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Abstract

The DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a flex-
ible and extensible interface between simulation codes and iterative analysis methods. DAKOTA con-
tains algorithms for optimization with gradient and nongradient-based methods; uncertainty quantification
with sampling, reliability, and stochastic finite element methods; parameter estimation with nonlinear least
squares methods; and sensitivity/variance analysis with design of experiments and parameter study meth-
ods. These capabilities may be used on their own or as components within advanced strategies such as
surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty.
By employing object-oriented design to implement abstractions of the key components required for itera-
tive systems analyses, the DAKOTA toolkit provides a flexible and extensible problem-solving environment
for design and performance analysis of computational models on high performance computers.

This report serves as a reference manual for the commands specification for the DAKOTA software, pro-
viding input overviews, option descriptions, and example specifications.
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Chapter 1

DAKOTA Reference Manual

Author:
Michael S. Eldred, Anthony A. Giunta, Laura P. Swiler, Steven F. Wojtkiewicz, Jr., William E. Hart,
Jean-Paul Watson, David M. Gay, Shannon L. Brown

1.1 Introduction

The DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a flexi-
ble, extensible interface between analysis codes and iteration methods. DAKOTA contains algorithms for
optimization with gradient and nongradient-based methods, uncertainty quantification with sampling, reli-
ability, and stochastic finite element methods, parameter estimation with nonlinear least squares methods,
and sensitivity/variance analysis with design of experiments and parameter study capabilities. These ca-
pabilities may be used on their own or as components within advanced strategies such as surrogate-based
optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing
object-oriented design to implement abstractions of the key components required for iterative systems
analyses, the DAKOTA toolkit provides a flexible problem-solving environment as well as a platform for
rapid prototyping of new solution approaches.

The Reference Manual focuses on documentation of the various input commands for the DAKOTA system.
It follows closely the structure of dakota.input.spec, the master input specification. For information on soft-
ware structure, refer to the Developers Manual, and for a tour of DAKOTA features and capabilities,
refer to the Users Manual [Eldred et al., 2004a].

1.2 Input Specification Reference

In the DAKOTA system, the strategy creates and manages iterators and models. A model contains a set
of variables, an interface, and a set of responses, and the iterator operates on the model to map the vari-
ables into responses using the interface. In a DAKOTA input file, the user specifies these components
through strategy, method, variables, interface, and responses keyword specifications. The Reference Man-
ual closely follows this structure, with introductory material followed by detailed documentation of the
strategy, method, variables, interface, and responses keyword specifications:

file:../html/index.html
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Commands Introduction

Strategy Commands

Method Commands

Variables Commands

Interface Commands

Responses Commands

1.3 Web Resources

Project web pages are maintained at http://endo.sandia.gov/DAKOTA with software specifics
and documentation pointers provided at http://endo.sandia.gov/DAKOTA/software.html,
and a list of publications provided at http://endo.sandia.gov/DAKOTA/references.html
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Chapter 2

DAKOTA File Documentation

2.1 dakota.input.spec File Reference

File containing the input specification for DAKOTA.

2.1.1 Detailed Description

File containing the input specification for DAKOTA.

This file is used in the generation of parser system files which are compiled into the DAKOTA executable.
Therefore, this file is the definitive source for input syntax, capability options, and associated data inputs.
Refer to Instructions for Modifying DAKOTA’s Input Specification for information on how to modify
the input specification and propagate the changes through the parsing system.

Key features of the input specification and the associated user input files include:

� In the input specification, required individual specifications are enclosed in {}, optional individual
specifications are enclosed in [], required group specifications are enclosed in (), optional group
specifications are enclosed in [], and either-or relationships are denoted by the

�
symbol. These

symbols only appear in dakota.input.spec; they must not appear in actual user input files.

� Keyword specifications (i.e., strategy, method, variables, interface, and responses)
are delimited by newline characters, both in the input specification and in user input files. Therefore,
to continue a keyword specification onto multiple lines, the back-slash character ( � ) is needed at
the end of a line in order to escape the newline. Continuation onto multiple lines is not required;
however, it is commonly used to enhance readability.

� Each of the five keywords in the input specification begins with a

<KEYWORD = name>, <FUNCTION = handler_name>

header which names the keyword and provides the binding to the keyword handler within DAKOTA’s
problem description database. In a user input file, only the name of the keyword appears (e.g.,
variables).
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� Some of the keyword components within the input specification indicate that the user must sup-
ply � INTEGER � , � REAL � , � STRING � , � LISTof ��� INTEGER � , � LISTof ��� REAL � , or
� LISTof ��� STRING � data as part of the specification. In a user input file, the "=" is optional,
the � LISTof � data can be separated by commas or whitespace, and the � STRING � data are
enclosed in single quotes (e.g., ’text_book’).

� In user input files, input is order-independent (except for entries in lists of data), case insensitive, and
white-space insensitive. Although the order of input shown in the Sample dakota.in Files generally
follows the order of options in the input specification, this is not required.

� In user input files, specifications may be abbreviated so long as the abbreviation is unique. For exam-
ple, the application specification within the interface keyword could be abbreviated as applic,
but should not be abbreviated as app since this would be ambiguous with approximation.

� In both the input specification and user input files, comments are preceded by #.

The dakota.input.spec file used in DAKOTA V3.2 is:

# DO NOT CHANGE THIS FILE UNLESS YOU UNDERSTAND THE COMPLETE UPDATE PROCESS
#
# Any changes made to the input specification require the manual merging
# of code fragments generated by IDR into the DAKOTA code. If this manual
# merging is not performed, then libidr.a and the Dakota src files
# (ProblemDescDB.C, keywordtable.C) will be out of synch which will cause
# errors that are difficult to track. Please be sure to consult the
# documentation in Dakota/docs/SpecChange.dox before you modify the input
# specification or otherwise change the IDR subsystem.
#
<KEYWORD = variables>, <FUNCTION = variables_kwhandler> \

[id_variables = <STRING>] \
[ {continuous_design = <INTEGER>} \

[cdv_initial_point = <LISTof><REAL>] \
[cdv_lower_bounds = <LISTof><REAL>] \
[cdv_upper_bounds = <LISTof><REAL>] \
[cdv_descriptors = <LISTof><STRING>] ] \

[ {discrete_design = <INTEGER>} \
[ddv_initial_point = <LISTof><INTEGER>] \
[ddv_lower_bounds = <LISTof><INTEGER>] \
[ddv_upper_bounds = <LISTof><INTEGER>] \
[ddv_descriptors = <LISTof><STRING>] ] \

[ {normal_uncertain = <INTEGER>} \
{nuv_means = <LISTof><REAL>} \
{nuv_std_deviations = <LISTof><REAL>} \
[nuv_dist_lower_bounds = <LISTof><REAL>] \
[nuv_dist_upper_bounds = <LISTof><REAL>] \
[nuv_descriptors = <LISTof><STRING>] ] \

[ {lognormal_uncertain = <INTEGER>} \
{lnuv_means = <LISTof><REAL>} \
{lnuv_std_deviations = <LISTof><REAL>} \

| {lnuv_error_factors = <LISTof><REAL>} \
[lnuv_dist_lower_bounds = <LISTof><REAL>] \
[lnuv_dist_upper_bounds = <LISTof><REAL>] \
[lnuv_descriptors = <LISTof><STRING>] ] \

[ {uniform_uncertain = <INTEGER>} \
{uuv_dist_lower_bounds = <LISTof><REAL>} \
{uuv_dist_upper_bounds = <LISTof><REAL>} \
[uuv_descriptors = <LISTof><STRING>] ] \

[ {loguniform_uncertain = <INTEGER>} \
{luuv_dist_lower_bounds = <LISTof><REAL>} \
{luuv_dist_upper_bounds = <LISTof><REAL>} \
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[luuv_descriptors = <LISTof><STRING>] ] \
[ {weibull_uncertain = <INTEGER>} \

{wuv_alphas = <LISTof><REAL>} \
{wuv_betas = <LISTof><REAL>} \
[wuv_dist_lower_bounds = <LISTof><REAL>] \
[wuv_dist_upper_bounds = <LISTof><REAL>] \
[wuv_descriptors = <LISTof><STRING>] ] \

[ {histogram_uncertain = <INTEGER>} \
[ {huv_num_bin_pairs = <LISTof><INTEGER>} \
{huv_bin_pairs = <LISTof><REAL>} ] \

[ {huv_num_point_pairs = <LISTof><INTEGER>} \
{huv_point_pairs = <LISTof><REAL>} ] \

[huv_descriptors = <LISTof><STRING>] ] \
[uncertain_correlation_matrix = <LISTof><REAL>] \
[ {continuous_state = <INTEGER>} \

[csv_initial_state = <LISTof><REAL>] \
[csv_lower_bounds = <LISTof><REAL>] \
[csv_upper_bounds = <LISTof><REAL>] \
[csv_descriptors = <LISTof><STRING>] ] \

[ {discrete_state = <INTEGER>} \
[dsv_initial_state = <LISTof><INTEGER>] \
[dsv_lower_bounds = <LISTof><INTEGER>] \
[dsv_upper_bounds = <LISTof><INTEGER>] \
[dsv_descriptors = <LISTof><STRING>] ]

<KEYWORD = interface>, <FUNCTION = interface_kwhandler> \
[id_interface = <STRING>] \
( {application} \

{analysis_drivers = <LISTof><STRING>} \
[analysis_components = <LISTof><STRING>] \
[input_filter = <STRING>] \
[output_filter = <STRING>] \
( {system} \
[parameters_file = <STRING>] \
[results_file = <STRING>] \
[analysis_usage = <STRING>] \
[aprepro] [file_tag] [file_save] ) \

| \
( {fork} \
[parameters_file = <STRING>] \
[results_file = <STRING>] \
[aprepro] [file_tag] [file_save] ) \

| \
( {direct} \
[processors_per_analysis = <INTEGER>] \

# [processors_per_analysis = <LISTof><INTEGER>] \
[modelcenter_file = <STRING>] ) \

| \
( {grid} \
{hostnames = <LISTof><STRING>} \
[processors_per_host = <LISTof><INTEGER>] ) \

[ {asynchronous} [evaluation_concurrency = <INTEGER>] \
[analysis_concurrency = <INTEGER>] ] \

[evaluation_servers = <INTEGER>] \
[evaluation_self_scheduling] \
[evaluation_static_scheduling] \
[analysis_servers = <INTEGER>] \
[analysis_self_scheduling] \
[analysis_static_scheduling] \
[ {failure_capture} {abort} | {retry = <INTEGER>} | \
{recover = <LISTof><REAL>} | {continuation} ] \

[ {deactivate} [active_set_vector] [evaluation_cache] \
[restart_file] ] ) \

| \
( {approximation} \
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( {global} \
{neural_network} | {mars} | {hermite} | \
( {polynomial} {linear} | {quadratic} | {cubic} ) | \
( {kriging} [correlations = <LISTof><REAL>] ) \
[dace_method_pointer = <STRING>] \
[ {reuse_samples} {all} | {region} | \

{samples_file = <STRING>} ] \
[ {correction} \

{additive} | {multiplicative} | {combined} \
{zeroth_order} | {first_order} | {second_order} ] \

# [ {rebuild} {inactive_all} | {inactive_region} ] \
[use_gradients] ) \

| \
( {multipoint} \

# {tana?} [use_gradients?] [correction?] \
{actual_interface_pointer = <STRING>} ) \

| \
( {local} \
{taylor_series} \
{actual_interface_pointer = <STRING>} \
[actual_interface_responses_pointer = <STRING>] ) \

| \
( {hierarchical} \
{low_fidelity_interface_pointer = <STRING>} \
{high_fidelity_interface_pointer = <STRING>} \

# {high_fidelity_interface_responses_pointer = <STRING>}\
# {interface_pointer_hierarchy = <LISTof><STRING>} \

( {correction} \
{additive} | {multiplicative} | {combined} \
{zeroth_order} | {first_order} | {second_order} ) ) )

<KEYWORD = responses>, <FUNCTION = responses_kwhandler> \
[id_responses = <STRING>] \
[response_descriptors = <LISTof><STRING>] \
( {num_objective_functions = <INTEGER>} \

[multi_objective_weights = <LISTof><REAL>] \
[ {num_nonlinear_inequality_constraints = <INTEGER>} \
[nonlinear_inequality_lower_bounds = <LISTof><REAL>] \
[nonlinear_inequality_upper_bounds = <LISTof><REAL>] ] \

[ {num_nonlinear_equality_constraints = <INTEGER>} \
[nonlinear_equality_targets = <LISTof><REAL>] ] ) \

| \
( {num_least_squares_terms = <INTEGER>} \

[ {num_nonlinear_inequality_constraints = <INTEGER>} \
[nonlinear_inequality_lower_bounds = <LISTof><REAL>] \
[nonlinear_inequality_upper_bounds = <LISTof><REAL>] ] \

[ {num_nonlinear_equality_constraints = <INTEGER>} \
[nonlinear_equality_targets = <LISTof><REAL>] ] ) \

| \
{num_response_functions = <INTEGER>} \
{no_gradients} \
| \
( {numerical_gradients} \

[ {method_source} {dakota} | {vendor} ] \
[ {interval_type} {forward} | {central} ] \
[fd_gradient_step_size = <LISTof><REAL>] ) \

| \
{analytic_gradients} \
| \
( {mixed_gradients} \

{id_numerical_gradients = <LISTof><INTEGER>} \
[ {method_source} {dakota} | {vendor} ] \
[ {interval_type} {forward} | {central} ] \
[fd_gradient_step_size = <LISTof><REAL>] \

{id_analytic_gradients = <LISTof><INTEGER>} ) \

Generated on Thu Dec 23 14:56:40 2004 for DAKOTA by Doxygen



2.1 dakota.input.spec File Reference 15

{no_hessians} \
| \
( {numerical_hessians} \

[fd_hessian_step_size = <LISTof><REAL>] ) \
| \
( {quasi_hessians} ( {bfgs} [damped] ) | {sr1} ) \
| \
{analytic_hessians} \
| \
( {mixed_hessians} \

[ {id_numerical_hessians = <LISTof><INTEGER>} \
[fd_hessian_step_size = <LISTof><REAL>] ] \

[ {id_quasi_hessians = <LISTof><INTEGER>} \
( {bfgs} [damped] ) | {sr1} ] \

[id_analytic_hessians = <LISTof><INTEGER>] )

<KEYWORD = strategy>, <FUNCTION = strategy_kwhandler> \
[graphics] \
[ {tabular_graphics_data} [tabular_graphics_file = <STRING>] ] \
[iterator_servers = <INTEGER>] \
[iterator_self_scheduling] [iterator_static_scheduling] \
( {multi_level} \

( {uncoupled} \
[ {adaptive} {progress_threshold = <REAL>} ] \
{method_list = <LISTof><STRING>} ) \

| \
( {coupled} \

{global_method_pointer = <STRING>} \
{local_method_pointer = <STRING>} \
[local_search_probability = <REAL>] ) ) \

| \
( {surrogate_based_opt} \

{opt_method_pointer = <STRING>} \
[max_iterations = <INTEGER>] \
[convergence_tolerance = <REAL>] \
[soft_convergence_limit = <INTEGER>] \
[truth_surrogate_bypass] \
[ {trust_region} \
[initial_size = <REAL>] \
[minimum_size = <REAL>] \
[contract_region_threshold = <REAL>] \
[expand_region_threshold = <REAL>] \
[contraction_factor = <REAL>] \
[expansion_factor = <REAL>] ] ) \

| \
( {opt_under_uncertainty} \

{opt_method_pointer = <STRING>} ) \
| \
( {branch_and_bound} \

{opt_method_pointer = <STRING>} \
[num_samples_at_root = <INTEGER>] \
[num_samples_at_node = <INTEGER>] ) \

| \
( {multi_start} \

{method_pointer = <STRING>} \
[ {random_starts = <INTEGER>} [seed = <INTEGER>] ] \
[starting_points = <LISTof><REAL>] ) \

| \
( {pareto_set} \

{opt_method_pointer = <STRING>} \
[ {random_weight_sets = <INTEGER>} [seed = <INTEGER>] ] \
[multi_objective_weight_sets = <LISTof><REAL>] ) \

| \
( {single_method} \

[method_pointer = <STRING>] )
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<KEYWORD = method>, <FUNCTION = method_kwhandler> \
[id_method = <STRING>] \
[ {model_type} \

[variables_pointer= <STRING>] \
[responses_pointer = <STRING>] \
( {single} [interface_pointer = <STRING>] ) \

| ( {nested} {sub_method_pointer = <STRING>} \
[ {interface_pointer = <STRING>} \

{interface_responses_pointer = <STRING>} ] \
[primary_variable_mapping = <LISTof><STRING>] \
[secondary_variable_mapping = <LISTof><STRING>] \
[primary_response_mapping = <LISTof><REAL>] \
[secondary_response_mapping = <LISTof><REAL>] ) \

| ( {layered} {interface_pointer = <STRING>} ) ] \
[speculative] \
[ {output} {debug} | {verbose} | {quiet} | {silent} ] \
[max_iterations = <INTEGER>] \
[max_function_evaluations = <INTEGER>] \
[constraint_tolerance = <REAL>] \
[convergence_tolerance = <REAL>] \
[linear_inequality_constraint_matrix = <LISTof><REAL>] \
[linear_inequality_lower_bounds = <LISTof><REAL>] \
[linear_inequality_upper_bounds = <LISTof><REAL>] \
[linear_equality_constraint_matrix = <LISTof><REAL>] \
[linear_equality_targets = <LISTof><REAL>] \
( {dot_frcg} \

[ {optimization_type} {minimize} | {maximize} ] ) \
| \
( {dot_mmfd} \

[ {optimization_type} {minimize} | {maximize} ] ) \
| \
( {dot_bfgs} \

[ {optimization_type} {minimize} | {maximize} ] ) \
| \
( {dot_slp} \

[ {optimization_type} {minimize} | {maximize} ] ) \
| \
( {dot_sqp} \

[ {optimization_type} {minimize} | {maximize} ] ) \
| \
( {conmin_frcg} ) \
| \
( {conmin_mfd} ) \
| \
( {npsol_sqp} \

[verify_level = <INTEGER>] \
[function_precision = <REAL>] \
[linesearch_tolerance = <REAL>] ) \

| \
( {nlssol_sqp} \

[verify_level = <INTEGER>] \
[function_precision = <REAL>] \
[linesearch_tolerance = <REAL>] ) \

| \
( {nl2sol} \

[function_precision = <REAL>] \
[absolute_conv_tol = <REAL>] [x_conv_tol = <REAL>] \
[singular_conv_tol = <REAL>] [singular_radius = <REAL>] \
[false_conv_tol = <REAL>] \
[initial_trust_radius = <REAL>] \
[covariance = <INTEGER>] [regression_diagnostics] ) \

| \
( {reduced_sqp} ) \
| \
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( {optpp_cg} \
[max_step = <REAL>] [gradient_tolerance = <REAL>] ) \

| \
( {optpp_q_newton} \

[ {search_method} {value_based_line_search} | \
{gradient_based_line_search} | {trust_region} | \
{tr_pds} ] \

[max_step = <REAL>] [gradient_tolerance = <REAL>] \
[merit_function = <STRING>] [central_path = <STRING>] \
[steplength_to_boundary = <REAL>] \
[centering_parameter = <REAL>] ) \

| \
( {optpp_fd_newton} \

[ {search_method} {value_based_line_search} | \
{gradient_based_line_search} | {trust_region} | \
{tr_pds} ] \

[max_step = <REAL>] [gradient_tolerance = <REAL>] \
[merit_function = <STRING>] [central_path = <STRING>] \
[steplength_to_boundary = <REAL>] \
[centering_parameter = <REAL>] ) \

| \
( {optpp_g_newton} \

[ {search_method} {value_based_line_search} | \
{gradient_based_line_search} | {trust_region} | \
{tr_pds} ] \

[max_step = <REAL>] [gradient_tolerance = <REAL>] \
[merit_function = <STRING>] [central_path = <STRING>] \
[steplength_to_boundary = <REAL>] \
[centering_parameter = <REAL>] ) \

| \
( {optpp_newton} \

[ {search_method} {value_based_line_search} | \
{gradient_based_line_search} | {trust_region} | \
{tr_pds} ] \

[max_step = <REAL>] [gradient_tolerance = <REAL>] \
[merit_function = <STRING>] [central_path = <STRING>] \
[steplength_to_boundary = <REAL>] \
[centering_parameter = <REAL>] ) \

| \
( {optpp_pds} \

[search_scheme_size = <INTEGER>] ) \
| \
( {coliny_apps} \

[solution_accuracy = <REAL>] \
{initial_delta = <REAL>} {threshold_delta = <REAL>} \
[contraction_factor = <REAL>] \
[ {synchronization} {blocking} | {nonblocking} ] \
[constraint_penalty = <REAL>] \
[show_misc_options] [misc_options = <LISTof><STRING>] ) \

| \
( {coliny_cobyla} \

[solution_accuracy = <REAL>] \
{initial_delta = <REAL>} {threshold_delta = <REAL>} \
[show_misc_options] [misc_options = <LISTof><STRING>] ) \

| \
( {coliny_direct} \

[solution_accuracy = <REAL>] \
[ {division} {major_dimension} | {all_dimensions} ] \
[global_balance_parameter = <REAL>] \
[local_balance_parameter = <REAL>] \
[max_boxsize_limit = <REAL>] \
[min_boxsize_limit = <REAL>] \
[constraint_penalty = <REAL>] \
[show_misc_options] [misc_options = <LISTof><STRING>] ) \

| \
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( {coliny_pattern_search} \
[solution_accuracy = <REAL>] \
{initial_delta = <REAL>} {threshold_delta = <REAL>} \
[contraction_factor = <REAL>] \
[no_expansion] [expand_after_success = <INTEGER>] \
[ {pattern_basis} {coordinate} | {simplex} ] \
[ {stochastic} [seed = <INTEGER>] ] \
[total_pattern_size = <INTEGER>] \
[ {exploratory_moves} {multi_step} | \
{adaptive_pattern} | {basic_pattern} ] \

[ {synchronization} {blocking} | {nonblocking} ] \
[constraint_penalty = <REAL>] [constant_penalty] \
[show_misc_options] [misc_options = <LISTof><STRING>] ) \

| \
( {coliny_solis_wets} \

[solution_accuracy = <REAL>] \
[seed = <INTEGER>] \
{initial_delta = <REAL>} {threshold_delta = <REAL>} \
[no_expansion] [expand_after_success = <INTEGER>] \
[contract_after_failure = <INTEGER>] \
[contraction_factor = <REAL>] \
[constraint_penalty = <REAL>] [constant_penalty] \
[show_misc_options] [misc_options = <LISTof><STRING>] ) \

| \
( {coliny_misc_solver} \

[show_misc_options] [misc_options = <LISTof><STRING>] ) \
| \
( {sgopt_pga_real} \

[solution_accuracy = <REAL>] \
[seed = <INTEGER>] \
[ {initialization_type} {random} | {unique_random} | \
{flat_file = <STRING>} \
[population_size = <INTEGER>] ] \

[ {selection_pressure} {rank} | {proportional} ] \
[ {replacement_type} {random = <INTEGER>} | \
{chc = <INTEGER>} | {elitist = <INTEGER>} \
[new_solutions_generated = <INTEGER>] ] \

[ {crossover_type} {two_point} | {blend} | {uniform} \
[crossover_rate = <REAL>] ] \

[ {mutation_type} {replace_uniform} | \
( {offset_normal} [mutation_scale = <REAL>] ) | \
( {offset_cauchy} [mutation_scale = <REAL>] ) | \
( {offset_uniform} [mutation_scale = <REAL>] ) | \
( {offset_triangular} [mutation_scale = <REAL>] ) \

[dimension_rate = <REAL>] [population_rate = <REAL>] \
[non_adaptive] ] ) \

| \
( {sgopt_pga_int} \

[solution_accuracy = <REAL>] \
[seed = <INTEGER>] \
[ {initialization_type} {random} | {unique_random} | \
{flat_file = <STRING>} \
[population_size = <INTEGER>] ] \

[ {selection_pressure} {rank} | {proportional} ] \
[ {replacement_type} {random = <INTEGER>} | \
{chc = <INTEGER>} | {elitist = <INTEGER>} \
[new_solutions_generated = <INTEGER>] ] \

[ {crossover_type} {two_point} | {uniform} \
[crossover_rate = <REAL>] ] \

[ {mutation_type} {replace_uniform} | \
( {offset_uniform} [mutation_range = <INTEGER>] ) \

[dimension_rate = <REAL>] \
[population_rate = <REAL>] ] ) \

| \
( {sgopt_epsa} \
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[solution_accuracy = <REAL>] \
[seed = <INTEGER>] \
[ {initialization_type} {random} | {unique_random} | \
{flat_file = <STRING>} \
[population_size = <INTEGER>] ] \

[ {selection_pressure} {rank} | {proportional} ] \
[ {replacement_type} {random = <INTEGER>} | \
{chc = <INTEGER>} | {elitist = <INTEGER>} \
[new_solutions_generated = <INTEGER>] ] \

[ {crossover_type} {two_point} | {uniform} \
[crossover_rate = <REAL>] ] \

[ {mutation_type} {unary_coord} | {unary_simplex} | \
( {multi_coord} [dimension_rate = <REAL>] ) | \
( {multi_simplex} [dimension_rate = <REAL>] ) \

[mutation_scale = <REAL>] [min_scale = <REAL>] \
[population_rate = <REAL>] ] \

[num_partitions = <INTEGER>] ) \
| \
( {sgopt_pattern_search} \

[solution_accuracy = <REAL>] \
[ {stochastic} [seed = <INTEGER>] ] \
{initial_delta = <REAL>} {threshold_delta = <REAL>} \
[ {pattern_basis} {coordinate} | {simplex} ] \
[total_pattern_size = <INTEGER>] \
[no_expansion] [expand_after_success = <INTEGER>] \
[contraction_factor = <REAL>] \
[ {exploratory_moves} {multi_step} | {best_all} | \
{best_first} | {biased_best_first} | \
{adaptive_pattern} | {test} ] ) \

| \
( {sgopt_solis_wets} \

[solution_accuracy = <REAL>] \
[seed = <INTEGER>] \
{initial_delta = <REAL>} {threshold_delta = <REAL>} \
[no_expansion] [expand_after_success = <INTEGER>] \
[contract_after_failure = <INTEGER>] \
[contraction_factor = <REAL>] ) \

| \
( {sgopt_strat_mc} \

[solution_accuracy = <REAL>] \
[seed = <INTEGER>] [batch_size = <INTEGER>] \
[partitions = <LISTof><INTEGER>] ) \

| \
( {moga} \

[seed = <INTEGER>] \
[ {initialization_type} {random} | {unique_random} | \
{flat_file = <STRING>} \
[population_size = <INTEGER>] ] \

[ {crossover_type} {multi_point_binary = <INTEGER>} | \
{multi_point_parameterized_binary = <INTEGER>} | \
{multi_point_real = <INTEGER>} | \
( {shuffle_random} [num_parents = <INTEGER>] \

[num_offspring = <INTEGER>] ) \
[crossover_rate = <REAL>] ] \

[ {mutation_type} {bit_random} | {replace_uniform} | \
( {offset_normal} [mutation_scale = <REAL>] ) | \
( {offset_cauchy} [mutation_scale = <REAL>] ) | \
( {offset_uniform} [mutation_scale = <REAL>] ) \
[population_rate = <REAL>] ] \

[ {replacement_type} {roulette_wheel} | \
{unique_roulette_wheel} | \
( {domination_count} [domination_cutoff = <INTEGER>] \

[shrinkage_percentage = <REAL>] ) ] ) \
| \
( {soga} \
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[seed = <INTEGER>] \
[ {initialization_type} {random} | {unique_random} | \
{flat_file = <STRING>} \
[population_size = <INTEGER>] ] \

[ {crossover_type} {multi_point_binary = <INTEGER>} | \
{multi_point_parameterized_binary = <INTEGER>} | \
{multi_point_real = <INTEGER>} | \
( {shuffle_random} [num_parents = <INTEGER>] \

[num_offspring = <INTEGER>] ) \
[crossover_rate = <REAL>] ] \

[ {mutation_type} {bit_random} | {replace_uniform} | \
( {offset_normal} [mutation_scale = <REAL>] ) | \
( {offset_cauchy} [mutation_scale = <REAL>] ) | \
( {offset_uniform} [mutation_scale = <REAL>] ) \
[population_rate = <REAL>] ] \

[ {replacement_type} {favor_feasible} | \
( {roulette_wheel} \

[exterior_penalty_multiplier = <REAL>] ) | \
( {unique_roulette_wheel} \

[exterior_penalty_multiplier = <REAL>] ) ] \
[ {convergence_type} \
( {best_fitness_tracker} [percent_change = <REAL>] \

[num_generations = <INTEGER>] ) | \
( {average_fitness_tracker} [percent_change = <REAL>] \

[num_generations = <INTEGER>] ) ] ) \
| \
( {nond_polynomial_chaos} \

{expansion_terms = <INTEGER>} | \
{expansion_order = <INTEGER>} \
[seed = <INTEGER>] [fixed_seed] [samples = <INTEGER>] \
[ {sample_type} {random} | {lhs} ] \
[ {distribution} {cumulative} | {complementary} ] \
[ {response_levels = <LISTof><REAL>} \
[num_response_levels = <LISTof><INTEGER>] \
[ {compute} {probabilities} | {reliabilities} ] ] \

[ {probability_levels = <LISTof><REAL>} \
[num_probability_levels = <LISTof><INTEGER>] ] \

[ {reliability_levels = <LISTof><REAL>} \
[num_reliability_levels = <LISTof><INTEGER>] ] ) \

| \
( {nond_sampling} \

[seed = <INTEGER>] [fixed_seed] [samples = <INTEGER>] \
[ {sample_type} {random} | {lhs} ] [all_variables] \
[ {distribution} {cumulative} | {complementary} ] \
[ {response_levels = <LISTof><REAL>} \
[num_response_levels = <LISTof><INTEGER>] \
[ {compute} {probabilities} | {reliabilities} ] ] \

[ {probability_levels = <LISTof><REAL>} \
[num_probability_levels = <LISTof><INTEGER>] ] \

[ {reliability_levels = <LISTof><REAL>} \
[num_reliability_levels = <LISTof><INTEGER>] ] \

[variance_based_decomp] ) \
| \
( {nond_reliability} \

[ {mpp_search} {x_linearize_mean} | {x_linearize_mpp} | \
{u_linearize_mean} | {u_linearize_mpp} | \
{no_linearize} [sqp] [nip] ] \

[ {integration} {first_order} | {second_order} ] \
[ {distribution} {cumulative} | {complementary} ] \
[ {response_levels = <LISTof><REAL>} \
[num_response_levels = <LISTof><INTEGER>] \
[ {compute} {probabilities} | {reliabilities} ] ] \

[ {probability_levels = <LISTof><REAL>} \
[num_probability_levels = <LISTof><INTEGER>] ] \

[ {reliability_levels = <LISTof><REAL>} \
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[num_reliability_levels = <LISTof><INTEGER>] ] ) \
| \
( {dace} \

{grid} | {random} | {oas} | {lhs} | {oa_lhs} | \
{box_behnken} | {central_composite} \
[quality_metrics] [variance_based_decomp] \
[seed = <INTEGER>] [fixed_seed] \
[samples = <INTEGER>] [symbols = <INTEGER>] ) \

\
| \
( {fsu_quasi_mc} \

{halton} | {hammersley} \
[latinize] [quality_metrics] [variance_based_decomp] \
[samples = <INTEGER>] [fixed_sequence] \
[sequence_start = <LISTof><INTEGER>] \
[sequence_leap = <LISTof><INTEGER>] \
[prime_base = <LISTof><INTEGER>] ) \

| \
( {fsu_cvt} \

[latinize] [quality_metrics] [variance_based_decomp] \
[seed = <INTEGER>] [fixed_seed] \
[samples = <INTEGER>] \
[ {trial_type} {grid} | {halton} | {random} ] \
[num_trials = <INTEGER>] ) \

| \
( {vector_parameter_study} \

( {final_point = <LISTof><REAL>} \
{step_length = <REAL>} | {num_steps = <INTEGER>} ) \

| \
( {step_vector = <LISTof><REAL>} \
{num_steps = <INTEGER>} ) ) \

| \
( {list_parameter_study} \

{list_of_points = <LISTof><REAL>} ) \
| \
( {centered_parameter_study} \

{percent_delta = <REAL>} \
{deltas_per_variable = <INTEGER>} ) \

| \
( {multidim_parameter_study} \

{partitions = <LISTof><INTEGER>} )
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Chapter 3

Commands Introduction

3.1 Overview

In the DAKOTA system, a strategy governs how each method maps variables into responses through the
use of an interface. Each of these five pieces (strategy, method, variables, responses, and interface) are
separate specifications in the user’s input file, and as a whole, determine the study to be performed during
an execution of the DAKOTA software. The number of strategies which can be invoked during a DAKOTA
execution is limited to one. This strategy, however, may invoke multiple methods. Furthermore, each
method may (in general) have its own "model," consisting of its own set of variables, its own interface, and
its own set of responses. Thus, there may be multiple specifications of the method, variables, interface, and
responses sections.

The syntax of DAKOTA specification is governed by the Input Deck Reader (IDR) parsing system
[Weatherby et al., 1996], which uses the dakota.input.spec file to describe the allowable inputs to the sys-
tem. This input specification file, then, provides a quick reference to the allowable system inputs from
which a particular input file (e.g., dakota.in) can be derived.

