the file /Dakota/INSTALL.

Additional information on these methodsis provided in Chapter 12.

3.8 Optimization Strategies

Dueto the flexibility of DAKOTA's object-oriented design, it isrelatively easy to create
algorithms that combine several of DAKOTA's capabilities. These algorithms are referred to as
strategies.
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Multilevel Hybrid Optimization: This strategy allows the user to specify a sequence of
optimization methods, with the results from one method providing the starting point for the next
method in the sequence. An example which is useful in many engineering design problems
involves the use of a nongradient-based global optimization method (e.g., genetic algorithm) to
identify a promising region of the parameter space, which feeds its results into a gradient-based
method (quasi-Newton, SQP, etc.) to perform an efficient local search for the optimum point.

Multistart L ocal Optimization: This strategy uses many local optimization runs (often
gradient-based), each of which is started from a different initial point in the parameter space.
Thisis an attractive strategy in situations where multiple local optima are known to exist or may
potentially exist in the parameter space. This approach combines the efficiency of local
optimization methods with the parameter space coverage of aglobal stratification technique.

Par eto-Set Optimization: The Pareto-set optimization strategy allows the user to specify
different sets of weights for the individual objective functions in a multiobjective optimization
problem. DAKOTA executes each of these weighting sets as a separate optimization problem,
serialy or in parallel, and then outputs the set of optimal designs which define the Pareto set.
Pareto set information can be useful in making trade-off decisions in engineering design
problems.

Mixed Integer Nonlinear Programming (MINLP): This strategy uses the branch and bound
capabilities of the PICO package to perform optimization on problems that have both discrete
and continuous design variables. PICO provides a branch and bound engine targeted at mixed
integer linear programs (MILP), which when combined with DAKOTA’s nonlinear optimization
methods, resultsin a MINLP capability. In addition, the multiple NLPs solved within MINLP
provide an opportunity for concurrent execution of multiple optimizations.

Surrogate-Based Optimization (SBO): This strategy combines the sampling methods,
approximation methods, and optimization capabilities of DAKOTA. The SBO strategy is
particularly effective on real-world engineering design problems that contain nonsmooth features
(e.g., Sope discontinuities, multiple local minima) where gradient-based optimization methods
often have trouble. In SBO, the optimization algorithm operates on a surrogate model instead of
directly operating on the computationally expensive simulation model. The surrogate model can
be formed from data samples and surface fitting methods (see Section 3.9), or it can bea
simplified (e.g., coarsened finite element mesh, less detailed) version of the original
computational model. For either type of surrogate model, the SBO algorithm periodically checks
the accuracy of the surrogate model against the original high-fidelity model. The SBO strategy in
DAKOTA can be implemented using heuristic rules (less expensive) or a strategy that is
guaranteed to converge (more expensive). The development of SBO strategiesis an area of active
research in the DAKOTA project.

Optimization Under Uncertainty (OUU): Many rea-world engineering design problems
contain stochastic features and must be treated using OUU methods such as robust design and
reliability-based design. For OUU, the uncertainty quantification methods of DAKOTA are
combined with optimization algorithms. This allows the user to formulate problems where one or
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more of the objective and constraints are stochastic. Due to the computational expense of both
optimization and UQ, the simple nesting of these methods in OUU can be computationally
prohibitive for real-world design problems. For this reason, surrogate-based OUU methods have
been devel oped which can reduce the overall expense by an order of magnitude or more. OUU
methods are an active research area.

These strategies are covered in more detail in Chapter 13.

3.9 Surface Fitting M ethods

Surface fitting methods, often referred to as response surface methods, can be used to explore the
variations in response quantities over regions of the parameter space. In addition, the surfaces
can serve as surrogate models for optimization studies (see the surrogate-based optimization
strategy in Section 3.8). The surface fitting methods in DAKOTA include software developed by
Sandia researchers and by various researchersin the academic community. These surface fitting
methods work in conjunction with the sampling methods and design of experiments methods
described in Section 3.3.

First-order Taylor Series Expansion: Thisisalocal first-order model centered at a point in the
parameter space.

Polynomial Regression: First-order (linear), second-order (quadratic), and third-order (cubic)
polynomial response surfaces computed using linear least squares regression methods. Note:
thereis currently no use of forward- or backward-stepping regression methods to eliminate
unnecessary terms from the polynomia model.

Kriging Interpolation: An implementation of spatia interpolation using kriging methods and
Gaussian correlation functions [36]. The algorithm used in the kriging process generates a C?%-
continuous surface that exactly interpolates the data values.

Artificial Neural Networks: An implementation of the stochastic layered perceptron neural
network developed by Prof. D. C. Zimmerman of the University of Houston [72]. This neural
network method isintended to have alower training (fitting) cost than typical neural networks.

Multivariate Adaptive Regression Splines (MARS): Software developed by Prof. J. H.

Friedman of Stanford University [27]. The MARS method creates a C?-continuous patchwork of
splines in the parameter space.

Additional information on these methods is provided in Chapter 14.

3.10 Parallel Computing

The methods and strategies in DAKOTA are designed to exploit parallel computing resources
such as those found in a desktop multiprocessor workstation, a network of workstations, or a
massively parallel computing platform. This parallel computing capability isacritical
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technology for rendering real-world engineering design problems computationally tractable.
DAKOQOTA employs the concept of multilevel parallelism, which takes simultaneous advantage of
opportunities for parallel execution from multiple sources:

Parallel Simulation Codes: DAKOTA works equally well with both serial and parallel
simulation codes.

Concurrent Execution of Analyseswithin a Function Evaluation: Some engineering design
applications call for the use of multiple ssmulation code executions (different disciplinary codes,
the same code for different load cases or environments, etc.) in order to evaluate asingle
response data set for asingle set of parameters. If these simulation code executions are
independent (or if coupling is enforced at a higher level), DAKOTA can perform them in parallel.

Concurrent Execution of Function Evaluationswithin an Iterator: With very few exceptions,
the iterative algorithms described in Section 3.2 through Section 3.7 all provide opportunities for
the concurrent evaluation of response data sets for different parameter sets. Whenever there
exists a set of design point evaluations that are independent, DAKOTA can perform themin
parallel.

Concurrent Execution of Iteratorswithin a Strategy: Some of the DAKOTA strategies
described in Section 3.8 generate a sequence of iterator subproblems. For example, the MINLP,
Pareto-set, and multi-start strategies generate sets of optimization subproblems, and the
optimization under uncertainty strategy generates sets of uncertainty quantification subproblems.
Whenever these subproblems are independent, DAKOTA can perform them in parallel.

It isimportant to recognize that these four parallelism levels are nested, in that a strategy can
schedule and manage concurrent iterators, each of which may manage concurrent function
evaluations, each of which may manage concurrent analyses, each of which may execute on
multiple processors. Additional information on parallel computing with DAKOTA is provided in
Chapter 15.

3.11 Summary

DAKOTA is both a production tool for engineering design and analysis activities and aresearch
tool for the development of new algorithms in optimization, uncertainty quantification, and
related areas. Because of the extensible, object-oriented design of DAKQOTA, it isrelatively easy
to add new iterative algorithms, strategies, simulation interfacing approaches, surface fitting
methods, etc. In addition, DAKOTA can serve as arapid prototyping tool for algorithm
development. That is, by having a broad range of building blocks available (i.e., paralel
computing, surrogate models, simulation interfaces, fundamental algorithms, etc.), new
capabilities can be assembled rapidly which leverage the previous software investments. For
additional discussion on framework extensibility, refer to the DAKOTA Developers Manual [18].

The capabilities of DAKOTA have been used to solve engineering design and optimization
problems at Sandia Labs, at other Department of Energy labs, and by our industrial and academic
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collaborators. Often, this real-world experience has provided motivation for research into new
areas of optimization. The DAKOTA development team wel comes feedback on the capabilities
of this software toolkit, as well as suggestions for new areas of research.
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4.0 Variables

4.1 Overview

The variables section in aDAKOTA input file specifies the parameter set to be iterated by a
particular method. In the case of an optimization study, these variables are adjusted in order to
locate an optimal design; in the case of parameter studies/sensitivity analysis/design of
experiments, these parameters are perturbed to explore the parameter space; and in the case of
uncertainty analysis, the variables are associated with probabilistic characterizations which are
used to quantify the uncertainty in response functions. To accommodate these and other types of
studies, DAKOTA supports design, uncertain, and state variable types for continuous and discrete
variable domains.

This chapter will present a brief overview of the types of variables and their uses, aswell as
cover some user issues relating to integer/discrete conversions, file formats, and the active set
vector. For a detailed description of variables section syntax and example specifications, refer to
the variables commands chapter in the DAKOTA Reference Manual [17].

4.2 Design Variables

Design variables are those variables which are modified for the purposes of computing an
optimal design. These variables may be continuous (real-valued) or discrete (integer-valued).

4.2.1 Continuous Design Variables

The most common type of design variables encountered in engineering applications are of the
continuous type. These variables may assume any real value (e.g., 12. 34, - 1. 735e+07)
within their bounds. All but a handful of the optimization algorithmsin DAKOTA support
continuous design variables exclusively.

4.2.2 Discrete Design Variables

Engineering design problems may contain discrete variables such as material types, feature
counts, stock gauge selections, etc. These variables may assume only afixed number of values
within their bounds. While the general discrete variable case would allow this fixed set of values
to include real numbers (e.g., X; can only assumethevalues4. 2, 6. 4, and 8. 5), DAKOTA

assumes that the discrete variables can be specified as a sequence of integers (e.g., Xx; can be 1,

2, or 3) and that a mapping from the integer sequence to the discrete values can be applied if
necessary within the user’sinterface. A common mapping isto use the integer value from
DAKOTA astheindex into avector of discrete real values.

Discrete variables may be classified as either “noncategorical” or “categorical” discrete variables.
In the former noncategorical case, the integrality condition can be relaxed during the solution
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process since the model can still compute meaningful response functions for non-integer values.
For example, adiscrete variable representing the thickness of a structureis generaly a
noncategorical variable since it can assume a continuous range of values during the algorithm
iterations, even if it is desired to have a stock gauge thickness in the end. In the latter categorical
case, the integrality cannot be relaxed since the model cannot obtain a solution for a non-integer
value. For example, feature counts are generally categorical variables, since most computational
models will not support a non-integer value for the number of instances of some feature (e.g.,
number of support brackets).

Gradient-based optimization methods cannot be directly applied to problems with discrete
variables. For problems with noncategorical variables, branch and bound techniques can be used
to relax the integrality conditions and apply gradient-based methods to a series of generated
subproblems. For problems with categorical variables, nongradient-based methods (e.g.,

sgopt _pga_i nt) are commonly used. Branch and bound techniques are discussed in Section
13.5 and nongradient-based methods are further described in Chapter 11.

In addition to engineering applications, many non-engineering applicationsin the fields of
scheduling, logistics, and resource allocation contain discrete design parameters. Within the
Department of Energy, solution techniques for these problems impact programs in stockpile
evaluation and management, production planning, nonproliferation, transportation (routing,
packing, logistics), infrastructure analysis and design, energy production, environmental
remediation, and tools for massively parallel computing such as domain decomposition and
meshing.

4.3 Uncertain Variables

Deterministic variables (i.e., those with a single known value) do not capture the behavior of the
input variablesin all situations. In many cases, the exact value of a model parameter is not
precisely known. An example of such an input variable is the thickness of a heat treatment
coating on a structural steel 1-beam used in building construction. Due to variabilities and
tolerances in the coating process, the thickness of the layer is known to follow a normal
distribution with a certain mean and standard deviation as determined from experimental data.
The inclusion of the uncertainty in the coating thickness is essential to accurately represent the
resulting uncertainty in the response of the building.

Currently, uncertain variablesin DAKOTA are modeled as continuous random variables, or in the
case of histogram, with an empirical histogram representation. If a problem contains discrete
random variables, then these variables can be modeled using the point-based histogram
representation. The following types of uncertain variables are available:

1. Normal: characterized by a mean and standard deviation. Also referred to as Gaussian.
Bounded normal is also supported with an additional specification of lower and upper
bounds.
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2. Lognormal: characterized by a mean and either a standard deviation or an error factor. The
natural logarithm of alognormal variable has anormal distribution. Bounded lognormal is
also supported with an additional specification of lower and upper bounds.

3. Uniform: characterized by alower bound and an upper bound. Probability is constant
between the bounds.

4. Loguniform: characterized by alower bound and an upper bound. The natural logarithm of a
loguniform variable has a uniform distribution.

5. Weibull: characterized by an apha parameter and a beta parameter.

6. Histogram: characterized by a set of (x,y) pairs that either map out histogram bins (a
continuous interval with associated bin count) or histogram points (a discrete point value
with associated count).

For additional information on random variable probability distributions, refer to [41] and [71].
Refer to the DAKOTA Reference Manual [17] for more detail on the uncertain variable
specifications and to Chapter 10 for a description of methods available to quantify the
uncertainty in the response.

4.4 State Variables

State variables consist of “other” variables which are to be mapped through the simulation
interface, in that they are not to be used for design and they are not modeled as being uncertain.
State variables provide a convenient mechanism for parameterizing additional model inputs
which, in the case of a numerical simulator, might include solver convergence tolerances, time
step controls, or mesh fidelity parameters. Similar to the design variables discussed in Section
4.2, state variables can be continuous (real-valued) or discrete (integer-valued). For discrete
variables which are not a sequence of integers, a mapping can be applied between the integer and
discrete valuesin the user’s interface.

State variables, as with other types of variables, are viewed differently depending on the method
in use. Since these variables are neither design nor uncertain variables, algorithms for
optimization, least squares, and uncertainty quantification do not iterate on these variables; i.e.,
they are not active and are hidden from the algorithm. However, DAKOTA still maps these
variables through the user’s interface where they affect the computational model in use. This
allows optimization, least squares, and uncertainty quantification studies to be executed under
different simulation conditions (which will result, in general, in different results). Parameter
studies and design of experiments methods, on the other hand, are general-purpose iterative
techniques which do not draw a distinction between variable types. They include state variables
in the set of variables to be iterated, which allows these studies to explore the effect of state
variable values on the response data of interest.

In the future, state variables might be used in direct coordination with an optimization, |east
sguares, or uncertainty quantification algorithm. For example, state variables could be used to
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enact model adaptivity through the use of a coarse mesh or loose solver tolerances in theinitial
stages of an optimization with continuous model refinement as the algorithm nears the optimal
solution.

45 Mixed Variables

The iterative method selected for use in DAKOTA determines what subset, or view, of the
variables datais active in the iteration. The general case of having a mixture of various different
types of variablesis supported within all of the DAKOTA methods even though certain methods
will only modify certain types of variables (e.g., optimizers and |least squares methods only
modify design variables, and uncertainty quantification methods only utilize uncertain variables).
Thisimplies that variables which are not under the direct control of a particular iterator will be
mapped through the interface unmodified for all evaluations of the iterator. This allowsfor a
variety of parameterizations within the model in addition to those which are being used by a
particular iterator, which can provide the convenience of consolidating the control over various
modeling parameters in asingle file (the DAKQOTA input file). An important related point is that
the variable set that is active with a particular iterator is the same variable set for which
derivatives are computed (see Section 6.3).

4.6 DAKOTA Parameters File Data For mat

Application interfaces which employ system calls and forks to create separate simulation
processes must communicate with the simulation through the file system. This is accomplished
through the reading and writing of parameters and results files. DAKOTA uses its own format for
this data input/output. Depending on the user’s interface specification, DAKOTA will write the
parametersfilein either standard or APREPRO format. The former option uses asimple

“val ue tag” format, whereas the latter optionusesa“{ tag = val ue }” format for
compatibility with the APREPRO utility [61].

4.6.1 Parameters file format (standard)

Prior to invoking a simulation, DAKOTA creates a parameters file which contains the current
parameter values and a set of function requests. The standard format for this parametersfileis
shown in Figure 4.1.
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<int> vari abl es <int> functions

<doubl e> <var_tag_cdv,>
<doubl e> <var _tag_cdv,>

<doubl e> <var _tag_cdv,>
<int> <var_tag_ddv,>
<i nt> <var_tag_ddv,>

<i nt> <var_tag_ddv,>
<doubl e> <var _tag_nuv,>
<doubl e> <var _tag_nuv,>

<doubl e> <var_t ag_nuv,>
<doubl e> <var _tag_| nuv,;>
<doubl e> <var _tag_| nuv,>

<doubl e> <var _tag_| nuv,>
<doubl e> <var _tag_uuv,>
<doubl e> <var _tag_uuv,>

<doubl e> <var_t ag_uuv,>
<doubl e> <var _tag_| uuv,>
<doubl e> <var _tag_| uuv,>

<doubl e> <var _tag_| uuv,>
<doubl e> <var_tag_wuv,>
<doubl e> <var _tag_wuv,>

<doubl e> <var _tag_wuv,>
<doubl e> <var _t ag_huv,>
<doubl e> <var _t ag_huv,>

<doubl e> <var _tag_huv,>
<doubl e> <var_tag_csv,>
<doubl e> <var _tag_csv,>

<doubl e> <var_tag_csv,>
<int> <var_tag_dsv,>
<int> <var_tag_dsv,>

<int> <var_tag_dsv,>

-
S

Descriptive header

Continuous design vars.
(Negy Values and tags)

Discrete design vars.

(Ngqy Values and tags)

L ognormal uncertain vars.
(Njnuy vValues and tags)

~

Normal uncertain vars.
(Npyy Values and tags)

Uniform uncertain vars.
(nyyy values and tags)

L oguniform uncertain vars.

(Njuuy Values and tags)
Weibull uncertain vars.
(Nyyy Values and tags)

Histogram uncertain vars.
(Npyy Values and tags)

Continuous state vars.
(nesy Values and tags)

Discrete state vars.
(ngsy Values and tags)

<int> ASV_1 _

<int> ASV 2 Active set vector
. (m values and tags)
<int> ASV_m

Figure4.l  Parametersfile dataformat - standard option.
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where “<i nt >” denotes an integer value, “<doubl e>" denotes a double precision value, and

“. .. 7" indicates omitted lines for brevity. The first line specifies the total number of variables (n)
with itsidentifier string “var i abl es” followed by the number of functions (m) with its
identifier string “f unct i ons.” Theseintegers are useful for dynamic memory allocation within
asimulator or filter program. The next n lines specify the current values and descriptors of all of
the variables within the parameter set in the following order: continuous design, discrete design,
normal uncertain, lognormal uncertain, uniform uncertain, loguniform uncertain, weibull
uncertain, histogram uncertain, continuous state, and discrete state variables. The lengths of these
vectorsadd to atotal of n (thatis, Ncgy + Nggy + Moy + NMinuy + Nuav + Nguy

Nwuv + Nhuy + Ngsy + Ngsy = N). If any of the variable types are not present in the
problem, then its block is omitted entirely from the parameters file. The tags are the variable
descriptors specified in the user’s DAKOTA input file, or if no descriptors have been specified,
default descriptors are used. The next mlines specify the request vector for each of them
functionsin the response data set. These integer codes indicate what datais required on the
current function evaluation and are described further in Section 4.7.

4.6.2 Parameters file format (APREPRQ)

For the APREPRO format option, the same data is present and the same ordering is used asin the
standard format. The only difference isthat values are associated with their tags within

“{ tag = val ue }” congtructsasshown in Figure 4.2. This allows direct usage of these
parameters files by the APREPRO utility, which is a pre-processor that can significantly simplify
model parameterization. When a parameters file in APREPRO format isincluded within a
template file (using an include directive), the APREPRO utility recognizes these constructs as
variable definitions which can then be used to popul ate targets throughout the template file [61].
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DAKOTA VARS = <int> }

DAKOTA FNS = <i
<var _tag_cdv,>
<var _tag_cdv,>

%var_tag_cdvn>
<var _tag_ddv,>
<var _tag_ddv,>

<var _t ag_ddv,>
<var_tag_nuvq{>
<var _tag_nuvyp>

<var _tag_nuv,>

<var _tag_I nuv,>
<var _tag_I| nuv,>

<var _tag_I| nuv,>

<var _tag_uuvq>
<var _tag_uuv,>

<var _tag_uuv,>

<var _tag_Il uuv,>
<var _tag_I| uuv,>

<var _tag_I| uuv,>

<var_tag_wuvq>
<var _tag_wuv,>

<var _tag_wuv,>
<var _tag_huv,>
<var _tag_huv,>

<var _t ag_huv,>
<var_tag_csv,>
<var _tag_csvy,>

<var _tag_csv,>
<var _tag_dsv,>
<var _tag_dsv,>

<var _tag_dsv,>

nt> }

= <doubl e> }
= <doubl e> }
= <doubl e> }

= <doubl e> }
<doubl e> }
<doubl e> }

T

<doubl e>
<doubl e>

<doubl e>
<int>}
<int>}

<int> }
<doubl e>
<doubl e>

<doubl e> }
<doubl e> }
<doubl e> }

<doubl e> }
<doubl e> }
<doubl e>

<doubl e>
<doubl e>
<doubl e>

<doubl e>
<doubl e>
<doubl e>

<doubl e>
<int>}
<int>}

T

}
}
}

/

N

IYTIYTIYT|Y

[ )

—— [ S N W] [ Ny ) ——

Descriptive header

Continuous design vars.
(Negy Values and tags)

Discrete design vars.
(Nggy Values and tags)

Normal uncertain vars.
(Npyy Values and tags)

L ognormal uncertain vars.

(Njuy Values and tags)

Uniform uncertain vars.
(nyyy values and tags)

L oguniform uncertain vars.

(Nyuy vValues and tags)

Weibull uncertain vars.
(nyyuy Values and tags)

Histogram uncertain vars.
(Npyy Values and tags)

Continuous state vars.
(nes, Values and tags)

Discrete state vars.
(ngsy Valuesand tags)

<int>
ASV_1 = <int>} {\\
ASV 2 = <int> } Active set vector
- . / (m values and tags)
ASV_m = <int> }
Figure4.2  Parametersfiledataformat - APREPRO option.
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4.7 The Active Set Vector

The active set vector contains a set of integer codes, one per response function, which describe
the data needed on a particular execution of an interface. Integer values of O through 7 denote a
3-bit binary representation of all possible combinations of value, gradient, and Hessian requests
for a particular function, with the most significant bit denoting the Hessian, the middle bit
denoting the gradient, and the least significant bit denoting the value. The specific trandations
areshown in Table 4.1.

Table4.1 Active set vector integer codes.

IrC]:tsgzr reprmgtion MG
7 111 Get Hessian, gradient, and value
6 110 Get Hessian and gradient
5 101 Get Hessian and value
4 100 Get Hessian
3 011 Get gradient and value
2 010 Get gradient
1 001 Get value
0 000 No data required, function isinactive

The active set vector in DAKOTA gets its name from managing the active s, i.e., the set of
functions that are active on a particular function evaluation. However, it also manages the type of
data that is needed for functions that are active, and in that sense, has an extended meaning
beyond that typically used in the optimization literature.

4.7.1 Active set vector control

Active set vector control may be turned off to alow the user to ssimplify the supplied interface by
removing the need to check the content of the active set vector on each evaluation. The Interface
Commands chapter in the Reference Manual provides additional information on this option
(deactivate active_set _vect or). Of course, this option trades some efficiency for
simplicity and is most appropriate for those cases in which only arelatively small penalty occurs
when returning more data than may be needed on a particular function evaluation.
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5.0 Interfaces

5.1 Overview

The interface section in a DAKOTA input file specifies how function evaluations will be
performed. The mechanisms currently in place for performing function evaluationsinvolve
interfacing either with an application (i.e., acomputational simulation code) or with an
approximation (i.e., a surrogate-model).

In the case of asimulation code, theappl i cat i on interface is used to invoke the simulation
with either system calls, forks, or direct function invocations. In the system call and fork cases, a
separate process is created for the ssmulation and communication between DAKOTA and the
simulation occurs through parameter and response files. For system call and fork interfaces, then,
the interface section must also specify the details of this data transfer. In the direct function case,
a separate processis not created and communication occurs directly through the function
parameter list. Section 5.2 through Section 5.5 provide information on the application interfacing
approaches.

In the case of use of an approximation in place of an expensive ssimulation code, an
appr oxi mat i on interface can be selected to make use of surrogate modeling capabilities
available within DAKQOTA. Surrogate models are discussed further in Chapter 14.

This chapter will present an overview of the application interface procedures and components, as
well as cover issues relating to file management and example data mappings. For a detailed
description of interface section syntax, refer to the interface commands chapter in the DAKOTA
Reference Manual [17].

5.2 The Direct Function Application Interface

The direct function interface capability may be used to invoke simulations which are linked into
the DAKQOTA executable. This interface eliminates overhead from process creation and file [/0
and can simplify operations on massively parallel computers. These advantages are balanced
with the practicality of converting an existing simulation code into alink library with a
subroutine interface. Sandia’'s SALINAS structural dynamics code and Phoenix Integration’s
Model Center framework have been linked in thisway, and a direct interface to Sandia's SIERRA
multiphysics framework is under development. In the latter case, the additional effort is
particularly justified since SIERRA unifies an entire suite of physics codes.

In addition to direct linking with simulation codes, the direct interface also provides access to
internal polynomial test functions that are used for algorithm performance and regression testing.
The following test functions are available: t ext book (includingt ext _book1,

t ext _book2,text book3,andt ext book_ ouu),rosenbrock, cyl i nder _head,
andcanti | ever. While these functions are also available as external programsin the
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/ Dakot a/ t est directory, maintaining internally linked versions alows more rapid testing. See
Chapter 20 for additional information on these test problems. An example input specification for
adirect interface follows:

interface, \
application direct, \
anal ysis_driver = 'rosenbrock’

Additional specification examples are provided in Section 2.4, additional information on
asynchronous usage of the direct function interface is provided in Section 15.3.1, and the details
of adding a simulation code to the direct interface are provided in Section 16.2.

5.3 The System Call Application I nterface

The system call approach invokes a simulation code or simulation driver by using thesyst em
function from the standard C library [46]. In this approach, the system call creates a new process
which communicates with DAKOTA through parameter and response files. The system call
approach allows the simulation to be initiated via its standard invocation procedure (as a “ black
box”) and then coordinated with any variety of tools for pre- and post-processing. This approach
has been widely used in previous studies [24], [25]. The system call approach involves more
process creation and file I/0O overhead than the direct function approach; however, thisis most
often of very little significance relative to the expense of the simulations. An example of a system
call interface specification follows:

i nterface, \
application system \
anal ysis_driver = "text_book’ \
paraneters _file = 'text_book.in \
results file = 'text _book.out’ \
file_tag \

file save

More detailed examples of using the system call interface are provided in Section 2.4.9 and in
Section 16.1, and information on asynchronous usage of the system call interfaceis provided in
Section 15.3.2.

5.4 The Fork Application Interface

The fork application interface usesthef or k, exec, andwai t families of functions to manage
simulation codes or simulation drivers. Thef or k or vf or k calls create a copy of the DAKOTA
process, execvp replaces this copy with the simulation code or driver process, and then
DAKOTA usesthewai t orwai t pi d functionsto wait for completion of the new process.
Transfer of variables and response data between DAKOTA and the simulator code or driver
occurs through the file system in exactly the same manner as for the system call interface. An
example of afork interface specification follows:

interface, \
application fork, \
input _filter = "test 3pc_if’ \
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output _filter = 'test_3pc_of’ \
anal ysis_driver = "test_3pc_ac’ \
paraneters file = "th.in’ \
results file = 'th.out’ \

file_tag
Information on asynchronous usage of the fork interfaceis provided in Section 15.3.3.

5.5 Fork or System Call: Which to Use?

The primary operational difference between the fork and system call application interfacesis
that, in the fork interface, the f or k/exec functions return a UNIX process identifier which can
be utilized by thewai t /wai t pi d functions to detect the completion of a simulation, whereas
the system call application interface must use aresponse file detection scheme for this purpose.
Thus, an important advantage of the fork interface over the system call interfaceisthat it avoids
the potential of afile race condition. This condition can occur when the responses file has been
created but the writing of the response data set to this file has not been completed (see Section
15.3.2). While significant care has been taken to manage this file race condition in the system
call case, the fork interface still has the potential to be more robust when performing function
evaluations asynchronously.

Another advantage of the fork interface is that it has additional asynchronous capabilities when a
function evaluation involves multiple analyses. As shown in Table 15.1, the fork interface
supports asynchronous local and hybrid parallelism modes for managing concurrent analyses
within function evaluations, whereas the system call interface does not. These additional
capabilities again stem from the ability to track child processes by their UNIX process
identifiers.

The only observed disadvantage to the fork interface in comparison to the system interface is that
thef or k/exec/wai t functions are not part of the standard C library, whereasthe syst em
function is. Asaresult, support for implementations of thef or k/exec/wai t functions can
vary from platform to platform. At one time, these commands were not available on some of
Sandia's massively paralel computers. However, in the more mainstream UNIX environments,
availability of f or k/exec/wai t should not be an issue.

In summary, the system call interface has been aworkhorse for many years and is well tested and
proven. However, the fork interface supports additional capabilities and is recommended when
managing asynchronous simulation code executions. Having both interfaces avail able has proven
to be useful on a number of occasions and they will both continue to be supported for the
foreseeable future.

5.6 Interface Components

Figure 5.1 is an extension of Figure 1.1 which adds the detail of the components that make up
each of the application interfaces (system call, fork, and direct). These components include an
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i nput _filter (“IFilter”), oneor moreanal ysis_drivers,andanout put_filter
(“OFilter”). The input and output filters provide optional facilities for managing simulation pre-
and post-processing, respectively. More specifically, the input filter can be used to insert the
DAKOQOTA parametersinto the input files required by the simulator program, and the output filter
can be used to recover the raw data from the simulation results and compute the desired response
dataset. If thereisasingle analysis code, it is often convenient to combine these pre- and post-
processing functionsinto a single simulation driver script, and the separate input and output filter
facilities are rarely used in this case. If there are multiple analysis drivers, however, the input and
output filter facilities provide a convenient means for managing nonrepeated portions of the pre-
and post-processing for multiple analyses. That is, pre- and post-processing tasks that must be
performed for each analysis can be performed within the individual analysis drivers, and shared
pre- and post-processing tasks that are only performed once for the set of analyses can be
performed within the input and output filters.

y—|DAKOTA <+——
DAKOTA_ > DAKOTA
Parameters File T AN Results File
e - / - AN h ~
/// / AN \\\
/Appl ication Interface I
=TT Analysis L AETES
( 1Filter® : = (OFilter
<122 | Code/Driver ||| ~= =7
|
Lo N |
L |

N S : J

Figure51  Components of the application interface.

When spawning function evaluations using system calls or forks, DAKOTA must communicate
parameter and response data with the analysis drivers and filters through use of the file system.
Thisis accomplished by passing the names of the parameters and results files on the command
line when executing an analysis driver or filter. The input filter or analysis driver read datafrom
the parameters file and the output filter or analysis driver write the appropriate data to the
responses file. While not essential when the file names are fixed, the file names must be retrieved
from the command line when DAKQOTA is changing the file names from one function evaluation
to the next (i.e., using UNIX temporary files or root names tagged with numerical identifiers). In
the case of a UNIX C-shell script, the two command line arguments are retrieved using

$ar gv[ 1] and $ar gv[ 2] (see[1]). Inthe case of aC or C++ program, command line
arguments are retrieved using ar gc (argument count) and ar gv (argument vector) [46], and for
Fortran 77, thei ar gc function returns the argument count and the get ar g subroutine returns
command line arguments.
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5.6.1 Single analysis driver without filters

If asingleanal ysi s_dri ver isselected in the interface specification to perform the
complete parameters to responses mapping and filters are not needed (as indicated by omission
of thei nput _filter andout put _filter specifications), then only one process will
appear in the execution syntax of the application interface. An example of this syntax in the
system call caseis:

(driver parans.in results.out)

where“dri ver ” isthe user-specified analysis driver and “par ans. i n” and

“resul ts. out” arethe names of the parameters and results files, respectively, passed on the
command line. In this case, the user need not retrieve the command line arguments since the
same file names will be employed each time.

For the same mapping, the fork application interface echoes the following syntax:
bl ocki ng fork: driver params.in results.out

for which only a single blocking fork is needed to perform the evaluation.

Executing the same mapping with the direct application interface resultsin an echo of the
following syntax:
Direct function: invoking driver

where this analysis driver must be linked as a function within DAKOTA's direct interface (see
Section 16.2). Note that no files are involved for communication of parameter and response data,
since this datais passed directly through the function parameter lists. Execution of the direct
interface must currently be performed synchronously since multithreading is not yet supported.

Both the system call and fork interfaces support asynchronous operations. The asynchronous
system call execution syntax involves executing the system call in the background:
(driver parans.in.l results.out.1) &

and the asynchronous fork execution syntax involves use of a nonblocking fork:
nonbl ocking fork: driver parans.in.1 results.out.1

where file tagging (see Section 5.7.2) has been user-specified in both cases to prevent conflicts
between concurrent analysis drivers. In these cases, the user must retrieve the command line
arguments since the file names change on each evaluation.

5.6.2 Single analysis driver with filters

When filters are used, the syntax of the system call that DAKOTA performsis:

(ifilter parans.in results. out;
driver paranms.in results. out;
ofilter parans.in results. out)

inwhich theinput filter (i fi |l t er”), analysisdriver (“dri ver ™), and output filter
(“of i I t er ™) processes are combined into a single system call through the use of semi-colons
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and parentheses (see [1]). All three portions are passed the names of the parameters and results
files on the command line.

For the same mapping, the fork application interface echoes the following syntax:

bl ocking fork: ifilter parans.in results. out;
driver parans.in results.out;
ofilter paranms.in results. out

where a series of three blocking forksis used to perform the evaluation.

Executing the same mapping with the direct application interface resultsin an echo of the
following syntax:
Direct function: invoking { ifilter driver ofilter }

where each of the three components must be linked as a function within DAKOTA's direct
interface. Since asynchronous operations are not yet supported, execution simply involves
invocation of each of the three linked functions in succession. Again, no files are involved since
parameter and response data are passed directly through the function parameter lists.

Asynchronous executions would appear as follows for the system call interface:

(ifilter paranms.in.1 results.out. 1;
driver parans.in.1 results.out. 1;
ofilter parans.in.1l results.out.l) &

and, for the fork interface, as:

nonbl ocking fork: ifilter paranms.in.l results.out.1;
driver parans.in.l1 results.out.1;
ofilter params.in.1l results.out.1

where file tagging of evaluations has again been user-specified in both cases. For the system call
application interface, use of parentheses and semi-colons to bind the three processes into asingle
system call simplifies asynchronous process management compared to an approach using
separate system calls. The fork application interface, on the other hand, does not rely on
parentheses and accomplishes asynchronous operations by first forking an intermediate process.
Thisintermediate processis then reforked for the execution of the input filter, analysis driver, and
output filter. The intermediate process can be blocking or nonblocking (nonblocking in this case),
and the second level of forks can be blocking or nonblocking (blocking in this case). The fact
that forks can be reforked multiple times using either blocking or nonblocking approaches
provides the enhanced flexibility to support avariety of parallelism models (see Chapter 15).

5.6.3 Multiple analysis drivers without filters

If alistof anal ysi s_dri ver s isspecified and filters are not needed (as indicated by
omission of thei nput _filter andout put _filter specifications), then the system call
syntax would appear as.

(driverl params.in results.out. 1;
driver2 parans.in results. out. 2;
driver3 parans.in results.out.3)
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where“dri ver 1”7, “dri ver 2”,and“dri ver 3” are the user-specified analysis drivers and
“parans.in” and“resul ts. out” arethe user-selected names of the parameters and results
files. Note that the results files for the different analysis drivers have been automatically tagged
to prevent overwriting. This automatic tagging of analyses (see Section 5.7.4) is a separate
operation from user-sel ected tagging of evaluations (see Section 5.7.2).

For the same mapping, the fork application interface echoes the following syntax:

bl ocking fork: driverl parans.in results.out.1;
driver2 parans.in results. out. 2;
driver3 parans.in results.out.3

for which a series of three blocking forksis needed (no reforking of an intermediate processis
required).

Executing the same mapping with the direct application interface resultsin an echo of the
following syntax:
Direct function: invoking { driverl driver2 driver3 }

where, again, each of these components must be linked within DAKOTA's direct interface and
no files are involved for parameter and response data transfer.

Both the system call and fork interfaces support asynchronous function evaluations. The
asynchronous system call execution syntax would be reported as

(driverl parans.in.l results.out.1.1
driver2 parans.in.1 results.out.1l.2;
driver3 parans.in.1l results.out.1.3) &

and the nonblocking fork execution syntax would be reported as

nonbl ocking fork: driverl paranms.in.1l results.out.1.1
driver2 parans.in.1l results.out.1.2;
driver3 parans.in.1l results.out.1.3

where, in both cases, file tagging of evaluations has been user-specified to prevent conflicts
between concurrent analysis drivers and file tagging of the results files for multiple analysesis
automatically used. In the fork interface case, an intermediate processis forked to allow anon-
blocking function evaluation, and this intermediate process is then reforked for the execution of
each of the analysis drivers.

