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Abstract

The DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a flex-
ible and extensible interface between simulation codes and iterative analysis methods. DAKOTA contains
algorithms for optimization with gradient and nongradient-based methods; uncertainty quantification with
sampling, analytic reliability, and stochastic finite element methods; parameter estimation with nonlinear
least squares methods; and sensitivity analysis with design of experiments and parameter study methods.
These capabilities may be used on their own or as components within advanced strategies such as surrogate-
based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employ-
ing object-oriented design to implement abstractions of the key components required for iterative systems
analyses, the DAKOTA toolkit provides a flexible and extensible problem-solving environment for design
and performance analysis of computational models on high performance computers.

This report serves as a reference manual for the commands specification for the DAKOTA software, pro-
viding input overviews, option descriptions, and example specifications.
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Chapter 1

DAKOTA Reference Manual

Author:
Michael S. Eldred , Anthony A. Giunta , Bart G. van Bloemen Waanders , Steven F. Wojtkiewicz, Jr. ,
William E. Hart , Mario P. Alleva

1.1 Introduction

The DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a flexi-
ble, extensible interface between analysis codes and iteration methods. DAKOTA contains algorithms for
optimization with gradient and nongradient-based methods, uncertainty quantification with sampling, an-
alytic reliability, and stochastic finite element methods, parameter estimation with nonlinear least squares
methods, and sensitivity/main effects analysis with design of experiments and parameter study capabili-
ties. These capabilities may be used on their own or as components within advanced strategies such as
surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty.
By employing object-oriented design to implement abstractions of the key components required for itera-
tive systems analyses, the DAKOTA toolkit provides a flexible problem-solving environment as well as a
platform for rapid prototyping of new solution approaches.

The Reference Manual focuses on documentation of the various input commands for the DAKOTA system.
It follows closely the structure of dakota.input.spec, the master input specification. For information on soft-
ware structure, refer to the Developers Manual, and for a tour of DAKOTA features and capabilities,
refer to the Users Manual [Eldred et al., 2001].

1.2 Input Specification Reference

In the DAKOTA system, the strategy creates and manages iterators and models. A model contains a set
of variables, an interface, and a set of responses, and the iterator operates on the model to map the vari-
ables into responses using the interface. In a DAKOTA input file, the user specifies these components
through strategy, method, variables, interface, and responses keyword specifications. The Reference Man-
ual closely follows this structure, with introductory material followed by detailed documentation of the
strategy, method, variables, interface, and responses keyword specifications:

file:../html/index.html
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Commands Introduction

Strategy Commands

Method Commands

Variables Commands

Interface Commands

Responses Commands

1.3 Web Resources

Project web pages are maintained at http://endo.sandia.gov/DAKOTA with software specifics
and documentation pointers provided at http://endo.sandia.gov/DAKOTA/software.html,
and a list of publications provided at http://endo.sandia.gov/DAKOTA/references.html
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Chapter 2

DAKOTA File Documentation

2.1 dakota.input.spec File Reference

File containing the input specification for DAKOTA.

2.1.1 Detailed Description

File containing the input specification for DAKOTA.

This file is used in the generation of parser system files which are compiled into the DAKOTA executable.
Therefore, this file is the definitive source for input syntax, capability options, and associated data inputs.
Refer to Instructions for Modifying DAKOTA’s Input Specification for information on how to modify the
input specification and propagate the changes through the parsing system.

Key features of the input specification and the associated user input files include:

� In the input specification, required individual specifications are enclosed in
���

, optional individual
specifications are enclosed in [], required group specifications are enclosed in (), optional group
specifications are enclosed in [], and either-or relationships are denoted by the � symbol. These
symbols only appear in dakota.input.spec; they must not appear in actual user input files.

� Keyword specifications (i.e., strategy, method, variables, interface, and re-
sponses) are delimited by newline characters, both in the input specification and in user input
files. Therefore, to continue a keyword specification onto multiple lines, the back-slash character ( � )
is needed at the end of a line in order to escape the newline. Continuation onto multiple lines is not
required; however, it is commonly used to enhance readability.

� Each of the five keywords in the input specification begins with a

<KEYWORD = name>, <FUNCTION = handler_name>

header which names the keyword and provides the binding to the keyword handler within DAKOTA’s
problem description database. In a user input file, only the name of the keyword appears (e.g.,
variables).



10 DAKOTA File Documentation

� Some of the keyword components within the input specification indicate that the user must sup-
ply � INTEGER � , � REAL � , � STRING � , � LISTof ��� INTEGER � , � LISTof ��� REAL � , or
� LISTof ��� STRING � data as part of the specification. In a user input file, the "=" is optional,
the � LISTof � data can be separated by commas or whitespace, and the � STRING � data are
enclosed in single quotes (e.g., ‘text book’).

� In user input files, input is order-independent (except for entries in lists of data), case insensitive, and
white-space insensitive. Although the order of input shown in the Sample dakota.in Files generally
follows the order of options in the input specification, this is not required.

� In user input files, specifications may be abbreviated so long as the abbreviation is unique. For exam-
ple, the application specification within the interface keyword could be abbreviated as applic,
but should not be abbreviated as app since this would be ambiguous with approximation.

� In both the input specification and user input files, comments are preceded by #.

The dakota.input.spec file used in DAKOTA V3.1 is:

# DO NOT CHANGE THIS FILE UNLESS YOU UNDERSTAND THE COMPLETE UPDATE PROCESS
#
# Any changes made to the input specification require the manual merging
# of code fragments generated by IDR into the DAKOTA code. If this manual
# merging is not performed, then libidr.a and the Dakota src files
# (ProblemDescDB.C, keywordtable.C) will be out of synch which will cause
# errors that are difficult to track. Please be sure to consult the
# documentation in Dakota/docs/SpecChange.dox before you modify the input
# specification or otherwise change the IDR subsystem.
#
<KEYWORD = variables>, <FUNCTION = variables_kwhandler> \

[id_variables = <STRING>] \
[ {continuous_design = <INTEGER>} \

[cdv_initial_point = <LISTof><REAL>] \
[cdv_lower_bounds = <LISTof><REAL>] \
[cdv_upper_bounds = <LISTof><REAL>] \
[cdv_descriptors = <LISTof><STRING>] ] \

[ {discrete_design = <INTEGER>} \
[ddv_initial_point = <LISTof><INTEGER>] \
[ddv_lower_bounds = <LISTof><INTEGER>] \
[ddv_upper_bounds = <LISTof><INTEGER>] \
[ddv_descriptors = <LISTof><STRING>] ] \

[ {normal_uncertain = <INTEGER>} \
{nuv_means = <LISTof><REAL>} \
{nuv_std_deviations = <LISTof><REAL>} \
[nuv_dist_lower_bounds = <LISTof><REAL>] \
[nuv_dist_upper_bounds = <LISTof><REAL>] \
[nuv_descriptors = <LISTof><STRING>] ] \

[ {lognormal_uncertain = <INTEGER>} \
{lnuv_means = <LISTof><REAL>} \
{lnuv_std_deviations = <LISTof><REAL>} \

| {lnuv_error_factors = <LISTof><REAL>} \
[lnuv_dist_lower_bounds = <LISTof><REAL>] \
[lnuv_dist_upper_bounds = <LISTof><REAL>] \
[lnuv_descriptors = <LISTof><STRING>] ] \

[ {uniform_uncertain = <INTEGER>} \
{uuv_dist_lower_bounds = <LISTof><REAL>} \
{uuv_dist_upper_bounds = <LISTof><REAL>} \
[uuv_descriptors = <LISTof><STRING>] ] \

[ {loguniform_uncertain = <INTEGER>} \
{luuv_dist_lower_bounds = <LISTof><REAL>} \
{luuv_dist_upper_bounds = <LISTof><REAL>} \
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[luuv_descriptors = <LISTof><STRING>] ] \
[ {weibull_uncertain = <INTEGER>} \

{wuv_alphas = <LISTof><REAL>} \
{wuv_betas = <LISTof><REAL>} \
[wuv_dist_lower_bounds = <LISTof><REAL>] \
[wuv_dist_upper_bounds = <LISTof><REAL>] \
[wuv_descriptors = <LISTof><STRING>] ] \

[ {histogram_uncertain = <INTEGER>} \
[ {huv_num_bin_pairs = <LISTof><INTEGER>} \
{huv_bin_pairs = <LISTof><REAL>} ] \

[ {huv_num_point_pairs = <LISTof><INTEGER>} \
{huv_point_pairs = <LISTof><REAL>} ] \

[huv_descriptors = <LISTof><STRING>] ] \
[uncertain_correlation_matrix = <LISTof><REAL>] \
[ {continuous_state = <INTEGER>} \

[csv_initial_state = <LISTof><REAL>] \
[csv_lower_bounds = <LISTof><REAL>] \
[csv_upper_bounds = <LISTof><REAL>] \
[csv_descriptors = <LISTof><STRING>] ] \

[ {discrete_state = <INTEGER>} \
[dsv_initial_state = <LISTof><INTEGER>] \
[dsv_lower_bounds = <LISTof><INTEGER>] \
[dsv_upper_bounds = <LISTof><INTEGER>] \
[dsv_descriptors = <LISTof><STRING>] ]

<KEYWORD = interface>, <FUNCTION = interface_kwhandler> \
[id_interface = <STRING>] \
( {application} \

{analysis_drivers = <LISTof><STRING>} \
[input_filter = <STRING>] \
[output_filter = <STRING>] \
( {system} \
[parameters_file = <STRING>] \
[results_file = <STRING>] \
[analysis_usage = <STRING>] \
[aprepro] [file_tag] [file_save] ) \

| \
( {fork} \
[parameters_file = <STRING>] \
[results_file = <STRING>] \
[aprepro] [file_tag] [file_save] ) \

| \
( {direct} \
[processors_per_analysis = <INTEGER>] \

# [processors_per_analysis = <LISTof><INTEGER>] \
[modelcenter_file = <STRING>] ) \

| \
( {grid} \
{hostnames = <LISTof><STRING>} \
[processors_per_host = <LISTof><INTEGER>] ) \

[ {asynchronous} [evaluation_concurrency = <INTEGER>] \
[analysis_concurrency = <INTEGER>] ] \

[evaluation_servers = <INTEGER>] \
[evaluation_self_scheduling] \
[evaluation_static_scheduling] \
[analysis_servers = <INTEGER>] \
[analysis_self_scheduling] \
[analysis_static_scheduling] \
[ {failure_capture} {abort} | {retry = <INTEGER>} | \
{recover = <LISTof><REAL>} | {continuation} ] \

[ {deactivate} [active_set_vector] [evaluation_cache] \
[restart_file] ] ) \

| \
( {approximation} \

( {global} \
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12 DAKOTA File Documentation

{neural_network} | \
( {polynomial} {linear} | {quadratic} | {cubic} ) | \
{mars} | {hermite} | \
( {kriging} [correlations = <LISTof><REAL>] ) \
[dace_method_pointer = <STRING>] \
[ {reuse_samples} {all} | {region} | \

{samples_file = <STRING>} ] \
[ {correction} {additive} | {multiplicative} \

{zeroth_order} | {first_order} ] \
# [ {rebuild} {inactive_all} | {inactive_region} ] \

[use_gradients] ) \
| \
( {multipoint} \

# {tana?} [use_gradients?] [correction?] \
{actual_interface_pointer = <STRING>} ) \

| \
( {local} \
{taylor_series} \
{actual_interface_pointer = <STRING>} \
[actual_interface_responses_pointer = <STRING>] ) \

| \
( {hierarchical} \
{low_fidelity_interface_pointer = <STRING>} \
{high_fidelity_interface_pointer = <STRING>} \

# {high_fidelity_interface_responses_pointer = <STRING>}\
# {interface_pointer_hierarchy = <LISTof><STRING>} \

{correction} {additive} | {multiplicative} \
{zeroth_order} | {first_order} ) )

<KEYWORD = responses>, <FUNCTION = responses_kwhandler> \
[id_responses = <STRING>] \
[response_descriptors = <LISTof><STRING>] \
( {num_objective_functions = <INTEGER>} \

[multi_objective_weights = <LISTof><REAL>] \
[num_nonlinear_inequality_constraints = <INTEGER>] \
[nonlinear_inequality_lower_bounds = <LISTof><REAL>] \
[nonlinear_inequality_upper_bounds = <LISTof><REAL>] \
[num_nonlinear_equality_constraints = <INTEGER>] \
[nonlinear_equality_targets = <LISTof><REAL>] ) \

| \
( {num_least_squares_terms = <INTEGER>} \

[num_nonlinear_inequality_constraints = <INTEGER>] \
[nonlinear_inequality_lower_bounds = <LISTof><REAL>] \
[nonlinear_inequality_upper_bounds = <LISTof><REAL>] \
[num_nonlinear_equality_constraints = <INTEGER>] \
[nonlinear_equality_targets = <LISTof><REAL>] ) \

| \
{num_response_functions = <INTEGER>} \
{no_gradients} \
| \
( {numerical_gradients} \

[ {method_source} {dakota} | {vendor} ] \
[ {interval_type} {forward} | {central} ] \
[fd_step_size = <REAL>] ) \

| \
{analytic_gradients} \
| \
( {mixed_gradients} \

{id_numerical = <LISTof><INTEGER>} \
[ {method_source} {dakota} | {vendor} ] \
[ {interval_type} {forward} | {central} ] \
[fd_step_size = <REAL>] \

{id_analytic = <LISTof><INTEGER>} ) \
{no_hessians} \
| \
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2.1 dakota.input.spec File Reference 13

{analytic_hessians}

<KEYWORD = strategy>, <FUNCTION = strategy_kwhandler> \
[graphics] \
[ {tabular_graphics_data} [tabular_graphics_file = <STRING>] ] \
[iterator_servers = <INTEGER>] \
[iterator_self_scheduling] [iterator_static_scheduling] \
( {multi_level} \

( {uncoupled} \
[ {adaptive} {progress_threshold = <REAL>} ] \
{method_list = <LISTof><STRING>} ) \

| \
( {coupled} \

{global_method_pointer = <STRING>} \
{local_method_pointer = <STRING>} \
[local_search_probability = <REAL>] ) ) \

| \
( {surrogate_based_opt} \

{opt_method_pointer = <STRING>} \
[max_iterations = <INTEGER>] \
[convergence_tolerance = <REAL>] \
[soft_convergence_limit = <INTEGER>] \
[ {trust_region} \
[initial_size = <REAL>] \
[minimum_size = <REAL>] \
[contract_region_threshold = <REAL>] \
[expand_region_threshold = <REAL>] \
[contraction_factor = <REAL>] \
[expansion_factor = <REAL>] ] ) \

| \
( {opt_under_uncertainty} \

{opt_method_pointer = <STRING>} ) \
| \
( {branch_and_bound} \

{opt_method_pointer = <STRING>} \
[num_samples_at_root = <INTEGER>] \
[num_samples_at_node = <INTEGER>] ) \

| \
( {multi_start} \

{method_pointer = <STRING>} \
[ {random_starts = <INTEGER>} [seed = <INTEGER>] ] \
[starting_points = <LISTof><REAL>] ) \

| \
( {pareto_set} \

{opt_method_pointer = <STRING>} \
[ {random_weight_sets = <INTEGER>} [seed = <INTEGER>] ] \
[multi_objective_weight_sets = <LISTof><REAL>] ) \

| \
( {single_method} \

[method_pointer = <STRING>] )

<KEYWORD = method>, <FUNCTION = method_kwhandler> \
[id_method = <STRING>] \
[ {model_type} \

[variables_pointer= <STRING>] \
[responses_pointer = <STRING>] \
( {single} [interface_pointer = <STRING>] ) \

| ( {nested} {sub_method_pointer = <STRING>} \
[ {interface_pointer = <STRING>} \

{interface_responses_pointer = <STRING>} ] \
[primary_mapping_matrix = <LISTof><REAL>] \
[secondary_mapping_matrix = <LISTof><REAL>] ) \

| ( {layered} {interface_pointer = <STRING>} ) ] \
[speculative] \
[ {output} {debug} | {verbose} | {quiet} | {silent} ] \
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14 DAKOTA File Documentation

[max_iterations = <INTEGER>] \
[max_function_evaluations = <INTEGER>] \
[constraint_tolerance = <REAL>] \
[convergence_tolerance = <REAL>] \
[linear_inequality_constraint_matrix = <LISTof><REAL>] \
[linear_inequality_lower_bounds = <LISTof><REAL>] \
[linear_inequality_upper_bounds = <LISTof><REAL>] \
[linear_equality_constraint_matrix = <LISTof><REAL>] \
[linear_equality_targets = <LISTof><REAL>] \
( {dot_frcg} \

[ {optimization_type} {minimize} | {maximize} ] ) \
| \
( {dot_mmfd} \

[ {optimization_type} {minimize} | {maximize} ] ) \
| \
( {dot_bfgs} \

[ {optimization_type} {minimize} | {maximize} ] ) \
| \
( {dot_slp} \

[ {optimization_type} {minimize} | {maximize} ] ) \
| \
( {dot_sqp} \

[ {optimization_type} {minimize} | {maximize} ] ) \
| \
( {conmin_frcg} ) \
| \
( {conmin_mfd} ) \
| \
( {npsol_sqp} \

[verify_level = <INTEGER>] \
[function_precision = <REAL>] \
[linesearch_tolerance = <REAL>] ) \

| \
( {nlssol_sqp} \

[verify_level = <INTEGER>] \
[function_precision = <REAL>] \
[linesearch_tolerance = <REAL>] ) \

| \
( {reduced_sqp} ) \
| \
( {optpp_cg} \

[max_step = <REAL>] [gradient_tolerance = <REAL>] ) \
| \
( {optpp_q_newton} \

[ {search_method} {value_based_line_search} | \
{gradient_based_line_search} | {trust_region} | \
{tr_pds} ] \

[max_step = <REAL>] [gradient_tolerance = <REAL>] \
[merit_function = <STRING>] [central_path = <STRING>] \
[steplength_to_boundary = <REAL>] \
[centering_parameter = <REAL>] ) \

| \
( {optpp_fd_newton} \

[ {search_method} {value_based_line_search} | \
{gradient_based_line_search} | {trust_region} | \
{tr_pds} ] \

[max_step = <REAL>] [gradient_tolerance = <REAL>] \
[merit_function = <STRING>] [central_path = <STRING>] \
[steplength_to_boundary = <REAL>] \
[centering_parameter = <REAL>] ) \

| \
( {optpp_g_newton} \

[ {search_method} {value_based_line_search} | \
{gradient_based_line_search} | {trust_region} | \
{tr_pds} ] \
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[max_step = <REAL>] [gradient_tolerance = <REAL>] \
[merit_function = <STRING>] [central_path = <STRING>] \
[steplength_to_boundary = <REAL>] \
[centering_parameter = <REAL>] ) \

| \
( {optpp_newton} \

[ {search_method} {value_based_line_search} | \
{gradient_based_line_search} | {trust_region} | \
{tr_pds} ] \

[max_step = <REAL>] [gradient_tolerance = <REAL>] \
[merit_function = <STRING>] [central_path = <STRING>] \
[steplength_to_boundary = <REAL>] \
[centering_parameter = <REAL>] ) \

| \
( {optpp_pds} \

[search_scheme_size = <INTEGER>] ) \
| \
( {coliny_apps} \

{initial_delta = <REAL>} {threshold_delta = <REAL>} \
[ {pattern_basis} {coordinate} | {simplex} ] \
[total_pattern_size = <INTEGER>] \
[no_expansion] [contraction_factor = <REAL>] ) \

| \
{coliny_direct} \
| \
( {sgopt_pga_real} \

[solution_accuracy = <REAL>] [max_cpu_time = <REAL>] \
[seed = <INTEGER>] [population_size = <INTEGER>] \
[ {selection_pressure} {rank} | {proportional} ] \
[ {replacement_type} {random = <INTEGER>} | \
{chc = <INTEGER>} | {elitist = <INTEGER>} \
[new_solutions_generated = <INTEGER>] ] \

[ {crossover_type} {two_point} | {blend} | {uniform} \
[crossover_rate = <REAL>] ] \

[ {mutation_type} {replace_uniform} | \
( {offset_normal} [mutation_scale = <REAL>] ) | \
( {offset_cauchy} [mutation_scale = <REAL>] ) | \
( {offset_uniform} [mutation_scale = <REAL>] ) | \
( {offset_triangular} [mutation_scale = <REAL>] ) \

[dimension_rate = <REAL>] [population_rate = <REAL>] \
[non_adaptive] ] ) \

| \
( {sgopt_pga_int} \

[solution_accuracy = <REAL>] [max_cpu_time = <REAL>] \
[seed = <INTEGER>] [population_size = <INTEGER>] \
[ {selection_pressure} {rank} | {proportional} ] \
[ {replacement_type} {random = <INTEGER>} | \
{chc = <INTEGER>} | {elitist = <INTEGER>} \
[new_solutions_generated = <INTEGER>] ] \

[ {crossover_type} {two_point} | {uniform} \
[crossover_rate = <REAL>] ] \

[ {mutation_type} {replace_uniform} | \
( {offset_uniform} [mutation_range = <INTEGER>] ) \

[dimension_rate = <REAL>] \
[population_rate = <REAL>] ] ) \

| \
( {sgopt_epsa} \

[solution_accuracy = <REAL>] [max_cpu_time = <REAL>] \
[seed = <INTEGER>] [population_size = <INTEGER>] \
[ {selection_pressure} {rank} | {proportional} ] \
[ {replacement_type} {random = <INTEGER>} | \
{chc = <INTEGER>} | {elitist = <INTEGER>} \
[new_solutions_generated = <INTEGER>] ] \

[ {crossover_type} {two_point} | {uniform} \
[crossover_rate = <REAL>] ] \
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[ {mutation_type} {unary_coord} | {unary_simplex} | \
( {multi_coord} [dimension_rate = <REAL>] ) | \
( {multi_simplex} [dimension_rate = <REAL>] ) \

[mutation_scale = <REAL>] [min_scale = <REAL>] \
[population_rate = <REAL>] ] \

[num_partitions = <INTEGER>] ) \
| \
( {sgopt_pattern_search} \

[solution_accuracy = <REAL>] [max_cpu_time = <REAL>] \
[ {stochastic} [seed = <INTEGER>] ] \
{initial_delta = <REAL>} {threshold_delta = <REAL>} \
[ {pattern_basis} {coordinate} | {simplex} ] \
[total_pattern_size = <INTEGER>] \
[no_expansion] [expand_after_success = <INTEGER>] \
[contraction_factor = <REAL>] \
[ {exploratory_moves} {multi_step} | {best_all} | \
{best_first} | {biased_best_first} | \
{adaptive_pattern} | {test} ] ) \

| \
( {sgopt_solis_wets} \

[solution_accuracy = <REAL>] [max_cpu_time = <REAL>] \
[seed = <INTEGER>] \
{initial_delta = <REAL>} {threshold_delta = <REAL>} \
[no_expansion] [expand_after_success = <INTEGER>] \
[contract_after_failure = <INTEGER>] \
[contraction_factor = <REAL>] ) \

| \
( {sgopt_strat_mc} \

[solution_accuracy = <REAL>] [max_cpu_time = <REAL>] \
[seed = <INTEGER>] [batch_size = <INTEGER>] \
[partitions = <LISTof><INTEGER>] ) \

| \
( {nond_polynomial_chaos} \

{expansion_terms = <INTEGER>} | \
{expansion_order = <INTEGER>} \
[seed = <INTEGER>] [samples = <INTEGER>] \
[ {sample_type} {random} | {lhs} ] \
[response_thresholds = <LISTof><REAL>] ) \

| \
( {nond_sampling} \

[seed = <INTEGER>] [fixed_seed] \
[samples = <INTEGER>] \
[ {sample_type} {random} | {lhs} ] \
[all_variables] \
[response_thresholds = <LISTof><REAL>] ) \

| \
( {nond_analytic_reliability} \

( {mv} [response_levels = <LISTof><REAL>] ) | \
( {amv} {response_levels = <LISTof><REAL>} ) | \
( {iterated_amv} {response_levels = <LISTof><REAL>} | \
{probability_levels = <LISTof><REAL>} ) | \

( {form} {response_levels = <LISTof><REAL>} ) | \
( {sorm} {response_levels = <LISTof><REAL>} ) ) \

| \
( {dace} \

{grid} | {random} | {oas} | {lhs} | {oa_lhs} | \
{box_behnken} | {central_composite} \
[seed = <INTEGER>] [fixed_seed] \
[samples = <INTEGER>] [symbols = <INTEGER>] ) \

| \
( {vector_parameter_study} \

( {final_point = <LISTof><REAL>} \
{step_length = <REAL>} | {num_steps = <INTEGER>} ) \

| \
( {step_vector = <LISTof><REAL>} \
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{num_steps = <INTEGER>} ) ) \
| \
( {list_parameter_study} \

{list_of_points = <LISTof><REAL>} ) \
| \
( {centered_parameter_study} \

{percent_delta = <REAL>} \
{deltas_per_variable = <INTEGER>} ) \

| \
( {multidim_parameter_study} \

{partitions = <LISTof><INTEGER>} )
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Chapter 3

Commands Introduction

3.1 Overview

In the DAKOTA system, a strategy governs how each method maps variables into responses through the
use of an interface. Each of these five pieces (strategy, method, variables, responses, and interface) are
separate specifications in the user’s input file, and as a whole, determine the study to be performed during
an execution of the DAKOTA software. The number of strategies which can be invoked during a DAKOTA
execution is limited to one. This strategy, however, may invoke multiple methods. Furthermore, each
method may (in general) have its own ”model,” consisting of its own set of variables, its own interface, and
its own set of responses. Thus, there may be multiple specifications of the method, variables, interface, and
responses sections.