This Reference Manual focuses on providing complete details for the allowable specifications in an in-
put file to the DAKOTA program. Related details on the name and location of the DAKOTA program,
command line inputs, and execution syntax are provided in the Users Manual [Eldred et al., 2004a].

3.2 IDR Input Specification File

DAKOTA input is governed by the IDR input specification file. This file (dakota.input.spec) is used by a
code generator to create parsing system components which are compiled into the DAKOTA executable (re-
fer to Instructions for Modifying DAKOTA’s Input Specification for additional information). Therefore,
dakota.input.spec is the definitive source for input syntax, capability options, and optional and required ca-
pability sub-parameters. Beginning users may find this file more confusing than helpful and, in this case,
adaptation of example input files to a particular problem may be a more effective approach. However,
advanced users can master all of the various input specification possibilities once the structure of the input
specification file is understood.

Refer to the dakota.input.spec documentation for a listing of the current version and discussion of speci-
fication features. From this file listing, it can be seen that the main structure of the variables keyword is
that of ten optional group specifications for continuous design, discrete design, normal uncertain, lognor-
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mal uncertain, uniform uncertain, loguniform uncertain, weibull uncertain, histogram uncertain, continu-
ous state, and discrete state variables. Each of these specifications can either appear or not appear as a
group. Next, the interface keyword requires the selection of either an application OR an approximation
interface. The type of application interface must be specified with either a system OR fork OR direct
OR grid required group specification, or the type of approximation interface must be specified with ei-
ther a global OR multipoint OR local OR hierarchical required group specification. Within the responses
keyword, the primary structure is the required specification of the function set (either optimization func-
tions OR least squares functions OR generic response functions), followed by the required specification
of the gradients (either none OR numerical OR analytic OR mixed) and the required specification of the
Hessians (either none OR analytic). The strategy specification requires either a multi-level OR surrogate-
based optimization OR optimization under uncertainty OR branch and bound OR multi-start OR pareto
set OR single method strategy specification. Lastly, the method keyword is the most lengthy specifica-
tion; however, its structure is relatively simple. The structure is simply that of a set of optional method-
independent settings followed by a long list of possible methods appearing as required group specifications
(containing a variety of method-dependent settings) separated by OR’s. Refer to Strategy Commands,
Method Commands, Variables Commands, Interface Commands, and Responses Commands for detailed
information on the keywords and their various optional and required specifications. And for additional
details on IDR specification logic and rules, refer to [Weatherby et al., 1996].

3.3 Common Specification Mistakes

Spelling and omission of required parameters are the most common errors. Less obvious errors include:

� Documentation of new capability sometimes lags the use of new capability in executables (especially
experimental executables from nightly builds). When parsing errors occur which the documentation
cannot explain, reference to the particular input specification used in building the executable (which
is installed alongside the executable) will often resolve the errors.

� Since keywords are terminated with the newline character, care must be taken to avoid following the
backslash character with any white space since the newline character will not be properly escaped,
resulting in parsing errors due to the truncation of the keyword specification.

� Care must be taken to include newline escapes when embedding comments within a keyword spec-
ification. That is, newline characters will signal the end of a keyword specification even if they are
part of a comment line. For example, the following specification will be truncated because one of
the embedded comments neglects to escape the newline:

# No error here: newline need not be escaped since comment is not embedded
responses, \
# No error here: newline is escaped \

num_objective_functions = 1 \
# Error here: this comment must escape the newline

analytic_gradients \
no_hessians

In most cases, the IDR system provides helpful error messages which will help the user isolate the source
of the parsing problem.

3.4 Sample dakota.in Files

A DAKOTA input file is a collection of the fields allowed in the dakota.input.spec specification file which
describe the problem to be solved by the DAKOTA system. Several examples follow.
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3.4.1 Sample 1: Optimization

The following sample input file shows single-method optimization of the Textbook Example using
DOT’s modified method of feasible directions. A similar file is available in the test directory as
Dakota/test/dakota_textbook.in.

strategy,\
single_method

method,\
dot_mmfd \

max_iterations = 50 \
convergence_tolerance = 1e-4 \
output verbose

variables,\
continuous_design = 2 \

cdv_initial_point 0.9 1.1 \
cdv_upper_bounds 5.8 2.9 \
cdv_lower_bounds 0.5 -2.9 \
cdv_descriptor ’x1’ ’x2’

interface,\
application system \

analysis_driver = ’text_book’\
parameters_file = ’text_book.in’\
results_file = ’text_book.out’\
file_tag file_save

responses,\
num_objective_functions = 1 \
num_nonlinear_inequality_constraints = 2 \
analytic_gradients \
no_hessians

3.4.2 Sample 2: Least Squares

The following sample input file shows a nonlinear least squares solution of the Rosenbrock Ex-
ample using OPT++’s Gauss-Newton method. A similar file is available in the test directory as
Dakota/test/dakota_rosenbrock.in.

strategy,\
single_method

method, \
optpp_g_newton \

max_iterations = 50 \
convergence_tolerance = 1e-4

variables,\
continuous_design = 2 \

cdv_initial_point -1.2 1.0 \
cdv_lower_bounds -2.0 -2.0 \
cdv_upper_bounds 2.0 2.0 \
cdv_descriptor ’x1’ ’x2’

interface,\
application system \
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analysis_driver = ’rosenbrock’

responses, \
num_least_squares_terms = 2 \
analytic_gradients \
no_hessians

3.4.3 Sample 3: Nondeterministic Analysis

The following sample input file shows Latin Hypercube Monte Carlo sampling using the Textbook Exam-
ple. A similar file is available in the test directory as Dakota/test/dakota_textbook_lhs.in.

strategy,\
single_method graphics

method,\
nond_sampling \

samples = 100 seed = 12345 \
sample_type lhs \
response_levels = 3.6e+11 6.e+04 3.5e+05

variables,\
normal_uncertain = 2 \

nuv_means = 248.89, 593.33 \
nuv_std_deviations = 12.4, 29.7 \
nuv_descriptor = ’TF1n’ ’TF2n’\

uniform_uncertain = 2 \
uuv_dist_lower_bounds = 199.3, 474.63 \
uuv_dist_upper_bounds = 298.5, 712. \
uuv_descriptor = ’TF1u’ ’TF2u’\

weibull_uncertain = 2 \
wuv_alphas = 12., 30. \
wuv_betas = 250., 590. \
wuv_descriptor = ’TF1w’ ’TF2w’

interface,\
application system asynch evaluation_concurrency = 5 \

analysis_driver = ’text_book’

responses,\
num_response_functions = 3 \
no_gradients \
no_hessians

3.4.4 Sample 4: Parameter Study

The following sample input file shows a 1-D vector parameter study using the Textbook Example. A similar
file is available in the test directory as Dakota/test/dakota_pstudy.in.

method,\
vector_parameter_study \

step_vector = .1 .1 .1 \
num_steps = 4
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variables,\
continuous_design = 3 \

cdv_initial_point 1.0 1.0 1.0

interface,\
application system asynchronous \

analysis_driver = ’text_book’

responses,\
num_objective_functions = 1 \
num_nonlinear_inequality_constraints = 2 \
analytic_gradients \
analytic_hessians

3.4.5 Sample 5: Multilevel Hybrid Strategy

The following sample input file shows a multilevel hybrid strategy using three methods. It employs a
genetic algorithm, pattern search, and full Newton gradient-based optimization in succession to solve
the Textbook Example. A similar file is available in the test directory as Dakota/test/dakota_-
multilevel.in.

strategy,\
graphics \
multi_level uncoupled \

method_list = ’GA’ ’CPS’ ’NLP’

method,\
id_method = ’GA’\
model_type single \

variables_pointer = ’V1’\
interface_pointer = ’I1’\
responses_pointer = ’R1’\

sgopt_pga_real \
population_size = 10 \
output verbose

method,\
id_method = ’PS’\
model_type single \

variables_pointer = ’V1’\
interface_pointer = ’I1’\
responses_pointer = ’R1’\

sgopt_pattern_search stochastic \
output verbose \
initial_delta = 0.1 \
threshold_delta = 1.e-4 \
solution_accuracy = 1.e-10 \
exploratory_moves best_first

method,\
id_method = ’NLP’\
model_type single \

variables_pointer = ’V1’\
interface_pointer = ’I1’\
responses_pointer = ’R2’\

optpp_newton \
gradient_tolerance = 1.e-12 \
convergence_tolerance = 1.e-15
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variables,\
id_variables = ’V1’\
continuous_design = 2 \

cdv_initial_point 0.6 0.7 \
cdv_upper_bounds 5.8 2.9 \
cdv_lower_bounds 0.5 -2.9 \
cdv_descriptor ’x1’ ’x2’

interface,\
id_interface = ’I1’\
application direct,\

analysis_driver = ’text_book’

responses,\
id_responses = ’R1’\
num_objective_functions = 1 \
no_gradients \
no_hessians

responses,\
id_responses = ’R2’\
num_objective_functions = 1 \
analytic_gradients \
analytic_hessians

Additional example input files, as well as the corresponding output and graphics, are provided in the Getting
Started chapter of the Users Manual [Eldred et al., 2004a].

3.5 Tabular descriptions

In the following discussions of keyword specifications, tabular formats (Tables 4.1 through 8.7) are used
to present a short description of the specification, the keyword used in the specification, the type of data
associated with the keyword, the status of the specification (required, optional, required group, or optional
group), and the default for an optional specification.

It can be difficult to capture in a simple tabular format the complex relationships that can occur when speci-
fications are nested within multiple groupings. For example, in an interface keyword, the parameters_-
file specification is an optional specification within the system and fork required group specifica-
tions, which are separated from each other and from other required group specifications (direct and
grid) by logical OR’s. The selection between the system, fork, direct, or grid required groups
is contained within another required group specification (application), which is separated from the
approximation required group specification by a logical OR. Rather than unnecessarily proliferate the
number of tables in attempting to capture all of these inter-relationships, a balance is sought, since some
inter-relationships are more easily discussed in the associated text. The general structure of the following
sections is to present the outermost specification groups first (e.g., application in Tables 7.2 and 7.3),
followed by lower levels of specifications (e.g., system, fork, direct, or grid in Tables 7.4 through
7.7) in succession.

Generated on Thu Dec 23 14:56:40 2004 for DAKOTA by Doxygen



Chapter 4

Strategy Commands

4.1 Strategy Description

The strategy section in a DAKOTA input file specifies the top level technique which will govern the man-
agement of iterators and models in the solution of the problem of interest. Seven strategies currently exist:
multi_level, surrogate_based_opt, opt_under_uncertainty, branch_and_bound,
multi_start, pareto_set, and single_method. These algorithms are implemented within the
Strategy "Strategy" class hierarchy in the MultilevelOptStrategy, SurrBasedOptStrategy, NonDOpt-
Strategy, BranchBndStrategy, ConcurrentStrategy, and SingleMethodStrategy classes. For each of
the strategies, a brief algorithm description is given below. Additional information on the algorithm logic
is available in the Users Manual [Eldred et al., 2004a].

In a multi-level hybrid optimization strategy (multi_level), a list of methods is specified which will
be used synergistically in seeking an optimal design. The goal here is to exploit the strengths of different
optimization algorithms through different stages of the optimization process. Global/local hybrids (e.g.,
genetic algorithms combined with nonlinear programming) are a common example in which the desire for
identification of a global optimum is balanced with the need for efficient navigation to a local optimum.

In surrogate-based optimization (surrogate_based_opt), optimization occurs using an approxima-
tion model, i.e., a surrogate model, that is built and periodically updated using data from a "truth" model.
The surrogate model can be a global data fit (e.g., a smoothing polynomial or an interpolation function
built from a design of computer experiments database), a multipoint approximation, a local Taylor Series
expansion, or a model hierarchy approximation (e.g., a low-fidelity simulation model), whereas the truth
model typically is a high-fidelity simulation model. A trust region strategy is used to manage the optimiza-
tion process to maintain acceptable accuracy between the surrogate model and the truth model (by limiting
the range over which the surrogate model is trusted). The process involves a sequence of optimization
runs performed on the surrogate model and bounded by the trust region. At the end of each optimization
run, the candidate optimum point found by the optimizer is evaluated using both the surrogate model and
the truth model. If sufficient decrease has been obtained in the truth model, the trust region is re-centered
around the candidate optimum point and the trust region will either shrink, expand, or remain the same
size depending on the accuracy with which the surrogate model predicted the truth model decrease. If
sufficient decrease has not been attained, the trust region center is not updated and the entire trust region
shrinks by a user-specified factor. The cycle then repeats with the construction of a new surrogate model,
an optimization run, and another test for sufficient decrease in the truth model. This cycle continues until
convergence is attained. The goals of surrogate-based optimization are to reduce the total number of truth
model simulations and, in the case of surface fit surrogate models, to smooth noisy data with an easily
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navigated analytic function.

In optimization under uncertainty (opt_under_uncertainty), a nondeterministic method is used to
evaluate the effect of uncertain variables, modeled using probabilistic distributions, on responses of interest.
Statistics on these responses are then included in the objective and constraint functions of the optimization
problem (for example, to minimize probability of failure). The nondeterministic method may be nested
directly within the optimization function evaluations, or the expense of direct nesting can be mitigated
through the use of surrogates (using the sub-model recursion features of NestedModel, SurrLayered-
Model, and HierLayeredModel to combine surrogates with nested iteration). Common optimization under
uncertainty choices include surrogate-based optimization under uncertainty (which nests sampling-based
uncertainty quantification within surrogate-based optimization) and reliability-based design optimization
(which nests reliability analysis within gradient-based optimization).

In the branch and bound strategy (branch_and_bound), mixed integer nonlinear programs (nonlinear
applications with a mixture of continuous and discrete variables) can be solved through the combination of
the PICO parallel branching algorithm with the nonlinear programming algorithms available in DAKOTA.
Since PICO supports parallel branch and bound techniques, multiple bounding operations can be per-
formed concurrently for different branches, which provides for concurrency in nonlinear optimizations
for DAKOTA. This is an additional level of parallelism, beyond those available for a single optimization
(concurrent evaluations within an optimizer, concurrent analyses within an evaluation, and multiprocessor
analyses). Branch and bound is applicable when the discrete variables can assume continuous values dur-
ing the solution process (i.e., the integrality conditions are relaxable). It proceeds by performing a series of
continuous-valued optimizations for different variable bounds which, in the end, drive the discrete variables
to integer values.

In the multi-start iteration strategy (multi_start), a series of iterator runs are performed for different
values of parameters in the model. A common use is for multi-start optimization (i.e., different local
optimization runs from different starting points for the design variables), but the concept and the code are
more general. An important feature is that these iterator runs may be performed concurrently, similar to
the branch and bound strategy discussed above.

In the pareto set optimization strategy (pareto_set), a series of optimization runs are performed for
different weightings applied to multiple objective functions. This set of optimal solutions defines a "Pareto
set," which is useful for investigating design trade-offs between competing objectives. Again, these op-
timizations can be performed concurrently, similar to the branch and bound and multi-start strategies
discussed above. The code is similar enough to the multi_start technique that both strategies are
implemented in the same ConcurrentStrategy class.

Lastly, the single_method strategy is a "fall through" strategy in that it does not provide control over
multiple iterators or multiple models. Rather, it provides the means for simple execution of a single iterator
on a single model.

Each of the strategy specifications identifies one or more method pointers (e.g., method_list, opt_-
method_pointer) to identify the iterators that will be used in the strategy. These method pointers
are strings that correspond to the id_method identifier strings from the method specifications (see
Method Independent Controls). These string identifiers (e.g., ’NLP1’) should not be confused with method
selections (e.g., dot_mmfd). Each of the method specifications identified in this manner has the responsi-
bility for identifying the variables, interface, and responses specifications (using variables_pointer,
interface_pointer, and responses_pointer from Method Independent Controls) that are used
to build the model used by the iterator. If a method specification does not provide a particular pointer, then
that component of the model will be built using the last specification parsed. In addition to method point-
ers, a variety of graphics options (e.g., tabular_graphics_data), iterator concurrency controls (e.g.,
iterator_servers), and strategy data (e.g., starting_points) can be specified.

Specification of a strategy block in an input file is optional, with single_method being the default
strategy. If no strategy is specified or if single_method is specified without its optional method_-
pointer specification, then the default behavior is to employ the last method, variables, interface, and
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responses specifications parsed. This default behavior is most appropriate if only one specification is
present for method, variables, interface, and responses, since there is no ambiguity in this case.

Example specifications for each of the strategies follow. A multi_level example is:

strategy, \
multi_level uncoupled \

method_list = ’GA1’, ’CPS1’, ’NLP1’

A surrogate_based_opt example specification is:

strategy, \
graphics \

surrogate_based_opt \
opt_method_pointer = ’NLP1’ \
trust_region initial_size = 0.10

An opt_under_uncertainty example specification is:

strategy, \
opt_under_uncertainty \

opt_method_pointer = ’NLP1’

A branch_and_bound example specification is:

strategy, \
iterator_servers = 4 \
branch_and_bound \

opt_method_pointer = ’NLP1’

A multi_start example specification is:

strategy, \
multi_start \

method_pointer = ’NLP1’ \
random_starts = 10

A pareto_set example specification is:

strategy, \
pareto_set \

opt_method_pointer = ’NLP1’ \
random_weight_sets = 10

And finally, a single_method example specification is:

strategy, \
single_method \

method_pointer = ’NLP1’
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4.2 Strategy Specification

The strategy specification has the following structure:

strategy, \
<strategy independent controls>\
<strategy selection>\

<strategy dependent controls>

where � strategy selection � is one of the following: multi_level, surrogate_based_-
opt, opt_under_uncertainty, branch_and_bound, multi_start, pareto_set, or
single_method.

The � strategy independent controls � are those controls which are valid for a variety of
strategies. Unlike the Method Independent Controls, which can be abstractions with slightly different
implementations from one method to the next, the implementations of each of the strategy independent
controls are consistent for all strategies that use them. The � strategy dependent controls �
are those controls which are only meaningful for a specific strategy. Referring to dakota.input.spec, the
strategy independent controls are those controls defined externally from and prior to the strategy selection
blocks. They are all optional. The strategy selection blocks are all required group specifications separated
by logical OR’s (multi_levelOR surrogate_based_optOR opt_under_uncertaintyOR
branch_and_bound OR multi_start OR pareto_set OR single_method). Thus, one and
only one strategy selection must be provided. The strategy dependent controls are those controls defined
within the strategy selection blocks. Defaults for strategy independent and strategy dependent controls
are defined in DataStrategy. The following sections provide additional detail on the strategy independent
controls followed by the strategy selections and their corresponding strategy dependent controls.

4.3 Strategy Independent Controls

The strategy independent controls include graphics, tabular_graphics_data, tabular_-
graphics_file, iterator_servers, iterator_self_scheduling, and iterator_-
static_scheduling. The graphics flag activates a 2D graphics window containing history plots
for the variables and response functions in the study. This window is updated in an event loop with
approximately a 2 second cycle time. For applications utilizing approximations over 2 variables, a 3D
graphics window containing a surface plot of the approximation will also be activated. The tabular_-
graphics_data flag activates file tabulation of the same variables and response function history data
that gets passed to graphics windows with use of the graphics flag. The tabular_graphics_file
specification optionally specifies a name to use for this file (dakota_tabular.dat is the default).
Within the file, the variables and response functions appear as columns and each function evaluation pro-
vides a new table row. This capability is most useful for post-processing of DAKOTA results with 3rd
party graphics tools such as MATLAB, Tecplot, etc. There is no dependence between the graphics
flag and the tabular_graphics_data flag; they may be used independently or concurrently. The
iterator_servers, iterator_self_scheduling, and iterator_static_scheduling
specifications provide manual overrides for the number of concurrent iterator partitions and the schedul-
ing policy for concurrent iterator jobs. These settings are normally determined automatically in the
parallel configuration routines (see ParallelLibrary) but can be overridden with user inputs if desired.
The graphics, tabular_graphics_data, and tabular_graphics_file specifications are
valid for all strategies. However, the iterator_servers, iterator_self_scheduling, and
iterator_static_scheduling overrides are only useful inputs for those strategies supporting con-
currency in iterators, i.e., branch_and_bound, multi_start, and pareto_set (opt_under_-
uncertainty will support this in the future once full NestedModel parallelism support is in place).
Table 4.1 summarizes the strategy independent controls.
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Description Keyword Associated Data Status Default
Graphics flag graphics none Optional no graphics
Tabulation of
graphics data

tabular_-
graphics_-
data

none Optional group no data tabulation

File name for
tabular graphics
data

tabular_-
graphics_-
file

string Optional dakota_-
tabular.dat

Number of
iterator servers

iterator_-
servers

integer Optional no override of
auto configure

Self-scheduling
of iterator jobs

iterator_-
self_-
scheduling

none Optional no override of
auto configure

Static scheduling
of iterator jobs

iterator_-
static_-
scheduling

none Optional no override of
auto configure

Table 4.1: Specification detail for strategy independent controls

4.4 Multilevel Hybrid Optimization Commands

The multi-level hybrid optimization strategy has uncoupled, uncoupled adaptive, and coupled
approaches (see the Users Manual for more information on the algorithms employed). In the two uncoupled
approaches, a list of method strings supplied with the method_list specification specifies the identity
and sequence of iterators to be used. Any number of iterators may be specified. The uncoupled adaptive
approach may be specified by turning on the adaptive flag. If this flag in specified, then progress_-
threshold must also be specified since it is a required part of adaptive specification. In the nonadaptive
case, method switching is managed through the separate convergence controls of each method. In the
adaptive case, however, method switching occurs when the internal progress metric (normalized between
0.0 and 1.0) falls below the user specified progress_threshold. Table 4.2 summarizes the uncoupled
multi-level strategy inputs.

Description Keyword Associated Data Status Default
Multi-level
hybrid strategy

multi_level none Required group
(1 of 7 selections)

N/A

Uncoupled
hybrid

uncoupled none Required group
(1 of 2 selections)

N/A

Adaptive flag uncoupled none Optional group nonadaptive
hybrid

Adaptive
progress
threshold

progress_-
threshold

real Required N/A

List of methods method_list list of strings Required N/A

Table 4.2: Specification detail for uncoupled multi-level strategies

In the coupled approach, global and local method strings supplied with the global_method_-
pointer and local_method_pointer specifications identify the two methods to be used. The
local_search_probability setting is an optional specification for supplying the probability (be-
tween 0.0 and 1.0) of employing local search to improve estimates within the global search. Table 4.3
summarizes the coupled multi-level strategy inputs.
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Description Keyword Associated Data Status Default
Multi-level
hybrid strategy

multi_level none Required group
(1 of 7 selections)

N/A

Coupled hybrid coupled none Required group
(1 of 2 selections)

N/A

Pointer to the
global method
specification

global_-
method_-
pointer

string Required N/A

Pointer to the
local method
specification

local_-
method_-
pointer

string Required N/A

Probability of
executing local
searches

local_-
search_-
probability

real Optional 0.1

Table 4.3: Specification detail for coupled multi-level strategies

4.5 Surrogate-based Optimization (SBO) Commands

The surrogate_based_opt strategy must specify an optimization method using opt_method_-
pointer. The method specification identified by opt_method_pointer is responsible for selecting
a layeredmodel for use as the surrogate (see Method Independent Controls). Algorithm controls include
max_iterations (the maximum number of SBO cycles allowed), convergence_tolerance (the
relative tolerance used in internal SBO convergence assessments), soft_convergence_limit (a soft
convergence control for the SBO iterations which limits the number of consecutive iterations with im-
provement less than the convergence tolerance), and truth_surrogate_bypass (a flag for bypassing
all lower level surrogates when performing truth verifications on a top level surrogate). In addition, the
trust_region optional group specification can be used to specify the initial size of the trust region
(using initial_size) relative to the total variable bounds, the minimum size of the trust region (us-
ing minimum_size), the contraction factor for the trust region size (using contraction_factor)
used when the surrogate model is performing poorly, and the expansion factor for the trust region size
(using expansion_factor) used when the the surrogate model is performing well. Two additional
commands are the trust region size contraction threshold (using contract_region_threshold) and
the trust region size expansion threshold (using expand_region_threshold). These two commands
are related to what is called the trust region ratio, which is the actual decrease in the truth model divided
by the predicted decrease in the truth model in the current trust region. The command contract_-
region_threshold sets the minimum acceptable value for the trust region ratio, i.e., values below this
threshold cause the trust region to shrink for the next SBO iteration. The command expand_region_-
threshold determines the trust region value above which the trust region will expand for the next SBO
iteration. Tables 4.4 and 4.5 summarize the surrogate based optimization strategy inputs.

4.6 Optimization Under Uncertainty Commands

The opt_under_uncertainty strategy must specify an optimization iterator using opt_method_-
pointer. In the case of a direct nesting of an uncertainty quantification iterator within the top level
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Description Keyword Associated Data Status Default
Surrogate-based
optimization
strategy

surrogate_-
based_opt

none Required group
(1 of 7 selections)

N/A

Optimization
method pointer

opt_method_-
pointer

string Required N/A

Maximum
number of SBO
iterations

max_-
iterations

integer Optional 100

Convergence
tolerance for
SBO iterations

convergence_-
tolerance

real Optional 1.e-4

Soft convergence
limit for SBO
iterations

soft_-
convergence_-
limit

integer Optional 5

Flag for
bypassing lower
level surrogates
in truth
verifications

truth_-
surrogate_-
bypass

none Optional no bypass

Table 4.4: Specification detail for surrogate based optimization strategies

model, the method specification identified by opt_method_pointer would select a nested model
(see Method Independent Controls). In the case of surrogate-based optimization under uncertainty, the
method specification identified by opt_method_pointer might select either a nested model or a
layeredmodel, since the recursive properties of NestedModel, SurrLayeredModel, and HierLayered-
Model could be utilized to configure any of the following:

� "layered containing nested" (i.e., optimization of a data fit surrogate built using statistical data from
nondeterministic analyses)

� "nested containing layered" (i.e., optimization using nondeterministic analysis data evaluated from a
data fit or hierarchical surrogate)

� "layered containing nested containing layered" (i.e., combination of the two above: optimization of
a data fit surrogate built using statistical data from nondeterministic analyses, where the nondeter-
ministic analyses are performed on a data fit or hierarchical surrogate)

Since most of the sophistication is encapsulated within the nested and layered model classes (see
nested/layered specifications in Method Independent Controls), the optimization under uncertainty strat-
egy inputs are minimal. Table 4.6 summarizes these inputs.

4.7 Branch and Bound Commands

The branch_and_bound strategy must specify an optimization method using opt_method_-
pointer. This optimization method is responsible for computing optimal solutions to nonlinear pro-
grams which arise from different branches of the mixed variable problem. These branches correspond to
different bounds on the discrete variables where the integrality constraints on these variables have been
relaxed. Solutions which are completely feasible with respect to the integrality constraints provide an up-
per bound on the final solution and can be used to prune branches which are not yet integer-feasible and
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Description Keyword Associated Data Status Default
Trust region
group
specification

trust_region none Optional group N/A

Trust region
initial size
(relative to
bounds)

initial_size real Optional 0.4

Trust region
minimum size

minimum_size real Optional 1.e-6

Shrink trust
region if trust
region ratio is
below this value

contract_-
region_-
threshold

real Optional 0.25

Expand trust
region if trust
region ratio is
above this value

expand_-
region_-
threshold

real Optional 0.75

Trust region
contraction factor contraction_-

factor

real Optional 0.25

Trust region
expansion factor

expansion_-
factor

real Optional 2.0

Table 4.5: Specification detail for trust region controls in surrogate based optimization strategies

Description Keyword Associated Data Status Default
Optimization
under uncertainty
strategy

opt_under_-
uncertainty

none Required group
(1 of 7 selections)

N/A

Optimization
method pointer

opt_method_-
pointer

string Required N/A

Table 4.6: Specification detail for optimization under uncertainty strategies

which have higher objective functions. The optional num_samples_at_root and num_samples_-
at_node specifications specify the number of additional function evaluations to perform at the root of
the branching structure and at each node of the branching structure, respectively. These samples are se-
lected randomly within the current variable bounds of the branch. This feature is a simple way to globalize
the optimization of the branches, since nonlinear problems may be multimodal. Table 4.7 summarizes the
branch and bound strategy inputs.

4.8 Multistart Iteration Commands

The multi_start strategy must specify an iterator using method_pointer. This iterator is responsi-
ble for completing a series of iterative analyses from a set of different starting points. These starting points
can be specified as follows: (1) using random_starts, for which the specified number of starting points
are selected randomly within the variable bounds, (2) using starting_points, in which the starting
values are provided in a list, or (3) using both random_starts and starting_points, for which the
combined set of points will be used. In aggregate, at least one starting point must be specified. The most
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Description Keyword Associated Data Status Default
Branch and
bound strategy

branch_and_-
bound

none Required group
(1 of 7 selections)

N/A

Optimization
method pointer

opt_method_-
pointer

string Required N/A

Number of
samples at the
branching root

num_-
samples_at_-
root

integer Optional 0

Number of
samples at each
branching node

num_-
samples_at_-
node

integer Optional 0

Table 4.7: Specification detail for branch and bound strategies

common example of a multi-start strategy is multi-start optimization, in which a series of optimizations
are performed from different starting values for the design variables. This can be an effective approach for
problems with multiple minima. Table 4.8 summarizes the multi-start strategy inputs.

Description Keyword Associated Data Status Default
Multi-start
iteration strategy

multi_start none Required group
(1 of 7 selections)

N/A

Method pointer method_-
pointer

string Required N/A

Number of
random starting
points

random_-
starts

integer Optional group no random
starting points

Seed for random
starting points

seed integer Optional system-generated
seed

List of
user-specified
starting points

starting_-
points

list of reals Optional no user-specified
starting points

Table 4.8: Specification detail for multi-start strategies

4.9 Pareto Set Optimization Commands

The pareto_set strategy must specify an optimization method using opt_method_pointer. This
optimizer is responsible for computing a set of optimal solutions from a set of multiobjective weightings.
These weightings can be specified as follows: (1) using random_weight_sets, in which case weight-
ings are selected randomly within [0,1] bounds, (2) using multi_objective_weight_sets, in
which the weighting sets are specified in a list, or (3) using both random_weight_sets and multi_-
objective_weight_sets, for which the combined set of weights will be used. In aggregate, at least
one set of weights must be specified. The set of optimal solutions is called the "pareto set," which can
provide valuable design trade-off information when there are competing objectives. Table 4.9 summarizes
the pareto set strategy inputs.
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Description Keyword Associated Data Status Default
Pareto set
optimization
strategy

pareto_set none Required group
(1 of 7 selections)

N/A

Optimization
method pointer

opt_method_-
pointer

string Required N/A

Number of
random
weighting sets

random_-
weight_sets

integer Optional no random
weighting sets

Seed for random
weighting sets

seed integer Optional system-generated
seed

List of
user-specified
weighting sets

multi_-
objective_-
weight_sets

list of reals Optional no user-specified
weighting sets

Table 4.9: Specification detail for pareto set strategies

4.10 Single Method Commands

The single method strategy is the default if no strategy specification is included in a user input file. It
may also be specified using the single_method keyword within a strategy specification. An optional
method_pointer specification may be used to point to a particular method specification. If method_-
pointer is not used, then the last method specification parsed will be used as the iterator. Table 4.10
summarizes the single method strategy inputs.

Description Keyword Associated Data Status Default
Single method
strategy

single_-
method

string Required group
(1 of 7 selections)

N/A

Method pointer method_-
pointer

string Optional use of last
method parsed

Table 4.10: Specification detail for single method strategies
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Method Commands

5.1 Method Description

The method section in a DAKOTA input file specifies the name and controls of an iterator. The terms
"method" and "iterator" can be used interchangeably, although method often refers to an input specification
whereas iterator usually refers to an object within the Iterator hierarchy. A method specification, then,
is used to select an iterator from the iterator hierarchy, which includes optimization, uncertainty quantifi-
cation, least squares, design of experiments, and parameter study iterators (see Users Manual for more
information on these iterator branches). This iterator may be used alone or in combination with other it-
erators as dictated by the strategy specification (refer to Strategy Commands for strategy command syntax
and to the Users Manual for strategy algorithm descriptions).

Several examples follow. The first example shows a minimal specification for an optimization method.

method, \
dot_sqp

This example uses all of the defaults for this method.

A more sophisticated example would be

method, \
id_method = ’NLP1’\
model_type single \

variables_pointer = ’V1’\
interface_pointer = ’I1’\
responses_pointer = ’R1’\

dot_sqp \
max_iterations = 50 \
convergence_tolerance = 1e-4 \
output verbose \
optimization_type minimize

This example demonstrates the use of identifiers and pointers (see Method Independent Controls) as
well as some method independent and method dependent controls for the sequential quadratic program-
ming (SQP) algorithm from the DOT library. The max_iterations, convergence_tolerance,
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and output settings are method independent controls, in that they are defined for a variety of meth-
ods (see DOT method independent controls for DOT usage of these controls). The optimization_-
type control is a method dependent control, in that it is only meaningful for DOT methods (see
DOT method dependent controls).

The next example shows a specification for a least squares method.

method, \
optpp_g_newton \

max_iterations = 10 \
convergence_tolerance = 1.e-8 \
search_method trust_region \
gradient_tolerance = 1.e-6

Some of the same method independent controls are present along with a new set of method dependent con-
trols (search_method and gradient_tolerance) which are only meaningful for OPT++ methods
(see OPT++ method dependent controls).