5.6.4 Multiple analysis drivers with filters

Finally, when combining filters with multiple anal ysi s_dri ver s, the syntax of the system
call that DAKOTA performsis:

(ifilter paranms.in.1 results.out. 1;
driverl parans.in.1l results.out.1.1
driver2 parans.in.1l results.out.1.2;
driver3 parans.in.1l results.out. 1. 3;
ofilter paranms.in.1l results.out.1)

in which all processes have again been combined into a single system call through the use of
semi-colons and parentheses. Note that the secondary file tagging for the resultsfilesis only used
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for the analysis drivers and not for the filters. Thisis consistent with the filters’ defined purpose
of managing the non-repeated portions of analysis pre- and post-processing (e.g., overlay of
response results from individual analyses; see Section 5.7.4 for additional information).

For the same mapping, the fork application interface echoes the following syntax:

bl ocking fork: ifilter parans.in.l1l results.out.1;
driverl parans.in.1l results.out.1.1
driver2 parans.in.1l results.out.1l.2;
driver3 parans.in.1l results.out. 1. 3;
ofilter parans.in.1l results.out.1l

for which a series of five blocking forksis used (no reforking of an intermediate processis
required).

Executing the same mapping with the direct application interface resultsin an echo of the
following syntax:

Direct function: invoking { ifilter driverl driver2 driver3
ofilter }

where each of these components must be linked as a function within DAKOTA’s direct interface.
Since asynchronous operations are not supported, execution simply involves invocation of each
of the five linked functions in succession. Again, no files are involved for parameter and
response data transfer since this datais passed directly through the function parameter lists.

Asynchronous executions would appear as follows for the system call interface:

(ifilter paranms.in.1 results.out. 1;
driverl parans.in.1l results.out.1.1
driver2 parans.in.1l results.out.1l.2;
driver3 parans.in.1l results.out.1.3;

[
[
[
ofilter parans.in.1l results.out.l) &
and for the fork interface:

nonbl ocking fork: ifilter paranms.in.l results.out.1;
driverl parans.in.1l results.out.1.1
driver2 parans.in.1l results.out.1l.2;
driver3 parans.in.1l results.out. 1. 3;
ofilter params.in.1l results.out.1

where, again, user-selected file tagging of evaluations is combined with automatic file tagging of
analyses. In the fork interface case, an intermediate processis forked to allow a non-blocking
function evaluation, and this intermediate process is then reforked for the execution of the input
filter, each of the analysis drivers, and the output filter.

5.7 File Management

This section describes some of the file management features that are employed during an
execution of DAKOTA when file transfer of datais used for the communication between
DAKQOTA and the simulation code (i.e., when the system call or fork interfaces are used). These
features can be used for generating unique filenames when utilizing DAKOTA's parall el
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execution capabilities and for debugging purposes when troubleshooting the interface between
DAKOQOTA and the ssimulation code.

5.7.1 File Saving

Thefi | e_save option in the interface specification alows the user to control whether
parameters and results files are retained or removed from the working directory. DAKOTA's
default behavior is to remove files once their use is complete in order to not clutter the working
directory. If the method output setting is verbose, a file remove notification will follow the
function evaluation echo, e.g.:

(driver [usr/tnp/aaaa20305 /usr/tnp/ baaa20305)
Renovi ng /usr/tnp/aaaa20305 and /usr/tnp/ baaa20305

However, by specifying f i | e_save in theinterface specification, these files will not be
removed. This latter behavior is often useful for debugging communication between DAKOTA
and simulator programs. An example of af i | e_save specification is shown in the file tagging
example below.

5.7.2 File Tagaing for Evaluations

When auser providespar aneters_fil eandresul ts_fil e specifications, the

fil e_tag optionin the interface specification allows the user to render the names of these
parameters and results files unique by appending the function evaluation number to the root file
names. Default behavior is to not tag these files, which has the advantage of allowing the user to
ignore command line argument passing and always read to and write from the same file names.
However, it has the disadvantage that files may be overwritten from one function evaluation to
the next. By specifying f i | e_t ag in the interface specification, the file names become unique
through the appended eval uation number. This uniqueness makes it necessary for the user’s
interface to retrieve the names of these files from the command line. The file tagging feature is
most often used when concurrent simulations are running in acommon disk space, sinceit can
prevent conflicts between the simulations. An example specificationof fi | e_t ag and
file_save isshown below:

interface, \
application system \
anal ysis_driver = "t ext _book’ \
paraneters file = "text _book.in’ \
results _file = "text_book.out’ \
file_tag \

file save

Soecial case: When a user specifies names for the parameters and resultsfilesandfi | e_save
isused without f i | e_t ag, untagged files are used in the function evaluation but are then
moved to tagged files after the function evaluation is complete in order to prevent overwriting
filesfor whichaf i | e_save request has been given. If the output control is set to verbose, then
anotification similar to the following will follow the function evaluation echo:

(driver parans.in results.out)
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Files with nonunique nanmes will be tagged to enable
file_save:

Movi ng parans.in to parans.in.1

Moving results.out to results.out.1

5.7.3 UNIX Temporary Files

If paranmeters fileandresults fil e arenot specified by the user, then the default
mechanisms for file communication are UNIX temporary files. For example, asystem call to a
single analysis driver would appear as.

(driver [usr/tnp/aaaa20305 /usr/tnp/ baaa20305)

and a system call to an analysis driver with filter programs would appear as:

(i1filter /usr/tnp/aaaa22490 usr/tnp/ baaa22490;
driver /usr/tnp/aaaa22490 usr/tnp/ baaa22490;
ofilter /usr/tnp/aaaa22490 /usr/tnp/ baaa22490)

These files have unique names as created by thet npnamutility from the C standard library [46].
This uniqueness makes it a requirement for the user’sinterface to retrieve the names of these files
from the command line. File tagging with evaluation number is unnecessary with UNIX
temporary files (since they are already unique); thus, f i | e _t ag requests will beignored. A
file_save request will be honored, but it should be used with care since the temporary file
directory could easily become cluttered without the user noticing.

5.7.4 File Tagging for Analysis Drivers

When multiple analysis drivers are involved in performing a function evaluation with either the
system call or fork application interface, a secondary file tagging is automatically used in order
to distinguish the results files used for the individual analyses. This applies to both the case of
user-specified names for the parameters and results files and the default UNIX temporary file
case. Examples for the former case were shown previously in Section 5.6.3 and Section 5.6.4.
The following examples demonstrate the latter UNIX temporary file case. Even though Unix
temporary files have unique names for a particular function evaluation, atagging is still needed
to manage the individual contributions of the different analysis drivers to the response resuilts,
since the same root results filename is used for each component. For the system call interface, the
syntax would be similar to the following:

(ifilter /var/tnp/aaawkaOKZ /var/t np/ baaxkaOKZ;
driverl /var/tnp/aaawkaOKZ /var/tnp/ baaxkaOKZ. 1;
driver2 /var/tnp/aaawkaOKZ /var/tnp/ baaxkaOKZ. 2;
driver3 /var/tnp/aaawkaOKZ /var/t np/ baaxkaCKZ. 3;
ofilter /var/tnp/aaawkaOKZ /var/t np/ baaxkaOKz)

and, for the fork interface, similar to:

bl ocki ng fork:
ifilter /var/tnp/aaawkaOKZ /var/t np/ baaxkaOKZ;
driverl /var/tnp/aaawkaOKZ /var/t np/ baaxkaCKZ. 1;
driver2 /var/tnp/aaawkaOKZ /var/t np/ baaxkaCKZ. 2;
driver3 /var/tnp/aaawkaOKZ /var/t np/ baaxkaCKZ. 3;
ofilter /var/tnp/aaawkaOKZ /var/t np/ baaxkaOKZ
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The tagging of the results files with an analysisidentifier is needed since each of the analysis
driversisresponsible for contributing a user-defined subset of the total response results for the
evaluation. If an output filter is not supplied, then DAKOTA will combine these portions through
asimple overlaying of theindividual contributions (i.e., summing the resultsin/ var / t np/
baaxkaCOKZ. 1,/ var/t np/ baaxkaCKZ. 2, and/ var / t np/ baaxkaCKZ. 3). If this
simple approach is inadequate, then an output filter should be supplied to perform the
combination. Thisisthe reason why the results file for the output filter does not use analysis
tagging; it isresponsible for the results combination (i.e., combining / var / t np/
baaxkaOKZ. 1,/ var/t np/ baaxkaOKZ. 2, and/ var/ t np/ baaxkaOKZ. 3 into/ var/
t mp/ baaxkaOKZ). In this case, DAKOTA will read only the results file from the output filter
(i.e,/ var/t np/ baaxkaOKZ) and interpret it as the total response set for the evaluation.

Parameters files are not currently tagged with an analysis identifier. This reflects the fact that
DAKOTA does not attempt to subdivide the requests in the active set vector for different analysis
portions. Rather, the total active set vector is passed to each analysis driver and the appropriate
subdivision of work must be defined by the user. This allows the division of labor to be very
flexible. In some cases, this division might occur across response functions, with different
analysis drivers managing the data requests for different response functions. And in other cases,
the subdivision might occur within response functions, with different analysis drivers
contributing portions to each of the response functions. The only restriction is that each of the
analysis drivers must follow the response format dictated by the total active set vector. For
response data for which an analysis driver has no contribution, 0’'s must be used as placeholders.

5.8 Parameter to Response M appings

Following are several examples of interface mappings as evidenced by the parameters files and
corresponding resultsfiles. A typical input file for 2 variables (n = 2) and 3 functions (m= 3)
using the standard parameters file format (see Section 4.6.1) is asfollows:

2 variables 3 functions
1. 5000000000e+00 cdv_1
1. 5000000000e+00 cdv_2
1 ASV_ 1

1 ASV 2

1 ASV_ 3

where the numerical values are associated with their tagswithin “val ue t ag” constructs. The
number of design variables (n) and the string “var i abl es” arefollowed by the number of
functions (m and the string “f unct i ons”, the values of the design variables and their tags, and
the active set vector (ASV) and its tags. The descriptive tags for the variables are always present
and they are either the descriptors specified in the user’s variabl es specification or are default
descriptorsif none were provided. The length of the active set vector is equal to the number of
functions (m). In the case of an optimization data set with an objective function and two
nonlinear constraints (three response functions total), the first ASV value is associated with the
objective function and the remaining two are associated with the constraints (in whatever
consistent constraint order has been defined by the user).
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For the APREPRO format option (see Section 4.6.2), the same set of data appears as follows:

DAKOTA_VARS 2}

DAKOTA_FNS 3}

cdv_1 1. 5000000000e+00 }
cdv_2 1. 5000000000e+00 }
ASV_1 1}
ASV_2 1}
ASV_3 1}

where the numerical values are associated with their tagswithin“{ tag = val ue }”
constructs.

[t Tt Yoae Vo Voun Yoo Voun )

The user-supplied application interface, comprised of a simulator program or driver and
(optionally) filter programs, is responsible for reading the parameters file and creating a results
file that contains the response data requested in the ASV. This response datais written in the
format described in Section 6.2. Since the ASV contains al onesin this case, the responsefile
corresponding to the above input file would contain values for the three functions:

1. 2500000000e- 01 f
1. 5000000000e+00 c1
1. 7500000000e+00 c2

Since function tags are optional, the following would be equally acceptable:

1. 2500000000e- 01
1. 5000000000e+00
1. 7500000000e+00

For the same parameters with different ASV components,

2 variables 3 functions
1. 5000000000e+00 cdv_1
1. 5000000000e+00 cdv_2
3 ASV_ 1

3 ASV 2

3 ASV_ 3

the following response data is required:

1. 2500000000e- 01 f
1. 5000000000e+00 c1
1. 7500000000e+00 c2

5. 0000000000e- 01 5. 0000000000e-01 ]
[ 3.0000000000e+00 -5.0000000000e-01 ]
[ 0.0000000000e+00 3.0000000000e+00 ]

Here, we need not only the function values, but also each of their gradients. Another
maodification to the ASV components yields the following parametersfile,

2 variables 3 functions
1. 5000000000e+00 cdv_1
1. 5000000000e+00 cdv_2
2 ASV_ 1

0 ASV 2

2 ASV_ 3

for which the following resultsfile is needed:
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[ 5.0000000000e-01 5.0000000000e-01 ]
[ 0.0000000000e+00 3.0000000000e+00 ]

Here, we need gradients for functionsf and c2, but not for c 1, presumably since this constraint
isinactive.

A full Newton optimizer might well make the following request:

2 variables 1 functions
1. 5000000000e+00 cdv_1
1. 5000000000e+00 cdv_2
7 ASV_ 1

for which the following results file (containing the objective function, its gradient vector, and its
Hessian matrix) is needed:

1. 2500000000e- 01 f

[ 5.0000000000e-01 5.0000000000e-01 ]

[[ 3.0000000000e+00 0. 0000000000e+00 0. 0000000000e+00
3. 0000000000e+00 ] ]

Lastly, a more advanced example might have multiple types of variables present:

11 variables 3 functions
. 5000000000e+00 cdv_1
. 5000000000e+00 cdv_2
ddv_1

ddv_2

ddv_3

. 5000000000e+00 csv_1
. 5000000000e+00 csv_2
. 5000000000e+00 csv_3
. 5000000000e+00 csv_4
dsv_1

dsv_2

ASV 1

ASV 2

ASV_3

In this case, the required length of the gradient vectors depends upon the type of study being
performed (see Section 6.3). In an optimization problem, gradients are only needed with respect
to the continuous design variables, in which case the following response data would be
appropriate (Ngr aq=2):

1. 2500000000e-01 f

1. 5000000000e+00 c1

1. 7500000000e+00 c2

[ 5.0000000000e-01 5.0000000000e-01 ]

3. 0000000000e+00 -5.0000000000e-01 ]
[ 0.0000000000e+00 3.0000000000e+00 ]

In a parameter study, however, no distinction is drawn between different types of continuous
variables, and gradients would be needed with respect to all continuous variables (ngr 54=6),

eg.

WWWArPRWWWWNNNERE

1. 2500000000e- 01 f
1. 5000000000e+00 c1
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1. 7500000000e+00 c2
[ 5.0000000000e-01 5.0000000000e-01 6.2500000000e+01

6. 2500000000e+01 6. 2500000000e+01 6. 2500000000e+01 ]
[ 3.0000000000e+00 -5.0000000000e-01 0.0000000000e+00

0. 0000000000e+00 0. 0000000000e+00 0. 0000000000e+00 ]
[ 0.0000000000e+00 3.0000000000e+00 0. 0000000000e+00

0. 0000000000e+00 0. 0000000000e+00 0. 0000000000e+00 ]
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6.0 Response Data

6.1 Overview

Ther esponses specification in aDAKOTA input file specifies the types of datathat can be
returned from an interface during DAKOTA's execution. The specification includes the number
and type of response functions (objective functions, nonlinear constraints, least squares terms,
etc.) aswell asavailability of first and second derivatives (gradient vectors and Hessian matrices)
for these response functions.

This chapter will present a brief overview of the response data sets and their uses, aswell as
cover some user issues relating to file formats and derivative vector and matrix sizing. For a
detailed description of responses section syntax and example specifications, refer to the
responses commands chapter in the DAKOTA Reference Manual [17].

6.1.1 Response function types

The types of response functions specified in ther esponses specification depend on the
iterative technique specified in the met hod specification:

e num obj ecti ve_functions,num nonlinear _inequality constraints,
num nonl i near _equal i ty_constrai nt s: thisisan optimization data set for use
with optimization methods from DOT, NPSOL, CONMIN, OPT++, and SGOPT.

e num | east _squares_terns,num nonlinear_inequality_constraints,
num nonl i near _equal i ty_constrai nt s: thisisaleast squares data set for use with
Gauss-Newton and NLSSOL .

e num response_functi ons: thisisageneric data set for use with uncertainty
guantification methods.

Certain general-purpose iterative techniques, such as parameter studies and design of
experiments methods, can be used with any of these data sets.

6.1.2 Gradient availability
Gradient availability for these response functions may be described by:

* no_gr adi ent s: gradient datais not needed.

e nuneri cal _gradi ent s: gradient datais needed and will be computed by finite
differences.

e anal yti c_gradi ent s: gradient data is needed and is available directly from the
simulation code (finite differencing is not required).

* m xed_gr adi ent s: some gradient information is available directly from the simulation
whereas the rest will have to be finite differenced.
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The gradient specification also links back to the iterative method being employed. Gradient data
is commonly needed when the iterative study involves gradient-based optimization, uncertainty
guantification with analytic reliability methods, or local sensitivity analysis.

6.1.3 Hessian availability

Hessian availability for the response functions has a subset of the gradient availability
specifications:

* no_hessi ans: Hessian datais not needed.

* anal yti c_hessi ans: Hessian datais needed and is available directly from the simulation
code.

Numerical and mixed Hessians calculations are not currently supported. The Hessian
specification also links back to the iterative method in use, and use of analytic Hessian data
would commonly appear for gradient-based optimization using full Newton methods or, perhaps,
for local sensitivity analysis.

6.2 DAKOTA Results File Data For mat

Application interfaces which employ system calls and forks to create separate simulation
processes must communicate with the simulation through the file system. This is accomplished
through the reading and writing of parameters and results files. DAKOTA uses its own format for
this data input/output. For the resultsfile, only one format is supported (as compared to the two
parameters file formats described in Section 4.6).

After completion of asimulation, DAKOTA expects to read a file containing response data for
the current set of parameters and corresponding to the current set of function requestsin the
active set vector. This response data must be in the following format:

<doubl e> <fn_tag,>

<doubl e> <fn_t ag,> \ Requested function
. values (optional tags)
<doubl e> <fn_tag,y> /

[ <doubl e> <doubl e> ... <doubl e> ]

[ <doubl e> <doubl e> ... <doubl e> ] Requested gradient
e vectors (no tags)

[ <doubl e> <doubl e> ... <doubl e> ]

[[ <doubl e> <double> ... <double> ]]

[[ <doubl e> <double> ... <double> ]] Requested Hessian
Ce matrices (no tags)
[[ <doubl e> <double> ... <double> ]]

Figure6.1  Resultsfile dataformat.

Thefirst block of datais the function values that have been requested, followed by a block of
requested gradient data, followed by a block of requested Hessian data. Function data have no
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bracket delimiters and one character tag per function can be optionally supplied. These tags are
not used by DAKOTA and are only included as an optional field for consistency with the
parameters file format and for backwards compatibility. The tags are rendered optional through
DAKOTA's use of regular expression pattern matching to detect whether an upcoming field is
numerical dataor atag. If character tags are used, then they must be separated from data by
either white space or new line characters and there must not be any white space embedded within
acharacter tag (e.g., use“vari abl el” or“vari abl e_1, butnot “vari abl e 17).

Function gradient vectors are delimited with single brackets [...ng, 54-vector of doubles...]. Tags
are not used and must not be present. White space separating the brackets from the datais
optional.

Function Hessian matrices are delimited with double brackets|[]...n q matrix of

grad x ngr a
doubles...]]. Dataislisted by rows and can be run together or broken onto multiple lines for
readability. Tags are not used and must not be present. White space separating the brackets from
the data is optional, although white space must not appear between the double brackets.

If the amount of datain the file does not match the function request vector, DAKOTA will abort
with aresponse recovery format error message.

The format of the numeric fields may be floating point or scientific notation. In the latter case,
acceptable exponent charactersare “E” or “e.” A common problem when dealing with Fortran
programsisthat a C++ read of anumeric field using “D” or “d” as the exponent (i.e., adouble
precision value from Fortran) may fail or be truncated. In this case, the “D” exponent characters
must be replaced either through modifications to the Fortran source or compiler flags or through
a separate post-processing step (e.g., using the UNIX sed utility).

6.3 Active Variablesfor Derivatives

An important question for proper management of both gradient and Hessian datais: if several
different types of variables are used, for which variables are response function derivatives
needed? That is, how isng, 54 determined? The answer isthat it depends on the iterative method
in use. Methods determine what subset, or view, of the variables datais active in the iteration.
The set of variables that is active in the iteration is the same set of variables for which derivatives
are computed (see a'so Section 4.5).

Derivatives are never needed with respect to any discrete variables (since these derivatives do not
exist) and the types of continuous variables for which derivatives are needed depend on the type
of study being performed. For optimization and least squares problems, response function
derivatives are only needed with respect to the continuous design variables (g, 5g=Ncqy) Since
thisisthe information used by the optimizer in computing a search direction. Similarly, for
nondeterministic analysis methods which use gradient and/or Hessian information, function
derivatives are only needed with respect to the uncertain variables (ngy 5g=nyy)- And lastly,

parameter study methods which are cataloguing gradient and/or Hessian information do not draw
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a distinction among continuous variables; therefore, function derivatives must be supplied with
respect to all continuous variables that are specified (g, ag=NcgytNuytNesy)- Thisisgenerally

not as complicated as it sounds, since it is common for optimization and least squares problems
to only specify design variables and for nondeterministic analysis problems to only specify
uncertain variables. DAKOTA allows for the specification of additional types of variablesin
these cases and DAKOTA will map these additional variables through the interface, but since
they will not be used in the internal computations of the iterator, the derivatives of the function
set with respect to the additional variables are not needed.
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7.0 Output from DAKOTA

7.1 Overview of Output For mats

Given an emphasis on complex numerical simulation codes that run on massively parallel
supercomputers, DAKOTA's output has been designed to provide a succinct, text-based reporting
of the progress of the iterations and function evaluations performed by an algorithm. In addition,
DAKOTA provides atabular output format that is useful for data visualization with external tools
and a basic graphical output capability that is useful as a monitoring tool. Future work will
include the development of a graphical user interface with more extensive capabilities.

7.2 Standard Output

DAKOTA outputs basic information to “standard out” (i.e., the screen) for each function
evaluation, consisting of an evaluation number, parameter values, execution syntax, the active set
vector, and the response data set. To describe the standard output of DAKOTA, optimization of
the “container” problem (see Chapter 20 for problem formulation) is used as an example. The
input file for this example is shown in Figure 7.1. In this example, there is one equality
constraint, and DAKOTA's finite difference algorithm is used to provide central difference
numerical gradients to the NPSOL optimizer.

strat egy,
si ngl e_met hod
gr aphi cs
t abul ar _graphi cs_data

——

net hod, \
npsol _sqgp

vari abl es,
conti nuous_design = 2
cdv_descri ptor '"H 'D
cdv_initial _point 4
0

———

.5 4.5
cdv_| ower _bounds .00.0
i nterface, \
application system \
anal ysis_driver = 'container’
responses,

num obj ective_functions = 1
num nonl i near_equality_constraints = 1
numeri cal _gradients
nmet hod_sour ce dakota
interval _type centra
fd_step_size = 0.001
no_hessi ans

—— - — — —

Figure7.1  DAKOTA input filefor the“container” example problem.
A partial listing of the output for the container optimization example follows:

Runni ng MPI executable in serial node.
Witing newrestart file dakota.rst
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Constructing Single Method Strategy...

net hodName = npsol _sqp

gradi ent Type = nuneri cal

hessi anType = none

Nurreri cal gradients using 0.1% central differences

to be calculated by the dakota finite difference routine.

Ootimality Tol erance = 0.0001

NOTE: NPSCL’'s convergence tolerance is not a relative tol erance.
See pp. 21-22 of NPSOL manual for description.

Derivative Level =3

>>>>> Runni ng Single Method Strategy.

>>>>> Runni ng npsol _sqp iterator.

NPSOL --- Version 4.06-2 Nov 1992

>>>>> |nitial map for non-finite-differenced portion of response:

Paraneters for function evaluation 1:
4.5000000000e+00 H
4, 5000000000e+00 D

(contai ner /var/tnp/aaaOTaaeA /var/tnp/ baalTaaeA)
Active response data for function evaluation 1:
Active set vector = { 11}

1. 0713145108e+02 obj _fn
8. 0444076396e+00 nl n_eq_conl

>>>>> Dakota finite difference evaluation for x[1] + h:

Paraneters for function eval uation 2:
4.5045000000e+00 H
4.5000000000e+00 D

(cont ai ner /var/tnp/caa2TaaeA /var/tnp/ daa3TaaeA)

Active response data for function eval uation 2:

Active set vector = { 11}

1.0719761302e+02 obj fn
8. 1159770472e+00 nl n_eq_conl

>>>>> Dakota finite difference evaluation for x[1] - h:

Parameters for function evaluation 3:
4. 4955000000e+00 H
4.5000000000e+00 D

(contai ner /var/tnp/eaadTaaeA /var/tnp/faa5TaaeA)

Active response data for function evaluation 3:
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Active set vector = { 11
1.0706528914e+02 obj _fn
7.9728382320e+00 nl n_eq_conl

>>>>> Dakota finite difference evaluation for x[2] + h:

Parameters for function eval uation 4:
4,5000000000e+00 H
4,5045000000e+00 D

(cont ai ner /var/tnp/gaa6TaaeA /var/tnp/ haa7TaaeA)

Active response data for function eval uation 4:
Active set vector = { 11}
1.0727959301e+02 obj _fn
8.1876180243e+00 nl n_eq_conl

>>>>> Dakota finite difference evaluation for x[2] - h:

Paraneters for function evaluation 5:
4.5000000000e+00 H
4. 4955000000e+00 D

(container /var/tnp/iaa8TaaeA /var/tnp/jaa9TaaeA)

Active response data for function evaluation 5:
Active set vector = { 11
1.0698339109e+02 obj _fn
7.9013403937e+00 nl n_eq_conl

>>>>> Total response returned to iterator
Active set vector = { 3 3}

1.0713145108e+02 obj fn

8. 0444076396e+00 nl n_eq_conl
3.2911324639e+01 ] obj_fn gradient
3.1808625618e+01 ] nln_eqg_conl gradient

[ 1.4702653619e+01
[ 1.5904312809e+01

Maj  Mhr Step Fun Merit function Violtn Norm gz nZ Penalty Conv
0 1 0.0E+00 1 9.90366719E+01 8. 0E+00 1.6E+00 1 0.0E+00 F FF

<<omission>>

>>>>> Dakota finite difference evaluation for x[2] - h:

Paranmeters for function eval uati on 40:
4,9873894231e+00 H
4,0230575428e+00 D

(cont ai ner /var/tnp/adacVaaeA /var/tnp/ bdadVaaeA)
Active response data for function eval uati on 40:
Active set vector = { 11}

9. 8301287596e+01 obj fn
-1.2698647534e-01 nln_eq_conl
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>>>>> Total response returned to iterator:

Active set vector = { 3 3}

. 8432498115e+01 obj _fn
-1.2072405298e-09 nl n_eq_conl

[ 1.3157517799e+01 3.2590159401e+01 ] obj _fn gradient

[ 1.2737124438e+01 3.1548877386e+01 ]| nln_eq_conl gradient

©

7 1 1.0E+00 8 9.84324981E+01 1.2E-09 7.9E-11 1 1.4E400 T TT
Exit NPSOL - Optimal solution found
Fi nal nonlinear objective value = 98. 43250
NPSOL exits with INFORM code = 0 (see p. 8 of NPSCOL manual)

NOTE: see Fortran device 9 file (fort.9 or ftn09)
for conplete NPSOL iteration history.

<<<<< Iterator npsol _sqgp conpl eted
<<<<< Function evaluation sunmary: 40 total (40 new, O duplicate)
<<<<< Best paraneters =
4.9873894231e+00 H
4.0270846274e+00 D
<<<<< Best objective function =
9. 8432498115e+01
<<<<< Best constraint values =
-1.2072405298e- 09
<<<<< Best data captured at function evaluation 36
<<<<< Single Method Strategy conpl et ed.
DAKOTA execution time in seconds
Total CPU 1.71 [parent = 0.3, child = 1. 41]
Total wall clock 8. 952

Thefirst block of lines provide areport on the DAKOTA configuration and settings. The lines
that follow, downtotheline“Exit NPSOL - Optimal solution found”,contain
information about the function evaluations that have been requested by NPSOL and performed
by DAKQOTA. Evaluations 6 through 39 have been omitted from the listing for brevity.

Following theline“Begi n Functi on Eval uati on 17”,theinitial values of the design
variables and the initial objective and constraint function evaluations are listed. The values of the
design variables are labeled with the tags Hand D, respectively, and the values of the objective
function and volume constraint are labeled with thetagsobj _fnandnl n_eq_conl,
respectively. Note that the initial design parameters are infeasible since the equality constraint is
violated (# 0). However, the numerical optimizer has the capability to find a design that is both
feasible and optimal for this example. Between the design variables and response values, the
content of the system call to the ssimulator isdisplayed as“( cont ai ner /var/t np/
aaaOTaaeA /var/tnp/ baalTaaeA)”, with cont ai ner being the name of the simulator
and/ var/t np/ aaa0TaaeAand/ var/t np/ baalTaaeA being the names of the
parameters and results files, respectively.

Just preceding the output of the objective and constraint function valuesistheline“Act i ve
set vector ={1 1}”. Theactive set vector indicates the types of datathat are required
from the simulator for the objective and constraint functions, and values of “1” indicate that the
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simulator must return values for these functions (gradient and Hessian data are not required). For
more information on the active set vector, see Section 4.7.

Since finite difference gradients have been specified, DAKOTA computes their values by making
additional function evaluation requests to the simulator at perturbed parameter values. Examples
of the gradient-related function evaluations have been included in the sample output, beginning
with thelinethat reads“>>>>> Dakota finite difference eval uation for

x[ 1] + h:”.Theresulting finite difference gradients are listed after function evaluation 5
beginning with theline“>>>>> Total response returned to iterator:”. Here
another active set vector is displayed in the DAKOTA output file. Theline“Act i ve set
vector = { 3 3 }”indicatesthat thetotal response resulting from the finite differencing
contains function values and gradients.

The final lines of the DAKOTA output, beginning with theline“<<<<< | terat or

npsol _sqp conpl et ed”, summarize the results of the optimization study. The best values
of the optimization parameters, objective function, and volume constraint are presented along
with the function evaluation number where they occurred, total function evaluation counts, and a
timing summary. In the end, the objective function has been minimized and the equality
constraint has been satisfied (driven to zero within the constraint tolerance).

The DAKOTA results are intermixed with iteration information from the NPSOL library. The
lineswith the heading “Maj  Vnr Step Fun Merit function Violtn

Nor m gZ nZ Penal ty Conv” comefrom Fortran write statements within NPSOL. The
output is mixed since both DAKOTA and NPSOL are writing to the same standard output stream.
The relative locations of these output contributions can vary depending on the specifics of output
buffering and flushing on a particular platform and depending on whether or not the standard
output is being redirected to afile. In some cases, output from the optimization library may
appear on each iteration (asin this example), and in other cases, it may appear at the end of the
DAKOTA output. Finally, amore detailed summary of the NPSOL iterations is written to the
Fortran device 9file (e.g.,fort. 9 or f t n09).

7.3 Tabular Output Data

DAKOTA has the capability to print the iteration history in tabular form to afile. The keyword

t abul ar _graphi cs_dat a needsto beincluded inthe st r at egy specification (see Figure
7.1). The primary intent of this capability isto facilitate the transfer of DAKOTA's iteration
history data to an external mathematical analysis and/or graphics plotting package. Any
evaluations from DAKOTA's internal finite differencing are suppressed, which leads to better
data visualizations. This suppression of lower level datais consistent with the data that is sent to
the graphics windows, as described in Section 7.4. If this data suppression is undesirable, Section
18.2.3 describes an approach where every function evaluation, even the ones from finite
differencing, can be saved to afile in tabular format.

The default file name for the tabular output datais“dakot a_t abul ar. dat ” and the output
from the “container” optimization problem is shown in Figure 7.2. Thisfile contains the
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complete history of data requests from NPSOL (8 requests map into atotal of 40 function
evaluations when including the central finite differencing). The first column is the data request
number, the second and third columns are the design parameter values (labeled in the example as
“H’ and “D"), the fourth column is the objective function (labeled “obj _f n”), and thefifth
column isthe nonlinear equality constraint (labeled “nl n_eq_con1”).

peval _1d H D ob] _Tn nin_eqg_cont
1 4.5 4.5  107.1314511 8. 04440764
2 5.801246882  3.596476363  94.33737399  -4.591036449
3 5.197920021  3.923577478  97.77972141 -0.6780884643
4 4.932877133  4.044776217  98.28930567 -0.1410680155
5  4.989328734  4.026133158 98. 4270019 - 0. 005324669423
6  4.987494493  4.027041977  98. 43249058 - 7.305673456e- 06
7 4.987391669 4.02708372 98. 4324981 -1.981307918e- 08
8  4.987389423  4.027084627  98. 43249811 -1.20724053e- 09
Figure7.2  DAKOTA'stabular output file showing theiteration history of the

“container” optimization problem.

7.4 Graphics Output

Graphics capabilities are available for monitoring the progress of an iterative study. The graphics
option isinvoked by adding the gr aphi cs flag in the strategy specification of the DAKOTA
input file (see Figure 7.1). The graphics display the values of each response function (e.g.,
objective and constraint functions) and each parameter for the function evaluationsin the study.
Asfor the tabular output described in Section 7.3, internal finite difference evaluations are
suppressed in order to omit this clutter from the graphics. Figure 7.3 shows the optimization
iteration history for the container example.

If DAKQTA is executed on aremote machine, the DISPLAY variable in the user’s UNIX
environment [33] may need to be set to the local machine in order to display the graphics
window. The scroll bars which are located on each graph below the x-axis and next to the y-axis
may be operated by dragging on the bars or pressing the arrows, both of which result in
expansion/contraction of the axis scale. Clicking on the options button (“Opt”) allows the user to
plot the values of the vertical axis using alogarithmic scale so long as all of these values are

greater than zero.
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Figure7.3  DAKOTA output for “container” problem showing history of an
obj ective function, an equality constraint, and two variables.

In addition to these two-dimensional iteration history plots, three-dimensional surface plots can
be generated when using response surface methods in combination with the gr aphi cs
keyword. Thisfeature is currently available only if there are two parameters in the problem. One
common use of response surface methodsisinthesur r ogat e_based_opt strategy (see
Section 13.7), for which a sample specification follows:

strategy,

surrogat e_based_opt

graphi cs

opt _nmet hod=" NLP

trust _region
initial _size = 0.10
contraction_factor 0. 50
expansi on_factor 1.50

When DAKQOTA is executed, a 3-D surface plot is automatically spawned (Figure 7.4 shows an
example from optimization of the Rosenbrock problem). The creation of the 3-D surface plot

pauses the advance of the optimization algorithm. To continue progress, click the right mouse
button or hit return while the mouse cursor isin the 3D graphics window.

e o e e o

The 3D graphics from the PLplot library have a dependency on external font files. If the 3D
graphics fail with amessage similar to:

Cannot open library file: plstnd5. fnt

lib dir="<...sonme_path...>"

*** PLPLOT ERROR ***

Unable to open font file

Pr ogram abort ed

then the solution isto locate the font files that came with your DAKOTA installation and set the
$PLPLOT_LI B environment variable to point to them, e.g.:
setenv PLPLOT_LI B / hone/ <user _nane>/ Dakot a/ bi n
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Figure7.4  An example of the 3-D surface plotting that is available for
surrogate-based optimization with two design parameters.

7.5 Error Messages Output

A variety of error messages are printed by DAKOTA in the event that an error is detected in the
input specification. Some of the more common input errors, and the associated error messages,
are described below.

One common mistake is the omission of the continuation symbol “\ ” when continuing the
specifications in akeyword block across multiple lines. When a continuation symbol is omitted,
the keyword block istruncated at the point of the omission (by the newline that is not escaped).
If this truncation causes |oss of a required input, then an error message similar to the following
will result:

Error: Expected required identifier for keyword
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‘responses’.

If the truncation resultsin omission of inputs that are optional, then the parser will still detect a
syntax error in the trailing specification that has been disconnected from its keyword block. This
error will result in amessage similar to the following:

Parser detected syntax error at line 10. Unrecogni zed
st at enent .
Did you forget to escape a new ine?

Incorrectly spelled specifications will result in error messages of the form:

Parser detected syntax error at line 35. Unrecognized
st atement .

The input parser catches syntax errors, but not logic errors. The fact that certain input
combinations are erroneous must be detected after parsing, at object construction time. For
example, if ano_gr adi ent s specification for aresponse data set is combined with selection
of a gradient-based optimization method, then this error must be detected during set-up of the
optimizer (see last two lines of the text listing):

Runni ng MPI executable in serial node.

Witing new restart file dakota.rst
Constructing Single Method Strategy...

met hodNanme = dot_mmfd

gr adi ent Type = none

hessi anType = none

DOT Method = 1

DOT optim zation type = mnimze

DOT print control =7

Error: gradientType = none is invalid wth DOT.
Pl ease sel ect nunerical, analytic, or m xed gradients.