The syntax of DAKOTA specification is governed by the Input Deck Reader (IDR) parsing system
[Weatherby et al., 1996], which uses the dakota.input.spec file to describe the allowable inputs to the sys-
tem. This input specification file provides a template of the allowable system inputs from which a particular
input file (e.g., dakota.in) can be derived.

This Reference Manual focuses on providing complete details for the allowable specifications in an in-
put file to the DAKOTA program. Related details on the name and location of the DAKOTA program,
command line inputs, and execution syntax are provided in the Users Manual [Eldred et al., 2001].

3.2 IDR Input Specification File

DAKOTA input is governed by the IDR input specification file. This file (dakota.input.spec) is used by
a code generator to create parsing system components which are compiled into the DAKOTA executable
(refer to Instructions for Modifying DAKOTA’s Input Specification for additional information). Therefore,
dakota.input.spec is the definitive source for input syntax, capability options, and optional and required
capability sub-parameters. Beginning users may find this file more confusing than helpful and, in this case,
adaptation of example input files to a particular problem may be a more effective approach. However,
advanced users can master all of the various input specification possibilities once the structure of the input
specification file is understood.

Refer to dakota.input.spec for a listing of the current version and discussion of specification features. From
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this file listing, it can be seen that the main structure of the variables keyword is that of ten optional group
specifications for continuous design, discrete design, normal uncertain, lognormal uncertain, uniform un-
certain, loguniform uncertain, weibull uncertain, histogram uncertain, continuous state, and discrete state
variables. Each of these specifications can either appear or not appear as a group. Next, the interface key-
word requires the selection of either an application OR an approximation interface. The type of application
interface must be specified with either a system OR fork OR direct OR grid required group specification, or
the type of approximation interface must be specified with either a global OR multipoint OR local OR hier-
archical required group specification. Within the responses keyword, the primary structure is the required
specification of the function set (either optimization functions OR least squares functions OR generic re-
sponse functions), followed by the required specification of the gradients (either none OR numerical OR
analytic OR mixed) and the required specification of the Hessians (either none OR analytic). The strat-
egy specification requires either a multi-level OR surrogate-based optimization OR optimization under
uncertainty OR branch and bound OR multi-start OR pareto set OR single method strategy specification.
Lastly, the method keyword is the most lengthy specification; however, its structure is relatively simple.
The structure is simply that of a set of optional method-independent settings followed by a long list of
possible methods appearing as required group specifications (containing a variety of method-dependent
settings) separated by OR’s. Refer to Strategy Commands, Method Commands, Variables Commands,
Interface Commands, and Responses Commands for detailed information on the keywords and their vari-
ous optional and required specifications. And for additional details on IDR specification logic and rules,
refer to [Weatherby et al., 1996].

3.3 Common Specification Mistakes

Spelling and omission of required parameters are the most common errors. Less obvious errors include:

� Documentation of new capability sometimes lags the use of new capability in executables (especially
experimental executables from nightly builds). When parsing errors occur which the documentation
cannot explain, reference to the particular input specification used in building the executable (which
is installed alongside the executable) will often resolve the errors.

� Since keywords are terminated with the newline character, care must be taken to avoid following the
backslash character with any white space since the newline character will not be properly escaped,
resulting in parsing errors due to the truncation of the keyword specification.

� Care must be taken to include newline escapes when embedding comments within a keyword spec-
ification. That is, newline characters will signal the end of a keyword specification even if they are
part of a comment line. For example, the following specification will be truncated because one of
the embedded comments neglects to escape the newline:

# No error here: newline need not be escaped since comment is not embedded
responses, \
# No error here: newline is escaped \

num_objective_functions = 1 \
# Error here: this comment must escape the newline

analytic_gradients \
no_hessians

In most cases, the IDR system provides helpful error messages which will help the user isolate the source
of the parsing problem.
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3.4 Sample dakota.in Files

A DAKOTA input file is a collection of the fields allowed in the dakota.input.spec specification file which
describe the problem to be solved by the DAKOTA system. Several examples follow.

3.4.1 Sample 1: Optimization

The following sample input file shows single-method optimization of the Textbook Example using
DOT’s modified method of feasible directions. A similar file is available in the test directory as
Dakota/test/dakota textbook.in.

strategy, \
single_method

method, \
dot_mmfd \

max_iterations = 50, \
convergence_tolerance = 1e-4 \
output verbose

variables, \
continuous_design = 2 \

cdv_initial_point 0.9 1.1 \
cdv_upper_bounds 5.8 2.9 \
cdv_lower_bounds 0.5 -2.9 \
cdv_descriptor ’x1’ ’x2’

interface, \
application system \

analysis_driver = ’text_book’ \
parameters_file = ’text_book.in’ \
results_file = ’text_book.out’ \
file_tag file_save

responses, \
num_objective_functions = 1 \
num_nonlinear_inequality_constraints = 2 \
analytic_gradients \
no_hessians

3.4.2 Sample 2: Least Squares

The following sample input file shows a nonlinear least squares solution of the Rosenbrock Ex-
ample using OPT++’s Gauss-Newton method. A similar file is available in the test directory as
Dakota/test/dakota rosenbrock.in.

strategy, \
single_method

method, \
optpp_g_newton \

max_iterations = 50, \
convergence_tolerance = 1e-4
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variables, \
continuous_design = 2 \

cdv_initial_point -1.2 1.0 \
cdv_lower_bounds -2.0 -2.0 \
cdv_upper_bounds 2.0 2.0 \
cdv_descriptor ’x1’ ’x2’

interface, \
application system \

analysis_driver = ’rosenbrock_ls’

responses, \
num_least_squares_terms = 2 \
analytic_gradients \
no_hessians

3.4.3 Sample 3: Nondeterministic Analysis

The following sample input file shows Latin Hypercube Monte Carlo sampling using the Textbook Exam-
ple. A similar file is available in the test directory as Dakota/test/dakota textbook lhs.in.

strategy, \
single_method graphics

method, \
nond_sampling \

samples = 100 seed = 12345 \
sample_type lhs \
response_thresholds = 3.6e+11 6.e+04 3.5e+05

variables, \
normal_uncertain = 2 \

nuv_means = 248.89, 593.33 \
nuv_std_deviations = 12.4, 29.7 \
nuv_descriptor = ’TF1n’ ’TF2n’ \

uniform_uncertain = 2 \
uuv_dist_lower_bounds = 199.3, 474.63 \
uuv_dist_upper_bounds = 298.5, 712. \
uuv_descriptor = ’TF1u’ ’TF2u’ \

weibull_uncertain = 2 \
wuv_alphas = 12., 30. \
wuv_betas = 250., 590. \
wuv_descriptor = ’TF1w’ ’TF2w’

interface, \
application system asynch evaluation_concurrency = 5 \

analysis_driver = ’text_book’

responses, \
num_response_functions = 3 \
no_gradients \
no_hessians
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3.4.4 Sample 4: Parameter Study

The following sample input file shows a 1-D vector parameter study using the Textbook Example. A similar
file is available in the test directory as Dakota/test/dakota pstudy.in.

method, \
vector_parameter_study \

step_vector = .1 .1 .1 \
num_steps = 4

variables, \
continuous_design = 3 \

cdv_initial_point 1.0 1.0 1.0

interface, \
application system asynchronous \

analysis_driver = ’text_book’

responses, \
num_objective_functions = 1 \
num_nonlinear_inequality_constraints = 2 \
analytic_gradients \
analytic_hessians

3.4.5 Sample 5: Multilevel Hybrid Strategy

The following sample input file shows a multilevel hybrid strategy using three methods. It employs a
genetic algorithm, pattern search, and full Newton gradient-based optimization in succession to solve
the Textbook Example. A similar file is available in the test directory as Dakota/test/dakota -
multilevel.in.

strategy, \
graphics \
multi_level uncoupled \

method_list = ’GA’ ’CPS’ ’NLP’

method, \
id_method = ’GA’ \
model_type single \

variables_pointer = ’V1’ \
interface_pointer = ’I1’ \
responses_pointer = ’R1’ \

sgopt_pga_real \
population_size = 10 \
output verbose

method, \
id_method = ’PS’ \
model_type single \

variables_pointer = ’V1’ \
interface_pointer = ’I1’ \
responses_pointer = ’R1’ \

sgopt_pattern_search stochastic \
output verbose \
initial_delta = 0.1 \
threshold_delta = 1.e-4 \
solution_accuracy = 1.e-10 \
exploratory_moves best_first
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method, \
id_method = ’NLP’ \
model_type single \

variables_pointer = ’V1’ \
interface_pointer = ’I1’ \
responses_pointer = ’R2’ \

optpp_newton \
gradient_tolerance = 1.e-12 \
convergence_tolerance = 1.e-15

variables, \
id_variables = ’V1’ \
continuous_design = 2 \

cdv_initial_point 0.6 0.7 \
cdv_upper_bounds 5.8 2.9 \
cdv_lower_bounds 0.5 -2.9 \
cdv_descriptor ’x1’ ’x2’

interface, \
id_interface = ’I1’ \
application direct, \

analysis_driver= ’text_book’

responses, \
id_responses = ’R1’ \
num_objective_functions = 1 \
no_gradients \
no_hessians

responses, \
id_responses = ’R2’ \
num_objective_functions = 1 \
analytic_gradients \
analytic_hessians

Additional example input files, as well as the corresponding output and graphics, are provided in the Getting
Started chapter of the Users Manual [Eldred et al., 2001].

3.5 Tabular descriptions

In the following discussions of keyword specifications, tabular formats (Tables 4.1 through 8.7) are used
to present a short description of the specification, the keyword used in the specification, the type of data
associated with the keyword, the status of the specification (required, optional, required group, or optional
group), and the default for an optional specification.

It can be difficult to capture in a simple tabular format the complex relationships that can occur when
specifications are nested within multiple groupings. For example, in an interface keyword, the parame-
ters file specification is an optional specification within the system and fork required group spec-
ifications, which are separated from each other and from other required group specifications (direct and
grid) by logical OR’s. The selection between the system, fork, direct, or grid required groups
is contained within another required group specification (application), which is separated from the
approximation required group specification by a logical OR. Rather than unnecessarily proliferate the
number of tables in attempting to capture all of these inter-relationships, a balance is sought, since some
inter-relationships are more easily discussed in the associated text. The general structure of the following
sections is to present the outermost specification groups first (e.g., application in Table 7.2), followed
by lower levels of specifications (e.g., system, fork, direct, or grid in Tables 7.3 through 7.6) in
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succession.
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Chapter 4

Strategy Commands

4.1 Strategy Description

The strategy section in a DAKOTA input file specifies the top level technique which will govern the
management of iterators and models in the solution of the problem of interest. Seven strategies cur-
rently exist: multi level, surrogate based opt, opt under uncertainty, branch and -
bound, multi start, pareto set, and single method. These algorithms are implemented
within the DakotaStrategy class hierarchy in the MultilevelOptStrategy, SurrBasedOptStrategy, Non-
DOptStrategy, BranchBndStrategy, ConcurrentStrategy, and SingleMethodStrategy classes. For
each of the strategies, a brief algorithm description is given below. Additional information on the algo-
rithm logic is available in the Users Manual.

In a multi-level hybrid optimization strategy (multi level), a list of methods is specified which will
be used synergistically in seeking an optimal design. The goal here is to exploit the strengths of different
optimization algorithms through different stages of the optimization process. Global/local hybrids (e.g.,
genetic algorithms combined with nonlinear programming) are a common example in which the desire for
a global optimum is balanced with the need for efficient navigation to a local optimum.

In surrogate-based optimization (surrogate based opt), optimization occurs using an approxima-
tion model, i.e., a surrogate model, that undergoes periodic re-calibration using data from a ”truth” model.
The surrogate model can be either a surface fit model or a low-fidelity simulation model, whereas the truth
model typically is a high-fidelity simulation model. A trust region strategy is used to manage the opti-
mization process to maintain acceptable accuracy between the surrogate model and the truth model. This
surrogate model can be a global data fit (e.g., a smoothing polynomial or an interpolation function built
from a design of computer experiments database), a multipoint approximation, a local Taylor Series ex-
pansion, or a hierarchical approximation (e.g., a low-fidelity simulation model calibrated to match the data
generated by a high fidelity model). The trust region strategy performs a sequence of optimization runs
using the surrogate model. At the end of each optimization run, the candidate optimum point found by the
optimizer is evaluated using both the surrogate model and the truth model. If sufficient decrease has been
obtained in the truth model, the trust region is re-centered around the candidate optimum point and the
trust region will either shrink, expand, or remain the same size depending on the amount of truth function
decrease. If sufficient decrease has not been attained, the trust region center point does not move and the
entire trust region shrinks by a user-specified factor. The cycle then repeats with the construction of a new
surrogate model, an optimization run, and another test for sufficient decrease in the truth model. This cycle
continues until convergence is attained. The goals of surrogate-based optimization are to reduce the total
number of truth model simulations and, in the case of surface fit surrogate models, to smooth noisy data
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with an easily navigated analytic function.

In optimization under uncertainty (opt under uncertainty), a nondeterministic iterator is used to
evaluate the effect of uncertain variables, modeled using probabilistic distributions, on responses of interest.
Statistics on these responses are then included in the objective and constraint functions of the optimization
problem (for example, to minimize probability of failure). The nondeterministic iterator may be nested
directly within the optimization function evaluations, which can be prohibitively expensive, or the direct
nesting can be broken through a variety of surrogate-based optimization under uncertainty formulations.
The sub-model recursion features of NestedModel, SurrLayeredModel, and HierLayeredModel enable
these formulations.

In the branch and bound strategy (branch and bound), mixed integer nonlinear programs (nonlinear
applications with a mixture of continuous and discrete variables) can be solved through the combination of
the PICO parallel branching algorithm with the nonlinear programming algorithms available in DAKOTA.
Since PICO supports parallel branch and bound techniques, multiple bounding operations can be per-
formed concurrently for different branches, which provides for concurrency in nonlinear optimizations
for DAKOTA. This is an additional level of parallelism, beyond those for concurrent evaluations within
an iterator, concurrent analyses within an evaluation, and multiprocessor analyses. Branch and bound is
applicable when the discrete variables can assume continuous values during the solution process (i.e., the
integrality conditions are relaxable). It proceeds by performing a series of continuous-valued optimizations
for different variable bounds which, in the end, drive the discrete variables to integer values.

In the multi-start iteration strategy (multi start), a series of iterator runs are performed for different
values of some parameters in the model. A common use is for multi-start optimization (i.e., different
optimization runs from different starting points for the design variables), but the concept and the code are
more general. An important feature is that these iterator runs may be performed concurrently, similar to
the branch and bound strategy discussed above.

In the pareto set optimization strategy (pareto set), a series of optimization runs are performed for
different weightings applied to multiple objective functions. This set of optimal solutions defines a ”Pareto
set”, which is useful for investigating design trade-offs between competing objectives. An important feature
is that these iterator runs can be performed concurrently, similar to the branch and bound and multi-start
strategies discussed above. The code is similar enough to the multi start technique that both strategies
are implemented in the same ConcurrentStrategy class.

Lastly, the single method strategy is a ”fall through” strategy in that it does not provide control over
multiple iterators or multiple models. Rather, it provides the means for simple execution of a single iterator
on a single model.

Each of the strategy specifications identifies one or more method pointers (e.g., method list, opt -
method pointer) to identify the iterators that will be used in the strategy. These method point-
ers are strings that correspond to the id method identifier strings from the method specifications (see
Method Independent Controls). These string identifiers (e.g., ‘NLP1’) should not be confused with method
selections (e.g., dot mmfd). Each of the method specifications identified in this manner has the responsi-
bility for identifying the variables, interface, and responses specifications (using variables pointer,
interface pointer, and responses pointer from Method Independent Controls) that are used
to build the model used by the iterator. If a method specification does not provide a particular pointer,
then that component of the model will be built using the last specification parsed. In addition to method
pointers, a variety of graphics options (e.g., tabular graphics data), iterator concurrency controls
(e.g., iterator servers), and strategy data (e.g., starting points) can be specified.

Specification of a strategy block in an input file is optional, with single method being the default
strategy. If no strategy is specified or if single method is specified without its optional method -
pointer specification, then the default behavior is to employ the last method, variables, interface, and
responses specifications parsed. This default behavior is most appropriate if only one specification is
present for method, variables, interface, and responses, since there is no ambiguity in this case.

Example specifications for each of the strategies follow. A multi level example is:
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strategy, \
multi_level uncoupled \

method_list = ‘GA1’, ‘CPS1’, ‘NLP1’

A surrogate based opt example specification is:

strategy, \
graphics \
surrogate_based_opt \

opt_method_pointer = ‘NLP1’ \
trust_region initial_size = 0.10

An opt under uncertainty example specification is:

strategy, \
opt_under_uncertainty \

opt_method_pointer = ‘NLP1’

A branch and bound example specification is:

strategy, \
iterator_servers = 4 \
branch_and_bound \

opt_method_pointer = ‘NLP1’

A multi start example specification is:

strategy, \
multi_start \

method_pointer = ‘NLP1’ \
random_starts = 10

A pareto set example specification is:

strategy, \
pareto_set \

opt_method_pointer = ‘NLP1’ \
random_weight_sets = 10

And finally, a single method example specification is:

strategy, \
single_method \

method_pointer = ‘NLP1’

4.2 Strategy Specification

The strategy specification has the following structure:

strategy, \
<strategy independent controls> \
<strategy selection> \

<strategy dependent controls>
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where � strategy selection � is one of the following:

multi level, surrogate based opt, opt under uncertainty, branch and bound,
multi start, pareto set, or single method

The � strategy independent controls � are those controls which are valid for a variety of
strategies. Unlike the Method Independent Controls, which can be abstractions with slightly different
implementations from one method to the next, the implementations of each of the strategy independent
controls are consistent for all strategies that use them. The � strategy dependent controls �
are those controls which are only meaningful for a specific strategy. Referring to dakota.input.spec, the
strategy independent controls are those controls defined externally from and prior to the strategy selection
blocks. They are all optional. The strategy selection blocks are all required group specifications separated
by logical OR’s (multi level OR surrogate based opt OR opt under uncertainty OR
branch and bound OR multi start OR pareto set OR single method). Thus, one and
only one strategy selection must be provided. The strategy dependent controls are those controls defined
within the strategy selection blocks. Defaults for strategy independent and strategy dependent controls
are defined in DataStrategy. The following sections provide additional detail on the strategy independent
controls followed by the strategy selections and their corresponding strategy dependent controls.

4.3 Strategy Independent Controls

The strategy independent controls include graphics, tabular graphics data, tabular -
graphics file, iterator servers, iterator self scheduling, and iterator -
static scheduling. The graphics flag activates a 2D graphics window containing history plots
for the variables and response functions in the study. This window is updated in an event loop with approxi-
mately a 2 second cycle time. For applications utilizing approximations over 2 variables, a 3D graphics win-
dow containing a surface plot of the approximation will also be activated. The tabular graphics -
data flag activates file tabulation of the same variables and response function history data that gets passed
to graphics windows with use of the graphics flag. The tabular graphics file specification op-
tionally specifies a name to use for this file (dakota tabular.dat is the default). Within the file, the
variables and response functions appear as columns and each function evaluation provides a new table row.
This capability is most useful for post-processing of DAKOTA results with 3rd party graphics tools such
as MATLAB, Tecplot, etc.. There is no dependence between the graphics flag and the tabular -
graphics data flag; they may be used independently or concurrently. The iterator servers,
iterator self scheduling, and iterator static scheduling specifications provide man-
ual overrides for the number of concurrent iterator partitions and the scheduling policy for concurrent
iterator jobs. These settings are normally determined automatically in the parallel configuration routines
(see ParallelLibrary) but can be overridden with user inputs if desired. The graphics, tabular -
graphics data, and tabular graphics file specifications are valid for all strategies. However,
the iterator servers, iterator self scheduling, and iterator static scheduling
overrides are only useful inputs for those strategies supporting concurrency in iterators, i.e., branch -
and bound, multi start, and pareto set (opt under uncertainty will support this in the
future once full NestedModel parallelism support is in place). Table 4.1 summarizes the strategy indepen-
dent controls.

Table 4.1 Specification detail for strategy independent controls
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Description Keyword Associated Data Status Default
Graphics flag graphics none Optional no graphics
Tabulation of
graphics data

tabular -
graphics -
data

none Optional group no data tabulation

File name for
tabular graphics
data

tabular -
graphics -
file

string Optional dakota -
tabular.dat

Number of
iterator servers

iterator -
servers

integer Optional no override of
auto configure

Self-scheduling
of iterator jobs

iterator -
self -
scheduling

none Optional no override of
auto configure

Static scheduling
of iterator jobs

iterator -
static -
scheduling

none Optional no override of
auto configure

4.4 Multilevel Hybrid Optimization Commands

The multi-level hybrid optimization strategy has uncoupled, uncoupled adaptive, and coupled
approaches (see the Users Manual for more information on the algorithms employed). In the two uncoupled
approaches, a list of method strings supplied with the method list specification specifies the identity
and sequence of iterators to be used. Any number of iterators may be specified. The uncoupled adaptive
approach may be specified by turning on the adaptive flag. If this flag in specified, then progress -
threshold must also be specified since it is a required part of adaptive specification. In the nonadaptive
case, method switching is managed through the separate convergence controls of each method. In the
adaptive case, however, method switching occurs when the internal progress metric (normalized between
0.0 and 1.0) falls below the user specified progress threshold. Table 4.2 summarizes the uncoupled
multi-level strategy inputs.

Table 4.2 Specification detail for uncoupled multi-level strategies

Description Keyword Associated Data Status Default
Multi-level
hybrid strategy

multi level none Required group
(1 of 7 selections)

N/A

Uncoupled
hybrid

uncoupled none Required group
(1 of 2 selections)

N/A

Adaptive flag uncoupled none Optional group nonadaptive
hybrid

Adaptive
progress
threshold

progress -
threshold

real Required N/A

List of methods method list list of strings Required N/A

In the coupled approach, global and local method strings supplied with the global method -
pointer and local method pointer specifications identify the two methods to be used. The lo-
cal search probability setting is an optional specification for supplying the probability (between
0.0 and 1.0) of employing local search to improve estimates within the global search. Table 4.3 summarizes
the coupled multi-level strategy inputs.