The next example shows a specification for a nondeterministic iterator with several method dependent
controls (refer to Nondeterministic sampling method).

method, \
nond_sampling \

samples = 100 seed = 12345 \
sample_type lhs \
response_levels = 1000. 500.

The last example shows a specification for a parameter study iterator where, again, each of the controls are
method dependent (refer to Vector parameter study).

method, \
vector_parameter_study \

step_vector = 1. 1. 1. \
num_steps = 10

5.2 Method Specification

As alluded to in the examples above, the method specification has the following structure:

method, \
<method independent controls>\
<method selection>\

<method dependent controls>

where � method selection � is one of the following: dot_frcg, dot_mmfd, dot_-
bfgs, dot_slp, dot_sqp, conmin_frcg, conmin_mfd, npsol_sqp, nlssol_sqp,
nl2sol, reduced_sqp, optpp_cg, optpp_q_newton, optpp_fd_newton, optpp_g_-
newton, optpp_newton, optpp_pds, coliny_apps, coliny_cobyla, coliny_direct,
coliny_pattern_search, coliny_solis_wets, coliny_misc_solver, sgopt_pga_-
real, sgopt_pga_int, sgopt_epsa, sgopt_pattern_search, sgopt_solis_wets,
sgopt_strat_mc, nond_polynomial_chaos, nond_sampling, nond_reliability,
dace, vector_parameter_study, list_parameter_study, centered_parameter_-
study, or multidim_parameter_study.
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The � method independent controls � are those controls which are valid for a variety of meth-
ods. In some cases, these controls are abstractions which may have slightly different implementations
from one method to the next. The � method dependent controls � are those controls which are
only meaningful for a specific method or library. Referring to dakota.input.spec, the method independent
controls are those controls defined externally from and prior to the method selection blocks. They are all
optional. The method selection blocks are all required group specifications separated by logical OR’s. The
method dependent controls are those controls defined within the method selection blocks. Defaults for
method independent and method dependent controls are defined in DataMethod. The following sections
provide additional detail on the method independent controls followed by the method selections and their
corresponding method dependent controls.

5.3 Method Independent Controls

The method independent controls include a method identifier string, a model type specification with point-
ers to variables, interface, and responses specifications, a speculative gradient selection, an output verbosity
control, maximum iteration and function evaluation limits, constraint and convergence tolerance specifica-
tions, and a set of linear inequality and equality constraint specifications. While each of these controls is
not valid for every method, the controls are valid for enough methods that it was reasonable to pull them
out of the method dependent blocks and consolidate the specifications.

The method identifier string is supplied with id_method and is used to provide a unique identifier string
for use with strategy specifications (refer to Strategy Description). It is appropriate to omit a method iden-
tifier string if only one method is included in the input file and single_method is the selected strategy
(all other strategies require one or more method pointers), since the single method to use is unambiguous
in this case.

The type of model to be used by the method is supplied with model_type and can be single, nested,
or layered (refer to Model for the class hierarchy involved). In the single model case, the optional
variables_pointer, interface_pointer, and responses_pointer specifications provide
strings for cross-referencing with id_variables, id_interface, and id_responses string in-
puts from particular variables, interface, and responses keyword specifications. These pointers identify
which specifications will be used in building the single model, which is to be iterated by the method to map
the variables into responses through the interface. In the layered model case, the specification is similar,
except that the interface_pointer specification is required in order to identify a global, multipoint,
local, or hierarchical approximation interface (see Approximation Interface) to use in the layered model. In
the nested model case, a sub_method_pointermust be provided in order to specify the nested iter-
ator, and interface_pointer and interface_responses_pointer provide an optional group
specification for the optional interface portion of nested models (where interface_pointer points to
the interface specification and interface_responses_pointer points to a responses specification
describing the data to be returned by this interface). This interface is used to provide non-nested data,
which is then combined with data from the nested iterator using the primary_response_mapping
and secondary_response_mapping inputs (see mapping discussion below).

For each of these cases, if a pointer string is specified and no corresponding id is available, DAKOTA will
exit with an error message. If the pointer is optional and no pointer string is specified, then the last specifica-
tion parsed will be used. It is appropriate to omit optional cross-referencing whenever the relationships are
unambiguous due to the presence of only one specification. Since the method specification is responsible
for cross-referencing with the interface, variables, and responses specifications, identification of methods
at the strategy layer is often sufficient to completely specify all of the object interrelationships. Table 5.1
provides the specification detail for the method independent controls involving identifiers, pointers, and
model type controls.

Nested models may employ mappings for both the variable inputs to the sub-model and the response out-

Generated on Thu Dec 23 14:56:40 2004 for DAKOTA by Doxygen



42 Method Commands

Description Keyword Associated Data Status Default
Method set
identifier

id_method string Optional strategy use of
last method
parsed

Model type model_type single
�

nested
�

layered

Optional group single

Variables set
pointer

variables_-
pointer

string Optional method use of
last variables
parsed

Interface set
pointer

interface_-
pointer

string single:
Optional,
nested:
Optional group,
layered:
Required

single:
method use of
last interface
parsed,
nested: no
optional
interface,
layered: N/A

Responses set
pointer

responses_-
pointer

string Optional method use of
last responses
parsed

Responses
pointer for nested
model optional
interfaces

interface_-
responses_-
pointer

string Required within
optional group

N/A

Sub-method
pointer for nested
models

sub_method_-
pointer

string Required N/A

Table 5.1: Specification detail for the method independent controls: identifiers, pointers, and model types

puts from the sub-model. In the former case, the primary_variable_mapping and secondary_-
variable_mapping specifications are used to map from the top-level variables into the sub-model
variables, and in the latter case, the primary_response_mapping and secondary_response_-
mapping specifications are used to map from the sub-model responses back to the top-level responses.
For the variable mappings, the primary and secondary specifications provide lists of strings which are used
to target active sub-model variables and their distribution parameters, respectively. The primary strings
are matched to variable labels such as ’cdv_1’ (either user-supplied or default labels), and the secondary
strings are matched to distribution parameters such as ’mean’ or ’std_deviation’ (the singular form
of the uncertain distribution parameter keywords, lacking the prepended distribution type identifier). Both
specifications are optional, which is designed to support three possibilities:

1. If both primary and secondary variable mappings are specified, then an active top-level variable value
will be inserted into the identified sub-model distribution parameter (the secondary mapping) for the
identified active sub-model variable (the primary mapping).

2. If a primary mapping is specified but a secondary mapping is not, then an active top-level variable
value will be inserted into the identified active sub-model variable value (the primary mapping).

3. If neither a primary mapping nor a secondary mapping is specified, then an active top-level variable
value will be added as an inactive sub-model variable, augmenting the active sub-model variables
(note: the fourth possibility of specifying a secondary mapping without a primary mapping will be
ignored and treated identically to this case).
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These different variable mapping possibilities may be used in any combination by employing empty strings
(”) for particular omitted mappings (the number of strings in user-supplied primary and secondary variable
mapping specifications must equal the number of active top-level variables).

For the response mappings, the primary and secondary specifications provide real-valued multipliers to be
applied to sub-iterator response results. The sub-iterator response results are defined as follows for different
sub-iterator types:

� optimization: the final objective function(s) and nonlinear constraints

� nonlinear least squares: the final least squares terms and nonlinear constraints

� uncertainty quantification: for each response function, a mean statistic, a standard deviation statis-
tic, and all probability/reliability/response level results for any user-specified response_levels,
probability_levels, and/or reliability_levels, in that order.

� parameter studies and design of experiments: for optimization and least squares response data sets,
the best point found (lowest constraint violation if infeasible, lowest composite objective function if
feasible). For generic response data sets, a best point metric is not defined, so sub-iterator response
results are not defined in this case.

The primary values map sub-iterator response results into top-level objective functions, least squares terms,
or generic response functions, depending on the declared top-level response set. The secondary values map
sub-iterator response results into top-level nonlinear inequality and equality constraints. Refer to Nested-
Model::response_mapping() for additional details.

An example of variable and response mappings is provided below:

primary_variable_mapping = ’’ ’’ ’X’ ’Y’\
secondary_variable_mapping = ’’ ’’ ’mean’ ’mean’\
primary_response_mapping = 1. 0. 0. 0. 0. 0. 0. 0. 0. \
secondary_response_mapping = 0. 0. 0. 1. 3. 0. 0. 0. 0. \

0. 0. 0. 0. 0. 0. 1. 3. 0. \

The variable mappings correspond to 4 top-level variables, the first two of which augment the active sub-
model variables as inactive sub-model variables (option 3 above) and the latter two of which are inserted
into the mean distribution parameters of active sub-model variables ’X’ and ’Y’ (option 1 above). The
response mappings correspond to 9 sub-iterator response functions (e.g., a set of UQ final statistics for 3
response functions, each with a mean, a standard deviation, and a reliability level). The primary response
mapping maps the first sub-iterator response function (mean) into a single objective function, least squares
term, or generic response function (as dictated by the top-level response specification), and the secondary
response mapping maps the fourth sub-iterator response function plus 3 times the fifth sub-iterator re-
sponse function (mean plus 3 standard deviations) into one top-level nonlinear constraint and the seventh
sub-iterator response function plus 3 times the eighth sub-iterator response function (mean plus 3 stan-
dard deviations) into another top-level nonlinear constraint (these top-level nonlinear constraints may be
inequality or equality, as dictated by the top-level response specification).

Table 5.2 provides the specification detail for the method independent controls involving nested model
mappings.

When performing gradient-based optimization in parallel, speculative gradients can be selected to
address the load imbalance that can occur between gradient evaluation and line search phases. In a typical
gradient-based optimization, the line search phase consists primarily of evaluating the objective function
and any constraints at a trial point, and then testing the trial point for a sufficient decrease in the objective
function value and/or constraint violation. If a sufficient decrease is not observed, then one or more addi-
tional trial points may be attempted sequentially. However, if the trial point is accepted then the line search
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Description Keyword Associated Data Status Default
Primary variable
mappings for
nested models

primary_-
variable_-
mapping

list of strings Optional augmentation of
sub-model
variables (no
insertion)

Secondary
variable
mappings for
nested models

secondary_-
variable_-
mapping

list of strings Optional primary
mappings into
sub-model
variables are
value-based

Primary response
mappings for
nested models

primary_-
response_-
mapping

list of reals Optional no sub-iterator
contribution to
primary functions

Secondary
response
mappings for
nested models

secondary_-
response_-
mapping

list of reals Optional no sub-iterator
contribution to
secondary
functions

Table 5.2: Specification detail for the method independent controls: nested model mappings

phase is complete and the gradient evaluation phase begins. By speculating that the gradient information
associated with a given line search trial point will be used later, additional coarse grained parallelism can
be introduced by computing the gradient information (either by finite difference or analytically) in parallel,
at the same time as the line search phase trial-point function values. This balances the total amount of com-
putation to be performed at each design point and allows for efficient utilization of multiple processors.
While the total amount of work performed will generally increase (since some speculative gradients will
not be used when a trial point is rejected in the line search phase), the run time will usually decrease (since
gradient evaluations needed at the start of each new optimization cycle were already performed in parallel
during the line search phase). Refer to [Byrd et al., 1998] for additional details. The speculative specifi-
cation is implemented for the gradient-based optimizers in the DOT, CONMIN, and OPT++ libraries, and
it can be used with dakota numerical or analytic gradient selections in the responses specification (refer
to Gradient Specification for information on these specifications). It should not be selected with vendor
numerical gradients since vendor internal finite difference algorithms have not been modified for this pur-
pose. In full-Newton approaches, the Hessian is also computed speculatively. NPSOL and NLSSOL do not
support speculative gradients, as their gradient-based line search in user-supplied gradient mode (dakota
numerical or analytic gradients) is a superior approach for load-balanced parallel execution.

Output verbosity control is specified with output followed by silent, quiet, verbose or debug.
If there is no user specification for output verbosity, then the default setting is normal. This gives a total
of five output levels to manage the volume of data that is returned to the user during the course of a study,
ranging from full run annotation plus internal debug diagnostics (debug) to the bare minimum of output
containing little more than the total number of simulations performed and the final solution (silent).
Output verbosity is observed within the Iterator (algorithm verbosity), Model (synchronize/fd_gradients
verbosity), Interface (map/synch verbosity), Approximation (global data fit coefficient reporting),and
AnalysisCode (file operation reporting) class hierarchies; however, not all of these software components
observe the full granularity of verbosity settings. Specific mappings are as follows:

� output silent (i.e., really quiet): silent iterators, silent model, silent interface, quiet approxima-
tion, quiet file operations

� output quiet: quiet iterators, quiet model, quiet interface, quiet approximation, quiet file oper-
ations

� output normal: normal iterators, normal model, normal interface, quiet approximation, quiet
file operations
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� output verbose: verbose iterators, normal model, verbose interface, verbose approximation,
verbose file operations

� output debug (i.e., really verbose): debug iterators, normal model, debug interface, verbose
approximation, verbose file operations

Note that iterators and interfaces utilize the full granularity in verbosity, whereas models, approximations,
and file operations do not. With respect to iterator verbosity, different iterators implement this control in
slightly different ways (as described below in the method independent controls descriptions for each it-
erator), however the meaning is consistent. For models, interfaces, approximations, and file operations,
quiet suppresses parameter and response set reporting and silent further suppresses function evalua-
tion headers and scheduling output. Similarly, verbose adds file management, approximation evaluation,
and global approximation coefficient details, and debug further adds diagnostics from nonblocking sched-
ulers.

The constraint_tolerance specification determines the maximum allowable value of infeasibility
that any constraint in an optimization problem may possess and still be considered to be satisfied. It is spec-
ified as a positive real value. If a constraint function is greater than this value then it is considered to be vi-
olated by the optimization algorithm. This specification gives some control over how tightly the constraints
will be satisfied at convergence of the algorithm. However, if the value is set too small the algorithm may
terminate with one or more constraints being violated. This specification is currently meaningful for the
NPSOL, NLSSOL, DOT and CONMIN constrained optimizers (refer to DOT method independent controls
and NPSOL method independent controls).

The convergence_tolerance specification provides a real value for controlling the termination of
iteration. In most cases, it is a relative convergence tolerance for the objective function; i.e., if the
change in the objective function between successive iterations divided by the previous objective func-
tion is less than the amount specified by convergence_tolerance, then this convergence criterion is sat-
isfied on the current iteration. Since no progress may be made on one iteration followed by signif-
icant progress on a subsequent iteration, some libraries require that the convergence tolerance be sat-
isfied on two or more consecutive iterations prior to termination of iteration. This control is used
with optimization and least squares iterators (DOT, CONMIN, NPSOL, NLSSOL, OPT++, and Col-
iny) and is not used within the uncertainty quantification, design of experiments, or parameter study
iterator branches. Refer to DOT method independent controls, NPSOL method independent controls,
OPT++ method independent controls, and Coliny method independent controls for specific interpretations
of the convergence_tolerance specification.

The max_iterations and max_function_evaluations controls provide integer limits for the
maximum number of iterations and maximum number of function evaluations, respectively. The difference
between an iteration and a function evaluation is that a function evaluation involves a single parameter
to response mapping through an interface, whereas an iteration involves a complete cycle of computation
within the iterator. Thus, an iteration generally involves multiple function evaluations (e.g., an iteration
contains descent direction and line search computations in gradient-based optimization, population and
multiple offset evaluations in nongradient-based optimization, etc.). This control is not currently used
within the uncertainty quantification, design of experiments, and parameter study iterator branches, and
in the case of optimization and least squares, does not currently capture function evaluations that occur
as part of the method_source dakota finite difference routine (since these additional evaluations are
intentionally isolated from the iterators).

Table 5.3 provides the specification detail for the method independent controls involving tolerances, limits,
output verbosity, and speculative gradients.

Linear inequality constraints can be supplied with the linear_inequality_constraint_matrix,
linear_inequality_lower_bounds, and linear_inequality_upper_bounds specifica-
tions, and linear equality constraints can be supplied with the linear_equality_constraint_-
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Description Keyword Associated Data Status Default
Speculative
gradients and
Hessians

speculative none Optional no speculation

Output verbosity output silent
�

quiet
�

verbose
�

debug

Optional normal

Maximum
iterations

max_-
iterations

integer Optional 100

Maximum
function
evaluations

max_-
function_-
evaluations

integer Optional 1000

Constraint
tolerance

constraint_-
tolerance

real Optional Library default

Convergence
tolerance convergence_-

tolerance

real Optional 1.e-4

Table 5.3: Specification detail for the method independent controls: tolerances, limits, output verbosity,
and speculative gradients

matrix and linear_equality_targets specifications. In the inequality case, the constraint ma-
trix provides coefficients for the variables and the lower and upper bounds provide constraint limits for the
following two-sided formulation:

���������	����


As with nonlinear inequality constraints (see Objective and constraint functions (optimization data set)),
the default linear inequality constraint bounds are selected so that one-sided inequalities of the form

�������� 

result when there are no user bounds specifications (this provides backwards compatibility with previous
DAKOTA versions). In a user bounds specification, any upper bound values greater than +bigReal-
BoundSize (1.e+30, as defined in Minimizer) are treated as +infinity and any lower bound values less
than -bigRealBoundSize are treated as -infinity. This feature is commonly used to drop one of the
bounds in order to specify a 1-sided constraint (just as the default lower bounds drop out since -DBL_MAX
� -bigRealBoundSize). In the equality case, the constraint matrix again provides coefficients for the
variables and the targets provide the equality constraint right hand sides:

���������

and the defaults for the equality constraint targets enforce a value of 0. for each constraint

�������� 

Currently, DOT, CONMIN, NPSOL, NLSSOL, and OPT++ all support specialized handling of linear con-
straints (either directly through the algorithm itself or indirectly through the DAKOTA wrapper). Coliny
optimizers will support linear constraints in future releases. Linear constraints need not be computed by
the user’s interface on every function evaluation; rather the coefficients, bounds, and targets of the linear
constraints can be provided at start up, allowing the optimizers to track the linear constraints internally. It
is important to recognize that linear constraints are those constraints that are linear in the design variables,
e.g.:

�� ��������������! #"%$&�(')�+*-,.� 
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� � " �! " �(' � $.� 
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which is not to be confused with something like

������� �	��
��� � �  � 

where the constraint is linear in a response quantity, but may be a nonlinear implicit function of the design
variables. For the three linear constraints above, the specification would appear as:

linear_inequality_constraint_matrix = 3.0 -4.0 2.0 \
1.0 1.0 1.0 \

linear_inequality_lower_bounds = 0.0 2.0 \
linear_inequality_upper_bounds = 15.0 1.e+50 \
linear_equality_constraint_matrix = 1.0 1.0 -1.0 \
linear_equality_targets = 1.0 \

where the 1.e+50 is a dummy upper bound value which defines a 1-sided inequality since it is greater
than bigRealBoundSize. The constraint matrix specifications list the coefficients of the first constraint
followed by the coefficients of the second constraint, and so on. They are divided into individual constraints
based on the number of design variables, and can be broken onto multiple lines for readability as shown
above.

Table 5.4 provides the specification detail for the method independent controls involving linear constraints.

Description Keyword Associated Data Status Default
Linear inequality
coefficient matrix

linear_-
inequality_-
constraint_-
matrix

list of reals Optional no linear
inequality
constraints

Linear inequality
lower bounds

linear_-
inequality_-
lower_bounds

list of reals Optional vector values =
-DBL_MAX

Linear inequality
upper bounds

linear_-
inequality_-
upper_bounds

list of reals Optional vector values = 0.

Linear equality
coefficient matrix

linear_-
equality_-
constraint_-
matrix

list of reals Optional no linear equality
constraints

Linear equality
targets

linear_-
equality_-
targets

list of reals Optional vector values = 0.

Table 5.4: Specification detail for the method independent controls: linear inequality and equality con-
straints

5.4 DOT Methods

The DOT library [Vanderplaats Research and Development, 1995] contains nonlinear programming op-
timizers, specifically the Broyden-Fletcher-Goldfarb-Shanno (DAKOTA’s dot_bfgs method) and
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Fletcher-Reeves conjugate gradient (DAKOTA’s dot_frcgmethod) methods for unconstrained optimiza-
tion, and the modified method of feasible directions (DAKOTA’s dot_mmfd method), sequential linear
programming (DAKOTA’s dot_slpmethod), and sequential quadratic programming (DAKOTA’s dot_-
sqp method) methods for constrained optimization. DAKOTA provides access to the DOT library through
the DOTOptimizer class.

5.4.1 DOT method independent controls

The method independent controls for max_iterations and max_function_evaluations limit
the number of major iterations and the number of function evaluations that can be performed during a DOT
optimization. The convergence_tolerance control defines the threshold value on relative change
in the objective function that indicates convergence. This convergence criterion must be satisfied for two
consecutive iterations before DOT will terminate. The constraint_tolerance specification defines
how tightly constraint functions are to be satisfied at convergence. The default value for DOT constrained
optimizers is 0.003. Extremely small values for constraint_tolerance may not be attainable. The output
verbosity specification controls the amount of information generated by DOT: the silent and quiet set-
tings result in header information, final results, and objective function, constraint, and parameter informa-
tion on each iteration; whereas the verbose and debug settings add additional information on gradients,
search direction, one-dimensional search results, and parameter scaling factors. DOT contains no parallel
algorithms which can directly take advantage of concurrent evaluations. However, if numerical_-
gradientswith method_source dakota is specified, then the finite difference function evaluations
can be performed concurrently (using any of the parallel modes described in the Users Manual). In ad-
dition, if speculative is specified, then gradients (dakota numerical or analytic gradients)
will be computed on each line search evaluation in order to balance the load and lower the total run time
in parallel optimization studies. Lastly, specialized handling of linear constraints is supported with DOT;
linear constraint coefficients, bounds, and targets can be provided to DOT at start-up and tracked internally.
Specification detail for these method independent controls is provided in Tables 5.1 through 5.4.

5.4.2 DOT method dependent controls

DOT’s only method dependent control is optimization_type which may be either minimize or
maximize. DOT provides the only set of methods within DAKOTA which support this control; to convert
a maximization problem into the minimization formulation assumed by other methods, simply change the
sign on the objective function (i.e., multiply by -1). Table 5.5 provides the specification detail for the DOT
methods and their method dependent controls.

Description Keyword Associated Data Status Default
Optimization
type optimization_-

type

minimize
�

maximize
Optional group minimize

Table 5.5: Specification detail for the DOT methods

5.5 NPSOL Method

The NPSOL library [Gill et al., 1986] contains a sequential quadratic programming (SQP) implementation
(the npsol_sqp method). SQP is a nonlinear programming optimizer for constrained minimization.
DAKOTA provides access to the NPSOL library through the NPSOLOptimizer class.
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5.5.1 NPSOL method independent controls

The method independent controls for max_iterations and max_function_evaluations limit
the number of major SQP iterations and the number of function evaluations that can be performed during
an NPSOL optimization. The convergence_tolerance control defines NPSOL’s internal optimal-
ity tolerance which is used in evaluating if an iterate satisfies the first-order Kuhn-Tucker conditions for a
minimum. The magnitude of convergence_tolerance approximately specifies the number of signif-
icant digits of accuracy desired in the final objective function (e.g., convergence_tolerance = 1.e-6
will result in approximately six digits of accuracy in the final objective function). The constraint_-
tolerance control defines how tightly the constraint functions are satisfied at convergence. The default
value is dependent upon the machine precision of the platform in use, but is typically on the order of 1.e-8
for double precision computations. Extremely small values for constraint_tolerance may not be
attainable. The output verbosity setting controls the amount of information generated at each major SQP
iteration: the silent and quiet settings result in only one line of diagnostic output for each major iter-
ation and print the final optimization solution, whereas the verbose and debug settings add additional
information on the objective function, constraints, and variables at each major iteration.

NPSOL is not a parallel algorithm and cannot directly take advantage of concurrent evaluations. However,
if numerical_gradients with method_source dakota is specified, then the finite difference
function evaluations can be performed concurrently (using any of the parallel modes described in the Users
Manual). An important related observation is the fact that NPSOL uses two different line searches depend-
ing on how gradients are computed. For either analytic_gradients or numerical_gradients
with method_source dakota, NPSOL is placed in user-supplied gradient mode (NPSOL’s "Derivative
Level" is set to 3) and it uses a gradient-based line search (the assumption is that user-supplied gradients
are inexpensive). On the other hand, if numerical_gradients are selected with method_source
vendor, then NPSOL is computing finite differences internally and it will use a value-based line search
(the assumption is that finite differencing on each line search evaluation is too expensive). The ramifica-
tions of this are: (1) performance will vary between method_source dakota and method_source
vendor for numerical_gradients, and (2) gradient speculation is unnecessary when performing
optimization in parallel since the gradient-based line search in user-supplied gradient mode is already load
balanced for parallel execution. Therefore, a speculative specification will be ignored by NPSOL,
and optimization with numerical gradients should select method_source dakota for load balanced
parallel operation and method_source vendor for efficient serial operation.

Lastly, NPSOL supports specialized handling of linear inequality and equality constraints. By specifying
the coefficients and bounds of the linear inequality constraints and the coefficients and targets of the linear
equality constraints, this information can be provided to NPSOL at initialization and tracked internally,
removing the need for the user to provide the values of the linear constraints on every function evaluation.
Refer to Method Independent Controls for additional information and to Tables 5.1 through 5.4 for method
independent control specification detail.

5.5.2 NPSOL method dependent controls

NPSOL’s method dependent controls are verify_level, function_precision, and
linesearch_tolerance. The verify_level control instructs NPSOL to perform finite
difference verifications on user-supplied gradient components. The function_precision control
provides NPSOL an estimate of the accuracy to which the problem functions can be computed. This is
used to prevent NPSOL from trying to distinguish between function values that differ by less than the
inherent error in the calculation. And the linesearch_tolerance setting controls the accuracy of
the line search. The smaller the value (between 0 and 1), the more accurately NPSOL will attempt to
compute a precise minimum along the search direction. Table 5.6 provides the specification detail for the
NPSOL SQP method and its method dependent controls.
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Description Keyword Associated Data Status Default
Gradient
verification level

verify_level integer Optional -1 (no gradient
verification)

Function
precision

function_-
precision

real Optional 1.e-10

Line search
tolerance

linesearch_-
tolerance

real Optional 0.9 (inaccurate
line search)

Table 5.6: Specification detail for the NPSOL SQP method

5.6 CONMIN Methods

The CONMIN library [Vanderplaats, 1973] is a public domain library of nonlinear programming optimiz-
ers, specifically the Fletcher-Reeves conjugate gradient (DAKOTA’s conmin_frcg method) method for
unconstrained optimization, and the method of feasible directions (DAKOTA’s conmin_mfd method) for
constrained optimization. As CONMIN was a predecessor to the DOT commercial library, the algorithm
controls are very similar. DAKOTA provides access to the CONMIN library through the CONMINOpti-
mizer class.

5.6.1 CONMIN method independent controls

The interpretations of the method independent controls for CONMIN are essentially identical to those for
DOT. Therefore, the discussion in DOT method independent controls is relevant for CONMIN.

5.6.2 CONMIN method dependent controls

CONMIN does not currently support any method dependent controls.

5.7 OPT++ Methods

The OPT++ library [Meza, 1994] contains primarily gradient-based nonlinear programming optimizers for
unconstrained, bound-constrained, and nonlinearly constrained minimization: Polak-Ribiere conjugate gra-
dient (DAKOTA’s optpp_cg method), quasi-Newton (DAKOTA’s optpp_q_newton method), finite
difference Newton (DAKOTA’s optpp_fd_newton method), and full Newton (DAKOTA’s optpp_-
newton method). The conjugate gradient method is strictly unconstrained, and each of the Newton-based
methods are automatically bound to the appropriate OPT++ algorithm based on the user constraint spec-
ification (unconstrained, bound-constrained, or generally-constrained). In the generally-constrained case,
the Newton methods use a nonlinear interior-point approach to manage the constraints. The library also
contains a direct search algorithm, PDS (parallel direct search, DAKOTA’s optpp_pds method), which
supports bound constraints. DAKOTA provides access to the OPT++ library through the SNLLOptimizer
class, where "SNLL" denotes Sandia National Laboratories - Livermore.

5.7.1 OPT++ method independent controls

The method independent controls for max_iterations and max_function_evaluations limit
the number of major iterations and the number of function evaluations that can be performed during an
OPT++ optimization. The convergence_tolerance control defines the threshold value on relative
change in the objective function that indicates convergence. The output verbosity specification con-
trols the amount of information generated from OPT++ executions: the debug setting turns on OPT++’s
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internal debug mode and also generates additional debugging information from DAKOTA’s SNLLOpti-
mizer wrapper class. OPT++’s gradient-based methods are not parallel algorithms and cannot directly take
advantage of concurrent function evaluations. However, if numerical_gradients with method_-
source dakota is specified, a parallel DAKOTA configuration can utilize concurrent evaluations for
the finite difference gradient computations. OPT++’s nongradient-based PDS method can directly exploit
asynchronous evaluations; however, this capability has not yet been implemented in the SNLLOptimizer
class.

The speculative specification enables speculative computation of gradient and/or Hessian information,
where applicable, for parallel optimization studies. By speculating that the derivative information at the
current point will be used later, the complete data set (all available gradient/Hessian information) can be
computed on every function evaluation. While some of these computations will be wasted, the positive
effects are a consistent parallel load balance and usually shorter wall clock time. The speculative
specification is applicable only when parallelism in the gradient calculations can be exploited by DAKOTA
(it will be ignored for vendor numerical gradients).

Lastly, linear constraint specifications are supported by each of the Newton methods (optpp_newton,
optpp_q_newton, optpp_fd_newton, and optpp_g_newton); whereas optpp_cgmust be un-
constrained and optpp_pds can be, at most, bound-constrained. Specification detail for the method
independent controls is provided in Tables 5.1 through 5.4.

5.7.2 OPT++ method dependent controls

OPT++’s method dependent controls are max_step, gradient_tolerance, search_method,
merit_function, central_path, steplength_to_boundary, centering_parameter,
and search_scheme_size. The max_step control specifies the maximum step that can be taken
when computing a change in the current design point (e.g., limiting the Newton step computed from
current gradient and Hessian information). It is equivalent to a move limit or a maximum trust region
size. The gradient_tolerance control defines the threshold value on the L2 norm of the objective
function gradient that indicates convergence to an unconstrained minimum (no active constraints). The
gradient_tolerance control is defined for all gradient-based optimizers.

max_step and gradient_tolerance are the only method dependent controls for the OPT++ conju-
gate gradient method. Table 5.7 covers this specification.

Description Keyword Associated Data Status Default
OPT++ conjugate
gradient method

optpp_cg none Required N/A

Maximum step
size

max_step real Optional 1000.

Gradient
tolerance

gradient_-
tolerance

real Optional 1.e-4

Table 5.7: Specification detail for the OPT++ conjugate gradient method

The search_method control is defined for all Newton-based optimizers and is used to select be-
tween trust_region, gradient_based_line_search, and value_based_line_search
methods. The gradient_based_line_search option uses the line search method proposed by
[More and Thuente, 1994]. This option satisfies sufficient decrease and curvature conditions; whereas,
value_base_line_search only satisfies the sufficient decrease condition. At each line search iter-
ation, the gradient_based_line_search method computes the function and gradient at the trial
point. Consequently, given expensive function evaluations, the value_based_line_search method
is preferred to the gradient_based_line_search method. Each of these Newton methods addi-
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tionally supports the tr_pds selection for unconstrained problems. This option performs a robust trust
region search using pattern search techniques. Use of a line search is the default for bound-constrained
and generally-constrained problems, and use of a trust_region search method is the default for un-
constrained problems.

The merit_function, central_path, steplength_to_boundary, and centering_-
parameter selections are additional specifications that are defined for the solution of generally-
constrained problems with nonlinear interior-point algorithms. A merit_function is a function in
constrained optimization that attempts to provide joint progress toward reducing the objective function and
satisfying the constraints. Valid string inputs are "el_bakry", "argaez_tapia", or "van_shanno", where user
input is not case sensitive in this case. Details for these selections are as follows:

� The "el_bakry" merit function is the L2-norm of the first order optimality conditions for the nonlinear
programming problem. The cost per linesearch iteration is n+1 function evaluations. For more
information, see [El-Bakry et al., 1996].

� The "argaez_tapia" merit function can be classified as a modified augmented Lagrangian function.
The augmented Lagrangian is modified by adding to its penalty term a potential reduction function
to handle the perturbed complementarity condition. The cost per linesearch iteration is one function
evaluation. For more information, see [Tapia and Argaez].

� The "van_shanno" merit function can be classified as a penalty function for the logarithmic barrier
formulation of the nonlinear programming problem. The cost per linesearch iteration is one function
evaluation. For more information see [Vanderbei and Shanno, 1999].

If the function evaluation is expensive or noisy, set the merit_function to "argaez_tapia" or "van_-
shanno".

The central_path specification represents a measure of proximity to the central path and specifies an
update strategy for the perturbation parameter mu. Refer to [Argaez et al., 2002] for a detailed discussion
on proximity measures to the central region. Valid options are, again, "el_bakry", "argaez_tapia", or "van_-
shanno", where user input is not case sensitive. The default value for central_path is the value of
merit_function (either user-selected or default). The steplength_to_boundary specification
is a parameter (between 0 and 1) that controls how close to the boundary of the feasible region the algorithm
is allowed to move. A value of 1 means that the algorithm is allowed to take steps that may reach the
boundary of the feasible region. If the user wishes to maintain strict feasibility of the design parameters
this value should be less than 1. Default values are .8, .99995, and .95 for the "el_bakry", "argaez_-
tapia", and "van_shanno" merit functions, respectively. The centering_parameter specification is a
parameter (between 0 and 1) that controls how closely the algorithm should follow the "central path". See
[Wright] for the definition of central path. The larger the value, the more closely the algorithm follows the
central path, which results in small steps. A value of 0 indicates that the algorithm will take a pure Newton
step. Default values are .2, .2, and .1 for the "el_bakry", "argaez_tapia", and "van_shanno" merit functions,
respectively.