Another common mistake involves a mismatch between the amount of data expected on a
function evaluation and the data returned by the user’s simulation code or driver. The available
response data is specified in the responses keyword block, and the subset of this data needed for
a particular evaluation is managed by the active set vector. For example, if DAKOTA expects
function values and gradients to be returned (as indicated by an active set vector containing 3's),
but the user’s simulation code only returns function values, then the following error message is
generated:

At EOF: insufficient data for functionGadient 1

Unfortunately, descriptive error messages are not available for all possible failure modes of
DAKOTA. If you encounter core dumps, segmentation faults, or other failures, please report the
problem to dakota@sandia.gov.
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8.0 Parameter Study Capabilities

8.1 Overview

Parameter study methods in the DAKOTA toolkit invol ve the computation of response data sets
at aselection of pointsin the parameter space. These response data sets are not linked to any
specific interpretation, so they may consist of any allowable specification from the responses
keyword block, i.e., objective and constraint functions, least squares terms and constraints, or
generic response functions. This alows the use of parameter studies in direct coordination with
optimization, least squares, and uncertainty quantification studies without significant
modification to the input file. In addition, response data sets are not restricted to function values
only; gradients and Hessians of the response functions can also be catalogued by the parameter
study. Thisalows for several different approachesto “sensitivity analysis’: (1) the variation of
function values over parameter ranges provides a global assessment as to the sensitivity of the
functions to the parameters, (2) derivative information can be computed numerically, provided
analytically by the ssmulator, or both (mixed gradients) in directly determining local sensitivity
information at a point in parameter space, and (3) the global and local assessments can be
combined to investigate the variation of derivative quantities through the parameter space by
computing sensitivity information at multiple points.

In addition to sensitivity analysis applications, parameter studies can be used for investigating
nonsmoothness in simulation response variations (so that models can be refined or finite
difference step sizes can be selected for computing numerical gradients), interrogating problem
areas in the parameter space, or performing simulation code verification (verifying simulation
robustness) through parameter ranges of interest. A parameter study can also be used in
coordination with optimization methods as either a pre-processor (to identify a good starting
point) or a post-processor (for post-optimality analysis).

Parameter study methods will iterate any combination of continuous design, uncertain, and
continuous state variables into any set of responses (any function, gradient, and Hessian
definition). Parameter studies draw no distinction between the different types of variables and the
different types of response functions. They simply pass all of the variables defined in the
variables specification into the interface, from which they expect to retrieve all of the responses
defined in the responses specification. As described in Section 6.3, when gradient and/or Hessian
information is being catalogued in the parameter study, it is assumed that derivative components
will be computed with respect to all of the continuous variables (continuous design, uncertain,
and continuous state variables) specified.

8.1.1 Initial Values

The vector and centered parameter studies use theinitial values of the variables from the
variables keyword block as the starting point and the central point of the parameter studies,
respectively. In the case of design variables, thei ni ti al _poi nt isused. In the case of state
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variables, thei ni ti al _st at e isused. In the case of uncertain variables, initial values for
variables with normal, lognormal, uniform, loguniform, weibull, and histogram probability
distributions are the mean, mean, mid-point between bounds, mid-point between bounds, beta
parameter, and bin/point lower bound, respectively. These starting values for design, uncertain,
and state variables are referenced repeatedly in the following sections using the identifier “Initial
Values”

8.2 Vector Parameter Study

The vector parameter study computes response data sets at selected intervals along a one-
dimensional vector in parameter space. This capability encompasses both single-coordinate
parameter studies (to study the effect of asingle variable on aresponse set) as well as multiple
coordinate vector studies (to investigate the response variations along some n-dimensional
vector; e.g., to investigate a search direction failure). In addition to these uses, this capability is
used recursively within the implementation of the multidimensional parameter study.

DAKOQOTA's vector parameter study includes three possible specification formulations which are
used in conjunction with the Initial Values (see Section 8.1.1) to define the vector and steps of
the parameter study:

final _point (vector of reals) and step_length (real)
final _point (vector of reals) and num steps (integer)
step_vector (vector of reals) and numsteps (integer)

In each of these three cases, the Initial Values are used as the parameter study starting point and
the specification selected from the three above defines the orientation and length of the vector as
well as the increments to be evaluated along the vector. Several examples starting from Initial
Values of 1.0, 1.0, 1.0 are included below:

final _point =10,20,1.0andstep_| ength = .4:

Paraneters for function evaluation 1
1. 0000000000e+00 d1
1. 0000000000e+00 d2
1. 0000000000e+00 d3
Paraneters for function evaluation 2:
1. 0000000000e+00 d1
1.4000000000e+00 d2
1. 0000000000e+00 d3
Paraneters for function evaluation 3:
1. 0000000000e+00 d1
1. 8000000000e+00 d2
1. 0000000000e+00 d3

final _point =20,20,20andst ep_| engt h =.4 (notethat st ep_| engt h defines
Cartesian distance of the step and the steps continue up to but not past thef i nal _poi nt):

Parameters for function evaluation 1:
1. 0000000000e+00 d1
1. 0000000000e+00 d2
1. 0000000000e+00 d3
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Par aneters for

Par aneters for

Par aneters for

Par aneters for

Par aneters for

Par aneters for

Par aneters for

Par aneters for

Par aneters for

Par aneters for

Par aneters for

Par aneters for

Par aneters for
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function
1
1
1
function
1
1
1
function
1.
1.
1.
function
1.
1.
1.

function
1.
1.
1.
function
1.
1.
1.
function
1.
1.
1.
function
1.
1.
1.
function
2.
2.
2.

function
1
1
1
function
1
1.
1.
function
1.
1.
1.
function
1.

eval uation 2:

2309401077e+00
2309401077e+00
2309401077e+00
eval uation 3:

4618802154e+00
4618802154e+00
4618802154e+00
eval uati on 4:

6928203230e+00
6928203230e+00
6928203230e+00
eval uation 5;:

9237604307e+00
9237604307e+00
9237604307e+00

final _point =20,20,2.0andnum st eps =4:

eval uation 1:

0000000000e+00
0000000000e+00
0000000000e+00
eval uation 2:

2500000000e+00
2500000000e+00
2500000000e+00
eval uation 3:

5000000000e+00
5000000000e+00
5000000000e+00
eval uation 4:

7500000000e+00
7500000000e+00
7500000000e+00
eval uation 5:

0000000000e+00
0000000000e+00
0000000000e+00

step_vector =.1,.1,.1and num st eps = 4

eval uation 1:

0000000000e+00
0000000000e+00
0000000000e+00
eval uation 2:

1000000000e+00
1000000000e+00
1000000000e+00
eval uation 3:

2000000000e+00
2000000000e+00
2000000000e+00
eval uation 4:

3000000000e+00
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1. 3000000000e+00 d2
1. 3000000000e+00 d3
Parameters for function eval uation 5:
1.4000000000e+00 di
1.4000000000e+00 d2
1.4000000000e+00 d3

8.3 List Parameter Study

The list parameter study computes response data sets at selected points in parameter space. These
points are explicitly specified by the user and are not confined to lie on any line or surface. Thus,
this parameter study provides ageneral facility that supports the case where the desired set of
points to evaluate does not fit the prescribed structure of the vector, centered, or
multidimensional parameter studies.

Theuser input consistsof al i st _of _poi nt s specification which lists the requested
parameter setsin succession. The list parameter study simply performs a simulation for the first
parameter set (thefirst n entriesin the list), followed by a simulation for the next parameter set
(the next n entries), and so on, until the list of points has been exhausted. Since the Initial Values
will not be used, they need not be specified.

An exampl e specification which would result in the same parameter setsasin the first examplein
Section 8.2 would be:
list_of _points =1.0, 1.0, 1.0, 1.0, 1.4, 1.0, 1.0, 1.8, 1.0

8.4 Centered Parameter Study

The centered parameter study executes multiple coordinate-based parameter studies, one per
parameter, centered about the specified Initial Values. Thisis useful for investigation of function
contoursin the vicinity of a specific point. For example, after computing an optimum design, this
capability could be used for post-optimality analysisin verifying that the computed solution is
actually at aminimum or constraint boundary and in investigating the shape of this minimum or
constraint boundary.

This method requiresper cent _del t a (rea) anddel t as_per _vari abl e (integer)
specifications, where the former specifies the size of the increments in percent and the latter
specifies the number of increments per variable in each of the plus and minus directions.

For example, with Initial Values of 1.0, 1.0, aper cent _del t a of 10.0, and a
del tas_per _vari abl e of 2, the center point is evaluated followed by four function
evaluations (two minus deltas and two plus deltas) per variable:

Parameters for function evaluation 1
1. 0000000000e+00 cdv_1
1. 0000000000e+00 cdv_2
Parameters for function eval uation 2:
8. 0000000000e-01 cdv_1
1. 0000000000e+00 cdv_2
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Par anet er s

Par anet er s

Par anet er s

Par anet er s

Par anet er s

Par anet er s

Par anet er s

for

for

for

for

for

for

for

functi

functi

functi

functi

functi

functi

functi

eval uation 3:

. 0000000000e- 01
. 0000000000e+00

eval uati on 4:

. 1000000000e+00
. 0000000000e+00

eval uati on 5:

. 2000000000e+00
. 0000000000e+00

eval uati on 6:

. 0000000000e+00
. 0000000000e- 01

eval uation 7:

. 0000000000e+00
. 0000000000e- 01

eval uation 8:

. 0000000000e+00
. 1000000000e+00

eval uation 9:

. 0000000000e+00
. 2000000000e+00

This set of pointsin parameter space is depicted in Figure 8.1.

Figure8.1

If the Initial Values for the centered parameter study are very small or equal to zero, the study
will substitute a default step size. Thisis necessary due to the relative nature of the

d2
A

per cent _del t a specification.

cdv_1
cdv_2

cdv_1
cdv_2

cdv_1
cdv_2

cdv_1
cdv_2

cdv_1
cdv_2

cdv_1
cdv_2

cdv_1
cdv_2

I > di

1

Example centered parameter study.

8.5 Multidimensional Parameter Study

The multidimensional parameter study computes response data sets for an n-dimensional

hypergrid of points. Each continuous variable is partitioned into equally spaced intervals between
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its upper and lower bounds, and each combination of the values defined by these partitionsis
evaluated. The number of function evaluations performed in the study is:

n
|_| (partitions; +1) (1)
i =1

The partitions information is specified using the par t i t i ons specification, which provides an
integer list of the number of partitions for each continuous variable (i.e., par ti t i ons; ).
Since the Initial Values will not be used, they need not be specified.

In atwo variable example problem with d1 [ [0,2] and d2 [0 [0,3] (as defined by the upper and
lower bounds specified in the variables specification) and withpartiti ons = 2, 3, the
interval [0,2] isdivided into two equal-sized partitions and the interval [0,3] is divided into three
equal-sized partitions. This two-dimensional grid, shown in Figure 8.2,

d2

31 @ L

20 ® ®
3 partitions

le ] ®

oty

2 partitions

Figure8.2  Example multidimensional parameter study

would result in the following twelve function evaluations:

Paraneters for function evaluation 1
0. 0000000000e+00 di1
0. 0000000000e+00 d2
Paraneters for function eval uation 2:
1. 0000000000e+00 d1
0. 0000000000e+00 d2
Paraneters for function eval uation 3:
2. 0000000000e+00 di1
0. 0000000000e+00 d2
Paraneters for function eval uati on 4:

DAKOTA Users Manual - Parameter Study Capabilities 99



Par anet er s

Par anet er s

Par anet er s

Par anet er s

Par anet er s

Par anet er s

Par anet er s

Par anet er s
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for

for

for

for

for

for

for

for

functi

functi

functi

functi

functi

functi

functi

functi

. 0000000000e+00
. 0000000000e+00

eval uati on 5:

. 0000000000e+00
. 0000000000e+00

eval uati on 6:

. 0000000000e+00
. 0000000000e+00

eval uation 7:

. 0000000000e+00
. 0000000000e+00

eval uati on 8:

. 0000000000e+00
. 0000000000e+00

eval uation 9:

. 0000000000e+00
. 0000000000e+00

eval uation 10:

. 0000000000e+00
. 0000000000e+00

eval uation 11:

. 0000000000e+00
. 0000000000e+00

eval uation 12:

. 0000000000e+00
. 0000000000e+00
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9.0 Sampling Methods and Design of Experiments

9.1 Overview

DAKOTA contains two software packages that can be used for sampling and design of
experiments: LHS (Latin hypercube sampling) and DDACE (distributed design and analysis for
computer experiments). LHS [71] is a general-purpose sampling package developed at Sandia
that has been used by the DOE national labs for severa decades. There are two versions of this
package available for use with DAKOTA: “old” (circa 1980) and “new” (circa 1998), where only
the former may currently be distributed externally. DDACE is a more recent package for
computer experiments that is under development by staff at Sandia Labs [64]. DDACE is
available under a GNU Lesser General Public License and is distributed with DAKOTA.

Like parameter studies (see Chapter 8), these techniques are useful for characterizing the
behavior of the response functions of interest through the parameter ranges of interest. In
addition to direct interrogation and visualization of the sampling results, a number of techniques
have been developed for ng the parameters which are most influential in the observed
variability in the response functions. One example of this is the well-known technique of scatter
plots, in which the set of samplesis projected down and plotted against one parameter
dimension, for each parameter in turn. Scatter plots with a uniformly distributed cloud of points
indicate parameters with little influence on the results, whereas scatter plots with a defined shape
to the cloud indicate parameters which are more significant. Related techniques include analysis
of variance (ANOVA) [54] and main effects analysis, in which the parameters which have the
greatest influence on the results are identified from sampling results. Scatter plots and ANOVA
may be accessed through import of DAKOTA tabular results (see Section 7.3) into external
statistical analysis programs such as S-plus, Minitab, etc.

9.2LHS

The Latin hypercube sampling method was developed by McKay, et a. [49] as an alternative to
random sampling. Under certain monotonicity conditions associated with the function to be
sampled, Latin hypercube sampling provides a more accurate estimate of the mean value than
does random sampling. That is, given an equal number of samples, the LHS estimate of the mean
will have less variance than the mean value obtained through random sampling.

Figure 9.1 demonstrates L atin hypercube sampling on a two-variable parameter space. Here, the
range of both parameters, x; and X,, is[0,1]. Also, for this example both x; and x, have uniform

statistical distributions. For Latin hypercube sampling, the range of each parameter is divided
into p “bins’ of equal probability. For parameters with uniform distributions, this corresponds to

partitions of equal size. For n design parameters, this partitioning yields atotal of p" binsin the
parameter space. Next, p samples are randomly selected in the parameter space, with the
following restrictions: (a) each sampleis randomly placed inside abin, and (b) for all one-
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dimensional projections of the p samples and bins, there will be one and only one samplein each
bin. In atwo-dimensional example such as that shown in Figure 9.1, these LHS rules guarantee
that only one bin can be selected in each row and column. For p=4, there are four partitionsin
both x; and X,. Thisgives atotal of 16 bins, of which four will be chosen according to the
criteria described above. Note that there is more than one possible arrangement of bins that meet
the LHS criteria. The dotsin Figure 9.1 represent the four sample sites in this example, where
each sample israndomly located in its bin. There is no restriction on the number of binsin the
range of each parameter, however, al parameters must have the same number of bins.

1
[

0 X1 1

Figure9.1  Anexampleof Latin hypercube sampling with four bins
in design parametersx; and x,. Thedotsarethe sample
Sites.
The actual algorithm for generating Latin hypercube samples is more complex than indicated by
the description given above. For example, the Latin hypercube sampling method implemented in

the LHS code [71] takes into account a user-specified correlation structure when selecting the
sample sites. For more details on the implementation of the LHS algorithm, see Reference [71].

The LHS package can be used in design of experiments mode by including the

al | _vari abl es flag in the method specification section of the DAKOTA input file. Then,
instead of iterating on only the uncertain variables (as described in Chapter 10), the LHS package
will sample on all of the continuous variables, where continuous design and continuous state
variables are treated as having uniform probability distributions within their upper and lower
bounds and any uncertain variables are sampled within their specified probability distributions.
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9.3 DDACE Background

The DACE package includes both stochastic sampling methods and classical design of
experiments methods [64]. The stochastic methods are Monte Carlo (random) sampling, Latin
hypercube sampling, and orthogonal array sampling [47]. DDACE currently supports variables
that have either Gaussian or uniform distributions. However, only the uniform distribution is
available in the DAKOTA interface to DDACE. The classical design of experiments methodsin
DDACE are central composite design (CCD) and Box-Behnken (BB) sampling. A grid-based
sampling method also is available. DDACE does not currently support enforcement of user-
specified correlation structure among the variables.

The sampling methods in DDACE can be used alone or in conjunction with other methods. For
example, DDACE sampling can be used with both the surrogate-based optimization strategy and
the optimization under uncertainty strategy. See Figure 13.9 for an example of how the DDACE
settings are used in DAKOTA.

More information on DDACE is available on the web at: http://csmr.ca.sandia.gov/projects/ddace
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10.0 Nondeterministic Analysis and Uncertainty Quantification

10.1 Overview

DAKOQOTA contains the DAKOTA/UQ software package for performing nondeterministic
analysis. The DAKOTA/UQ package is tightly-woven into the core DAKOTA software and is not
available separately. The methods in DAKOTA/UQ have been devel oped by a group of
researchers at Sandia Labs, in conjunction with collaborators in academia [29],[30]. In addition,
future extensions to the DDACE package will make it applicable to general UQ problems, which
will augment the DAKOTA/UQ capabilities.

Uncertainty quantification methods (also referred to as nondeterministic analysis methods) in the
DAKOTA/UQ system involve the computation of probabilistic information about response
functions based on sets of simulations taken from the specified probability distributions for
uncertain parameters. That is, these methods perform aforward uncertainty propagation in which
probability information for input parameters is mapped to probability information for output
response functions. The mfunctions in the DAKOTA response data set are interpreted as m
general response functions by the DAKOTA/UQ methods (with no specific interpretation of the
functions as for optimization and least squares).

Within the variabl es specification, uncertain variable descriptions are employed to define the
parameter probability distributions (see Section 4.3). The distribution types include: normal
(Gaussian), lognormal, uniform, loguniform, weibull, and user-defined histogram. All uncertain
variables are treated as continuous variables in DAKOTA. Thus, when gradient and/or Hessian
information is used in an uncertainty assessment, it is assumed that derivative components will
be computed with respect to the uncertain variables.

10.2 Sampling M ethods

Sampling techniques are selected using thenond_sanpl i ng method selection. This method
generates sets of samples according to the probability distributions of the uncertain variables and
maps them into corresponding sets of response functions, where the number of samplesis
specified by the sanpl es integer specification. Means, standard deviations, coefficients of
variance (COV s), and 95% confidence intervals are computed for the response functions.
Probabilities of occurrence are assessed by comparing the response results against a set of user-
supplied thresholds from ther esponse_t hr eshol ds specification.

Currently, traditional Monte Carlo (MC) and Latin hypercube sampling (LHS) are supported by
DAKOTA and are chosen by specifying sanpl e_t ype asr andomor | hs. In Monte Carlo
sampling, the samples are selected randomly according to the user-specified probability
distributions. Latin hypercube sampling is a stratified sampling technique for which the range of

each uncertain variable is divided into N, segments of equal probability, where N isthe
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number of samples requested. The relative lengths of the segments are determined by the nature
of the specified probability distribution (e.g., uniform has segments of equal width, normal has
small segments near the mean and larger segmentsin the tails). For each of the uncertain
variables, a sampleis selected randomly from each of these equal probability segments. These

N, valuesfor each of the individual parameters are then combined in a shuffling operation to

create aset of N parameter vectors with a specified correlation structure. A feature of the

resulting sample set is that every row and column in the hypercube of partitions has exactly one
sample. Since the total number of samplesis exactly equal to the number of partitions used for
each uncertain variable, an arbitrary number of desired samplesis easily accommodated (as
compared to less flexible approaches in which the total number of samplesis a product or
exponential function of the number of intervals for each variable, i.e., many classical design of
experiments methods).

Advantages of sampling-based methods include their relatively simple implementation and their
independence from the scientific disciplinesinvolved in the analysis. The main drawback of
these techniques is the large number of function evaluations needed to generate converged
statistics, which can render such an analysis computationally very expensive, if not intractable,
for real-world engineering applications. LHS techniques, in general, require fewer samples than
traditional Monte Carlo for the same accuracy in statistics, but they still can be prohibitively
expensive. For further information on the method and its relationship to other sampling
techniques, oneis referred to the works by McKay, et al. [49], Iman and Shortencarier [45], and
Helton and Davis [43].

10.2.1 Uncertainty Quantification Example using Sampling Methods

The following response functions from the Textbook example problem (see Chapter 20):

f = (x, = 1)+ (x, - 1)* (1)
c, = x%—lx 2
272
1
Cy = X3—3X, 3

will be used to demonstrate the application of sampling methods for uncertainty quantification
whereit isassumed that x; and x, are uniform uncertain variables on the interval [0, 1]. The
DAKOTA input file for this problem is shown in Figure 10.1. The number of samples to perform
is controlled with the sanpl es specification, the type of sampling algorithm to useis controlled
with thesanpl e_t ype specification, the threshold values used for computing statistics on the
response functionsis specified with ther esponse_t hr eshol ds input, and the seed
specification controls the sequence of the pseudo-random numbers generated by the sampling
algorithms. The input samples generated are shown in Figure 10.2 for the case where

sanpl es =5and sanpl es =10 for bothr andom(o) and | hs (+) sample types.
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nmet hod, \
nond_sanpl i ng, \
sanples = 5 seed = 12345 \
response_thresholds = 0.5 0.5 0.5 \
# sanpl e_type random \
sanpl e_type | hs
vari abl es, \
# Two uncertain uniformrandomvariables on the interval [0,1] \
uni formuncertain = 2 \
uuv_di st_lower_bounds = 0 O \
uuv_di st _upper_bounds = 1 1 \
uuv_descri pt or = 'xU ' X2
i nterface, \
application system asynch eval uati on_concurrency = 5 \
anal ysi s_driver = 'text_book’
responses, \
num r esponse_functions = 3 \
no_gradi ents \
no_hessi ans
Figure10.1 DAKOTA input filefor UQ exampleusing LHS sampling.
sanmples =5 sanmpl es =10
1 1 Y} T
N
091
t [e)
08f . 1 08 o +
o
o 0.7 +
+ ¢}
0.6 : ml 0.6
X 2 ? X 2 osf +
+
0.4F 1 04f + +
[e]
(o]
b 03F .
021 . 021
+ o o +
01r l¢]
00 0.‘2 0.‘4 0‘.6 O‘.B 1 00 0.‘1 0‘.2 O‘.S 0.‘4 0.‘5 O‘.G O‘.7 0.‘8 0.‘9
X1 X1

Figure10.2 Distribution of input sample pointsfor r andom (o) and | hs (+)
sampling for sanpl es=5 and 10.

Latin hypercube sampling ensures full coverage of the range of the input variables, which is

often a problem with Monte Carlo sampling when the number of samplesis small. In the case of
sanpl es =5, poor stratification is evident in x4 asfour out of the five Monte Carlo samples are

clustered in the range 0.35 < x; < 0.55, and theregionsx; <0.3and 0.6 <x; <0.9 are

completed missed. For the case where sanpl es = 10, some clustering in the Monte Carlo

samplesis again evident with 4 samplesin the range 0.5 < x4 < 0.55. In both cases, the
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stratification with LHS is superior. The response function statistics returned by DAKOTA are
shown in Figure 10.3 for the case of sanpl es =10and sanpl e_type = | hs.

Statistics based on 10 observations:

Morments for each response function:

response_fnl: Mean 4.070e-01 Std. Dev.
response_fn2: Mean 8.249e-02 Std. Dev.
response_fn3: Mean 9.637e-02 Std. Dev.

3.896e-01 Coeff. of Variation = 9.573e-01
3.687e-01 Coeff. of Variation = 4.470e+00
3.392e-01 Coeff. of Variation = 3.519e+00

95% confi dence intervals for each response function:
response_fnl: Mean ( 1.655e-01, 6.485e-01)
response_fn2: Mean ( -1.460e-01, 3.110e-01)
response_fn3: Mean ( -1.138e-01, 3.066e-01 )

Probabilities for each response function:

response_fnl: 60.000% bel ow and 40. 000% above the threshold val ue of 5.00000e-01
response_fn2: 90.000% bel ow and 10. 000% above the threshold val ue of 5.00000e-01
response_fn3: 80.000% bel ow and 20. 000% above the threshol d val ue of 5.00000e-01

Figure10.3 DAKOTA responsefunction statistics from UQ sampling example.

10.3 Analytical Reliability Methods

Analytical reliability methods provide an alternative approach to uncertainty quantification which
can be less computationally demanding than sampling techniques. Currently, only the mean-
value method (MV) supports multiple response functions. Future plans include extending this
support to include all analytical reliability methods; thiswill allow for the application of these
methods to system reliability calculations. The methods all answer the fundamental question:
“Given a set of uncertain input variables, X, and a scalar response function, g, what isthe
probability that the response function is below acertain level, z? Formally this can be written as

Plg(X)<z] = Fg(z) where F g(z) Is the cumulative distribution function (CDF) of the
uncertain response g(X) over a set of response levels.

This probability calculation involves a multi-dimensional integral over an irregularly shaped
domain of interest, D, where g(X) <z asdisplayed in Figure 10.4 for the case of two variables.
These methods all involve the transformation of the user-specified uncertain variables, X, with
probability density function, p(x, X»), which can be non-normal and correlated, to a space of
independent Gaussian random variables, u, possessing a mean value of zero and unit variance
(i.e., standard normal variables). The region of interest, D, is also mapped to the transformed

spacetoyield, D, , where g(U) <z asshownin Figure 10.5. The Nataf transformation [12],

which isidentical to the Rosenblatt transformation [54] in the case of independent random
variables, isused in DAKOTA to accomplish this mapping. This transformation is performed to
make the probability calculation more tractable. In the transformed space, probability contours
are circular in nature as shown in Figure 10.6 unlike in the original uncertain variable space,
Figure 10.5. Also, the multi-dimensional integrals can be approximated by simple functions of a
single parameter, [3, called the reliability index. 3 is the minimum Euclidean distance from the
origin in the transformed space to the response surface. This point is also known as the most
probable point (MPP) of failure. Note, however, the methodology is equally applicable for
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generic functions, not simply those corresponding to failure criteria; this nomenclature is due to
the origin of these methods within the disciplines of structural safety and reliability.

X

Plgc <] = [[pix;,xpdx = P[(x O D)]
x OD

Figure10.4 Graphical depiction of calculation of cumulative distribution
function in the original uncertain variable space.

uz2

Lu PXOD) = P(UDD ) =f(®)

Figure10.5 Graphical depiction of integration for the calculation of cumulative
distribution function in the transfor med uncertain variable space.

The determination of the MPP can be posed as a constrained optimization problem, where the
objective function to be minimized is the distance from the origin to a surface in the unit-normal
space. This surface defines an equality constraint for the minimization problem and the exact
form of the constraint depends on the particular reliability method in use. Currently, DAKOTA
uses the SQP method from the NPSOL library to solve the optimization problem for the MPP.
Optimization method selections will be extended in future releases of DAKOTA. The mean-value
method (MV), advanced mean-value methods (AMV/AMV +) [58], and first order reliability
method (FORM) are implemented in DAKOTA. The MV and AMV/AMV + methods are based
in the original random variable space and approximate the response function with alinear
approximation, while FORM/SORM utilize first and second order approximations of the
response function in the transformed-space. A more thorough discussion of the methods can be
found in the recent text by Haldar and Mahadevan [41].
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Analytical reliability methods can often reduce the number of required function evaluations in
comparison to sampling-based approaches. However, since the methods employ a series of
approximations, the accuracy of the statistics must be verified on a problem-to-problem basis
using a method with known error and convergence behavior, e.g., one of the sampling
techniques. Currently, the outputs for the MV technique consist of estimates of the mean and
standard deviation of the response functions along with importance factors for each of the
uncertain variables in the case of independent random variables. Each of the other methodol ogies
(AMV, AMV+, FORM) output approximate values of the cumulative distribution function at the
user-defined response levels.

10.3.1 Uncertainty Quantification Example using MV and FORM

This example quantifies the uncertainty in the response function
Xy
g(Xl,Xz) = )—(— (4)
2

by computing approximate response statistics using Mean Vaue (MV) and by determining the
response cumulative distribution function
P([9(x}, x,)] <2) ©)

using the first-order reliability method (FORM) . X; and X, are independent, identically
distributed lognormal random variables with means of 1 and standard deviations of 0.5. The
DAKOQOTA input file corresponding to this analysisis shown in Figure 10.6.

interface,
application system asynch
anal ysi s_driver = 'ug_exanpl e’
file_tag

——

vari abl es,
| ognormal _uncertain = 2
| nuv_means
| nuv_std_devi ations
I nuv_descri ptor =
uncertain_correlation_matrix =

[
OFRrLXOpR
—_—

oo -uio
PO “OF
oot
coNnuio

responses
num response_functions = 1
nurneri cal _gradi ents
nmet hod_sour ce dakot a
interval _type centra
fd step_size = 1.e-4
no_hessi ans

—— - —

met hod,
# nond_anal ytic _relia
nond_anal ytic_relia
response_| evel s =

3
—— - —

ANO
00 00 0
awk
coo
awk
N NN
awk
ENFNES
awk
o oo
awk
00 00 00
opn
coo

Figure10.6 DAKOTA input filefor UQ example using analytic
reliability methods MV (commented out) and FORM.
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The MV results are shown in Figure 10.7 and consist of approximate mean and standard
deviation of the response along with the importance factors for each uncertain variable. The
importance factors are a measure of the sensitivity of the response function(s) to the uncertain
input variables. The importance factors can be viewed as an extension of linear sensitivity
analysis combining deterministic gradient information with input uncertainty information, i.e.
input variable standard deviations. The accuracy of the importance factors is contingent of the

validity of the linear approximation used to approximate the true response functions.

response_fnl:
Appr oxi mat e Mean Response
Approxi mate Standard Devi ati on
| mportance Factor for variable x1
| mportance Factor for variable x2

| mportance Factors are an extensi

of Response

M/ Statistics for

1. 0000000000e+00
7.0710678119e-01
5. 0000000000e-01
5. 0000000000e- 01

on of LINEAR sensitivity analysis.

Figure 10.7 Output from Analytical Reliability UQ exampleusing MV.

The CDF values computed by DAKOTA using FORM for the same example are shown in Figure

10.8. Thisinformation can be fed into a post-processor to obtain Figure 10.9, where the
approximate solution computed by FORM is shown along with the exact solution for this
problem and the error associated with the approximation.

CDF at
CDF at
CDF at
CDF at
CDF at
CDF at
CDF at
CDF at
CDF at
CDF at
CDF at
CDF at
CDF at
CDF at
CDF at
CDF at
CDF at
CDF at
CDF at
CDF at
CDF at
CDF at
CDF at
CDF at
CDF at
CDF at
CDF at
CDF at
CDF at
CDF at

Response
Response
Response
Response
Response
Response
Response
Response
Response
Response
Response
Response
Response
Response
Response
Response
Response
Response
Response
Response
Response
Response
Response
Response
Response
Response
Response
Response
Response
Response

Level
Level
Level
Level
Level
Level
Level
Level
Level
Level
Level
Level
Level
Level
Level
Level
Level
Level
Level
Level
Level
Level
Level
Level
Level
Level
Level
Level
Level
Level

COUUINUIONERABRBRDRDRWWWWWNNNNNRRPRPRPRPROORN

. 0000000000e- 01
. 0000000000e- 01
. 0000000000e- 01
. 0000000000e- 01
. 0000000000e+00
.2000000000e+00
. 4000000000e+00
. 6000000000e+00
. 8000000000e+00
. 0000000000e+00
. 2000000000e+00
.4000000000e+00
. 6000000000e+00
. 8000000000e+00
. 0000000000e+00
.2000000000e+00
. 4000000000e+00
. 6000000000e+00
. 8000000000e+00
. 0000000000e+00
. 2000000000e+00
.4000000000e+00
. 6000000000e+00
. 8000000000e+00
. 0000000000e+00
.2000000000e+00
. 4000000000e+00
. 6000000000e+00
. 8000000000e+00
. 0000000000e+00

nmnmnnnmnnnnnnnnnnnnnnnnnnnnnnnnnon

(O (O (OO ©W©W©WOWOWOWOWOEWOEOOOOOO0NNDUTWN KO

. 9944700634e- 03
. 5094665972e- 02
. 2223851556e- 01

6918072820e- 01

. 0000000043e- 01

0754008613e-01

. 9274350225e- 01

5914300569e- 01

. 1053231135e-01

5026495187e-01

. 8104799784e- 01

0498482054e-01

. 2368529633e- 01

3837057411e-01

.4996484815e- 01

5916878439e-01

. 6651456648e- 01

7240837537e-01

. 7716137521e-01

8101341555e-01

. 8415021285e- 01

8671624287e-01

. 8882464372e-01

9056402027e- 01

. 9200552891e- 01

9320415592e- 01

. 9420471591e-01
. 9504292328e-01
. 9574752670e- 01
. 9634175494e-01

Figure10.8 Output from Analytical Reliability UQ example using FORM.
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Figure10.9 Comparison of the cumulative distribution function (CDF)
computed le FORM (+ mar ks) and the exact CDF for
g(x,,x,) = x_;

10.4 Polynomial Chaos M ethods

The objective of these techniquesisto characterize the response of systems whose governing
equations involve stochastic coefficients. The development of these techniques mirrors that of
deterministic finite element analysis through the utilization of the concepts of projection,
orthogonality, and weak convergence. The polynomial chaos expansion isbased on a
multidimensional Hermite approximation in standard normal random variables.

The coefficients for the termsin the polynomial chaos expansion are determined either from a
coupled set of equations solved externally from the analysis package or from a set of statistical
estimators known to converge to the Fourier coefficients, albeit at arate that is unknown a priori.
In DAKQOTA, the latter approach is implemented where both direct Monte Carlo sampling and
Latin hypercube sampling are available to serve as the estimators of the Fourier coefficients. A
distinguishing feature of the methodology is that the solution series expansions are expressed as
random processes, and not merely as statistics as is the case for many nondeterministic
methodologies. This makes the technique particularly attractive for use in multi-physics
applications which link different analysis packages. A more detailed explanation of the
procedure can be found in Ghanem, et al. [29], [30].

10.4.1 Uncertainty Quantification Example using Polynomia Chaos

A typical DAKQOTA input file for performing an uncertainty quantification using polynomial
chaos expansionsis shown in Figure 10.10. The analysisinvolvesthe use of al ayer ed model
(defined in the *UQ method specification) in order to manage the construction of a Hermite
polynomial approximation (defined in the * PCE’ interface specification) built using 250 LHS
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strategy, \
singl e_met hod #gr aphi cs \
net hod_poi nter = ' UQ

nmet hod,

i d_nethod = " UQ

nodel _type | ayered
interface_pointer = ' PCE

nond_pol ynom al _chaos
expansi on_order = 2
sanpl es = 1000
sanmpl e_type | hs
response_thresholds = 0.5

—— - - — — —

vari abl es,
nor mal _uncertain
nuv_neans
nuv_std_devi ati ons
nuv_descri ptor

o
_—

SF,PON
o

interface,
id_interface = ' PCE
appr oxi mati on gl obal
dace_net hod_poi nter = ' DACE
hermte

—— - —

responses,
num r esponse_functions =1
no_gradients
no_hessi ans

——

BHHHHH
# interface truth nodel and dace nethod #
BHHHHH
nmet hod,
i d_net hod = ' DACE
nodel _type single
interface_pointer ='171
nond_sanpl i ng
sampl es = 250
sanpl e_type | hs
seed = 1158

—— - — — —

i nterface,
application system
id_interface = '11’
asynchronous eval uation_concurrency = 5
anal ysis_driver = 'uqg_exanple’

—— - —

Figure10.10 DAKOTA input filefor performing UQ using
polynomial chaos expansions.

samples of the truth model ug_exanpl e (defined in the ‘DACE’ method and ‘1 1’ interface
specifications).

After the Hermite polynomial surrogate model has been constructed, the

nond_pol ynom al _chaos method performs a UQ analysis using 1000 LHS samples on the
surrogate to compute estimates of the mean, standard deviation, coefficient of variation, and 95%
confidence interval for the response function and the probability of exceeding the

response_t hr eshol ds value. As shown in Figure 10.11, the method outputs these
guantities in addition to the approximate coefficients in the polynomial chaos expansion for the
response function. It should be noted that only standard normal random variables are supported
innond_pol ynom al _chaos at thistime.

DAKOTA Users Manual - Nondeterministic Analysis and Uncertainty Quantification 112



Statistics based on 1000 observati ons:

Moments for each response function

response_fnl: Mean = -2.785e+00 Std. Dev. = 4.940e+00 Coeff. of Variation = -1.774e+00

95% confi dence intervals for each response function:
response_fnl: Mean = ( -3.091e+00, -2.479e+00 )

Probabilities for each response function
response_fnl: 83.000% bel ow and 17. 000% above the threshold val ue of 5.00000e-01

Pol ynoni al Chaos coefficients vector output
response_fnl

. 7767149288e+00

- 3. 7452282807e+00
-6.5491680438e- 03

. 6293722861e+00

. 2459408840e- 01

. 3637964830e+00

U WNE
'
POFRPOWN

Figure 10.11 Output from UQ analysisusing polynomial chaos expansions.