Table 4.3 Specification detail for coupled multi-level strategies
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Description Keyword Associated Data Status Default
Multi-level
hybrid strategy

multi level none Required group
(1 of 7 selections)

N/A

Coupled hybrid coupled none Required group
(1 of 2 selections)

N/A

Pointer to the
global method
specification

global -
method -
pointer

string Required N/A

Pointer to the
local method
specification

local -
method -
pointer

string Required N/A

Probability of
executing local
searches

local -
search -
probability

real Optional 0.1

4.5 Surrogate-based Optimization (SBO) Commands

The surrogate based opt strategy must specify an optimization method using opt method -
pointer. The method specification identified by opt method pointer is responsible for selecting a
layered model for use as the surrogate (see Method Independent Controls). Algorithm controls include
max iterations (the maximum number of SBO cycles allowed), convergence tolerance (the
relative tolerance used in internal SBO convergence assessments), and soft convergence limit (a
soft convergence control for the SBO iterations which limits the number of consecutive iterations with im-
provement less than the convergence tolerance). In addition, the trust region optional group specifi-
cation can be used to specify the initial size of the trust region (using initial size), the minimum size
of the trust region (using minimum size), the contraction factor for the trust region size (using con-
traction factor) used when the surrogate model is performing poorly, and the expansion factor for
the trust region size (using expansion factor) used when the the surrogate model is performing well.
Two additional commands are the trust region size contraction threshold (using contract region -
threshold) and the trust region size expansion threshold (using expand region threshold).
These two commands are related to what is called the trust region ratio, which is the actual decrease in
the truth model divided by the predicted decrease in the truth model in the current trust region. The com-
mand contract region threshold sets the minimum acceptable value for the trust region ratio, i.e.,
values below this threshold cause the trust region to shrink for the next SBO iteration. The command ex-
pand region threshold determines the trust region value above which the trust region will expand
for the next SBO iteration. Table 4.4 summarizes the surrogate based optimization strategy inputs.

Table 4.4 Specification detail for surrogate based optimization strategies
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Description Keyword Associated Data Status Default
Surrogate-based
optimization
strategy

surrogate -
based opt

none Required group
(1 of 7 selections)

N/A

Optimization
method pointer

opt method -
pointer

string Required N/A

Maximum
number of SBO
iterations

max -
iterations

integer Optional 100

Convergence
tolerance for
SBO iterations

conver-
gence -
tolerance

real Optional 1.e-4

Soft convergence
limit for SBO
iterations

soft -
convergence -
limit

integer Optional 5

Trust region
group
specification

trust region none Optional group N/A

Trust region
initial size

initial size real Optional 0.05

Trust region
minimum size

minimum size real Optional 1.e-6

Shrink trust
region if trust
region ratio is
below this value

contract -
region -
threshold

real Optional 0.25

Expand trust
region if trust
region ratio is
above this value

expand -
region -
threshold

real Optional 0.75

Trust region
contraction factor

contrac-
tion factor

real Optional 0.25

Trust region
expansion factor

expansion -
factor

real Optional 2.0

4.6 Optimization Under Uncertainty Commands

The opt under uncertainty strategy must specify an optimization iterator using opt method -
pointer. In the case of a direct nesting of an uncertainty quantification iterator within the top level
model, the method specification identified by opt method pointer would select a nested model
(see Method Independent Controls). In the case of surrogate-based optimization under uncertainty, the
method specification identified by opt method pointer might select either a nested model or a
layeredmodel, since the recursive properties of NestedModel, SurrLayeredModel, and HierLayered-
Model could be utilized to configure any of the following:

� ”layered containing nested” (i.e., optimization of a data fit surrogate built using statistical data from
nondeterministic analyses)

� ”nested containing layered” (i.e., optimization using nondeterministic analysis data evaluated from
a data fit or hierarchical surrogate)

� ”layered containing nested containing layered” (i.e., combination of the two above: optimization of
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a data fit surrogate built using statistical data from nondeterministic analyses, where the nondeter-
ministic analyses are performed on a data fit or hierarchical surrogate)

Since most of the sophistication is encapsulated within the nested and layered model classes (see
nested/layered specifications in Method Independent Controls), the optimization under uncertainty strat-
egy inputs are minimal. Table 4.5 summarizes these inputs.

Table 4.5 Specification detail for optimization under uncertainty strategies

Description Keyword Associated Data Status Default
Optimization
under uncertainty
strategy

opt under -
uncertainty

none Required group
(1 of 7 selections)

N/A

Optimization
method pointer

opt method -
pointer

string Required N/A

4.7 Branch and Bound Commands

The branch and bound strategy must specify an optimization method using opt method pointer.
This optimization method is responsible for computing optimal solutions to nonlinear programs which arise
from different branches of the mixed variable problem. These branches correspond to different bounds on
the discrete variables where the integrality constraints on these variables have been relaxed. Solutions
which are completely feasible with respect to the integrality constraints provide an upper bound on the
final solution and can be used to prune branches which are not yet integer-feasible and which have higher
objective functions. The optional num samples at root and num samples at node specifications
specify the number of additional function evaluations to perform at the root of the branching structure
and at each node of the branching structure, respectively. These samples are selected randomly within
the current variable bounds of the branch. This feature is a simple way to globalize the optimization of
the branches, since nonlinear problems may be multimodal. Table 4.6 summarizes the branch and bound
strategy inputs.

Table 4.6 Specification detail for branch and bound strategies

Description Keyword Associated Data Status Default
Branch and
bound strategy

branch and -
bound

none Required group
(1 of 7 selections)

N/A

Optimization
method pointer

opt method -
pointer

string Required N/A

Number of
samples at the
branching root

num -
samples at -
root

integer Optional 0

Number of
samples at each
branching node

num -
samples at -
node

integer Optional 0

4.8 Multistart Iteration Commands

The multi start strategy must specify an iterator using method pointer. This iterator is responsi-
ble for completing a series of iterative analyses from a set of different starting points. These starting points
can be specified as follows: (1) using random starts, for which the specified number of starting points
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are selected randomly within the variable bounds, (2) using starting points, in which the starting
values are provided in a list, or (3) using both random starts and starting points, for which the
combined set of points will be used. In aggregate, at least one starting point must be specified. The most
common example of a multi-start strategy is multi-start optimization, in which a series of optimizations
are performed from different starting values for the design variables. This can be an effective approach for
problems with multiple minima. Table 4.7 summarizes the multi-start strategy inputs.

Table 4.7 Specification detail for multi-start strategies

Description Keyword Associated Data Status Default
Multi-start
iteration strategy

multi start none Required group
(1 of 7 selections)

N/A

Method pointer method -
pointer

string Required N/A

Number of
random starting
points

random -
starts

integer Optional group no random
starting points

Seed for random
starting points

seed integer Optional system-generated
seed

List of
user-specified
starting points

starting -
points

list of reals Optional no user-specified
starting points

4.9 Pareto Set Optimization Commands

The pareto set strategy must specify an optimization method using opt method pointer. This
optimizer is responsible for computing a set of optimal solutions from a set of multiobjective weight-
ings. These weightings can be specified as follows: (1) using random weight sets, in which case
weightings are selected randomly within [0,1] bounds, (2) using multi objective weight sets, in
which the weighting sets are specified in a list, or (3) using both random weight sets and multi -
objective weight sets, for which the combined set of weights will be used. In aggregate, at least
one set of weights must be specified. The set of optimal solutions is called the ”pareto set,” which can
provide valuable design trade-off information when there are competing objectives. Table 4.8 summarizes
the pareto set strategy inputs.

Table 4.8 Specification detail for pareto set strategies

Description Keyword Associated Data Status Default
Pareto set
optimization
strategy

pareto set none Required group
(1 of 7 selections)

N/A

Optimization
method pointer

opt method -
pointer

string Required N/A

Number of
random
weighting sets

random -
weight sets

integer Optional no random
weighting sets

Seed for random
weighting sets

seed integer Optional system-generated
seed

List of
user-specified
weighting sets

multi -
objective -
weight sets

list of reals Optional no user-specified
weighting sets
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4.10 Single Method Commands

The single method strategy is the default if no strategy specification is included in a user input file. It
may also be specified using the single method keyword within a strategy specification. An optional
method pointer specification may be used to point to a particular method specification. If method -
pointer is not used, then the last method specification parsed will be used as the iterator. Table 4.9
summarizes the single method strategy inputs.

Table 4.9 Specification detail for single method strategies

Description Keyword Associated Data Status Default
Single method
strategy

single -
method

string Required group
(1 of 7 selections)

N/A

Method pointer method -
pointer

string Optional use of last
method parsed
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Chapter 5

Method Commands

5.1 Method Description

The method section in a DAKOTA input file specifies the name and controls of an iterator. The terms
”method” and ”iterator” can be used interchangeably, although method often refers to an input specification
whereas iterator usually refers to an object within the DakotaIterator hierarchy. A method specification,
then, is used to select an iterator from the iterator hierarchy, which includes optimization, uncertainty
quantification, least squares, design of experiments, and parameter study iterators (see Users Manual for
more information on these iterator branches). This iterator may be used alone or in combination with other
iterators as dictated by the strategy specification (refer to Strategy Commands for strategy command syntax
and to the Users Manual for strategy algorithm descriptions).

Several examples follow. The first example shows a minimal specification for an optimization method.

method, \
dot_sqp

This example uses all of the defaults for this method.

A more sophisticated example would be

method, \
id_method = ’NLP1’ \
model_type single \

variables_pointer = ’V1’ \
interface_pointer = ’I1’ \
responses_pointer = ’R1’ \

dot_sqp \
max_iterations = 50 \
convergence_tolerance = 1e-4 \
output verbose \
optimization_type minimize

This example demonstrates the use of identifiers and pointers (see Method Independent Controls) as
well as some method independent and method dependent controls for the sequential quadratic program-
ming (SQP) algorithm from the DOT library. The max iterations, convergence tolerance,
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and output settings are method independent controls, in that they are defined for a variety of meth-
ods (see DOT method independent controls for DOT usage of these controls). The optimization -
type control is a method dependent control, in that it is only meaningful for DOT methods (see
DOT method dependent controls).

The next example shows a specification for a least squares method.

method, \
optpp_g_newton \

max_iterations = 10 \
convergence_tolerance = 1.e-8 \
search_method trust_region \
gradient_tolerance = 1.e-6

Some of the same method independent controls are present along with a new set of method dependent con-
trols (search method and gradient tolerance) which are only meaningful for OPT++ methods
(see OPT++ method dependent controls).

The next example shows a specification for a nondeterministic iterator with several method dependent
controls (refer to Nondeterministic sampling method).

method, \
nond_sampling \

samples = 100 seed = 12345 \
sample_type lhs \
response_thresholds = 1000. 500.

The last example shows a specification for a parameter study iterator where, again, each of the controls are
method dependent (refer to Vector parameter study).

method, \
vector_parameter_study \

step_vector = 1. 1. 1. \
num_steps = 10

5.2 Method Specification

As alluded to in the examples above, the method specification has the following structure:

method, \
<method independent controls> \
<method selection> \

<method dependent controls>

where � method selection � is one of the following: dot frcg, dot mmfd, dot bfgs,
dot slp, dot sqp, conmin frcg, conmin mfd, npsol sqp, nlssol sqp, reduced sqp,
optpp cg, optpp q newton, optpp fd newton, optpp g newton, optpp newton, optpp -
pds, coliny apps, coliny direct, sgopt pga real, sgopt pga int, sgopt epsa,
sgopt pattern search, sgopt solis wets, sgopt strat mc, nond polynomial chaos,
nond sampling, nond analytic reliability, dace, vector parameter study, list -
parameter study, centered parameter study, or multidim parameter study.

The � method independent controls � are those controls which are valid for a variety of meth-
ods. In some cases, these controls are abstractions which may have slightly different implementations
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5.3 Method Independent Controls 39

from one method to the next. The � method dependent controls � are those controls which are
only meaningful for a specific method or library. Referring to dakota.input.spec, the method independent
controls are those controls defined externally from and prior to the method selection blocks. They are all
optional. The method selection blocks are all required group specifications separated by logical OR’s. The
method dependent controls are those controls defined within the method selection blocks. Defaults for
method independent and method dependent controls are defined in DataMethod. The following sections
provide additional detail on the method independent controls followed by the method selections and their
corresponding method dependent controls.

5.3 Method Independent Controls

The method independent controls include a method identifier string, a model type specification with point-
ers to variables, interface, and responses specifications, a speculative gradient selection, an output verbosity
control, maximum iteration and function evaluation limits, constraint and convergence tolerance specifica-
tions, and a set of linear inequality and equality constraint specifications. While each of these controls is
not valid for every method, the controls are valid for enough methods that it was reasonable to pull them
out of the method dependent blocks and consolidate the specifications.

The method identifier string is supplied with id method and is used to provide a unique identifier string
for use with strategy specifications (refer to Strategy Description). It is appropriate to omit a method iden-
tifier string if only one method is included in the input file and single method is the selected strategy
(all other strategies require one or more method pointers), since the single method to use is unambiguous
in this case.

The type of model to be used by the method is supplied with model type and can be single, nested,
or layered (refer to DakotaModel for the class hierarchy involved). In the single model case, the
optional variables pointer, interface pointer, and responses pointer specifications
provide strings for cross-referencing with id variables, id interface, and id responses string
inputs from particular variables, interface, and responses keyword specifications. These pointers identify
which specifications will be used in building the single model, which is to be iterated by the method to map
the variables into responses through the interface. In the layered model case, the specification is similar,
except that the interface pointer specification is required in order to identify a global, multipoint,
local, or hierarchical approximation interface (see Approximation Interface) to use in the layered model.
In the nested model case, a sub method pointer must be provided in order to specify the nested it-
erator, and interface pointer and interface responses pointer provide an optional group
specification for the optional interface portion of nested models (where interface pointer points to
the interface specification and interface responses pointer points to a responses specification
describing the data to be returned by this interface). This interface is used to provide non-nested data,
which is then combined with data from the nested iterator using the primary mapping matrix and
secondary mapping matrix inputs (refer to NestedModel::response mapping() for additional in-
formation). In all cases, if a pointer string is specified and no corresponding id is available, DAKOTA will
exit with an error message. If no pointer string is specified, the last specification parsed will be used. It
is appropriate to omit this cross-referencing whenever the relationships are unambiguous due to the pres-
ence of only one specification. Since the method specification is responsible for cross-referencing with
the interface, variables, and responses specifications, identification of methods at the strategy layer is often
sufficient to completely specify all of the object interrelationships.

Table 5.1 provides the specification detail for the method independent controls involving identifiers, point-
ers, and model type controls.

Table 5.1 Specification detail for the method independent controls: identifiers, pointers, and model
type controls
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Description Keyword Associated Data Status Default
Method set
identifier

id method String Optional strategy use of
last method
parsed

Model type model type single �
nested �
layered

Optional group single

Variables set
pointer

variables -
pointer

String Optional method use of
last variables
parsed

Interface set
pointer

interface -
pointer

String single:
Optional,
nested:
Optional group,
layered:
Required

single: method
use of last
interface parsed,
nested: no
optional
interface,
layered: N/A

Responses set
pointer

responses -
pointer

String Optional method use of
last responses
parsed

Sub-method
pointer for nested
models

sub method -
pointer

String Required N/A

Responses
pointer for nested
model optional
interfaces

interface -
responses -
pointer

String Required N/A

Primary mapping
matrix for nested
models

primary -
mapping -
matrix

list of reals Optional no sub-iterator
contribution to
primary functions

Secondary
mapping matrix
for nested models

secondary -
mapping -
matrix

list of reals Optional no sub-iterator
contribution to
secondary
functions

When performing gradient-based optimization in parallel, speculative gradients can be selected to
address the load imbalance that can occur between gradient evaluation and line search phases. In a typical
gradient-based optimization, the line search phase consists primarily of evaluating the objective function
and any constraints at a trial point, and then testing the trial point for a sufficient decrease in the objective
function value and/or constraint violation. If a sufficient decrease is not observed, then one or more addi-
tional trial points may be attempted sequentially. However, if the trial point is accepted then the line search
phase is complete and the gradient evaluation phase begins. By speculating that the gradient information
associated with a given line search trial point will be used later, additional coarse grained parallelism can
be introduced by computing the gradient information (either by finite difference or analytically) in parallel,
at the same time as the line search phase trial-point function values. This balances the total amount of com-
putation to be performed at each design point and allows for efficient utilization of multiple processors.
While the total amount of work performed will generally increase (since some speculative gradients will
not be used when a trial point is rejected in the line search phase), the run time will usually decrease (since
gradient evaluations needed at the start of each new optimization cycle were already performed in parallel
during the line search phase). Refer to [Byrd et al., 1998] for additional details. The speculative specifi-
cation is implemented for the gradient-based optimizers in the DOT, CONMIN, and OPT++ libraries, and
it can be used with dakota numerical or analytic gradient selections in the responses specification (refer
to Gradient Specification for information on these specifications). It should not be selected with vendor
numerical gradients since vendor internal finite difference algorithms have not been modified for this pur-
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pose. In full-Newton approaches, the Hessian is also computed speculatively. NPSOL and NLSSOL do not
support speculative gradients, as their gradient-based line search in user-supplied gradient mode (dakota
numerical or analytic gradients) is a superior approach for load-balanced parallel execution.

Output verbosity control is specified with output followed by silent, quiet, verbose or debug.
If there is no user specification for output verbosity, then the default setting is normal. This gives a total of
five output levels to manage the volume of data that is returned to the user during the course of a study, rang-
ing from full run annotation plus internal debug diagnostics (debug) to the bare minimum of output con-
taining little more than the total number of simulations performed and the final solution (silent). Output
verbosity is observed within the DakotaIterator (algorithm verbosity), DakotaModel (synchronize/fd -
gradients verbosity), DakotaInterface (map/synch verbosity), DakotaApproximation (global data fit co-
efficient reporting),and AnalysisCode (file operation reporting) class hierarchies; however, not all of these
software components observe the full granularity of verbosity settings. Specific mappings are as follows:

� output silent (i.e., really quiet): silent iterators, silent model, silent interface, quiet approxima-
tion, quiet file operations� output quiet: quiet iterators, quiet model, quiet interface, quiet approximation, quiet file opera-
tions� output normal: normal iterators, normal model, normal interface, quiet approximation, quiet file
operations� output verbose: verbose iterators, normal model, verbose interface, verbose approximation,
verbose file operations� output debug (i.e., really verbose): debug iterators, normal model, debug interface, verbose
approximation, verbose file operations

Note that iterators and interfaces utilize the full granularity in verbosity, whereas models, approximations,
and file operations do not. With respect to iterator verbosity, different iterators implement this control in
slightly different ways (as described below in the method independent controls descriptions for each it-
erator), however the meaning is consistent. For models, interfaces, approximations, and file operations,
quiet suppresses parameter and response set reporting and silent further suppresses function evalua-
tion headers and scheduling output. Similarly, verbose adds file management, approximation evaluation,
and global approximation coefficient details, and debug further adds diagnostics from nonblocking sched-
ulers.

The constraint tolerance specification determines the maximum allowable value of infeasibility
that any constraint in an optimization problem may possess and still be considered to be satisfied. It is spec-
ified as a positive real value. If a constraint function is greater than this value then it is considered to be vi-
olated by the optimization algorithm. This specification gives some control over how tightly the constraints
will be satisfied at convergence of the algorithm. However, if the value is set too small the algorithm may
terminate with one or more constraints being violated. This specification is currently meaningful for the
NPSOL, NLSSOL, DOT and CONMIN constrained optimizers (refer to DOT method independent controls
and NPSOL method independent controls).

The convergence tolerance specification provides a real value for controlling the termination
of iteration. In most cases, it is a relative convergence tolerance for the objective function; i.e.,
if the change in the objective function between successive iterations divided by the previous objec-
tive function is less than the amount specified by convergence tolerance, then this convergence crite-
rion is satisfied on the current iteration. Since no progress may be made on one iteration followed
by significant progress on a subsequent iteration, some libraries require that the convergence tolerance
be satisfied on two or more consecutive iterations prior to termination of iteration. This control is
used with optimization and least squares iterators (DOT, CONMIN, NPSOL, NLSSOL, OPT++, and
SGOPT) and is not used within the uncertainty quantification, design of experiments, or parameter study
iterator branches. Refer to DOT method independent controls, NPSOL method independent controls,
OPT++ method independent controls, and SGOPT method independent controls for specific interpreta-
tions of the convergence tolerance specification.
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The max iterations and max function evaluations controls provide integer limits for the
maximum number of iterations and maximum number of function evaluations, respectively. The difference
between an iteration and a function evaluation is that a function evaluation involves a single parameter to re-
sponse mapping through an interface, whereas an iteration involves a complete cycle of computation within
the iterator. Thus, an iteration generally involves multiple function evaluations (e.g., an iteration contains
descent direction and line search computations in gradient-based optimization, population and multiple
offset evaluations in nongradient-based optimization, etc.). This control is not currently used within the
uncertainty quantification, design of experiments, and parameter study iterator branches, and in the case
of optimization and least squares, does not currently capture function evaluations that occur as part of the
method source dakota finite difference routine (since these additional evaluations are intentionally
isolated from the iterators).

Table 5.2 provides the specification detail for the method independent controls involving tolerances, limits,
output verbosity, and speculative gradients.

Table 5.2 Specification detail for the method independent controls: tolerances, limits, output ver-
bosity, and speculative gradients

Description Keyword Associated Data Status Default
Speculative
gradients and
Hessians

speculative none Optional no speculation

Output verbosity output silent �
quiet �
verbose �
debug

Optional normal

Maximum
iterations

max -
iterations

integer Optional 100

Maximum
function
evaluations

max -
function -
evaluations

integer Optional 1000

Constraint
tolerance

constraint -
tolerance

real Optional Library default

Convergence
tolerance

conver-
gence -
tolerance

real Optional 1.e-4

Linear inequality constraints can be supplied with the linear inequality constraint matrix,
linear inequality lower bounds, and linear inequality upper bounds specifica-
tions, and linear equality constraints can be supplied with the linear equality constraint -
matrix and linear equality targets specifications. In the inequality case, the constraint matrix
provides coefficients for the variables and the lower and upper bounds provide constraint limits for the
following two-sided formulation:

���������	����


As with nonlinear inequality constraints (see Objective and constraint functions (optimization data set)),
the default linear inequality constraint bounds are selected so that one-sided inequalities of the form

������
�� 


result when there are no user bounds specifications (this provides backwards compatibility with previous
DAKOTA versions). In a user bounds specification, any upper bound values greater than +bigBoundSize
(1.e+30, as defined in DakotaOptimizer) are treated as +infinity and any lower bound values less than
-bigBoundSize are treated as -infinity. This feature is commonly used to drop one of the bounds in order
to specify a 1-sided constraint (just as the default lower bounds drop out since -DBL MAX � -bigBound-
Size). In the equality case, the constraint matrix again provides coefficients for the variables and the targets
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provide the equality constraint right hand sides:
� � � ���

and the defaults for the equality constraint targets enforce a value of 0.0 for each constraint
��� � 
�� 


Currently, DOT, CONMIN, NPSOL, NLSSOL, and OPT++ all support specialized handling of linear con-
straints. SGOPT optimizers will support linear constraints in future releases. Linear constraints need not be
computed by the user’s interface on every function evaluation; rather the coefficients, bounds, and targets
of the linear constraints can be provided at start up, allowing the optimizers to track the linear constraints
internally. It is important to recognize that linear constraints are those constraints that are linear in the
design variables, e.g.:


�� 
 ��� ���	��
 �
����� ��� ����� � 

����� �
��� ������� � 

� � � � � � � � � � � 


which is not to be confused with something like
� �"!$#%�&��')(+* � � 
 � 


where the constraint is linear in a response quantity, but may be a nonlinear implicit function of the design
variables. For the three linear constraints above, the specification would appear as:

linear_inequality_constraint_matrix = 3.0 -4.0 2.0 \
1.0 1.0 1.0 \

linear_inequality_lower_bounds = 0.0 2.0 \
linear_inequality_upper_bounds = 15.0 1.e+50 \
linear_equality_constraint_matrix = 1.0 1.0 -1.0 \
linear_equality_targets = 1.0 \

where the 1.e+50 is a dummy upper bound value which defines a 1-sided inequality since it is greater
than bigBoundSize. The constraint matrix specifications list the coefficients of the first constraint followed
by the coefficients of the second constraint, and so on. They are divided into individual constraints based
on the number of design variables, and can be broken onto multiple lines for readability as shown above.