Table 5.8 provides the details for the Newton-based methods.

The search_scheme_size is defined for the PDS method to specify the number of points to be used
in the direct search template. PDS does not support parallelism at this time due to current limitations in the
OPT++ interface. Table 5.9 provides the detail for the parallel direct search method.
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Description Keyword Associated Data Status Default
OPT++
Newton-based
methods

optpp_q_-
newton

�
optpp_fd_-
newton

�
optpp_newton

none Required group N/A

Search method value_-
based_line_-
search

�
gradient_-
based_line_-
search

�
trust_region�
tr_pds

none Optional group trust_region
(unconstrained),
value_-
based_line_-
search
(bound/general
constraints)

Maximum step
size

max_step real Optional 1000.

Gradient
tolerance

gradient_-
tolerance

real Optional 1.e-4

Merit function merit_-
function

string Optional "argaez_-
tapia"

Central path central_path string Optional value of
merit_-
function

Steplength to
boundary

steplength_-
to_boundary

real Optional Merit function
dependent: 0.8
(el_bakry),
0.99995
(argaez_tapia),
0.95
(van_shanno)

Centering
parameter

centering_-
parameter

real Optional Merit function
dependent: 0.2
(el_bakry), 0.2
(argaez_tapia),
0.1 (van_shanno)

Table 5.8: Specification detail for OPT++ Newton-based optimization methods

5.8 SGOPT Methods

The SGOPT (Stochastic Global OPTimization) library [Hart, W.E., 2001a; Hart, W.E., 2001b] contains
a variety of nongradient-based optimization algorithms, with an emphasis on stochastic global meth-
ods. SGOPT currently includes the following global optimization methods: evolutionary algorithms
(sgopt_pga_real, sgopt_pga_int, and sgopt_epsa) and stratified Monte Carlo (sgopt_-
strat_mc). Additionally, SGOPT includes nongradient-based local search algorithms such as Solis-
Wets (sgopt_solis_wets) and pattern search (sgopt_pattern_search). With the exception of
the unconstrainedsgopt_solis_wetsmethod, each of the SGOPT methods support bound constraints.
DAKOTA provides access to the SGOPT library through the SGOPTOptimizer class.
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Description Keyword Associated Data Status Default
OPT++ parallel
direct search
method

optpp_pds none Required group N/A

Search scheme
size

search_-
scheme_size

integer Optional 32

Table 5.9: Specification detail for the OPT++ PDS method

5.8.1 SGOPT method independent controls

The method independent controls for max_iterations and max_function_evaluations limit
the number of major iterations and the number of function evaluations that can be performed during an
SGOPT optimization. The convergence_tolerance control defines the threshold value on relative
change in the objective function that indicates convergence. The output verbosity specification controls
the amount of information generated by SGOPT: the silent, quiet, and normal settings correspond
to minimal reporting from SGOPT, whereas the verbose setting corresponds to a higher level of in-
formation, and debug outputs method initialization and a variety of internal SGOPT diagnostics. The
majority of SGOPT’s methods have independent function evaluations that can directly take advantage
of DAKOTA’s parallel capabilities. Only sgopt_solis_wets and certain exploratory_moves
options in sgopt_pattern_search (multi_step, best_first, biased_best_first, and
adaptive_pattern; see Pattern search) are inherently serial. The parallel methods automatically uti-
lize parallel logic when the DAKOTA configuration supports parallelism. Lastly, neither speculative
gradients nor specialized handling of linear constraints are currently supported with SGOPT since SGOPT
methods are nongradient-based and support, at most, bound constraints. Specification detail for method
independent controls is provided in Tables 5.1 through 5.4.

5.8.2 SGOPT method dependent controls

solution_accuracy is a method dependent control which is defined for all SGOPT methods. Solution
accuracy defines a convergence criterion in which the optimizer will terminate if it finds an objective
function value lower than the specified accuracy. Table 5.10 provides the specification detail for recurring
method dependent controls.

Description Keyword Associated Data Status Default
Desired solution
accuracy

solution_-
accuracy

real Optional -DBL_MAX

Table 5.10: Specification detail for SGOPT method dependent controls

Each SGOPT method supplements the settings of Table 5.10 with controls which are specific to its partic-
ular class of method.

5.8.3 Evolutionary Algorithms

DAKOTA currently provides three types of evolutionary algorithms (EAs): a real-valued genetic algo-
rithm (sgopt_pga_real), an integer-valued genetic algorithm (sgopt_pga_int), and an evolution-
ary pattern search technique (sgopt_epsa), where "real-valued" and "integer-valued" refer to the use of
continuous or discrete variable domains, respectively (the response data are real-valued in all cases).
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The basic steps of an evolutionary algorithm are as follows:

1. Select an initial population randomly and perform function evaluations on these individuals

2. Perform selection for parents based on relative fitness

3. Apply crossover and mutation to generate new_solutions_generated new individuals from
the selected parents

� Apply crossover with a fixed probability from two selected parents
� If crossover is applied, apply mutation to the newly generated individual with a fixed probability
� If crossover is not applied, apply mutation with a fixed probability to a single selected parent

4. Perform function evaluations on the new individuals

5. Perform replacement to determine the new population

6. Return to step 2 and continue the algorithm until convergence criteria are satisfied or iteration limits
are exceeded

Controls for seed, population size, selection, and replacement are identical for the three EA methods,
whereas the crossover and mutation controls contain slight differences and the sgopt_epsa specifica-
tion contains an additional num_partitions input. Table 5.11 provides the specification detail for the
controls which are common between the three EA methods.

Description Keyword Associated Data Status Default
EA selection sgopt_pga_-

real
�

sgopt_pga_-
int

�
sgopt_epsa

none Required group N/A

Random seed seed integer Optional randomly
generated seed

Number of
population
members

population_-
size

integer Optional 100

Selection
pressure

selection_-
pressure

rank
�

proportional
Optional proportional

Replacement type
replacement_-
type

random
�
chc

�
elitist

Optional group elitist = 1

Random
replacement

random integer Required N/A

CHC replacement
type

chc integer Required N/A

Elitist
replacement type

elitist integer Required N/A

New solutions
generated

new_-
solutions_-
generated

integer Optional population_-
size -
replacement_-
size

Table 5.11: Specification detail for the SGOPT EA methods
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The random seed control provides a mechanism for making a stochastic optimization repeatable. That is,
the use of the same random seed in identical studies will generate identical results. The population_-
size control specifies how many individuals will comprise the EA’s population. The selection_-
pressure controls how strongly differences in "fitness" (i.e., the objective function) are weighted in the
process of selecting "parents" for crossover:

� the rank setting uses a linear scaling of probability of selection based on the rank order of each
individual’s objective function within the population

� the proportional setting uses a proportional scaling of probability of selection based on the
relative value of each individual’s objective function within the population

The replacement_type controls how current populations and newly generated individuals are com-
bined to create a new population. Each of the replacement_type selections accepts an integer value,
which will is referred to below and in Table 5.11 as the replacement_size:

� The random setting (the default) creates a new population using (a) replacement_size
randomly selected individuals from the current population, and (b) population_size -
replacement_size individuals randomly selected from among the newly generated individu-
als (the number of which is optionally specified using new_solutions_generated) that are
created for each generation (using the selection, crossover, and mutation procedures).

� The CHC setting creates a new population using (a) the replacement_size best individu-
als from the combination of the current population and the newly generated individuals, and (b)
population_size - replacement_size individuals randomly selected from among the re-
maining individuals in this combined pool. CHC is the preferred selection for many engineering
problems.

� The elitist setting creates a new population using (a) the replacement_size best individu-
als from the current population, (b) and population_size - replacement_size individuals
randomly selected from the newly generated individuals. It is possible in this case to lose a good so-
lution from the newly generated individuals if it is not randomly selected for replacement; however,
the default new_solutions_generated value is set such that the entire set of newly generated
individuals will be selected for replacement.

Table 5.12, Table 5.13, and Table 5.14 show the controls which differ between sgopt_pga_real,
sgopt_pga_int, and sgopt_epsa, respectively.

The crossover_type controls what approach is employed for combining parent genetic information
to create offspring, and the crossover_rate specifies the probability of a crossover operation being
performed to generate a new offspring. SGOPT supports two generic forms of crossover, two_point
and uniform, which generate a new individual through coordinate-wise combinations of two parent in-
dividuals. Two-point crossover divides each parent into three regions, where offspring are created from the
combination of the middle region from one parent and the end regions from the other parent. Since SGOPT
does not utilize bit representations of variable values, the crossover points only occur on coordinate bound-
aries, never within the bits of a particular coordinate. Uniform crossover creates offspring through random
combination of coordinates from the two parents. The sgopt_pga_real optimizer supports a third op-
tion, the blend crossover method, which generates a new individual randomly along the multidimensional
vector connecting the two parents.
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Description Keyword Associated Data Status Default
Crossover type crossover_-

type
two_point

�
blend

�
uniform

Optional group two_point

Crossover rate crossover_-
rate

real Optional 0.8

Mutation type mutation_-
type

replace_-
uniform

�
offset_-
normal

�
offset_-
cauchy

�
offset_-
uniform

�
offset_-
triangular

Optional group offset_-
normal

Mutation scale mutation_-
scale

real Optional 0.1

Mutation
dimension rate

dimension_-
rate

real Optional
� �����

���	� 
-� � � � � � _ 
 ��� �

Mutation
population rate

population_-
rate

real Optional 1.0

Non-adaptive
mutation flag

non_adaptive none Optional Adaptive
mutation

Table 5.12: Specification detail for SGOPT real-valued genetic algorithm crossover and mutation

The mutation_type controls what approach is employed in randomly modifying design variables
within the EA population. Each of the mutation methods generates coordinate-wise changes to individ-
uals, usually by adding a random variable to a given coordinate value (an "offset" mutation), but also by
replacing a given coordinate value with a random variable (a "replace" mutation). The population_-
rate controls the probability of mutation being performed on an individual, both for new individuals
generated by crossover (if crossover occurs) and for individuals from the existing population (if crossover
does not occur; see algorithm description in Evolutionary Algorithms). The dimension_rate specifies
the probabilities that a given dimension is changed given that the individual is having mutation applied
to it. The default dimension_rate uses the special formula shown in the preceding tables, where n
is the number of design variables and e is the natural logarithm constant. The mutation_scale spec-
ifies a scale factor which scales mutation offsets for sgopt_pga_real and sgopt_epsa; this is a
fraction of the total range of each dimension, so mutation_scale is a relative value between 0 and 1.
The mutation_range provides an analogous control for sgopt_pga_int, but is not a relative value
in that it specifies the total integer range of the mutation. The offset_normal, offset_cauchy,
offset_uniform, and offset_triangular mutation types are "offset" mutations in that they add
a 0-mean random variable with a normal, cauchy, uniform, or triangular distribution, respectively, to the ex-
isting coordinate value. These offsets are limited in magnitude by mutation_scale. The replace_-
uniform mutation type is not limited by mutation_scale; rather it generates a replacement value for
a coordinate using a uniformly distributed value over the total range for that coordinate. The real-valued
genetic algorithm supports each of these 5 mutation types, and integer-valued genetic algorithm supports
the replace_uniform and offset_uniform types. The mutation types for evolutionary pattern
search are more specialized:

� multi_coord: Mutate each coordinate dimension with probability dimension_rate using an
"offset" approach with initial scale mutation_scale  variable range. Multiple coordinates may
or may not be mutated.
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Description Keyword Associated Data Status Default
Crossover type crossover_-

type
two_point

�
uniform

Optional group two_point

Crossover rate crossover_-
rate

real Optional 0.8

Mutation type mutation_-
type

replace_-
uniform

�
offset_-
uniform

Optional group replace_-
uniform

Mutation range mutation_-
range

integer Optional 1

Mutation
dimension rate

dimension_-
rate

real Optional
� �����

���	� 
-� � � � � � _ 
 ��� �

Mutation
population rate

population_-
rate

real Optional 1.0

Table 5.13: Specification detail for SGOPT integer-valued genetic algorithm crossover and mutation

� unary_coord: Mutate a single randomly selected coordinate dimension using an "offset" ap-
proach with initial scale mutation_scale  variable range. One and only one coordinate is
mutated.

� multi_simplex: Apply each of the vector offsets from a regular simplex (n+1 vectors for n
dimensions) with probability dimension_rate and initial scale mutation_scale  variable
range. A single vector offset may alter multiple coordinate dimensions. Multiple simplex vectors
may or may not be applied.

� unary_simplex: Add a single randomly selected vector offset from a regular simplex with an
initial scale of mutation_scale  variable range. One and only one simplex vector is applied,
but this simplex vector may alter multiple coordinate dimensions.

and are described in more detail in [Hart and Hunter, 1999]. Both the real-valued genetic algorithm and the
evolutionary pattern search algorithm use adaptive mutation that modifies the mutation scale dynamically.
The non_adaptive flag can be used to deactivate the self-adaptation in real-valued genetic algorithms,
which may facilitate a more global search. The adaptive mutation in evolutionary pattern search is an
inherent component that cannot be deactivated. The min_scale input specifies the minimum mutation
scale for evolutionary pattern search; sgopt_epsa terminates if the adapted mutation scale falls below
this threshold.

The num_partitions specification is not part of the crossover or mutation group specifications; it
specifies the number of possible values for each dimension (fractions of the variable ranges) used in the
initial evolutionary pattern search population. It is needed for theoretical reasons.

For additional information on these options, see the user and reference manuals for SGOPT [Hart, 2001a;
Hart, 2001b].

5.8.4 Pattern search

Pattern search techniques are nongradient-based optimization methods which use a set of offsets
from the current iterate to locate improved points in the design space. Currently, DAKOTA pro-
vides three pattern search techniques: sgopt_pattern_search, coliny_pattern_search,
and coliny_apps. The SGOPT pattern search technique is invoked using a sgopt_pattern_-
search group specification. Components within this specification group include initial_delta,
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Description Keyword Associated Data Status Default
Crossover type crossover_-

type
two_point

�
uniform

Optional group two_point

Crossover rate crossover_-
rate

real Optional 0.8

Mutation type mutation_-
type

unary_coord
�

unary_-
simplex

�
multi_coord

�
multi_-
simplex

Optional group unary_coord

Mutation
dimension rate

dimension_-
rate

real Optional
� �����

���	� 
-� � � � � � _ 
 ��� �

Mutation scale mutation_-
scale

real Optional 0.1

Minimum
mutation scale

min_scale real Optional 0.001

Mutation
population rate

population_-
rate

real Optional 1.0

Number of
partitions

num_-
partitions

integer Optional 100

Table 5.14: Specification detail for SGOPT evolutionary pattern search crossover, mutation, and number
of partitions

threshold_delta, pattern_basis, total_pattern_size, expand_after_success,
no_expansion, contraction_factor,stochastic, seed, and exploratory_moves spec-
ifications. The initial_delta and threshold_delta specifications are required in order to pro-
vide the initial offset size and the threshold size at which to terminate the algorithm, respectively. These
values are relative percentages of the bounded region. The pattern_basis specification is used to se-
lect between a coordinate basis or a simplex basis. The former uses a plus and minus offset in each
coordinate direction, for a total of 2n function evaluations in the pattern, whereas the latter uses a minimal
positive basis simplex for the parameter space, for a total of n+1 function evaluations in the pattern. The
total_pattern_size specification can be used to augment the basic coordinate and simplex
patterns with additional function evaluations, and is particularly useful for parallel load balancing. For
example, if some function evaluations in the pattern are dropped due to duplication or bound constraint
interaction, then the total_pattern_size specification instructs the algorithm to generate new off-
sets to bring the total number of evaluations up to this consistent total. The expand_after_success
control specifies how many successful objective function improvements must occur with a specific delta
prior to expansion of the delta, whereas the no_expansion flag instructs the algorithm to forgo pattern
expansion altogether. The contraction_factor specification selects the scaling factor used in com-
puting a reduced offset for a new pattern search cycle after the previous cycle has been unsuccessful in
finding an improved point. The SGOPT pattern search provides the capability for stochastic shuffling
of offset evaluation order, for which the random seed can be used to make the optimizations repeatable.
Finally, the exploratory_moves setting controls how the offset evaluations are ordered as well as the
logic for acceptance of an improved point. The following exploratory moves selections are supported by
SGOPT:

� The multi_step case examines each trial step in the pattern in turn. If a successful step is found,
the pattern search continues examining trial steps about this new point. In this manner, the effects of
multiple successful steps are cumulative within a single iteration. This option does not support any
parallelism and will result in a serial pattern search.
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� The best_all case waits for completion of all offset evaluations in the pattern before selecting a
new iterate. This method is most appropriate for parallel execution of the pattern search.

� The best_first case immediately selects the first improving point found as the new iterate, with-
out waiting for completion of all offset evaluations in the cycle. This option does not support any
parallelism and will result in a serial pattern search.

� The biased_best_first case immediately selects the first improved point as the new iterate,
but also introduces a bias toward directions in which improving points have been found previously
by reordering the offset evaluations. This option does not support any parallelism and will result in
a serial pattern search.

� The adaptive_pattern case invokes a pattern search technique that adaptively rescales the
different search directions to maximize the number of redundant function evaluations. See
[Hart et al., 2001] for details of this method. In preliminary experiments, this method had more
robust performance than the standard best_first case. This option does not support any paral-
lelism and will result in a serial pattern search.

� The test case is used for development purposes. This currently utilizes a nonblocking scheduler
(i.e., DakotaModel::synchronize_nowait()) for performing the function evaluations.

Table 5.15 provides the specification detail for the SGOPT PS method and its method dependent controls.

5.8.5 Solis-Wets

DAKOTA’s implementation of SGOPT also contains the Solis-Wets algorithm. The Solis-Wets method is
a simple greedy local search heuristic for continuous parameter spaces. Solis-Wets generates trial points
using a multivariate normal distribution, and unsuccessful trial points are reflected about the current point to
find a descent direction. This algorithm is inherently serial and will not utilize any parallelism. Table 5.16
provides the specification detail for this method and its method dependent controls.

The seed, initial_delta, threshold_delta, no_expansion, expand_after_success,
and contraction_factor specifications have identical meaning to the corresponding specifications
for sgopt_pattern_search (see Pattern search). The only new specification is contract_-
after_failure, which specifies the number of unsuccessful cycles which must occur with a specific
delta prior to contraction of the delta.

5.8.6 Stratified Monte Carlo

Lastly, DAKOTA’s implementation of SGOPT contains a stratified Monte Carlo (sMC) algorithm.
One of the distinguishing characteristics of this sampling technique from other sampling methods in
Design of Computer Experiments Methods and Nondeterministic sampling method is its stopping criteria.
Using solution_accuracy (see SGOPT method dependent controls), the sMC algorithm can termi-
nate adaptively when a design point with a desired performance has been located. Table 5.17 provides the
specification detail for this method and its method dependent controls.

As for other SGOPT methods, the random seed is used to make stochastic optimizations repeatable. The
batch_size input specifies the number samples to be evaluated in each multidimensional partition. And
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Description Keyword Associated Data Status Default
SGOPT pattern
search method

sgopt_-
pattern_-
search

none Required group N/A

Stochastic pattern
search

stochastic none Optional group N/A

Random seed for
stochastic pattern
search

seed integer Optional randomly
generated seed

Initial offset
value

initial_-
delta

real Required N/A

Threshold for
offset values

threshold_-
delta

real Required N/A

Pattern basis
selection

pattern_-
basis

coordinate
�

simplex
Optional simplex

Total number of
points in pattern

total_-
pattern_size

integer Optional no augmentation
of basic pattern

No expansion
flag

no_expansion none Optional algorithm may
expand pattern
size

Number of
consecutive
improvements
before expansion

expand_-
after_-
success

integer Optional 1

Pattern
contraction factor contraction_-

factor

real Optional 0.5

Exploratory
moves selection exploratory_-

moves

multi_step
�

best_all
�

best_first
�

biased_-
best_first

�
adaptive_-
pattern

�
test

Optional group best_first
for serial,
best_all for
parallel

Table 5.15: Specification detail for the SGOPT pattern search method

the partitions list is used to specify the number of partitions for each design variable. For example,
partitions = 2, 4, 3 specifies 2 partitions in the first design variable, 4 partitions in the second
design variable, and 3 partitions in the third design variable. This creates a total of 24 multidimensional
partitions, and a batch_size of 2 would select 2 random samples in each partition, for a total of 48
samples on each iteration of the sMC algorithm. Iterations containing 48 samples will continue until the
maximum number of iterations or function evaluations is exceeded, or the desired solution accuracy is
obtained.

5.9 Coliny Methods

Coliny is a collection of nongradient-based optimizers that support the Common Optimization Library
INterface (COLIN). It is the next generation of SGOPT capability and will fully replace it in DAKOTA
Version 4.0. Coliny optimizers currently include coliny_apps, coliny_cobyla, coliny_-
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Description Keyword Associated Data Status Default
SGOPT
Solis-Wets
method

sgopt_-
solis_wets

none Required group N/A

Random seed for
stochastic pattern
search

seed integer Optional randomly
generated seed

Initial offset
value

initial_-
delta

real Required N/A

Threshold for
offset values

threshold_-
delta

real Required N/A

No expansion
flag

no_expansion none Optional algorithm may
expand pattern
size

Number of
consecutive
improvements
before expansion

expand_-
after_-
success

integer Optional 5

Number of
consecutive
failures before
contraction

contract_-
after_-
failure

integer Optional 3

Pattern
contraction factor contraction_-

factor

real Optional 0.5

Table 5.16: Specification detail for the SGOPT Solis-Wets method

direct, coliny_pattern_search, coliny_solis_wets, and coliny_misc_solver. Of
these, coliny_apps, coliny_cobyla, and coliny_direct are new methods which will be dis-
cussed below. The coliny_pattern_search and coliny_solis_wets methods are updated
versions of sgopt_pattern_search and sgopt_solis_wets and have new features focused pri-
marily on more general support of constraints. The Coliny method dependent controls are very similar
to those described in Pattern search and Solis-Wets, respectively. Finally, the coliny_misc_solver
method is a convenient hook for new algorithm testing. Additional Coliny information is available from
http://software.sandia.gov/Acro/Coliny/.

Coliny solvers now support bound constraints and general nonlinear constraints. Supported nonlinear
constraints include both equality and two-sided inequality constraints. Coliny solvers do not yet sup-
port linear constraints. Most Coliny optimizers treat constraints with a simple penalty scheme that adds
constraint_penalty times the sum of squares of the constraint violations. Specific exceptions to
this method for handling constraint violations are noted below. (The default value of constraint_-
penalty is 1000.0, except for methods that dynamically adapt their constraint penalty, for which the
default value is 1.0.)

5.9.1 Coliny method independent controls

The method independent controls for max_iterations and max_function_evaluations limit
the number of major iterations and the number of function evaluations that can be performed during a
Coliny optimization. The convergence_tolerance control defines the threshold value on relative
change in the objective function that indicates convergence. The output verbosity specification controls
the amount of information generated by Coliny: the silent, quiet, and normal settings correspond to
minimal reporting from Coliny, whereas the verbose setting corresponds to a higher level of information,
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Description Keyword Associated Data Status Default
SGOPT stratified
Monte Carlo
method

sgopt_-
strat_mc

none Required group N/A

Random seed for
stochastic pattern
search

seed integer Optional randomly
generated seed

Number of
samples per
stratification

batch_size integer Optional 1

Partitions per
variable

partitions list of integers Optional No partitioning

Table 5.17: Specification detail for the SGOPT sMC method

and debug outputs method initialization and a variety of internal Coliny diagnostics. The majority of
Coliny’s methods have independent function evaluations that can directly take advantage of DAKOTA’s
parallel capabilities. Only coliny_solis_wets and certain configurations of coliny_pattern_-
search are inherenty serial (see Pattern search). The parallel methods automatically utilize parallel logic
when the DAKOTA configuration supports parallelism. Lastly, neither speculative gradients nor linear
constraints are currently supported with Coliny. Specification detail for method independent controls is
provided in Tables 5.1 through 5.4.

5.9.2 Coliny method dependent controls

All Coliny methods support the show_misc_options optional specification which results in a dump of
all the allowable method inputs. Note that the information provided by this command refers to optimizer
parameters that are internal to Coliny, and which may differ from corresponding parameters used by the
DAKOTA interface. The misc_options optional specification provides a means for inputing additional
settings supported by the Coliny methods but which are not currently mapped through the DAKOTA input
specification.

Each of the Coliny methods supports the solution_accuracy control, which defines a convergence
criterion in which the optimizer will terminate if it finds an objective function value lower than the specified
accuracy. Specification detail for method dependent controls for all Coliny methods is provided in Table
5.18.

Description Keyword Associated Data Status Default
Show
miscellaneous
options

show_misc_-
options

none Optional no dump of
specification
options

Specify
miscellaneous
options

misc_options list of strings Optional no miscellaneous
options specified

Desired solution
accuracy

solution_-
accuracy

real Optional -DBL_MAX

Table 5.18: Specification detail for Coliny method dependent controls

Each Coliny method supplements the settings of Table 5.18 with controls which are specific to its particular
class of method.
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5.9.3 Pattern search

Pattern search techniques are nongradient-based optimization methods which use a set of offsets from the
current iterate to locate improved points in the design space. The Coliny pattern search technique is in-
voked using a coliny_pattern_search group specification, which includes a variety of specification
components.

Traditional pattern search methods search with a fixed pattern of search directions to try to find improve-
ments to the current iterate. The Coliny pattern search methods generalize this simple algorithmic strategy
to enable control of how the search pattern is adapted, as well as how each search pattern is evaluated. The
stochastic and synchronization specifications denote how the the trial points are evaluated. The
stochastic specification indicates that the trial points are considered in a random order. For parallel
pattern search, synchronization dictates whether the evaluations are scheduled using a blocking
scheduler or a nonblocking scheduler (i.e., Model::synchronize() or Model::synchronize_nowait(),
respectively). In the blocking case, all points in the pattern are evaluated (in parallel), and if the best
of these trial points is an improving point, then it becomes the next iterate. These runs are reproducible,
assuming use of the same seed in the stochastic case. In the nonblocking case, then all points
in the pattern may not be evaluated, since the first improving point found becomes the next iterate. Since
the algorithm steps will be subject to parallel timing variabilities, these runs will not generally be repeat-
able. The synchronization specification has similar connotations for sequential pattern search. If
blocking is specified, then each sequential iteration terminates after all trial points have been consid-
ered, and if nonblocking is specified, then each sequential iteration terminates after the first improving
trial point is evaluated.

The particular form of the search pattern is controlled by the pattern_basis specification. If
pattern_basis is coordinate basis, then the pattern search uses a plus and minus offset in
each coordinate direction, for a total of 2n function evaluations in the pattern. If pattern_basis is
simplex_basis, then pattern search uses a minimal positive basis simplex for the parameter space, for
a total of n+1 function evaluations in the pattern. The total_pattern_size specification can be used
to augment the basic coordinate and simplex patterns with additional function evaluations, and is
particularly useful for parallel load balancing. For example, if some function evaluations in the pattern
are dropped due to duplication or bound constraint interaction, then the total_pattern_size speci-
fication instructs the algorithm to generate new offsets to bring the total number of evaluations up to this
consistent total.

The exploratory_moves specification controls how the search pattern is adapted. (The search pattern
can be adapted after an improving trial point is found, or after all trial points in a search pattern have been
found to be unimproving points.) The following exploratory moves selections are supported by Coliny:

� The basic_pattern case is the simple pattern search approach, which uses the same pattern in
each iteration.

� The multi_step case examines each trial step in the pattern in turn. If a successful step is found,
the pattern search continues examining trial steps about this new point. In this manner, the effects of
multiple successful steps are cumulative within a single iteration. This option does not support any
parallelism and will result in a serial pattern search.

� The adaptive_pattern case invokes a pattern search technique that adaptively rescales the
different search directions to maximize the number of redundant function evaluations. See
[Hart et al., 2001] for details of this method. In preliminary experiments, this method had more
robust performance than the standard basic_pattern case in serial tests. This option does not
support any parallelism and will result in a serial pattern search.

The initial_delta and threshold_delta specifications provide the initial offset size and the
threshold size at which to terminate the algorithm. For any dimension that has both upper and lower
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bounds, this step length will be internally rescaled to provide search steps of length initial_delta 
range. This rescaling does not occur for other dimensions, so search steps in those directions have length
initial_delta.

In general, pattern search methods can expand and contract their step lengths. Coliny pattern search meth-
ods contract the step length by the value contraction_factor, and they expand the step length by
the value (1/contraction_factor). The expand_after_success control specifies how many success-
ful objective function improvements must occur with a specific step length prior to expansion of the step
length, whereas the no_expansion flag instructs the algorithm to forgo pattern expansion altogether.

Finally, constraint infeasibility can be managed in a somewhat more sophisticated manner than the sim-
ple weighted penalty function. If the constant_penalty specification is used, then the simple
weighted penalty scheme described above is used. Otherwise, the constraint penalty is adapted to the
value constraint_penalty/L, where L is the the smallest step length used so far.

Table 5.19 and Table 5.20 provide the specification detail for the Coliny pattern search method and its
method dependent controls.

Description Keyword Associated Data Status Default
Coliny pattern
search method

coliny_-
pattern_-
search

none Required group N/A

Stochastic pattern
search

stochastic none Optional group N/A

Random seed for
stochastic pattern
search

seed integer Optional randomly
generated seed

Initial offset
value

initial_-
delta

real Required N/A

Threshold for
offset values

threshold_-
delta

real Required N/A

Constraint
penalty

constraint_-
penalty

real Optional 1.0

Control of
dynamic penalty

constant_-
penalty

none Optional algorithm
dynamically
adapts the
constraint penalty

Table 5.19: Specification detail for the Coliny pattern search method: randomization, delta, and constraint
controls

5.9.4 Solis-Wets

DAKOTA’s implementation of Coliny also contains the Solis-Wets algorithm. The Solis-Wets method is
a simple greedy local search heuristic for continuous parameter spaces. Solis-Wets generates trial points
using a multivariate normal distribution, and unsuccessful trial points are reflected about the current point to
find a descent direction. This algorithm is inherently serial and will not utilize any parallelism. Table 5.21
provides the specification detail for this method and its method dependent controls.

These specifications have the same meaning as corresponding specifications for coliny_pattern_-
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Description Keyword Associated Data Status Default
Pattern basis
selection

pattern_-
basis

coordinate
�

simplex
Optional simplex

Total number of
points in pattern

total_-
pattern_size

integer Optional no augmentation
of basic pattern

No expansion
flag

no_expansion none Optional algorithm may
expand pattern
size

Number of
consecutive
improvements
before expansion

expand_-
after_-
success

integer Optional 1

Pattern
contraction factor contraction_-

factor

real Optional 0.5

Evaluation
synchronization synchronization

blocking
�

nonblocking
Optional nonblocking

Exploratory
moves selection exploratory_-

moves

basic_-
pattern

�
multi_step

�
adaptive_-
pattern

Optional basic_-
pattern

Table 5.20: Specification detail for the Coliny pattern search method: pattern controls

search. In particular, coliny_solis_wets supports dynamic rescaling of the step length, and dy-
namic rescaling of the constraint penalty. The only new specification is contract_after_failure,
which specifies the number of unsuccessful cycles which must occur with a specific delta prior to contrac-
tion of the delta.

5.9.5 Asynchronous Parallel Pattern Search

The asynchronous parallel pattern search (APPS) algorithm [Hough et al., 2000] is a fully asynchronous
pattern search technique, in that the search along each offset direction continues without waiting
for searches along other directions to finish. By default, it utilizes the nonblocking schedulers in
DAKOTA (synchronization nonblocking). APPS is currently interfaced to DAKOTA as
part of Coliny (method coliny_apps). APPS-specific software documentation is available from
http://software.sandia.gov/appspack/.

The only method independent control currently mapped to APPS is the output verbosity control. The
APPS internal "debug" level is mapped to the DAKOTA debug, verbose, normal, quiet, and
silent settings as follows:

� DAKOTA "debug": APPS debug level = 7

� DAKOTA "verbose": APPS debug level = 4

� DAKOTA "normal": APPS debug level = 3

� DAKOTA "quiet": APPS debug level = 2

� DAKOTA ""silent": APPS debug level = 1
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Description Keyword Associated Data Status Default
Coliny
Solis-Wets
method

coliny_-
solis_wets

none Required group N/A

Random seed for
stochastic pattern
search

seed integer Optional randomly
generated seed

Initial offset
value

initial_-
delta

real Required N/A

Threshold for
offset values

threshold_-
delta

real Required N/A

No expansion
flag

no_expansion none Optional algorithm may
expand pattern
size

Number of
consecutive
improvements
before expansion

expand_-
after_-
success

integer Optional 5

Number of
consecutive
failures before
contraction

contract_-
after_-
failure

integer Optional 3

Pattern
contraction factor contraction_-

factor

real Optional 0.5

Constraint
penalty

constraint_-
penalty

real Optional 1.0

Control of
dynamic penalty

constant_-
penalty

none Optional algorithm
dynamically
adapts the
constraint penalty

Table 5.21: Specification detail for the Coliny Solis-Wets method

The APPS method is invoked using a coliny_apps group specification. The method dependent con-
trols are a subset of the Coliny controls for coliny_pattern_search described in Pattern search.
In particular, APPS supports initial_delta, threshold_delta, and contraction_factor,
and the APPS step lengths are dynamically rescaled like the steps in coliny_pattern_search. Col-
iny specifications such as pattern_basis, total_pattern_size, and no_expansion are not
supported since APPS only supports coordinate bases with a total of 2n function evaluations in the pat-
tern, and these patterns may only contract. The synchronization specification can be used to specify
the use of either blocking or nonblocking schedulers for APPS. Table 5.22 summarizes the APPS
specification.