10.5 Future Nondeter ministic M ethods

Uncertainty analysis methods under investigation for future inclusion into the DAKOTA
framework include extensions to the analytical reliability techniques and sampling capabilities
supported. The SORM technique will be added to those currently supported, and advanced
“smart sampling” technigues such as bootstrap sampling (BS), importance sampling (1S), quasi-
Monte Carlo smulation (gM C), and Markov chain Monte Carlo simulation (McMC) are being
investigated. Efforts have been initiated to allow for the possibility of non-traditional
representations of uncertainty. These include interval analysis, Dempster-Shafer theory of
evidence, possibility theory, and combinations of these. Finally, the tractability and efficacy of
the more intrusive variant of stochastic finite element/polynomial chaos expansion methods,
previously mentioned, is being assessed for possible implementation in DAKOTA.

DAKOTA Users Manual - Nondeterministic Analysis and Uncertainty Quantification 113




11.0 Optimization Capabilities

11.1 Overview

DAKOQOTA's optimization capabilitiesinclude a variety of gradient-based and nongradient-based
optimization methods. Numerous packages are available, some of which are commercial
packages, some of which are developed internally to Sandia, and some of which are free software
packages from the open source community. The downloaded version of DAKOTA excludes the
commercialy developed packages but includes CONMIN, OPT++, SGOPT, and PICO.
Interfaces to DOT and NPSOL are provided with DAKOTA, but to use either of these
commercia optimizers, the user must obtain a software license and the source code for these
packages separately. The commercia software can then be compiled into DAKOTA by following
DAKOTA's installation procedures (see notesin/ Dakot a/ | NSTALL).

DAKOTA's input commands permit the user to specify two-sided nonlinear inequality constraints
of theform g, <9 (x) < du, » aswell as nonlinear equality constraints of the form

h; (x) = htj (see dso Section 1.4.1). Some optimizers (e.g., NPSOL, OPT++) can handle

these constraint forms directly, whereas other optimizers (e.g., DOT, CONMIN) require
DAKOTA to perform an internal conversion of all constraints to one-sided inequality constraints

of theform g; (x) < 0. Inthelatter case, the two-sided inequality constraints are treated as

g; (x)—gUi <0 and 9., —9 (x) <0 and the equality constraints are treated as

hj (x)=h, <0 andh, —hj (x) £0. Thesituation issimilar for linear constraints: NPSOL
J ]

and OPT++ support them directly, whereas DOT and CONMIN do not. For linear inequalities of
T

theforma < aiTx < ay and linear equalities of theform a;

X = a; ,thenonlinear constraint
J
arraysin DOT and CONMIN are further augmented to include aiTx —ay <0 and

a, —aiTx <0 intheinequality case and aij -a, <0anda, —aJ-Tx < 0 inthe equality case.
i J J

Awareness of these constraint augmentation procedures can be important for understanding the
diagnostic data returned from the DOT and CONMIN algorithms.

When gradient and Hessian information are used in the optimization, it is assumed that derivative
components will be computed only with respect to the continuous design variables. The
omission of discrete variables from gradient vectors and Hessian matricesis common among all
DAKQOTA optimization methods; however, inclusion of only the continuous design variables
differs from parameter study methods (which assume derivatives with respect to all continuous
variables) and from nondeterministic analysis methods (which assume derivatives with respect to
the uncertain variables).
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11.2 Optimization Softwar e Packages

11.2.1 Constrained Minimization (CONMIN) Library

The CONMIN library [65] contains two methods for gradient-based nonlinear optimization. For
constrained optimization, the Method of Feasible Directions (DAKOTA'sconm n_nf d method
selection) is available, while for unconstrained optimization, the Fletcher-Reeves conjugate
gradient method (DAKOTA'sconm n_f r cg method selection) is available. Both of these
methods are most efficient at finding alocal minimum in the vicinity of the starting point. The
methodsin CONMIN can be applied to global optimization problems, but there is no guarantee
that they will find the globally optimal design point.

One observed drawback to CONMIN'’s Method of Feasible Directionsis that it does a poor job
handling equality constraints. Thisisthe case even if the equality constraint is formulated as two
inequality constraints. This problem is what motivates the modificationsto MFD that are present
in DOT's MMFD agorithm. For problems with equality constraints, it is better to use the OPT++
nonlinear interior point methods, NPSOL, or one of DOT’s constrained optimization methods
(see below).

An example specification for CONMIN’s Method of Feasible Directions algorithm is:

nmet hod, \
conm n_nfd \
convergence_tol erance = 1.0e-4 \
max_iterations = 100 \

out put qui et

Refer to the DAKOTA Reference Manual [17] for more information on the settings that can be
used with CONMIN methods.

11.2.2 Design Optimization Tools (DOT) Library

The DOT library [67] contains nonlinear programming optimizers, specifically the Broyden-
Fletcher-Goldfarb-Shanno (DAKOTA'sdot _bf gs method selection) and Fletcher-Reeves
conjugate gradient (DAKOTA'sdot _f r cg method selection) methods for unconstrained
optimization, and the modified method of feasible directions (DAKOTA’'sdot _nmf d method
selection), sequential linear programming (DAKOTA'sdot _sl p method selection), and
sequential quadratic programming (DAKOTA'sdot _sqp method selection) methods for
constrained optimization.

All DOT methods are local gradient-based optimizers which are best suited for efficient
navigation to alocal minimum in the vicinity of theinitial point. Global optimain nonconvex
design spaces may be missed. Other gradient based optimizers for constrained optimization
include the NPSOL, CONMIN, and OPT++ libraries.

Throughtheopt i m zat i on_t ype specification, DOT can be used to solve either
minimization or maximization problems. For all other libraries (i.e., CONMIN, NPSOL, OPT++,
SGOPT), it is up to the user to reformulate a maximization problem as a minimization problem
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by negating the objective function (i.e.,, maximizef ( x) isequivalent to minimize-f ( x) ). An
example specification for DOT’s BFGS quasi-Newton algorithmis:

nmet hod,
dot _bfgs
optim zation_type maxi m ze
convergence_tol erance = 1.0e-4
max_iterations = 100
out put qui et

See the DAKOTA Reference Manual [17] for additional detail on the DOT commands. More
information on DOT can be obtained by contacting Vanderplaats Research and Devel opment at
http://www.vrand.com.

—

11.2.3 NPSOL Library

The NPSOL library [31] contains a sequential quadratic programming (SQP) implementation
(DAKOTA'snpsol _sqgp method selection). SQP is anonlinear programming approach for
constrained minimization which solves a series of quadratic programming (QP) subproblems. It
uses an augmented L agrangian merit function and a BFGS approximation to the Hessian of the
Lagrangian. It is an infeasible method in that constraints will be satisfied at the final solution, but
not necessarily during the solution process.

NPSOL’s gradient-based approach is best suited for efficient navigation to alocal minimum in
the vicinity of theinitial point. Global optimain nonconvex design spaces may be missed. Other
gradient based optimizers for constrained optimization include the DOT, CONMIN, and OPT++
libraries.

An example of an NPSOL specification is:
met hod,
npsol _sqgp
convergence_tol erance = 1.0e-6
max_iterations = 100
out put qui et
See the DAKOTA Reference Manual [17] for additional detail on the NPSOL commands. More
information on NPSOL can be obtained by contacting Stanford Business Software at
http://www.sbsi-sol -optimize.com.

—

The NPSOL library generates diagnostics in addition to those appearing in the DAKOTA output
stream. These diagnostics are written to the default FORTRAN device 9 file (e.g., f t n09 or
fort. 9, depending on the architecture) in the working directory.

11.2.4 OPT++ Library

The OPT++ library [50] contains primarily nonlinear programming optimizers for unconstrained,
bound constrained, and nonlinearly constrained minimization: Polak-Ribiere conjugate gradient
(DAKQOTA'sopt pp_cg method selection), quasi-Newton (DAKOTA's opt pp_q_new on
method selection), finite difference Newton (DAKOTA'sopt pp_f d_newt on method
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selection), and full Newton (DAKOTA’s opt pp_newt on method selection). The library also
contains the parallel direct search nongradient-based method [13] (specified as DAKOTA's
opt pp_pds method selection).

OPT++'s gradient-based optimizers are best suited for efficient navigation to alocal minimum in
the vicinity of theinitial point. Global optimain nonconvex design spaces may be missed.
OPT++'s PDS method does not use gradients and has some limited global identification abilities;
it is best suited for problems for which gradient information is unavailable or is of questionable
accuracy due to numerical noise. Some OPT++ methods are strictly unconstrained (opt pp_cg)
and some support bound constraints (opt pp_pds), whereas the Newton-based methods

(opt pp_g_newt on, opt pp_f d_newt on, and opt pp_newt on) al support general linear
and nonlinear constraints (refer to Table 17.1). Other gradient-based optimizers include the DOT,
CONMIN, and NPSOL libraries. For least squares methods based on OPT++, refer to Section
12.2.1.

An exampl e specification for the OPT++ quasi-Newton algorithmis:

met hod,
opt pp_g_new on
max_iterations = 50
convergence_tol erance = le-4
out put debug

See the DAKOTA Reference Manual [17] for additional detail on the OPT++ commands.

— = —

The OPT++ library generates diagnostics in addition to those appearing in the DAKOTA output
stream. These diagnostics are written to the file OPT_DEFAULT. out inthe working directory.

11.2.5 MOOCHO Library

The MOOCHO (Multifunctional Object-Oriented arCHitecture for Optimization) library,
formerly known as rSQP++, is anew addition to DAKQOTA that is not yet publicly available. It
provides both general-purpose sequential quadratic programming (SQP) algorithms for nested
analysis and design (NAND) as well as reduced-space SQP agorithms for simultaneous analysis
and design (SAND). Additional information on SAND is provided in Section 11.3.2. MOOCHO
algorithm capabilities are available using ther educed_sqp method selection.

11.2.6 SGOPT Library

The SGOPT (Stochastic Global OPTimization) library [42] contains a variety of nongradient-
based optimization algorithms, with an emphasis on stochastic global methods. SGOPT currently
includes the following global optimization methods: real-valued and integer-valued genetic
algorithms (sgopt _pga_r eal ,sgopt _pga_i nt), evolutionary pattern search

(sgopt _epsa), and stratified Monte Carlo (sgopt _st r at _nt). Additionaly, SGOPT
includes several nongradient-based local search algorithms, such as Solis-Wets

(sgopt _sol i s_wet s) and pattern search (sgopt _pat t er n_sear ch).
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For expensive optimization problems, SGOPT’s global optimizers are best suited for identifying
promising regions in the global design space. In multimodal design spaces, the combination of
global identification (from SGOPT) with efficient local convergence (from DOT, NPSOL,
CONMIN, or OPT++) can be highly effective. None of the SGOPT methods are gradient-based,
which makes them appropriate for problems for which gradient information is unavailable or is
of questionable accuracy due to numerical noise. Some SGOPT methods are strictly
unconstrained (sgopt _sol i s_wet s) and most support bound constraints

(sgopt _pga_real ,sgopt _pga_i nt,sgopt _epsa,sgopt _strat_nct,

sgopt _patt ern_sear ch). No SGOPT methods currently support general linear and
nonlinear constraints directly, although externally-applied penalty function formulations for
nonlinear constraints have been employed with success [57]. Refer to Table 17.1 for additional
method classification information.

An exampl e specification for a simplex-based pattern search algorithm from SGOPT is:

met hod, \
sgopt _pattern_search

max_function_eval uati ons = 2000
sol ution_accuracy = 1.0e-4
initial _delta = 0.05
threshol d _delta = 1.0e-8
pattern_basis sinplex
expl oratory_noves best _al
contraction_factor = 0.75

The DAKOTA Reference Manual [17] contains additional information on the SGOPT options
and settings.

P R

11.2.7 COLINY

The COLINY library isanew addition to DAKOTA that will eventually supersede SGOPT. It
provides methods for nongradient-based optimization which utilize the Common Optimization
Library INterface (COLIN). COLINY algorithms will eventually include the same real- and
integer-valued GA, evolutionary pattern search, stratified Monte Carlo, Solis-Wets, and pattern
search algorithms provided by SGOPT. However, the initial COLINY interface in DAKOTA is
focused on new methods not already provided by SGOPT. These methods are the Asynchronous
Parallel Pattern Search (APPS) algorithm [44] (see a so http://software.sandia.gov/appspack/)
and the DIRECT agorithm [56]. These algorithms are available ascol i ny_apps and

col i ny_di rect, respectively, within the method specification. The COLINY software is not
yet available for external release.

11.2.8 Parallel Integer Combinatorial Optimization (PICO)

DAKOTA employs the branch and bound capabilities of the PICO library for solving discrete
and mixed continuous/discrete constrained nonlinear optimization problems. This capability is
implemented in DAKOTA as a strategy and is discussed further in Section 13.5.
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11.3 Additional Optimization Capabilities

DAKOTA provides several capabilities which extend the services provided by the optimization
software packages described in Section 11.2. First, any of the optimization algorithms can be
used for multiobjective optimization problems through the use of weighted sum techniques.
Second, large-scale optimization algorithms (e.g., MOOCHO) can be used for simultaneous
analysis and design through the use of afully-intrusive interface to internal simulation residual
vectors and Jacobian matrices.

11.3.1 Multiobjective Optimization

The selection of a multiobjective optimization problem is made through the specification of

multiple objective functionsin the responses keyword block (i.e., the

num obj ecti ve_functi ons specification is greater than 1). The weighting factors on

these objective functions can be optionally specified usingthenul ti _obj ecti ve_wei ghts

keyword (the default is equal weightings). The composite objective function for this optimization

R

problem, F, isformed using these weights as follows: F = Z wf |, wherethe f | termsare
k=1

the individual objective function values, the w, terms are the weights, and R is the number of

objective functions. The weighting factors stipul ate the rel ative importance of the design
concerns represented by the individual objective functions; the higher the weighting factor, the
more dominant a particular objective function will be in the optimization process.

Figure 11.1 shows a DAKOTA input file for a multiobjective optimization problem based on the
“textbook” test problem. Thisinput fileisnamed dakot a_nul ti obj 1. i ninthe/ Dakot a/

strategy, \
si ngl e_net hod \
gr aphi cs \

t abul ar _graphi cs_data
nmet hod, \
npsol \

convergence_tol erance = 1.e-8

vari abl es,
conti nuous_design = 2
cdv_initial_point 0
cdv_upper _bounds 5.
cdv_| ower _bounds 0
cdv_descri ptor T X

1
NN
————_

R U1 ©
N©©R

interface, \
application system \
anal ysis_driver= 'text_book

responses,
num obj ective_functions
mul ti _obj ective_weights
anal ytic_gradients
no_hessi ans

3
.7 .2 .1

Figure11.1 Example DAKOTA input filefor multiobjective optimization.
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t est directory. In the standard textbook formulation, there is one objective function and two
constraints. In the multiobjective textbook formulation, all three of these functions are treated as
objective functions (hum_obj ecti ve_functi ons = 3), with weights given by the

mul ti _obj ective_wei ght s keyword. Note that it is not required that the weights sum to a
value of one. The multiobjective optimization capability also alows any number of constraints,
although none are included in this example.

Figure 11.2 shows an excerpt of the results for this multiobjective optimization problem. The
data for function evaluation 9 show that the simulator is returning the values and gradients of the
three objective functions and that this datais being combined by DAKOTA into the value and
gradient of the composite objective function, as identified by the header “Mul t i obj ecti ve

t ransf or mati on: ”. Thiscombination of value and gradient data from the individual
objective functions employs the user-specified weightingsof . 7,. 2, and . 1. Convergenceto the
optimum of the multiobjective problem isindicated in this case by the gradient of the composite
objective function going to zero (no constraints are active).

Paraneters for function evaluation 9:
5.9388064484e-01 x1
7.4158741199e-01 x2

(text _book /var/tnp/ qaagj ayaZ /var/tnp/raahjayaz)

Active response data for function evaluation 9:
Active set vector = { 33 3}
3.1662048104e-02 obj _fnl
-1.8099485679e-02 obj _fn2
2.5301156720e-01 obj _fn3
[ -2.6792982174e-01 -6.9024137409e-02 ] obj _fnl gradient
[ 1.1877612897e+00 -5.0000000000e-01 ] obj _fn2 gradient
1

[ -5.0000000000e-01 1.4831748240e+00 ] obj _fn3 gradient

Mul ti obj ective transfornation:
4.3844693257e- 02 obj _fn
[ 1.3827220000e-06 5.8621370000e-07 ] obj_fn gradient
7 1 1. 0E+00 9 4.38446933E-02 1.5E-06 2 TTT
Exit NPSOL - Optinmal solution found.

Fi nal nonlinear objective value = 0. 4384469E- 01

Figurel11.2 DAKOTA resultsfor the multiobjective optimization example.

By performing multiple optimizations for different sets of weights, afamily of optimal solutions
can be generated which define the trade-offs that result when managing competing design
concerns. This set of solutionsis referred to as the Pareto set. Section 13.4 describes a solution
strategy used for directly generating the Pareto set in order to investigate the trade-offsin
multiobjective optimization problems.
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11.3.2 Simultaneous Analysis and Design (SAND) Optimization

DAKOTA was originally developed as a*“ black box” optimization tool that employs non-
intrusive interfaces with simulation codes. While this approach is useful for many engineering
design applications, it can become prohibitively expensive when there is alarge design space

(i.e., O(10%-10%) design parameters) and when the computational simulation is highly nonlinear.
Current research and development is underway to add a simultaneous analysis and design
(SAND) capability to DAKOTA. This“all at once approach” is considerably more intrusive to a
simulation code than any current interfacing capability in DAKOTA. But in some large-scale
applications, the SAND method may be the only viable alternative for optimization.

The basic idea behind SAND isto converge anonlinear simulation code at the same time that the
optimality conditions are being converged. This amounts to applying the nonlinear simulation
residual equations as equality constraints in the optimization problem and then using an

infeasi ble optimization method (e.g., sequential quadratic programming) which only satisfies
these equality constraints in the limit (i.e., at the final optimal solution). This can resultin a
significant computational savings over black-box optimization approaches which require a
nonlinear smulation to be fully-converged on every function evaluation.

To implement a SAND technique, modifications to the simulation package are necessary so that
the optimization software may have access to the internal residual vector and state Jacobian
matrix used by the simulation solver. The SAND techniques can then leverage the internal linear
algebra of the ssmulation package as appropriate in performing the search direction calculations.
A SAND-type optimization does make certain assumptions about the simulation package, such
asthere is access to the state Jacobian matrix (although matrix free methods can be interfaced as
well), exact values are used in the state Jacobian, an implicit numerical solution schemeis used,
there are no discontinuities in the system, and steady state solutions are to be obtained (although
SAND transient solution capabilities are under development). Many single physics, PDE-based
simulation codes fall in this category. SAND approaches can be applied to more complex
simulation codes, such as multi-physics packages, but substantial modifications are often needed
to make SAND feasible in these cases.

Details on SAND-type optimization approaches may be found in [4],[6]. Additional details on
the SAND implementation in DAKOTA will appear in future releases of this Users Manual.
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12.0 Nonlinear Least Squares for Parameter Estimation

12.1 Overview

Nonlinear least squares methods are optimization algorithms which exploit the specia structure
of a sum of the squares objective function [32]. These problems commonly arise in parameter
estimation, system identification, and test/analysis reconciliation. In order to exploit the problem
structure, more granularity is needed in the response data than that required for atypical
optimization problem. That is, rather than using the sum-of-squares objective function and its
gradient, least squares iterators require each term used in the sum-of-squares formulation along
with its gradient. This means that the mfunctions in the DAKOTA response data set consist of
the individual least squares terms along with any nonlinear inequality and equality constraints.
Theseindividual terms are often called residuals in cases where they denote errors of observed
quantities from desired quantities.

The enhanced granularity needed for nonlinear |east-squares algorithms allows for simplified
computation of an approximate Hessian matrix. These methods approximate the true Hessian
matrix by neglecting termsin which the residual function values appear, under the assumption
that the residual's tend towards zero at the solution. As aresult, residual function value and
gradient information is sufficient to define the value, gradient, and approximate Hessian of the
sum-of-squares objective function. See Section 1.4.2 for additional details on this approximation.

In practice, least squares solvers will tend to be significantly more efficient than general-purpose
optimization algorithms when the Hessian approximation is a good one, i.e., when the residuals
tend towards zero at the solution. Specifically, they can exhibit the quadratic convergence rates of
full Newton methods, even though only first-order information is used. L east squares solvers may
experience difficulty when the residuals at the solution are significant.

In order to specify aleast-squares problem, the responses section of the DAKOTA input should
be configured using num | east _squar es_t er s (as opposed to

num obj ecti ve_f uncti ons inthe case of optimization). Any linear or nonlinear
constraints are handled in an identical way to that of optimization (see Section 11.1; note that
neither Gauss-Newton nor NLSSOL require any constraint augmentation). Gradients of the least
squares terms and nonlinear constraints are required and should be specified using either
numeri cal _gradi ents,anal ytic_gradi ents,orm xed_gradi ents. Since
second derivatives of the |least squares terms are not needed by nature of the Gauss-Newton
approximation, theno_hessi ans specification should be used (exception: the derivative-order
mismatch for nonlinearly-constrained Gauss-Newton described in Section 12.2.1 requires a
specification of anal yti c_hessi ans).
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12.2 Solution Techniques

Nonlinear least squares problems can be solved using either the Gauss-Newton agorithm, which
leverages the full Newton method from OPT++, or the NLSSOL algorithm, which is closely
related to NPSOL.

12.2.1 Gauss-Newton

DAKOTA's Gauss-Newton algorithm consists of combining an implementation of the Gauss-
Newton Hessian approximation (see Section 1.4.2) with full Newton optimization algorithms
from the OPT++ package [50]. This approach can be selected using the opt pp_g_newt on
method specification. An example specification follows:

nmet hod,
opt pp_g_newt on
max_iterations = 50
convergence_tol erance = le-4
out put debug

Refer to the DAKOTA Reference Manual [17] for more detail on the input commands for the
Gauss-Newton algorithm.

—

The Gauss-Newton algorithm is gradient-based and is best suited for efficient navigation to a
local least squares solution in the vicinity of the initial point. Global optimain multimodal
design spaces may be missed. Gauss-Newton supports bound, linear, and nonlinear constraints.
However, for the generally-constrained case, a derivative order mismatch exists in that the
nonlinear interior point full-Newton agorithm will require second-order information for the
nonlinear constraints whereas the Gauss-Newton approximation for the objective function
Hessian only requiresfirst order information for the least squares terms. Thiswill be addressed in
future releases through the use of quasi-Newton approximations to the constraint Hessians.

12.2.2 NLSSOL

The NLSSOL algorithm isa commercia software product of Stanford University that is bundled
with current versions of the NPSOL library. It uses an SQP-based approach to solve generally-
constrained nonlinear least squares problems. It periodically employs the Gauss-Newton Hessian
approximation to accelerate the search. Its derivative order isbalanced in that it requires only
first-order information for the least squares terms and nonlinear constraints. This approach can be
selected using the nl ssol _sqp method specification. An example specification follows:

nmet hod, \
nl ssol _sqgp \
convergence_tol erance = le-8

Refer to the DAKOTA Reference Manual [17] for more detail on the input commands for
NLSSOL.
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12.2.3 Future plans

The least squares branch in DAKOTA is an area of continuing enhancements, particularly
through the addition of new least squares algorithms. Targeted additions include the Levenburg-
Marquardt algorithm, which can be considered to be a stabilization of Gauss-Newton, and
orthogonal distance regression (ODR) algorithms, which estimate values for both independent
and dependent parameters.

12.3 Examples

Both the Rosenbrock and textbook example problems can be formulated as nonlinear least
sguares problems. Refer to Chapter 20 for more information on these formulations. Figure 12.1
shows an excerpt from the textbook example which demonstrates use of the Gauss-Newton
approximation in computing the objective function value, gradient, and Hessian from values and
gradients of the least squares terms.

Active response data for function evaluation 1:
Active set vector = { 3 3}
6. 0000000000e-01 | east_sq_terml
2.0000000000e-01 | east_sq_tern®
[ -1.6000000000e+01 1.0000000000e+01 ] least_sq_ternl gradient
[ -1.0000000000e+00 0.0000000000e+00 ] |east_sq_ternR gradient

nl f2_evaluator_gn results: objective fn. =
4. 0000000000e-01
nl f2_evaluator_gn results: objective fn. gradient =
[ -1.9600000000e+01 1.2000000000e+01 ]
nl f2_eval uator_gn results: objective fn. Hessian =
[[  5.1400000000e+02 -3.2000000000e+02
- 3. 2000000000e+02 2. 0000000000e+02 ]]

Figure12.1 Example of the Gauss-Newton approximation.
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13.0 Advanced Optimization Strategies

13.1 Overview

DAKOQOTA's strategy capabilities were developed in order to provide a control layer for managing
multiple iterators and models. It was driven by the observed need for “ meta-optimization” and
other high level systems analysis procedures in real-world engineering design problems. This
capability allows the use of existing iterative algorithm and computational model software
components as building blocks to accomplish more sophisticated studies, such as hybrid
optimization, surrogate-based optimization, mixed integer nonlinear programming, or
optimization under uncertainty.

13.2 Multilevel Hybrid Optimization

In the multilevel hybrid optimization strategy (keyword: mul ti _| evel ), asequence of
optimization methods are applied to find an optimal design point. The goal of this strategy isto
exploit the strengths of different optimization algorithms through different stages of the
optimization process. Global/local hybrids (e.g., genetic algorithms combined with nonlinear
programming) are acommon example in which the desire for aglobal optimum is balanced with
the need for efficient navigation to alocal optimum. An important related feature is that the
sequence of optimization algorithms can employ models of varying fidelity. In the global/local
case, for example, it would often be advantageous to use alow-fidelity model in the global search
phase, followed by use of a more refined model in the local search phase.

The specification for multilevel optimization involves alist of method identifier strings, and each
of the corresponding method specifications has the responsibility for identifying the variables,
interface, and responses specifications that each method will use (see the DAKOTA Reference
Manual [17] and the example discussed below). Currently, only the uncoupl ed multilevel
approachisavailable. Thecoupl ed and uncoupl ed adapt i ve approaches are placeholders
for future capabilities.

In the uncoupled multilevel optimization approach, a sequence of optimization methodsis
invoked in the order specified in the DAKOTA input file. The best solution from each method is
used as the starting point for the following method. Method switching is governed by the
separate convergence controls of each method; that is, each method is allowed to run to its own
internal definition of completion without interference. Individual method completion may be
determined by convergence criteria(e.g., conver gence_t ol er ance) or iteration limits (e.g.,
max_iterations).

Figure 13.1 shows a DAKOTA input file that specifies a multilevel optimization strategy to solve
the “textbook” optimization test problem. Thisinput fileisnamed dakota_nul til evel .in
inthe/ Dakot a/ t est directory. The three optimization methods are identified using the

met hod_| i st specification in the strategy section of the input file. The identifier strings listed
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DAKOTA I nput file: Miltilevel optimzation on the
unconstrai ned Textbook test problemusing 3 optinization
net hods in sequence:

genetic algorithm (in SGOPT)

coordi nate pattern search (in SGOPT)

nonl i near progranmmng (in OPT++)
This provides an initial global search using a nongradient
net hod, followed by a | ocal search using a nongradient
nethod, with a final |ocal search using a gradient mnethod.

HHFHHFF IR

strategy, \

gr aphi cs \

mul ti_| evel uncoupl ed \
method_list = "GA 'PS 'NLP

net hod,

id method = ' GA

nodel _type single
vari abl es_poi nter
interface_pointer
responses_poi nter

sgopt _pga_real
popul ation_si ze =
ver bose out put

1 n
=
e —

[
o

nmet hod,

id_method = ' PS

nodel _type single
vari abl es_poi nter
i nterface_pointer 1y
responses_poi nt er "R

sgopt _pattern_search stochastic
ver bose out put
initial _delta = 0.1
threshold delta = 1.e-4
sol uti on_accuracy = 1.e-10
expl oratory_noves best_first

V.

P )

net hod,

id_nmethod = ' NLP

nodel _type single
vari abl es_poi nter
interface_pointer
responses_poi nt er

opt pp_newt on
gradient_tol erance = 1.e-12
convergence_tol erance = 1.e-15

AV
EE
=7

e —

interface,
id_interface = "1 1
application direct,
anal ysis_driver= 'text_book’

P

vari abl es,
id_variables = VI’
conti nuous_design = 2
cdv_initial _point 0.
cdv_upper _bounds 5.
cdv_| ower _bounds 0.
cdv_descri ptor "X

.
v o
e

=g o
N©oo©~

responses,
id_responses = 'Rl
num obj ective_functions = 1
no_gradi ents
no_hessi ans

————

responses,
id_responses = 'R’
num obj ective_functions = 1
anal ytic_gradi ents
anal yti c_hessi ans

————

Figure13.1 DAKOTA input filefor the multilevel optimization strategy.

in the specification are ' GA for genetic algorithm, *PS’ for pattern search, and ‘NLP’ for
nonlinear programming. Following the strategy keyword block are three method keyword blocks.
Note that each method has atag following thei d_ et hod keyword that corresponds to one of
the method names listed in the strategy keyword block. By following the keyword tags for the

i nterface_pointer,variabl es_poi nter,andresponses_poi nt er, itiseasy to
see the specification linkages for this problem. The GA optimizer runs first and uses the variables
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keyword block ‘V1’, the interface keyword block ‘1 1’, and the responses keyword block ‘R1’.
Once the GA is complete, the PS optimizer begins operation, and uses the best GA result asits
starting point. The PS method againuses‘V1’, ‘I 1’, and ‘R1’. Since both GA and PS are
nongradient-based optimization methods, there is no need for gradient or Hessian information in
the response keyword block. The NLP optimizer runs last, using the best result from the PS
method as its starting point. It also usesthe ‘V1’ and ‘I 1’ keyword blocks, but it uses the
responses keyword block *R2’ since the full Newton optimizer used in this example

(opt pp_newt on) needs analytic gradient and Hessian data to perform its search.

13.3 Multistart Local Optimization

A simple, heuristic, global optimization technique isto use many local optimization runs, each of
which is started from a different initial point in the parameter space. Thisis known as multistart
local optimization. Thisis an attractive strategy in situations where multiple local optima are
known or expected to exist in the parameter space. However, there is no theoretical guarantee
that the global optimum will be found. This approach combines the efficiency of local
optimization methods with a user-specified global stratification (using a specified
starting_poi nts list, anumber of specifiedr andom st art s, or both; see the Reference
Manual [17] for additional specification details). Since solutions for different starting points are
independent, parallel computing may be used to concurrently run the local optimizations.

An example input file for multistart local optimization on the “quasi_sine’ test function (see
quasi _sine_fcn. Cin/ Dakot a/ t est)isshowninFigure13.2. Thest r at egy keyword
block in the input file containsthe keyword mul ti _st ar t , along with the set of starting points

st rat egy,
multi_start
nmet hod_pointer = 'NL
starting_points = -.

O ®mwo®©TY
v
O w0
_— e

nmet hod, \
i d_nethod = ' NLP \
dot _bfgs

vari abl es, \
conti nuous_design = 2 \

cdv_| ower _bounds 1.0 \
cdv_upper _bounds 1.0 \
cdv_descri ptor ' x1

Noo

i nterface, \
application system \
anal ysi s_driver = 'quasi_sine_fcn’

responses,
num obj ective_functions = 1
anal ytic_gradients
no_hessi ans

——

Figure13.2 DAKOTA input filefor the multistart local optimization strategy.
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that will be used for the optimization runs. The other keyword blocks in the input file are similar
to what would be used in a single optimization run.

The quasi_sine test function has multiple local minima, but thereis an overall trend in the
function that tends toward the global minimum at (x1, x2) = (0.177, 0.177). See [35] for more
information on this test function. Figure 13.3 shows the results summary for the five local
optimizations performed. From the five starting points (as identified by the x 1, x, headers), the
five local optima (asidentified by the x1*, x,* headers) are al different and only one of the local
optimizations finds the global minimum.

<<<<< Results sunmary:

set_id x1 x2 x1* x2* obj _fn
1 -0.8 -0.8 -0.8543728665 -0.8543728665 0. 5584096919
2 -0.8 0.8 -0.9998398719 0.177092822 0. 291406596
3 0.8 0.8 0.177092822 -0.9998398719 0. 291406596
4 0.8 0.8 0.1770928217 0.1770928217 0.0602471946
5 0 0 0.03572926375 0.03572926375 0.08730499239

Figure13.3 DAKOTA resultssummary for the multistart local optimization strategy.

13.4 Pareto Optimization

The Pareto optimization strategy (keyword: par et o_set ) isrelated to the multiobjective
optimization capabilities discussed in Section 11.3.1. However, in a Pareto optimization strategy,
multiple sets of multiobjective weightings will be evaluated. The user can specify these
weighting setsin the st r at egy keyword block using a

nmul ti _obj ective_ wei ght set s list, anumber of random wei ght _set s, or both
(see the Reference Manual [17] for additional specification details). Figure 13.4 shows the input
commands from the filedakot a_par et 0. i ninthe/ Dakot a/ t est directory.

DAKOTA performs one multiobjective optimization problem for each set of multiobjective
weights. The collection of computed optimal solutions form a Pareto set, which can be useful in
making trade-off decisions in engineering design. Since solutions for different multiobjective
weights are independent, parallel computing may be used to concurrently execute the
multiobjective optimization problems.

Figure 13.5 shows the results summary for the Pareto-set optimization strategy. For the four
multiobj ective weighting sets (as identified by the wy, w,, Wy headers), the local optima (as
identified by the x;, X, headers) are all different and correspond to individual objective function
values of (f1, f2, f3) = (0.0, 0.5, 0.5), (13.1, -1.2, 8.16), (532., 33.6, -2.9), and (0.125, 0.0, 0.0)
(note: the composite objective function is tabulated under the obj _f n header). The first three
solutions reflect exclusive optimization of each of the individual objective functionsin turn,
whereas the final solution reflects a balanced weighting and the lowest sum of the three
objectives. Plotting these (f1, f2, f3) triplets on a 3-dimensional plot resultsin a Pareto surface
(not shown), which is useful for visualizing the trade-offs in the competing objectives.
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strat egy,

par et o_set
opt _met hod_pointer = 'NLP
mul ti _objective_weight_sets = 1. 0.
0. 1.
0. O.
333 .333
met hod,
id_nethod = ' NLP
dot _bfgs
vari abl es,
conti nuous_design = 2
cdv_initial_point 0.9 1.1
cdv_upper _bounds 5.8 2.9
cdv_| ower _bounds 0.5 -2.9
cdv_descriptor " x1’ ' x2'
interface,
application system
# asynchronous,
anal ysi s_driver = 'text_book’
responses,

num obj ective_functions = 3
anal ytic_gradients

no_hessi ans

—— - — —

—— —— - —

——

Figure13.4 DAKOTA input filefor the Pareto optimization strategy.

<<<<< Results sunmary:

set i

AWNPFRPQ

wl w2 w3 x1 X2 obj _fn
1 0 0 0.9996554048 0. 997046351 7.612301561e-11
0 1 0 0.5 2.9 -1.2
0 0 1 5.8 1.12747589%e- 11 -2.9
0. 333 0. 333 0. 333 0.5 0.5000000041 0. 041625

Figure13.5 DAKOTA resultssummary for the Pareto-set optimization strategy.

13.5Mixed Integer Nonlinear Programming (MINLP)

Many nonlinear optimization problems involve a combination of discrete and continuous
variables. These are known as mixed integer nonlinear programming (MINLP) problems. A

typical MINLP optimization problem isformulated as follows:

DAKOTA Users Manud

minimize: f (X, d)
subject to: g, <g(x,d)<gy
h(x,d) = h,

XLSX SXU

dO{-2,-1,0,1,2}
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where d is avector whose elements are integer values. In situations where the discrete variables
can be temporarily relaxed (i.e., noncategorical discrete variables, see Section 4.2.2), the branch-
and-bound algorithm can be applied. Categorical variables (e.g., true/false variables, or binary
state variables) that are inherently discrete cannot be used with the branch and bound strategy.
During the branch and bound process, the discrete variables are treated as continuous variables
and the integrality conditions on these variables are incrementally enforced through a sequence
of optimization subproblems. By the end of this process, an optimal solution that is feasible with
respect to the integrality conditionsis computed.

DAKOQOTA's branch and bound strategy (keyword: br anch_and_bound) can solve
optimization problems having either discrete or mixed continuous/discrete variables. This
strategy uses the parallel branch-and-bound agorithm from the PICO software package [15],[16]
to generate a series of optimization subproblems (“branches’). These subproblems are solved as
continuous variable problems using any of DAKOTA's nonlinear optimization agorithms (e.g.,
DOT, NPSOL). When a solution to a branch is feasible with respect to the integrality constraints,
it provides an upper bound on the optimal solution, which can be used to prune branches with
higher objective functions which are not yet feasible. Since solutions for different branches are
independent, parallel computing may be used to concurrently execute the optimization
subproblems.

PICO, by itself, targets the solution of mixed integer linear programming (MILP) problems, and
through coupling with DAKOTA'’s nonlinear optimizers, is extended to solution of MINLP
problems. In the case of MILP problems, the upper bound obtained with a feasible solution is an
exact bound and the branch and bound process is provably convergent to the global minimum.
For nonlinear problems which may exhibit nonconvexity or multimodality, the processis
heuristic in general, since there may be good solutions that are missed during the solution of a
particular branch. However, the process still computes a series of locally optimal solutions, and is
therefore a natural extension of the results from local optimization techniques for continuous
domains. Only with rigorous global optimization of each branch can a global minimum be
guaranteed when performing branch and bound on nonlinear problems of unknown structure.