Table 5.3 provides the specification detail for the method independent controls involving linear constraints.

Table 5.3 Specification detail for the method independent controls: linear inequality and equality
constraints

Description Keyword Associated Data Status Default
Linear inequality
coefficient matrix

linear -
inequality -
constraint -
matrix

list of reals Optional no linear
inequality
constraints

Linear inequality
lower bounds

linear -
inequality -
lower bounds

list of reals Optional Vector values =
-DBL MAX

Linear inequality
upper bounds

linear -
inequality -
upper bounds

list of reals Optional Vector values =
0.0

Linear equality
coefficient matrix

linear -
equality -
constraint -
matrix

list of reals Optional no linear equality
constraints

Linear equality
targets

linear -
equality -
targets

list of reals Optional Vector values =
0.0
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5.4 DOT Methods

The DOT library [Vanderplaats Research and Development, 1995] contains nonlinear programming opti-
mizers, specifically the Broyden-Fletcher-Goldfarb-Shanno (DAKOTA’s dot bfgsmethod) and Fletcher-
Reeves conjugate gradient (DAKOTA’s dot frcg method) methods for unconstrained optimization,
and the modified method of feasible directions (DAKOTA’s dot mmfd method), sequential linear pro-
gramming (DAKOTA’s dot slp method), and sequential quadratic programming (DAKOTA’s dot sqp
method) methods for constrained optimization. DAKOTA provides access to the DOT library through the
DOTOptimizer class.

5.4.1 DOT method independent controls

The method independent controls for max iterations and max function evaluations limit the
number of major iterations and the number of function evaluations that can be performed during a DOT
optimization. The convergence tolerance control defines the threshold value on relative change
in the objective function that indicates convergence. This convergence criterion must be satisfied for two
consecutive iterations before DOT will terminate. The constraint tolerance specification defines
how tightly constraint functions are to be satisfied at convergence. The default value for DOT constrained
optimizers is 0.003. Extremely small values for constraint tolerance may not be attainable. The output
verbosity specification controls the amount of information generated by DOT: the silent and quiet
settings result in header information, final results, and objective function, constraint, and parameter in-
formation on each iteration; whereas the verbose and debug settings add additional information on
gradients, search direction, one-dimensional search results, and parameter scaling factors. DOT contains
no parallel algorithms which can directly take advantage of concurrent evaluations. However, if numeri-
cal gradients with method source dakota is specified, then the finite difference function evalu-
ations can be performed concurrently (using any of the parallel modes described in the Users Manual). In
addition, if speculative is specified, then gradients (dakota numerical or analytic gradients)
will be computed on each line search evaluation in order to balance the load and lower the total run time
in parallel optimization studies. Lastly, specialized handling of linear constraints is supported with DOT;
linear constraint coefficients, bounds, and targets can be provided to DOT at start-up and tracked internally.
Specification detail for these method independent controls is provided in Tables 5.1 through 5.3.

5.4.2 DOT method dependent controls

DOT’s only method dependent control is optimization type which may be either minimize or
maximize. DOT provides the only set of methods within DAKOTA which support this control; to convert
a maximization problem into the minimization formulation assumed by other methods, simply change the
sign on the objective function (i.e., multiply by -1). Table 5.4 provides the specification detail for the DOT
methods and their method dependent controls.

Table 5.4 Specification detail for the DOT methods

Description Keyword Associated Data Status Default
Optimization
type

optimiza-
tion type

minimize �
maximize

Optional group minimize
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5.5 NPSOL Method

The NPSOL library [Gill et al., 1986] contains a sequential quadratic programming (SQP) implementa-
tion (the npsol sqp method). SQP is a nonlinear programming optimizer for constrained minimization.
DAKOTA provides access to the NPSOL library through the NPSOLOptimizer class.

5.5.1 NPSOL method independent controls

The method independent controls for max iterations and max function evaluations limit the
number of major SQP iterations and the number of function evaluations that can be performed during
an NPSOL optimization. The convergence tolerance control defines NPSOL’s internal optimality
tolerance which is used in evaluating if an iterate satisfies the first-order Kuhn-Tucker conditions for a min-
imum. The magnitude of convergence tolerance approximately specifies the number of significant
digits of accuracy desired in the final objective function (e.g., convergence tolerance = 1.e-6
will result in approximately six digits of accuracy in the final objective function). The constraint -
tolerance control defines how tightly the constraint functions are satisfied at convergence. The default
value is dependent upon the machine precision of the platform in use, but is typically on the order of 1.e-
8 for double precision computations. Extremely small values for constraint tolerance may not be
attainable. The output verbosity setting controls the amount of information generated at each major SQP
iteration: the silent and quiet settings result in only one line of diagnostic output for each major iter-
ation and print the final optimization solution, whereas the verbose and debug settings add additional
information on the objective function, constraints, and variables at each major iteration.

NPSOL is not a parallel algorithm and cannot directly take advantage of concurrent evaluations. How-
ever, if numerical gradientswith method source dakota is specified, then the finite difference
function evaluations can be performed concurrently (using any of the parallel modes described in the Users
Manual). An important related observation is the fact that NPSOL uses two different line searches depend-
ing on how gradients are computed. For either analytic gradients or numerical gradients
with method source dakota, NPSOL is placed in user-supplied gradient mode (NPSOL’s ”Derivative
Level” is set to 3) and it uses a gradient-based line search (the assumption is that user-supplied gradients
are inexpensive). On the other hand, if numerical gradients are selected with method source
vendor, then NPSOL is computing finite differences internally and it will use a value-based line search
(the assumption is that finite differencing on each line search evaluation is too expensive). The ramifica-
tions of this are: (1) performance will vary between method source dakota and method source
vendor for numerical gradients, and (2) gradient speculation is unnecessary when performing
optimization in parallel since the gradient-based line search in user-supplied gradient mode is already load
balanced for parallel execution. Therefore, a speculative specification will be ignored by NPSOL, and
optimization with numerical gradients should select method source dakota for load balanced parallel
operation and method source vendor for efficient serial operation.

Lastly, NPSOL supports specialized handling of linear inequality and equality constraints. By specifying
the coefficients and bounds of the linear inequality constraints and the coefficients and targets of the linear
equality constraints, this information can be provided to NPSOL at initialization and tracked internally,
removing the need for the user to provide the values of the linear constraints on every function evaluation.
Refer to Method Independent Controls for additional information and to Tables 5.1 through 5.3 for method
independent control specification detail.
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5.5.2 NPSOL method dependent controls

NPSOL’s method dependent controls are verify level, function precision, and line-
search tolerance. The verify level control instructs NPSOL to perform finite difference verifi-
cations on user-supplied gradient components. The function precision control provides NPSOL an
estimate of the accuracy to which the problem functions can be computed. This is used to prevent NPSOL
from trying to distinguish between function values that differ by less than the inherent error in the calcula-
tion. And the linesearch tolerance setting controls the accuracy of the line search. The smaller the
value (between 0 and 1), the more accurately NPSOL will attempt to compute a precise minimum along
the search direction. Table 5.5 provides the specification detail for the NPSOL SQP method and its method
dependent controls.

Table 5.5 Specification detail for the NPSOL SQP method

Description Keyword Associated Data Status Default
Gradient
verification level

verify level integer Optional -1 (no gradient
verification)

Function
precision

function -
precision

real Optional 1.e-10

Line search
tolerance

linesearch -
tolerance

real Optional 0.9 (inaccurate
line search)

5.6 CONMIN Methods

The CONMIN library [Vanderplaats, 1973] is a public domain library of nonlinear programming optimiz-
ers, specifically the Fletcher-Reeves conjugate gradient (DAKOTA’s conmin frcg method) method for
unconstrained optimization, and the method of feasible directions (DAKOTA’s conmin mfd method) for
constrained optimization. As CONMIN was a predecessor to the DOT commercial library, the algorithm
controls are very similar. DAKOTA provides access to the CONMIN library through the CONMINOpti-
mizer class.

5.6.1 CONMIN method independent controls

The interpretations of the method independent controls for CONMIN are essentially identical to those for
DOT. Therefore, the discussion in DOT method independent controls is relevant for CONMIN.

5.6.2 CONMIN method dependent controls

CONMIN does not currently support any method dependent controls.

5.7 OPT++ Methods

The OPT++ library [Meza, 1994] contains primarily gradient-based nonlinear programming optimizers
for unconstrained, bound-constrained, and nonlinearly constrained minimization: Polak-Ribiere conjugate
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gradient (DAKOTA’s optpp cg method), quasi-Newton (DAKOTA’s optpp q newton method), finite
difference Newton (DAKOTA’s optpp fd newton method), and full Newton (DAKOTA’s optpp -
newton method). The conjugate gradient method is strictly unconstrained, and each of the Newton-based
methods are automatically bound to the appropriate OPT++ algorithm based on the user constraint spec-
ification (unconstrained, bound-constrained, or generally-constrained). In the generally-constrained case,
the Newton methods use a nonlinear interior-point approach to manage the constraints. The library also
contains a direct search algorithm, PDS (parallel direct search, DAKOTA’s optpp pds method), which
supports bound constraints. DAKOTA provides access to the OPT++ library through the SNLLOptimizer
class, where ”SNLL” denotes Sandia National Laboratories - Livermore.

5.7.1 OPT++ method independent controls

The method independent controls for max iterations and max function evaluations limit the
number of major iterations and the number of function evaluations that can be performed during an OPT++
optimization. The convergence tolerance control defines the threshold value on relative change
in the objective function that indicates convergence. The output verbosity specification controls the
amount of information generated from OPT++ executions: the debug setting turns on OPT++’s inter-
nal debug mode and also generates additional debugging information from DAKOTA’s SNLLOptimizer
wrapper class. OPT++’s gradient-based methods are not parallel algorithms and cannot directly take advan-
tage of concurrent function evaluations. However, if numerical gradients with method source
dakota is specified, a parallel DAKOTA configuration can utilize concurrent evaluations for the finite
difference gradient computations. OPT++’s nongradient-based PDS method can directly exploit asyn-
chronous evaluations; however, this capability has not yet been implemented in the SNLLOptimizer class.

The speculative specification enables speculative computation of gradient and/or Hessian information,
where applicable, for parallel optimization studies. By speculating that the derivative information at the
current point will be used later, the complete data set (all available gradient/Hessian information) can be
computed on every function evaluation. While some of these computations will be wasted, the positive
effects are a consistent parallel load balance and usually shorter wall clock time. The speculative
specification is applicable only when parallelism in the gradient calculations can be exploited by DAKOTA
(it will be ignored for vendor numerical gradients).

Lastly, linear constraint specifications are supported by each of the Newton methods (optpp newton,
optpp q newton, optpp fd newton, and optpp g newton); whereas optpp cg must be un-
constrained and optpp pds can be, at most, bound-constrained. Specification detail for the method
independent controls is provided in Tables 5.1 through 5.3.

5.7.2 OPT++ method dependent controls

OPT++’s method dependent controls are max step, gradient tolerance, search method,
merit function, central path, steplength to boundary, centering parameter, and
search scheme size. The max step control specifies the maximum step that can be taken when
computing a change in the current design point (e.g., limiting the Newton step computed from current
gradient and Hessian information). It is equivalent to a move limit or a maximum trust region size. The
gradient tolerance control defines the threshold value on the L2 norm of the objective function
gradient that indicates convergence to an unconstrained minimum (no active constraints). The gradi-
ent tolerance control is defined for all gradient-based optimizers.

max step and gradient tolerance are the only method dependent controls for the OPT++ conju-
gate gradient method. Table 5.6 covers this specification.
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Table 5.6 Specification detail for the OPT++ conjugate gradient method

Description Keyword Associated Data Status Default
OPT++ conjugate
gradient method

optpp cg none Required N/A

Maximum step
size

max step real Optional 1000.

Gradient
tolerance

gradient -
tolerance

real Optional 1.e-4

The search method control is defined for all Newton-based optimizers and is used to select
between trust region, gradient based line search, and value based line search
methods. The gradient based line search option uses the line search method proposed by
[More and Thuente, 1994]. This option satisfies sufficient decrease and curvature conditions; whereas,
value base line search only satisfies the sufficient decrease condition. At each line search iter-
ation, the gradient based line search method computes the function and gradient at the trial
point. Consequently, given expensive function evaluations, the value based line search method
is preferred to the gradient based line search method. Each of these Newton methods addi-
tionally supports the tr pds selection for unconstrained problems. This option performs a robust trust
region search using pattern search techniques. Use of a line search is the default for bound-constrained
and generally-constrained problems, and use of a trust region search method is the default for uncon-
strained problems.

The merit function, central path, steplength to boundary, and centering -
parameter selections are additional specifications that are defined for the solution of generally-
constrained problems with nonlinear interior-point algorithms. A merit function is a function in
constrained optimization that attempts to provide joint progress toward reducing the objective function and
satisfying the constraints. Valid string inputs are ”el bakry”, ”argaez tapia”, or ”van shanno”, where user
input is not case sensitive in this case. Details for these selections are as follows:

� The ”el bakry” merit function is the L2-norm of the first order optimality conditions for the nonlinear
programming problem. The cost per linesearch iteration is n+1 function evaluations. For more
information, see [El-Bakry et al., 1996].

� The ”argaez tapia” merit function can be classified as a modified augmented Lagrangian function.
The augmented Lagrangian is modified by adding to its penalty term a potential reduction function
to handle the perturbed complementarity condition. The cost per linesearch iteration is one function
evaluation. For more information, see [Tapia and Argaez].

� The ”van shanno” merit function can be classified as a penalty function for the logarithmic barrier
formulation of the nonlinear programming problem. The cost per linesearch iteration is one function
evaluation. For more information see [Vanderbei and Shanno, 1999].

If the function evaluation is expensive or noisy, set the merit function to ”argaez tapia” or ”van -
shanno”.

The central path specification represents a measure of proximity to the central path and specifies an
update strategy for the perturbation parameter mu. Refer to [Argaez et al., 2002] for a detailed discussion
on proximity measures to the central region. Valid options are, again, ”el bakry”, ”argaez tapia”, or ”van -
shanno”, where user input is not case sensitive. The default value for central path is the value of
merit function (either user-selected or default). The steplength to boundary specification is
a parameter (between 0 and 1) that controls how close to the boundary of the feasible region the algorithm
is allowed to move. A value of 1 means that the algorithm is allowed to take steps that may reach the
boundary of the feasible region. If the user wishes to maintain strict feasibility of the design parameters
this value should be less than 1. Default values are .8, .99995, and .95 for the ”el bakry”, ”argaez -
tapia”, and ”van shanno” merit functions, respectively. The centering parameter specification is a
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parameter (between 0 and 1) that controls how closely the algorithm should follow the ”central path”. See
[Wright] for the definition of central path. The larger the value, the more closely the algorithm follows the
central path, which results in small steps. A value of 0 indicates that the algorithm will take a pure Newton
step. Default values are .2, .2, and .1 for the ”el bakry”, ”argaez tapia”, and ”van shanno” merit functions,
respectively.

Table 5.7 provides the details for the Newton-based methods.

Table 5.7 Specification detail for OPT++ Newton-based optimization methods

Description Keyword Associated Data Status Default
OPT++
Newton-based
methods

optpp q -
newton �
optpp fd -
newton �
optpp newton

none Required group N/A

Search method value -
based line -
search �
gradient -
based line -
search �
trust region
� tr pds

none Optional group trust region
(unconstrained),
value -
based line -
search
(bound/general
constraints)

Maximum step
size

max step real Optional 1000.

Gradient
tolerance

gradient -
tolerance

real Optional 1.e-4

Merit function merit -
function

string Optional "argaez -
tapia"

Central path central path string Optional value of
merit -
function

Steplength to
boundary

steplength -
to boundary

real Optional Merit function
dependent: 0.8
("el bakry"),
0.99995
("argaez -
tapia"), 0.95
("van -
shanno")

Centering
parameter

centering -
parameter

real Optional Merit function
dependent: 0.2
("el bakry"),
0.2
("argaez -
tapia"), 0.1
("van -
shanno")

The search scheme size is defined for the PDS method to specify the number of points to be used in
the direct search template. PDS does not support parallelism at this time due to current limitations in the
OPT++ interface. Table 5.8 provides the detail for the parallel direct search method.

Table 5.8 Specification detail for the OPT++ PDS method
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Description Keyword Associated Data Status Default
OPT++ parallel
direct search
method

optpp pds none Required group N/A

Search scheme
size

search -
scheme size

integer Optional 32

5.8 Asynchronous Parallel Pattern Search Method

Pattern search techniques are nongradient-based optimization methods which use a set of offsets from the
current iterate to locate improved points in the design space. The asynchronous parallel pattern search
(APPS) algorithm [Hough et al., 2000] is a fully asynchronous pattern search technique, in that the search
along each offset direction continues without waiting for searches along other directions to finish. It utilizes
the nonblocking schedulers in DAKOTA (see DakotaModel::synchronize nowait()). APPS is currently
interfaced to DAKOTA through use of the COLINY library (method coliny apps), where COLINY
is a collection of optimizers that support the Common Optimization Library INterface (COLIN). Other
COLINY optimizers (e.g., coliny direct) will be added in future releases.

5.8.1 APPS method independent controls

The only method independent control currently mapped to APPS is the output verbosity control. The
APPS internal ”debug” and ”profile” levels are mapped to the DAKOTA debug, verbose, normal,
quiet, and silent settings as follows:

� DAKOTA ”debug”/”verbose”: APPS debug level = 10, profile level = 1� DAKOTA ”normal”: APPS debug level = 2, profile level = 1
� DAKOTA ”quiet”/”silent”: APPS debug level = 0, profile level = 0

5.8.2 APPS method dependent controls

The APPS method is invoked using a coliny apps group specification. Components within this specifi-
cation group include initial delta, threshold delta, pattern basis, total pattern -
size, no expansion, and contraction factor. The initial delta and threshold -
delta specifications are required in order to provide the initial offset size and the threshold size at which
to terminate the algorithm, respectively. These sizes are dimensional and are not relative to the bounded
region (as they are with sgopt pattern search). The pattern basis specification is used to se-
lect between a coordinate basis or a simplex basis. The former uses a plus and minus offset in each
coordinate direction, for a total of 2n function evaluations in the pattern, whereas the latter uses a minimal
positive basis simplex for the parameter space, for a total of n+1 function evaluations in the pattern. The
total pattern size specification can be used to augment the basic coordinate and simplex
patterns with additional function evaluations, and is particularly useful for parallel load balancing. For
example, if some function evaluations in the pattern are dropped due to duplication or bound constraint
interaction, then the total pattern size specification instructs the algorithm to generate new offsets
to bring the total number of evaluations up to this consistent total. The no expansion flag instructs the
algorithm to omit pattern expansion, which is normally performed after a sequence of improving offsets is
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found. Finally, the contraction factor specification selects the scaling factor used in computing a
reduced offset for a new pattern search cycle after the previous cycle has been unsuccessful in finding an
improved point. Table 5.9 summarizes the APPS specification.

Table 5.9 Specification detail for the APPS method

Description Keyword Associated Data Status Default
APPS method coliny apps none Required group N/A
Initial offset
value

initial -
delta

real Required N/A

Threshold for
offset values

threshold -
delta

real Required N/A

Pattern basis
selection

pattern -
basis

coordinate �
simplex

Optional coordinate

Total number of
points in pattern

total -
pattern size

integer Optional no augmentation
of basic pattern

No expansion
flag

no expansion none Optional algorithm may
expand pattern
size

Pattern
contraction factor

contrac-
tion factor

real Optional 0.5

5.9 SGOPT Methods

The SGOPT (Stochastic Global OPTimization) library [Hart, W.E., 2001a; Hart, W.E., 2001b] contains a
variety of nongradient-based optimization algorithms, with an emphasis on stochastic global methods.
SGOPT currently includes the following global optimization methods: evolutionary algorithms (sgopt -
pga real, sgopt pga int, and sgopt epsa) and stratified Monte Carlo (sgopt strat mc).
Additionally, SGOPT includes nongradient-based local search algorithms such as Solis-Wets (sgopt -
solis wets) and pattern search (sgopt pattern search). With the exception of the uncon-
strained sgopt solis wetsmethod, each of the SGOPT methods support bound constraints. DAKOTA
provides access to the SGOPT library through the SGOPTOptimizer class.

5.9.1 SGOPT method independent controls

The method independent controls for max iterations and max function evaluations limit
the number of major iterations and the number of function evaluations that can be performed during an
SGOPT optimization. The convergence tolerance control defines the threshold value on rela-
tive change in the objective function that indicates convergence. The output verbosity specification
controls the amount of information generated by SGOPT: the silent, quiet, and normal settings
correspond to minimal reporting from SGOPT, whereas the verbose setting corresponds to a higher
level of information, and debug outputs method initialization and a variety of internal SGOPT diag-
nostics. The majority of SGOPT’s methods have independent function evaluations that can directly take
advantage of DAKOTA’s parallel capabilities. Only sgopt solis wets and certain exploratory -
moves options in sgopt pattern search (multi step, best first, biased best first,
and adaptive pattern; see Pattern search) are inherently serial. The parallel methods automatically
utilize parallel logic when the DAKOTA configuration supports parallelism. Lastly, neither specula-
tive gradients nor specialized handling of linear constraints are currently supported with SGOPT since
SGOPT methods are nongradient-based and support, at most, bound constraints. Specification detail for
method independent controls is provided in Tables 5.1 through 5.3.

Generated on Mon Apr 21 17:12:41 2003 for DAKOTA by Doxygen written by Dimitri van Heesch c
�

1997-2002



52 Method Commands

5.9.2 SGOPT method dependent controls

solution accuracy and max cpu time are method dependent controls which are defined for all
SGOPT methods. Solution accuracy defines a convergence criterion in which the optimizer will terminate
if it finds an objective function value lower than the specified accuracy. The maximum CPU time setting is
another convergence criterion in which the optimizer will terminate if its CPU usage in seconds exceeds the
specified limit. Table 5.10 provides the specification detail for these recurring method dependent controls.

Table 5.10 Specification detail for SGOPT method dependent controls

Description Keyword Associated Data Status Default
Desired solution
accuracy

solution -
accuracy

real Optional -DBL MAX

Maximum
amount of CPU
time

max cpu time real Optional unlimited CPU

Each SGOPT method supplements the settings of Table 5.10 with controls which are specific to its partic-
ular class of method.

5.9.3 Evolutionary Algorithms

DAKOTA currently provides three types of evolutionary algorithms (EAs): a real-valued genetic algo-
rithm (sgopt pga real), an integer-valued genetic algorithm (sgopt pga int), and an evolution-
ary pattern search technique (sgopt epsa), where ”real-valued” and ”integer-valued” refer to the use of
continuous or discrete variable domains, respectively (the response data are real-valued in all cases).