5.9.6 COBYLA

The Constrained Optimization BY Linear Approximations (COBYLA) algorithm is an extension to the
Nelder-Mead simplex algorithm for handling general linear/nonlinear constraints. The algorithm employs
linear approximations to the objective and constraint functions, the approximations being formed by linear
interpolation at N+1 points in the space of the variables. We regard these interpolation points as vertices of
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Description Keyword Associated Data Status Default
APPS method coliny_apps none Required group N/A
Initial offset
value

initial_-
delta

real Required N/A

Threshold for
offset values

threshold_-
delta

real Required N/A

Pattern
contraction factor contraction_-

factor

real Optional 0.5

Evaluation
synchronization synchronization

blocking
�

nonblocking
Optional nonblocking

Constraint
penalty

constraint_-
penalty

real Optional 1000.0

Table 5.22: Specification detail for the APPS method

a simplex. The step length parameter controls the size of the simplex and it is reduced automatically from
initial_delta to threshold_delta. COBYLA has an advantage over many of its competitors,
however, which is that it treats each constraint individually when calculating a change to the variables,
instead of lumping the constraints together into a single penalty function.

COBYLA currently only supports termination based on the max_function_evaluations and
solution_accuracy specifications. The search performed by COBYLA is currently not parallelized.

Table 5.23 summarizes the COBYLA specification.

Description Keyword Associated Data Status Default
COBYLA
method

coliny_-
cobyla

none Required group N/A

Initial offset
value

initial_-
delta

real Required N/A

Threshold for
offset values

threshold_-
delta

real Required N/A

Table 5.23: Specification detail for the COBYLA method

5.9.7 DIRECT

The DIRECT optimization algorithm is a derivative free global optimization method that balances local
search in promising regions of the design space with global search in unexplored regions. As shown
in Figure 5.1, DIRECT adaptively subdivides the space of feasible design points so as to guarantee that
iterates are generated in the neighborhood of a global minimum in finitely many iterations.
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Figure 5.1: Design space partitioning with DIRECT

In practice, DIRECT has proven an effective heuristic for engineering design applications, for which it
is able to quickly identify candidate solutions that can be further refined with fast local optimizers. This
capability is currently operational for serial executions.

DIRECT uses the solution_accuracy, constraint_penalty and show_misc_options
specifications that are described in Coliny method dependent controls. Note, however, that DIRECT uses
a fixed penalty value for constraint violations (i.e. it is not dynamically adapted as is done in coliny_-
pattern_search).

The division specification determines how DIRECT subdivides each subregion of the search space. If
division is set to major_dimension, then the dimension representing the longest edge of the sub-
region is subdivided (this is the default). If division is set to all_dimensions, then all dimensions
are simultaneously subdivided.

Each subregion considered by DIRECT has a size, which corresponds to the longest diagonal of the subre-
gion. The global_balance_parameter controls how much global search is performed by only al-
lowing a subregion to be subdivided if the size of the subregion divided by the size of the largest subregion
is at least global_balance_parameter. Intuitively, this forces large subregions to be subdivided
before the smallest subregions are refined. The local_balance_parameter provides a tolerance for
estimating whether the smallest subregion can provide a sufficient decrease to be worth subdividing; the
default value is a small value that is suitable for most applications.

DIRECT can be terminated with the standard max_function_evaluations and solution_-
accuracy specifications. Additionally, the max_boxsize_limit specification will terminated DI-
RECT if the size of the largest subregion falls below this threshold. The min_boxsize_limit specifi-
cation terminates DIRECT if the size of the smallest subregion falls below this threshold. In practice, this
later specification is likely to be more effective at limited DIRECT’s search.

Table 5.24 summarizes the DIRECT specification.
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Description Keyword Associated Data Status Default
DIRECT method coliny_-

direct
none Required group N/A

Box subdivision
approach

division major_-
dimension

�
all_-
dimensions

Optional group major_-
dimension

Global search
balancing
parameter

global_-
balance_-
parameter

real Optional 0.0

Local search
balancing
parameter

local_-
balance_-
parameter

real Optional 1.e-8

Maximum
boxsize limit

max_-
boxsize_-
limit

real Optional 0.0

Minimum
boxsize limit

min_-
boxsize_-
limit

real Optional 0.0001

Constraint
penalty

constraint_-
penalty

real Optional 1000.0

Table 5.24: Specification detail for the DIRECT method

5.10 JEGA Methods

The JEGA (John Eddy Genetic Algorithms) library [Eddy and Lewis, 2001] contains two global optimiza-
tion methods. The first is a Multi-objective Genetic Algorithm (MOGA) which performs Pareto optimiza-
tion. The second is a Single-objective Genetic Algorithm (SOGA) which performs optimization on a single
objective function. Both methods support general constraints and a mixture of real and discrete variables.
The JEGA library was written by John Eddy, currently a Ph.D. student in Mechanical Engineering at SUNY
Buffalo. These algorithms are accessed as moga and soga within DAKOTA. DAKOTA provides access
to the JEGA library through the JEGAOptimizer class.

The JEGA/DAKOTA interface is still undergoing refinements and is in a beta release state for DAKOTA
v3.2.

5.10.1 JEGA method independent controls

JEGA utilizes the max_iterations and max_function_evaluationsmethod independent con-
trols to provide integer limits for the maximum number of generations and function evaluations, re-
spectively. Note that currently, the DAKOTA default for max_iterations is 100 and for max_-
function_evaluations is 1000. These are the default settings that will be used to "stop" the JEGA
algorithms, unless the user resets them or unless some specific convergence criteria are set (this is only in
the case of SOGA, see Table 5.28 below).

5.10.2 JEGA method dependent controls

The JEGA library currently provides two types of genetic algorithms (GAs): a multi-objective genetic
algorithm (moga), and a single- objective genetic algorithm (soga). Both of these GAs can take real-
valued inputs, integer-valued inputs, or a mixture of real and integer-valued inputs. "Real-valued" and
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"integer-valued" refer to the use of continuous or discrete variable domains, respectively (the response data
are real-valued in all cases).

The basic steps of the genetic algorithm are as follows:

1. Initialize the population (by randomly generating population members with or without duplicates
allowed, or by flat-file initialization)

2. Perform crossover (several crossover types are allowed)

3. Perform mutation (several mutation types are allowed)

4. Evaluate the population members. This means calculate the values of the objective function(s) for
each population member.

5. Assess the fitness of each member in the population. The fitness assessment is linked with the
next step, selection of members for the next generation. In some cases, a fitness assessment
is not necessary because the replacement operator acts on the values of the objective functions.
For example, in the case of a MOGA, there is a replacement operator (replacement_type)
called domination_count. If this replacement mechanism is specified, the user defines a
domination_cutoff. If a particular solution is dominated by more than domination_-
cutoff population members, then it is discarded. Otherwise, it is kept. Thus, this particular
replacement type does not need a fitness assessor. There are fitness assessors available that go with
some other replacement types, however. For example, in the case of a SOGA, one may apply an
exterior penalty multiplier to the constraint violations and sum this penalty term with the objective
function. Then, for example, this fitness may be used in a roulette wheel replacement scheme.

6. Replace the population with the population members selected to continue in the next generation. As
mentioned above, replacement and fitness assessment depend on each other. The replacement_-
type of roulette_wheel or unique_roulette_wheel may be used either with MOGA
or SOGA problems. If a roulette wheel replacement is used with a MOGA, the fitness used is a
"Layered fitness." In a layered scheme, the solutions are assigned "layers" based on their rank in
domination and feasibility, and the layers are translated to fitness values. If roulette wheel replace-
ment is used with a SOGA, the objective is calculated by applying the exterior penalty multiplier to
the sum of constraint violations. The replacement_type of domination_count is specific
to a MOGA. The replacement_type of favor_feasible is specific to a SOGA. This re-
placement operator will always take a feasible design over an infeasible one. Beyond that, if favors
solutions based on an assigned fitness value which must have been installed by some fitness assessor.

7. Assess convergence. The final step in the iterator loop is to assess the convergence of the al-
gorithm. The default convergence type can be applied to either MOGA or SOGA problems. It
does not require additional specification other than the independent controls max_function_-
evaluations or max_iterations. This convergence stops the optimization after max_-
function_evaluations or max_iterations or both. In addition, there are two conver-
gence types for SOGA problems which stop the GA after the average fitness or best fitness in the
population has remained basically unchanged for a certain number of generations.

There are many controls which can be used for both MOGA and SOGA methods. These include random
seed, initialization types, crossover and mutation types, main loop controls, and some replacement types.
These are described in Tables 5.25 and 5.26 below.

The seed control defines the starting seed for the random number generator. initialization_-
type defines the type of initialization for the GA. There are three types: random, unique_random, and
flat_file. random creates initial solutions with random variable values according to a uniform random
number distribution. It gives no consideration to any previously generated designs. The number of designs
is specified by the population_size. unique_random is the same as random, except that when
a new solution is generated, it is checked against the rest of the solutions. If it duplicates any of them,
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it is rejected. flat_file allows the initial population to be read from a flat file. If flat_file is
specified, a file name must be given. Variables must be delimited with a tab in the input file. The input
file will continue to read until the end of the file. The algorithm will discard any configurations for which
it was unable to retrieve at least the number of design variables. The objective and constraint entries are
not required but if all are present, they will be recorded and the Design will be tagged as evaluated so that
evaluators may choose not to re-evaluate them. Setting the size for this initializer has the effect of requiring
a minimum number of Designs to create. If this minimum number has not been created once the files are
all read, the rest are created using the unique_random initializer.

Note that the population_size only sets the size of the initial population. The population size varies
in the JEGA methods according to the type of operators chosen for a particular optimization run.

There are many crossover types available. multi_point_binary crossover requires an integer num-
ber, N, of crossover points. This crossover type performs a bit switching crossover at N crossover points
in the binary encoded genome of two designs. Thus, crossover may occur at any point along a solution
chromosome (in the middle of a gene representing a design variable, for example). multi_point_-
parameterized_binary crossover is similar, in that it performs a bit switching crossover routine at
N crossover points. However, the crossover points are only between design variables. Thus, this crossover
type performs crossover on a design variable or sets of design variables. multi_point_real crossover
performs a variable switching crossover routing at N crossover points in the real encoded genome of two
designs. In this scheme as in multi_point_parameterized_binary, crossover only occurs be-
tween design variables. Note that the standard solution chromosome representation in the JEGA algorithm
is real encoded and can handle integer or real decision variables. For the first two crossover types that use a
binary representation, real variables are converted to long integers by multiplying the real number by 10 � 6
and then truncating. Note that this assumes a precision of only six decimal places. Discrete variables are
treated as integers.

The final crossover type is shuffle_random. This crossover type performs crossover by choosing
design variables at random from a specified number of parents enough times that the requested number of
children are produced. For example, consider the case of 3 parents producing 2 children. This operator
would go through and for each design variable, select one of the parents as the donor for the child. So it
creates a random shuffle of the parent design variable values. The relative numbers of children and parents
are controllable to allow for as much mixing as desired. The more parents involved, the less likely that the
children will wind up exact duplicates of the parents.

All crossover types take a crossover_rate. The crossover rate is used to calculate the number of
crossover operations that take place. The number of crossovers is equal to the rate  population_size.

There are five mutation types allowed. replace_uniform introduces random variation by first ran-
domly choosing a design variable of a randomly selected design and reassigning it to a random valid value
for that variable. No consideration of the current value is given when determining the new value. All
mutation types have a population_rate. The number of mutations for the replace_uniform mutator is
the product of the population_rate and the population_size.

The bit_random mutator introduces random variation by first converting a randomly chosen variable of a
randomly chosen Design into a binary string. It then flips a randomly chosen bit in the string from a 1 to a 0
or visa versa. This mutator is similar to the replace_uniform, only it is mutating on a binary representation
and not a real representation. Also, the resulting value from a bit_random mutator has a high probability
that it will be similar to the original value, but the resulting value from a replace_uniform mutator is more
likely to be significantly different than the original value. The number of mutations performed is the
product of the population_rate, the number of design variables, and the population size.

The offset mutators all act by adding an "offset" random amount to the variable. The random amount
has a mean of zero in all cases. The offset_normal mutator introduces random variation by adding a
Gaussian random amount to a variable value. The random amount has a mean of 0 and a standard deviation
dependent on the offset range. For the offset_normal mutator, the offset range is interpreted as a
fraction of the total range of the variable. The standard deviation is computed as the product of the offset
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range and the total range of the variable. mutation_scale is a fraction in the range [0, 1] and is meant
to help control the amount of variation that takes place when a variable is mutated. mutation_scale is
multiplied by the range of the variable being mutated to serve as standard deviation. offset_cauchy is
similar to offset_normal, except that a Cauchy random variable is added to the variable being mutated.
The mutation_scale also defines the standard deviation for this mutator. Finally, offset_uniform adds
a uniform random amount to the variable value. For the offset_uniform mutator, the offset range is
interpreted as a fraction of the total range of the variable. The magnitude of the deviation is +/- 1/2  (offset
range  variable range). The offset range is defined by mutation_scale. The number of mutations for
all offset mutators is defined as the product of population_rate and population_size.

The replacement types that are common to both MOGA and SOGA are roulette_wheel and
unique_roulette_wheel. In roulette_wheel replacement, each Design is allotted a portion of a
wheel proportional to its fitness relative to the fitnesses of the other Designs. Then portions of the wheel
are chosen at random and the Design occupying those portions are duplicated into the next population.
Those Designs allotted larger portions of the wheel are more likely to be selected (potentially many times).
unique_roulette_wheel replacement is the same as roulette_wheel replacement, with the ex-
ception that a Design may only be selected once.

Description Keyword Associated Data Status Default
GA Method moga

�
soga none Required group N/A

Random Seed seed integer Optional Randomly
generated seed

Initialization type
initialization_-
type

flat_file
�

random
�

unique_-
random

Required unique_random

Mutation type mutation_-
type

replace_-
uniform

�
bit_random

�
offset_-
cauchy

�
offset_-
uniform

�
offset_-
normal

Optional group None

Mutation scale mutation_-
scale

real Optional 0.15

Mutation
population rate

population_-
rate

real Optional 0.08

Replacement type
replacement_-
type

roulette_-
wheel

�
unique_-
roulette_-
wheel

Optional group None

Table 5.25: Specification detail for JEGA method dependent controls: seed, initialization, mutation, and
replacement
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Description Keyword Associated Data Status Default
Crossover type crossover_-

type
multi_-
point_binary�
multi_-
point_-
parameterized_-
binary

�
multi_-
point_real

�
shuffle_-
random

Optional group none

Multi point
binary crossover

multi_-
point_binary

integer Required N/A

Multi point
parameterized
binary crossover

multi_-
point_-
parameterized_-
binary

integer Required N/A

Multi point real
crossover

multi_-
point_real

integer Required N/A

Random shuffle
crossover

shuffle_-
random

num_parents,
num_-
offspring

Required N/A

Number of
parents in random
shuffle crossover

num_parents integer optional 2

Number of
offspring in
random shuffle
crossover

num_-
offspring

integer optional 2

Crossover rate crossover_-
rate

real optional (applies
to all crossover
types)

0.8

Table 5.26: Specification detail for JEGA method dependent controls: crossover

5.10.3 Multi-objective Evolutionary Algorithms

The specification for controls specific to Multi-objective Evolutionary algorithms are described here. These
controls will be appropriate to use if the user has specified moga as the method.

The initialization, crossover, and mutation controls were all described in the preceding section. There are no
MOGA specific aspects to these controls. The replacement_type for a MOGA may be roulette_-
wheel, unique_roulette_wheel, or domination_count. The domination_count replace-
ment is the default and is recommended. It works especially well on multi-objective problems because it
has been specifically designed to avoid problems with aggregating and scaling objective function values
and transforming them into a single objective. Instead, domination_count works by ordering pop-
ulation members by number of dominated designs. If a design is dominated by more than a number of
designs (domination_cutoff), then it is discarded. Otherwise it is kept and selected to go to the
next generation. The one catch is that this replacement will require that a minimum number of selections
take place. shrinkage_percentage defines the minimum amount of selections that will take place if
enough designs are available. It is interpreted as a percentage of the population size that must go on to the
subsequent generation. To enforce this, domination_count makes all the replacements it would make
anyway and if that is not enough, it re-ranks what is left and makes selections from those. It continues until
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it has made enough selections. The shrinkage_percentage is designed to prevent extreme decreases in the
population size at any given generation, and thus prevent a big loss of genetic diversity in a very short time.
Without a shrinkage limit, a small group of "super" designs may appear and quickly cull the population
down to a size on the order of domination_count. In this case, all the diversity of the population is lost and
it is expensive to re-diversify and spread the population. Another instance when it is beneficial to keep a
population of reasonable size is when the algorithm has settled into one area of the response space and then
happens on a new, better area through exploration. The shrinkage_percentage prevents a fast move to the
new area.

The MOGA specific controls are described in Table 5.27 below. Note that MOGA and SOGA create
additional output files during execution. "Finaldata.dat" is a file that holds the Pareto members of the
population in the final generation. "Discards.dat" holds solutions that were discarded from the population
during the course of evolution. It can often be useful to plot objective function values from these files to
visually see the Pareto front and ensure that finaldata.dat solutions dominate discards.dat solutions. The
solutions are written to these output files in the format "Input1...InputN..Output1...OutputM". If MOGA
is used in a multi-level optimization strategy (which requires one optimal solution from each individual
optimization method to be passed to the subsequent optimization method as its starting point), the solution
in the Pareto set closest to the "utopia" point is given as the best solution. This solution is also reported in
the DAKOTA output. This "best" solution in the Pareto set has minimum distance from the utopia point.
The utopia point is defined as the poitn of extreme (best) values for each objective function. For example,
if the Pareto front is bounded by (1,100) and (90,2), then (1,2) is the utopia point. There will be a point in
the Pareto set that has minimum L2-norm distance to this point, for example (10,10) may be such a point.
In SOGA, the solution that minimizes the single objective function is returned as the best solution.

Description Keyword Associated Data Status Default
Replacement type

replacement_-
type

domination_-
count

�
roulette_-
wheel

�
unique_-
roulette_-
wheel

Optional group domination_-
count

Domination
cutoff

domination_-
cutoff

integer Optional 6

Shrinkage
percentage

shrinkage_-
percentage

real Optional 0.9

Table 5.27: Specification detail for MOGA method controls

5.10.4 Single-objective Evolutionary Algorithms

The specification for controls specific to Single-objective Evolutionary algorithms are described here.
These controls will be appropriate to use if the user has specified soga as the method.

The initialization, crossover, and mutation controls were all described above. There are no SOGA spe-
cific aspects to these controls. The replacement_type for a SOGA may be roulette_wheel,
unique_roulette_wheel, or favor_feasible. The favor_feasible replacement type al-
ways takes a feasible design over an infeasible one. Beyond that, it selects designs based on a fitness
value. For SOGA problems, the user is allowed to specify an exterior_penalty_multiplierwith
roulette_wheel or unique_roulette_wheel replacement. The penalty multiplier is a parame-
ter that multiplies the constraint violation penalty prior to summation with a weighted sum of objectives to
obtain a fitness value.
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The SOGA controls allow two additional convergence types. The convergence_type called
average_fitness_tracker keeps track of the average fitness in a population. If this average fitness
does not change more than percent_change over some number of generations, num_generations,
then the solution is reported as converged and the algorithm terminates. The best_fitness_tracker
works in a similar manner, only it tracks the best fitness in the population. Convergence occurs after num_-
generations has passed and there has been less than percent_change in the best fitness value.

The SOGA specific controls are described in Table 5.28 below.

Description Keyword Associated Data Status Default
Replacement type

replacement_-
type

favor_-
feasible

�
unique_-
roulette_-
wheel

�
roulette_-
wheel

Optional group

Exterior penalty
multiplier

exterior_-
penalty_-
multiplier

real Optional

Convergence type
convergence_-
type

best_-
fitness_-
tracker

�
average_-
fitness_-
tracker

Optional

Number of
generations (for
convergence test)

num_-
generations

integer Optional 15

Percent change in
fitness

percent_-
change

real Optional 0.1

Table 5.28: Specification detail for SOGA method controls

5.11 Least Squares Methods

DAKOTA’s least squares branch currently contains three methods for solving nonlinear least squares
problems: NL2SOL, a trust-region method that adaptively chooses between two Hessian approxima-
tions (Gauss-Newton and Gauss-Newton plus a quasi-Newton approximation to the rest of the Hessian),
NLSSOL, a sequential quadratic programming (SQP) approach that is from the same algorithm family as
NPSOL, and Gauss-Newton, which supplies the Gauss-Newton Hessian approximation to the full-Newton
optimizers from OPT++.

The important difference of these algorithms from general-purpose optimization methods is that the re-
sponse set is defined by least squares terms, rather than an objective function. Thus, a finer granu-
larity of data is used by least squares solvers as compared to that used by optimizers. This allows
the exploitation of the special structure provided by a sum of squares objective function. Refer to
Least squares terms and constraint functions (least squares data set) for additional information on the least
squares response data set.
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5.11.1 NL2SOL Method

NL2SOL is available as nl2sol and addresses unconstrained and bound-constrained problems. It uses
a trust-region method (and thus can be viewed as a generalization of the Levenberg-Marquardt algorithm)
and adaptively chooses between two Hessian approximations, the Gauss-Newton approximation alone and
the Gauss-Newton approximation plus a quasi-Newton approximation to the rest of the Hessian. Even
on small-residual problems, the latter Hessian approximation can be useful when the starting guess is far
from the solution. On problems that are not over-parameterized (i.e., that do not involve more optimization
variables than the data support), NL2SOL usually exhibits fast convergence.

NL2SOL has a variety of internal controls as described in AT&T Bell Labs CS TR 153
(http://cm.bell-labs.com/cm/cs/cstr/153.ps.gz). A number of existing DAKOTA con-
trols (method independent controls and responses controls) are mapped into these NL2SOL inter-
nal controls. In particular, DAKOTA’s convergence_tolerance, max_iterations, max_-
function_evaluations, and fd_gradient_step_size are mapped directly into NL2SOL’s
rfctol, mxiter, mxfcal, and dltfdj controls, respectively. In addition, DAKOTA’s fd_-
hessian_step_size is mapped into both delta0 and dltfdc, and DAKOTA’s output verbosity
is mapped into NL2SOL’s auxprt and outlev (for normal/verbose/debug output, NL2SOL
prints initial guess, final solution, solution statistics, nondefault values, and changes to the active bound
constraint set on every iteration; for quiet output, NL2SOL prints only the initial guess and final
solution; and for silent output, NL2SOL output is suppressed).

Several NL2SOL convergence tolerances are adjusted in response to function_precision, which
gives the relative precision to which responses are computed. These tolerances may also be specified
explicitly: convergence_tolerance (NL2SOL’s rfctol, as mentioned previously) is the relative-
function convergence tolerance (on the accuracy desired in the sum-of-squares function); x_conv_tol
(NL2SOL’s xctol) is the X-convergence tolerance (scaled relative accuracy of the solution variables);
absolute_conv_tol (NL2SOL’s afctol) is the absolute function convergence tolerance (stop when
half the sum of squares is less than absolute_conv_tol, which is mainly of interest on zero-residual
test problems); singular_conv_tol (NL2SOL’s sctol) is the singular convergence tolerance, which
works in conjunction with singular_radius (NL2SOL’s lmaxs) to test for underdetermined least-
squares problems (stop when the relative reduction yet possible in the sum of squares appears less then
singular_conv_tol for steps of scaled length at most singular_radius); false_conv_tol
(NL2SOL’s xftol) is the false-convergence tolerance (stop with a suspicion of discontinuity when a
more favorable stopping test is not satisfied and a step of scaled length at most false_conv_tol is not
accepted). Finally, the initial_trust_radius specification (NL2SOL’s lmax0) specifies the initial
trust region radius for the algorithm.

The internal NL2SOL defaults can be obtained for many of these controls by specifying the value -1. For
both the singular_radius and the initial_trust_radius, this results in the internal use of
steps of length 1. For other controls, the internal defaults are often functions of machine epsilon (as limited
by function_precision). Refer to CS TR 153 for additional details on these formulations.

Whether and how NL2SOL computes and prints a final covariance matrix and regression diagnostics is
affected by several keywords. covariance (NL2SOL’s covreq) specifies the desired covariance ap-
proximation:

� 0 = default = none

� 1 or -1 == ���
 ���� ���	�
�	��� �

� 2 or -2 == ���
 � � �

� 3 or -3 == ���
 � �	�
� � � �

� Negative values == � estimate the final Hessian H by finite differences of function values only (using
fd_hessian_step_size)
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� Positive values == � differences of gradients (using fd_hessian_step_size)

When regression_diagnostics (NL2SOL’s rdreq) is specified and a positive-definite final Hes-
sian approximation H is computed, NL2SOL computes and prints a regression diagnostic vector RD such
that if omitting the i-th observation would cause alpha times the change in the solution that omitting the j-th
observation would cause, then RD[i] =

�
alpha

�
RD[j]. The finite-difference step-size tolerance affecting H

is fd_hessian_step_size (NL2SOL’s delta0 and dltfdc, as mentioned previously).

Table 5.29 provides the specification detail for the NL2SOL method dependent controls.

Description Keyword Associated Data Status Default
Relative precision
in least squares
terms

function_-
precision

real Optional 1e-10

Absolute function
convergence
tolerance

absolute_-
conv_tol

real Optional -1. (use NL2SOL
internal default)

Convergence
tolerance for
change in
parameter vector

x_conv_tol real Optional -1. (use NL2SOL
internal default)

Singular
convergence
tolerance

singular_-
conv_tol

real Optional -1. (use NL2SOL
internal default)

Step limit for
sctol

singular_-
radius

real Optional -1. (use NL2SOL
internal default of
1)

False
convergence
tolerance

false_conv_-
tol

real Optional -1. (use NL2SOL
internal default)

Initial trust region
radius

initial_-
trust_radius

real Optional -1. (use NL2SOL
internal default of
1)

Covariance
post-processing

covariance integer Optional 0 (no covariance)

Regression
diagnostics
post-processing

regression_-
diagnostics

none Optional no regression
diagnostics

Table 5.29: Specification detail for NL2SOL method dependent controls.

5.11.2 NLSSOL Method

NLSSOL is available as nlssol_sqp and supports unconstrained, bound-constrained, and generally-
constrained problems. It exploits the structure of a least squares objective function through the periodic
use of Gauss-Newton Hessian approximations to accelerate the SQP algorithm. DAKOTA provides access
to the NLSSOL library through the NLSSOLLeastSq class. The method independent and method depen-
dent controls are identical to those of NPSOL as described in NPSOL method independent controls and
NPSOL method dependent controls.
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5.11.3 Gauss-Newton Method

The Gauss-Newton algorithm is available as optpp_g_newton and supports unconstrained, bound-
constrained, and generally-constrained problems. The code for the Gauss-Newton approximation (ob-
jective function value, gradient, and approximate Hessian defined from residual function values and gra-
dients) is provided outside of OPT++ within SNLLLeastSq::nlf2_evaluator_gn(). When interfaced with
the unconstrained, bound-constrained, and nonlinear interior point full-Newton optimizers from the OPT++
library, it provides a Gauss-Newton least squares capability which – on zero-residual test problems – can
exhibit quadratic convergence rates near the solution. (Real problems almost never have zero residuals,
i.e., perfect fits.)

Mappings for the method independent and dependent controls are the same as for the
OPT++ optimization methods and are as described in OPT++ method independent controls and
OPT++ method dependent controls. In particular, since OPT++ full-Newton optimizers provide the foun-
dation for Gauss-Newton, the specifications from Table 5.8 are also applicable for optpp_g_newton.

5.12 Nondeterministic Methods

DAKOTA’s nondeterministic branch does not currently make use of any method independent controls.
As such, the nondeterministic branch documentation which follows is limited to the method dependent
controls for the sampling, reliability, and polynomial chaos expansion methods.

Each of these techniques supports response_levels, probability_levels, and
reliability_levels specifications along with optional num_response_levels, num_-
probability_levels, and num_reliability_levels keys. The keys define the distribution of
the levels among the different response functions. For example, the following specification

num_response_levels = 2 4 3 \
response_levels = 1. 2. .1 .2 .3 .4 10. 20. 30. \

would assign the first two response levels (1., 2.) to response function 1, the next four response levels (.1,
.2, .3, .4) to response function 2, and the final three response levels (10., 20., 30.) to response function 3.
If the num_response_levels key were omitted from this example, then the response levels would be
evenly distributed among the response functions (three levels each in this case).

The response_levels specification provides the target response values for generating probabilities
and/or reliabilities (forward mapping). The selection of probability or reliability results for the for-
ward mapping can be performed with the compute keyword followed by either probabilities or
reliabilities. Conversely, the probability_levels and reliability_levels specifica-
tions provide target levels for which response values will be computed (inverse mapping). The mapping
results (probabilities or reliabilities for the forward mapping and response values for the inverse mapping)
define the final statistics of the nondeterministic analysis that can be accessed via the primary and secondary
mapping matrices for nested models (see Method Independent Controls). Sets of response-probability pairs
computed with the forward/inverse mappings define either a cumulative distribution function (CDF) or a
complementary cumulative distribution function (CCDF) for each response function. The selection of a
CDF or CCDF can be performed with the distribution keyword followed by either cumulative
for the CDF option or complementary for the CCDF option. Table 5.30 provides the specification detail
for the forward/inverse mappings used by each of the nondeterministic analysis methods.
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Description Keyword Associated Data Status Default
Distribution type distribution cumulative

�
complementary

Optional group cumulative
(CDF)

Response levels response_-
levels

list of reals Optional group No CDF/CCDF
probabili-
ties/reliabilities to
compute

Number of
response levels

num_-
response_-
levels

list of integers Optional response_-
levels evenly
distributed
among response
functions

Target statistics
for response
levels

compute
probabilities�
reliabilities

Optional
probabilities

Probability levels
probability_-
levels

list of reals Optional group No CDF/CCDF
response levels to
compute

Number of
probability levels

num_-
probability_-
levels

list of integers Optional
probability_-
levels evenly
distributed
among response
functions

Reliability levels
reliability_-
levels

list of reals Optional group No CDF/CCDF
response levels to
compute

Number of
reliability levels

num_-
reliability_-
levels

list of integers Optional
reliability_-
levels evenly
distributed
among response
functions

Table 5.30: Specification detail for forward/inverse level mappings

5.12.1 Nondeterministic sampling method

The nondeterministic sampling iterator is selected using the nond_sampling specification. This iterator
performs sampling within specified uncertain variable probability distributions in order to determine distri-
bution statistics for response functions. DAKOTA currently provides access to nondeterministic sampling
methods through the combination of the NonDSampling base class and the NonDLHSSampling derived
class.

CDF/CCDF probabilities are calculated for specified response levels using a simple binning approach.
Response levels are calculated for specified CDF/CCDF probabilities by indexing into a sorted samples
array (the response levels computed are not interpolated and will correspond to one of the sampled values).
CDF/CCDF reliabilities are calculated for specified response levels by computing the number of sample
standard deviations separating the sample mean from the response level. Response levels are calculated for
specified CDF/CCDF reliabilities by projecting out the prescribed number of sample standard deviations
from the sample mean.

The seed integer specification specifies the seed for the random number generator which is used to make
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sampling studies repeatable. The fixed_seed flag is relevant if multiple sampling sets will be generated
during the course of a strategy (e.g., surrogate-based optimization, optimization under uncertainty). Spec-
ifying this flag results in the reuse of the same seed value for each of these multiple sampling sets, which
can be important for reducing variability in the sampling results. However, this behavior is not the default
as the repetition of the same sampling pattern can result in a modeling weakness that an optimizer could
potentially exploit (resulting in actual reliabilities that are lower than the estimated reliabilities). In either
case (fixed_seed or not), the study is repeatable if the user specifies a seed and the study is random is
the user omits a seed specification.

The number of samples to be evaluated is selected with the samples integer specification. The algorithm
used to generate the samples can be specified using sample_type followed by either random, for pure
random Monte Carlo sampling, or lhs, for Latin Hypercube sampling.

The nondeterministic sampling iterator also supports a design of experiments mode through the all_-
variables flag. Normally, nond_sampling generates samples only for the uncertain variables,
and treats any design or state variables as constants. The all_variables flag alters this behav-
ior by instructing the sampling algorithm to treat any continuous design or continuous state variables
as parameters with uniform probability distributions between their upper and lower bounds. Sam-
ples are then generated over all of the continuous variables (design, uncertain, and state) in the vari-
ables specification. This is similar to the behavior of the design of experiments methods described in
Design of Computer Experiments Methods, since they will also generate samples over all continuous de-
sign, uncertain, and state variables in the variables specification. However, the design of experiments meth-
ods will treat all variables as being uniformly distributed between their upper and lower bounds, whereas
the nond_sampling iterator will sample the uncertain variables within their specified probability distri-
butions.