In cases where there are only afew discrete variables and when the discrete values are drawn
from asmall set, then it may be reasonable to perform a separate optimization problem for al of
the possible combinations of the discrete variables. However, this brute force approach becomes
computationally intractable if these conditions are not met. The branch-and-bound agorithm will
generally require solution of fewer subproblems than the brute force method, although it will still
be significantly more expensive than solving a purely continuous design problem.

13.5.1 Example MINLP Problem

As an example, consider the following MINLP problem [20]:
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minimize: f (x) = i x; —1.4)*
i &1

_ .2 %
9y =X;=5 =0
_ 2 %
9y = X3=7 =0

—10£x1,x2,x x4s10

31
X5, X 0{o,1,2,3,4}

(13.2)

This problem is avariant of the textbook test problem described in Chapter 20. In addition to the

introduction of two integer variables, amodified value of 1.4 is used inside the quartic sum to

render the continuous solution a non-integral solution. Figure 13.6 shows a DAKQOTA input file
for solving this problem. Thisinput fileis named dakot a_bandb. i n inthe/ Dakot a/ t est

directory. Note the specification for the discrete variables, where lower and upper bounds are
given. The discrete variables can take on any integer value within these bounds.

nmet hod

strat egy,

branch_and_bound
opt _net hod_poi nter

= ' NLP
iterator_servers = 2

npsol _sqgp
id_nmethod = ' NLP
convergence_tol = 1.e-8

vari abl es,

conti nuous_design = 4
cdv_initial _point
cdv_| ower _bounds -
cdv_upper _bounds

di screte_design = 2
ddv_initial _point
ddv_| ower _bounds
ddv_upper _bounds

»on Oo0O
oou

.

B
»on oop
oou

.

B
coo
oou

.

B
cop
oou

interface,

application direct,
anal ysi s_driver = 'text_book’

responses,

num obj ective_functions = 1
num nonl i near _inequal ity_constraints = 2
nunerical _gradients
interval _type centra
met hod_sour ce dakot a
fd_step_size = 1.0E-5
no_hessi ans

\
\
\

—— —

o e o o o e e

o e —

Figure 13.6
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DAKOQOTA input file for the branch-and-bound strategy for solving
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Figure 13.7 shows the sequence of branches generated for this problem. The first optimization
subproblem relaxes the integrality constraint on parameters X5 and Xg, So that 0 < X< 4 and

0 <x,<4.Thevauesfor x5 and xg at the solution to this first subproblem are x5=xg=1.4. Since
X5 and Xg must be integers, the next step in the solution process “ branches’” on parameter X5 to
create two new optimization subproblems; one with 0 < x5 <1 and the other with 2 <x<4.

Note that, at thisfirst branching, the bounds on xg are still 0 < x, < 4. Next, the two new
optimization subproblems are solved. Since they are independent, they can be performed in
parallel. The branch-and-bound process continues, operating on both xg and Xxg, until a
optimization subproblem is solved where X5 and Xg are integer-valued. At the solution to this
problem, the optimal values for x5 and Xxg are Xs=xg=1.

Bounds: 0<x5<4

NLP1 Osxe<4 | E 7

Soln.: xg=xg=1.4 No iterator concurrency
f=0.6513 on first NLP (idle servers)
NLP2 NLP3
Bounds: 0< x5< 1 Bounds: 2sx5<4 | <—
Osxg=4 O0sxs<4 | Canprune
Soln.: x5=1, xg=1.4 Soln.: x5=2, Xg=1.4 | if NLP4
f=0.6769 f=0.7809 complete
NLP4 NLP5 NLP6 NLP7
Bounds: 0<sXx;<1| [Bounds: 0<x5<1| [Bounds:2<x5<4| |Bounds: 2< x5< 4
O0<sx5<1 2<xg<4 0<sxz<1 2<xg<4
Soln.: Xs=xg=1 Soln.: x5=1, Xg=2 Soln.: x5=2, Xg=1 Soln.: Xs=xg=2
f=0.7025 f=0.8065 f=0.8065 f=0.9105

Optimal solution

Figure13.7 Branching history for example MINLP optimization problem.

In this example problem, the branch-and-bound algorithm executes as few as five and no more
than seven optimization subproblems to reach the solution. For comparison, the brute force
approach would require 25 optimization problems to be solved (i.e., five possible values for each
of Xg and X6).

In the example given above, the discrete variables are integer-valued. In some cases, the discrete
variables may be real-valued, such as x J{0.0, 0.5, 1.0, 1.5,2.0} . The branch-and-bound
algorithm is restricted to work with integer values. Therefore, it is up to the user to perform a
transformation between the discrete integer values from DAKOTA and the discrete real values
that are passed to the simulation code (see Section 4.2.2). When integrality is not being relaxed, a
common mapping isto use the integer value from DAKOTA as the index into avector of discrete
real values. However, when integrality isrelaxed, additional logic for interpolating between the
discrete real valuesis needed.
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13.6 Optimization Under Uncertainty (OUU)

The nondeterministic optimization strategy (a.k.a. optimization under uncertainty) incorporates
an uncertainty quantification method within the optimization process. Thisis often needed in
engineering design problems when one must include the effect of input parameter uncertainties
on the response functions of interest. A typical engineering example of OUU would minimize the
probability of failure of a structure for a set of applied loads, where there is uncertainty in the
loads and/or material properties of the structural components.

In the OUU strategy in DAKOTA, a nhondeterministic method is used to evaluate the effect of
uncertain variable distributions on response functions of interest (refer to Chapter 10 for
additional information on nondeterministic analysis). Statistics on these response functions are
then included in the objective and constraint functions of an optimization process. Three
approaches are currently supported: nested OUU, surrogate-based OUU, and trust-region
surrogate-based OUU. Additional details and computational results are provided in [19].

13.6.1 Nested OUU

In the case of a nested approach, the optimization loop is the outer loop which seeks to optimize
anondeterministic quantity (e.g., minimize probability of failure). The uncertainty quantification
(UQ) inner loop evaluates this nondeterministic quantity (e.g., computes the probability of
failure) for each optimization function evaluation. Figure 13.8 depicts the nested OUU iteration
where d are the design variables, u are the uncertain variables characterized by probability
distributions, r ,(d,u) are the response functions from the simulation, and s;,(d) are the statistics

generated from the uncertainty quantification on these response functions.

[Opt | <—
d Sy

i
u r,
Sim

Figure13.8 Formulation 1: Nested OUU.

Figure 13.9 shows a DAKOTA input file for a nested OUU example problem that is based on the
textbook test problem. Thisinput fileisnamed dakot a_ouul_t b. i ninthe/ Dakot a/

t est directory. In this example, the objective function contains two probability of failure
estimates, and an inequality constraint contains another probability of failure estimate. For this
example, failure is defined to occur when one of the textbook response functions exceeds its
threshold value. The strategy keyword block at the top of the input file identifies this as an OUU
problem. The strategy keyword block is followed by the optimization specification, consisting of
the optimization method, the continuous design variables, and the response quantities that will be
used by the optimizer. The mapping matrices used for incorporating UQ statisticsinto the
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# DAKOTA Input File: Optimzation under uncertainty
# using a nodified version of the Textbook test problem

strategy, \
gr aphi cs
opt _under _uncertainty \

opt _nmethod = ' OPTIM

—

# begin opt specification #

id method = ' OPTIM

nodel _type nested
vari abl es_pointer ='OP A
sub_net hod_poi nter = ' UQ
responses_poi nter = 'OPTIMR
primary_mapping_matrix = 0
secondary_mappi ng_matrix

npsol _sqp
convergence_tolerance = 1.e-8

e e —

vari abl es,
id_variables = "OPTIMV
conti nuous_design = 2
cdv_initial _point 1
cdv_upper _bounds 2.
cdv_| ower _bounds 1
cdv_descri ptor '

—— e ——

responses,
# mnimze p_fail_rl1 + p_fail_r2
# s.t. p_fail_r3 <=0.1
# NOTE: This specifies the TOTAL RESPONSE for the optim zation,
# which I's a conbination of nested & interface responses.
id_responses = 'OPTIMR
num obj ective_functions = 1
num nonl i near _i nequal i ty_constraints = 1
nonl i near _i nequal i ty_upper _bounds = .1
nunerical _gradients
met hod_sour ce dakota
interval _type central
fd_step_size = 1.e-1
no_hessi ans

P

BRI
# begin UQ specification #

net hod,
id_nmethod = 'UQ
nodel _type single
vari abl es_poi nter
interface_pointer TUQ I
responses_poi nt er "UQ R
nond_sanpl i ng,
sanpl es = 50 sanple_type |hs seed = 1
response_t hreshol ds = 3. 6e+11 1.2e+05 3. 5e+05

uQV

e e —

vari abl es,
id_variables = "UQV
# continuous_design is not required (OUU will augment
# automatically), but it is good form
continuous_design = 2
cdv_descri ptor 'd1l ' d2
normal _uncertain 2
nuv_neans
nuv_st d_devi ati ons
nuv_descri ptor
uni formuncertain = 2
uuv_di st _| ower _bounds
uuv_di st _upper_bounds
uuv_descri pt or
wei bul | _uncertain = 2
wuv_al phas
wuv_bet as
wuv_descri ptor

248.89, 593.33
12.4, 29.7
"nuvl ' nuv2’

199.3, 474.63
298.5, 712.
"uuvl Tuuv2’

12., 30.
250., 590.
wuvl o wuv2’

e e —

interface,
id_interface = "UQ.I"’
appl i cation system asynch eval uation_concurrency = 5
anal ysi s_driver = 'text_book_ouu’

———

responses,
id_responses = 'UQR
num response_functions = 3
no_gradi ents
no_hessi ans

——— —

Figure13.9 DAKOTA input filefor the nested OUU example.
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optimization response data are described in the DAKOTA Reference Manual [17]. The
uncertainty quantification specification includes the UQ method, the uncertain variable
probability distributions, the interface to the simulation code, and the UQ response attributes. As
with other complex DAKOTA input files, the identification tags given in each keyword block can
be used to follow the relationships among the different keyword blocks.

Latin hypercube sampling is used as the UQ method in this example problem. Thus, each
evaluation of the response functions by the optimizer entails 50 Latin hypercube samples. In
general, nested OUU studies can easily generate several thousand function evaluations and
gradient-based optimizers may not perform well due to noisy or insensitive statistics resulting
from under-resolved sampling. These observations motivate the use of surrogate-based
approachesto OUU.

Other nested OUU examplesinthe/ Dakot a/ t est directory include

dakot a_ouul_t bch. i n, which adds an additional interface for including deterministic data
in the textbook OUU problem, and dakot a_ouul_canti | ever. i n, which solvesthe
cantilever OUU problem (see Section 20.5) with a nested approach. For each of these files, the
“1” identifies formulation 1, which is short-hand for the nested approach.

13.6.2 Surrogate-Based OUU (SBOUU)

Surrogate-based optimization under uncertainty strategies can be effective in reducing the
expense of OUU studies. Possible formulations include use of a surrogate model at the
optimization level, at the uncertainty quantification level, or at both levels. These surrogate
models encompass both data fit surrogates (at the optimization or UQ level) and model hierarchy
surrogates (at the UQ level only). Figure 13.10 depicts the different surrogate-based formulations
where 7 and s, areapproximate response functions and approximate response statistics,

respectively, generated from the surrogate models.

-

Opt | <.
S
Opt | <~ di |
by
u

DataFit/Hierarch u |: ~
u r
u
d’u¢ T Fy |DataFit/Hierarch
u r, _
S' m Sl m d’ u¢ T ru
Sim

Formulation 2: layered Formulation 3: nested Formulation 4: layered containing
containing nested containing layered nested containing layered

Figure 13.10 Formulations 2, 3, and 4 for Surrogate-based OUU.
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SBOUU examplesinthe/ Dakot a/ t est directory includedakot a_sbouu2_t bch. i n,
dakot a_sbouu3_t bch. i n,anddakot a_sbouu4_t bch. i n, which solve the textbook
OUU problem, and dakot a_sbouu2_cantil ever.in,

dakot a_sbouu3_cantil ever.in,anddakota _sbouu4_cantil ever. i n,which
solve the cantilever OUU problem (see Section 20.5). For each of thesefiles, the*2,” “3,” and
“4” identify formulations 2, 3, and 4, which are short-hand for the “layered containing nested,”
“nested containing layered,” and “layered containing nested containing layered” surrogate-based
formulations, respectively. In general, the use of surrogates greatly reduces the computational
expense of these OUU study. However, without restricting and verifying the stepsin the
approximate optimization cycles, weaknesses in the datafits can be exploited and poor solutions
may be obtained. The need to maintain accuracy of results leads to the use of trust-region
surrogate-based approaches.

13.6.3 Trust-Region Surrogate-Based OUU (TR-SBOUU)

The TR-SBOUU approach applies the trust region logic of deterministic SBO (see Section 13.7)
to SBOUU. Trust-region verifications are applicable when surrogates are used at the optimization
level, i.e., formulations 2 and 4. As aresult of periodic verifications and surrogate rebuilds, these
techniques are more expensive than SBOUU; however they are more reliable in that they
maintain the accuracy of results. Relative to nested OUU, TR-SBOUU tends to be less expensive
and morereliable.

SBOUU examplesinthe/ Dakot a/ t est directory includedakot a_t r sbouu2_t bch. in
and dakot a_t r sbouu4_t bch. i n, which solve the textbook OUU problem, and

dakot a_trsbouu2 cantil ever.inanddakota trsbouud4 cantil ever.in,
which solve the cantilever OUU problem (see Section 20.5).

The TR-SBOUU algorithms are a subject of active research and development. Initial
computational results for several example problems are availablein [19].

13.7 Surrogate-Based Optimization (SBO)

In the surrogate-based optimization strategy (keyword: sur r ogat e_based_opt) the
optimization algorithm operates on a surrogate model instead of directly operating on the
computationally expensive simulation model. The surrogate model can be formed from data
samples and surface fit functions, or it can be a simplified version (e.g., coarsened finite element
mesh) of the original simulation model. For either type of surrogate model, the SBO algorithm
periodically checks the accuracy of the surrogate model against the original simulation model.
The SBO strategy in DAKOTA can be implemented using heuristic rules (less expensive) or
provably-convergent rules (more expensive). The heuristic SBO strategy is particularly effective
on real-world engineering design problems that contain nonsmooth features (e.g., slope
discontinuities, numerical noise) where gradient-based optimization methods often have trouble,
and where the computational expense of the simulation precludes the use of nongradient-based
methods.
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13.7.1 SBO with Surface Fit Models

In SBO with surface fit functions, a sequence of optimization subproblems are evaluated, each of
which is confined to a subset of the parameter space known as a “trust region.” Inside each trust
region, DAKOTA's data sampling methods are used to evaluate the response quantities at a small

number (order 10! to 102) of design points. Next, multidimensional surface fitting is performed
to create a surrogate function for each of the response quantities. Finally, optimization is
performed using the surrogate functionsin lieu of the actual response quantities, and the
optimizer’s search is limited to the region inside the trust region bounds. A validation procedure
is then applied to compare the predicted improvement in the response quantities to the actual
improvement in the response quantities. Based on the results of this validation, the optimum
design point is either accepted or rejected and the size of the trust region is either expanded,
contracted, or left unchanged. The sequence of optimization subproblems continues until the
SBO strategy convergence criteria are satisfied. More information on the data sampling methods
isavailable in Chapter 9, and the surface fitting methods are described in Chapter 14.

Figure 13.11 shows a DAKQOTA input file that implements surrogate-based optimization on
Rosenbrock’s function. Thisinput fileis named dakot a_sbo_r osen. i ninthe/ Dakot a/
t est directory. The strategy keyword block contains the SBO strategy keyword

surrogat e_based_opt , plusthe commands for specifying the trust region size and scaling
factors. The optimization portion of SBO is specified in the following keyword blocks for

nmet hod, vari abl es,i nterface,andr esponses. In SBO, the interface keyword block
specifies the type of surface fit method on which the optimizer will operate. The data sampling
portion of SBO is specified in an additional set of keyword blocks for et hod, i nt er f ace,
andr esponses. Thisexample problem uses the Latin hypercube sampling method in the LHS
software to select 10 design pointsin each trust region. (Note: to use Latin hypercube sampling
from DDACE, swap the comment flags for thenond_sanpl i ng anddace | hs sectionsin
theinput file.) A single surrogate mode! is constructed for the objective function using a
quadratic polynomial. Theinitial trust region is centered at the design point (x1,X») = (0.9,0.9),
and extends +/- 0.4 from this point in the x 1 and X, coordinate directions.

If thisinput file is executed in DAKOTA, it will converge to the optimal design point at (X 1,X») =

(1,2) in 760 function evaluations (note: thisis highly dependent on the value of the

m ni mum_si ze keyword). While this solution is correct, it is obtained at a much higher cost
than atraditional gradient-based optimizer (e.g., see the results obtained from

dakot a_r osenbr ock. i n). The SBO strategy is not intended for use with smooth continuous
optimization problems; gradient-based optimization is much more efficient for such applications.
Rather, SBO is best-suited for the types of problems that occur in engineering design where the
response quantities may be discontinuous, nonsmooth, or may have multiple local optima[34].
In these types of engineering design problems, traditional gradient-based optimizers often are
ineffective. (For an example problem with multiple local optima, look in/ Dakot a/ t est for
thefiledakot a_sbo_si ne_fcn.in[39)).
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# DAKOTA TNPUT FTLE - dakota_sbo_rosen.1n

# Surrogat e-based optimzation to mnimze Rosenbrock’s function

strategy,
surrogat e_based_opt
# graphics
tabul ar _gr aphi cs_data
max_iterations = 1000
# soft_convergence_limt =1
opt _met hod_poi nter =" NLP
trust_region
initial_size = 0.10
m ni mum si ze = 1.0e-6

contract_regi on_threshold = 0.05
expand_r egi on_t hreshol d = 0.90
contraction_factor = 0.50
expansi on_f act or = 1.50

#it##H### begi n opt speci ficati on ######H#H##IHHHIH
net hod
id_method = ' NLP
nodel _type | ayered
interface_pointer
responses_poi nt er
conmin_frcg,
max_iterations = 50
convergence_tol erance = le-8

* SURROGATE_FCN
" SURROGATE_FCN_GRAD

vari abl es
conti nuous_design = 2

cdv_initial _point 0.0 0.0
cdv_| ower _bounds -2.0 -2.0
cdv_upper _bounds 2.0 20
cdv_descri ptor 'x1' ' x2

interface,
id_interface = ' SURROGATE_FCN
appr oxi mati on gl obal
dace_net hod_poi nter = ' SAMPLI NG

# reuse_sanpl es region
# use_gradi ents

correction additive zeroth_order
# neur al _net wor k

pol ynom al quadratic
# krigi ng
# correlations = 1.0 1.0
responses

i d_responses = ' SURROGATE_FCN_GRAD
num obj ective_functions = 1
nuneri cal _gradients
met hod_sour ce vendor
interval _type forward
fd_step_size = .000001
no_hessi ans

#u##### Sanpl i ng met hod speci fi cati ons #########
met hod
id_method = ' SAMPLI NG
nodel _type single
interface_pointer= TRUE_FCN
responses_poi nt er =" TRUE_FCN_GRAD
# dace | hs #seed = 5
# sanpl es = 10 synbols = 10
nond_sanpl i ng
sanpl es = 10
seed = 531
sanpl e_type | hs
all _variabl es

interface,
application direct,
id_interface = ' TRUE_FCN
anal ysis_driver = " rosenbr ock

responses
id_responses = ' TRUE_FCN_GRAD
num obj ective_functions = 1
no_gradi ents
anal yti c_gradients
nuneri cal _gradients
met hod_sour ce dakot a
interval _type centra
fd_step_size = 0.0001
no_hessi ans

I

e e e e e e — e P e e —

———

e
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A recently added capability for DAKOTA's SBO strategy is the incorporation of correction
factors that improve the local accuracy of the surrogate models. The correction factors force the
surrogate models to match the true function values, and possibly gradients, at the center point of
each trust region. The four types of correction factors that can be applied areaddi ti ve
zeroth_order,nultiplicative zeroth _order,additive first_order,and
mul tiplicative first_order. Thedefault behavior isthat no correction factor is

applied.

To visualize how these corrections are applied, consider two curves, f , (x) and f ;(x), where

f ¢ (x) isthe surrogate model for the true function f ; (x) . At the center point of each trust
region, X, the correction factor approach creates a third function, f (x) that will be used by the

optimizer. Note that in SBO without any correction factors, the optimizer operates directly on
f (x).Fortheaddi tive zeroth_order method, the corrected function has the form

f(x) = fo(x)+[f (x;)=fs(x.)].Forthenul tiplicative zeroth_order method,
the corrected function has the form f (x) = cx(xc)f S(x),where a(x.) = f (x)/fg(Xe).
Theaddi tive first_order correction method, which is based on the work of Lewis and
Nash[48], has the form

f(x) = fS(x) +[f t (xC)—f S(xC)] +[Dft (xC)—Df S(xC)]T(x —xc).The

mul tiplicative first_order correction method, which is based on the work of Chang,
et a., [9] and Alexandrov, et d, [1], hastheform f (x) = B(x)f S(x) and uses ascaling

function, B(x), that is computed using afirst-order Taylor Series expansion

B(x) = a(x,)+Da(x.) (x —x,).

It should be noted that in both first order correction methods, the function f (x) matches the
function value and gradients of f ; (x) at x=X.. This property is necessary in proving that the
first order-corrected SBO algorithms are provably convergent to alocal minimum of f , (x).
However, the first order correction methods are significantly more expensive than the zeroth
order correction methods, since the first order methods require computing both Of ; (x ) and
Of s (X¢) - When the SBO strategy is used with either of the zeroth order correction methods, or

with no correction method, convergence is not guaranteed to alocal minimum of f , (x). That is,

the SBO strategy becomes a heuristic optimization algorithm. From a mathematical point of view
thisisundesirable, but as a practical matter, the heuristic variants of SBO are often effectivein
finding local minima.

Usage guidelines. Asof April 2003, the DAKOTA team is continuing to test the surface fit SBO
strategy using the various correction factor methods. Thus, no clear-cut guidelines are available.
However, the user should consider the following observations:
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1. Boththeadditive zeroth_order andnul ti plicative zeroth_order
correction methods are “free” since they use valuesof f , (x ) that are normally computed

by the SBO strategy.

2. Theuseof eithertheaddi ti ve first_order methodorthenul tiplicative
first _order method does not necessarily improve the rate of convergence of the SBO
algorithm.

3. When using thefirst order correction methods, the TRUE_FCN_GRAD response keywords
must be modified (see bottom of Figure 13.11) to allow either analytic or numerical gradients
to be computed. This provides the gradient data needed to compute the correction function.

4. For many computationally expensive engineering optimization problems, gradients often are
too expensive to obtain or are discontinuous (or may not exist at all). In such cases the
heuristic SBO algorithm has been an effective approach at identifying optimal designs[34].

13.7.2 SBO with Multifidelity Models

SBO can also be applied with multifidelity, or hierarchical, models, i.e., where one has available
both a high-fidelity computational model and alow-fidelity computational model. This situation
can occur when the low-fidelity model neglects some physical phenomena (e.g., viscosity, heat
transfer, etc.) that are included in the high-fidelity model, or when the low-fidelity model has a
lower resolution computational mesh than the high-fidelity model. In many cases, the low-fidelity
model can serve as a surrogate for the high-fidelity model during the optimization process. Thus,
the low-fidelity model can be used in SBO in amanner similar to the use of surface fit models
described in Section 13.7.1. A key difference in SBO with hierarchical surrogatesisthat a design
of experiments using the high-fidelity model is not required; rather high-fidelity evaluations are
only needed at the center of the current trust-region and the predicted optimum point in order to
correct the low-fidelity model and verify improvement, respectively. Another differenceis that
one of the four types of correction described in Section 13.7.1 isrequired for SBO with
multifidelity models.

A multifidelity test problem named dakot a_sbo_hi erarchi cal . i nisavallablein

/ Dakot a/ t est to demonstrate this SBO approach. This test problem uses the Rosenbrock
function as the high fidelity model and a function named “If_rosenbrock” asthe low fidelity
model. Here, If_rosenbrock is a variant of the Rosenbrock function (see/ Dakot a/ t est /

| f _rosenbrock. Cfor formulation) with the minimum point at (X 1, X,) = (0.80, 0.44),
whereas the minimum of the original Rosenbrock functionis (x4, x») = (1,1). Of the four
correction approaches, only addi ti ve first_order issuccessful a reliably locating the
high-fidelity minimum at (X 1, X5) = (1,1) from arbitrary starting points. Thislikely results from
the fact that the low- and high-fidelity Rosenbrock functions have similar contours and the
additive first_order correctioninduces less skewing in the contours of the low fidelity
model.
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14.0 Surface Fitting Methods

14.1 Overview

DAKOTA contains several types of surface fitting methods that can be used with optimization
and uncertainty quantification methods and strategies such as surrogate-based optimization and
optimization under uncertainty. These are: polynomia models (linear, quadratic, and cubic), first-
order Taylor series expansion, kriging spatial interpolation, artificial neural networks, and
multivariate adaptive regression splines. All of these surface fitting methods can be applied to
problems having an arbitrary number of design parameters. However, surface fitting methods
usually are practical only for problems where there are a small number of parameters (e.g., a
maximum of somewhere in the range of 30-50 design parameters). The mathematical models
created by surface fitting methods have a variety of names in the engineering community. These
include surrogate models, meta-model s, approximation models, and response surfaces. For this
manual, the terms surface fit model and surrogate model are used.

14.2 Proceduresfor Surface Fitting

The surface fitting process consists of three steps. (1) selection of a set of design points, (2)
evaluation of the true response quantities (e.g., from a user-supplied simulation code) at these
design points, and (3) using the response data to solve for the unknown coefficients (e.g.,
polynomial coefficients, neural network weights, kriging correlation factors) in the surface fit
model. In cases where there is more than one response quantity (e.g., an objective function plus
one or more constraints), then a separate surface is built for each response quantity. Currently, the

surface fit models are built using only 0"-order information (function values only), although
extensions to using higher-order information (gradients and Hessians) are possible. Each surface
fitting method employs a different numerical method for computing its internal coefficients. For
example, the polynomial surface uses aleast-squares approach that employs a singular value
decomposition to compute the polynomial coefficients, whereas the kriging surface uses
Maximum Likelihood Estimation to compute its correlation coefficients. More information on
the numerical methods used in the surface fitting codes is provided in the DAKOTA Developers
Manual [18].

The set of design points that is used to construct a surface fit model is generated using either the
DDACE software package [64] or the LHS software package [45]. These packages provide a
variety of sampling methods including Monte Carlo (random) sampling, Latin hypercube
sampling, orthogonal array sampling, central composite design sampling, and Box-Behnken
sampling. More information on these software packages is provided in Chapter 9.
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14.3 Linear, Quadratic, and Cubic Polynomial M odels

Linear, quadratic, and cubic polynomia models are available in DAKOTA. The form of the
linear polynomial model is

n
f(x)=cy+ Ci X, (14)
2,

the form of the quadratic polynomial model is:

f(x)=cy+ ZC X; + Z i (15)

i =1 i =1j =i

and the form of the cubic polynomia model is:

R n n n
feo=cgr 3 eix + IDRIEE i)

I =1j =i

n n
Z z Cij kXj Xj Xk
lj =21 k=]

(16)

In all of the polynomial models, f (x) isthe response of the polynomia model; the x; X X
terms are the components of the n-dimensional design parameter values; thecg, ¢, Cjj, c, i k

terms are the polynomial coefficients, and n is the number of design parameters. The number of
coefficients, n¢, depends on the order of polynomial model and the number of design parameters.

For the linear polynomial:

=n+1, (a7

CI i near

for the quadratic polynomial:

- (n+1)(n+2)
ncquad - 2 ! (18)
and for the cubic polynomial:
_ (N’ +6n°+11n+6) 19
nccubic B 6 ) ( )

There must be at least n data samplesin order to form afully determined linear system and

solve for the polynomial coefficients. In DAKOTA, a least-squares approach involving a singular
value decomposition numerical method is applied to solve the linear system.
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The utility of the polynomia models stems from two sources: (1) over asmall portion of the
parameter space, alow-order polynomial model is often an accurate approximation to the true
datatrends, and (2) the | east-squares procedure provides a surface fit that smooths out noisein
the data. For this reason, the surrogate-based optimization strategy often is successful when using
polynomial models, particularly quadratic models. However, a polynomial surface fit may not be
the best choice for modeling data trends over the entire parameter space, unlessit is known a
priori that the true data trends are close to linear, quadratic, or cubic. See [54] for more
information on polynomia models.

14.4 First-order Taylor SeriesM odels

The first-order Taylor Series model is purely alocal approximation method. That is, it provides
local trends in the vicinity of asingle point in parameter space. The form of the Taylor Series
model is

f )= (xg) +(Of |, :XO)T(X ~Xo) (20)

where x5 isthe current point in n-dimensional parameter space, f ( Xg) isthe computed response
value at the current point, and [, f |X . is the computed response gradient at the current point.
-0

In general, the Taylor Series model is accurate only in the region of parameter space that is close
to X . While the accuracy islimited, the Taylor Series model has the correct value and gradient at

the point X . Thisfirst-order consistency is useful in provably-convergent surrogate-based

optimization. The other surface fitting methods do not use gradient information directly in their
models, and these methods rely on an external correction procedure in order to satisfy the
consistency requirements of provably-convergent SBO.

14.5 Kriging Spatial Interpolation Models

The kriging method uses techniques devel oped in the geostatistics and spatial statistics

communities ([11], [47]) to produce smooth, C?-continuous surface fit models of the response
values from a set of data points. The form of the kriging model is

f(x)=p+r R'(f —pe) (21)

where X isthe current point in n-dimensiona parameter space; 3 is the estimate of the mean
response value, r isthe correlation vector of terms between x and the data points, R isthe
correlation matrix for al of the data points, f is the vector of response values, and e is a vector
with all values set to one. The termsin the correlation vector and matrix are computed using a
Gaussian correlation function and are dependent on an n-dimensional vector of correlation

parameters, © = {0, ...,0,} . In DAKOTA, aMaximum Likelihood Estimation procedureis
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performed to compute the correlation parameters for the kriging model. More detail on this
kriging approach may be found in [36].

The kriging interpolation model is a nonparametric surface fitting approach. That is, the kriging
surface does not assume that there is an underlying trend in the response data. Thisisin contrast
to the quadratic polynomia model and the linear Taylor Series model. Since the kriging model is
nonparametric, it can be used to model surfaces with slope discontinuities along with multiple
local minima and maxima. Kriging interpolation is useful for both SBO and OUU, aswell as for
studying the global response value trends in the parameter space. This surface fitting method can

be constructed using a minimum of Ne o design points, but it is recommended to use at least

e, uag design points when possible (refer to Section 14.3 for n definitions).

Cqua

The kriging model is guaranteed to pass through all of the response data values that are used to
construct the model. Generally, thisis a desirable feature. However, if there is considerable
numerical noise in the response data, then a surface fitting method that provides some data
smoothing (e.g., quadratic polynomial, MARS) may be a better choice for SBO and OUU

applications. Another feature of the kriging model is that the predicted response values, f (x),

decay to the mean value, 3, when x isfar from any of the data points from which the kriging
model was constructed (i.e., when the model is used for extrapolation). Thisis neither a positive
nor a negative aspect of kriging, but rather a different behavior than is exhibited by the other
surface fitting methods. One drawback to the kriging model is that data points in close proximity
lead to ill-conditioning in the numerical procedure and the kriging software will terminate if such
asituation occurs. For thisreason, the user is advised to avoid samplereuse (r euse_sanpl es
= regionandreuse_sanpl es = al |l specifications) when performing surrogate-based
optimization.

14.6 Artificial Neural Network (ANN) Models

The ANN surface fitting method in DAKOTA employs a stochastic layered perceptron (SLP)
artificial neural network based on the direct training approach of Zimmerman [72]. The SLP
ANN method is designed to have alower training cost than traditional ANNSs. Thisis a useful
feature for SBO and OUU where new ANNS are constructed many times during the optimization
process (i.e., one ANN for each response function, and new ANNSs for each optimization
iteration). The form of the SLP ANN model is

f (x) = tanh (tanh ((x A, + 8,)A, +6,)) (22)

where x isthe current point in n-dimensional parameter space, and theterms A, A,, 6,0, are

the matrices and vectors that correspond to the neuron weights and offset valuesin the ANN
model. These terms are computed during the ANN training process, and are analogous to the
polynomial coefficientsin aquadratic surface fit. A singular value decomposition method is used
in the numerical methods that are employed to solve for the weights and offsets.

DAKOTA Users Manual - Surface Fitting Methods 144



The SLP ANN is anon parametric surface fitting method. Thus, along with kriging and MARS,
it can be used to model data trends that have slope discontinuities as well as multiple maxima
and minima. However, unlike kriging, the ANN surface is not guaranteed to exactly match the
response values of the data points from which it was constructed. This ANN can be used with

SBO and OUU strategies. As with kriging, this ANN can be constructed from fewer than n

quad
data points, however, it is agood rule of thumb to use at least n, data points when possible.

quad

14.7 Multivariate Adaptive Regression Spline (MARS) Models

This surface fitting method uses multivariate adaptive regression splines from the MARS3.5
package [27] developed at Stanford University. Currently, access to the MARS softwareis
provided through the DDACE package [64].

The form of the MARS model is based on the following expression:

M
f(X) = Y aBux) (23)
m=1

where the a,,,are the coefficients of the truncated power basis functions B,,, and Mis the number
of basis functions. The MARS software partitions the parameter space into subregions, and then
applies forward and backward regression methods to create alocal surface model in each
subregion. The result isthat each subregion contains its own basis functions and coefficients, and

the subregions are joined together to produce a smooth, C?-continuous surface model.

MARS is a nonparametric surface fitting method and can represent complex multimodal data
trends. The regression component of MARS generates a surface model that is not guaranteed to
pass through all of the response data values. Thus, like the quadratic polynomial model, it
provides some smoothing of the data. The MARS reference material does not indicate the
minimum number of data points that are needed to create a MARS surface model. However, in

practiceit has been found that at least n, . and sometimesasmany as2to4timesn,
qua qua

data points are needed to keep the MARS software from terminating. Provided that sufficient
data samples can be obtained, MARS surface models can be useful in SBO and OUU
applications, aswell asin the prediction of global trends throughout the parameter space.
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15.0 Parallel Computing

15.1 Overview

Parallel computers within the Department of Energy national laboratories have exceeded ten
trillion floating point operations per second (10 TeraFL OPS) and are expected to achieve 100
TeraFLOPS in the near future. This performance is achieved through the use of massively

parallel (MP) processing (O[102 -10%] processors). In order to harness the power of these
machines for performing design, parallel optimization approaches are needed which are scalable
on thousands of processors. To understand the possibilities, it isinstructive to first categorize the
opportunities for exploiting parallelism into four main areas [21], consisting of coarse-grained
and fine-grained parallelism opportunities within algorithms and their function evaluations:

1.

Algorithmic coarse-grained parallelism: This parallelism involves the concurrent execution

of independent function evaluations, where a“function evaluation” is defined as a data

request from an algorithm (which may involve value, gradient, and Hessian data from

multiple objective and constraint functions). This concept can also be extended to the

concurrent execution of multiple “iterators’” within a*“ strategy.” Examples of algorithms

containing coarse-grained parallelism include:

» Gradient-based algorithms: finite difference gradient evaluations, speculative optimization,
paralel line search.

» Nongradient-based algorithms: genetic algorithms (GAs), pattern search (PS), Monte Carlo
sampling.

» Approximate methods: design of computer experiments for building response surface
approximations.

» Concurrent-iterator strategies: optimization under uncertainty, branch and bound, multi-
start local search, Pareto set optimization, island-model GAs.

Algorithmic fine-grained parallelism: This involves computing the basic computational steps
of an optimization algorithm (i.e., the internal linear algebra) in parallel. Thisis primarily of
interest in large-scal e optimization problems and simultaneous analysis and design (SAND).

Function evaluation coarse-grained parallelism: This involves concurrent computation of
separable parts of asingle function evaluation. This parallelism can be exploited when the
evaluation of the response data set requires multiple independent simulations (e.g. multiple
loading cases or operational environments) or multiple dependent analyses where the
coupling is applied at the optimizer level (e.g., theindividual discipline feasible formulation
[12]).

Function evaluation fine-grained parallelism: This involves parallelization of the solution
steps within a single analysis code. The DOE laboratories have developed parallel analysis
codes in the areas of nonlinear mechanics, structural dynamics, heat transfer, computational
fluid dynamics, shock physics, and many others.
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By definition, coarse-grained parallelism requires very little inter-processor communication and
istherefore “embarrassingly paralel,” meaning that thereislittle lossin parallel efficiency dueto
communication as the number of processors increases. However, it is often the case that there are
not enough separable computations on each algorithm cycle to utilize the thousands of
processors available on MP machines. For example, athermal safety application [24]
demonstrated this limitation with a pattern search optimization in which the maximum speedup
exploiting only coarse-grained algorithmic parallelism was shown to be severely limited by the
size of the design problem (coordinate pattern search has at most 2n independent eval uations per
cyclefor n design variables).