The basic steps of an evolutionary algorithm are as follows:

1. Select an initial population randomly and perform function evaluations on these individuals

2. Perform selection for parents based on relative fitness

3. Apply crossover and mutation to generate new solutions generated new individuals from
the selected parents

� Apply crossover with a fixed probability from two selected parents� If crossover is applied, apply mutation to the newly generated individual with a fixed probability� If crossover is not applied, apply mutation with a fixed probability to a single selected parent

4. Perform function evaluations on the new individuals

5. Perform replacement to determine the new population

6. Return to step 2 and continue the algorithm until convergence criteria are satisfied or iteration limits
are exceeded

Controls for seed, population size, selection, and replacement are identical for the three EA methods,
whereas the crossover and mutation controls contain slight differences and the sgopt epsa specifica-
tion contains an additional num partitions input. Table 5.11 provides the specification detail for the
controls which are common between the three EA methods.

Table 5.11 Specification detail for the SGOPT EA methods
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Description Keyword Associated Data Status Default
EA selection sgopt pga -

real �
sgopt pga -
int �
sgopt epsa

none Required group N/A

Random seed seed integer Optional randomly
generated seed

Number of
population
members

population -
size

integer Optional 100

Selection
pressure

selection -
pressure

rank �
proportional

Optional proportional

Replacement type replace-
ment type

random � chc �
elitist

Optional group random = 0

Random
replacement

random integer Required N/A

CHC replacement
type

chc integer Required N/A

Elitist
replacement type

elitist integer Required N/A

New solutions
generated

new -
solutions -
generated

integer Optional population -
size -
replace-
ment size

The random seed control provides a mechanism for making a stochastic optimization repeatable. That is,
the use of the same random seed in identical studies will generate identical results. The population -
size control specifies how many individuals will comprise the EA’s population. The selection -
pressure controls how strongly differences in ”fitness” (i.e., the objective function) are weighted in the
process of selecting ”parents” for crossover:

� the rank setting uses a linear scaling of probability of selection based on the rank order of each
individual’s objective function within the population

� the proportional setting uses a proportional scaling of probability of selection based on the
relative value of each individual’s objective function within the population

The replacement type controls how current populations and newly generated individuals are com-
bined to create a new population. Each of the replacement type selections accepts an integer value,
which will is referred to below and in Table 5.11 as the replacement size:

� The random setting (the default) creates a new population using (a) replacement size ran-
domly selected individuals from the current population, and (b) population size - replace-
ment size individuals randomly selected from among the newly generated individuals (the num-
ber of which is optionally specified using new solutions generated) that are created for each
generation (using the selection, crossover, and mutation procedures).

� The CHC setting creates a new population using (a) the replacement size best individuals from
the combination of the current population and the newly generated individuals, and (b) popula-
tion size - replacement size individuals randomly selected from among the remaining in-
dividuals in this combined pool. CHC is the preferred selection for many engineering problems.
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� The elitist setting creates a new population using (a) the replacement size best individu-
als from the current population, (b) and population size - replacement size individuals
randomly selected from the newly generated individuals. It is possible in this case to lose a good so-
lution from the newly generated individuals if it is not randomly selected for replacement; however,
the default new solutions generated value is set such that the entire set of newly generated
individuals will be selected for replacement.

Table 5.12, Table 5.13, and Table 5.14 show the controls which differ between sgopt pga real,
sgopt pga int, and sgopt epsa, respectively.

Table 5.12 Specification detail for SGOPT real-valued genetic algorithm crossover and mutation

Description Keyword Associated Data Status Default
Crossover type crossover -

type
two point �
blend �
uniform

Optional group two point

Crossover rate crossover -
rate

real Optional 0.8

Mutation type mutation -
type

replace -
uniform �
offset -
normal �
offset -
cauchy �
offset -
uniform �
offset -
triangular

Optional group offset -
normal

Mutation scale mutation -
scale

real Optional 0.1

Mutation
dimension rate

dimension -
rate

real Optional
� �����

���	� 
 � ( � * � � 
 *�� �

Mutation
population rate

population -
rate

real Optional 1.0

Non-adaptive
mutation flag

non adaptive none Optional Adaptive
mutation

Table 5.13 Specification detail for SGOPT integer-valued genetic algorithm crossover and mutation

Description Keyword Associated Data Status Default
Crossover type crossover -

type
two point �
uniform

Optional group two point

Crossover rate crossover -
rate

real Optional 0.8

Mutation type mutation -
type

replace -
uniform �
offset -
uniform

Optional group replace -
uniform

Mutation range mutation -
range

integer Optional 1

Mutation
dimension rate

dimension -
rate

real Optional
� �����

���	� 
 � ( � * � � 
 *�� �

Mutation
population rate

population -
rate

real Optional 1.0
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Table 5.14 Specification detail for SGOPT evolutionary pattern search crossover, mutation, and
number of partitions

Description Keyword Associated Data Status Default
Crossover type crossover -

type
two point �
uniform

Optional group two point

Crossover rate crossover -
rate

real Optional 0.8

Mutation type mutation -
type

unary coord �
unary -
simplex �
multi coord �
multi -
simplex

Optional group unary coord

Mutation
dimension rate

dimension -
rate

real Optional
� �����

���	� 
 � ( � * � � 
 *�� �

Mutation scale mutation -
scale

real Optional 0.1

Minimum
mutation scale

min scale real Optional 0.001

Mutation
population rate

population -
rate

real Optional 1.0

Number of
partitions

num -
partitions

integer Optional 100

The crossover type controls what approach is employed for combining parent genetic information
to create offspring, and the crossover rate specifies the probability of a crossover operation being
performed to generate a new offspring. SGOPT supports two generic forms of crossover, two point
and uniform, which generate a new individual through coordinate-wise combinations of two parent in-
dividuals. Two-point crossover divides each parent into three regions, where offspring are created from the
combination of the middle region from one parent and the end regions from the other parent. Since SGOPT
does not utilize bit representations of variable values, the crossover points only occur on coordinate bound-
aries, never within the bits of a particular coordinate. Uniform crossover creates offspring through random
combination of coordinates from the two parents. The sgopt pga real optimizer supports a third op-
tion, the blend crossover method, which generates a new individual randomly along the multidimensional
vector connecting the two parents.

The mutation type controls what approach is employed in randomly modifying design variables within
the EA population. Each of the mutation methods generates coordinate-wise changes to individuals, usually
by adding a random variable to a given coordinate value (an ”offset” mutation), but also by replacing a given
coordinate value with a random variable (a ”replace” mutation). The population rate controls the
probability of mutation being performed on an individual, both for new individuals generated by crossover
(if crossover occurs) and for individuals from the existing population (if crossover does not occur; see
algorithm description in Evolutionary Algorithms). The dimension rate specifies the probabilities
that a given dimension is changed given that the individual is having mutation applied to it. The default
dimension rate uses the special formula shown in the preceding tables, where n is the number of
design variables and e is the natural logarithm constant. The mutation scale specifies a scale factor
which scales mutation offsets for sgopt pga real and sgopt epsa; this is a fraction of the total range
of each dimension, so mutation scale is a relative value between 0 and 1. The mutation range
provides an analogous control for sgopt pga int, but is not a relative value in that it specifies the
total integer range of the mutation. The offset normal, offset cauchy, offset uniform, and
offset triangular mutation types are ”offset” mutations in that they add a 0-mean random variable
with a normal, cauchy, uniform, or triangular distribution, respectively, to the existing coordinate value.
These offsets are limited in magnitude by mutation scale. The replace uniform mutation type
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is not limited by mutation scale; rather it generates a replacement value for a coordinate using a
uniformly distributed value over the total range for that coordinate. The real-valued genetic algorithm
supports each of these 5 mutation types, and integer-valued genetic algorithm supports the replace -
uniform and offset uniform types. The mutation types for evolutionary pattern search are more
specialized:

� multi coord: Mutate each coordinate dimension with probability dimension rate using an
”offset” approach with initial scale mutation scale � variable range. Multiple coordinates may
or may not be mutated.

� unary coord: Mutate a single randomly selected coordinate dimension using an ”offset” approach
with initial scale mutation scale � variable range. One and only one coordinate is mutated.

� multi simplex: Apply each of the vector offsets from a regular simplex (n+1 vectors for n
dimensions) with probability dimension rate and initial scale mutation scale � variable
range. A single vector offset may alter multiple coordinate dimensions. Multiple simplex vectors
may or may not be applied.

� unary simplex: Add a single randomly selected vector offset from a regular simplex with an
initial scale of mutation scale � variable range. One and only one simplex vector is applied,
but this simplex vector may alter multiple coordinate dimensions.

and are described in more detail in [Hart and Hunter, 1999]. Both the real-valued genetic algorithm and the
evolutionary pattern search algorithm use adaptive mutation that modifies the mutation scale dynamically.
The non adaptive flag can be used to deactivate the self-adaptation in real-valued genetic algorithms,
which may facilitate a more global search. The adaptive mutation in evolutionary pattern search is an
inherent component that cannot be deactivated. The min scale input specifies the minimum mutation
scale for evolutionary pattern search; sgopt epsa terminates if the adapted mutation scale falls below
this threshold.

The num partitions specification is not part of the crossover or mutation group specifications; it spec-
ifies the number of possible values for each dimension (fractions of the variable ranges) used in the initial
evolutionary pattern search population. It is needed for theoretical reasons.

For additional information on these options, see the user and reference manuals for SGOPT [Hart, 2001a;
Hart, 2001b].

5.9.4 Pattern search

SGOPT provides a pattern search technique (sgopt pattern search) whose operation and controls
are similar to that of APPS (see Asynchronous Parallel Pattern Search Method). Table 5.15 provides the
specification detail for the SGOPT PS method and its method dependent controls.

Table 5.15 Specification detail for the SGOPT pattern search method
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Description Keyword Associated Data Status Default
SGOPT pattern
search method

sgopt -
pattern -
search

none Required group N/A

Stochastic pattern
search

stochastic none Optional group N/A

Random seed for
stochastic pattern
search

seed integer Optional randomly
generated seed

Initial offset
value

initial -
delta

real Required N/A

Threshold for
offset values

threshold -
delta

real Required N/A

Pattern basis
selection

pattern -
basis

coordinate �
simplex

Optional simplex

Total number of
points in pattern

total -
pattern size

integer Optional no augmentation
of basic pattern

No expansion
flag

no expansion none Optional algorithm may
expand pattern
size

Number of
consecutive
improvements
before expansion

expand -
after -
success

integer Optional 1

Pattern
contraction factor

contrac-
tion factor

real Optional 0.5

Exploratory
moves selection

ex-
ploratory -
moves

multi step �
best all �
best first �
biased -
best first �
adaptive -
pattern �
test

Optional group best first for
serial,
best all for
parallel

The initial delta, threshold delta, pattern basis, total pattern size, no -
expansion, and contraction factor controls are identical in meaning to the corresponding APPS
controls (see Asynchronous Parallel Pattern Search Method). Differing controls include the stochas-
tic, seed, expand after success, and exploratory moves specifications. The SGOPT pat-
tern search provides the capability for stochastic shuffling of offset evaluation order, for which the
random seed can be used to make the optimizations repeatable. The expand after success control
specifies how many successful objective function improvements must occur with a specific delta prior to
expansion of the delta.

The exploratory moves setting controls how the offset evaluations are ordered as well as the logic for
acceptance of an improved point. The following exploratory moves selections are supported by SGOPT:

� The multi step case examines each trial step in the pattern in turn. If a successful step is found,
the pattern search continues examining trial steps about this new point. In this manner, the effects of
multiple successful steps are cumulative within a single iteration. This option does not support any
parallelism and will result in a serial pattern search.

� The best all case waits for completion of all offset evaluations in the pattern before selecting a
new iterate. This method is most appropriate for parallel execution of the pattern search.
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� The best first case immediately selects the first improving point found as the new iterate, with-
out waiting for completion of all offset evaluations in the cycle. This option does not support any
parallelism and will result in a serial pattern search.

� The biased best first case immediately selects the first improved point as the new iterate, but
also introduces a bias toward directions in which improving points have been found previously by
reordering the offset evaluations. This option does not support any parallelism and will result in a
serial pattern search.

� The adaptive pattern case invokes a pattern search technique that adaptively rescales the
different search directions to maximize the number of redundant function evaluations. See
[Hart et al., 2001] for details of this method. In preliminary experiments, this method had more
robust performance than the standard best first case. This option does not support any paral-
lelism and will result in a serial pattern search.

� The test case is used for development purposes. This currently utilizes a nonblocking scheduler
(i.e., DakotaModel::synchronize nowait()) for performing the function evaluations.

5.9.5 Solis-Wets

DAKOTA’s implementation of SGOPT also contains the Solis-Wets algorithm. The Solis-Wets method is
a simple greedy local search heuristic for continuous parameter spaces. Solis-Wets generates trial points
using a multivariate normal distribution, and unsuccessful trial points are reflected about the current point to
find a descent direction. This algorithm is inherently serial and will not utilize any parallelism. Table 5.16
provides the specification detail for this method and its method dependent controls.

Table 5.16 Specification detail for the SGOPT Solis-Wets method

Description Keyword Associated Data Status Default
SGOPT
Solis-Wets
method

sgopt -
solis wets

none Required group N/A

Random seed for
stochastic pattern
search

seed integer Optional randomly
generated seed

Initial offset
value

initial -
delta

real Required N/A

Threshold for
offset values

threshold -
delta

real Required N/A

No expansion
flag

no expansion none Optional algorithm may
expand pattern
size

Number of
consecutive
improvements
before expansion

expand -
after -
success

integer Optional 5

Number of
consecutive
failures before
contraction

contract -
after -
failure

integer Optional 3

Pattern
contraction factor

contrac-
tion factor

real Optional 0.5
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The seed, initial delta, threshold delta, no expansion, expand after success,
and contraction factor specifications have identical meaning to the corresponding specifications
for coliny apps and sgopt pattern search (see Asynchronous Parallel Pattern Search Method
and Pattern search). The only new specification is contract after failure, which specifies the
number of unsuccessful cycles which must occur with a specific delta prior to contraction of the delta.

5.9.6 Stratified Monte Carlo

Lastly, DAKOTA’s implementation of SGOPT contains a stratified Monte Carlo (sMC) algorithm.
One of the distinguishing characteristics of this sampling technique from other sampling methods in
Design of Computer Experiments Methods and Nondeterministic sampling method is its stopping criteria.
Using solution accuracy (see SGOPT method dependent controls), the sMC algorithm can termi-
nate adaptively when a design point with a desired performance has been located. Table 5.17 provides the
specification detail for this method and its method dependent controls.

Table 5.17 Specification detail for the SGOPT sMC method

Description Keyword Associated Data Status Default
SGOPT stratified
Monte Carlo
method

sgopt -
strat mc

none Required group N/A

Random seed for
stochastic pattern
search

seed integer Optional randomly
generated seed

Number of
samples per
stratification

batch size integer Optional 1

Partitions per
variable

partitions list of integers Optional No partitioning

As for other SGOPT methods, the random seed is used to make stochastic optimizations repeatable. The
batch size input specifies the number samples to be evaluated in each multidimensional partition. And
the partitions list is used to specify the number of partitions for each design variable. For example,
partitions = 2, 4, 3 specifies 2 partitions in the first design variable, 4 partitions in the second
design variable, and 3 partitions in the third design variable. This creates a total of 24 multidimensional
partitions, and a batch size of 2 would select 2 random samples in each partition, for a total of 48
samples on each iteration of the sMC algorithm. Iterations containing 48 samples will continue until the
maximum number of iterations or function evaluations is exceeded, or the desired solution accuracy is
obtained.

5.10 Least Squares Methods

DAKOTA’s least squares branch currently contains two methods for solving nonlinear least squares prob-
lems: NLSSOL, a sequential quadratic programming (SQP) approach that is from the same algorithm
family as NPSOL, and Gauss-Newton, which leverages the full-Newton optimizers from OPT++.

The important difference of these algorithms from general-purpose optimization methods is that the re-
sponse set is defined by least squares terms, rather than an objective function. Thus, a finer granu-
larity of data is used by least squares solvers as compared to that used by optimizers. This allows
the exploitation of the special structure provided by a sum of squares objective function. Refer to
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Least squares terms and constraint functions (least squares data set) for additional information on the least
squares response data set.

5.10.1 NLSSOL Method

NLSSOL is available as nlssol sqp and supports unconstrained, bound-constrained, and generally-
constrained problems. It exploits the structure of a least squares objective function through the periodic
use of Gauss-Newton Hessian approximations to accelerate the SQP algorithm. DAKOTA provides access
to the NLSSOL library through the NLSSOLLeastSq class. The method independent and method depen-
dent controls are identical to those of NPSOL as described in NPSOL method independent controls and
NPSOL method dependent controls.

5.10.2 Gauss-Newton Method

The Gauss-Newton algorithm is available as optpp g newton and supports unconstrained, bound-
constrained and generally-constrained problems. The code for the Gauss-Newton approximation (objective
function value, gradient, and approximate Hessian defined from residual function values and gradients) is
provided outside of OPT++ within SNLLLeastSq::nlf2 evaluator gn(). When interfaced with the uncon-
strained, bound-constrained, and nonlinear interior point full-Newton optimizers from the OPT++ library,
it provides a Gauss-Newton least squares capability which can exhibit quadratic convergence near the so-
lution.

Mappings for the method independent and dependent controls are the same as for the
OPT++ optimization methods and are as described in OPT++ method independent controls and
OPT++ method dependent controls. In particular, since OPT++ full-Newton optimizers provide the foun-
dation for Gauss-Newton, the specifications from Table 5.7 are also applicable for optpp g newton.

5.11 Nondeterministic Methods

DAKOTA’s nondeterministic branch does not currently make use of any method independent controls.
As such, the nondeterministic branch documentation which follows is limited to the method dependent
controls for the sampling, analytic reliability, and polynomial chaos expansion methods.

5.11.1 Nondeterministic sampling method

The nondeterministic sampling iterator is selected using the nond sampling specification. This iterator
performs sampling within specified probability distributions in order to assess the distributions for response
functions. Probability of event occurrence (e.g., failure) is then assessed by comparing the response results
against response thresholds. DAKOTA currently provides access to nondeterministic sampling methods
through the combination of the NonDSampling base class and the NonDLHSSampling derived class.

The seed integer specification specifies the seed for the random number generator which is used to make
sampling studies repeatable. The fixed seed flag is relevant if multiple sampling sets will be generated
during the course of a strategy (e.g., surrogate-based optimization, optimization under uncertainty). Spec-
ifying this flag results in the reuse of the same seed value for each of these multiple sampling sets, which
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can be important for reducing variability in the sampling results. However, this behavior is not the default
as the repetition of the same sampling pattern can result in a modeling weakness that an optimizer could
potentially exploit (resulting in actual reliabilities that are lower than the estimated reliabilities). In either
case (fixed seed or not), the study is repeatable if the user specifies a seed and the study is random is
the user omits a seed specification.

The number of samples to be evaluated is selected with the samples integer specification. The algorithm
used to generate the samples can be specified using sample type followed by either random, for pure
random Monte Carlo sampling, or lhs, for latin hypercube sampling. The response thresholds
specification supplies a list of thresholds for comparison with the response functions being computed.
Statistics on responses above and below these thresholds are then generated.

The nondeterministic sampling iterator also supports a design of experiments mode through the all -
variables flag. Normally, nond sampling generates samples only for the uncertain variables, and
treats any design or state variables as constants. The all variables flag alters this behavior by instruct-
ing the sampling algorithm to treat any continuous design or continuous state variables as parameters with
uniform probability distributions between their upper and lower bounds. Samples are then generated over
all of the continuous variables (design, uncertain, and state) in the variables specification. This is similar to
the behavior of the design of experiments methods described in Design of Computer Experiments Methods,
since they will also generate samples over all continuous design, uncertain, and state variables in the vari-
ables specification. However, the design of experiments methods will treat all variables as being uniformly
distributed between their upper and lower bounds, whereas the nond sampling iterator will sample the
uncertain variables within their specified probability distributions. Table 5.18 provides the specification
detail for the nondeterministic sampling method.

Table 5.18 Specification detail for nondeterministic sampling method

Description Keyword Associated Data Status Default
Nondeterministic
sampling iterator

nond -
sampling

none Required group N/A

Random seed seed integer Optional randomly
generated seed

Fixed seed flag fixed seed none Optional seed not fixed:
sampling patterns
are variable

Number of
samples

samples integer Optional minimum
required

Sampling type sample type random � lhs Optional group lhs
All variables flag all -

variables
none Optional sampling only

over uncertain
variables

Response
thresholds

response -
thresholds

list of reals Optional Vector values =
0.0

5.11.2 Analytic reliability methods

Analytic reliability methods are selected using the nond analytic reliability specification. This
method computes approximate response function distribution statistics based on specified uncertain vari-
able probability distributions. Analytic reliability methods perform an internal nonlinear optimization to
compute a most probable point (MPP) and then integrate about this point to compute probabilities. Sup-
ported techniques include the Mean Value method (MV), Advanced Mean Value method (AMV), an iter-
ated form of AMV (AMV+), first order reliability method (FORM), and second order reliability method
(SORM), which are selected using the mv, amv, iterated amv, form, and sorm specifications, re-
spectively. DAKOTA currently provides access to each of these methods within the NonDAdvMeanValue
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class.

Each of the analytic reliability methods involves a required group specification, separated by OR’s. All of
the techniques support a response levels specification, which provide the target response values for
generating probabilities. In combination, these response level probabilities provide a cumulative distribu-
tion function, or CDF, for a response function. The AMV+ method additionally supports a probabil-
ity levels option, which iterates to find the response level which corresponds to a specified probability
(the inverse of the response levels problem). Table 5.19 provides the specification detail for these
methods.

Table 5.19 Specification detail for analytic reliability methods

Description Keyword Associated Data Status Default
Analytic
reliability method

nond -
analytic -
reliability

none Required group N/A

Method selection mv � amv �
iterated amv
� form � sorm

none Required group N/A

Response levels
for probability
calculations

response -
levels

list of reals Optional (mv);
Required (amv,
iterated -
amv, form,
sorm)

no CDF
calculation (mv);
N/A (amv,
iterated -
amv, form,
sorm)

Probability levels
for response
calculations

probabil-
ity levels

list of reals Required
(iterated -
amv
only)

N/A

5.11.3 Polynomial chaos expansion method

The polynomial chaos expansion (PCE) method is a general framework for the approximate representation
of random response functions in terms of finite dimensional series expansions in standard unit Gaussian
random variables. An important distinguishing feature of the methodology is that the solution series expan-
sions are expressed as random processes, not merely as statistics as in the case of many nondeterministic
methodologies. DAKOTA currently provides access to PCE methods through the combination of the Non-
DSampling base class and the NonDPCESampling derived class.

The method requires either the expansion terms or the expansion order specification in order to
specify the number of terms in the expansion or the highest order of Gaussian variable appearing in the
expansion. The number of terms, P, in a complete polynomial chaos expansion of arbitrary order, p, for a
response function involving n uncertain input variables is given by

� � ���
��


�� �
�
���


�� ��
	 ��


�
� ��� # �

One must be careful when using the expansion terms specification, as the satisfaction of the above
equation for some order p is not rigidly enforced. As a result, in some cases, only a subset of terms of a
certain order will be included in the series while others of the same order will be omitted. This omission
of terms can increase the efficacy of the methodology for some problems but have extremely deleterious
effects for others. The method outputs either the first expansion terms coefficients of the series or the
coefficients of all terms up to order expansion order in the series depending on the specification. The
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seed, samples, sample type, and response thresholds specifications are used to specify set-
tings for internal use of inherited NonDSampling techniques. Refer to Nondeterministic sampling method
for information on these specifications. Table 5.20 provides the specification detail for the polynomial
chaos expansion method.