Finally, the nondeterministic sampling iterator supports two types of sensitivity analysis. In this context
of sampling, we take sensitivity analysis to be global, not local as when calculating derivatives of output
variables with respect to input variables. Our definition is similar to that of [Saltelli et al., 2004]: "The
study of how uncertainty in the output of a model can be apportioned to different sources of uncertainty
in the model input." As a default, DAKOTA provides correlation analyses when running LHS. Correlation
tables are printed with the simple, partial, and rank correlations between inputs and outputs. These can be
useful to get a quick sense of how correlated the inputs are to each other, and how correlated various outputs
are to inputs. In addition, we have the capability to calculate sensitivity indices through Variance Based
Decomposition, variance_based_decomp. Variance based decomposition is a way of using sets of
samples to understand how the variance of the output behaves, with respect to each input variable. A larger
value of the sensitivity index, Si, means that the uncertainty in the input variable i has a larger effect on
the variance of the output. More details on the calculations and interpretation of the sensitivity indices can
be found in [Saltelli et al., 2004]. Note that variance_based_decomp is extremely computationally
intensive since replicated sets of sample values are evaluated. If the user specified a number of samples,
N, and a number of nondeterministic variables, M, variance-based decomposition requires the evaluation
of N  (M+2) samples. To obtain sensitivity indices that are reasonably accurate, we recommend that N, the
number of samples, be at least one hundred and preferably several hundred or thousands. Because of the
computational cost, variance_based_decomp is turned off as a default. Table 5.31 provides details
of the nondeterministic sampling specifications beyond those of Table 5.30.

5.12.2 Reliability methods

Reliability methods are selected using the nond_reliability specification and are implemented
within the NonDReliability class. These methods compute approximate response function distribution
statistics based on specified uncertain variable probability distributions. Each of the reliability methods
can compute the probabilities/reliabilities corresponding to specified response levels and the response levels
corresponding to specified probability/reliability levels. Moreover, specifications of response_levels,

Generated on Thu Dec 23 14:56:40 2004 for DAKOTA by Doxygen



82 Method Commands

Description Keyword Associated Data Status Default
Nondeterministic
sampling iterator

nond_-
sampling

none Required group N/A

Random seed seed integer Optional randomly
generated seed

Fixed seed flag fixed_seed none Optional seed not fixed:
sampling patterns
are variable

Number of
samples

samples integer Optional minimum
required

Sampling type sample_type random
�
lhs Optional group lhs

All variables flag all_-
variables

none Optional sampling only
over uncertain
variables

Variance based
decomposition

variance_-
based_decomp

none Optional No variance_-
based_decomp

Table 5.31: Specification detail for nondeterministic sampling method

probability_levels, and reliability_levels may be combined within the calculations for
each response function.

The Mean Value method (MV, also known as MVFOSM in [Haldar and Mahadevan, 2000]) is the sim-
plest, least-expensive method in that it estimates the response means, response standard deviations, and
all CDF/CCDF response-probability-reliability mappings from a single evaluation of response functions
and gradients at the uncertain variable means. This approximation can have acceptable accuracy when the
response functions are nearly linear and their distributions are approximately Gaussian, but can have very
poor accuracy in other situations.

All other reliability methods perform an internal nonlinear optimization to compute a most probable point
(MPP). The distance of the MPP from the origin in the transformed standard normal space ("u-space")
defines the reliability index. The reliability can then be converted to a probability using either first- or
second-order integration. The forward reliability analysis algorithm of computing probabilities for spec-
ified response levels is called the Reliability Index Approach (RIA), and the inverse reliability analysis
algorithm of computing response levels for specified probability levels is called the Performance Measure
Approach (PMA). The different RIA/PMA algorithm options are specified using the mpp_search spec-
ification which selects among different linearization approaches that can be used to reduce computational
expense during the MPP searches. The x_linearize_mean MPP search option performs a single lin-
earization in the space of the original uncertain variables ("x-space") centered at the uncertain variable
means, searches for the MPP for each response/probability level using this linearization, and performs a
validation response evaluation at each predicted MPP. This option is commonly known as the Advanced
Mean Value (AMV) method. The u_linearize_mean option is identical to the x_linearize_-
mean option, except that the linearization is performed in u-space. The x_linearize_mpp approach
starts with an x-space linearization at the uncertain variable means, but iteratively relinearizes at each MPP
prediction until the MPP converges. This option is commonly known as the AMV+ method. The u_-
linearize_mpp option is identical to the x_linearize_mpp option, except that all linearizations
are performed in u-space. And, finally, the no_linearize option performs the MPP search on the orig-
inal response functions without the use of any linearizations. The optimization algorithm used to perform
these MPP searches can be selected to be either sequential quadratic programming (uses the npsol_sqp
optimizer) or nonlinear interior point (uses the optpp_q_newton optimizer) algorithms using the sqp
or nip keywords.

In addition to the MPP search specifications, one may select among different integration approaches for
computing probabilities at the MPP by using the integration keyword followed by either first_-
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order or second_order. Combining the no_linearize option of the MPP search with first- and
second-order integrations results in the traditional first- and second-order reliability methods (FORM and
SORM). Additional details on these methods are available in [Eldred et al., 2004c].

Table 5.32 provides details of the reliability method specifications beyond those of Table 5.30.

Description Keyword Associated Data Status Default
Reliability
method

nond_-
reliability

none Required group N/A

MPP search type mpp_search x_-
linearize_-
mean

�
u_-
linearize_-
mean

�
x_-
linearize_-
mpp

�
u_-
linearize_-
mpp

�
no_linearize

Optional group No MPP search
(MV method)

MPP search
algorithm

sqp, nip none Optional NPSOL’s SQP
algorithm

Integration
method

integration first_order
�

second_order
Optional group First-order

integration

Table 5.32: Specification detail for reliability methods

5.12.3 Polynomial chaos expansion method

The polynomial chaos expansion (PCE) method is a general framework for the approximate representation
of random response functions in terms of finite-dimensional series expansions in standard unit Gaussian
random variables. An important distinguishing feature of the methodology is that the solution series expan-
sions are expressed as random processes, not merely as statistics as in the case of many nondeterministic
methodologies. DAKOTA currently provides access to PCE methods through the combination of the Non-
DSampling base class and the NonDPCESampling derived class.

The method requires either the expansion_terms or the expansion_order specification in order
to specify the number of terms in the expansion or the highest order of Gaussian variable appearing in the
expansion. The number of terms, P, in a complete polynomial chaos expansion of arbitrary order, p, for a
response function involving n uncertain input variables is given by

� � * "
��


�� �
*
���


 � ��

� �	�
��
 "� � �

One must be careful when using the expansion_terms specification, as the satisfaction of the
above equation for some order p is not rigidly enforced. As a result, in some cases, only a sub-
set of terms of a certain order will be included in the series while others of the same order will be
omitted. This omission of terms can increase the efficacy of the methodology for some problems but
have extremely deleterious effects for others. The method outputs either the first expansion_terms

Generated on Thu Dec 23 14:56:40 2004 for DAKOTA by Doxygen



84 Method Commands

coefficients of the series or the coefficients of all terms up to order expansion_order in the se-
ries depending on the specification. Additional specifications include the level mappings described in
Nondeterministic Methods and the seed, fixed_seed, samples, and sample_type specifications
described in Nondeterministic sampling method. Table 5.33 provides details of the polynomial chaos ex-
pansion specifications beyond those of Table 5.30.

Description Keyword Associated Data Status Default
Polynomial chaos
expansion iterator

nond_-
polynomial_-
chaos

none Required group N/A

Expansion terms expansion_-
terms

integer Required N/A

Expansion order expansion_-
order

integer Required N/A

Random seed seed integer Optional randomly
generated seed

Fixed seed flag fixed_seed none Optional seed not fixed:
sampling patterns
are variable

Number of
samples

samples integer Optional minimum
required

Sampling type sample_type random
�
lhs Optional group lhs

Table 5.33: Specification detail for polynomial chaos expansion method

5.13 Design of Computer Experiments Methods

Design and Analysis of Computer Experiments (DACE) methods compute response data sets at a selection
of points in the parameter space. Two libraries are provided for performing these studies: DDACE and
FSUDace. The design of experiments methods do not currently make use of any of the method independent
controls.

5.13.1 DDACE

The Distributed Design and Analysis of Computer Experiments (DDACE) library provides the follow-
ing DACE techniques: grid sampling (grid), pure random sampling (random), orthogonal array sam-
pling (oas), latin hypercube sampling (lhs), orthogonal array latin hypercube sampling (oa_lhs), Box-
Behnken (box_behnken), and central composite design (central_composite). It is worth noting
that there is some overlap in sampling techniques with those available from the nondeterministic branch.
The current distinction is that the nondeterministic branch methods are designed to sample within a vari-
ety of probability distributions for uncertain variables, whereas the design of experiments methods treat
all variables as having uniform distributions. As such, the design of experiments methods are well-suited
for performing parametric studies and for generating data sets used in building global approximations (see
Global approximation interface), but are not currently suited for assessing the effect of uncertainties. If a
design of experiments over both design/state variables (treated as uniform) and uncertain variables (with
probability distributions) is desired, then nond_sampling can support this with its all_variables
option (see Nondeterministic sampling method). DAKOTA provides access to the DDACE library through
the DDACEDesignCompExp class.
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In terms of method dependent controls, the specification structure is straightforward. First, there is a set of
design of experiments algorithm selections separated by logical OR’s (grid or random or oas or lhs
or oa_lhs or box_behnken or central_composite). Second, there are optional specifications for
the random seed to use in generating the sample set (seed), for fixing the seed (fixed_seed) among
multiple sample sets (see Nondeterministic sampling method for discussion), for the number of samples to
perform (samples), and for the number of symbols to use (symbols). The seed control is used to make
sample sets repeatable, and the symbols control is related to the number of replications in the sample set
(a larger number of symbols equates to more stratification and fewer replications). The quality_-
metrics control is available for the DDACE library. This control turns on calculation of volumetric
quality measures which measure the uniformity of the point samples. More details on the quality measures
are given under the description of the FSU sampling methods. The variance_based_decomp control
is also available. This control enables the calculation of sensitivity indices which indicate how important
the uncertainty in each input variable is in contributing to the output variance. More details on variance
based decomposition are given in Nondeterministic sampling method. Design of experiments specification
detail is given in Table 5.34.

Description Keyword Associated Data Status Default
Design of
experiments
iterator

dace none Required group N/A

dace algorithm
selection

grid
�
random�

oas
�
lhs

�
oa_lhs

�
box_behnken

�
central_-
composite

none Required N/A

Random seed seed integer Optional randomly
generated seed

Fixed seed flag fixed_seed none Optional seed not fixed:
sampling patterns
are variable

Number of
samples

samples integer Optional minimum
required

Number of
symbols

symbols integer Optional default for
sampling
algorithm

Quality metrics quality_-
metrics

none Optional No
quality_metrics

Variance based
decomposition

variance_-
based_decomp

none Optional No variance_-
based_decomp

Table 5.34: Specification detail for design of experiments methods

5.13.2 FSUDace

The Florida State University Design and Analysis of Computer Experiments (FSUDace) library provides
the following DACE techniques: quasi-Monte Carlo sampling (fsu_quasi_mc) based on the Halton
sequence (halton) or the Hammersley sequence (hammersley), and Centroidal Voronoi Tessellation
(fsu_cvt). All three methods generate sets of uniform random variables on the interval [0,1]. If the user
specifies lower and upper bounds for a variable, the [0,1] samples are mapped to the [lower, upper] interval.
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The quasi-Monte Carlo and CVT methods are designed with the goal of low discrepancy. Discrepancy
refers to the nonuniformity of the sample points within the hypercube. Discrepancy is defined as the
difference between the actual number and the expected number of points one would expect in a particular
set B (such as a hyper-rectangle within the unit hypercube), maximized over all such sets. Low discrepancy
sequences tend to cover the unit hypercube reasonably uniformly. Quasi-Monte Carlo methods produce
low discrepancy sequences, especially if one is interested in the uniformity of projections of the point
sets onto lower dimensional faces of the hypercube (usually 1-D: how well do the marginal distributions
approximate a uniform?) CVT does very well volumetrically: it spaces the points fairly equally throughout
the space, so that the points cover the region and are isotropically distributed with no directional bias
in the point placement. There are various measures of volumetric uniformity which take into account
the distances between pairs of points, regularity measures, etc. Note that CVT does not produce low-
discrepancy sequences in lower dimensions, however: the lower-dimension (such as 1-D) projections of
CVT can have high discrepancy.

The quasi-Monte Carlo sequences of Halton and Hammersley are deterministic sequences determined by
a set of prime bases. Generally, we recommend that the user leave the default setting for the bases, which
are the lowest primes. Thus, if one wants to generate a sample set for 3 random variables, the default bases
used are 2, 3, and 5 in the Halton sequence. To give an example of how these sequences look, the Halton
sequence in base 2 starts with points 0.5, 0.25, 0.75, 0.125, 0.625, etc. The first few points in a Halton
base 3 sequence are 0.33333, 0.66667, 0.11111, 0.44444, 0.77777, etc. Notice that the Halton sequence
tends to alternate back and forth, generating a point closer to zero then a point closer to one. An individual
sequence is based on a radix inverse function defined on a prime base. The prime base determines how
quickly the [0,1] interval is filled in. Generally, the lowest primes are recommended.

The Hammersley sequence is the same as the Halton sequence, except the values for the first random
variable are equal to 1/N, where N is the number of samples. Thus, if one wants to generate a sample set
of 100 samples for 3 random variables, the first random variable has values 1/100, 2/100, 3/100, etc.
and the second and third variables are generated according to a Halton sequence with bases 2 and 3,
respectively. For more information about these sequences, see [Halton, 1960, Halton and Smith, 1964,
and Kocis and Whiten, 1997].

The specification for specifying quasi-Monte Carlo (fsu_quasi_mc) is given below in Table 5.35. The
user must specify if the sequence is (halton) or (hammersley). The user must also specify the number
of samples to generate for each variable (samples). Then, there are three optional lists the user may
specify. The first list determines where in the sequence the user wants to start. For example, for the
Halton sequence in base 2, if the user specifies sequence_start = 2, the sequence would not include 0.5
and 0.25, but instead would start at 0.75. The default sequence_start is a vector with 0 for each
variable, specifying that each sequence start with the first term. The sequence_leap control is similar
but controls the "leaping" of terms in the sequence. The default is 1 for each variable, meaning that each
term in the sequence be returned. If the user specifies a sequence_leap of 2 for a variable, the points
returned would be every other term from the QMC sequence. The advantage to using a leap value greater
than one is mainly for high-dimensional sets of random deviates. In this case, setting a leap value to
the next prime number larger than the largest prime base can help maintain uniformity when generating
sample sets for high dimensions. For more information about the efficacy of leaped Halton sequences,
see [Robinson and Atcitty, 1999]. The final specification for the QMC sequences is the prime base. It is
recommended that the user not specify this and use the default values. For the Halton sequence, the default
bases are primes in increasing order, starting with 2, 3, 5, etc. For the Hammersley sequence, the user
specifies (s-1) primes if one is generating an s-dimensional set of random variables.

The fixed_sequence control is similar to fixed_seed for other sampling methods. If fixed_-
sequence is specified, the user will get the same sequence (meaning the same set of samples) for subse-
quent calls of the QMC sampling method (for example, this might be used in a surrogate based optimization
method or a parameter study where one wants to fix the uncertain variables). The latinize command
takes the QMC sequence and "latinizes" it, meaning that each original sample is moved so that it falls into
one strata or bin in each dimension as in Latin Hypercube sampling. The default setting is NOT to latinize
a QMC sample. However, one may be interested in doing this in situations where one wants better discrep-

Generated on Thu Dec 23 14:56:40 2004 for DAKOTA by Doxygen



5.13 Design of Computer Experiments Methods 87

ancy of the 1-dimensional projections (the marginal distributions). The variance_based_decomp
control is also available. This control enables the calculation of sensitivity indices which indicate how
important the uncertainty in each input variable is in contributing to the output variance. More details on
variance based decomposition are given in Nondeterministic sampling method.

Finally, quality_metrics calculates four quality metrics relating to the volumetric spacing of the
samples. The four quality metrics measure different aspects relating to the uniformity of point samples
in hypercubes. Desirable properties of such point samples are: are the points equally spaced, do the
points cover the region, and are they isotropically distributed, with no directional bias in the spacing.
The four quality metrics we report are h, chi, tau, and d. h is the point distribution norm, which is a
measure of uniformity of the point distribution. Chi is a regularity measure, and provides a measure of
local uniformity of a set of points. Tau is the second moment trace measure, and d is the second moment
determinant measure. All of these values are scaled so that smaller is better (the smaller the metric, the
better the uniformity of the point distribution). Complete explanation of these measures can be found in
[Gunzburger and Burkhardt, 2004.].

Description Keyword Associated Data Status Default
FSU
Quasi-Monte
Carlo

fsu_quasi_mc none Required group N/A

Sequence type halton
�

hammersley
none Required group N/A

Number of
samples

samples integer Optional (0) for standalone
sampling,
(minimum
required) for
surrogates

Sequence starting
indices

sequence_-
start

integer list (one
integer per
variable)

Optional Vector of zeroes

Sequence leaping
indices

sequence_-
leap

integer list (one
integer per
variable)

Optional Vector of ones

Prime bases for
sequences

prime_base integer list (one
integer per
variable)

Optional Vector of the first
s primes for
s-dimensions in
Halton, First (s-1)
primes for
Hammersley

Fixed sequence
flag

fixed_-
sequence

none Optional sequence not
fixed: sampling
patterns are
variable

Latinization of
samples

latinize none Optional No latinization

Variance based
decomposition

variance_-
based_decomp

none Optional No variance_-
based_decomp

Quality metrics quality_-
metrics

none Optional No
quality_metrics

Table 5.35: Specification detail for FSU Quasi-Monte Carlo sequences
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The FSU CVT method (fsu_cvt) produces a set of sample points that are (approximately) a Centroidal
Voronoi Tessellation. The primary feature of such a set of points is that they have good volumetric spacing;
the points tend to arrange themselves in a pattern of cells that are roughly the same shape. To produce
this set of points, an almost arbitrary set of initial points is chosen, and then an internal set of iterations
is carried out. These iterations repeatedly replace the current set of sample points by an estimate of the
centroids of the corresponding Voronoi subregions. [Du, Faber, and Gunzburger, 1999].

The user may generally ignore the details of this internal iteration. If control is desired, however, there are
a few variables with which the user can influence the iteration. The user may specify max_iterations,
the number of iterations carried out; num_trials, the number of secondary sample points generated to
adjust the location of the primary sample points; and trial_type, which controls how these secondary
sample points are generated. In general, the variable with the most influence on the quality of the final
sample set is num_trials, which determines how well the Voronoi subregions are sampled. Generally,
num_trials should be "large", certainly much bigger than the number of sample points being requested;
a reasonable value might be 10,000, but values of 100,000 or 1 million are not unusual.

CVT has a seed specification similar to that in DDACE: there are optional specifications for the random
seed to use in generating the sample set (seed), for fixing the seed (fixed_seed) among multiple
sample sets (see Nondeterministic sampling method for discussion), and for the number of samples to
perform (samples). The seed control is used to make sample sets repeatable. Finally, the user has the
option to specify the method by which the trials are created to adjust the centroids. The trial_type
can be one of three types: random, where points are generated randomly; halton, where points are
generated according to the Halton sequence; and grid, where points are placed on a regular grid over the
hyperspace.

Finally, latinization is available for CVT as with QMC. The latinize control takes the CVT sequence
and "latinizes" it, meaning that each original sample is moved so that it falls into one strata or bin in each
dimension as in Latin Hypercube sampling. The default setting is NOT to latinize a CVT sample. However,
one may be interested in doing this in situations where one wants better discrepancy of the 1-dimensional
projections (the marginal distributions). The variance_based_decomp control is also available. This
control enables the calculation of sensitivity indices which indicate how important the uncertainty in each
input variable is in contributing to the output variance. More details on variance based decomposition
are given in Nondeterministic sampling method. The quality_metrics control is available for CVT
as with QMC. This command turns on calculation of volumetric quality measures which measure the
"goodness" of the uniformity of the point samples. More details on the quality measures are given under
the description of the QMC methods.

The specification detail for the FSU CVT method is given in Table 5.36.

5.14 Parameter Study Methods

DAKOTA’s parameter study methods compute response data sets at a selection of points in the parameter
space. These points may be specified as a vector, a list, a set of centered vectors, or a multi-dimensional
grid. Capability overviews and examples of the different types of parameter studies are provided in the
Users Manual. DAKOTA implements all of the parameter study methods within the ParamStudy class.

With the exception of output verbosity (a setting of silent will suppress some parameter study diag-
nostic output), DAKOTA’s parameter study methods do not make use of the method independent controls.
Therefore, the parameter study documentation which follows is limited to the method dependent controls
for the vector, list, centered, and multidimensional parameter study methods.
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Description Keyword Associated Data Status Default
FSU CVT
sampling

fsu_cvt none Required group N/A

Random seed seed integer Optional randomly
generated seed

Fixed seed flag fixed_seed none Optional seed not fixed:
sampling patterns
are variable

Number of
samples

samples integer Required (0) for standalone
sampling,
(minimum
required) for
surrogates

Number of trials num_trials integer Optional 10000
Trial type trial_type random

�
grid�

halton
Optional random

Latinization of
samples

latinize none Optional No latinization

Variance based
decomposition

variance_-
based_decomp

none Optional No variance_-
based_decomp

Quality metrics quality_-
metrics

none Optional No
quality_metrics

Table 5.36: Specification detail for FSU Centroidal Voronoi Tesselation sampling

5.14.1 Vector parameter study

DAKOTA’s vector parameter study computes response data sets at selected intervals along a vector in
parameter space. It is often used for single-coordinate parameter studies (to study the effect of a single
variable on a response set), but it can be used more generally for multiple coordinate vector studies (to
investigate the response variations along some n-dimensional vector). This study is selected using the
vector_parameter_study specification followed by either a final_point or a step_vector
specification.

The vector for the study can be defined in several ways (refer to dakota.input.spec). First, a final_-
point specification, when combined with the initial values from the variables specification (see cdv_-
initial_point, ddv_initial_point,csv_initial_state, and dsv_initial_state in
Variables Commands), uniquely defines an n-dimensional vector’s direction and magnitude through its start
and end points. The intervals along this vector may either be specified with a step_length or a num_-
steps specification. In the former case, steps of equal length (Cartesian distance) are taken from the
initial values up to (but not past) the final_point. The study will terminate at the last full step which
does not go beyond the final_point. In the latter num_steps case, the distance between the initial
values and the final_point is broken into num_steps intervals of equal length. This study performs
function evaluations at both ends, making the total number of evaluations equal to num_steps+1. The
final_point specification detail is given in Table 5.37.

The other technique for defining a vector in the study is the step_vector specification. This parameter
study begins at the initial values and adds the increments specified in step_vector to obtain new sim-
ulation points. This process is performed num_steps times, and since the initial values are included, the
total number of simulations is again equal to num_steps+1. The step_vector specification detail is
given in Table 5.38.
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Description Keyword Associated Data Status Default
Vector parameter
study

vector_-
parameter_-
study

none Required group N/A

Termination point
of vector

final_point list of reals Required group N/A

Step length along
vector

step_length real Required N/A

Number of steps
along vector

num_steps integer Required N/A

Table 5.37: final_point specification detail for the vector parameter study

Description Keyword Associated Data Status Default
Vector parameter
study

vector_-
parameter_-
study

none Required group N/A

Step vector step_vector list of reals Required group N/A
Number of steps
along vector

num_steps integer Required N/A

Table 5.38: step_vector specification detail for the vector parameter study

5.14.2 List parameter study

DAKOTA’s list parameter study allows for evaluations at user selected points of interest which need not
follow any particular structure. This study is selected using the list_parameter_study method
specification followed by a list_of_points specification.

The number of real values in the list_of_points specification must be a multiple of the total number
of continuous variables contained in the variables specification. This parameter study simply performs
simulations for the first parameter set (the first n entries in the list), followed by the next parameter set
(the next n entries), and so on, until the list of points has been exhausted. Since the initial values from the
variables specification will not be used, they need not be specified. The list parameter study specification
detail is given in Table 5.39.

Description Keyword Associated Data Status Default
List parameter
study

list_-
parameter_-
study

none Required group N/A

List of points to
evaluate

list_of_-
points

list of reals Required N/A

Table 5.39: Specification detail for the list parameter study

5.14.3 Centered parameter study

DAKOTA’s centered parameter study computes response data sets along multiple coordinate-based vec-
tors, one per parameter, centered about the initial values from the variables specification. This is use-
ful for investigation of function contours with respect to each parameter individually in the vicinity of
a specific point (e.g., post-optimality analysis for verification of a minimum). It is selected using the
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centered_parameter_studymethod specification followed by percent_delta and deltas_-
per_variable specifications, where percent_delta specifies the size of the increments in percent
and deltas_per_variable specifies the number of increments per variable in each of the plus and
minus directions. The centered parameter study specification detail is given in Table 5.40.

Description Keyword Associated Data Status Default
Centered
parameter study

centered_-
parameter_-
study

none Required group N/A

Interval size in
percent

percent_-
delta

real Required N/A

Number of +/-
deltas per
variable

deltas_per_-
variable

integer Required N/A

Table 5.40: Specification detail for the centered parameter study

5.14.4 Multidimensional parameter study

DAKOTA’s multidimensional parameter study computes response data sets for an n-dimensional grid of
points. Each continuous variable is partitioned into equally spaced intervals between its upper and lower
bounds, and each combination of the values defined by the boundaries of these partitions is evaluated.
This study is selected using the multidim_parameter_study method specification followed by a
partitions specification, where the partitions list specifies the number of partitions for each con-
tinuous variable. Therefore, the number of entries in the partitions list must be equal to the total number
of continuous variables contained in the variables specification. Since the initial values from the variables
specification will not be used, they need not be specified. The multidimensional parameter study specifica-
tion detail is given in Table 5.41.

Description Keyword Associated Data Status Default
Multidimensional
parameter study

multidim_-
parameter_-
study

none Required group N/A

Partitions per
variable

partitions list of integers Required N/A

Table 5.41: Specification detail for the multidimensional parameter study

Generated on Thu Dec 23 14:56:40 2004 for DAKOTA by Doxygen



92 Method Commands

Generated on Thu Dec 23 14:56:40 2004 for DAKOTA by Doxygen



Chapter 6

Variables Commands

6.1 Variables Description

The variables section in a DAKOTA input file specifies the parameter set to be iterated by a particular
method. This parameter set is made up of design, uncertain, and state variables. Design variables can be
continuous or discrete and consist of those variables which an optimizer adjusts in order to locate an opti-
mal design. Each of the design parameters can have an initial point, a lower bound, an upper bound, and a
descriptive tag. Uncertain variables are continuous variables which are characterized by probability distri-
butions. The distribution type can be normal, lognormal, uniform, loguniform, weibull, or histogram. Each
uncertain variable specification contains descriptive tags and, either explicitly or implicitly, distribution
lower and upper bounds. Distribution lower and upper bounds are explicit portions of the normal, lognor-
mal, uniform, loguniform, and weibull specifications, whereas they are implicitly defined for histogram
variables from the extreme values within the bin/point pairs specifications. In addition to tags and bounds
specifications, normal variables include mean and standard deviation specifications, lognormal variables
include mean and either standard deviation or error factor specifications, weibull variables include alpha
and beta specifications, and histogram variables include bin pairs and point pairs specifications. State vari-
ables can be continuous or discrete and consist of "other" variables which are to be mapped through the
simulation interface. Each state variable specification can have an initial state, lower and upper bounds, and
descriptors. State variables provide a convenient mechanism for parameterizing additional model inputs,
such as mesh density, simulation convergence tolerances and time step controls, and can be used to enact
model adaptivity in future strategy developments.

Several examples follow. In the first example, two continuous design variables are specified:

variables,\
continuous_design = 2 \

cdv_initial_point 0.9 1.1 \
cdv_upper_bounds 5.8 2.9 \
cdv_lower_bounds 0.5 -2.9 \
cdv_descriptors ’radius’ ’location’

In the next example, defaults are employed. In this case, cdv_initial_point will default to a vector
of 0. values, cdv_upper_bounds will default to vector values of DBL_MAX (the maximum number
representable in double precision for a particular platform, as defined in the platform’s float.h C header
file), cdv_lower_boundswill default to a vector of -DBL_MAX values, and cdv_descriptorswill
default to a vector of ’cdv_i’ strings, where i ranges from one to two:
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variables, \
continuous_design = 2

In the following example, the syntax for a normal-lognormal distribution is shown. One normal and
one lognormal uncertain variable are completely specified by their means and standard deviations. In
addition, the dependence structure between the two variables is specified using the uncertain_-
correlation_matrix.

variables, \
normal_uncertain = 1 \

nuv_means = 1.0 \
nuv_std_deviations = 1.0 \
nuv_descriptors = ’TF1n’ \

lognormal_uncertain = 1 \
lnuv_means = 2.0 \
lnuv_std_deviations = 0.5 \
lnuv_descriptors = ’TF2ln’ \

uncertain_correlation_matrix = 1.0 0.2 \
0.2 1.0

An example of the syntax for a state variables specification follows:

variables, \
continuous_state = 1 \

csv_initial_state 4.0 \
csv_lower_bounds 0.0 \
csv_upper_bounds 8.0 \
csv_descriptors ’CS1’ \

discrete_state = 1 \
dsv_initial_state 104 \
dsv_lower_bounds 100 \
dsv_upper_bounds 110 \
dsv_descriptors ’DS1’

And in a more advanced example, a variables specification containing a set identifier, continuous and dis-
crete design variables, normal and uniform uncertain variables, and continuous and discrete state variables
is shown:

variables,\
id_variables = ’V1’\
continuous_design = 2 \

cdv_initial_point 0.9 1.1 \
cdv_upper_bounds 5.8 2.9 \
cdv_lower_bounds 0.5 -2.9 \
cdv_descriptors ’radius’ ’location’\

discrete_design = 1 \
ddv_initial_point 2 \
ddv_upper_bounds 1 \
ddv_lower_bounds 3 \
ddv_descriptors ’material’\

normal_uncertain = 2 \
nuv_means = 248.89, 593.33 \
nuv_std_deviations = 12.4, 29.7 \
nuv_descriptors = ’TF1n’ ’TF2n’\

uniform_uncertain = 2 \
uuv_dist_lower_bounds = 199.3, 474.63 \
uuv_dist_upper_bounds = 298.5, 712. \
uuv_descriptors = ’TF1u’ ’TF2u’\

continuous_state = 2 \
csv_initial_state = 1.e-4 1.e-6 \
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csv_descriptors = ’EPSIT1’ ’EPSIT2’\
discrete_state = 1 \

dsv_initial_state = 100 \
dsv_descriptors = ’load_case’

Refer to the DAKOTA Users Manual [Eldred et al., 2004a] for discussion on how different iterators view
these mixed variable sets.

6.2 Variables Specification

The variables specification has the following structure:

variables, \
<set identifier>\
<continuous design variables specification>\
<discrete design variables specification>\
<normal uncertain variables specification>\
<lognormal uncertain variables specification>\
<uniform uncertain variables specification>\
<loguniform uncertain variables specification>\
<weibull uncertain variables specification>\
<histogram uncertain variables specification>\
<uncertain correlation specification> \
<continuous state variables specification>\
<discrete state variables specification>

Referring to dakota.input.spec, it is evident from the enclosing brackets that the set identifier specification,
the uncertain correlation specification, and each of the variables specifications are all optional. The set
identifier and uncertain correlation are stand-alone optional specifications, whereas the variables specifica-
tions are optional group specifications, meaning that the group can either appear or not as a unit. If any
part of an optional group is specified, then all required parts of the group must appear.

The optional status of the different variable type specifications allows the user to specify only those vari-
ables which are present (rather than explicitly specifying that the number of a particular type of variables
= 0). However, at least one type of variables must have nonzero size or an input error message will result.
The following sections describe each of these specification components in additional detail.

6.3 Variables Set Identifier

The optional set identifier specification uses the keyword id_variables to input a unique string for use
in identifying a particular variables set. A method can then identify the use of this variables set by specify-
ing the same string in its variables_pointer specification (see Method Independent Controls). For
example, a method whose specification contains variables_pointer = ’V1’ will use a variables
specification containing the set identifier id_variables = ’V1’.

If the id_variables specification is omitted, a particular variables set will be used by a method only
if that method omits specifying a variables_pointer and if the variables set was the last set parsed
(or is the only set parsed). In common practice, if only one variables set exists, then id_variables can
be safely omitted from the variables specification and variables_pointer can be omitted from the
method specification(s), since there is no potential for ambiguity in this case. Table 6.1 summarizes the set
identifier inputs.
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Description Keyword Associated Data Status Default
Variables set
identifier

id_variables string Optional use of last
variables parsed

Table 6.1: Specification detail for set identifier

6.4 Design Variables

Within the optional continuous design variables specification group, the number of continuous design vari-
ables is a required specification and the initial guess, lower bounds, upper bounds, and variable names
are optional specifications. Likewise, within the optional discrete design variables specification group, the
number of discrete design variables is a required specification and the initial guess, lower bounds, upper
bounds, and variable names are optional specifications. Table 6.2 summarizes the details of the continuous
design variable specification and Table 6.3 summarizes the details of the discrete design variable specifica-
tion.