Fine-grained parallelism, on the other hand, involves much more communication among
processors and care must be taken to avoid the case of inefficient machine utilization in which
the communication demands among processors outstrip the amount of actual computational work
to be performed. For example, a chemically-reacting flow application [21] illustrated this
limitation for asimulation of fixed size in which it was shown that, while simulation run time did
monotonically decrease with increasing number of processors, the relative parallel efficiency E of
the computation for fixed model size decreased rapidly (from E = 0.8 at 64 processorsto E = 0.4
at 512 processors). This was due to the fact that the total amount of computation was
approximately fixed, whereas the communication demands were increasing rapidly with
increasing numbers of processors. Therefore, there is a practical limit on the number of
processors that can be employed for fine-grained parallel simulation of a particular model size,
and only for extreme model sizes (“heroic-scal€”) can thousands of processors be efficiently
utilized in studies exploiting fine-grained parallelism alone.

These limitations point us to the exploitation of multiple levels of parallelism, in particular the
combination of coarse-grained and fine-grained approaches. DAKOTA supports atotal of three
tiers of scheduling and four levels of parallelism which, in combination, can minimize efficiency
losses and achieve near linear scaling on MP computers. The four levels are:

* concurrent iterators within a strategy (scheduling performed by DAKOTA)

« concurrent function evaluations within each iterator (scheduling performed by DAKOTA)
* concurrent analyses within each function evaluation (scheduling performed by DAKOTA)
» multiprocessor analyses (work distributed by the parallel analysis code)

for which the first two are classified as algorithmic coarse-grained parallelism, the third is
function evaluation coarse-grained parallelism, and the fourth is function evaluation fine-grained
parallelism. Algorithmic fine-grained parallelism is not currently supported, although the
development of large-scale parallel SAND techniquesis a current research direction [5].

A particular application may support one or more of these parallelism types, and DAKOTA
provides for convenient selection and combination of each of the supported levels. If multiple
types of parallelism can be exploited, then the question may arise as to how the amount of
parallelism at each level should be selected so asto maximize the overal paralel efficiency of
the study. For performance analysis of multilevel parallelism formulations and detailed
discussion of these issues, refer to [22]. In general, it isrecommended that the user employ
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DAKOTA's automatic parallelism configuration facilities, as these utilize the recommendations
from the aforementioned paper.

While development of techniques for high end MP computersis a primary research driver, itis
important to note that DAKOTA's parallel facilities support a broad range of hardware and are
equally applicable to parallel processing on networks of workstations (NOWS) or desktop
multiprocessors. Given the reduced scale in these cases, it is more common to exploit only one of
the levels of parallelism; however, this can till be quite effective in reducing the time to obtain a
solution.

In the following sections, the parallel algorithms available in this DAKOTA release are listed
followed by descriptions of the software components which enable parallelism, approaches for
utilizing these components, and input specification and execution details for running parallel
DAKOTA studies.

15.2 Parallel Algorithms

In DAKOTA Version 3.1, the following iterators and strategies support algorithmic coarse-
grained parallelism.

15.2.1 Parall€l iterators

 Gradient-based optimizers. CONMIN, NPSOL, DOT, and OPT++ can all exploit parallelism
through the use of DAKOTA's native finite differencing routine (selected with
met hod_sour ce dakot a in the responses specification), which will perform concurrent
evaluations for each of the parameter offsets. For n variables, forward differences result in an
n+1 concurrency and central differencesresultina2n+1 concurrency. In addition,
CONMIN, DOT, and OPT++ can use speculative gradient techniques [8] to obtain better
parallel load balancing. By speculating that the gradient information associated with a given
line search point will be used later and computing the gradient information in parallel at the
same time as the function values, the concurrency during the gradient evaluation and line
search phases can be balanced. NPSOL does not use specul ative gradients since this approach
is superseded by NPSOL's gradient-based line search in user-supplied derivative mode.

» Nongradient-based optimizers: APPS and most SGOPT methods support parallelism. Serial
SGOPT methods include Solis-Wets and certain expl or at ory_noves options
(adaptive_pattern,best _first,biased best _first,andnulti_step)in
pattern search. PDS within OPT++ is also currently serial due to limitations in the OPT++
interface.

* Least squares methods: in an identical manner to the gradient-based optimizers, NLSSOL and
Gauss-Newton can exploit parallelism through the use of DAKOTA's native finite differencing
routine. In addition, Gauss-Newton can use specul ative gradient techniques to obtain better
parallel load balancing. NLSSOL does not use speculative gradients since this approach is
superseded by NL SSOL's gradient-based line search in user-supplied derivative mode.
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» Parameter studies: all parameter study methods (vect or, i st,cent er ed, and
mul t i di m) support parallelism. These methods avoid internal synchronization points, so al
evaluations are available for concurrent execution.

* Design of experiments: al dace methods (gri d, random oas, | hs, 0a_| hs,
box_behnken,andcentral _conposi t e) support parallelism.

» Uncertainty quantification: all nondeterministic methods (hond_sanpl i ng,
nond_anal ytic_reliability,andnond_pol ynoni al _chaos) support
parallelism. Inthe case of nond_anal yti c_rel i ability, gradient-based optimization
isinvolved and parallelism can be exploited through the use of DAKOTA's native finite
differencing routine.

15.2.2 Parallel strategies

Certain strategies support concurrency in multiple iterator executions. Currently, the strategies
which can exploit thislevel of parallelism are:

* Branch and bound
* Pareto-set optimization
* Multi-start iteration

In the branch and bound case, the available iterator concurrency grows as the tree develops more
branches, so some of the iterator servers may beidle in theinitial phases. Pareto-set and multi-
start, however, have afixed set of jobs to perform and should exhibit good load balancing. In a
future release, optimization under uncertainty will be added to the strategies which support
concurrent iterator parallelism.

15.3 Local Simulation I nvocation Components

This section describes software components which manage simulation invocations local to a
processor. These invocations may be either synchronous (i.e., blocking) or asynchronous (i.e.,
nonblocking). Synchronous evaluations proceed one at a time with the evaluation running to
completion before control is returned to DAKOTA. Asynchronous evaluations are initiated such
that control is returned to DAKOTA immediately, prior to evaluation completion, thereby
allowing theinitiation of additional evaluations which will execute concurrently.

The synchronous local invocation capabilities are used to provide serial execution on asingle
processor and also to provide function evaluations local to a processor within DAKOTA's
message-passing schedulers. The asynchronous local invocation capabilities can be used by
themselves to provide a simple parallelism which relies on external meansto assign jobsto
processors, or they can be combined with DAKOTA's message-passing schedulers to provide a
hybrid parallelism. Refer to Section 15.5 for additional details.

In most cases, blocking schedulers are used for the management of sets of asynchronous local
evaluations, in which all jobs in the queue are compl eted before exiting the scheduler and
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returning the set of results to the algorithm. Nonblocking asynchronous local schedulers are aso
available for the case of fully asynchronous algorithms which do not contain synchronization
points (e.g., the APPS agorithm). In this case, jobs may come and go from the queue without the
enforcement of a hard synchronization point.

DAKOTA supports three approaches to local simulation invocation based on the direct function,
system call, and fork application interfaces. For each of these cases, an input filter, one or more
analysis drivers, and an output filter make up the interface, as described in Section 5.6.

15.3.1 Direct function synchronization

The direct function capability may be used synchronously. Synchronous operation of the direct
function application interface involves a standard procedure call to the input filter, if present,
followed by callsto one or more simulations, followed by acall to the output filter, if present.
Each of these components must be linked as functions within DAKOTA. Control does not return
to the calling code until the evaluation is completed and the response object has been popul ated.

Asynchronous operation will be supported in the future and will involve the use of
multithreading (e.g., POSIX threads) to accomplish multiple simultaneous simulations. When
spawning athread (e.g., using pt hr ead_cr eat e), control returns to the calling code after the
simulation isinitiated. In this way, multiple threads can be created simultaneously. An array of
responses corresponding to the multiple threads of execution would then be recovered in a
synchronize operation (e.g., using pt hr ead_j oi n).

15.3.2 System call synchronization

The system call capability may be used synchronously or asynchronously. In both cases, the
syst emutility from the standard C library is used. Synchronous operation of the system call
application interface involves spawning the system call (containing the filters and analysis
drivers bound together with parentheses and semi-colons) in the foreground. Control does not
return to the calling code until the simulation is completed and the response file has been written.
In this case, the possibility of arace condition (see below) does not exist and any errors during
response recovery will cause an immediate abort of the DAKOTA process (note: detection of the
string “fail” is not a response recovery error; see Chapter 19).

Asynchronous operation involves spawning the system call in the background, continuing with
other tasks (e.g., spawning other system calls), periodically checking for process completion, and
finally retrieving the results. An array of responses corresponding to the multiple system callsis
recovered in a synchronize operation.

In this synchronize operation, completion of afunction evaluation is detected by testing for the
existence of the evaluation’sresultsfile using the st at utility [46]. Care must be taken when
using asynchronous system calls since they are prone to the race condition in which the results
file passes the existence test but the recording of the function evaluation resultsin thefileis
incomplete. In this case, the read operation performed by DAKOTA will result in an error due to
an incomplete data set. In order to address this problem, DAKOTA contains exception handling
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which allows for afixed number of response read failures per asynchronous system call
evaluation. The number of allowed failures must have alimit, so that an actual response format
error (unrelated to the race condition) will eventually abort the system. Therefore, to reduce the
possibility of exceeding the limit on allowable read failures, the user’s interface should minimize
the amount of time an incomplete results file exists in the directory where its status is being
tested. This can be accomplished through two approaches: (1) delay the creation of the results
file until the ssmulation computations are complete and all of the response datais ready to be
written to the resultsfile, or (2) perform the simulation computations in a subdirectory, and as a
last step, move the completed results file into the main working directory where its existenceis
being queried.

If concurrent simulations are executing in a shared disk space, then care must be taken to
maintain independence of the simulations. In particular, the parameters and results files used to
communicate with DAKOTA, aswell as any other files used by this simulation, must be
protected from other files of the same name used by the other concurrent simulations. With
respect to the parameters and results files, these files may be made unique through the use of the
file_tagoption(eg., parans.in.1,results.out. 1,etc.) orthedefault UNIX
temporary file option (e.g.,/ var / t np/ aaaOb2M v, etc.). However, if additional simulation
files must be protected (e.g., nodel . i , nodel . o, nodel . g, nodel . e, etc.), then an
effective approach isto create a tagged working subdirectory for each simulation instance.
Section 16.1 provides an example system call interface that demonstrates both the use of tagged
working directories and the relocation of completed results files to avoid the race condition.

15.3.3 Fork synchronization

The fork capability is quite similar to the system call; however, it has the advantage that
asynchronous fork invocations can avoid the results file race condition that may occur with
asynchronous system calls. The fork interface invokes the filters and analysis drivers using the
f or k and exec family of functions, and completion of these processes is detected using the
wai t family of functions. Sincewai t isbased on aprocessid handle rather than afile
existence test, an incomplete results file is not an issue.

Depending on the platform, the fork application interface executes either avf or k or af or k
call. These calls generate a new child process with its own UNIX process identification number,
which functions as a copy of the parent process (dakota). The execvp function is then called by
the child process, causing it to be replaced by the analysis driver or filter. For synchronous
operation, the parent dakota process then awaits compl etion of the forked child process through a
blocking call towai t pi d. On most platforms, the f or k/ exec procedure is efficient since it
operates in a copy-on-write mode, and no copy of the parent is actually created. Instead, the
parents address space is borrowed until the exec functionis called.

Thef or k/ exec behavior for asynchronous operation is similar to that for synchronous
operation, the only difference being that dakota invokes multiple simulations through the f or k/
exec procedure prior to recovering response results for these jobs using thewai t function. The
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combined use of f or k/ exec andwai t functionsin asynchronous mode allows the scheduling
of a specified number of concurrent function evaluations and/or concurrent analyses.

15.4 M essage Passing Components

DAKOTA uses a“single program-multiple data” (SPMD) parallel programming model. It uses
message-passing routines from the Message Passing Interface (MPI) standard [39], [62] to
communicate data between processors. The SPMD designation simply denotes that the same
DAKOTA executable isloaded on all processors during the parallel invocation. This differs from
the MPMD model (“multiple program-multiple data”) which would have the DAKOTA
executable on one or more processors communicating directly with smulator executables on
other processors. The MPMD model has some advantages, but heterogeneous executable loads
are not supported by all parallel environments. Moreover, the MPMD model requires simulation
code intrusion on the same order as conversion to a subroutine, so the subroutine conversionin a
direct-linked SPMD model is preferred.

15.4.1 Partitioning of levels

DAKOQOTA uses MPI communicators to identify groups of processors. The global

MPI _ COMM WORL D communicator provides the total set of processors allocated to the
DAKOTA run. VPl _COMM WORL D can be partitioned into new intra-communicators which each
define a set of processors to be used for a multiprocessor server. Each of these servers may be
further partitioned to nest one level of parallelism within the next. At the lowest parallelism level,
these intra-communicators can be passed into a simulation for use as the simulation’s
computational context, provided that the simulation has been designed, or can be modified, to be
modular on acommunicator (i.e., it does not assume ownership of MPI _COVM WORLD). New
intra-communicators are created with the MPI _Cormm spl i t routine, and in order to send
messages between these intra-communicators, new inter-communicators are created with callsto
MPI _I nt er conm _cr eat e. To minimize overhead, DAKOTA creates new intra- and inter-
communicators only when the parent communicator provides insufficient context for the
scheduling at a particular level. In addition, communicator partitions can be reallocated multiple
times. This enables dynamic repartitioning for a strategy that manages multiple iterators and
models (e.g., four 256 processor servers could be used for iteration on alower fidelity model,
followed by two 512 processor servers for subsequent iteration on a higher fidelity model). In
DAKOTA, communicator partitioning schemes are allocated and deallocated for each iterator/
model pair within those strategies for which multi-fidelity models may be present (e.g., the
multilevel optimization strategy described in Section 13.2).
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Each tier within DAKOTA’s nested
parallelism hierarchy can use either of two
processor partitioning models: a “dedicated
master” partitioning in which asingle
processor is dedicated to scheduling
operations and the remaining processors are
split into server partitions, or a*“ peer
partition” approach in which the loss of a
processor to scheduling is avoided. These
models are depicted in Figure 15.1. The peer
partition is desirable since it utilizes all
processors for computation; however, it
requires either the use of sophisticated
mechanisms for distributed scheduling or a
problem for which static scheduling of
concurrent work performs well (see

Scheduling within levels below). To recursively partition the subcommunicators of Figure 15.1,
COMVLL/2/3 in the dedicated master or peer partition case would be further subdivided using the
appropriate partitioning model for the next lower level of parallelism.

15.4.2 Scheduling within levels

The following scheduling approaches are available within each level:

» Sdlf-scheduling: in the dedicated master model, the master processor manages asingle
processing queue and maintains a prescribed number of jobs (usually one) active on each
dave. Once aslave server has completed ajob and returned its results, the master assigns the
next job to this slave. Thus, the slaves themselves determine the schedul e through their job
completion speed. This provides a simple dynamic scheduler in that heterogeneous processor
speeds and/or job durations are naturally handled, provided there are sufficient instances
scheduled through the servers to balance the variation.

« Static scheduling: if scheduling is statically determined at start-up, then no master processor is
needed to direct traffic and a peer partitioning approach is applicable. If the static scheduleisa
good one (ideal conditions), then this approach will have superior performance. However,
heterogeneity, when not known a priori, can very quickly degrade performance since thereis
no mechanism to adapt.

In addition, the following scheduling approach is provided by PICO for the scheduling of
concurrent optimizations within the branch and bound strategy:

« Distributed scheduling: in this approach, a peer partition is used and each peer maintains a
separate queue of pending jobs. When one peer’s queue is smaller than the other queues, it
requests work from its peers (prior to idleness). In thisway, it can adapt to heterogeneous
conditions, provided there are sufficient instances to balance the variation. Each partition
performs communication between computations, and no processors are dedicated to
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scheduling. Furthermore, it distributes scheduling load beyond a single processor, which can
be important for large numbers of concurrent jobs (whose scheduling might overload asingle
master) or for fault tolerance (avoiding a single point of failure). However, it involves
relatively complicated logic and additional communication for queue status and job migration,
and its performance is not always superior since a partition can become work-starved if its
peers are locked in computation (Note: thislogic can be somewhat ssimplified if a separate
thread can be created for communication and migration of jobs).

Level 1 Level 2 Level 3 DAKOTA isdesi gned to alow the

NPl _COWM WORLD opt COWB eval COWB freedom to configure each parallelism
level with either the dedicated master
partition/sel f-scheduling combination or
the peer partition/static scheduling
combination. In addition, certain external

OPLOOWM s: eval COWs: anal QoM & libraries may provide additional options
- °a (e.g., PICO supports distributed
10 : L1000 schedulingin peer partitions). As an
|:| |:| |:| |:| example, Figure 15.2 showsacasein
|:| which a branch and bound strategy
_ _ o employs peer partition/distributed
Figure15.2 Recursive partitioning for scheduling at level 1, each optimizer

nested parallelism. partition employs concurrent function

evaluations in a dedicated master partition/self-scheduling model at level 2, and each function
evaluation partition employs concurrent multiprocessor analysesin a peer partition/static
scheduling model at level 3. Inthis case, MPI _ COMM WORL D is subdivided into opt COMML/2/
3/...It4, each opt COWis further subdivided into eval COMVD (master) and eval COMML/2/3/

..IT5 (daves), and each ave eval COWIis further subdivided into anal COMML/2/3/.../It5.

Currently, each message passing scheduler is blocking, in that all jobsin the queue are compl eted
before exiting the scheduler and returning the set of results to the algorithm. Nonblocking
message-passing schedulers are under development for the case of fully asynchronous algorithms
which do not contain synchronization points (e.g., the APPS algorithm).

15.5 Putting the Components Together

The asynchronous local approaches described in Section 15.3 can be considered to rely on
external scheduling mechanisms, sinceit is generally the operating system or some external
gueue/load sharing software that allocates jobs to processors. Conversely, the message-passing
approaches described in Section 15.4 rely on internal scheduling mechanisms to distribute work
among processors. These components provide building blocks which can be combined in a
variety of ways to manage parallelism at multiple levels. At one extreme, DAKOTA can execute
on asingle processor and rely completely on external means to map all jobs to processors (i.e.,
using asynchronous local approaches). At the other extreme, DAKOTA can execute on many
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processors and manage all levels of parallelism, including the parallel smulations, using
completely internal approaches (i.e., using message passing at al levelsasin Figure 15.2). While
al-internal or all-external approaches are common cases, many additional approaches exist
between the two extremes in which some parallelism is managed internally and some is managed
externaly.

These combined approaches are referred to as
hybrid parallelism, since the internal
distribution of work based on message-passing
is being combined with external allocation
job1& job2& job3& jobad & using asynchronous local approaches. Figure
15.3 depicts the asynchronous local, message-
passing, and hybrid approaches for a dedicated-
master master partition. Approaches (b) and (c) both
(S'ave> (S'aveD (S'ave> (S'aveD use MPI message-passing to distribute work
from the master to the slaves, and approaches

single-proc.
DAKOTA

(a) asynchronous local

Y (a) and (c) both manage asynchronous jobs
jobl jobz job3  job4 local to a processor. The hybrid approach (c)
(b) message-passing can be seen to be a combination of (a) and (b)

since jobs are being internally distributed to
<s|ave> (slave) <s|ave> <s|ave> save servers through message-passing and
each dlave server is managing multiple
%u %& Ju ;u concurrent jobs using an asynchronous local
jobs& jobs& jobs&  jobs& approach. From a different perspective, one
(c) hybrid could consider (a) and (b) to be specia cases

within the range of configurations supported by
(c). The hybrid approach is useful for
supercomputers that maintain a service/
compute node distinction and for supercomputers or networks of workstations that involve
clusters of symmetric multiprocessors (SMPs). In the service/compute node case, concurrent
multiprocessor simulations are launched into the compute nodes from the service node partition.
While an asynchronous local approach from a single service node would be sufficient, spreading
the application load by running DAKQOTA in parallel across multiple service nodes resultsin
better performance [22]. If the number of concurrent jobs to be managed in the compute partition
exceeds the number of available service nodes, then hybrid parallelism is the preferred approach.
In the case of acluster of SMPs, message-passing can be used to communicate between SMPs,
and asynchronous local approaches can be used within an SMP. Hybrid parallelism can again
result in improved performance, since the total number of DAKOTA MPI processesisreduced in
comparison to a pure message-passing approach.

Figure15.3 External, internal, and
hybrid job management.

Hybrid parallelism approaches can take several forms when used in the multilevel parallel
context. A conceptual boundary can be considered to exist for which all parallelism above the
boundary is managed internally using message-passing and all parallelism below the boundary is
managed externally using asynchronous local approaches. Hybrid parallelism approaches can
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then be categorized based on whether this boundary between internal and external management
occurs within a parallelism level (intra-level) or between two parallelism levels (inter-level). In
theintra-level case, the jobsfor the parallelism level containing the boundary are scheduled using
a hybrid scheduler, in which a capacity multiplier is used for the number of jobs to assign to each
server. Each server isthen responsible for concurrently executing its capacity of jobs using an
asynchronous local approach. In the inter-level case, one level of parallelism managesits
parallelism internally using a message-passing approach and the next lower level of parallelism
manages its parallelism externally using an asynchronous local approach. That is, the jobs for the
higher level of parallelism are scheduled using a standard message-passing scheduler, in which a
single job is assigned to each server. However, each of these jobs has multiple components, as
managed by the next lower level of parallelism, and each server isresponsible for executing these
sub-components concurrently using an asynchronous local approach. For example, consider a
multiprocessor DAKOTA run which involves an iterator scheduling a set of concurrent function
evaluations across a cluster of SMPs. A hybrid parallelism approach will be applied in which
message-passing parallelism is used between SMPs and asynchronous local parallelism is used
within each SMP. In the hybrid intra-level case, multiple function evaluations would be
scheduled to each SMP, as dictated by the capacity of the SMPs, and each SMP would manage
its own set of concurrent function evaluations using an asynchronous local approach. Any lower
levels of parallelism would be serialized. In the hybrid inter-level case, the function evaluations
would be scheduled one per SMP, and the analysis components within each of these evaluations
would be executed concurrently using asynchronous local approaches within the SMP. Thus, the
distinction can be viewed as whether the concurrent jobs on each server in Figure 15.3c reflect
the same level of parallelism as that being scheduled by the master (intra-level) or one level of
parallelism below that being scheduled by the master (inter-level).

Table 15.1 shows amatrix of the supported job management approaches for each of the
parallelism levels and each of the application interfaces. The concurrent iterator and
multiprocessor analysis parallelism levels can only be managed with message-passing
approaches. In the former case, thisis due to the fact that a separate process or thread for an
iterator is not currently supported. The latter case reflects afiner point on the definition of
external parallelism management. While a multiprocessor analysis can most certainly be
launched (using npi r un/yod) from one of DAKOTA's analysis drivers, resulting in a parallel
analysis external to DAKOTA, this parallelism is not visible to DAKOTA and therefore does not
qualify as parallelism that DAKOTA manages (and therefore is not included in Table 15.1). The
concurrent evaluation and analysis levels can be managed either with message-passing,
asynchronous local, or hybrid technigues, with the exceptions that the direct interface does not
support asynchronous operations (asynchronous local or hybrid) at either of these levels and the
system call interface does not support asynchronous operations (asynchronous local or hybrid) at
the concurrent analysis level. The direct interface restrictions are present since multithreading in
not yet supported and the system call interface restrictions result from the inability to manage
concurrent analyses within a nonblocking function eval uation system call.
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Table15.1  Support of job management approacheswithin parallelism
levels and application interfaces

Parallelism Level Asynchéé)lnous M essage Passing Hybrid
strategy/iterators X
iterator/function evaluations X X X

(system, fork) | (system, fork, direct) | (system, fork)

function evaluation/analyses X X X
(fork only) (system, fork, direct) (fork only)

fine-grained parallel anaysis X

15.6 Running a Parallel DAKOTA Job

15.6.1 Single-processor execution

The command for running DAKOTA on a single-processor and exploiting asynchronous local
parallelism is the same as for running DAKOTA on a single-processor for aserial study, e.g.:
dakota -i dakota.in > dakota. out

See Section 2.1.5 for additional information on single-processor command syntax.

15.6.2 Multiprocessor execution

Running a DAKQOTA job on multiple processors requires the use of an executable loading
facility such asnpi r un or yod. On anetwork of workstations, the npi r un script is used to
initiate a parallel DAKOTA job, e.g.:

mpirun -np 12 dakota -i dakota.in > dakota. out

nmpi run -machinefile machines -np 12 dakota -i dakota.in >

dakot a. out

where both examples specify the use of 12 processors, the former selecting them from a default
system resources file and the latter specifying particular machines in a machinefile (see [38] for
details).

On amassively parallel computer such as ASCI Red, similar facilities are available from the
Cougar operating system viathe yod executable loading facility:
yod -sz 512 dakota -i dakota.in > dakota. out

In both the mpi r un and yod cases, MPI command line arguments are used by MPI (extracted
firstinthecal to MPl _I ni t ) and DAKOTA command line arguments are used by DAKOTA
(extracted second by DAKOTA’'s command line handler). An issue that can arise with these
command line arguments is that the mpirun script distributed with MPICH has been observed to
have problems with certain file path specifications (e.g., arelative path such as"../some _file").
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These path problems are most easily resolved by using local linkage (all referenced files or soft
links to these files appear in the same directory).

Finally, when running on computer resources that employ NQS/PBS batch schedulers, the single-
processor dakot a command syntax or the multiprocessor npi r un command syntax might be
contained within an executabl e script file which is submitted to the batch queue. For example, on
Cplant, the command

gsub -1 size=512 run_dakota

could be submitted to the PBS queue for execution. On ASCI Red, the NQS syntax is similar:
gsub -q snl -1P 512 -1T 6:00: 00 run_dakot a

These commands allocate 512 compute nodes for the study, and execute ther un_dakot a
script on aservice node. If this script contains a single-processor dak ot a command, then
DAKOTA will execute on a single service node from which it can launch parallel simulations
into the compute nodes using analysis drivers that contain yod commands (any yod executions
occurring at any level underneath ther un_dakot a script are mapped to the 512 compute node
alocation). If the script submitted to gsub contains a multiprocessor npi r un command, then
DAKOTA will execute across multiple service nodes so that it can spread the application load in
either a message-passing or hybrid parallelism approach. Again, analysis drivers containing y od
commands would be responsible for utilizing the 512 compute nodes. And, finally, if the script
submitted to gsub containsayod of the dakot a executable, then DAKOTA will execute
directly on the compute nodes and manage all of the parallelism internally (note that ayod of
this type without a qsub would be mapped to the interactive partition, rather than to the batch
partition).

15.7 Specifying Parallelism

Given an allotment of processors, DAKOTA contains logic based on the theoretical work in [22]
to automatically determine an efficient parallel configuration, consisting of partitioning and
scheduling selections for each of the parallelism levels. Thislogic accounts for problem size, the
concurrency supported by particular iterative algorithms, and any user inputs or overrides. The
following points are important components of the automatic configuration logic which can be
helpful in estimating the total number of processors to allocate and in selecting configuration
overrides:

« |f the capacity of the serversin a peer configuration is sufficient to schedule all jobsin one
pass, then a peer partition and static schedule will be selected. If this capacity is not sufficient,
then a dedicated-master partition and dynamic schedule will be used. These selections can be
overridden with self/static scheduling request specifications for the concurrent iterator,
evaluation, and analysis parallelism levels. For example, if it is known that processor speeds
and job durations have little variability, then overriding the automatic configuration with a
static schedule request could eliminate the unnecessary loss of a processor to scheduling.

» With the exception of the concurrent-iterator parallelism level (iterator executionstend to have
high variability in duration), concurrency is pushed up. That is, available processors will be
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assigned to concurrency at the higher parallelism levelsfirst. If more processors are available
than needed for concurrency at alevel, then the server sizeisincreased to support concurrency
in the next lower level of parallelism. This processis continued until all available processors
have been assigned. These assignments can be overridden with a servers specification for the
concurrent iterator, evaluation, and analysis parallelism levels and with a processors per
analysis specification for the multiprocessor analysis parallelism level. For example, if itis
desired to parallelize concurrent analyses within each function evaluation, then an

eval uati on_servers = 1 overidewould serialize the concurrent function evaluations
level and assure processor availability for concurrent analyses.

In the following sections, the user inputs and overrides are described, followed by specification
examples for single and multi-processor DAKOTA executions.

15.7.1 The interface specification

Specifying parallelism within an interface can involve the use of theasynchr onous,

eval uati on_concurrency,andanal ysi s_concurrency keywords to specify
concurrency local to a processor (i.e., asynchronous local parallelism). Thisasynchr onous
specification has dual uses:

* When running DAKOTA on a single-processor, theasynchr onous keyword specifies the
use of asynchronousinvocations local to the processor (these jobs then rely on external means
to be allocated to other processors). The default behavior isto simultaneously launch all
function evaluations available from the iterator as well as all available analyses within each
function evaluation. In some cases, the default behavior can overload a machine or violate a
usage policy, resulting in the need to limit the number of concurrent jobs using the
eval uati on_concurrency andanal ysi s_concurr ency specifications.

» When executing DAKOTA across multiple processors and managing jobs with a message-
passing scheduler, theasynchr onous keyword specifies the use of asynchronous
invocations local to each server processor, resulting in a hybrid parallelism approach (see
Section 15.5). In this case, the default behavior is one job per server, which must be
overridden withan eval uat i on_concur r ency specification and/or an
anal ysi s_concurr ency specification. When a hybrid parallelism approach is specified,
the capacity of the servers (used in the automatic configuration logic) is defined as the number
of serverstimes the number of asynchronous jobs per server.

In addition, eval uati on_servers,eval uati on_sel f _schedul i ng, and

eval uati on_stati c_schedul i ng keywords can be used to override the automatic
parallelism configuration for concurrent function evaluations; anal ysi s_servers,

anal ysis_sel f _schedul i ng,andanal ysi s_stati c_schedul i ng keywords can
be used to override the automatic parallelism configuration for concurrent analyses; and the
processors_per_anal ysi s keyword can be used to override the automatic parallelism
configuration for the size of multiprocessor analyses. Each of these keywords appears as part of
the interface commands specification in the DAKOTA Reference Manual [17].
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15.7.2 The strategy specification

To specify concurrency in iterator executions, thei t er at or _servers,

iterator_self _scheduling,anditerator_static_schedul i ng keywordsare
used to override the automatic parallelism configuration. See the strategy commands
specification in the DAKOTA Reference Manual [17] for additional information.

15.7.3 Single-processor DAKOTA specification

Specifying a single-processor DAKOTA job that exploits parallelism through asynchronous local
approaches (see Figure 15.3a) requiresinclusion of theasynchr onous keyword in the
interface specification. Once the input file is defined, single-processor DAKOTA jobs are
executed using the command syntax described previously in Section 15.6.1.

Example 1

For example, the following specification runs an NPSOL optimization which will perform

asynchronous finite differencing:
met hod, \
npsol _sqgp

variables, )
conti nuous_design = 5

——

cdv_initial _point 0.2 0.050.08 0.2 0.2
cdv_I| ower bounds 0.15 0.02 0.05 0.1 0.1
cdv_upper _bounds 2.0 2.0 2.0 2.0 2.0
interface, \
appl i cation system \
asynchr onous \
anal ysis_drivers = ’'text_book’

responses,
num obj ective_functions = 1
num nonl i near _i nequality_constraints = 2
nureri cal _gradients
interval _type centra
net hod_sour ce dakot a
fd_step_size = 1.0E-4
no_hessi ans

—— - — — —

Note that net hod_sour ce dakot a selects DAKOTA's internal finite differencing routine so
that the concurrency in finite difference offsets can be exploited. In this case, central differencing
has been selected and 11 function evaluations (one at the current point plus two offsets in each of
five variables) can be performed simultaneously for each NPSOL response request. These 11
evaluations will be launched with system callsin the background and presumably assigned to
additional processors through the operating system of a multiprocessor compute server or other
comparable method. The concurrency specification may be included if it is necessary to limit the
maximum number of simultaneous evaluations. For example, if a maximum of six compute

processors were available, the command
eval uati on_concurrency = 6 \

should be added to theasynchr onous specification in the preceding example.
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Example 2

If, in addition, multiple analyses can be executed concurrently within a function evaluation (e.g.,
from multiple load cases or disciplinary analyses that must be evaluated to compute the response

data set), then an input specification similar to the following could be used:
nmet hod, \
npsol _sqgp

variables, )
continuous_design = 5

— e —

cdv_initial _point 0.2 0.05 0.08 0.2 0.2
cdv_| ower _bounds 0.15 0.02 0.05 0.1 0.1
cdv_upper _bounds 2.0 2.0 2.0 2.0 2.0
interface, \
application fork \
asynchr onous \
eval uati on_concurrency = 6 \
anal ysi s_concurrency = 3 \
anal ysis_drivers = ‘text_bookl' ‘text_book2" ‘text_book3

responses,
num obj ective_functions = 1
num_nonl i near _i nequal ity_constraints = 2
nuneri cal _gradients
met hod_sour ce dakota
interval _type centra
fd_step_size = 1.e-4
no_hessi ans

o e e e e

In this case, the default concurrency with just anasynchr onous specification would be all 11
function evaluations and al 3 analyses, which can be limited by the

eval uati on_concurrency andanal ysi s_concur r ency specifications. Theinput file
above limits the function evaluation concurrency, but not the analysis concurrency (a
specification of 3 isthe default in this case and could be omitted). Changing the input to

eval uati on_concurrency = 1 would serialize the function evaluations, and changing
theinput toanal ysi s_concurrency = 1 would serialize the analyses.

15.7.4 Multiprocessor DAKOTA specification

In multiprocessor executions, server evaluations are synchronous (Figure 15.3b) by default and
theasynchr onous keyword isonly used if ahybrid parallelism approach (Figure 15.3c) is
desired. Multiprocessor DAKQOTA jobs are executed using the command syntax described
previoudly in Section 15.6.2.

Example 3

To run Example 1 using a message-passing approach, theasynchr onous keyword would be
removed (since the servers will execute their evaluations synchronously), resulting in the
following interface specification:

interface, \
appl i cation system \
anal ysis_drivers = 'text_book’

Running DAKOTA on 4 processors (syntax: mpi run -np 4 dakota -i dakota.in)
would result in the following parallel configuration report from the DAKOTA output:
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Level num servers procs_per_server partition/schedul e
concurrent iterators 1 4 peer/static
concurrent eval uations 3 1 ded. nmster/self
concurrent anal yses 1 1 peer/static

mul ti processor anal ysis 1 N A N A

Total parallelismlevels = 1

The dedicated master partition and self-scheduling algorithm are automatically selected for the
concurrent evaluations parallelism level since the number of function evaluations (11) is greater
than the maximum capacity of the servers (4). Since one of the processorsis dedicated to being
the master, only 3 processors are available for computation and the 11 evaluations can be
completed in approximately 4 passes through the servers. If it is known that there islittle
variability in evaluation duration, then thislogic could be overridden to use a static schedule
through use of theeval uati on_st ati c_schedul i ng specification:

interface, \
application system \
eval uation_static_schedul i ng \

anal ysis_drivers = 'text_book’

Running DAKOTA again on 4 processors (syntax: npi run -np 4 dakota -i
dakot a. i n) would now result in this parallel configuration report:

Level num servers procs_per_server partition/schedul e
concurrent iterators 1 4 peer/static
concurrent eval uations 4 1 peer/static
concurrent anal yses 1 1 peer/static

mul ti processor anal ysis 1 N A N A

Total parallelismlevels = 1

Now the 11 jobs will be statically distributed among 4 peer servers, since the processor
previously dedicated to scheduling has been converted to a compute server. Thiswill likely be
more efficient if the evaluation durations are sufficiently similar.