Table 5.20 Specification detail for polynomial chaos expansion method

Description Keyword Associated Data Status Default
Polynomial chaos
expansion iterator

nond -
polynomial -
chaos

none Required group N/A

Expansion terms expansion -
terms

integer Required N/A

Expansion order expansion -
order

integer Required N/A

Random seed seed integer Optional randomly
generated seed

Number of
samples

samples integer Optional minimum
required

Sampling type sample type random � lhs Optional group lhs
Response
thresholds

response -
thresholds

list of reals Optional Vector values =
0.0

5.12 Design of Computer Experiments Methods

The Distributed Design and Analysis of Computer Experiments (DDACE) library provides design of ex-
periments methods for computing response data sets at a selection of points in the parameter space. Current
techniques include grid sampling (grid), pure random sampling (random), orthogonal array sampling
(oas), latin hypercube sampling (lhs), orthogonal array latin hypercube sampling (oa lhs), Box-
Behnken (box behnken), and central composite design (central composite). It is worth noting
that there is some overlap in sampling techniques with those available from the nondeterministic branch.
The current distinction is that the nondeterministic branch methods are designed to sample within a vari-
ety of probability distributions for uncertain variables, whereas the design of experiments methods treat
all variables as having uniform distributions. As such, the design of experiments methods are well-suited
for performing parametric studies and for generating data sets used in building global approximations (see
Global approximation interface), but are not currently suited for assessing the effect of uncertainties. If a
design of experiments over both design/state variables (treated as uniform) and uncertain variables (with
probability distributions) is desired, then nond sampling can support this with its all variables
option (see Nondeterministic sampling method). DAKOTA provides access to the DDACE library through
the DACEIterator class.

The design of experiments methods do not currently make use of any of the method independent controls.
In terms of method dependent controls, the specification structure is straightforward. First, there is a set of
design of experiments algorithm selections separated by logical OR’s (grid or random or oas or lhs
or oa lhs or box behnken or central composite). Second, there are optional specifications for
the random seed to use in generating the sample set (seed), for fixing the seed (fixed seed) among
multiple sample sets (see Nondeterministic sampling method for discussion), for the number of samples
to perform (samples), and for the number of symbols to use (symbols). The seed control is used
to make sample sets repeatable, and the symbols control is related to the number of replications in the
sample set (a larger number of symbols equates to more stratification and fewer replications). Design of
experiments specification detail is given in Table 5.21.

Table 5.21 Specification detail for design of experiments methods
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Description Keyword Associated Data Status Default
Design of
experiments
iterator

dace none Required group N/A

dace algorithm
selection

grid � random
� oas � lhs �
oa lhs �
box behnken �
central -
composite

none Required N/A

Random seed seed integer Optional randomly
generated seed

Fixed seed flag fixed seed none Optional seed not fixed:
sampling patterns
are variable

Number of
samples

samples integer Optional minimum
required

Number of
symbols

symbols integer Optional default for
sampling
algorithm

5.13 Parameter Study Methods

DAKOTA’s parameter study methods compute response data sets at a selection of points in the parameter
space. These points may be specified as a vector, a list, a set of centered vectors, or a multi-dimensional
grid. Capability overviews and examples of the different types of parameter studies are provided in the
Users Manual. DAKOTA implements all of the parameter study methods within the ParamStudy class.

With the exception of output verbosity (a setting of silent will suppress some parameter study diag-
nostic output), DAKOTA’s parameter study methods do not make use of the method independent controls.
Therefore, the parameter study documentation which follows is limited to the method dependent controls
for the vector, list, centered, and multidimensional parameter study methods.

5.13.1 Vector parameter study

DAKOTA’s vector parameter study computes response data sets at selected intervals along a vector in
parameter space. It is often used for single-coordinate parameter studies (to study the effect of a single
variable on a response set), but it can be used more generally for multiple coordinate vector studies (to
investigate the response variations along some n-dimensional vector). This study is selected using the
vector parameter study specification followed by either a final point or a step vector
specification.

The vector for the study can be defined in several ways (refer to dakota.input.spec). First, a fi-
nal point specification, when combined with the initial values from the variables specification (see
cdv initial point, ddv initial point, csv initial state, and dsv initial state
in Variables Commands), uniquely defines an n-dimensional vector’s direction and magnitude through its
start and end points. The intervals along this vector may either be specified with a step length or a
num steps specification. In the former case, steps of equal length (Cartesian distance) are taken from the
initial values up to (but not past) the final point. The study will terminate at the last full step which
does not go beyond the final point. In the latter num steps case, the distance between the initial
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5.13 Parameter Study Methods 65

values and the final point is broken into num steps intervals of equal length. This study performs
function evaluations at both ends, making the total number of evaluations equal to num steps+1. The
final point specification detail is given in Table 5.22.

Table 5.22 final point specification detail for the vector parameter study

Description Keyword Associated Data Status Default
Vector parameter
study

vector -
parameter -
study

none Required group N/A

Termination point
of vector

final point list of reals Required group N/A

Step length along
vector

step length real Required N/A

Number of steps
along vector

num steps integer Required N/A

The other technique for defining a vector in the study is the step vector specification. This parameter
study begins at the initial values and adds the increments specified in step vector to obtain new simu-
lation points. This process is performed num steps times, and since the initial values are included, the
total number of simulations is again equal to num steps+1. The step vector specification detail is
given in Table 5.23.

Table 5.23 step vector specification detail for the vector parameter study

Description Keyword Associated Data Status Default
Vector parameter
study

vector -
parameter -
study

none Required group N/A

Step vector step vector list of reals Required group N/A
Number of steps
along vector

num steps integer Required N/A

5.13.2 List parameter study

DAKOTA’s list parameter study allows for evaluations at user selected points of interest which need not
follow any particular structure. This study is selected using the list parameter study method spec-
ification followed by a list of points specification.

The number of real values in the list of points specification must be a multiple of the total number
of continuous variables contained in the variables specification. This parameter study simply performs
simulations for the first parameter set (the first n entries in the list), followed by the next parameter set
(the next n entries), and so on, until the list of points has been exhausted. Since the initial values from the
variables specification will not be used, they need not be specified. The list parameter study specification
detail is given in Table 5.24.

Table 5.24 Specification detail for the list parameter study

Description Keyword Associated Data Status Default
List parameter
study

list -
parameter -
study

none Required group N/A

List of points to
evaluate

list of -
points

list of reals Required N/A
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5.13.3 Centered parameter study

DAKOTA’s centered parameter study computes response data sets along multiple coordinate-based vec-
tors, one per parameter, centered about the initial values from the variables specification. This is useful
for investigation of function contours with respect to each parameter individually in the vicinity of a spe-
cific point (e.g., post-optimality analysis for verification of a minimum). It is selected using the cen-
tered parameter study method specification followed by percent delta and deltas per -
variable specifications, where percent delta specifies the size of the increments in percent and
deltas per variable specifies the number of increments per variable in each of the plus and minus
directions. The centered parameter study specification detail is given in Table 5.25.

Table 5.25 Specification detail for the centered parameter study

Description Keyword Associated Data Status Default
Centered
parameter study

centered -
parameter -
study

none Required group N/A

Interval size in
percent

percent -
delta

real Required N/A

Number of +/-
deltas per
variable

deltas per -
variable

integer Required N/A

5.13.4 Multidimensional parameter study

DAKOTA’s multidimensional parameter study computes response data sets for an n-dimensional grid of
points. Each continuous variable is partitioned into equally spaced intervals between its upper and lower
bounds, and each combination of the values defined by the boundaries of these partitions is evaluated. This
study is selected using the multidim parameter studymethod specification followed by a parti-
tions specification, where the partitions list specifies the number of partitions for each continuous
variable. Therefore, the number of entries in the partitions list must be equal to the total number of con-
tinuous variables contained in the variables specification. Since the initial values from the variables spec-
ification will not be used, they need not be specified. The multidimensional parameter study specification
detail is given in Table 5.26.

Table 5.26 Specification detail for the multidimensional parameter study

Description Keyword Associated Data Status Default
Multidimensional
parameter study

multidim -
parameter -
study

none Required group N/A

Partitions per
variable

partitions list of integers Required N/A
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Chapter 6

Variables Commands

6.1 Variables Description

The variables section in a DAKOTA input file specifies the parameter set to be iterated by a particular
method. This parameter set is made up of design, uncertain, and state variables. Design variables can be
continuous or discrete and consist of those variables which an optimizer adjusts in order to locate an opti-
mal design. Each of the design parameters can have an initial point, a lower bound, an upper bound, and a
descriptive tag. Uncertain variables are continuous variables which are characterized by probability distri-
butions. The distribution type can be normal, lognormal, uniform, loguniform, weibull, or histogram. Each
uncertain variable specification contains descriptive tags and, either explicitly or implicitly, distribution
lower and upper bounds. Distribution lower and upper bounds are explicit portions of the normal, lognor-
mal, uniform, loguniform, and weibull specifications, whereas they are implicitly defined for histogram
variables from the extreme values within the bin/point pairs specifications. In addition to tags and bounds
specifications, normal variables include mean and standard deviation specifications, lognormal variables
include mean and either standard deviation or error factor specifications, weibull variables include alpha
and beta specifications, and histogram variables include bin pairs and point pairs specifications. State vari-
ables can be continuous or discrete and consist of ”other” variables which are to be mapped through the
simulation interface. Each state variable specification can have an initial state, lower and upper bounds, and
descriptors. State variables provide a convenient mechanism for parameterizing additional model inputs,
such as mesh density, simulation convergence tolerances and time step controls, and can be used to enact
model adaptivity in future strategy developments.

Several examples follow. In the first example, two continuous design variables are specified:

variables, \
continuous_design = 2 \

cdv_initial_point 0.9 1.1 \
cdv_upper_bounds 5.8 2.9 \
cdv_lower_bounds 0.5 -2.9 \
cdv_descriptors ‘radius’ ‘location’

In the next example, defaults are employed. In this case, cdv initial point will default to a vector
of 0.0 values, cdv upper bounds will default to vector values of DBL MAX (the maximum number
representable in double precision for a particular platform, as defined in the platform’s float.h C header
file), cdv lower bounds will default to a vector of -DBL MAX values, and cdv descriptors will
default to a vector of ‘cdv i’ strings, where i ranges from one to two:
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variables, \
continuous_design = 2

In the following example, the syntax for a normal-lognormal distribution is shown. One normal and one
lognormal uncertain variable are completely specified by their means and standard deviations. In addition,
the dependence structure between the two variables is specified using the uncertain correlation -
matrix.

variables, \
normal_uncertain = 1 \

nuv_means = 1.0 \
nuv_std_deviations = 1.0 \
nuv_descriptors = ‘TF1n’ \

lognormal_uncertain = 1 \
lnuv_means = 2.0 \
lnuv_std_deviations = 0.5 \
lnuv_descriptors = ’TF2ln’ \

uncertain_correlation_matrix = 1.0 0.2 \
0.2 1.0

An example of the syntax for a state variables specification follows:

variables, \
continuous_state = 1 \

csv_initial_state 4.0 \
csv_lower_bounds 0.0 \
csv_upper_bounds 8.0 \
csv_descriptors ‘CS1’ \

discrete_state = 1 \
dsv_initial_state 104 \
dsv_lower_bounds 100 \
dsv_upper_bounds 110 \
dsv_descriptors ‘DS1’

And in a more advanced example, a variables specification containing a set identifier, continuous and dis-
crete design variables, normal and uniform uncertain variables, and continuous and discrete state variables
is shown:

variables, \
id_variables = ‘V1’ \
continuous_design = 2 \

cdv_initial_point 0.9 1.1 \
cdv_upper_bounds 5.8 2.9 \
cdv_lower_bounds 0.5 -2.9 \
cdv_descriptors ‘radius’ ‘location’ \

discrete_design = 1 \
ddv_initial_point 2 \
ddv_upper_bounds 1 \
ddv_lower_bounds 3 \
ddv_descriptors ‘material’ \

normal_uncertain = 2 \
nuv_means = 248.89, 593.33 \
nuv_std_deviations = 12.4, 29.7 \
nuv_descriptors = ’TF1n’ ’TF2n’ \

uniform_uncertain = 2 \
uuv_dist_lower_bounds = 199.3, 474.63 \
uuv_dist_upper_bounds = 298.5, 712. \
uuv_descriptors = ’TF1u’ ’TF2u’ \

continuous_state = 2 \
csv_initial_state = 1.e-4 1.e-6 \
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csv_descriptors = ‘EPSIT1’ ‘EPSIT2’ \
discrete_state = 1 \

dsv_initial_state = 100 \
dsv_descriptors = ‘load_case’

Refer to the DAKOTA Users Manual [Eldred et al., 2001] for discussion on how different iterators view
these mixed variable sets.

6.2 Variables Specification

The variables specification has the following structure:

variables, \
<set identifier> \
<continuous design variables specification> \
<discrete design variables specification> \
<normal uncertain variables specification> \
<lognormal uncertain variables specification> \
<uniform uncertain variables specification> \
<loguniform uncertain variables specification> \
<weibull uncertain variables specification> \
<histogram uncertain variables specification> \
<uncertain correlation specification> \
<continuous state variables specification> \
<discrete state variables specification>

Referring to dakota.input.spec, it is evident from the enclosing brackets that the set identifier specification,
the uncertain correlation specification, and each of the variables specifications are all optional. The set
identifier and uncertain correlation are stand-alone optional specifications, whereas the variables specifica-
tions are optional group specifications, meaning that the group can either appear or not as a unit. If any
part of an optional group is specified, then all required parts of the group must appear.

The optional status of the different variable type specifications allows the user to specify only those vari-
ables which are present (rather than explicitly specifying that the number of a particular type of variables
= 0). However, at least one type of variables must have nonzero size or an input error message will result.
The following sections describe each of these specification components in additional detail.

6.3 Variables Set Identifier

The optional set identifier specification uses the keyword id variables to input a unique string for use
in identifying a particular variables set. A method can then identify the use of this variables set by speci-
fying the same string in its variables pointer specification (see Method Independent Controls). For
example, a method whose specification contains variables pointer = ‘V1’ will use a variables
specification containing the set identifier id variables = ‘V1’.

If the id variables specification is omitted, a particular variables set will be used by a method only
if that method omits specifying a variables pointer and if the variables set was the last set parsed
(or is the only set parsed). In common practice, if only one variables set exists, then id variables can
be safely omitted from the variables specification and variables pointer can be omitted from the
method specification(s), since there is no potential for ambiguity in this case. Table 6.1 summarizes the set
identifier inputs.
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Table 6.1 Specification detail for set identifier

Description Keyword Associated Data Status Default
Variables set
identifier

id variables String Optional use of last
variables parsed

6.4 Design Variables

Within the optional continuous design variables specification group, the number of continuous design vari-
ables is a required specification and the initial guess, lower bounds, upper bounds, and variable names
are optional specifications. Likewise, within the optional discrete design variables specification group, the
number of discrete design variables is a required specification and the initial guess, lower bounds, upper
bounds, and variable names are optional specifications. Table 6.2 summarizes the details of the continuous
design variable specification and Table 6.3 summarizes the details of the discrete design variable specifica-
tion.

Table 6.2 Specification detail for continuous design variables

Description Keyword Associated Data Status Default
Continuous
design variables

continuous -
design

integer Optional group no continuous
design variables

Initial point cdv -
initial -
point

list of reals Optional Vector values =
0.0

Lower bounds cdv lower -
bounds

list of reals Optional Vector values =
-DBL MAX

Upper bounds cdv upper -
bounds

list of reals Optional Vector values =
+DBL MAX

Descriptors cdv -
descriptors

list of strings Optional Vector of
‘cdv i’ where
i = 1,2,3...

Table 6.3 Specification detail for discrete design variables

Description Keyword Associated Data Status Default
Discrete design
variables

discrete -
design

integer Optional group no discrete design
variables

Initial point ddv -
initial -
point

list of integers Optional Vector values = 0

Lower bounds ddv lower -
bounds

list of integers Optional Vector values =
INT MIN

Upper bounds ddv upper -
bounds

list of integers Optional Vector values =
INT MAX

Descriptors ddv -
descriptors

list of strings Optional Vector of
‘ddv i’ where
i =
1,2,3,...

The cdv initial point and ddv initial point specifications provide the point in design space
from which an iterator is started for the continuous and discrete design variables, respectively. The cdv -
lower bounds, ddv lower bounds, cdv upper bounds and ddv upper bounds restrict the
size of the feasible design space and are frequently used to prevent nonphysical designs. The cdv -
descriptors and ddv descriptors specifications supply strings which will be replicated through
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the DAKOTA output to help identify the numerical values for these parameters. Default values for op-
tional specifications are zeros for initial values, positive and negative machine limits for upper and lower
bounds (+/- DBL MAX, INT MAX, INT MIN from the float.h and limits.h system header files), and
numbered strings for descriptors.

6.5 Uncertain Variables

Uncertain variables involve one of several supported probability distribution specifications, including nor-
mal, lognormal, uniform, loguniform, weibull, or histogram distributions. Each of these specifications is
an optional group specification. Within the normal uncertain optional group specification, the number of
normal uncertain variables, the means, and standard deviations are required specifications, and the distri-
bution lower and upper bounds and variable descriptors are optional specifications. Within the lognormal
uncertain optional group specification, the number of lognormal uncertain variables, the means, and either
standard deviations or error factors must be specified, and the distribution lower and upper bounds and
variable descriptors are optional specifications. Within the uniform uncertain optional group specification,
the number of uniform uncertain variables and the distribution lower and upper bounds are required spec-
ifications, and variable descriptors is an optional specification. Within the loguniform uncertain optional
group specification, the number of loguniform uncertain variables and the distribution lower and upper
bounds are required specifications, and variable descriptors is an optional specification. Within the weibull
uncertain optional group specification, the number of weibull uncertain variables and the alpha and beta
parameters are required specifications, and the distribution lower and upper bounds and variable descrip-
tors are optional specifications. And finally, within the histogram uncertain optional group specification,
the number of histogram uncertain variables is a required specification, the bin pairs and point pairs are
optional group specifications, and the variable descriptors is an optional specification.

The inclusion of lower and upper distribution bounds for all uncertain variable types (either explicitly
or implicitly) allows the use of these variables with methods that rely on a bounded region to define a
set of function evaluations (i.e., design of experiments and some parameter study methods). In addition,
distribution bounds can be used to truncate the tails of distributions for normal and lognormal uncertain
variables (see ”bounded normal”, ”bounded lognormal”, and ”bounded lognormal-n” distribution types in
[Wyss and Jorgensen, 1998]). Default upper and lower bounds are positive and negative machine limits (+/-
DBL MAX from the float.h system header file), respectively, for non-logarithmic distributions and posi-
tive machine limits and zeros, respectively, for logarithmic distributions. The uncertain variable descriptors
provide strings which will be replicated through the DAKOTA output to help identify the numerical val-
ues for these parameters. Default values for descriptors are numbered strings. Tables 6.4 through 6.9
summarize the details of the uncertain variable specifications.

Table 6.4 Specification detail for normal uncertain variables
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Description Keyword Associated Data Status Default
normal uncertain
variables

normal -
uncertain

integer Optional group no normal
uncertain
variables

normal uncertain
means

nuv means list of reals Required N/A

normal uncertain
standard
deviations

nuv std -
deviations

list of reals Required N/A

Distribution
lower bounds

nuv dist -
lower bounds

list of reals Optional Vector values =
-DBL MAX

Distribution
upper bounds

nuv dist -
upper bounds

list of reals Optional Vector values =
+DBL MAX

Descriptors nuv -
descriptors

list of strings Optional Vector of
‘nuv i’ where
i =
1,2,3,...

Table 6.5 Specification detail for lognormal uncertain variables

Description Keyword Associated Data Status Default
lognormal
uncertain
variables

lognormal -
uncertain

integer Optional group no lognormal
uncertain
variables

lognormal
uncertain means

lnuv means list of reals Required N/A

lognormal
uncertain
standard
deviations

lnuv std -
deviations

list of reals Required (1 of 2
selections)

N/A

lognormal
uncertain error
factors

lnuv error -
factors

list of reals Required (1 of 2
selections)

N/A

Distribution
lower bounds

lnuv dist -
lower bounds

list of reals Optional Vector values =
0.0

Distribution
upper bounds

lnuv dist -
upper bounds

list of reals Optional Vector values =
+DBL MAX

Descriptors lnuv -
descriptors

list of strings Optional Vector of
‘lnuv i’
where i =
1,2,3,...

Table 6.6 Specification detail for uniform uncertain variables
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Description Keyword Associated Data Status Default
uniform uncertain
variables

uniform -
uncertain

integer Optional group no uniform
uncertain
variables

Distribution
lower bounds

uuv dist -
lower bounds

list of reals Required N/A

Distribution
upper bounds

uuv dist -
upper bounds

list of reals Required N/A

Descriptors uuv -
descriptors

list of strings Optional Vector of
‘uuv i’ where
i =
1,2,3,...

Table 6.7 Specification detail for loguniform uncertain variables

Description Keyword Associated Data Status Default
loguniform
uncertain
variables

loguniform -
uncertain

integer Optional group no loguniform
uncertain
variables

Distribution
lower bounds

luuv dist -
lower bounds

list of reals Required N/A

Distribution
upper bounds

luuv dist -
upper bounds

list of reals Required N/A

Descriptors luuv -
descriptors

list of strings Optional Vector of
‘luuv i’
where i =
1,2,3,...

Table 6.8 Specification detail for weibull uncertain variables

Description Keyword Associated Data Status Default
weibull uncertain
variables

weibull -
uncertain

integer Optional group no weibull
uncertain
variables

weibull uncertain
alphas

wuv alphas list of reals Required N/A

weibull uncertain
betas

wuv betas list of reals Required N/A

Distribution
lower bounds

wuv dist -
lower bounds

list of reals Optional Vector values =
-DBL MAX

Distribution
upper bounds

wuv dist -
upper bounds

list of reals Optional Vector values =
+DBL MAX

Descriptors wuv -
descriptors

list of strings Optional Vector of
‘wuv i’ where
i =
1,2,3,...

Table 6.9 Specification detail for histogram uncertain variables
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Description Keyword Associated Data Status Default
histogram
uncertain
variables

histogram -
uncertain

integer Optional group no histogram
uncertain
variables

number of
(x,y) pairs for
each bin-based
histogram
variable

huv num bin -
pairs

list of integers Optional group no bin-based
histogram
uncertain
variables

(x,y) pairs for
all bin-based
histogram
variables

huv bin -
pairs

list of reals Optional group no bin-based
histogram
uncertain
variables

number of
(x,y) pairs for
each point-based
histogram
variable

huv num -
point pairs

list of integers Optional group no point-based
histogram
uncertain
variables

(x,y) pairs for
all point-based
histogram
variables

huv point -
pairs

list of reals Optional group no point-based
histogram
uncertain
variables

Descriptors huv -
descriptors

list of strings Optional Vector of
‘huv i’ where
i =
1,2,3,...

For the histogram uncertain variable specification, the bin pairs and point pairs specifications provide sets
of (x,y) pairs for each histogram variable. The distinction between the two types is that the former
specifies counts for bins of non-zero width, whereas the latter specifies counts for individual point values,
which can be thought of as bins with zero width. In the terminology of LHS [Wyss and Jorgensen, 1998],
the former is a ”continuous linear histogram” and the latter is a ”discrete histogram” (although the points
are real-valued, the number of possible values is finite). To fully specify a bin-based histogram with n bins
where the bins can be of unequal width, n+1 (x,y) pairs must be specified with the following features:

� x is the parameter value for the left boundary of a histogram bin and y is the corresponding count
for that bin.

� the final pair specifies the right end of the last bin and must have a y value of zero.
� the x values must be strictly increasing.
� all y values must be positive, except for the last which must be zero.
� a minimum of two (x,y) pairs must be specified for each bin-based histogram.

Similarly, to specify a point-based histogram with n points, n (x,y) pairs must be specified with the
following features:

� x is the point value and y is the corresponding count for that value.
� the x values must be strictly increasing.
� all y values must be positive.
� a minimum of one (x,y) pair must be specified for each point-based histogram.