Description Keyword Associated Data Status Default
Continuous
design variables

continuous_-
design

integer Optional group no continuous
design variables

Initial point cdv_-
initial_-
point

list of reals Optional vector values = 0.

Lower bounds cdv_lower_-
bounds

list of reals Optional vector values =
-DBL_MAX

Upper bounds cdv_upper_-
bounds

list of reals Optional vector values =
+DBL_MAX

Descriptors cdv_-
descriptors

list of strings Optional vector of
’cdv_i’ where
i = 1,2,3...

Table 6.2: Specification detail for continuous design variables

Description Keyword Associated Data Status Default
Discrete design
variables

discrete_-
design

integer Optional group no discrete design
variables

Initial point ddv_-
initial_-
point

list of integers Optional vector values = 0

Lower bounds ddv_lower_-
bounds

list of integers Optional vector values =
INT_MIN

Upper bounds ddv_upper_-
bounds

list of integers Optional vector values =
INT_MAX

Descriptors ddv_-
descriptors

list of strings Optional vector of
’ddv_i’ where
i =
1,2,3,...

Table 6.3: Specification detail for discrete design variables
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The cdv_initial_point and ddv_initial_point specifications provide the point in design
space from which an iterator is started for the continuous and discrete design variables, respectively. The
cdv_lower_bounds,ddv_lower_bounds,cdv_upper_bounds and ddv_upper_bounds re-
strict the size of the feasible design space and are frequently used to prevent nonphysical designs. The
cdv_descriptors and ddv_descriptors specifications supply strings which will be replicated
through the DAKOTA output to help identify the numerical values for these parameters. Default values
for optional specifications are zeros for initial values, positive and negative machine limits for upper and
lower bounds (+/- DBL_MAX, INT_MAX, INT_MIN from the float.h and limits.h system header
files), and numbered strings for descriptors. As for linear and nonlinear inequality constraint bounds (see
Method Independent Controls and Objective and constraint functions (optimization data set)), a nonexis-
tent upper bound can be specified by using a value greater than the "big bound size" constant (1.e+30 for
continuous design variables, 1e+9 for discrete design variables) and a nonexistent lower bound can be spec-
ified by using a value less than the negation of these constants (-1.e+30 for continuous, -1e+9 for discrete),
although not all optimizers currently support this feature (e.g., DOT and CONMIN will treat these large
bound values as actual variable bounds, but this should not be problematic in practice).

6.5 Uncertain Variables

Uncertain variables involve one of several supported probability distribution specifications, including nor-
mal, lognormal, uniform, loguniform, weibull, or histogram distributions. Each of these specifications is
an optional group specification. Within the normal uncertain optional group specification, the number of
normal uncertain variables, the means, and standard deviations are required specifications, and the distri-
bution lower and upper bounds and variable descriptors are optional specifications. Within the lognormal
uncertain optional group specification, the number of lognormal uncertain variables, the means, and either
standard deviations or error factors must be specified, and the distribution lower and upper bounds and
variable descriptors are optional specifications. Within the uniform uncertain optional group specification,
the number of uniform uncertain variables and the distribution lower and upper bounds are required spec-
ifications, and variable descriptors is an optional specification. Within the loguniform uncertain optional
group specification, the number of loguniform uncertain variables and the distribution lower and upper
bounds are required specifications, and variable descriptors is an optional specification. Within the weibull
uncertain optional group specification, the number of weibull uncertain variables and the alpha and beta
parameters are required specifications, and the distribution lower and upper bounds and variable descrip-
tors are optional specifications. And finally, within the histogram uncertain optional group specification,
the number of histogram uncertain variables is a required specification, the bin pairs and point pairs are
optional group specifications, and the variable descriptors is an optional specification.

The inclusion of lower and upper distribution bounds for all uncertain variable types (either explicitly
or implicitly) allows the use of these variables with methods that rely on a bounded region to define a
set of function evaluations (i.e., design of experiments and some parameter study methods). In addition,
distribution bounds can be used to truncate the tails of distributions for normal and lognormal uncertain
variables (see "bounded normal", "bounded lognormal", and "bounded lognormal-n" distribution types in
[Wyss and Jorgensen, 1998]). Default upper and lower bounds are positive and negative machine limits (+/-
DBL_MAX from the float.h system header file), respectively, for non-logarithmic distributions and posi-
tive machine limits and zeros, respectively, for logarithmic distributions. The uncertain variable descriptors
provide strings which will be replicated through the DAKOTA output to help identify the numerical val-
ues for these parameters. Default values for descriptors are numbered strings. Tables 6.4 through 6.9
summarize the details of the uncertain variable specifications.
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Description Keyword Associated Data Status Default
normal uncertain
variables

normal_-
uncertain

integer Optional group no normal
uncertain
variables

normal uncertain
means

nuv_means list of reals Required N/A

normal uncertain
standard
deviations

nuv_std_-
deviations

list of reals Required N/A

Distribution
lower bounds

nuv_dist_-
lower_bounds

list of reals Optional vector values =
-DBL_MAX

Distribution
upper bounds

nuv_dist_-
upper_bounds

list of reals Optional vector values =
+DBL_MAX

Descriptors nuv_-
descriptors

list of strings Optional vector of
’nuv_i’ where
i =
1,2,3,...

Table 6.4: Specification detail for normal uncertain variables

For the lognormal variables, DAKOTA’s uncertainty quantification methods standardize on the use of statis-
tics of the actual lognormal distribution, as opposed to statistics of the underlying normal distribution. This
approach diverges from that of [Wyss and Jorgensen, 1998], which assumes that a specification of means
and standard deviations provides parameters of the underlying normal distribution, whereas a specification
of means and error factors provides statistics of the actual lognormal distribution. By binding the mean,
standard deviation, and error factor parameters consistently to the actual lognormal distribution, inputs are
more intuitive and require fewer conversions in most user applications. The conversion equations from
lognormal mean ����� and either lognormal error factor ����� or lognormal standard deviation ����� to the
mean ��� and standard deviation �	� of the underlying normal distribution are as follows:
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Conversions from � � and � � back to � ��� and � ��� or � ��� are as follows:
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For the histogram uncertain variable specification, the bin pairs and point pairs specifications provide sets
of (x,y) pairs for each histogram variable. The distinction between the two types is that the former specifies
counts for bins of non-zero width, whereas the latter specifies counts for individual point values, which
can be thought of as bins with zero width. In the terminology of LHS [Wyss and Jorgensen, 1998], the
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Description Keyword Associated Data Status Default
lognormal
uncertain
variables

lognormal_-
uncertain

integer Optional group no lognormal
uncertain
variables

lognormal
uncertain means

lnuv_means list of reals Required N/A

lognormal
uncertain
standard
deviations

lnuv_std_-
deviations

list of reals Required (1 of 2
selections)

N/A

lognormal
uncertain error
factors

lnuv_error_-
factors

list of reals Required (1 of 2
selections)

N/A

Distribution
lower bounds

lnuv_dist_-
lower_bounds

list of reals Optional vector values = 0.

Distribution
upper bounds

lnuv_dist_-
upper_bounds

list of reals Optional vector values =
+DBL_MAX

Descriptors lnuv_-
descriptors

list of strings Optional vector of
’lnuv_i’
where i =
1,2,3,...

Table 6.5: Specification detail for lognormal uncertain variables

former is a "continuous linear histogram" and the latter is a "discrete histogram" (although the points are
real-valued, the number of possible values is finite). To fully specify a bin-based histogram with n bins
where the bins can be of unequal width, n+1 (x,y) pairs must be specified with the following features:

� x is the parameter value for the left boundary of a histogram bin and y is the corresponding count
for that bin.

� the final pair specifies the right end of the last bin and must have a y value of zero.

� the x values must be strictly increasing.

� all y values must be positive, except for the last which must be zero.

� a minimum of two (x,y) pairs must be specified for each bin-based histogram.

Similarly, to specify a point-based histogram with n points, n (x,y) pairs must be specified with the follow-
ing features:

� x is the point value and y is the corresponding count for that value.

� the x values must be strictly increasing.

� all y values must be positive.

� a minimum of one (x,y) pair must be specified for each point-based histogram.

For both cases, the number of pairs specifications provide for the proper association of multiple sets of
(x,y) pairs with individual histogram variables. For example, in the following specification
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Description Keyword Associated Data Status Default
uniform uncertain
variables

uniform_-
uncertain

integer Optional group no uniform
uncertain
variables

Distribution
lower bounds

uuv_dist_-
lower_bounds

list of reals Required N/A

Distribution
upper bounds

uuv_dist_-
upper_bounds

list of reals Required N/A

Descriptors uuv_-
descriptors

list of strings Optional vector of
’uuv_i’ where
i =
1,2,3,...

Table 6.6: Specification detail for uniform uncertain variables

Description Keyword Associated Data Status Default
loguniform
uncertain
variables

loguniform_-
uncertain

integer Optional group no loguniform
uncertain
variables

Distribution
lower bounds

luuv_dist_-
lower_bounds

list of reals Required N/A

Distribution
upper bounds

luuv_dist_-
upper_bounds

list of reals Required N/A

Descriptors luuv_-
descriptors

list of strings Optional vector of
’luuv_i’
where i =
1,2,3,...

Table 6.7: Specification detail for loguniform uncertain variables

histogram_uncertain = 3 \
huv_num_bin_pairs = 3 4 \
huv_bin_pairs = 5 17 8 21 10 0 .1 12 .2 24 .3 12 .4 0 \
huv_num_point_pairs = 2 \
huv_point_pairs = 3 1 4 1

huv_num_bin_pairs associates the first 3 pairs from huv_bin_pairs ((5,17),(8,21),(10,0)) with
one bin-based histogram variable and the following set of 4 pairs ((.1,12),(.2,24),(.3,12),(.4,0)) with a sec-
ond bin-based histogram variable. Likewise, huv_num_point_pairs associates both of the (x,y) pairs
from huv_point_pairs ((3,1),(4,1)) with a single point-based histogram variable. Finally, the total
number of bin-based variables and point-based variables must add to the total number of histogram vari-
ables specified (3 in this example).

Uncertain variables may have correlations specified through use of an uncertain_correlation_-
matrix specification. This specification is generalized in the sense that its specific meaning depends
on the nondeterministic method in use. When the method is a nondeterministic sampling method (i.e.,
nond_sampling), then the correlation matrix specifies rank correlations [Iman and Conover, 1982].
When the method is instead a reliability (i.e., nond_reliability) or polynomial chaos (i.e., nond_-
polynomial_chaos) method, then the correlation matrix specifies correlation coefficients (normalized
covariance) [Haldar and Mahadevan, 2000]. In either of these cases, specifying the identity matrix results
in uncorrelated uncertain variables (the default). The matrix input should have 
  entries listed by rows
where n is the total number of uncertain variables (all normal, lognormal, uniform, loguniform, weibull,
and histogram specifications, in that order). Table 6.10 summarizes the specification details:
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Description Keyword Associated Data Status Default
weibull uncertain
variables

weibull_-
uncertain

integer Optional group no weibull
uncertain
variables

weibull uncertain
alphas

wuv_alphas list of reals Required N/A

weibull uncertain
betas

wuv_betas list of reals Required N/A

Distribution
lower bounds

wuv_dist_-
lower_bounds

list of reals Optional vector values =
-DBL_MAX

Distribution
upper bounds

wuv_dist_-
upper_bounds

list of reals Optional vector values =
+DBL_MAX

Descriptors wuv_-
descriptors

list of strings Optional vector of
’wuv_i’ where
i =
1,2,3,...

Table 6.8: Specification detail for weibull uncertain variables

6.6 State Variables

Within the optional continuous state variables specification group, the number of continuous state variables
is a required specification and the initial states, lower bounds, upper bounds, and variable descriptors are
optional specifications. Likewise, within the optional discrete state variables specification group, the num-
ber of discrete state variables is a required specification and the initial states, lower bounds, upper bounds,
and variable descriptors are optional specifications. These variables provide a convenient mechanism for
managing additional model parameterizations such as mesh density, simulation convergence tolerances,
and time step controls. Table 6.11 summarizes the details of the continuous state variable specification and
Table 6.12 summarizes the details of the discrete state variable specification.

The csv_initial_state and dsv_initial_state specifications define the initial values for the
continuous and discrete state variables which will be passed through to the simulator (e.g., in order to define
parameterized modeling controls). The csv_lower_bounds, csv_upper_bounds, dsv_lower_-
bounds, and dsv_upper_bounds restrict the size of the state parameter space and are frequently used
to define a region for design of experiments or parameter study investigations. The csv_descriptors
and dsv_descriptors specifications provide strings which will be replicated through the DAKOTA
output to help identify the numerical values for these parameters. Default values for optional specifications
are zeros for initial states, positive and negative machine limits for upper and lower bounds (+/- DBL_MAX,
INT_MAX, INT_MIN from the float.h and limits.h system header files), and numbered strings for
descriptors.
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Description Keyword Associated Data Status Default
histogram
uncertain
variables

histogram_-
uncertain

integer Optional group no histogram
uncertain
variables

number of (x,y)
pairs for each
bin-based
histogram
variable

huv_num_-
bin_pairs

list of integers Optional group no bin-based
histogram
uncertain
variables

(x,y) pairs for all
bin-based
histogram
variables

huv_bin_-
pairs

list of reals Optional group no bin-based
histogram
uncertain
variables

number of (x,y)
pairs for each
point-based
histogram
variable

huv_num_-
point_pairs

list of integers Optional group no point-based
histogram
uncertain
variables

(x,y) pairs for all
point-based
histogram
variables

huv_point_-
pairs

list of reals Optional group no point-based
histogram
uncertain
variables

Descriptors huv_-
descriptors

list of strings Optional vector of
’huv_i’ where
i =
1,2,3,...

Table 6.9: Specification detail for histogram uncertain variables

Description Keyword Associated Data Status Default
correlations in
uncertain
variables

uncertain_-
correlation_-
matrix

list of reals Optional identity matrix
(uncorrelated)

Table 6.10: Specification detail for uncertain correlations

Description Keyword Associated Data Status Default
Continuous state
variables

continuous_-
state

integer Optional group No continuous
state variables

Initial states csv_-
initial_-
state

list of reals Optional vector values = 0.

Lower bounds csv_lower_-
bounds

list of reals Optional vector values =
-DBL_MAX

Upper bounds csv_upper_-
bounds

list of reals Optional vector values =
+DBL_MAX

Descriptors csv_-
descriptors

list of strings Optional vector of
’csv_i’ where
i =
1,2,3,...

Table 6.11: Specification detail for continuous state variables
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Description Keyword Associated Data Status Default
Discrete state
variables

discrete_-
state

integer Optional group No discrete state
variables

Initial states dsv_-
initial_-
state

list of integers Optional vector values = 0

Lower bounds dsv_lower_-
bounds

list of integers Optional vector values =
INT_MIN

Upper bounds dsv_upper_-
bounds

list of integers Optional vector values =
INT_MAX

Descriptors dsv_-
descriptors

list of strings Optional vector of
’dsv_i’ where
i =
1,2,3,...

Table 6.12: Specification detail for discrete state variables
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Chapter 7

Interface Commands

7.1 Interface Description

The interface section in a DAKOTA input file specifies how function evaluations will be performed. Func-
tion evaluations can be performed using either an interface with a simulation code or an interface with an
approximation method.

In the former case of a simulation, the application interface is used to invoke the simulation with either
system calls, forks, direct function invocations, or computational grid invocations. In the system call and
fork cases, communication between DAKOTA and the simulation occurs through parameter and response
files. In the direct function case, communication occurs through the function parameter list. The direct case
can involve linked simulation codes or analytic test functions which are compiled into the DAKOTA exe-
cutable. The analytic test functions allow for rapid testing of algorithms without process creation overhead
or engineering simulation expense. The grid case is experimental and under development.

In the case of an approximation, an approximation interface can be selected to make use of the global, local,
multipoint, and hierarchical surrogate modeling capabilities available within DAKOTA’s Approximation-
Interface class and Approximation class hierarchy.

Several examples follow. The first example shows an application interface specification which specifies
the use of system calls, the names of the analysis executable and the parameters and results files, and
that parameters and responses files will be tagged and saved. Refer to Application Interface for more
information on the use of these options.

interface, \
application system \

analysis_drivers = ’rosenbrock’\
parameters_file = ’params.in’ \
results_file = ’results.out’\
file_tag \
file_save

The next example shows a similar specification, except that an external rosenbrock executable has been
replaced by use of the internal rosenbrock test function from the DirectFnApplicInterface class.

interface, \
application direct \

analysis_drivers = ’rosenbrock’
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The final example shows an approximation interface specification which selects a quadratic polynomial
approximation from among the global approximation methods. It uses a pointer to a design of experiments
method for generating the data needed for building a global approximation, reuses any old data available
for the current approximation region, and employs the first-order multiplicative approach to correcting the
approximation at the center of the current approximation region.

interface, \
approximation global \

quadratic polynomial \
dace_method_pointer = ’DACE’ \
reuse_samples region \
correction multiplicative first_order

Additional information on interfacing with simulations and approximations is provided in the following
sections.

7.2 Interface Specification

The interface specification has the following top-level structure:

interface, \
<set identifier>\
<application specification> OR \
<approximation specification>

where the set identifier is an optional specification and either an application or approximation interface
must be specified. If an application interface is specified, its type must be system, fork, direct, or grid, i.e.:

interface, \
<set identifier>\
application \

<system call specification> OR \
<fork specification> OR \
<direct function specification> OR
<grid specification>

If an approximation interface is specified, its type must be global, multipoint, local, or hierarchical, i.e.:

interface, \
<set identifier>\
approximation \

<global specification> OR \
<multipoint specification> OR \
<local specification> OR \
<hierarchical specification>

The following sections describe each of these interface specification components in additional detail.

7.3 Interface Set Identifier

The optional set identifier specification uses the keyword id_interface to input a string for use in iden-
tifying a particular interface specification. A method can then identify the use of this interface by specifying
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the same string in its interface_pointer specification (see Method Independent Controls). For ex-
ample, a method whose specification contains interface_pointer = ’I1’ will use an interface
specification with id_interface = ’I1’.

If the id_interface specification is omitted, a particular interface specification will be used by a
method only if that method omits specifying a interface_pointer and if the interface set was the
last set parsed (or is the only set parsed). In common practice, if only one interface set exists, then id_-
interface can be safely omitted from the interface specification and interface_pointer can be
omitted from the method specification(s), since there is no potential for ambiguity in this case. Table 7.1
summarizes the set identifier inputs.

Description Keyword Associated Data Status Default
Interface set
identifier

id_interface string Optional use of last
interface parsed

Table 7.1: Specification detail for set identifier

7.4 Application Interface

The application interface uses a simulator program, and optionally filter programs, to perform the param-
eter to response mapping. The simulator and filter programs are invoked with system calls, forks, direct
function calls, or computational grid invocations. In the system call and fork cases, files are used for
transfer of parameter and response data between DAKOTA and the simulator program. This approach is
simple and reliable and does not require any modification to simulator programs. In the direct function
case, subroutine parameter lists are used to pass the parameter and response data. This approach requires
modification to simulator programs so that they can be linked into DAKOTA; however it can be more effi-
cient through the elimination of process creation overhead, can be less prone to loss of precision in that data
can be passed directly rather than written to and read from a file, and can enable completely internal man-
agement of multiple levels of parallelism through the use of MPI communicator partitioning. In the grid
case, computational grid services are utilized in order to enable distribution of simulations across different
computer resources. This capability targets Condor and/or Globus services but is currently experimental
and incomplete.

The application interface group specification contains several specifications which are valid for all applica-
tion interfaces as well as additional specifications pertaining specifically to system call, fork, direct, or grid
application interfaces. Tables 7.2 and 7.3 summarize the specifications valid for all application interfaces,
and Tables 7.4, 7.5, 7.6, and 7.7 summarize the additional specifications for system call, fork, direct, and
grid application interfaces, respectively.

In Table 7.2, the required analysis_drivers specification provides the names of executable analysis
programs or scripts which comprise a function evaluation. The common case of a single analysis driver
is simply accommodated by specifying a list of one driver (this also provides backward compatibility
with previous DAKOTA versions). The optional analysis_components specification allows the user
to provide additional identifiers (e.g., mesh file names) for use by the analysis drivers. This is particu-
larly useful when the same analysis driver is to be reused multiple times for slightly different analyses.
The specific content within the strings is open-ended and can involve whatever syntax is convenient for
a particular analysis driver. The number of analysis components 
�� should be an integer multiple of the
number of drivers 
�� , and the first 
���� 
�� component strings will be passed to the first driver, etc. The
optional input_filter and output_filter specifications provide the names of separate pre- and
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Description Keyword Associated Data Status Default
Application
interface

application none Required group
(1 of 2 selections)

N/A

Analysis drivers analysis_-
drivers

list of strings Required N/A

Additional
identifiers for use
by the
analysis_-
drivers

analysis_-
components

list of strings Optional no additional
identifiers

Input filter input_filter string Optional no input filter
Output filter output_-

filter
string Optional no output filter

Failure capturing failure_-
capture

abort
�
retry

(with integer
data)

�
recover

(with list of reals
data)

�
continuation

Optional group abort

Feature
deactivation

deactivate active_set_-
vector,
evaluation_-
cache, and/or
restart_file

Optional group Active set vector
control, function
evaluation cache,
and restart file
features are active

Table 7.2: Specification detail for application interfaces: drivers, filters, failure capturing, and feature
management

post-processing programs or scripts which assist in mapping DAKOTA parameters files into analysis input
files and mapping analysis output files into DAKOTA results files, respectively. If there is only a single
analysis driver, then it is usually most convenient to combine pre- and post-processing requirements into a
single analysis driver script and omit the separate input and output filters. However, in the case of multiple
analysis drivers, the input and output filters provide a convenient location for non-repeated pre- and post-
processing requirements. That is, input and output filters are only executed once per function evaluation,
regardless of the number of analysis drivers, which makes them convenient locations for data processing
operations that are shared among the analysis drivers.

Failure capturing in application interfaces is governed by the optional failure_capture specification.
Supported directives for mitigating captured failures are abort (the default), retry, recover, and
continuation. The retry selection supports an integer input for specifying a limit on retries, and the
recover selection supports a list of reals for specifying the dummy function values (only zeroth order
information is supported) to use for the failed function evaluation. Refer to the Simulation Code Failure
Capturing chapter of the Users Manual for additional information.

The optionaldeactivate specification block includes three features which a user may deactivate in order
to simplify interface development, increase execution speed, and/or reduce memory and disk requirements:

� Active set vector (ASV) control: deactivation of this feature using a deactivate active_-
set_vector specification allows the user to turn off any variability in ASV values so that active
set logic can be omitted in the user’s simulation interface. This option trades some efficiency for
simplicity in interface development. The default behavior is to request the minimum amount of data
required by an algorithm at any given time, which implies that the ASV values may vary from one
function evaluation to the next. Since the user’s interface must return the data set requested by the
ASV values, this interface must contain additional logic to account for any variations in ASV con-
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Description Keyword Associated Data Status Default
Asynchronous
interface usage

asynchronous none Optional group synchronous
interface usage

Asynchronous
evaluation
concurrency

evaluation_-
concurrency

integer Optional local: unlimited
concurrency,
hybrid: no
concurrency

Asynchronous
analysis
concurrency

analysis_-
concurrency

integer Optional local: unlimited
concurrency,
hybrid: no
concurrency

Number of
evaluation servers

evaluation_-
servers

integer Optional no override of
auto configure

Self scheduling
of evaluations

evaluation_-
self_-
scheduling

none Optional no override of
auto configure

Static scheduling
of evaluations

evaluation_-
static_-
scheduling

none Optional no override of
auto configure

Number of
analysis servers

analysis_-
servers

integer Optional no override of
auto configure

Self scheduling
of analyses

analysis_-
self_-
scheduling

none Optional no override of
auto configure

Static scheduling
of analyses

analysis_-
static_-
scheduling

none Optional no override of
auto configure

Table 7.3: Specification detail for application interfaces: parallelism controls

tent. Deactivating this ASV control causes DAKOTA to always request a "full" data set (the full
function, gradient, and Hessian data that is available from the interface as specified in the responses
specification) on each function evaluation. For example, if ASV control has been deactivated and
the responses section specifies four response functions, analytic gradients, and no Hessians, then the
ASV on every function evaluation will be { 3 3 3 3 }, regardless of what subset of this data is cur-
rently needed. While wasteful of computations in many instances, this simplifies the interface and
allows the user to return the same data set on every evaluation. Conversely, if ASV control is active
(the default behavior), then the ASV requests in this example might vary from { 1 1 1 1 } to { 2 0 0 2
}, etc., according to the specific data needed on a particular function evaluation. This will require the
user’s interface to read the ASV requests and perform the appropriate logic in conditionally returning
only the data requested. In general, the default ASV behavior is recommended for the sake of com-
putational efficiency, unless interface development time is a critical concern. Note that in both cases,
the data returned to DAKOTA from the user’s interface must match the ASV passed in, or else a re-
sponse recovery error will result. However, when the ASV control is deactivated, the ASV values are
invariant and need not be checked on every evaluation. Note: Deactivating the ASV control can have
a positive effect on load balancing for parallel DAKOTA executions. Thus, there is significant over-
lap in this ASV control option with speculative gradients (see Method Independent Controls). There
is also overlap with the mode override approach used with certain optimizers (see SNLLOptimizer
and SNLLLeastSq) to combine individual value, gradient, and Hessian requests.

� Function evaluation cache: deactivation of this feature using a deactivate evaluation_-
cache specification allows the user to avoid retention of the complete function evaluation history
in memory. This can be important for reducing memory requirements in large-scale applications
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(i.e., applications with a large number of variables or response functions) and for eliminating the
overhead of searching for duplicates within the function evaluation cache prior to each new function
evaluation (e.g., for improving speed in problems with 1000’s of inexpensive function evaluations
or for eliminating overhead when performing timing studies). However, the downside is that unnec-
essary computations may be performed since duplication in function evaluation requests may not
be detected. For this reason, this option is not recommended when function evaluations are costly.
Note: duplication detection within DAKOTA can be deactivated, but duplication detection features
within specific optimizers may still be active.

� Restart file: deactivation of this feature using a deactivaterestart_file specification allows
the user to eliminate the output of each new function evaluation to the binary restart file. This can
increase speed and reduce disk storage requirements, but at the expense of a loss in the ability
to recover and continue a run that terminates prematurely (e.g., due to a system crash or network
problem). This option is not recommended when function evaluations are costly or prone to failure.

In Table 7.3, the optional asynchronous flag specifies use of asynchronous protocols (i.e., back-
ground system calls, nonblocking forks, POSIX threads) when evaluations or analyses are invoked. The
evaluation_concurrency and analysis_concurrency specifications serve a dual purpose:

� when running DAKOTA on a single processor in asynchronousmode, the default concurrency of
evaluations and analyses is all concurrency that is available. The evaluation_concurrency
and analysis_concurrency specifications can be used to limit this concurrency in order to
avoid machine overload or usage policy violation.

� when running DAKOTA on multiple processors in message passing mode, the default concurrency
of evaluations and analyses on each of the servers is one (i.e., the parallelism is exclusively that of
the message passing). With the evaluation_concurrency and analysis_concurrency
specifications, a hybrid parallelism can be selected through combination of message passing paral-
lelism with asynchronous parallelism on each server.

The optional evaluation_servers and analysis_servers specifications support user overrides
of the automatic parallel configuration for the number of evaluation servers and the number of analy-
sis servers. Similarly, the optional evaluation_self_scheduling, evaluation_static_-
scheduling, analysis_self_scheduling, and analysis_static_scheduling specifi-
cations can be used to override the automatic parallel configuration of scheduling approach at the evalua-
tion and analysis parallelism levels. That is, if the automatic configuration is undesirable for some reason,
the user can enforce a desired number of partitions and a desired scheduling policy at these parallelism
levels. Refer to ParallelLibrary and the Parallel Computing chapter of the Users Manual for additional
information.

In addition to the general application interface specifications, the type of application interface involves
a selection between system, fork, direct, or grid required group specifications. The following
sections describe these group specifications in detail.

7.4.1 System call application interface

For system call interfaces, the parameters_file, results_file, analysis_usage, aprepro,
file_tag, and file_save are additional settings within the group specification. The parameters and
results file names are supplied as strings using the parameters_file and results_file specifi-
cations. Both specifications are optional with the default data transfer files being Unix temporary files
with system-generated names (e.g., /usr/tmp/aaaa08861). The parameters and results file names are
passed on the command line to the analysis driver(s). Special analysis command syntax can be entered as
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a string with the analysis_usage specification. This special syntax replaces the normal system call
combination of the specified analysis_drivers with command line arguments; however, it does not
affect the input_filter and output_filter syntax (if filters are present). Note that if there are
multiple analysis drivers, then analysis_usage must include the syntax for all analyses in a single
string (typically separated by semi-colons). The default is no special syntax, such that the analysis_-
driverswill be used in the standard way as described in the Interfaces chapter of the Users Manual. The
format of data in the parameters files can be modified for direct usage with the APREPRO pre-processing
tool [Sjaardema, 1992] using the aprepro specification (NOTE: the DPrePro pre-processing utility does
not require this special formatting). File tagging (appending parameters and results files with the func-
tion evaluation number) and file saving (leaving parameters and results files in existence after their use is
complete) are controlled with the file_tag and file_save flags. If these specifications are omitted,
the default is no file tagging (no appended function evaluation number) and no file saving (files will be
removed after a function evaluation). File tagging is most useful when multiple function evaluations are
running simultaneously using files in a shared disk space, and file saving is most useful when debugging
the data communication between DAKOTA and the simulation. The additional specifications for system
call application interfaces are summarized in Table 7.4.

Description Keyword Associated Data Status Default
System call
application
interface

system none Required group
(1 of 4 selections)

N/A

Parameters file
name

parameters_-
file

string Optional Unix temp files

Results file name results_file string Optional Unix temp files
Special analysis
usage syntax

analysis_-
usage

string Optional standard analysis
usage

Aprepro
parameters file
format

aprepro none Optional standard
parameters file
format

Parameters and
results file
tagging

file_tag none Optional no tagging

Parameters and
results file saving

file_save none Optional file cleanup

Table 7.4: Additional specifications for system call application interfaces

7.4.2 Fork application interface

For fork application interfaces, the parameters_file, results_file, aprepro, file_tag, and
file_save are additional settings within the group specification and have identical meanings to those
for the system call application interface. The only difference in specifications is that fork interfaces do
not support an analysis_usage specification due to limitations in the execvp() function used when
forking a process. The additional specifications for fork application interfaces are summarized in Table 7.5.
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Description Keyword Associated Data Status Default
Fork application
interface

fork none Required group
(1 of 4 selections)

N/A

Parameters file
name

parameters_-
file

string Optional Unix temp files

Results file name results_file string Optional Unix temp files
Aprepro
parameters file
format

aprepro none Optional standard
parameters file
format

Parameters and
results file
tagging

file_tag none Optional no tagging

Parameters and
results file saving

file_save none Optional file cleanup

Table 7.5: Additional specifications for fork application interfaces

7.4.3 Direct function application interface

For direct function application interfaces, processors_per_analysis and modelcenter_-
file are additional optional settings within the required group which can be used to spec-
ify multiprocessor analysis partitions and the configuration filename for a ModelCenter simula-
tion, respectively. As with the evaluation_servers, analysis_servers, evaluation_-
self_scheduling, evaluation_static_scheduling, analysis_self_scheduling,
and analysis_static_scheduling specifications described above in Application Interface,
processors_per_analysis provides a means for the user to override the automatic parallel configu-
ration (refer to ParallelLibrary and the Parallel Computing chapter of the Users Manual) for the number of
processors used for each analysis partition. Note that if both analysis_servers and processors_-
per_analysis are specified and they are not in agreement, then analysis_servers takes prece-
dence. DAKOTA supports a direct interface to ModelCenter, a commercial simulation management
framework from Phoenix Integration. To utilize this interface, a user must first define the simulation
specifics within a ModelCenter session and then save these definitions to a ModelCenter configuration
file. The modelcenter_file specification provides the means to communicate this configuration file
to DAKOTA. The direct application interface specifications are summarized in Table 7.6.

Description Keyword Associated Data Status Default
Direct function
application
interface

direct none Required group
(1 of 4 selections)

N/A

Number of
processors per
analysis

processors_-
per_analysis

integer Optional no override of
auto configure

Configuration file
for ModelCenter
simulation

modelcenter_-
file

string Optional
(required for
direct
ModelCenter
interface)

direct interface to
ModelCenter not
used

Table 7.6: Additional specifications for direct function application interfaces

In addition to ModelCenter, direct interfaces to Sandia’s SALINAS structural dynamics code and Sandia’s
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SIERRA multiphysics framework are available and supported to varying degrees. In addition to interfaces
with simulation codes, a common usage of the direct interface is for invoking internal test problems which
are available for performing parameter to response mappings as inexpensively as possible. These problems
are compiled directly into the DAKOTA executable as part of the direct function application interface class
and are used for algorithm testing. Refer to DirectFnApplicInterface for currently available testers.

7.4.4 Grid application interface

For grid application interfaces, hostnames and processors_per_host are additional settings
within the required group. The hostnames specification provides a list of machines for use in distribut-
ing evaluations, and the processors_per_host specification provides the number of processors to use
from each host. This capability is a placeholder for future work with Condor and/or Globus services and
is not currently operational. The additional specifications for grid application interfaces are summarized in
Table 7.7.