As arelated example, consider the case where each of the workstations used in the parallel
execution has multiple processors. In this case, a hybrid parallelism approach which combines
message-passing parallelism with asynchronous local parallelism (see Figure 15.3c) would be a
good choice. To specify hybrid parallelism, one uses the same asynchr onous specification as
was used for the single-processor examples, e.g.:

interface, \
application system \
asynchronous eval uati on_concurrency = 3 \

anal ysi s_drivers = ‘text_book’

With 3 function evaluations concurrent on each server, the capacity of a4 processor DAKOTA
execution (syntax: npi run -np 4 dakota -1 dakota. i n)hasincreasedto 12
evaluations. Since all 11 jobs can now be scheduled in asingle pass, a static schedule is
automatically selected (without any override request):
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DAKOTA paral l el configuration:

Level num servers

procs_per_server

4 peer/static

1 peer/static

peer/static
N A

concurrent iterators 1
concurrent eval uations 4
concurrent analyses 1 1
mul ti processor anal ysis 1
1

Total parallelismlevels =

Example 4
To run Example 2 using amessage-passing approach, theasynchr onous specificationisagan
removed:
interface, \
application fork \
anal ysis_drivers = ‘text_bookl ‘text_book2" ‘text_book3’

Running this example on 6 processors (syntax: npi run -np 6 dakota -i dakota.in)

would result in the following parallel configuration report:

DAKOTA paral l el configuration:

Level num servers

concurrent iterators 1
concurrent eval uations 5
concurrent analyses 1 1
mul ti processor anal ysis 1
1

Total parallelismlevels =

procs_per_server

partition/schedul e
peer/static
ded. master/self
peer/static
N A

in which all of the processors have been assigned to the function evaluation concurrency (dueto
the “push up” automatic configuration logic). To assign some of the available processors to the

concurrent analysis level, the following input could be used:

interface,
application fork
anal ysis_drivers = ‘text_bookl ‘text_book2
eval uation_static_scheduling
eval uation_servers = 2

which resultsin the following 2-level parallel configuration:

DAKOTA paral |l el configuration:

Level num servers
concurrent iterators 1
concurrent eval uations 2
concurrent analyses 3 1
mul ti processor anal ysis 1

2

Total parallelismlevels =

‘text _book3d’

procs_per_server

— e —

partition/schedul e
peer/static
peer/static
peer/static

N A

The six processors available have been split into two evaluation servers of three processors each,
where the three processors in each evaluation server manage the three analyses, one per
processor.
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Next, consider the following 3-level parallel case, inwhicht ext _book1,t ext book2, and
t ext _book3 from the previous examples now execute on two processors each. In this case, the
processors_per_anal ysi s keyword isadded and the f or k interfaceis changed to a

di r ect interface since the fine-grained parallelism of the three simulations is managed
internaly:

interface,
application direct
anal ysis_drivers = ‘text_bookl" ‘text_book2 ‘text_book3
eval uation_static_schedul ing
eval uation_servers = 2
processors_per_analysis = 2

—— - —

Thisresultsin the following parallel configuration for a 12 processor DAKOTA run
(syntax: npi run -np 12 dakota -i dakota.in):

DAKOTA paral |l el configuration:

Level num servers procs_per_server partition/schedul e
concurrent iterators 1 12 peer/static
concurrent eval uations 2 6 peer/static
concurrent anal yses 3 2 peer/static

mul ti processor anal ysis 2 N A N A

Total parallelismlevels = 3

An important point to recognize is that, since each of the parallel configuration inputs has been
tied to the interface specification up to this point, these parallel configurations can be reallocated
for each interface in amulti-iterator/multi-model strategy. For example, a DAKOTA execution

on 40 processors might involve the following two interface specifications:

interface,
application direct,
1d_interface = ' COARSE
anal ysis_driver = 'siml’

——

processors_per_analysis = 5
interface, \
application direct, \
1d_interface = 'FINE \
anal ysis_driver = 'sin®’ \
processors_per_analysis = 10

for which the coarse model would employ 8 servers of 5 processors each and the fine model
would employ 4 servers of 10 processors each.

Next, consider the following 4-level parallel case that employs the Pareto set optimization
strategy. Inthiscase, i terat or _servers anditerator_static_schedul i ng

requests are included in the strategy specification:

strat egy,
par et o_set
iterator_servers = 2
iterator_static_scheduling
opt _met hod_pointer = ' NLP
random wei ght _sets 4

—— - — —

Adding this strategy specification to the input file from the previous 12 processor example results
in the following parallel configuration for a 24 processor DAKQOTA run
(syntax: npi run -np 24 dakota -i dakota.in):
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DAKOTA paral l el configuration:

Level num servers procs_per_server partition/schedul e
concurrent iterators 2 12 peer/static
concurrent eval uations 2 6 peer/static
concurrent anal yses 3 2 peer/static

mul ti processor anal ysis 2 N A N A

Total parallelismlevels = 4

Example5

Asafinal example, consider a multi-start optimization conducted on 384 processors of ASCI
Red. A job of this size must be submitted to the batch queue, using syntax similar to:
gsub -q snl -1P 384 -1T 6:00: 00 run_dakot a

wherether un_dakot a script appears as

#!/ bi n/ sh

dat e

cd /scratch/tnp_5/ nsel dre

yod -sz 384 dakota -i dakota.in > dakota. out
dat e

and the strategy and interface specifications from the dakot a. i n input file appear as

strat egy,
mul ti_start
met hod_pointer ="' CPS
iterator_servers = 8
random starts = 8

——

interface,
application direct,
anal ysis_drivers = 'text_bookl ’text_book2 ’'text_book3’
eval uati on_servers = 8
eval uation_static_schedul i ng
processors_per_anal ysis = 2

—— - — —

The resulting parallel configuration is reported as

DAKOTA paral |l el configuration:

Level num servers procs_per_server partition/schedul e

concurrent iterators 8 48 peer/static
concurrent eval uations 8 6 peer/static
concurrent anal yses 3 2 peer/static
mul ti processor anal ysis 2 N A N A

4

Total parallelismlevels =

Since the concurrency at each of the nested levels has a multiplicative effect on the number of
processors that can be utilized, it is easy to see how large numbers of processors can be put to
effective use in reducing the time to reach a solution, even when, asin this example, the
concurrency per level isrelatively low.
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16.0 Advanced Simulation Code Interfaces

16.1 Building an Interface to a Engineering Simulation Code

To interface an engineering simulation package to DAKOTA using one of the black-box
interfaces (system call or fork), pre- and post-processing functionality typically needsto be
supplied (or developed) in order to transfer the parameters from DAKQOTA to the simulator input
file and to extract the response values of interest from the simulator’s output file for return to
DAKOTA (see Figure 1.1). Thisis often managed through the use of a UNIX C-shell [1], Bourne
shell [7], or Perl [68] driver script. While these are common choices, it isimportant to recognize
that any executable file can be used. If the user prefers, the desired pre- and post-processing
functionality may also be provided by an executable compiled from any programming language.

Under the/ Dakot a/ Get t i ngSt art ed/ RosenSi nul at or directory, asimple example
uses the Rosenbrock test function as a mock simulator. Several scripts have been included to
provide ways to accomplish the pre and post-processing needs. Each simulator package has
different pre- and post-processing requirements, and as such, this example serves only to
demonstrate the issues associated with interfacing a simulator. Modifications will almost surely
be required for any particular application.

16.1.1 Review of RosenSimulator Files

The RosenSimulator directory contains four important files: dakot a_r osenbr ock. i n (the
DAKOTA input file), si mul at or _scri pt (thesimulation driver script), t r ansf er _per |
(apre-processing utility), and t enpl at edi r/ r os. t enpl at e (atemplate smulation input
file).

Thedakot a_r osenbr ock. i n file specifies the study that DAKOTA will perform and, in the
interface section, describes the components to be used in performing function evaluations. In
particular, it identifiessi nmul at or _scri pt asitsanal ysi s_dri ver, asshownin Figure
16.1.

Thesi mul at or _scri pt listed in Figure 16.2 is a short C-shell driver script that DAKOTA
executes to perform each function evaluation. The names of the parameters and results files are
passed to the script on its command line so that they can be referenced internal to the script by
thevariables $ar gv[ 1] and $ar gv[ 2] , respectively. Thesi mul at or _scri pt isdivided
into five parts: set up, pre-processing, analysis, post-processing, and clean up.

The set up portion strips the function evaluation number from $ar gv[ 1] and assignsit to the
shell variable $num which is then used to create a tagged working directory for a particular
evaluation. For example, on the first evaluation, “1” is stripped from “par ans. i n. 1” in order
to create “wor kdi r . 1”. The primary reason for creating separate working directoriesis so that
the files associated with one simulation do not conflict with those for another smulation. Thisis
particularly important when executing concurrent simulationsin parallel (to actually run
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net hod, \
npsol _sqgp

vari abl es,
conti nuous_design = 2
cdv_initial _point -
cdv_| ower _bounds -
cdv_upper _bounds
cdv_descri ptor X

NN
—— - —

roowN
'

NN

Nooo

interface,
application system
# asynchr onous
anal ysi s_dri ver
paraneters _file
results file
file_tag
file _save
aprepro

"simul ator_script
"parans.in’
"resul ts. out’

—— - — — —

responses
num obj ective_functions = 1
nuneri cal _gradients
fd_step_size = .000001
no_hessi ans

——

Figure16.1 Thedakota rosenbrock.in input file.

#!'/bin/csh -f

# Sanpl e sinulator to Dakota system call script

# See User Manual for instructions

#

# $argv[1l] is paranms.in.(fn_eval _num) FROM Dakota

# $argv[2] is results.out.(fn_eval _num returned to Dakota
# Set up working directory

-

set num = ‘echo $argv[1] | cut -c 11-°

cp -r tenplatedir workdir.$num

mv $argv[ 1] workdir. $nunf dakota_vars
cd wor kdi r. $num

=

# PRE- PROCESSI NG

grep 'Function value’ ros.out | cut -c 18- >! $argv[?2]
mv $argv[2] ../.
#

cd ..
\rm-rf workdir.$num

Figure16.2 Thesimulator_script sampledriver script.

DAKOTA in parale, uncomment theasynchr onous lineindakot a_r osenbr ock. i n).

Once executing within the confines of the working directory, tags on the files are no longer

necessary, and for this reason, the tagged parameters file is moved to a more convenient name of

“dakot a_vars”.
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In the pre-processing portion, thesi mul at or _scri pt utilizest ransf er _per| ,whichisa
simple parsing utility used to extract the current variable values from a parametersfile

(dakot a_var s) and then insert them into the simulator template input file (r os. t enpl at e)
to create anew input file (r os. i n) for the ssimulator. Internal to Sandia, the APREPRO utility is
often used for this purpose. For external sites where APREPRO is not available, the BPREPRO
utility from [69] is a capable alternative that is distributed with DAKOTA (in/ Dakot a/
CGettingStarted/ RosenSi mul at or/ bpr epr 0). And a Lockheed Martin sites, the
JPrepro utility is available as a JAVA pre- and post-processor [26]. Thet r ansf er _per | script
listed in Figure 16.3 provides a basic capability and will be used here for simplicity of
discussion. It uses DAKOTA'sapr epr o parameters file format (see Section 4.6.2), so this
option must be selected in the interface section of the DAKOTA input file. Ther os. t enpl at e
filelisted in Figure 16.4 is atemplate simulation input file which contains targets for the
incoming variable values, identified by the strings“{ x1} ” and “{ x2} ”. These identifiers match
the variable descriptors specified in dakot a_r osenbr ock. i n. The template input fileis
contrived as Rosenbrock has nothing to do with finite element analysis; it only mimics afinite
element code in order to demonstrate the simulator template process. Thet r ansf er _per|
script will search the simulator template input file for fields marked with the curly brackets and
then create anew file (r os. i n) by replacing these targets with the corresponding numerical
values for the variables. The Perl variables $f i | e, $ext 1, and $ext 2 should be set to match
the ssmulator input file name (“r 0s”), template file extension (“t enpl at e”), and the generated
input file extension (“i n”).

The third part of the script executesther osenbr ock_bb simulator. The input and output file
names, r os. i n andr 0s. out , respectively, are hard-coded into the FORTRANT77 program
rosenbr ock bb. f.Whenther osenbr ock bb simulator is executed, the values for x 1
and x2 areread infromr o0s. i n, the Rosenbrock function is evaluated, and the function valueis
written out tor 0s. out .

The fourth part performs the post-processing and returns the response results to DAKOTA. Using
the UNIX “gr ep” utility, the particular response values of interest are extracted from the raw
simulator output and saved to $ar gv|[ 2] , which in the case of thefirst evaluation is

“resul ts.out.1”. Thisresultsfile is moved up one level, out of the working directory, so
that DAKOTA may retrieve it. Note that moving the completed results file up alevel at the end of
the evaluation avoids any problems with read race conditions (see Section 15.3.2).

Finally, in the clean up phase, the working directory is removed to reduce the amount of disk
storage required to execute the study. If data from each simulation needs to be saved, this step
can be commented out by inserting a“#” character before“\ rm -rf”.

As an example, consider function evaluation 60. The dakot a_var s filefor this evaluation
consists of':

{ DAKOTA VARS =2}
{ DAKOTA_FNS =1}
{ x1 = 1.6363920509e-01 }
{ x2 = 2.1860034186e-02 }
{ AsvV_1 = 1}
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#! [ usr/ bi n/ perl

A pre-processor to replace APREPRO for mani pul ating
input files with Dakota

BvBW 10/ 19/ 01
(EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEESEEEEEEEEEEEEEEEEEEEERESERE SRS
Usage: )
reads dakota_vars and extracts the variabl es
substitutes values for variables

in sinmulation input file need to place {variablel} in
the appropriate |ocatoin, variablel needs to natch
cdv_variable in DAKOTA input file.

$file - sinulation input file name
$extl - internmediate extension for the $file
contains {variabl el} flags
$ext2 - final extension for sinmulation input file
HHEH R P R O R

$file

HHEHHEHFH TSR

"ros";

$extl = "tenplate”;

$ext 2 "in";

gpen ( DAKOTA_VARS, "dakota_vars") || die "cannot open file $!" ;

I =0;

while (defined ($nane = <DAKOTA VARS>)) {
@enp = split (/=/, $nane);
chop $_;
$_ = $tenp[ 0]
s/\s+//g;
s/\s+//g;
$varl[$i] =
$_ = $tenp[
chop $_;
s/\s+\}//g;
$var1[ $i +1] = $_;
$j = $i +1;
$i =$i +2;

$_;
1];

}
cl ose (DAKOTA _SPEC);

open (SI MULATION_INPUT_IN, "S$file.$extl1") ||

| a || die "cannot open file $!'" ;
open (S| MULATI ON_I NPUT_OUT, ">$file.$ext2") ||

di e "cannot open file $!"

$t est _var=100. 9;
whi I e (defined ($line = <SI MILATI ON_I NPUT_| N>)){
$_ = $line;
T ofor ($i=2; $i < 2*($varl[1] + 2) ;$i++H){
if(/ $var1[$i]\}/){
s/ $var1[ $i]\}/ $varl[$i +1]/g;

b
$i =$i +1;
}
print "$_ \n";
print SIMJLATION INPUT_QUT "$ ";
}

Figure16.3 Listing of thetransfer_perl script.

Thisfile indicates that there are two variables and one response function (an objective function)
and provides new values for variables x1 and x2 and an active set vector (ASV) with asingle
value of 1. The ASV indicates the need to return the value of the objective function for these
parameters (see Section 4.7).
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Title of Model: Rosenbrock bl ack box

EE R R S R R R S I R R R R I R I R I
* Description: This is an input file to the Rosenbrock bl ack box

Fortran simulator. This sinulator is structured so

as to resenble the input/output froman engineering
simul ati on code, even though Rosenbrock’s function

is a sinple analytic function. The node, elenent,

and material blocks are dumy inputs.

* 0% X X X X F

Input: x1 and x2

* Qutput: objective function val ue

R R R RS RS E SR SRS SRS SRS S SRR S SRS SRR EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE]
node 1 | ocation
node 2 | ocation
node 3 | ocation
node 4 | ocation
node 5 | ocation
node 6 | ocation
node 7 | ocation
node 8 | ocation
el ement 1 nodes
el enent 2 nodes
el ement 3 nodes
el enent 4 nodes
material 1 elenents
material 2 elenents
variable 1 {x1}
variable 2 {x2}

end

NOWEWWNNEEOO
ONUIWOOO0O0000O
WPrBOoO~rRPORPORORO

o
AN OBRANOOOOOOOO

(o]

Figure16.4 Listing of therostemplatefile

Thetransfer _per| script readsthe variable values from the dakot a_var s file, namely
1. 6363920509e- 01 and 2. 1860034186e- 02 for x1 and x2 respectively, and substitutes
theminthe{x1} and {x2} fieldsof ther os. t enpl at e file. Thefinal three lines of the

resulting input file (r os. i n) then appear as follows:

variable 1 1.6363920509e-01
variable 2 2.1860034186e-02
end

where all other lines are identical to the template file. Ther osenbr ock_bb simulator accepts

ros. i n asitsinput file and generates the following output to thefiler os. out :

Begi nni ng execution of nodel: Rosenbrock bl ack box
Set up conplete.

Readi ng nodes.

Readi ng el enents.

Readi ng materi al s.

Checki ng connectivity... K

R I S I O I S R O

0. 1636392050900000E+00
0.21860034186000000E+01

I nput value for x1
I nput value for x2

Conputing sol ution...Done

R I b S O S R I S R S O kO

Function value = .70191781093875782460E+00

It isthe user’s responsibility to extract the appropriate data from the raw simulator output and
return the desired data set to the results file. This step isrelatively trivial in this case, and we use
thegr ep and cut utilities to extract the value from the last line of ther os. out output file and
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saveitto $ar gv[ 2] , whichisther esul t s. out . 60 filefor thisevaluation. This single value
provides the objective function value requested by the ASV.

Figure 16.5 shows the final solution from DAKQOTA using ther osenbr ock _bb simulator.

Exit NPSOL - Optimal solution found.
Fi nal nonlinear objective value = 0. 1146426E- 06
NPSOL exits with INFORM code = 0 (see p. 8 of NPSCL manual)

NOTE: see Fortran device 9 file (fort.9 or ftn09)
for conplete NPSOL iteration history.

<<<<< lterator npsol _sqgp conpl eted.
<<<<< Function evaluation summary: 132 total (132 new, O duplicate)
<<<<< Best paraneters =
{ x1
{ x2
<<<<< Best objective function =
1.1464255628e- 07
<<<<< Best data captured at function evaluation 130
<<<<< Single Method Strategy conpl eted.
DAKOTA execution time in seconds:
Total CPU = 17.86 [parent = 1.37, child = 16. 49]
Total wall clock = 79.873

9.9966142331e-01 }
9.9932267175e-01 }

Figure16.5 DAKOTA output for RosenSimulator problem.

16.1.2 Adapting These Scripts to Another Simulation

To adapt this approach for use with another simulator, several steps need to be performed:

1. Create atemplate simulator input file by identifying the fieldsin an existing input file that

correspond to the variables of interest and then replacing them with {} identifiers (e.g.
{varl}, {var2}, etc.) which match the DAKOTA variable descriptors. Copy thistemplate
input file to atemplatedir that will be used to create working directories for the simulation.

Modify the Perl variables $f i | e, $ext 1, and $ext 2 inthet r ansf er _per| scriptto

reflect the simulator root file name (previously “r 0s”), template file extension (previously

“t enpl at e”), and the generated input file extension (previoudly “i n”). Alternatively, use
APREPRO, BPREPRO, or JPrepro to perform this step.

Modify the analysis section of si mul at or _scri pt toreplacether osenbr ock_bb
function call with the new simulator name and command line syntax, including the input and
output file names.

Change the post-processing sectionin si mul at or _scri pt to reflect the revised
extraction process. At aminimum, this would involve changing the gr ep command to reflect
the name of the output file, the string to search for, and the characters to cut out of the
captured output line. For more involved post-processing tasks, invocation of additional tools
may have to be added to the script.
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5. Modify thedakot a_r osenbr ock. i n input file to reflect, at a minimum, theinitial
values, bounds, and tags in the variabl es specification and the number of objectives and
constraints in the responses specification.

These nonintrusive interfacing approaches can be used to rapidly interface with simulation codes.
While generally custom for each new application, typical interface devel opment time is on the
order of an hour or two. Thus, this approach is scalable when dealing with many different
application codes. Weaknesses of this approach include the potential for loss of data precision (if
care is not taken to preserve precision in pre- and post-processing file 1/0), alack of robustness
in post-processing (if the data capture istoo simplistic), and scripting overhead (only noticeable
if the simulation time is on the order of a second or less).

If the application scope at a particular site is more focused and only a small number of
simulation codes are of interest, then more sophisticated interfaces may be warranted. For
example, the economy of scale afforded by a common simulation framework justifies additional
effort in the development of ahigh quality DAKOTA interface. In these cases, more sophisticated
interfacing approaches could involve a more thoroughly devel oped black box interface with
robust support of avariety of inputs and outputs, or it might involve intrusive interfaces such as
the direct application interface discussed in Section 16.2 and the SAND interface to be available
in future releases.

16.1.3 Additional Examples

A variety of additional examples of black-box interfaces to simulation codes are maintained in
the/ Dakot a/ Appl i cat i ons directory in the source code distribution.

16.2 Adding Simulationsto the Direct Application I nterface

If ahigh performing interface to asimulation is desired or the computer architecture cannot
accommodate separate optimization and simulation processes (e.g., due to batch submission
requirements on large parallel computers), the simulation code can be directly linked into
DAKOTA as asubroutine. Thisis an advanced capability of DAKOTA, and it requires a user to
have access to (and knowledge of) the DAKOTA source code, as well as the source code of the
simulation code.

In order to use the direct function capability with a new simulation (or new internal test
function), the following steps have to be performed:

1. Thefunctionsto be invoked (analysis programs, input and output filters) must have their
main programs changed into callable functions/subroutines. If it is practical to introduce a
dependence on DAKOTA data types, then these functions/subroutines can directly use the
following prototype:

int function_nanme(const DakotaVari abl es& vars,
const Dakotal nt Array& asv, Dakot aResponseé& response)
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If it isdesired to avoid this data dependence, then awrapper function with the same prototype
should be added to the DirectFnApplicl nterface classin order to provide data mappings
(see Salinas and Model Center wrappers as exampl es).

2. Theif-else blocksin the derived_map_if(), derived_map_ac(), and derived_map_of()
member functions of the DirectFnApplicl nterface class must be extended to include the
new function names with the proper prototypes. If the new function names are not members
of the DirectFnApplicl nterface class, then an ext er n declaration may additionally be
needed.

3. The DAKOTA system must be recompiled and linked with the new function object files or
libraries.

Various header files may have to be included, particularly within the DirectFnAppliclnterface
class, in order to recognize new external functions and compile successfully. Refer to the
DAKOTA Developers Manual [18] for additional information on the DirectFnApplicl nterface
class and the DAKOTA data types.
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17.0 DAKOTA Usage Guidelines

17.1 Problem Exploration

Thefirst objective in an analysisis to characterize the problem so that appropriate algorithms can
be chosen. In the case of optimization, typical questions that should be addressed include: Are
the design variables continuous, discrete, or mixed? |s the problem constrained or unconstrained?
How expensive are the response functions to evaluate? Will the response functions behave
smoothly as the design variables change or will there be nonsmoothness and/or discontinuities?
Are the response functions likely to be multimodal, such that global optimization may be
warranted? |s analytic gradient data available, and if not, can | calculate gradients accurately and
cheaply? Additional questions that are pertinent for characterization of uncertainty quantification
problems include: Can | accurately model the probabilistic distributions of my uncertain
variables? Are the response functions relatively linear? Am | interested in afull random process
characterization of the response functions, or just statistical results?

If there is not sufficient information from the problem description to answer these questions, then
additional problem characterization activities may be warranted. One particularly useful
characterization activity that DAKOTA enablesis parameter space exploration through the use of
parameter studies and design of experiments methods. The parameter space can be
systematically interrogated to create sufficient information to evaluate the trends in the response
functions and to determine if these trends are noisy or smooth, unimodal or multimodal,
relatively linear or highly nonlinear, etc. In addition, the parameter studies may reveal that one or
more of the parameters do not significantly affect the results and can be removed from the
problem formulation. This can yield a potentially large savings in computational expense for the
subsequent studies. Refer to Chapter 8 and Chapter 9 for additional information on parameter
studies and design of experiments methods.

17.2 Optimization Method Selection

In selecting an optimization method, important considerations include the type of variablesin the
problem (continuous, discrete, mixed), whether a global search is needed or alocal search is
sufficient, and the required constraint support (unconstrained, bound constrained, nonlinearly
constrained). Less obvious, but equally important, considerations include the efficiency of
convergence to an optimum (i.e., convergence rate) and the robustness of the method in the
presence of challenging design space features (e.g., hnonsmoothness).

Gradient-based optimization methods are highly efficient, with the best convergence rates of all
of the optimization methods. If analytic gradient and Hessian information can be provided by an
application code, afull Newton method will provide quadratic convergence rates near the
solution. More commonly, only gradient information is available and a quasi-Newton method is
chosen in which the Hessian information is approximated from an accumulation of gradient data.
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In this case, superlinear convergence rates can be obtained. These characteristics make gradient-
based optimization methods the methods of choice when the problem is smooth and well-
behaved. However, when the problem exhibits nonsmooth, discontinuous, or multimodal
behavior, these methods can also be the least robust since inaccurate gradients will lead to bad
search directions, failed line searches, and early termination.

Thus, for gradient-based optimization, acritical factor is the gradient accuracy. Analytic
gradients areideal, but are rarely available. For many engineering applications, afinite difference
method will be used by the optimization algorithm to estimate gradient values. DAKOTA allows
the user to select the step size for these calculations, as well as a choice between forward-
difference and central-difference algorithms. The finite difference step size should be selected as
small as possible, to alow for local accuracy and convergence, but not so small that the steps are
“inthe noise” This requires an assessment of the local smoothness of the response functions
using, for example, a parameter study method. Central-differencing, in general, will produce
more reliable gradients than forward differencing, but at twice the expense.

Nongradient-based methods exhibit much slower convergence rates for finding an optimum, and
as aresult, tend to be much more computationally demanding than gradient-based methods.
Nongradient local optimization methods, such as pattern search algorithms, often require from
severa hundred to a thousand or more function evaluations, depending on the number of
variables, and nongradient global optimization methods such as genetic algorithms may require
from thousands to tens-of-thousands of function evaluations. Clearly, for nongradient
optimization studies, the computational cost of the function evaluation must be relatively small in
order to obtain an optimal solution in a reasonable amount of time. In addition, nonlinear
constraint support in nongradient methods is an open area of research and is not yet available in
DAKOTA. However, nongradient methods can be more robust and more inherently parallel than
gradient-based approaches. They can be applied in situations were gradient calculations are too
expensive or unreliable. In addition, some nongradient-based methods can be used for global
optimization which gradient-based techniques, by themselves, cannot. For these reasons,
nongradi ent-based methods deserve consideration when the problem may be nonsmooth or
poorly behaved.

An approach which attempts to bring the efficiency of gradient-based optimization methods to
nonsmooth or poorly behaved problems is the surrogate-based optimization (SBO) strategy. This
technique can smooth noisy or discontinuous response results through use of a data fit surrogate
model (e.g., aquadratic polynomial) and then optimize on the smooth surrogate using efficient
gradient-based techniques. Section 13.7 provides further information on this approach. In
addition, the multilevel hybrid and multistart optimization strategies can address a similar goal of
bringing the efficiency of gradient-based optimization methods to global optimization problems.
In the former case, aglobal optimization method can be used for afew cycles to locate promising
regions and then local gradient-based optimization is used to efficiently converge on one or more
optima. In the latter case, a stratification technique is used to disperse a series of local gradient-
based optimization runs through parameter space. Section 13.2 and Section 13.3 provide more
information on these approaches.
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Table 17.1 provides a convenient reference for choosing an optimization method or strategy to
match the characteristics of the user’s problem. With respect to constraint support, it should be
understood that the methods with more advanced constraint support are also applicable to the
lower constraint support levels; they are listed only at their highest level of constraint support for
brevity.

Table17.1  Guidelinesfor optimization method selection.

Variabl Function lution . .
WElellE unctio ol Constraints Applicable M ethods
Type Surface Type
continuous smooth local unconstrained optpp_cg
bound constrained dot_bfgs, dot_frcg, conmin_frcg
nonlinearly npsol_sqp, reduced sqp,
constrained dot_mmfd, dot_sp, dot_sqp,
conmin_mfd,
optpp_newton, optpp_g_newton,
optpp_fd_newton
local least nonlinearly nlssol_sgp, optpp_g_newton
squares constrained
local large- nonlinearly (planned: reduced_sgp for
scale constrained SAND)
global nonlinearly multi_level opt strategy
constrained multi_start opt strategy
nonsmooth local unconstrained sgopt_solis wets
bound constrained sgopt_pattern_search,
apps, optpp_pds
nonlinearly (planned: apps,
constrained sgopt_pattern_search)
local/global nonlinearly surrogate _based opt strategy
constrained
global bound constrained sgopt_pga real, sgopt_epsa,
sgopt_strat_mc
nonlinearly (planned: sgopt_pga real)
constrained
discrete n‘a global bound constrained sgopt_pga._int
mixed smooth local nonlinearly branch_and_bound opt strategy
constrained (noncategorical variables only)
nonsmooth global bound constrained (planned: sgopt_pga_mixed)

17.3 UQ Method Selection

The need for computationally efficient methods is further amplified in the case of the
guantification of uncertainty in computational simulations. Sampling-based methods are the most
robust uncertainty techniques available, are applicable to amost all simulations, and possess
rigorous error bounds; consequently, they should be used whenever the function is relatively
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inexpensive to compute. However, in the case of terascale computational simulations, the number
of function evaluations required by traditional technigues such as Monte Carlo and Latin
hypercube sampling (LHS) quickly becomes prohibitive. One way to alleviate this problem isto
employ more advanced sampling strategies, such as Quasi-Monte Carlo (QMC) sampling,
importance sampling (1S), or Markov Chain Monte Carlo (MCMC) sampling, and these
techniques are currently under investigation.

Alternatively, one can apply the traditional sampling techniques to a surrogate function
approximating the expensive computational simulation. However, if this approach is selected, the
user should be aware that it is very difficult to assess the accuracy of the results obtained. Unlike
in the case of SBO (see Section 13.7), there is no simple pointwise calculation to verify the
accuracy of the approximate results. Thisis due to the functional nature of uncertainty
guantification, i.e. the accuracy of the surrogate over the entire parameter space needs to be
considered not just around a candidate optimum as in the case of SBO. Thisissue especially
manifests itself when trying to estimate low probability events such as catastrophic failure of a
system.

Another class of methods, the analytical reliability methods (MV, AMV, AMV+, FORM/
SORM), are more computationally efficient in general than the sampling methods and are
effective when applied to reasonably well-behaved response functions, such as linear, mildly
nonlinear, and monotonic functions. The user should be aware that these methods do not possess
rigorous error estimates as they also involve response surface approximations. Also, they are
usually applied only in the scalar response case. Finally, since they rely on gradient calculations,
issues with nonsmoothness and poorly behaved response functions are relevant concerns.
However, in the case of a small number of uncertain variables, the methods can often be used to
provide qualitative sensitivity information concerning which uncertain variables are important
with relatively few function evaluations.

The final class of UQ methods available in DAKOTA are stochastic finite elements techniques
using polynomial chaos expansions, which are general purpose techniques provided that the
response functions possess finite second order moments. Further, these methods approximate the
full random process/field rather than just approximating statistics such as mean and standard
deviation. This class of methods parallels traditional variational methods in mechanics; in that
vein, efforts are underway to compute rigorous error bounds of the approximations produced by
the methods. Another strength of the these methodsis their potential use in a multiphysics
environment as a means to propagate the uncertainty through a series of smulations while
retaining as much information as possible at each stage of the analysis. On the other hand, these
methods currently rely on the use of traditional sampling techniques in the construction of the
approximations; consequently, they are computational very expensive in the case of terascale
applications.

The recommendations for UQ methods are summarized in Table 17.2.
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Table17.2  Guiddinesfor UQ method selection.

Method Desired Problem .
Classification Characterisitics ARl disictnges

Sampling response functions are nond_sampling (Monte Carlo or LHS)
relatively inexpensive

Analytic reliability scalar response function nond_analytic_reliability (MV, AMV,
that is reasonably well AMV+, FORM, SORM)
behaved

Stochastic finite representation of full nond_polynomial_chaos

eements random variable/process/
fieldisdesired

17.4 Parameter Study/DACE/Sampling Method Selection

Parameter studies, design/analysis of computer experiments (DACE), and sampling methods
share the purpose of exploring the parameter space. If directed studies with a defined structure
are desired, then parameter study methods (see Chapter 8) are recommended. For example, a
quick assessment of the smoothness of aresponse function is best addressed with a vector
parameter study. Also, performing local sensitivity analysisis best addressed with these methods.
If, however, aglobal space-filling set of samplesis desired, then the DACE and sampling
methods are recommended (see Chapter 9). These techniques are useful for scatter plot and main
effects analysis as well as surrogate model construction. The distinction between DACE and
sampling is drawn based on the distributions of the parameters. Design of experiments methods
typically assume uniform distributions, whereas the sampling approaches in DAKOTA support a
broad range of probability distributions. To usenond_sanpl i ng in adesign of experiments
mode (as opposed to an uncertainty quantification mode), theal | _vari abl es flag should be
included in the method specification of the DAKOTA input file.

These method sel ection recommendations are summarized in Table 17.3.
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Table17.3  Guidelinesfor parameter study and design of experiments
method selection.

directed parameter space
investigations

Method o :
Classification Applications Applicable M ethods
parameter study sensitivity analysis, centered parameter_study,

list_parameter_study,
multidim_parameter_study,
vector_parameter_study

design of computer

main effects analysis,

dace (grid, random, oas, |hs, oa I|hs,

(parameters have general
probability distributions)

experiments space filling designs box_behnken, central_composite)
(parameters are
uniformly distributed)

sampling spacefilling designs nond_sampling (Monte Carlo or LHS)

with all_variables flag
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18.0 Restart Capabilities and Utilities

18.1 Restart M anagement

DAKOTA was developed for solving problems that require multiple calls to computationally
expensive ssimulation codes. In some cases you may want to conduct the same optimization, but
to afiner final convergence tolerance. Thiswould be costly if the entire optimization analysis had
to be repeated. Interruptions imposed by computer usage policies, power outages, and system
failures could also result in costly delays. However, DAKOTA automatically records the variable
and response data from all function evaluations so that new executions of DAKOTA can pick up
where previous executions left off.

The DAKOTA restart file (e.g., dakot a. r st ) iswritten in a portable binary format. The
portability derives from use of the XDR standard.

To write arestart file using a particular name, the- wri t e_r est art command line input (may
be abbreviated as - w) is used:
dakota -i dakota.in -wite_restart nmy_restart_file

Ifno-write_restart specificationisused, then DAKOTA will write arestart file using the
default name dakot a. r st .

To restart DAKOTA from arestart file, the- r ead_r est art command line input (may be
abbreviated as- r ) isused:
dakota -i dakota.in -read restart ny restart file

If no-read_restart specification is used, then DAKOTA will not read restart information
from any file (i.e., the default is no restart processing).

Ifthe-write_ restart and-read_restart specificationsidentify the samefile
(including the casewhere-wr it e_restart isnot specifiedand-read_rest art identifies
dakot a. r st ), then new evaluations will be appended to the existing restart file. If the

-wite restart and-read_restart specificationsidentify different files, then the
evaluations read from thefileidentified by - r ead_r est art arefirst written to the
-write_restart file Any new evaluations are then appendedtothe-write_restart
file. In this way, restart operations can be chained together indefinitely with the assurance that all
of the relevant evaluations are present in the latest restart file.

To read in only a portion of arestart file, the- st op_r est art control (may be abbreviated as
- s) isused. Note that the integer value specified refers to the number of entriesto be read from
the database, which may differ from the evaluation number in the previousrun (e.g., if any
duplicates were detected since these duplicates are not recorded in the restart file). In the case of
a-stop_restart specification, it isusually desirable to specify anew restart file using
-write_restart soastoremovetherecordsof erroneous or corrupted function evaluations.
For example, to read in the first 50 evaluations from dakot a. r st :
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dakota -i dakota.in -read restart dakota.rst
-stop_restart 50 -wite_restart dakota_new. rst

Thedakot a_new. r st filewill contain the 50 processed evaluations from dakot a. r st as

well as any new evaluations. All evaluations following the 501" in dakot a. r st have been
removed from the latest restart record.

DAKOTA's restart algorithm relies on its duplicate detection capabilities. Processing arestart file
populates the list of function evaluations that have been performed. Then, when the study is
restarted, it is started from the beginning (not a“warm” start) and many of the function
evaluations requested by the iterator are intercepted by the duplicate detection code. This
approach has the primary advantage of restoring the complete state of the iteration (including the
ability to correctly detect subsequent duplicates) for all iterators and multi-iterator strategies
without the need for iterator-specific restart code. However, the possibility exists for numerical
round-off error to cause a divergence between the evaluations performed in the previous and
restarted studies. This has been extremely rare to date.

18.2 The DAKOTA Restart Utility

The DAKOTA restart utility program provides a variety of facilities for managing restart files
from DAKOTA executions. The executable program nameisdakot a_restart _util andit
has the following options, as shown by the usage message returned when executing the utility
without any options:

Usage: "dakota_restart_util print <restart_file>"

|
"dakota_restart_util to_neutral <restart_file> <neutral _file>"
"dakota restart _util fromneutral <neutral file> <restart file>"
"dakota_restart_util to_pdb <restart_file> <pdb_file>"
"dakota restart _util to tabular <restart file> <text file>"
"dakota_restart_util renove <double> <old_restart_file> <new restart_file>"
"dakota restart _util renove_ ids <int_1> ... <int_n> <old restart file> <new restart _f
"dakota_restart_util cat <restart_file_ 1> ... <restart_file_n> <new restart_file>"

Several of these functions involve format conversions. In particular, the binary format used for
restart files can be converted to ASCII text and printed to the screen, converted to and from a
neutral file format, converted to a PDB format for use at Lawrence Livermore National
Laboratory, or converted to atabular format for importing into 3rd-party graphics programs. In
addition, arestart file with corrupted data can be repaired by value or id and multiple restart files
can be combined to create a master database.