For both cases, the number of pairs specifications provide for the proper association of multiple sets of
(x,y) pairs with individual histogram variables. For example, in the following specification
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histogram_uncertain = 3 \
huv_num_bin_pairs = 3 4 \
huv_bin_pairs = 5 17 8 21 10 0 .1 12 .2 24 .3 12 .4 0 \
huv_num_point_pairs = 2 \
huv_point_pairs = 3 1 4 1

huv num bin pairs associates the first 3 pairs from huv bin pairs
((5,17),(8,21),(10,0)) with one bin-based histogram variable and the following set of 4
pairs ((.1,12),(.2,24),(.3,12),(.4,0)) with a second bin-based histogram variable.
Likewise, huv num point pairs associates both of the (x,y) pairs from huv point pairs
((3,1),(4,1)) with a single point-based histogram variable. Finally, the total number of bin-based variables
and point-based variables must add to the total number of histogram variables specified (3 in this example).

Uncertain variables may have correlations specified through use of an uncertain correlation -
matrix specification. This specification is generalized in the sense that its specific meaning depends on
the nondeterministic method in use. When the method is a nondeterministic sampling method (i.e., nond -
sampling), then the correlation matrix specifies rank correlations [Iman and Conover, 1982]. When the
method is instead an analytic reliability (i.e., nond analytic reliability) or polynomial chaos
(i.e., nond polynomial chaos) method, then the correlation matrix specifies correlation coefficients
(normalized covariance) [Haldar and Mahadevan, 2000]. In either of these cases, specifying the identity
matrix results in uncorrelated uncertain variables (the default). The matrix input should have � � entries
listed by rows where n is the total number of uncertain variables (all normal, lognormal, uniform, loguni-
form, weibull, and histogram specifications, in that order). Table 6.10 summarizes the specification details:

Table 6.10 Specification detail for uncertain correlations

Description Keyword Associated Data Status Default
correlations in
uncertain
variables

uncertain -
correlation -
matrix

list of reals Optional identity matrix
(uncorrelated)

6.6 State Variables

Within the optional continuous state variables specification group, the number of continuous state variables
is a required specification and the initial states, lower bounds, upper bounds, and variable descriptors are
optional specifications. Likewise, within the optional discrete state variables specification group, the num-
ber of discrete state variables is a required specification and the initial states, lower bounds, upper bounds,
and variable descriptors are optional specifications. These variables provide a convenient mechanism for
managing additional model parameterizations such as mesh density, simulation convergence tolerances,
and time step controls. Table 6.11 summarizes the details of the continuous state variable specification and
Table 6.12 summarizes the details of the discrete state variable specification.

Table 6.11 Specification detail for continuous state variables
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Description Keyword Associated Data Status Default
Continuous state
variables

continuous -
state

integer Optional group No continuous
state variables

Initial states csv -
initial -
state

list of reals Optional Vector values =
0.0

Lower bounds csv lower -
bounds

list of reals Optional Vector values =
-DBL MAX

Upper bounds csv upper -
bounds

list of reals Optional Vector values =
+DBL MAX

Descriptors csv -
descriptors

list of strings Optional Vector of
‘csv i’ where
i =
1,2,3,...

Table 6.12 Specification detail for discrete state variables

Description Keyword Associated Data Status Default
Discrete state
variables

discrete -
state

integer Optional group No discrete state
variables

Initial states dsv -
initial -
state

list of integers Optional Vector values = 0

Lower bounds dsv lower -
bounds

list of integers Optional Vector values =
INT MIN

Upper bounds dsv upper -
bounds

list of integers Optional Vector values =
INT MAX

Descriptors dsv -
descriptors

list of strings Optional Vector of
‘dsv i’ where
i =
1,2,3,...

The csv initial state and dsv initial state specifications define the initial values for the
continuous and discrete state variables which will be passed through to the simulator (e.g., in order to define
parameterized modeling controls). The csv lower bounds, csv upper bounds, dsv lower -
bounds, and dsv upper bounds restrict the size of the state parameter space and are frequently used
to define a region for design of experiments or parameter study investigations. The csv descriptors
and dsv descriptors specifications provide strings which will be replicated through the DAKOTA
output to help identify the numerical values for these parameters. Default values for optional specifications
are zeros for initial states, positive and negative machine limits for upper and lower bounds (+/- DBL MAX,
INT MAX, INT MIN from the float.h and limits.h system header files), and numbered strings for
descriptors.
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Interface Commands

7.1 Interface Description

The interface section in a DAKOTA input file specifies how function evaluations will be performed. Func-
tion evaluations can be performed using either an interface with a simulation code or an interface with an
approximation method.

In the former case of a simulation, the application interface is used to invoke the simulation with either
system calls, forks, direct function invocations, or computational grid invocations. In the system call and
fork cases, communication between DAKOTA and the simulation occurs through parameter and response
files. In the direct function case, communication occurs through the function parameter list. The direct case
can involve linked simulation codes or analytic test functions which are compiled into the DAKOTA exe-
cutable. The analytic test functions allow for rapid testing of algorithms without process creation overhead
or engineering simulation expense. The grid case is experimental and under development.

In the case of an approximation, an approximation interface can be selected to make use of the global, local,
multipoint, and hierarchical surrogate modeling capabilities available within DAKOTA’s Approximation-
Interface class and DakotaApproximation class hierarchy.

Several examples follow. The first example shows an application interface specification which specifies
the use of system calls, the names of the analysis executable and the parameters and results files, and
that parameters and responses files will be tagged and saved. Refer to Application Interface for more
information on the use of these options.

interface, \
application system \

analysis_drivers = ‘rosenbrock’ \
parameters_file = ‘params.in’ \
results_file = ‘results.out’ \
file_tag \
file_save

The next example shows a similar specification, except that an external rosenbrock executable has been
replaced by use of the internal rosenbrock test function from the DirectFnApplicInterface class.

interface, \
application direct \

analysis_drivers = ‘rosenbrock’
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The final example shows an approximation interface specification which selects a quadratic polynomial
approximation from among the global approximation methods. It uses a pointer to a design of experiments
method for generating the data needed for building a global approximation, reuses any old data available
for the current approximation region, and employs the first-order multiplicative approach to correcting the
approximation at the center of the current approximation region.

interface, \
approximation global \

quadratic polynomial \
dace_method_pointer = ’DACE’ \
reuse_samples region \
correction multiplicative first_order

Additional information on interfacing with simulations and approximations is provided in the following
sections.

7.2 Interface Specification

The interface specification has the following top-level structure:

interface, \
<set identifier> \
<application specification> OR \
<approximation specification>

where the set identifier is an optional specification and either an application or approximation interface
must be specified. If an application interface is specified, its type must be system, fork, direct, or grid, i.e.:

interface, \
<set identifier> \
application \

<system call specification> OR \
<fork specification> OR \
<direct function specification> OR
<grid specification>

If an approximation interface is specified, its type must be global, multipoint, local, or hierarchical, i.e.:

interface, \
<set identifier> \
approximation \

<global specification> OR \
<multipoint specification> OR \
<local specification> OR \
<hierarchical specification>

The following sections describe each of these interface specification components in additional detail.

7.3 Interface Set Identifier

The optional set identifier specification uses the keyword id interface to input a string for use in
identifying a particular interface specification. A method can then identify the use of this interface by spec-
ifying the same string in its interface pointer specification (see Method Independent Controls). For
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7.4 Application Interface 79

example, a method whose specification contains interface pointer = ‘I1’ will use an interface
specification with id interface = ‘I1’.

If the id interface specification is omitted, a particular interface specification will be used by a
method only if that method omits specifying a interface pointer and if the interface set was the
last set parsed (or is the only set parsed). In common practice, if only one interface set exists, then id -
interface can be safely omitted from the interface specification and interface pointer can be
omitted from the method specification(s), since there is no potential for ambiguity in this case. Table 7.1
summarizes the set identifier inputs.

Table 7.1 Specification detail for set identifier

Description Keyword Associated Data Status Default
Interface set
identifier

id interface string Optional use of last
interface parsed

7.4 Application Interface

The application interface uses a simulator program, and optionally filter programs, to perform the param-
eter to response mapping. The simulator and filter programs are invoked with system calls, forks, direct
function calls, or computational grid invocations. In the system call and fork cases, files are used for
transfer of parameter and response data between DAKOTA and the simulator program. This approach is
simple and reliable and does not require any modification to simulator programs. In the direct function
case, subroutine parameter lists are used to pass the parameter and response data. This approach requires
modification to simulator programs so that they can be linked into DAKOTA; however it can be more effi-
cient through the elimination of process creation overhead, can be less prone to loss of precision in that data
can be passed directly rather than written to and read from a file, and can enable completely internal man-
agement of multiple levels of parallelism through the use of MPI communicator partitioning. In the grid
case, computational grid services are utilized in order to enable distribution of simulations across different
computer resources. This capability will utilize the Condor and/or Globus services and is experimental and
incomplete.

The application interface group specification contains several specifications which are valid for all appli-
cation interfaces as well as additional specifications pertaining specifically to system call, fork, direct, or
grid application interfaces. Table 7.2 summarizes the specifications valid for all application interfaces, and
Tables 7.3, 7.4, 7.5, and 7.6 summarize the additional specifications for system call, fork, direct, and grid
application interfaces, respectively.

Table 7.2 Specification detail for application interfaces
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Description Keyword Associated Data Status Default
Application
interface

application none Required group
(1 of 2 selections)

N/A

Analysis drivers analysis -
drivers

list of strings Required N/A

Input filter input filter string Optional no input filter
Output filter output -

filter
string Optional no output filter

Asynchronous
interface usage

asynchronous none Optional group synchronous
interface usage

Asynchronous
evaluation
concurrency

evaluation -
concurrency

integer Optional local: unlimited
concurrency,
hybrid: no
concurrency

Asynchronous
analysis
concurrency

analysis -
concurrency

integer Optional local: unlimited
concurrency,
hybrid: no
concurrency

Number of
evaluation servers

evaluation -
servers

integer Optional no override of
auto configure

Self scheduling
of evaluations

evaluation -
self -
scheduling

none Optional no override of
auto configure

Static scheduling
of evaluations

evaluation -
static -
scheduling

none Optional no override of
auto configure

Number of
analysis servers

analysis -
servers

integer Optional no override of
auto configure

Self scheduling
of analyses

analysis -
self -
scheduling

none Optional no override of
auto configure

Static scheduling
of analyses

analysis -
static -
scheduling

none Optional no override of
auto configure

Failure capturing failure -
capture

abort � retry
(with integer
data) � recover
(with list of reals
data) �
continuation

Optional group abort

Feature
deactivation

deactivate active set -
vector,
evaluation -
cache, and/or
restart file

Optional group Active set vector
control, function
evaluation cache,
and restart file
features are active

In Table 7.2, the required analysis drivers specification provides the names of executable analysis
programs or scripts which comprise a function evaluation. The common case of a single analysis driver is
simply accommodated by specifying a list of one driver (this also provides backward compatibility with
previous DAKOTA versions). The optionalinput filter and output filter specifications provide
the names of separate pre- and post-processing programs or scripts which assist in mapping DAKOTA
parameters files into analysis input files and mapping analysis output files into DAKOTA results files,
respectively. If there is only a single analysis driver, then it is usually most convenient to combine pre-
and post-processing requirements into a single analysis driver script and omit the separate input and output

Generated on Mon Apr 21 17:12:41 2003 for DAKOTA by Doxygen written by Dimitri van Heesch c
�

1997-2002



7.4 Application Interface 81

filters. However, in the case of multiple analysis drivers, the input and output filters provide a convenient
location for non-repeated pre- and post-processing requirements. That is, input and output filters are only
executed once per function evaluation, regardless of the number of analysis drivers, which makes them
convenient locations for data processing operations that are shared among the analysis drivers.

The optional asynchronous flag specifies use of asynchronous protocols (i.e., background system calls,
nonblocking forks, POSIX threads) when evaluations or analyses are invoked. The evaluation -
concurrency and analysis concurrency specifications serve a dual purpose:

� when running DAKOTA on a single processor in asynchronous mode, the default concurrency
of evaluations and analyses is all concurrency that is available. The evaluation concurrency
and analysis concurrency specifications can be used to limit this concurrency in order to
avoid machine overload or usage policy violation.

� when running DAKOTA on multiple processors in message passing mode, the default concurrency
of evaluations and analyses on each of the servers is one (i.e., the parallelism is exclusively that of
the message passing). With the evaluation concurrency and analysis concurrency
specifications, a hybrid parallelism can be selected through combination of message passing paral-
lelism with asynchronous parallelism on each server.

The optional evaluation servers and analysis servers specifications support user overrides
of the automatic parallel configuration for the number of evaluation servers and the number of anal-
ysis servers. Similarly, the optional evaluation self scheduling, evaluation static -
scheduling, analysis self scheduling, and analysis static scheduling specifica-
tions can be used to override the automatic parallel configuration of scheduling approach at the evaluation
and analysis parallelism levels. That is, if the automatic configuration is undesirable for some reason,
the user can enforce a desired number of partitions and a desired scheduling policy at these parallelism
levels. Refer to ParallelLibrary and the Parallel Computing chapter of the Users Manual for additional
information.

Failure capturing in application interfaces is governed by the optional failure capture specification.
Supported directives for mitigating captured failures are abort (the default), retry, recover, and
continuation. The retry selection supports an integer input for specifying a limit on retries, and
the recover selection supports a list of reals for specifying the dummy function values to use for the
failed function evaluation. Refer to the Simulation Code Failure Capturing chapter of the Users Manual for
additional information.

The optionaldeactivate specification block includes three features which a user may deactivate in order
to simplify interface development, increase execution speed, and/or reduce memory and disk requirements:

� Active set vector (ASV) control: deactivation of this feature using a deactivate active set -
vector specification allows the user to turn off any variability in ASV values so that active set logic
can be omitted in the user’s simulation interface. This option trades some efficiency for simplicity in
interface development. The default behavior is to request the minimum amount of data required by
an algorithm at any given time, which implies that the ASV values may vary from one function evalu-
ation to the next. Since the user’s interface must return the data set requested by the ASV values, this
interface must contain additional logic to account for any variations in ASV content. Deactivating
this ASV control causes DAKOTA to always request a ”full” data set (the full function, gradient, and
Hessian data that is available from the interface as specified in the responses specification) on each
function evaluation. For example, if ASV control has been deactivated and the responses section
specifies four response functions, analytic gradients, and no Hessians, then the ASV on every func-
tion evaluation will be

�
3 3 3 3

�
, regardless of what subset of this data is currently needed. While

wasteful of computations in many instances, this simplifies the interface and allows the user to return
the same data set on every evaluation. Conversely, if ASV control is active (the default behavior),
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then the ASV requests in this example might vary from
�

1 1 1 1
�

to
�

2 0 0 2
�
, etc., according

to the specific data needed on a particular function evaluation. This will require the user’s interface
to read the ASV requests and perform the appropriate logic in conditionally returning only the data
requested. In general, the default ASV behavior is recommended for the sake of computational ef-
ficiency, unless interface development time is a critical concern. Note that in both cases, the data
returned to DAKOTA from the user’s interface must match the ASV passed in, or else a response
recovery error will result. However, when the ASV control is deactivated, the ASV values are in-
variant and need not be checked on every evaluation. Note: Deactivating the ASV control can have a
positive effect on load balancing for parallel DAKOTA executions. Thus, there is significant overlap
in this ASV control option with speculative gradients (see Method Independent Controls). There is
also overlap with the mode override approach used with certain optimizers (see SNLLOptimizer
and SNLLLeastSq) to combine individual value, gradient, and Hessian requests.

� Function evaluation cache: deactivation of this feature using a deactivate evaluation -
cache specification allows the user to avoid retention of the complete function evaluation history
in memory. This can be important for reducing memory requirements in large-scale applications
(i.e., applications with a large number of variables or response functions) and for eliminating the
overhead of searching for duplicates within the function evaluation cache prior to each new function
evaluation (e.g., for improving speed in problems with 1000’s of inexpensive function evaluations
or for eliminating overhead when performing timing studies). However, the downside is that unnec-
essary computations may be performed since duplication in function evaluation requests may not
be detected. For this reason, this option is not recommended when function evaluations are costly.
Note: duplication detection within DAKOTA can be deactivated, but duplication detection features
within specific optimizers may still be active.

� Restart file: deactivation of this feature using a deactivate restart file specification allows
the user to eliminate the output of each new function evaluation to the binary restart file. This can
increase speed and reduce disk storage requirements, but at the expense of a loss in the ability
to recover and continue a run that terminates prematurely (e.g., due to a system crash or network
problem). This option is not recommended when function evaluations are costly or prone to failure.

In addition to the general application interface specifications, the type of application interface involves
a selection between system, fork, direct, or grid required group specifications. The following
sections describe these group specifications in detail.

7.4.1 System call application interface

For system call interfaces, the parameters file, results file, analysis usage, aprepro,
file tag, and file save are additional settings within the group specification. The parameters and
results file names are supplied as strings using the parameters file and results file specifi-
cations. Both specifications are optional with the default data transfer files being Unix temporary files
with system-generated names (e.g., /usr/tmp/aaaa08861). The parameters and results file names
are passed on the command line to the analysis driver(s). Special analysis command syntax can be entered
as a string with the analysis usage specification. This special syntax replaces the normal system call
combination of the specified analysis drivers with command line arguments; however, it does not
affect the input filter and output filter syntax (if filters are present). Note that if there are mul-
tiple analysis drivers, then analysis usage must include the syntax for all analyses in a single string
(typically separated by semi-colons). The default is no special syntax, such that the analysis drivers
will be used in the standard way as described in the Interfaces chapter of the Users Manual. The format
of data in the parameters files can be modified for direct usage with the APREPRO pre-processing tool
[Sjaardema, 1992] using the aprepro specification. File tagging (appending parameters and results files
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with the function evaluation number) and file saving (leaving parameters and results files in existence after
their use is complete) are controlled with the file tag and file save flags. If these specifications are
omitted, the default is no file tagging (no appended function evaluation number) and no file saving (files
will be removed after a function evaluation). File tagging is most useful when multiple function evalu-
ations are running simultaneously using files in a shared disk space, and file saving is most useful when
debugging the data communication between DAKOTA and the simulation. The additional specifications
for system call application interfaces are summarized in Table 7.3.

Table 7.3 Additional specifications for system call application interfaces

Description Keyword Associated Data Status Default
System call
application
interface

system none Required group
(1 of 4 selections)

N/A

Parameters file
name

parameters -
file

string Optional Unix temp files

Results file name results file string Optional Unix temp files
Special analysis
usage syntax

analysis -
usage

string Optional standard analysis
usage

Aprepro
parameters file
format

aprepro none Optional standard
parameters file
format

Parameters and
results file
tagging

file tag none Optional no tagging

Parameters and
results file saving

file save none Optional file cleanup

7.4.2 Fork application interface

For fork application interfaces, the parameters file, results file, aprepro, file tag, and
file save are additional settings within the group specification and have identical meanings to those
for the system call application interface. The only difference in specifications is that fork interfaces do
not support an analysis usage specification due to limitations in the execvp() function used when
forking a process. The additional specifications for fork application interfaces are summarized in Table 7.4.

Table 7.4 Additional specifications for fork application interfaces

Description Keyword Associated Data Status Default
Fork application
interface

fork none Required group
(1 of 4 selections)

N/A

Parameters file
name

parameters -
file

string Optional Unix temp files

Results file name results file string Optional Unix temp files
Aprepro
parameters file
format

aprepro none Optional standard
parameters file
format

Parameters and
results file
tagging

file tag none Optional no tagging

Parameters and
results file saving

file save none Optional file cleanup
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7.4.3 Direct function application interface

For direct function application interfaces, processors per analysis andmodelcenter file are
additional optional settings within the required group which can be used to specify multiprocessor analysis
partitions and the configuration filename for a ModelCenter simulation, respectively. As with the eval-
uation servers, analysis servers, evaluation self scheduling, evaluation -
static scheduling, analysis self scheduling, and analysis static scheduling
specifications described above in Application Interface, processors per analysis provides a means
for the user to override the automatic parallel configuration (refer to ParallelLibrary and the Parallel
Computing chapter of the Users Manual) for the number of processors used for each analysis partition.
Note that if both analysis servers and processors per analysis are specified and they are
not in agreement, then analysis servers takes precedence. DAKOTA supports a direct interface to
ModelCenter, a commercial simulation management framework from Phoenix Integration. To utilize this
interface, a user must first define the simulation specifics within a ModelCenter session and then save these
definitions to a ModelCenter configuration file. The modelcenter file specification provides the
means to communicate this configuration file to DAKOTA. The direct application interface specifications
are summarized in Table 7.5.

Table 7.5 Additional specifications for direct function application interfaces

Description Keyword Associated Data Status Default
Direct function
application
interface

direct none Required group
(1 of 4 selections)

N/A

Number of
processors per
analysis

processors -
per analysis

integer Optional no override of
auto configure

Configuration file
for ModelCenter
simulation

modelcen-
ter file

string Optional
(required for
direct
ModelCenter
interface)

direct interface to
ModelCenter not
used

In addition to ModelCenter, a direct interface to Sandia’s SALINAS structural dynamics code is available
and a direct interface to Sandia’s SIERRA multiphysics framework is scheduled to be supported in future
releases. In addition to interfaces with simulation codes, a common usage of the direct interface is for
invoking internal test problems which are available for performing parameter to response mappings as
inexpensively as possible. These problems are compiled directly into the DAKOTA executable as part of
the direct function application interface class and are used for algorithm testing. Refer to DirectFnApplic-
Interface for currently available testers.

7.4.4 Grid application interface

For grid application interfaces, hostnames and processors per host are additional settings within
the required group. The hostnames specification provides a list of machines for use in distributing
evaluations, and the processors per host specification provides the number of processors to use
from each host. This capability is a placeholder for future work with Condor and/or Globus services and
is not currently operational. The additional specifications for grid application interfaces are summarized in
Table 7.6.

Table 7.6 Additional specifications for grid application interfaces
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Description Keyword Associated Data Status Default
Grid application
interface

grid none Required group
(1 of 4 selections)

N/A

Names of host
machines

hostnames list of strings Required N/A

Number of
processors per
host

processors -
per host

list of integers Optional 1 processor from
each host

7.5 Approximation Interface

The approximation interface uses an approximate representation of a ”truth” model to perform the param-
eter to response mappings. This approximation, or surrogate model, is built and updated using data from
the truth model. This data is generated in some cases using a design of experiments iterator applied to the
truth model (global approximations with a dace method pointer). In other cases, truth model data
from a single point (local, hierarchical approximations), from a few previously evaluated points (multi-
point approximations), or from the restart database (global approximations with reuse samples) can
be used. Approximation interfaces are used extensively in the surrogate-based optimization strategy (see
SurrBasedOptStrategy and Surrogate-based Optimization (SBO) Commands), in which the goals are to
reduce expense by minimizing the number of truth function evaluations and to smooth out noisy data with
a global data fit. However, the use of approximation interfaces is not restricted in any way to optimization
techniques, and in fact, the uncertainty quantification methods and optimization under uncertainty strategy
are other primary users.

The approximation interface specification requires the specification of one of the following approximation
types: global, multipoint, local, or hierarchical. Each of these specifications is a required
group with several additional specifications. The following sections present each of these specification
groups in further detail.