Description Keyword Associated Data Status Default
Grid application
interface

grid none Required group
(1 of 4 selections)

N/A

Names of host
machines

hostnames list of strings Required N/A

Number of
processors per
host

processors_-
per_host

list of integers Optional 1 processor from
each host

Table 7.7: Additional specifications for grid application interfaces

7.5 Approximation Interface

The approximation interface uses an approximate representation of a "truth" model to perform the param-
eter to response mappings. This approximation, or surrogate model, is built and updated using data from
the truth model. This data is generated in some cases using a design of experiments iterator applied to the
truth model (global approximations with a dace_method_pointer). In other cases, truth model data
from a single point (local, hierarchical approximations), from a few previously evaluated points (multi-
point approximations), or from the restart database (global approximations with reuse_samples) can
be used. Approximation interfaces are used extensively in the surrogate-based optimization strategy (see
SurrBasedOptStrategy and Surrogate-based Optimization (SBO) Commands), in which the goals are to
reduce expense by minimizing the number of truth function evaluations and to smooth out noisy data with
a global data fit. However, the use of approximation interfaces is not restricted in any way to optimization
techniques, and in fact, the uncertainty quantification methods and optimization under uncertainty strategy
are other primary users.

The approximation interface specification requires the specification of one of the following approximation
types: global, multipoint, local, or hierarchical. Each of these specifications is a required
group with several additional specifications. The following sections present each of these specification
groups in further detail.
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7.5.1 Global approximation interface

The global approximation interface specification requires the specification of one of the following approx-
imation methods: neural_network, polynomial, mars, hermite, or kriging. These spec-
ifications invoke a layered perceptron artificial neural network approximation, a polynomial regression
approximation, a multivariate adaptive regression spline approximation, a hermite polynomial approxi-
mation, or a kriging interpolation approximation, respectively. In the polynomial case, the order of the
polynomial (linear, quadratic, or cubic) must be specified, and in the kriging case, a vector of correlations
can be optionally specified in order to bypass the internal kriging calculations of correlation coefficients.

For each of the global approximation methods, dace_method_pointer, reuse_samples,
correction, and use_gradients can be optionally specified. The dace_method_pointer
specification points to a design of experiments iterator which can be used to generate truth model data
for building a global data fit. The reuse_samples specification can be used to employ old data (either
from previous function evaluations performed in the run or from function evaluations read from a restart
database or text file) in the building of new global approximations. The default is no reuse of old data
(since this can induce directional bias), and the settings of all, region, and samples_file result in
reuse of all available data, reuse of all data available in the current trust region, and reuse of all data from a
specified text file, respectively. The combination of new build data from dace_method_pointer and
old build data from reuse_samples must be sufficient for building the global approximation. If not
enough data is available, the system will abort with an error message. Both dace_method_pointer
and reuse_samples are optional specifications, which gives the user maximum flexibility in using de-
sign of experiments data, restart/text file data, or both.

The correction specification specifies that the approximation will be corrected to match truth data,
either matching truth values in the case of zeroth_order matching, matching truth values and gradi-
ents in the case of first_order matching, or matching truth values, gradients, and Hessians in the case
of second_order matching. For additive and multiplicative corrections, the correction is
local in that the truth data is matched at a single point, typically the center of the approximation region.
The additive correction adds a scalar offset (zeroth_order), a linear function (first_order),
or a quadratic function (second_order) to the approximation to match the truth data at the point, and
the multiplicative correction multiplies the approximation by a scalar (zeroth_order), a linear
function (first_order), or a quadratic function (second_order) to match the truth data at the point.
The additive first_order case is due to [Lewis and Nash, 2000] and the multiplicative
first_order case is commonly known as beta correction [Haftka, 1991]. For the combined cor-
rection, the use of both additive and multiplicative corrections allows the satisfaction of an additional
matching condition, typically the truth function values at the previous correction point (e.g., the center of
the previous trust region). The combined correction is then a multipoint correction, as opposed to the
local additive and multiplicative corrections. Each of these correction capabilities is described
in detail in [Eldred et al., 2004b].

Finally, the use_gradients flag specifies a future capability for the use of gradient data in the global
approximation builds. This capability is currently supported in SurrBasedOptStrategy, SurrogateData-
Point, and Approximation::build(), but is not yet supported in any global approximation derived class
redefinitions of Approximation::find_coefficients(). Tables 7.8 and 7.9 summarizes the global approxi-
mation interface specifications.

7.5.2 Multipoint approximation interface

Multipoint approximations use data from previous design points to improve the accuracy of local approxi-
mations. This specification is a placeholder for future capability as no multipoint approximation algorithms
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Description Keyword Associated Data Status Default
Global
approximation
interface

global none Required group
(1 of 4 selections)

N/A

Artificial neural
network

neural_-
network

none Required (1 of 5
selections)

N/A

Polynomial polynomial linear
�

quadratic
�

cubic

Required (1 of 5
selections)

N/A

Multivariate
adaptive
regression splines

mars none Required (1 of 5
selections)

N/A

Hermite
polynomial

hermite none Required (1 of 5
selections)

N/A

Kriging
interpolation

kriging none Required group
(1 of 5 selections)

N/A

Kriging
correlations

correlations list of reals Optional internally
computed
correlations

Table 7.8: Specification detail for global approximation interfaces: global approximation type

are currently available. Table 7.10 summarizes the multipoint approximation interface specifications.

7.5.3 Local approximation interface

Local approximations use value, gradient, and possibly Hessian data from a single point to form a series
expansion for approximating data in the vicinity of this point. The currently available local approxima-
tion is the taylor_series selection, which may be either first-order or second-order. The order is
automatically determined from the gradient and Hessian specifications in the responses specification (see
Gradient Specification and Hessian Specification) for the truth model.

The requiredactual_interface_pointer specification and the optionalactual_interface_-
responses_pointer specification are the additional inputs for local approximations. The former
points to an interface specification which provides the truth model for generating the value and gradient
data used in the series expansion. And the latter can be used to employ a different responses specifica-
tion for the truth model than that used for mappings from the local approximation. For example, the truth
model may generate gradient data using finite differences (as specified in the responses specification iden-
tified by actual_interface_responses_pointer), whereas the local approximation may return
(approximate) analytic gradients (as specified in a different responses specification which is identified by
the method using the local approximation as its interface). If actual_interface_responses_-
pointer is not specified, then the response set available from truth model evaluations and approximation
interface mappings will be the same. Table 7.11 summarizes the local approximation interface specifica-
tions.

7.5.4 Hierarchical approximation interface

Hierarchical approximations use corrected results from a low fidelity interface as an approximation to the
results of a high fidelity "truth" model. These approximations are also known as model hierarchy, mul-
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Description Keyword Associated Data Status Default
Design of
experiments
method pointer

dace_-
method_-
pointer

string Optional no design of
experiments data

Sample reuse in
global
approximation
builds

reuse_-
samples

all
�
region

�
samples_file

Optional group no sample reuse

Surrogate
correction
approach

correction additive or
multiplicative
or combined,
zeroth_order
or
first_order
or
second_order

Optional group no surrogate
correction

Use of gradient
data in global
approximation
builds

use_-
gradients

none Optional gradient data not
used in global
approximation
builds

Table 7.9: Specification detail for global approximation interfaces: build and correction controls

Description Keyword Associated Data Status Default
Multipoint
approximation
interface

multipoint none Required group
(1 of 4 selections)

N/A

Pointer to the
truth interface
specification

actual_-
interface_-
pointer

string Required N/A

Table 7.10: Specification detail for multipoint approximation interfaces

tifidelity, variable fidelity, and variable complexity approximations. The required low_fidelity_-
interface_pointer specification points to the low fidelity interface specification. This interface
is used to generate low fidelity responses which are then corrected and returned to an iterator. The re-
quired high_fidelity_interface_pointer specification points to the interface specification for
the high fidelity truth model. This model is used only for verifying low fidelity results and updating low
fidelity corrections. The correction specification specifies which correction technique will be applied
to the low fidelity results in order to match the high fidelity results at one or more points. In the hierarchical
case (as compared to the global case), the correction specification is required, since the omission of
a correction technique would effectively waste all high fidelity evaluations. If it is desired to use a low
fidelity model without corrections, then a hierarchical approximation is not needed and a single application
interface should be used. Refer to Global approximation interface for additional information on available
correction approaches. Table 7.12 summarizes the hierarchical approximation interface specifications.
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Description Keyword Associated Data Status Default
Local
approximation
interface

local none Required group
(1 of 4 selections)

N/A

Taylor series
local
approximation

taylor_-
series

none Required N/A

Pointer to the
truth interface
specification

actual_-
interface_-
pointer

string Required N/A

Pointer to the
truth responses
specification

actual_-
interface_-
responses_-
pointer

string Optional reuse of
responses
specification in
truth model

Table 7.11: Specification detail for local approximation interfaces

Description Keyword Associated Data Status Default
Hierarchical
approximation
interface

hierarchical none Required group
(1 of 4 selections)

N/A

Pointer to the low
fidelity interface
specification

low_-
fidelity_-
interface_-
pointer

string Required N/A

Pointer to the
high fidelity
interface
specification

high_-
fidelity_-
interface_-
pointer

string Required N/A

Surrogate
correction
approach

correction additive or
multiplicative
or combined,
zeroth_order
or
first_order
or
second_order

Required N/A

Table 7.12: Specification detail for hierarchical approximation interfaces
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Chapter 8

Responses Commands

8.1 Responses Description

The responses specification in a DAKOTA input file specifies the data set that can be recovered from the in-
terface after the completion of a "function evaluation." Here, the term function evaluation is used somewhat
loosely to denote a data request from an iterator that is mapped through an interface in a single pass. Strictly
speaking, this data request may actually involve multiple response functions and their derivatives, but the
term function evaluation is widely used for this purpose. The data set is made up of a set of functions, their
first derivative vectors (gradients), and their second derivative matrices (Hessians). This abstraction pro-
vides a generic data container (the Response class) whose contents are interpreted differently depending
upon the type of iteration being performed. In the case of optimization, the set of functions consists of one
or more objective functions, nonlinear inequality constraints, and nonlinear equality constraints. Linear
constraints are not part of a response set since their coefficients can be communicated to an optimizer at
start up and then computed internally for all function evaluations (see Method Independent Controls). In
the case of least squares iterators, the functions consist of individual residual terms (as opposed to a sum
of the squares objective function) as well as nonlinear inequality and equality constraints. In the case of
nondeterministic iterators, the function set is made up of generic response functions for which the effect of
parameter uncertainty is to be quantified. Lastly, parameter study and design of experiments iterators may
be used with any of the response data set types. Within the C++ implementation, the same data structures
are reused for each of these cases; only the interpretation of the data varies from iterator branch to iterator
branch.

Gradient availability may be described by no_gradients, numerical_gradients, analytic_-
gradients, or mixed_gradients. The no_gradients selection means that gradient information
is not needed in the study. The numerical_gradients selection means that gradient information is
needed and will be computed with finite differences using either the native or one of the vendor finite dif-
ferencing routines. The analytic_gradients selection means that gradient information is available
directly from the simulation (finite differencing is not required). And the mixed_gradients selection
means that some gradient information is available directly from the simulation whereas the rest will have
to be estimated with finite differences.

Hessian availability may be described by no_hessians, numerical_hessians, quasi_-
hessians, analytic_hessians, or mixed_hessians. As for the gradient specification, the
no_hessians selection indicates that Hessian information is not needed/available in the study, and the
analytic_hessians selection indicates that Hessian information is available directly from the simu-
lation. The numerical_hessians selection indicates that Hessian information is needed and will be
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estimated with finite differences using either first-order differences of gradients (for analytic gradients) or
second-order differences of function values (for non-analytic gradients). The quasi_hessians speci-
fication means that Hessian information is needed and will be accumulated over time using quasi-Newton
secant updates based on the existing gradient evaluations. Finally, the mixed_hessians selection al-
lows for a mixture of analytic, numerical, and quasi Hessian response data.

The responses specification provides a description of the total data set that is available for use by the iterator
during the course of its iteration. This should be distinguished from the data subset described in an active
set vector (see DAKOTA File Data Formats in the Users Manual) which describes the particular subset of
the response data needed for an individual function evaluation. In other words, the responses specification
is a broad description of the data to be used during a study whereas the active set vector describes the
particular subset of the available data that is currently needed.

Several examples follow. The first example shows an optimization data set containing an objective function
and two nonlinear inequality constraints. These three functions have analytic gradient availability and no
Hessian availability.

responses, \
num_objective_functions = 1 \
num_nonlinear_inequality_constraints = 2 \
analytic_gradients \
no_hessians

The next example shows a typical specification for a least squares data set. The six residual functions will
have numerical gradients computed using the dakota finite differencing routine with central differences of
0.1% (plus/minus delta value = .001  value).

responses, \
num_least_squares_terms = 6 \
numerical_gradients \

method_source dakota \
interval_type central \
fd_gradient_step_size = .001 \

no_hessians

The last example shows a specification that could be used with a nondeterministic iterator. The three
response functions have no gradient or Hessian availability; therefore, only function values will be used by
the iterator.

responses, \
num_response_functions = 3 \
no_gradients \
no_hessians

Parameter study and design of experiments iterators are not restricted in terms of the response data sets
which may be catalogued; they may be used with any of the function specification examples shown above.

8.2 Responses Specification

The responses specification has the following structure:

responses, \
<set identifier>\
<response descriptors>\
<function specification>\
<gradient specification>\
<Hessian specification>
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Referring to dakota.input.spec, it is evident from the enclosing brackets that the set identifier and response
descriptors are optional. However, the function, gradient, and Hessian specifications are all required spec-
ifications, each of which contains several possible specifications separated by logical OR’s. The function
specification must be one of three types:

� objective and constraint functions

� least squares terms and constraint functions

� generic response functions

The gradient specification must be one of four types:

� no gradients

� numerical gradients

� analytic gradients

� mixed gradients

And the Hessian specification must be one of five types:

� no Hessians

� numerical Hessians

� quasi Hessians

� analytic Hessians

� mixed Hessians

The following sections describe each of these specification components in additional detail.

8.3 Responses Set Identifier

The optional set identifier specification uses the keyword id_responses to input a string for use in iden-
tifying a particular responses specification. A method can then identify the use of this response set by speci-
fying the same string in its responses_pointer specification (see Method Independent Controls). For
example, a method whose specification contains responses_pointer = ’R1’ will use a responses
set with id_responses = ’R1’.

If the id_responses specification is omitted, a particular responses specification will be used by a
method only if that method omits specifying a responses_pointer and if the responses set was the
last set parsed (or is the only set parsed). In common practice, if only one responses set exists, then id_-
responses can be safely omitted from the responses specification and responses_pointer can be
omitted from the method specification(s), since there is no potential for ambiguity in this case. Table 8.1
summarizes the set identifier input.
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Description Keyword Associated Data Status Default
Responses set
identifier

id_responses string Optional use of last
responses parsed

Table 8.1: Specification detail for set identifier

8.4 Response Labels

The optional response labels specification uses the keyword response_descriptors to input a list
of strings which will be replicated through the DAKOTA output to help identify the numerical values
for particular response functions. The default descriptor strings use a root string plus a numeric iden-
tifier. This root string is "obj_fn" for objective functions, "least_sq_term" for least squares
terms, "response_fn" for generic response functions, "nln_ineq_con" for nonlinear inequality
constraints, and "nln_eq_con" for nonlinear equality constraints. Table 8.2 summarizes the response
descriptors input.

Description Keyword Associated Data Status Default
Response labels response_-

descriptors
list of strings Optional root strings plus

numeric
identifiers

Table 8.2: Specification detail for response labels

8.5 Function Specification

The function specification must be one of three types: 1) a group containing objective and constraint
functions, 2) a group containing least squares terms and constraint functions, or 3) a generic response
functions specification. These function sets correspond to optimization, least squares, and uncertainty
quantification iterators, respectively. Parameter study and design of experiments iterators may be used
with any of the three function specifications.

8.5.1 Objective and constraint functions (optimization data set)

An optimization data set is specified using num_objective_functions and optionally multi_-
objective_weights, num_nonlinear_inequality_constraints, nonlinear_-
inequality_lower_bounds, nonlinear_inequality_upper_bounds, num_-
nonlinear_equality_constraints, and nonlinear_equality_targets. The
num_objective_functions, num_nonlinear_inequality_constraints, and num_-
nonlinear_equality_constraints inputs specify the number of objective functions, nonlinear
inequality constraints, and nonlinear equality constraints, respectively. The number of objective functions
must be 1 or greater, and the number of inequality and equality constraints must be 0 or greater. If the
number of objective functions is greater than 1, then a multi_objective_weights specification
provides a simple weighted-sum approach to combining multiple objectives:

� �
�
�
� � ���

� � �
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If this is not specified, then each objective function is given equal weighting:

� �
�
�
� � �

� �



The nonlinear_inequality_lower_bounds and nonlinear_inequality_upper_-
bounds specifications provide the lower and upper bounds for 2-sided nonlinear inequalities of the
form �

� �
� � � � � �




The defaults for the inequality constraint bounds are selected so that one-sided inequalities of the form
� � � ���� � 

result when there are no user constraint bounds specifications (this provides backwards compatibility with
previous DAKOTA versions). In a user bounds specification, any upper bound values greater than +big-
RealBoundSize (1.e+30, as defined in Minimizer) are treated as +infinity and any lower bound values
less than -bigRealBoundSize are treated as -infinity. This feature is commonly used to drop one of the
bounds in order to specify a 1-sided constraint (just as the default lower bounds drop out since -DBL_-
MAX � -bigRealBoundSize). The same approach is used for nonexistent linear inequality bounds
as described in Method Independent Controls and for nonexistent design variable bounds as described in
Design Variables.

The nonlinear_equality_targets specification provides the targets for nonlinear equalities of the
form � � � � � �

�

and the defaults for the equality targets enforce a value of 0. for each constraint
� � � � �  � 

Any linear constraints present in an application need only be input to an optimizer at start up and do not
need to be part of the data returned on every function evaluation (see the linear constraints description in
Method Independent Controls). Table 8.3 summarizes the optimization data set specification.

8.5.2 Least squares terms and constraint functions (least squares data set)

A least squares data set is specified using num_least_squares_terms and optionally num_-
nonlinear_inequality_constraints, nonlinear_inequality_lower_bounds,
nonlinear_inequality_upper_bounds, num_nonlinear_equality_constraints,
and nonlinear_equality_targets. Each of the least squares terms is a residual function to
be driven toward zero, and the nonlinear inequality and equality constraint specifications have identical
meanings to those described in Objective and constraint functions (optimization data set). These types
of problems are commonly encountered in parameter estimation, system identification, and model
calibration. Least squares problems are most efficiently solved using special-purpose least squares solvers
such as Gauss-Newton or Levenberg-Marquardt; however, they may also be solved using general-purpose
optimization algorithms. It is important to realize that, while DAKOTA can solve these problems with
either least squares or optimization algorithms, the response data sets to be returned from the simulator
are different. Least squares involves a set of residual functions whereas optimization involves a single
objective function (sum of the squares of the residuals), i.e.

� �
�
�
� � �

��� � �  
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Description Keyword Associated Data Status Default
Number of
objective
functions

num_-
objective_-
functions

integer Required group N/A

Multiobjective
weightings

multi_-
objective_-
weights

list of reals Optional equal weightings

Number of
nonlinear
inequality
constraints

num_-
nonlinear_-
inequality_-
constraints

integer Optional 0

Nonlinear
inequality
constraint lower
bounds

nonlinear_-
inequality_-
lower_bounds

list of reals Optional vector values =
-DBL_MAX

Nonlinear
inequality
constraint upper
bounds

nonlinear_-
inequality_-
upper_bounds

list of reals Optional vector values = 0.

Number of
nonlinear
equality
constraints

num_-
nonlinear_-
equality_-
constraints

integer Optional 0

Nonlinear
equality
constraint targets

nonlinear_-
equality_-
targets

list of reals Optional vector values = 0.

Table 8.3: Specification detail for optimization data sets

where f is the objective function and the set of � � are the residual functions. Therefore, function values
and derivative data in the least squares case involves the values and derivatives of the residual functions,
whereas the optimization case involves values and derivatives of the sum of the squares objective func-
tion. Switching between the two approaches will likely require different simulation interfaces capable of
returning the different granularity of response data required. Table 8.4 summarizes the least squares data
set specification.

8.5.3 Response functions (generic data set)

A generic response data set is specified using num_response_functions. Each of these functions is
simply a response quantity of interest with no special interpretation taken by the method in use. This type
of data set is used by uncertainty quantification methods, in which the effect of parameter uncertainty on re-
sponse functions is quantified, and can also be used in parameter study and design of experiments methods
(although these methods are not restricted to this data set), in which the effect of parameter variations on
response functions is evaluated. Whereas objective, constraint, and residual functions have special mean-
ings for optimization and least squares algorithms, the generic response function data set need not have
a specific interpretation and the user is free to define whatever functional form is convenient. Table 8.5
summarizes the generic response function data set specification.
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Description Keyword Associated Data Status Default
Number of least
squares terms

num_least_-
squares_-
terms

integer Required N/A

Number of
nonlinear
inequality
constraints

num_-
nonlinear_-
inequality_-
constraints

integer Optional 0

Nonlinear
inequality
constraint lower
bounds

nonlinear_-
inequality_-
lower_bounds

list of reals Optional vector values =
-DBL_MAX

Nonlinear
inequality
constraint upper
bounds

nonlinear_-
inequality_-
upper_bounds

list of reals Optional vector values = 0.

Number of
nonlinear
equality
constraints

num_-
nonlinear_-
equality_-
constraints

integer Optional 0

Nonlinear
equality
constraint targets

nonlinear_-
equality_-
targets

list of reals Optional vector values = 0.

Table 8.4: Specification detail for nonlinear least squares data sets

Description Keyword Associated Data Status Default
Number of
response
functions

num_-
response_-
functions

integer Required N/A

Table 8.5: Specification detail for generic response function data sets

8.6 Gradient Specification

The gradient specification must be one of four types: 1) no gradients, 2) numerical gradients, 3) analytic
gradients, or 4) mixed gradients.

8.6.1 No gradients

The no_gradients specification means that gradient information is not needed in the study. Therefore,
it will neither be retrieved from the simulation nor computed with finite differences. The no_gradients
keyword is a complete specification for this case.

8.6.2 Numerical gradients

The numerical_gradients specification means that gradient information is needed and will be com-
puted with finite differences using either the native or one of the vendor finite differencing routines.

The method_source setting specifies the source of the finite differencing routine that will be used to
compute the numerical gradients: dakota denotes DAKOTA’s internal finite differencing algorithm and
vendor denotes the finite differencing algorithm supplied by the iterator package in use (DOT, CONMIN,
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NPSOL, NL2SOL, NLSSOL, and OPT++ each have their own internal finite differencing routines). The
dakota routine is the default since it can execute in parallel and exploit the concurrency in finite differ-
ence evaluations (see Exploiting Parallelism in the Users Manual). However, the vendor setting can be
desirable in some cases since certain libraries will modify their algorithm when the finite differencing is
performed internally. Since the selection of the dakota routine hides the use of finite differencing from
the optimizers (the optimizers are configured to accept user-supplied gradients, which some algorithms
assume to be of analytic accuracy), the potential exists for the vendor setting to trigger the use of an
algorithm more optimized for the higher expense and/or lower accuracy of finite-differencing. For exam-
ple, NPSOL uses gradients in its line search when in user-supplied gradient mode (since it assumes they
are inexpensive), but uses a value-based line search procedure when internally finite differencing. The
use of a value-based line search will often reduce total expense in serial operations. However, in parallel
operations, the use of gradients in the NPSOL line search (user-supplied gradient mode) provides excel-
lent load balancing without need to resort to speculative optimization approaches. In summary, then, the
dakota routine is preferred for parallel optimization, and the vendor routine may be preferred for serial
optimization in special cases.

The interval_type setting is used to select between forward and central differences in the nu-
merical gradient calculations. The dakota, DOT vendor, and OPT++ vendor routines have both
forward and central differences available, the CONMIN and NL2SOL vendor routines support forward
differences only, and the NPSOL and NLSSOL vendor routines start with forward differences and auto-
matically switch to central differences as the iteration progresses (the user has no control over this). The
following forward difference expression

� � ��� ����
� ��� "��	� � � � � ��� �

�

and the following central difference expression

� � ��� �
��
� ��� "��	� � � � � �������	� � �

$��

are used to estimate the 
���

component of the gradient vector.

Lastly, fd_gradient_step_size specifies the relative finite difference step size to be used in the
computations. Either a single value may be entered for use with all parameters, or a list of step sizes
may be entered, one for each parameter. The latter option of a list of step sizes is only valid for use
with the DAKOTA finite differencing routine. For DAKOTA, DOT, CONMIN, and OPT++, the differenc-
ing intervals are computed by multiplying the fd_gradient_step_size with the current parameter
value. In this case, a minimum absolute differencing interval is needed when the current parameter value
is close to zero. This prevents finite difference intervals for the parameter which are too small to distin-
guish differences in the response quantities being computed. DAKOTA, DOT, CONMIN, and OPT++ all
use .01  fd_gradient_step_size as their minimum absolute differencing interval. With a fd_-
gradient_step_size = .001, for example, DAKOTA, DOT, CONMIN, and OPT++ will use in-
tervals of .001  current value with a minimum interval of 1.e-5. NPSOL and NLSSOL use a different for-
mula for their finite difference intervals: fd_gradient_step_size  (1+

�
current parameter

value
�
). This definition has the advantage of eliminating the need for a minimum absolute differencing

interval since the interval no longer goes to zero as the current parameter value goes to zero. Table 8.6
summarizes the numerical gradient specification.

8.6.3 Analytic gradients

The analytic_gradients specification means that gradient information is available directly from
the simulation (finite differencing is not required). The simulation must return the gradient data in the
DAKOTA format (enclosed in single brackets; see DAKOTA File Data Formats in the Users Manual) for
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Description Keyword Associated Data Status Default
Numerical
gradients

numerical_-
gradients

none Required group N/A

Method source method_-
source

dakota
�

vendor
Optional group dakota

Interval type interval_-
type

forward
�

central
Optional group forward

Finite difference
step size

fd_-
gradient_-
step_size

list of reals Optional 0.001

Table 8.6: Specification detail for numerical gradients

the case of file transfer of data. The analytic_gradients keyword is a complete specification for
this case.

8.6.4 Mixed gradients

The mixed_gradients specification means that some gradient information is available directly from
the simulation (analytic) whereas the rest will have to be finite differenced (numerical). This specifica-
tion allows the user to make use of as much analytic gradient information as is available and then finite
difference for the rest. For example, the objective function may be a simple analytic function of the de-
sign variables (e.g., weight) whereas the constraints are nonlinear implicit functions of complex analyses
(e.g., maximum stress). The id_analytic_gradients list specifies by number the functions which
have analytic gradients, and the id_numerical_gradients list specifies by number the functions
which must use numerical gradients. Each function identifier, from 1 through the total number of func-
tions, must appear once and only once within the union of the id_analytic_gradients and id_-
numerical_gradients lists. The method_source, interval_type, and fd_gradient_-
step_size specifications are as described previously in Numerical gradients and pertain to those func-
tions listed by the id_numerical_gradients list. Table 8.7 summarizes the mixed gradient specifi-
cation.

Description Keyword Associated Data Status Default
Mixed gradients mixed_-

gradients
none Required group N/A

Analytic
derivatives
function list

id_-
analytic_-
gradients

list of integers Required N/A

Numerical
derivatives
function list

id_-
numerical_-
gradients

list of integers Required N/A

Method source method_-
source

dakota
�

vendor
Optional group dakota

Interval type interval_-
type

forward
�

central
Optional group forward

Finite difference
step size

fd_-
gradient_-
step_size

list of reals Optional 0.001

Table 8.7: Specification detail for mixed gradients
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8.7 Hessian Specification

Hessian availability must be specified with either no_hessians, numerical_hessians, quasi_-
hessians, analytic_hessians, or mixed_hessians.

8.7.1 No Hessians

The no_hessians specification means that the method does not require DAKOTA to manage the compu-
tation of any Hessian information. Therefore, it will neither be retrieved from the simulation nor computed
by DAKOTA. The no_hessians keyword is a complete specification for this case. Note that, in some
cases, Hessian information may still be being approximated internal to an algorithm (e.g., within a quasi-
Newton optimizer such as optpp_q_newton); however, DAKOTA has no direct involvement in this
process and the responses specification need not include it.

8.7.2 Numerical Hessians

The numerical_hessians specification means that Hessian information is needed and will be com-
puted with finite differences using either first-order gradient differencing (for the cases of analytic_-
gradients or for the functions identified by id_analytic_gradients in the case of mixed_-
gradients) or second-order function value differencing (all other gradient specifications). In the former
case, the following expression

�  � ��� � ��
� � ��� " �	� � � � � � ��� �

�

estimates the 
���

Hessian column, and in the latter case, the following expression

�  � ��� � ��
� ��� "��	� � "��	� � � � � ��� "��	� � ���	� � � � � ��� ���	� � "��	� � � " � ��� ���	� � ���	� � �

� �  

estimates the ��
���

Hessian term.

The fd_hessian_step_size specifies the relative finite difference step size to be used in these dif-
ferences. Either a single value may be entered for use with all parameters, or a list of step sizes may
be entered, one for each parameter. The differencing intervals are computed by multiplying the fd_-
hessian_step_size with the current parameter value. A minimum absolute differencing interval of
.01  fd_hessian_step_size is used when the current parameter value is close to zero. Table 8.8
summarizes the numerical Hessian specification.

Description Keyword Associated Data Status Default
Numerical
Hessians

numerical_-
hessians

none Required group N/A

Finite difference
step size

fd_hessian_-
step_size

list of reals Optional 0.001
(1st-order),
0.002
(2nd-order)

Table 8.8: Specification detail for numerical Hessians
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8.7.3 Quasi Hessians

The quasi_hessians specification means that Hessian information is needed and will be approximated
using quasi-Newton secant updates. Compared to finite difference numerical Hessians, quasi-Newton ap-
proximations do not expend additional function evaluations in estimating all of the second-order infor-
mation for every point of interest. Rather, they accumulate approximate curvature information over time
using the existing gradient evaluations. The supported quasi-Newton approximations include the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) update (specified with the keyword bfgs)

��� � � � ��� �
��� � � � � � ���
� � � ��� � � "�� � �

��
�
�� � �

and the Symmetric Rank 1 (SR1) update (specified with the keyword sr1)

��� � � � ��� "
� � � � � � � � � � � � � � � � � �

�

� � � � ��� � � �
� � �

where
� �

is the �
���

approximation to the Hessian, � � ��� � � � ��� � is the step and � � � � � � � ��� � � � is

the corresponding yield in the gradients. In both cases, an initial scaling of �
�	 � 	�
�	 
 	�
 is used for

�
� prior to the

first update. In addition, both cases employ basic numerical safeguarding to protect against numerically
small denominators within the updates. This safeguarding skips the update if

�
�
�� � � �

� *  � � � � � ��� � �
in the BFGS case or if

� � � � � ��� � � �
� � � �

� *- ��� � � � � � �  � �
� � � ��� � �

� �  in the SR1 case. In the BFGS
case, additional safeguarding can be added using the damped option, which utilizes an alternative damped
BFGS update when the curvature condition �

�� � � �  is nearly violated. Table 8.9 summarizes the quasi
Hessian specification.

Description Keyword Associated Data Status Default
Quasi Hessians quasi_-

hessians
bfgs

�
sr1 Required group N/A

Numerical
safeguarding of
BFGS update

damped none Optional undamped BFGS

Table 8.9: Specification detail for quasi Hessians

8.7.4 Analytic Hessians

The analytic_hessians specification means that Hessian information is available directly from the
simulation. The simulation must return the Hessian data in the DAKOTA format (enclosed in double
brackets; see DAKOTA File Data Formats in Users Manual) for the case of file transfer of data. The
analytic_hessians keyword is a complete specification for this case.

8.7.5 Mixed Hessians

The mixed_hessians specification means that some Hessian information is available directly from
the simulation (analytic) whereas the rest will have to be estimated by finite differences (numerical) or
approximated by quasi-Newton secant updating. As for mixed gradients, this specification allows the user
to make use of as much analytic information as is available and then estimate/approximate the rest. The
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id_analytic_hessians list specifies by number the functions which have analytic Hessians, and the
id_numerical_hessians and id_quasi_hessians lists specify by number the functions which
must use numerical Hessians and quasi-Newton Hessian updates, respectively. Each function identifier,
from 1 through the total number of functions, must appear once and only once within the union of the
id_analytic_hessians, id_numerical_hessians, and id_quasi_hessians lists. The
fd_hessian_step_size and bfgs, damped bfgs, or sr1 quasi-Newton update selections are as
described previously in Numerical Hessians and Quasi Hessians and pertain to those functions listed by
the id_numerical_hessians and id_quasi_hessians lists. Table 8.10 summarizes the mixed
Hessian specification.

Description Keyword Associated Data Status Default
Mixed Hessians mixed_-

hessians
none Required group N/A

Analytic
Hessians function
list

id_-
analytic_-
hessians

list of integers Required N/A

Numerical
Hessians function
list

id_-
numerical_-
hessians

list of integers Required N/A

Finite difference
step size

fd_hessian_-
step_size

list of reals Optional 0.001
(1st-order),
0.002
(2nd-order)

Quasi Hessians
function list

id_quasi_-
hessians

list of integers Required N/A

Quasi-Hessian
update

bfgs
�
sr1 none Required N/A

Numerical
safeguarding of
BFGS update

damped none Optional undamped BFGS

Table 8.10: Specification detail for mixed Hessians
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