18.2.1 Print

Thepri nt optionisquite useful for interrogating the contents of a particular restart file, since
the binary format is not convenient for direct inspection. The restart datais printed in full
precision, so that exact matching of pointsis possible for restarted runs or corrupted data
removals. For example, the following command

dakota restart _util print dakota.rst
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resultsin output similar to the following (from thecyl _head example problem):

1. 8000000000000000e+00 i nt ake_di a
1. 0000000000000000e+00 f | at ness
1111}

2. 4355973813000000e+00 f
4.7428486676999998e- 01 f
4.5000000000000001e- 01 f
1. 3971143170000000e- 01 f

1. 8001800000000001e+00 i ntake_di a
1. 0000000000000000e+00 f 1 at ness
1111}
2.4356759411000000e+00
4,7425991059000000e- 01
4,5000000000000001e-01
1.3971143170000000e- 01
<<omission>> ...

All function evaluations will be printed to the screen, so piping this output into more, e.g.
dakota restart _util print dakota.rst | nore

or redirecting the output to afile, e.g.
dakota restart _util print dakota.rst > dakota.txt

may be needed to manage the output.

18.2.2 To/From Neutral File Format

A DAKOTA restart file can be converted to a neutra file format using acommand like the
following:
dakota_ restart _util to_neutral dakota.rst dakota.neu

which resultsin areport similar to:

Witing neutral file dakota.neu
Restart file processing conpleted: 65 evaluations retrieved.

Similarly, aneutral file can be returned to binary format using a command like the following:
dakota restart _util fromneutral dakota.neu dakota.rst

which resultsin areport similar to:

Readi ng neutral file dakota.neu
Witing new restart file dakota.rst
Neutral file processing conpleted: 65 evaluations retrieved.

The contents of the generated neutral file are similar to the following (fromthecyl _head
example problem):
Fundanental 2 1.8000000000000000e+00 i ntake_di a 1.0000000000000000e+00 fl at ness
0000O0O
NULL 2 41 01 111 -2.4355973813000000e+00 -4.7428486676999998e-01 -
4.5000000000000001e-01 1.3971143170000000e-01 1
Fundanental 2 1.8001800000000001e+00 i ntake_dia 1.0000000000000000e+00 fl at ness
0000O0O
NULL 2 4101111 -2.4356759411000000e+00 -4.7425991059000000e-01 -
4.5000000000000001e-01 1.3971143170000000e-01 2
Fundanental 2 1.7998200000000000e+00 i ntake_di a 1.0000000000000000e+00 fl at ness
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000000
NULL 2 4 101111 -2 4355188216000001e+00 - 4. 7430978909999999¢- 01 -
4.5000000000000001e- 01 1.3971143170000000e- 01 3

. <<omission>> . ..

Thisformat is not intended for direct viewing (pr i nt should be used for this purpose). Rather,

the neutral file capability has been used in the past for managing portability of restart data across

platforms. Recent use of the XDR standard for portable binary formats has eliminated this need,

and neutral file conversions may be phased out in future releases.

18.2.3 To Tabular Format

Conversion of abinary restart file to a tabular format enables convenient import of this datainto
3rd-party post-processing tools such as Matlab, TECplot, Excel, etc. Thisfacility is nearly
identical tothet abul ar _gr aphi cs_dat a option in the DAKOTA input file specification
(described in Section 7.3), but with two important differences:

1. No function evaluations are suppressed asthey arewith t abul ar _gr aphi cs_dat a (i.e,,
any interna finite difference evaluations are included).

2. The conversion can be performed posthumoudly, i.e., for DAKOTA runs executed previously.

An example command for converting arestart file to tabular format is:
dakota_ restart _util to_tabul ar dakota.rst dakota.m

which resultsin areport similar to:

Witing tabular text file dakota. m
Restart file processing conpleted: 10 evaluations retrieved
and history of 5 attributes recorded.

The contents of the generated tabular file are similar to the following (taken from thet ext book
example problem):
% eval _id x1 X2 fl f2 f3

1 0.9 1.1 0. 0002 0. 26 0.76
2 0. 6433962264  0.6962264151 0. 0246865569 0.06584549663 0. 1630331079
3 0. 5310576935 0.5388046558 0.09360081618 0.01261994596 0.02478161032
4 0.612538853 0. 6529854907 0.03703861037 0.04871110112 0. 1201206246
5 0. 5209215947 0.5259311717 0.1031862798 0. 008393722022 0.01614279999
6 0.5661606434  0.5886684401 0.06405197568 0.02620365411 0.06345021064
7 0. 5083873357 0.510239856 0. 1159458957 0. 00333775509 0. 006151042806
8 0.5001577143 0.5001800249 0.1248312163 6. 772666378e-05 0. 000101200204
9 0.5000000547 0.5000000597 0.1249999428 2.4865003e-08 3.238000351e-08
10 0.5 0.5 0.125 0 0

18.2.4 Concatenation of Multiple Restart Files

In some instances, it is useful to combine restart files into a single master function evaluation
database. For example, when constructing a data fit surrogate model, data from previous studies
can be pulled in and reused to create a combined data set for the surrogate fit. An example
command for concatenating multiple restart filesis:

dakota restart _util cat dakota.rst.1l dakota.rst.2
dakota.rst.3 dakota.rst.all

which resultsin areport similar to:

DAKOTA Users Manual - Restart Capabilities and Utilities 183



Witing newrestart file dakota.rst. al

dakota.rst.1l processing conpleted: 10 evaluations retrieved.

dakota.rst.2 processing conpleted: 110 eval uations
retrieved.

dakota.rst.3 processing conpleted: 65 evaluations retrieved.

Thedakot a. rst. al | database now contains 185 evaluations and can beread in for usein a
subsequent DAKQOTA study usingthe-r ead_r est art option to the dakot a executable (see
Section 18.1).

18.2.5 Removal of Corrupted Data

On occasion, asimulation or computer system failure may cause a corruption of the DAKOTA
restart file. For example, a smulation crash may result in failure of a post-processor to retrieve
meaningful data. If O's (or other erroneous data) are returned from the user’s

anal ysi s_dri ver, then this bad datawill get recorded in the restart file. If thereisaclear
demarcation of where corruption initiated (typical in a process with feedback, such as gradient-
based optimization), then use of the- st op_r est art option for the dakot a executable can
be effective in continuing the study from the point immediately prior to the introduction of bad
data. If, however, there are interspersed corruptions throughout the restart database (typical in a
process without feedback, such as sampling), then ther enove andr enove_i ds options of
dakota_restart _util canbeuseful.

An example of the command syntax for ther enove optioniis:
dakota restart _util renmove 2.e-04 dakota.rst
dakota.rst.repaired
which results in areport similar to:

Witing newrestart file dakota.rst.repaired
Restart repair conpleted: 65 evaluations retrieved, 2
renoved, 63 saved.

where any evaluationsin dakot a. r st having an active response function value that matches
2. e- 04 within machine precision are discarded when creating dakot a. r st . r epai r ed.

An example of the command syntax for ther enove_i ds optionis:
dakota restart _util renmove_ids 12 15 23 44 57 dakota.rst
dakota.rst.repaired
which resultsin areport similar to:
Witing newrestart file dakota.rst.repaired
Restart repair conpleted: 65 evaluations retrieved, 5
renoved, 60 saved.
where evaluation ids 12, 15, 23, 44, and 57 have been discarded when creating
dakot a. r st. repai r ed. Animportant detail of ther enove_i ds option isthat evaluations
are removed based on the evaluation id that is recorded as part of every restart record, not based
on the order of their appearance in the restart file (note: thisis the opposite case from that of the
-stop_restart option described in Section 18.1). This distinction isimportant when
removing restart records for arun that contained either asynchronous or duplicate evaluations,
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since the restart insertion order and evaluation ids may not correspond in these cases
(asynchronous evaluations have ids assigned in the order of job initiation but are recorded in the
restart file in the order of job completion, and duplicate eval uations are not recorded which
introduces offsets between evaluation id and record number). This can also be important if
removing records from a concatenated restart file, since the same evaluation id could appear
more than once. In this case, all evaluation records with ids matching ther enove i ds list will
be removed.
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19.0 Simulation Code Failure Capturing

DAKOTA provides the capability to manage failures in simulation codes within its system call,
fork, and direct application interfaces (see Chapter 5 for application interface descriptions).
Failure capturing consists of three operations: failure detection, failure communication, and
failure recovery.

19.1 Failure detection

Since the symptoms of a simulation failure are highly code and application dependent, it is the
user’sresponsibility to detect failures within their anal ysi s_dri ver orout put _filter.
One popular example of simulation monitoring isto rely on asimulation’s internal detection of
errors. In this case, the UNIX gr ep utility can be used within auser’s script to detect stringsin
output files which indicate analysis failure. For example, the following C shell script excerpt

grep ERROR anal ysis.out > /dev/null
if ( $status ==

echo “FAIL” > results. out
endi f

will passthei f test and communicate simulation failure to DAKOTA if the gr ep command
finds the string ERROR anywhere intheanal ysi s. out file. The/ dev/ nul | devicefileis
called the “bit bucket” and the gr ep command output is discarded by redirecting it to this
destination. The $st at us shell variable contains the exit status of the last command executed
[1], which isthe exit status of gr ep inthis case (0 if successful in finding the error string,
nonzero otherwise). For Bourne shells[7], the $? shell variable serves the same purpose as
$st at us for C shells. In arelated approach, if the return code from a simulation can be used
directly for failure detection purposes, then $st at us or $? could be queried immediately
following the simulation execution using ani f test like that shown above.

If the simulation code is not returning error codes or providing direct error diagnostic
information, then failure detection may require monitoring of simulation results for sanity (e.g.,
is the mesh distorting excessively?) or potentially monitoring for continued process existence to
detect a simulation segmentation fault or core dump. While this can get complicated, the
flexibility of DAKOTA's interfaces allows for awide variety of monitoring approaches.

19.2 Failure communication

Once afailureis detected, it must be communicated so that DAKOTA can attempt to recover
from the failure. The form of this communication depends on the type of application interfacein
use.

In the system call and fork application interfaces, a detected simulation failure is communicated
to DAKQOTA through the resultsfile. Instead of returning the standard results file data, the string
“f ai | ” should appear at the beginning of the results file. Any data appearing after the fail string
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will be ignored. Also, DAKOTA's detection of this string is case insensitive, so “FAI L”,
“Fai | 7, etc., are equally valid.

In the direct application interface case, a detected simulation failure is communicated to
DAKOTA through the return code provided by the user’sanal ysi s_dr i ver. The prototype
for smulations linked within the direct interfaceis
int anal ysis_driver(const DakotaVari abl es& vars,
const Dakotal nt Array& asv, Dakot aResponseé& response)
Thei nt returned isthe failure code: O (false) if no failure occurs and 1 (true) if afailure occurs.
Refer to Section 16.2 for additional information on the direct application interface.

19.3 Failurerecovery

Once the analysis failure has been communicated, DAKOTA will attempt to recover from the
failure using one of the following four mechanisms, as governed by specifications from the
interface keyword block in the user’s input file (see the DAKOTA Reference Manual [17] for
additional information on this specification).

19.3.1 Abort (default)

If theabor t option is active (the default), then DAKOTA will terminate upon detecting a
failure. Note that if the problem causing the failure can be corrected, DAKOTA's restart
capability (see Chapter 18) can be used to continue the study.

19.3.2 Retry

If ther et r y option is specified, then DAKOTA will re-invoke the failed simulation up to the
specified number of retries. If the simulation continues to fail on each of these retries, DAKOTA
will terminate. The retry option is appropriate for those cases in which simulation failures may
be resulting from transient computing environment issues, such as shared disk space, software
license access, or networking problems.

19.3.3 Recover

If ther ecover option is specified, then DAKOTA will not attempt the failed simulation again.
Rather, it will return a*dummy” set of function values as the results of the function evaluation.
The dummy function values to be returned are specified by the user. Any gradient or Hessian
data requested in the active set vector will be zero. This option is appropriate for those casesin
which afailed simulation may indicate aregion of the design space to be avoided and the dummy
values can be used to return alarge objective function or a constraint violation which will
discourage an optimizer from further investigating the region.
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19.3.4 Continuation

If thecont i nuat i on option is specified, then DAKOTA will attempt to step towards the
failing “target” simulation from a nearby “source” simulation through the use of a continuation
algorithm. This option is appropriate for those cases in which afailed simulation may be caused
by an inadequate initial guess. If the “distance” between the source and target can be divided into
smaller steps in which information from one step provides an adequate initial guess for the next
step, then the continuation method can step towards the target in increments sufficiently small to
allow for convergence of the simulations.

When the failure occurs, theinterval between the last successful evaluation (the source point) and
the current target point is halved and the evaluation isretried. This halving is repeated until a
successful evaluation occurs. The algorithm then marches towards the target point using the last
interval as astep size. If afailure occurs while marching forward, the interval will be halved
again. Each invocation of the continuation algorithm is allowed a total of ten failures (ten
halvings result in up to 1024 evaluations from source to target) prior to aborting the DAKOTA
process.

While DAKOTA manages the interval halving and function evaluation invocations, the user is
responsible for managing the initial guess for the simulation program. For example, in a GOMA
input file [60], the user specifies the files to be used for reading initial guess data and writing
solution data. When using the last successful evaluation in the continuation algorithm, the
tranglation of initial guess data can be accomplished by simply copying the solution datafile
leftover from the last evaluation to the initial guess file for the current evaluation (and in fact this
isuseful for al evaluations, not just continuation). However, techniques are under development
for use of the closest, previously successful, function evaluation (rather than the last successful
evaluation) as the source point in the continuation algorithm. Thiswill be especially important
for nonlocal methods (e.g., genetic algorithms) in which the last successful evaluation may not
necessarily bein the vicinity of the current evaluation. This approach will require the user to save
and manipulate previous solutions (likely tagged with evaluation number) so that the results from
aparticular ssimulation (specified by DAKOTA after internal identification of the closest point)
can be used as the current simulation’s initial guess.
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20.0 Additional Examples

20.1 Textbook Example

The optimization problem formulation is stated as

mmmzef::%(m—n4 (1)
i =1

X
subject to glzxf——zgso 2

2 X

0.5<x,<58
—2.9<x,<29

where n isthe number of design variables. The objective function is designed to accommodate
an arbitrary number of design variablesin order to allow flexible testing of a variety of data sets.
Contour plots for the n=2 case have been shown previously in Figure 2.3 and Figure 2.4.

This example problem may also be used to exercise least squares solution methods by modifying
the problem formulation to:

mninize (f)*+(9,)*+(9,)° (3

This modification is performed by simply changing the responses specification for the three
functionsfrom num obj ecti ve_functions = 1and

num nonl i near _inequality constraints = 2to

num | east _squares_ternms = 3. Notethat the two problem formulations are not
equivalent and will have different solutions.

Another way to exercise the least squares methods which would be equivalent to the optimization
formulation would be to select the residual functionsto be ( x; - 1) 2. However, this formulation

requires modificationtot ext _book. Cand will not be presented here. Equation (3), on the
other hand, can use the existing t ext _book. Cwithout modification. Refer to Section 20.2 for
an example of minimizing the same objective function using both optimization and least squares
approaches.
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20.1.1 Methods

CONMIN, DOT, NPSOL, and OPT++ methods may be used to solve this optimization problem
with or without constraints. OPT++ Gauss-Newton and NL SSOL methods may be used to solve
the least squares problem.

Thedakot a_t ext book. i n file provided in the Dakot a/ t est directory selectsa
dot _mmT d optimizer to perform constrained minimization using thet ext _book simulator.

A multilevel hybrid can also be demonstrated on thet ext _book problem. The

dakota_mul til evel . i nfileprovidedinthe Dakot a/ t est directory startswith a

sgopt _pga_r eal solution which feedsits best point into asgopt _pattern_search
optimization which feedsits best point into opt pp_newt on. While this approach is overkill for
such asimple problem, it is useful for demonstrating the coordination between multiple methods
in the multilevel strategy.

In addition, dakot a_t ext book_3pc. i n demonstrates the use of a 3-piece interface to
perform the parameter to response mapping and dakot a_t ext book | hs. i n demonstrates
the use of latin hypercube Monte Carlo sampling for assessing probability of failure as measured
by specified response thresholds.

20.1.2 Optimization Results

The solution for the unconstrained optimization problem for two design variablesis:

X1 = 1.0
Xo = 1.0
with
f* = 0.0
The solution for the optimization problem constrained by g, is:
X1 = 0. 763
Xo = 1.16
with
f* = 0.00388

g.* = 0.0 (active)

The solution for the optimization problem constrained by g, and g, is:

x; = 0.500
X, = 0.500
with
f* = 0.125
g:* = 0.0 (active)
go,* = 0.0 (active)
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Note that as constraints are added, the design freedom is restricted and a penalty in the objective
function is observed. Of course, no penalty would be observed if the additional constraints were
not active at the solution.

20.1.3 L east Squares Results
The solution for the least squares problem is:
x,1 = 0.566
X, = 0.566
with the residual functions equal to
f* = 0.0713
gl* = 0.0371
92* = 0.0371

and aminimal sum of the squares of 0.00783.

This study requires selection of num | east _squares_t erns = 3 intheresponses
specification and selection of either opt pp_g_newt on or nl ssol _sqp in the method
specification.

20.2 Rosenbrock Example
The Rosenbrock function [32] isawell known benchmark problem for optimization algorithms.
Its formulation can be stated as
L _ 2,2 2
mnimze f = 100(x,—x7) +(1=x,) 4)

Surface and contour plots for this function have been shown previously in Figure 2.1 and Figure
2.2. This example problem may also be used to exercise least squares solution methods by
recasting the problem formulation into:

mninizef = (f)2+(f,)? )
where
f, = 10(x,—X}) (6)
and
f,o=1-x, (")

areresidual terms. In this case (unlike the least squares modification in Section 20.1), the two
problem formulations are equivalent and have identical solutions.
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20.2.1 Methods

Inthe/ Dakot a/ t est directory, ther osenbr ock executable (compiled from

r osenbr ock. C) returns an objective function as computed from Equation (4) for use with
optimization methods. Ther osenbr ock_| s executable (compiled from

rosenbr ock | s. C) returnstwo least squares terms as computed from Equation (6) and
Equation (7) for use with least squares methods. Both executables return analytic gradients of the
function set (gradient of the objective functioninr osenbr ock, gradients of the least squares
residualsinr osenbr ock | s) with respect to the design variables. The

dakot a_r osenbr ock. i ninput file can be used to solve both problems by toggling settings
in the interface, responses, and method specifications. To run the optimization solution, select
"rosenbrock’ astheanal ysi s_dri ver intheinterface specification, select

num obj ective_functions = 1 intheresponses specification, and select an optimizer
(e.g., opt pp_g_new on) in the method specification, e.g.:

interface, \
application system \
anal ysis_driver = 'rosenbrock’
vari abl es,

conti nuous_design = 2
cdv_initial _point 1.2
cdv_| ower _bounds -2.0

2.0
1

—— - — —

cdv_upper _bounds
cdv_descri ptor ' x1’

NN P
Nooo

responses,
num obj ective _functions = 1
anal ytic_gradients
no_hessi ans

——

met hod, \
opt pp_g_newt on \
conver gence_t ol erance = le-10

To run the least squares solution, select’ r osenbr ock | s’ astheanal ysi s_dri ver in
the interface specification, select num | east _squares_terns = 2 intheresponses
specification, and select aleast squares iterator (i.e., opt pp_g_newt on or nl ssol _sqgp)in
the method specification, e.g.:

interface, \
application system \
anal ysis_driver = 'rosenbrock_|s’
vari abl es,

conti nuous_design = 2

—— - —

cdv_initial_point -1.2 1.0
cdv_| ower _bounds -2.0 2.0
cdv_upper _bounds 2.0 2.0
cdv_descri ptor " x1’ x2'
responses, \
num | east _squares_terns = 2 \
anal ytic_gradients \
no_hessi ans
nmet hod, \
opt pp_g_newt on, \
convergence_tol erance = le-10
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20.2.2 Results

The optimal solution, solved either as aleast squares problem or an optimization problem, is:

X1 = 1.0

Xo = 1.0
with

f* = 0.0

In comparing the two approaches, one would expect the Gauss-Newton approach to be more
efficient since it exploits the special-structure of aleast squares objective function. From a good
initial guess, this expected behavior is observed. Starting fromcdv_initial _point =
0.8, 0.7,theopt pp_g_newt on method convergesin only 3 function and gradient
evaluations while the opt pp_qg_newt on method requires 14 function and gradient evaluations
to achieve similar accuracy. Starting from a poorer initial guess (e.g., cdv_i ni ti al _poi nt

= -1.2, 1.0asspecifiedinDakot a/t est/ dakot a_r osenbr ock. i n), thetrendisless
obvious since both methods spend several evaluations finding the vicinity of the minimum (total
function and gradient evaluations = 24 for opt pp_q_newt on and 29 for

opt pp_g_newt on). However, once the vicinity is located, convergence is much more rapid
with the Gauss-Newton approach (11 orders of magnitude reduction in the objective functionin 1
function and gradient evaluation) than with the quasi-Newton approach (12 orders of magnitude
reduction in the objective function in 10 function and gradient evaluations).

Shown below is the complete DAKOTA output for the opt pp_g_newt on method starting
fromcdv_initial _point = 0.8, 0.7:

Runni ng MPI executable in serial node.
Witing newrestart file dakota.rst
Constructing Single Method Strategy...
net hodNanme = opt pp_g_new on
gradi ent Type = anal ytic

hessi anType = none

>>>>> Runni ng Single Method Strategy.

>>>>> Runni ng optpp_g_newton iterator

Parameters for function evaluation 1:
8. 0000000000e-01 x1
7.0000000000e-01 x2

(rosenbrock_Is /tnp/fileYHTVE /tnp/fil e6f BNRS)

Active response data for function evaluation 1:
Active set vector = { 3 3}
6. 0000000000e-01 |l east_sq_terml
2.0000000000e-01 | east_sq_tern®
[ -1.6000000000e+01 1.0000000000e+01 ] least_sq_ternl gradient
[ -1.0000000000e+00 0.0000000000e+00 ] least_sq_tern2 gradient

nl f2_evaluator_gn results: objective fn. =

4.0000000000e- 01

nl f2_evaluator_gn results: objective fn. gradient =
[ -1.9600000000e+01 1.2000000000e+01 ]

nl f2_eval uator_gn results: objective fn. Hessian =
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[[ 5.1400000000e+02 -3.2000000000e+02
- 3.2000000000e+02 2. 0000000000e+02 ]]

Paraneters for function evaluation 2:
9. 9999528206e- 01 x1
9.5999243139e-01 x2

(rosenbrock_|Is /tnp/fileaS7I1CC /tnp/fil eyntdnb)

Active response data for function evaluation 2:
Active set vector = { 3 3}
-3.9998132752e-01 | east _sq_terndl
4.7179400000e- 06 | east_sq_tern®
[ -1.9999905641e+01 1.0000000000e+01 ] least_sq_ternl gradient
[ -1.0000000000e+00 0.0000000000e+00 ] least_sq_ternR gradient

nl f2_evaluator_gn results: objective fn. =
1.5998506239e- 01
nl f2_evaluator_gn results: objective fn. gradient =
[ 1.5999168181e+01 -7.9996265504e+00 ]
nl f2_evaluator_gn results: objective fn. Hessian =
[[  8.0199245130e+02 -3.9999811282e+02
-3.9999811282e+02 2. 0000000000e+02 ]]

Paraneters for function evaluation 3:
9. 9999904378e-01 x1
9. 9999808275e-01 x2

(rosenbrock_|Is /tnp/fil eSAHRB /tnp/fil eK8l AET7)

Active response data for function evaluation 3:
Active set vector = { 3 3}
-4,.8109144216e-08 | east _sq_terndl
9.5621999996e-07 | east _sq_tern®
[ -1.9999980876e+01 1.0000000000e+01 ] least_sq_terndl gradient
[ -1.0000000000e+00 0.0000000000e+00 ] least_sq_ternR gradient

nl f2_evaluator_gn results: objective fn. =
9.1667117808e-13
nl f2_evaluator_gn results: objective fn. gradient =
[ 1.1923928641e-08 -9.6218288432e-07 ]
nl f2_evaluator_gn results: objective fn. Hessian =
[[  8.0199847008e+02 -3.9999961752e+02
-3.9999961752e+02 2. 0000000000e+02 ]]

<<<<< |lterator optpp_g_new on conpl eted.
<<<<< Function evaluation sunmary: 3 total (3 new, 0 duplicate)
<<<<< Best paraneters =
9. 9999904378e-01 x1
9. 9999808275e- 01 x2
<<<<< Best residual terns =
-4.8109144216e- 08
9. 5621999996e- 07
<<<<< Best data captured at function evaluation 3
<<<<< Single Method Strategy conpl eted.
DAKOTA execution time in seconds:
Total CPU = 0.01 [parent = 0.009765, child = 0.000235]
Total wall clock = 0. 026
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20.3 Cylinder Head Example

The cylinder head example problem arose as a simple demonstration problem for the
Technologies Enabling Agile Manufacturing (TEAM) project. Its formulation is stated as

o f :_l[horsepower Lwarrant yn g
montmze 0 250 100000 U (8)

subject to 0.y, <0504 9
war ranty = 100000
time < 60
1.5<d; 1y ake <2.164

00<flatness<4.0

cycle

This formulation seeks to simultaneously maximize normalized engine horsepower and engine
warranty over variables of valve intake diameter (d; ¢ axe) in inches and overall head flatness

(f I at ness) inthousandths of an inch subject to inequality constraints that the maximum stress
cannot exceed half of yield, that warranty must be at least 100000 miles, and that manufacturing
cycle time must be less than 60 seconds. Since the constraints involve different scales, they
should be nondimensionalized. In addition, they can be converted to the standard 1-sided

g(x) <0 formasfollows:

20
9, = - X _1<0
yield
warranty
= —-———2 <0 10
9 100000 (10)
time,
— ycle_1<0
9s 60 =

The objective function and constraints are related analytically to the design variables according
to the following simple expressions:

war ranty = 100000 + 15000(4 —f | at ness)

timeg e =45+45(4-f1 at ness)'’

250+200EPIi ntake ]

hor sepower

[ 1.833 O
' (11)
_ 1
Omax = 750+ 33
(t wal | )
(di ntake+dexhaust)
twall = OffSetintake_Offsetexhaust_ D)
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where the constants in Equation (10) and Equation (11) assume the following values: 0y g1 ¢ =

3000, of fsetytake = 3. 25,0ffset gynaust = 1. 34, and deyhaust

20.3.1 Methods

Inthe Dakot a/ t est directory, thedakot a_cyl _head. i ninput fileis used to execute the
cylinder head example. Thisinput file manages a variety of tests, of which one is shown below:

interface,
application fork,
asynchr onous
anal ysis_driver= ‘cyl_head’

vari abl es,

conti nuous_design = 2

cdv_initial _point 1.8 1.0\
cdv_upper _bounds 2.164 4.0\
cdv_| ower _bounds 1.5 0.0\
cdv_descriptor ‘intake_dia ‘flatness’

responses,
num obj ective_functions = 1
num nonl i near _i nequal ity_constraints = 3
nureri cal _gradients
met hod_source dakota
interval _type central
fd_step_size = 1l.e-4
no_hessi ans

nmet hod,
npsol _sqgp
convergence_tol erance = 1.e-8
out put verbose

\
\
\

—— - — — —

——

The interface keyword specifies use of thecyl _head executable (compiled from / Dakot a/
test/ cyl head. C) asthe simulator. The variables and responses keywords specify the data

sets to be used in the iteration by providing the initial point, descriptors, and upper and lower

bounds for two continuous design variables and by specifying the use of one objective function,

three inequality constraints, and numerical gradientsin the problem. The method keyword

specifies the use of the npsol _sqp method to solve this constrained optimization problem. No

strategy keyword is specified, so the default si ngl e_net hod strategy is used.

20.3.2 Optimization Results

The solution for the constrained optimization problem is:

with

2.122
1.769

i ntake dia
fl at ness

2.461

0.0 (active)
g,* = -0.3347 (inactive)
g,* = 0.0 (active)

which corresponds to the following optimal response quantities:
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cycle_time = 60
horse_power = 281.579
max_stress = 1500

The final report from the DAKOTA output is as follows:

<<<<< lterator npsol_sqgp conpl eted.
<<<<< Function evaluation summary: 65 total (65 new, O duplicate)
<<<<< Best paraneters =
2.1224188321e+00 i ntake_di a
1. 7685568330e+00 fl at ness
<<<<< Best objective function =
-2.4610312954e+00
<<<<< Best constraint values =
-5.3569116666e- 10
-3.3471647505e- 01
9. 9882176098e- 12
<<<<< Best data captured at function evaluation 61
<<<<< Single Method Strategy conpl eted.
DAKOTA execution time in seconds:
Total CPU = 0.06 [parent = 0.068359, child = -0.008359]
Total wall clock = 0. 212

20.4 Container Example

For this example, suppose that a high-volume manufacturer of light weight steel containers wants
to minimize the amount of raw sheet material that must be used to manufacture a 1.1 quart
cylindrical-shaped can, including waste material. Material for the container walls and end capsis
stamped from stock sheet material of constant thickness. The seal between the end caps and
container wall is manufactured by a press forming operation on the end caps. The end caps can
then be attached to the container wall forming a seal through a crimping operation.

end cap

wall

Figure20.1 Container wall-to-end-cap seal

For preliminary design purposes, the extramaterial that would normally go into the container end
cap sealsis approximated by increasing the cut dimensions of the end cap diameters by 12% and
the height of the container wall by 5%, and waste associated with stamping the end capsin a
specialized pattern from sheet stock is estimated as 15% of the cap area. The equation for the
area of the container materials including wasteis
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Hend cap B Hend cap B O nominal O Econtai ner% O nominal O
A=oxd waste 0,0 seal O,H H,Owall seal 0, H : U
= . 0*0 .. 0XHend capldt _ 0*Ucont ai ner U
gmaterial 5 gmaterial 5 O U gmterial 5 l
O factor O O factor O O €% 0 0 factor 0 UMW AT€AT
or
D2
A= 2(1.15)(1.12)T[Z+(1.05)T[DH (12

where D and H are the diameter and height of the finished product in units of inches, respectively.
The volume of the finished product is given by
D’H .3

V = T[T = (1.1qt )(57.75i n"/qt) (13)
The equation for areais the objective function for this problem; it isto be minimized. The
equation for volume is an equality constraint; it must be satisfied at the conclusion of the
optimization problem. Any combination of D and H that satisfies the volume constraint isa
feasible solution (although not necessarily the optimal solution) to the area minimization
problem, and any combination that does not satisfy the volume constraint is an infeasible
solution. The areathat is a minimum subject to the volume constraint is the optimal area, and the
corresponding values for the parameters D and H are the optimal parameter values.

It isimportant that the equations supplied to a numerical optimization code be limited to
generating only physically realizable values, since an optimizer will not have the capability to
differentiate between meaningful and nonphysical parameter values. It is often up to the engineer
to supply these limits, usually in the form of parameter bound constraints. For example, by
observing the equations for the area objective function and the volume constraint, it can be seen
that by alowing the diameter, D, to become negative, it is algebraically possible to generate
relatively small values for the areathat also satisfy the volume constraint. Negative values for D
are of course physically meaningless. Therefore, to ensure that the numerically-solved

optimization problem remains meaningful, a bound constraint of D= 0 must be included in the
optimization problem statement. A positive value for Hisimplied since the volume constraint
could never be satisfied if Hwere negative. However, a bound constraint of H= 0 can be added
to the optimization problem if desired. The optimization problem can then be stated in a
standardized form as

2
min 2(1.15)(1.12)11%—+(1.05)2nDH

2 (14

D'H

subject to: T[T = (1.1qt )(57.75i n3/qt )

D=0,H=0
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A graphical view of the container optimization problem appears in Figure 20.2. The 3-D surface
definesthe area, A, as afunction of diameter and height. The curved line that extends across the
surface defines the areas that satisfy the volume equality constraint, V. Graphically, the container
optimization problem can be viewed as one of finding the point along the constraint line with the
smallest 3-D surface height in Figure 20.2. This point corresponds to the optimal values for
diameter and height of the final product.

H, in. 0 2

D, in.
Figure20.2 A graphical representation of the container optimization problem.

Theinput file for thistest problem isnamed dakot a_cont ai ner . i ninthedirectory /
Dakot a/ t est . The solution to this example problemis (H, D) = (4.99, 4.03), with an

minimum area of 98.43 in?.

The final report from the DAKOTA output is as follows:

<<<<< |lterator npsol _sqgp conpl eted.
<<<<< Function evaluation summary: 40 total (40 new, O duplicate)
<<<<< Best paraneters =

4,9873894231e+00 H

4,0270846274e+00 D
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<<<<< Best objective function =
9. 8432498115e+01
<<<<< Best constraint values =
-1.2072307876e- 09
<<<<< Best data captured at function evaluation 36
<<<<< Single Method Strategy conpl eted.
DAKOTA execution time in seconds:
Total CPU = 0.05 [parent = 0.05, child =6.93889%e- 18]
Total wall clock = 0. 311

20.5 Cantilever Example

Thistest problem is adapted from the reliability-based design optimization literature [63],[70]
and involves a simple uniform cantilever beam as shown in Figure 20.3.

-« L=100 — %Y
7 X
% t

w
Figure20.3 Cantilever beam test problem.

The design problem is to minimize the weight (or, equivalently, the cross-sectional area) of the
beam subject to a displacement constraint and a stress constraint. Random variablesin the
problem include the yield stress R of the beam material, the Young's modulus E of the material,
and the horizontal and vertical loads, X and Y, which are modeled with normal distributions using
N (40000, 2000), N(2.9E7, 1.45E6), N(500, 100), and N(1000, 100), respectively. Problem
constants include L = 100 in. and Dy = 2.2535 in. The constraints have the following analytic

form:

stress = —60(;Y+—6SOXSR

wit wt
41° Y X2 (15)

; — OYo , OO <

di spl acenent = q—ﬂ qN—ZD <D,

or when scaled:
stress
S — 1 L
gS R 1<0
(16)

dp = di spl acement _, _,
Do

20.5.1 Deterministic Optimization Results

If the random variablesE, R, X, and Y are fixed at their means, the resulting deterministic design
problem can be formulated as
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mnimze f =wt (a7

subject to 05<0 (18)
9ps0
1.0sw<4.0
1.0<st <40

and can be solved using the Dakot a/ t est / dakot a_canti | ever. i nfile. Thisinput file

manages a variety of tests, of which one follows:

nmet hod
npsol _sqgp
convergence_tol erance = 1.e-8
out put verbose

——

vari abl es,

conti nuous_design = 2
cdv_initial_point 4.0
cdv_upper _bounds 10.0
cdv_| ower _bounds 1.0
cdv_descri ptor "beam wi dt h’

continuous_state = 4
csv_initial _state 40000. 29.E+6 500. 1000.
csv_descriptor 'R = "X 'Y

1

e

D OOO

m_t hi ckness’

—— e — — — —

interface,
application system
asynchronous eval uation_concurrency = 2
anal ysis_driver = 'cantilever’

——

responses,
num obj ective_functions = 1
num nonl i near_inequality_constraints = 2
nuneri cal _gradients
nmet hod_sour ce dakot a
interval _type forward
fd_step_size = 1.e-4
no_hessi ans

—— - — — —

The deterministic solution is (w, t) = (2.35, 3.33) with an objective function of 7.82. The final
report from the DAKOTA output is as follows:

<<<<< lterator npsol _sqgp conpl eted
<<<<< Function evaluation summary: 33 total (33 new, O duplicate)
<<<<< Best paraneters =
2.3520341345e+00 beam wi dth
. 3262783972e+00 beam t hi ckness
. 0000000000e+04
. 9000000000e+07
. 0000000000e+02
. 0000000000e+03
<<<<< Best objective function =
7.8235203311e+00
<<<<< Best constraint values =
-1.6008999688e- 02
1.9308333361e- 11
<<<<< Best data captured at function evaluation 31
<<<<< Single Method Strategy conpleted.
DAKOTA execution time in seconds:
Total CPU = 0.04 [parent = 0.050781, child = -0.010781]
Total wall clock = 0. 299

RONDW
<XmZX
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20.5.2 Stochastic Optimization Results

If the normal distributions for the random variables E, R, X, and Y are included, a stochastic
design problem can be formulated as

mnimze f =wt (29
subject to Up+30p<0 (20)
Hg+305<0
1.0sw<40
1.0t £4.0

where a 3-sigmareliability level (probability of failure = 0.00135 if responses are normally-
distributed) is being sought on the scaled constraints. Optimization under uncertainty solutionsto
the stochastic problem are described in [19].
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