7.5.1 Global approximation interface

The global approximation interface specification requires the specification of one of the following approx-
imation methods: neural network, polynomial, mars, hermite, or kriging. These specifica-
tions invoke a layered perceptron artificial neural network approximation, a polynomial regression approx-
imation, a multivariate adaptive regression spline approximation, a hermite polynomial approximation, or
a kriging interpolation approximation, respectively. In the polynomial case, the order of the polynomial
(linear, quadratic, or cubic) must be specified, and in the kriging case, a vector of correlations can be op-
tionally specified in order to bypass the internal kriging calculations of correlation coefficients. For each of
the global approximation methods, dace method pointer, reuse samples, correction, and
use gradients can be optionally specified. The dace method pointer specification points to a
design of experiments iterator which can be used to generate truth model data for building a global data
fit. The reuse samples specification can be used to employ old data (either from previous function
evaluations performed in the run or from function evaluations read from a restart database or text file)
in the building of new global approximations. The default is no reuse of old data (since this can induce
directional bias), and the settings of all, region, and samples file result in reuse of all available
data, reuse of all data available in the current trust region, and reuse of all data from a specified text file,
respectively. The combination of new build data from dace method pointer and old build data from
reuse samples must be sufficient for building the global approximation. If not enough data is avail-
able, the system will abort with an error message. Both dace method pointer and reuse samples
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are optional specifications, which gives the user maximum flexibility in using design of experiments data,
restart/text file data, or both. The correction specification specifies that the approximation will be cor-
rected to match truth data, either matching truth values in the case of zeroth-order matching, or matching
both truth values and truth gradients in the case of first-order matching. The truth data is matched at a
single point, typically the center of the approximation region. Available techniques include additive
zeroth order for adding a scalar offset to the approximation to match a truth value at a point, mul-
tiplicative zeroth order for multiplying the approximation by a scalar to match a truth value at
a point, additive first order for adding a linear function to match the truth value and the truth
gradient at a point, and multiplicative first order for multiplying the approximation by a linear
function to match the truth value and the truth gradient at a point. The additive first order case
is due to [Lewis and Nash, 2000] and the multiplicative first order case is also known as beta
correction [Haftka, 1991]. Finally, the use gradients flag specifies a future capability for the use of
gradient data in the global approximation builds. This capability is currently supported in SurrBased-
OptStrategy, SurrogateDataPoint, and DakotaApproximation::build(), but is not yet supported in any
global approximation derived class redefinitions of DakotaApproximation::find coefficients(). Table 7.7
summarizes the global approximation interface specifications.

Table 7.7 Specification detail for global approximation interfaces
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Description Keyword Associated Data Status Default
Global
approximation
interface

global none Required group
(1 of 4 selections)

N/A

Artificial neural
network

neural -
network

none Required (1 of 5
selections)

N/A

Polynomial polynomial linear �
quadratic �
cubic

Required (1 of 5
selections)

N/A

Multivariate
adaptive
regression splines

mars none Required (1 of 5
selections)

N/A

Hermite
polynomial

hermite none Required (1 of 5
selections)

N/A

Kriging
interpolation

kriging none Required group
(1 of 5 selections)

N/A

Kriging
correlations

correlations list of reals Optional internally
computed
correlations

Design of
experiments
method pointer

dace -
method -
pointer

string Optional no design of
experiments data

Sample reuse in
global
approximation
builds

reuse -
samples

all � region �
samples file

Optional group no sample reuse

Surrogate
correction
approach

correction additive or
multiplica-
tive,
zeroth order
or
first order

Optional group no surrogate
correction

Use of gradient
data in global
approximation
builds

use -
gradients

none Optional gradient data not
used in global
approximation
builds

7.5.2 Multipoint approximation interface

Multipoint approximations use data from previous design points to improve the accuracy of local approxi-
mations. This specification is a placeholder for future capability as no multipoint approximation algorithms
are currently available. Table 7.8 summarizes the multipoint approximation interface specifications.

Table 7.8 Specification detail for multipoint approximation interfaces

Description Keyword Associated Data Status Default
Multipoint
approximation
interface

multipoint none Required group
(1 of 4 selections)

N/A

Pointer to the
truth interface
specification

actual -
interface -
pointer

string Required N/A
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7.5.3 Local approximation interface

Local approximations use value and gradient data from a single point to form a series expansion for ap-
proximating data in the vicinity of this point. The currently available local approximation is the taylor -
series selection. This is a first order Taylor series expansion, also known as the ”linear approximation” in
the optimization literature. Other local approximations, such as the ”reciprocal” and ”conservative/convex”
approximations, may become available in the future. The requiredactual interface pointer spec-
ification and the optional actual interface responses pointer specification are the additional
inputs for local approximations. The former points to an interface specification which provides the truth
model for generating the value and gradient data used in the series expansion. And the latter can be used
to employ a different responses specification for the truth model than that used for mappings from the
local approximation. For example, the truth model may generate gradient data using finite differences (as
specified in the responses specification identified by actual interface responses pointer),
whereas the local approximation may return (approximate) analytic gradients (as specified in a different
responses specification which is identified by the method using the local approximation as its interface).
If actual interface responses pointer is not specified, then the response set available from
truth model evaluations and approximation interface mappings will be the same. Table 7.9 summarizes the
local approximation interface specifications.

Table 7.9 Specification detail for local approximation interfaces

Description Keyword Associated Data Status Default
Local
approximation
interface

local none Required group
(1 of 4 selections)

N/A

Taylor series
local
approximation

taylor -
series

none Required N/A

Pointer to the
truth interface
specification

actual -
interface -
pointer

string Required N/A

Pointer to the
truth responses
specification

actual -
interface -
responses -
pointer

string Optional reuse of
responses
specification in
truth model

7.5.4 Hierarchical approximation interface

Hierarchical approximations use corrected results from a low fidelity interface as an approximation to the
results of a high fidelity ”truth” model. The required low fidelity interface pointer specifica-
tion points to the low fidelity interface specification. This interface is used to generate low fidelity responses
which are then corrected and returned to an iterator. The required high fidelity interface -
pointer specification points to the interface specification for the high fidelity truth model. This model is
used only when new correction factors for the low fidelity interface are needed. The correction speci-
fication specifies which correction technique will be applied to the low fidelity results in order to match the
high fidelity results (value or both value and gradient) at a particular point (e.g., the center of the approxi-
mation region). In the hierarchical case (as compared to the global case), the correction specification
is required, since the omission of a correction technique would effectively waste all high fidelity evalua-
tions. If it is desired to use a low fidelity model without corrections, then a hierarchical approximation is
not needed and a single application interface should be used. Available correction techniques are addi-
tive zeroth order, multiplicative zeroth order, additive first order, and mul-
tiplicative first order, as described previously in Global approximation interface. Table 7.10
summarizes the hierarchical approximation interface specifications.
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Table 7.10 Specification detail for hierarchical approximation interfaces

Description Keyword Associated Data Status Default
Hierarchical
approximation
interface

hierarchical none Required group
(1 of 4 selections)

N/A

Pointer to the low
fidelity interface
specification

low -
fidelity -
interface -
pointer

string Required N/A

Pointer to the
high fidelity
interface
specification

high -
fidelity -
interface -
pointer

string Required N/A

Surrogate
correction
approach

correction additive or
multiplica-
tive,
zeroth order
or
first order

Required N/A
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Chapter 8

Responses Commands

8.1 Responses Description

The responses specification in a DAKOTA input file specifies the data set that can be recovered from
the interface after the completion of a ”function evaluation.” Here, the term function evaluation is used
somewhat loosely to denote a data request from an iterator that is mapped through an interface in a sin-
gle pass. Strictly speaking, this data request may actually involve multiple response functions and their
derivatives, but the term function evaluation is widely used for this purpose. The data set is made up of a
set of functions, their first derivative vectors (gradients), and their second derivative matrices (Hessians).
This abstraction provides a generic data container (the DakotaResponse class) whose contents are inter-
preted differently depending upon the type of iteration being performed. In the case of optimization, the
set of functions consists of one or more objective functions, nonlinear inequality constraints, and nonlin-
ear equality constraints. Linear constraints are not part of a response set since their coefficients can be
communicated to an optimizer at start up and then computed internally for all function evaluations (see
Method Independent Controls). In the case of least squares iterators, the functions consist of individual
residual terms (as opposed to a sum of the squares objective function) as well as nonlinear inequality and
equality constraints. In the case of nondeterministic iterators, the function set is made up of generic re-
sponse functions for which the effect of parameter uncertainty is to be quantified. Lastly, parameter study
and design of experiments iterators may be used with any of the response data set types. Within the C++
implementation, the same data structures are reused for each of these cases; only the interpretation of the
data varies from iterator branch to iterator branch.

Gradient availability may be described by no gradients, numerical gradients, analytic -
gradients, or mixed gradients. The no gradients selection means that gradient information
is not needed in the study. The numerical gradients selection means that gradient information
is needed and will be computed with finite differences using either the native or one of the vendor finite
differencing routines. The analytic gradients selection means that gradient information is available
directly from the simulation (finite differencing is not required). And the mixed gradients selection
means that some gradient information is available directly from the simulation whereas the rest will have
to be estimated with finite differences.

Hessian availability may be described by no hessians or analytic hessians where the meanings
are the same as for the corresponding gradient availability settings. Numerical Hessians are not currently
supported, since, in the case of optimization, this would imply a finite difference-Newton technique for
which a direct algorithm already exists. Capability for numerical Hessians can be added in the future if the
need arises.
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The responses specification provides a description of the total data set that is available for use by the iterator
during the course of its iteration. This should be distinguished from the data subset described in an active
set vector (see DAKOTA File Data Formats in the Users Manual) which describes the particular subset of
the response data needed for an individual function evaluation. In other words, the responses specification
is a broad description of the data to be used during a study whereas the active set vector describes the
particular subset of the available data that is currently needed.

Several examples follow. The first example shows an optimization data set containing an objective function
and two nonlinear inequality constraints. These three functions have analytic gradient availability and no
Hessian availability.

responses, \
num_objective_functions = 1 \
num_nonlinear_inequality_constraints = 2 \
analytic_gradients \
no_hessians

The next example shows a typical specification for a least squares data set. The six residual functions will
have numerical gradients computed using the dakota finite differencing routine with central differences of
0.1% (plus/minus delta value = .001 � value).

responses, \
num_least_squares_terms = 6 \
numerical_gradients \

method_source dakota \
interval_type central \
fd_step_size = .001 \

no_hessians

The last example shows a specification that could be used with a nondeterministic iterator. The three
response functions have no gradient or Hessian availability; therefore, only function values will be used by
the iterator.

responses, \
num_response_functions = 3 \
no_gradients \
no_hessians

Parameter study and design of experiments iterators are not restricted in terms of the response data sets
which may be catalogued; they may be used with any of the function specification examples shown above.

8.2 Responses Specification

The responses specification has the following structure:

responses, \
<set identifier> \
<response descriptors> \
<function specification> \
<gradient specification> \
<Hessian specification>

Referring to dakota.input.spec, it is evident from the enclosing brackets that the set identifier and response
descriptors are optional. However, the function, gradient, and Hessian specifications are all required spec-
ifications, each of which contains several possible specifications separated by logical OR’s. The function
specification must be one of three types:
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� objective and constraint functions� least squares terms and constraint functions� generic response functions

The gradient specification must be one of four types:

� no gradients� numerical gradients� analytic gradients� mixed gradients

And the Hessian specification must be one of two types:

� no Hessians� analytic Hessians

The following sections describe each of these specification components in additional detail.

8.3 Responses Set Identifier

The optional set identifier specification uses the keyword id responses to input a string for use in iden-
tifying a particular responses specification. A method can then identify the use of this response set by spec-
ifying the same string in its responses pointer specification (see Method Independent Controls). For
example, a method whose specification contains responses pointer = ‘R1’ will use a responses
set with id responses = ‘R1’.

If the id responses specification is omitted, a particular responses specification will be used by a
method only if that method omits specifying a responses pointer and if the responses set was the
last set parsed (or is the only set parsed). In common practice, if only one responses set exists, then id -
responses can be safely omitted from the responses specification and responses pointer can be
omitted from the method specification(s), since there is no potential for ambiguity in this case. Table 8.1
summarizes the set identifier input.

Table 8.1 Specification detail for set identifier

Description Keyword Associated Data Status Default
Responses set
identifier

id responses String Optional use of last
responses parsed

8.4 Response Labels

The optional response labels specification uses the keyword response descriptors to input a list
of strings which will be replicated through the DAKOTA output to help identify the numerical values for
particular response functions. The default descriptor strings use a root string plus a numeric identifier.
This root string is "obj fn" for objective functions, "least sq term" for least squares terms, "re-
sponse fn" for generic response functions, "nln ineq con" for nonlinear inequality constraints, and
"nln eq con" for nonlinear equality constraints. Table 8.2 summarizes the response descriptors input.

Table 8.2 Specification detail for response labels
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Description Keyword Associated Data Status Default
Response labels response -

descriptors
list of strings Optional root strings plus

numeric
identifiers

8.5 Function Specification

The function specification must be one of three types: 1) a group containing objective and constraint
functions, 2) a group containing least squares terms and constraint functions, or 3) a response functions
specification. These function sets correspond to optimization, least squares, and uncertainty quantification
iterators, respectively. Parameter study and design of experiments iterators may be used with any of the
three function specifications.

8.5.1 Objective and constraint functions (optimization data set)

An optimization data set is specified using num objective functions and optionally multi -
objective weights, num nonlinear inequality constraints, nonlinear -
inequality lower bounds, nonlinear inequality upper bounds, num nonlinear -
equality constraints, and nonlinear equality targets. The num objective -
functions, num nonlinear inequality constraints, and num nonlinear -
equality constraints inputs specify the number of objective functions, nonlinear inequality
constraints, and nonlinear equality constraints, respectively. The number of objective functions must be
1 or greater, and the number of inequality and equality constraints must be 0 or greater. If the number
of objective functions is greater than 1, then a multi objective weights specification provides a
simple weighted-sum approach to combining multiple objectives:

� �
�
�
* � ���

* � *

If this is not specified, then each objective function is given equal weighting:

� �
�
�
* � �
� *
�

The nonlinear inequality lower bounds and nonlinear inequality upper bounds
specifications provide the lower and upper bounds for 2-sided nonlinear inequalities of the form

� � ����� ��# ��� 


The defaults for the inequality constraint bounds are selected so that one-sided inequalities of the form

��� ��# � 
 � 


result when there are no user constraint bounds specifications (this provides backwards compatibility with
previous DAKOTA versions). In a user bounds specification, any upper bound values greater than +big-
BoundSize (1.e+30, as defined in DakotaOptimizer) are treated as +infinity and any lower bound val-
ues less than -bigBoundSize are treated as -infinity. This feature is commonly used to drop one of the
bounds in order to specify a 1-sided constraint (just as the default lower bounds drop out since -DBL -
MAX � -bigBoundSize). The same approach is used for the linear inequality bounds as described in
Method Independent Controls.
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The nonlinear equality targets specification provides the targets for nonlinear equalities of the
form ��� �
# � � �

and the defaults for the equality targets enforce a value of 0.0 for each constraint

��� ��# � 
 � 


Any linear constraints present in an application need only be input to an optimizer at start up and do not
need to be part of the data returned on every function evaluation (see the linear constraints description in
Method Independent Controls). Table 8.3 summarizes the optimization data set specification.

Table 8.3 Specification detail for optimization data sets

Description Keyword Associated Data Status Default
Number of
objective
functions

num -
objective -
functions

integer Required group N/A

Multiobjective
weightings

multi -
objective -
weights

list of reals Optional equal weightings

Number of
nonlinear
inequality
constraints

num -
nonlinear -
inequality -
constraints

integer Optional 0

Nonlinear
inequality
constraint lower
bounds

nonlinear -
inequality -
lower bounds

list of reals Optional Vector values =
-DBL MAX

Nonlinear
inequality
constraint upper
bounds

nonlinear -
inequality -
upper bounds

list of reals Optional Vector values =
0.0

Number of
nonlinear
equality
constraints

num -
nonlinear -
equality -
constraints

integer Optional 0

Nonlinear
equality
constraint targets

nonlinear -
equality -
targets

list of reals Optional Vector values =
0.0

8.5.2 Least squares terms and constraint functions (least squares data set)

A least squares data set is specified using num least squares terms and optionally num -
nonlinear inequality constraints, nonlinear inequality lower bounds, non-
linear inequality upper bounds, num nonlinear equality constraints, and non-
linear equality targets. Each of the least squares terms is a residual function to be driven toward
zero, and the nonlinear inequality and equality constraint specifications have identical meanings to those
described in Objective and constraint functions (optimization data set). These types of problems are com-
monly encountered in parameter estimation, system identification, and model calibration. Least squares
problems are most efficiently solved using special-purpose least squares solvers such as Gauss-Newton or
Levenberg-Marquardt; however, they may also be solved using general-purpose optimization algorithms.
It is important to realize that, while DAKOTA can solve these problems with either least squares or opti-
mization algorithms, the response data sets to be returned from the simulator are different. Least squares
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involves a set of residual functions whereas optimization involves a single objective function (sum of the
squares of the residuals), i.e.

� �
�
�
* � �

��� * # �

where f is the objective function and the set of � * are the residual functions. Therefore, function values
and derivative data in the least squares case involves the values and derivatives of the residual functions,
whereas the optimization case involves values and derivatives of the sum of the squares objective func-
tion. Switching between the two approaches will likely require different simulation interfaces capable of
returning the different granularity of response data required. Table 8.4 summarizes the least squares data
set specification.

Table 8.4 Specification detail for nonlinear least squares data sets

Description Keyword Associated Data Status Default
Number of least
squares terms

num least -
squares -
terms

integer Required N/A

Number of
nonlinear
inequality
constraints

num -
nonlinear -
inequality -
constraints

integer Optional 0

Nonlinear
inequality
constraint lower
bounds

nonlinear -
inequality -
lower bounds

list of reals Optional Vector values =
-DBL MAX

Nonlinear
inequality
constraint upper
bounds

nonlinear -
inequality -
upper bounds

list of reals Optional Vector values =
0.0

Number of
nonlinear
equality
constraints

num -
nonlinear -
equality -
constraints

integer Optional 0

Nonlinear
equality
constraint targets

nonlinear -
equality -
targets

list of reals Optional Vector values =
0.0

8.5.3 Response functions (generic data set)

A generic response data set is specified using num response functions. Each of these functions is
simply a response quantity of interest with no special interpretation taken by the method in use. This type
of data set is used by uncertainty quantification methods, in which the effect of parameter uncertainty on re-
sponse functions is quantified, and can also be used in parameter study and design of experiments methods
(although these methods are not restricted to this data set), in which the effect of parameter variations on
response functions is evaluated. Whereas objective, constraint, and residual functions have special mean-
ings for optimization and least squares algorithms, the generic response function data set need not have
a specific interpretation and the user is free to define whatever functional form is convenient. Table 8.5
summarizes the generic response function data set specification.

Table 8.5 Specification detail for generic response function data sets
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Description Keyword Associated Data Status Default
Number of
response
functions

num -
response -
functions

integer Required N/A

8.6 Gradient Specification

The gradient specification must be one of four types: 1) no gradients, 2) numerical gradients, 3) analytic
gradients, or 4) mixed gradients.

8.6.1 No gradients

The no gradients specification means that gradient information is not needed in the study. Therefore,
it will neither be retrieved from the simulation nor computed with finite differences. The no gradients
keyword is a complete specification for this case.

8.6.2 Numerical gradients

The numerical gradients specification means that gradient information is needed and will be com-
puted with finite differences using either the native or one of the vendor finite differencing routines.

The method source setting specifies the source of the finite differencing routine that will be used to
compute the numerical gradients: dakota denotes DAKOTA’s internal finite differencing algorithm and
vendor denotes the finite differencing algorithm supplied by the iterator package in use (DOT, CONMIN,
NPSOL, NLSSOL, and OPT++ each have their own internal finite differencing routines). The dakota
routine is the default since it can execute in parallel and exploit the concurrency in finite difference eval-
uations (see Exploiting Parallelism in the Users Manual). However, the vendor setting can be desirable
in some cases since certain libraries will modify their algorithm when the finite differencing is performed
internally. Since the selection of the dakota routine hides the use of finite differencing from the optimiz-
ers (the optimizers are configured to accept user-supplied gradients, which some algorithms assume to be
of analytic accuracy), the potential exists for the vendor setting to trigger the use of an algorithm more
optimized for the higher expense and/or lower accuracy of finite-differencing. For example, NPSOL uses
gradients in its line search when in user-supplied gradient mode (since it assumes they are inexpensive),
but uses a value-based line search procedure when internally finite differencing. The use of a value-based
line search will often reduce total expense in serial operations. However, in parallel operations, the use
of gradients in the NPSOL line search (user-supplied gradient mode) provides excellent load balancing
without need to resort to speculative optimization approaches. In summary, then, the dakota routine is
preferred for parallel optimization, and the vendor routine may be preferred for serial optimization in
special cases.

The interval type setting is used to select between forward and central differences in the nu-
merical gradient calculations. The dakota, DOT vendor, and OPT++ vendor routines have both for-
ward and central differences available, the CONMIN vendor routine supports forward differences only,
and the NPSOL and NLSSOL vendor routines start with forward differences and automatically switch to
central differences as the iteration progresses (the user has no control over this).

Lastly, fd step size specifies the relative finite difference step size to be used in the computations.
For DAKOTA, DOT, CONMIN, and OPT++, the intervals are computed by multiplying the fd step -
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size with the current parameter value. In this case, a minimum absolute differencing interval is needed
when the current parameter value is close to zero. This prevents finite difference intervals for the param-
eter which are too small to distinguish differences in the response quantities being computed. DAKOTA,
DOT, CONMIN, and OPT++ all use .01 � fd step size as their minimum absolute differencing inter-
val. With a fd step size = .001, for example, DAKOTA, DOT, CONMIN, and OPT++ will use
intervals of .001 � current value with a minimum interval of 1.e-5. NPSOL and NLSSOL use a different
formula for their finite difference intervals: fd step size � (1+ �current parameter value �).
This definition has the advantage of eliminating the need for a minimum absolute differencing interval
since the interval no longer goes to zero as the current parameter value goes to zero. Table 8.6 summarizes
the numerical gradient specification.

Table 8.6 Specification detail for numerical gradients

Description Keyword Associated Data Status Default
Numerical
gradients

numerical -
gradients

none Required group N/A

Method source method -
source

dakota �
vendor

Optional group dakota

Interval type interval -
type

forward �
central

Optional group forward

Finite difference
step size

fd step size real Optional 0.001

8.6.3 Analytic gradients

The analytic gradients specification means that gradient information is available directly from
the simulation (finite differencing is not required). The simulation must return the gradient data in the
DAKOTA format (enclosed in single brackets; see DAKOTA File Data Formats in the Users Manual) for
the case of file transfer of data. The analytic gradients keyword is a complete specification for this
case.

8.6.4 Mixed gradients

The mixed gradients specification means that some gradient information is available directly from
the simulation (analytic) whereas the rest will have to be finite differenced (numerical). This specification
allows the user to make use of as much analytic gradient information as is available and then to finite
difference for the rest. For example, the objective function may be a simple analytic function of the design
variables (e.g., weight) whereas the constraints are nonlinear implicit functions of complex analyses (e.g.,
maximum stress). The id analytic list specifies by number the functions which have analytic gradients,
and the id numerical list specifies by number the functions which must use numerical gradients. Each
function identifier, from 1 through the total number of functions, must appear once and only once within
the union of the id analytic and id numerical lists. The method source, interval type,
and fd step size specifications are as described previously in Numerical gradients and pertain to those
functions listed by the id numerical list. Table 8.7 summarizes the mixed gradient specification.

Table 8.7 Specification detail for mixed gradients
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Description Keyword Associated Data Status Default
Mixed gradients mixed -

gradients
none Required group N/A

Analytic
derivatives
function list

id analytic list of integers Required N/A

Numerical
derivatives
function list

id numerical list of integers Required N/A

Method source method -
source

dakota �
vendor

Optional group dakota

Interval type interval -
type

forward �
central

Optional group forward

Finite difference
step size

fd step size real Optional 0.001

8.7 Hessian Specification

Hessian availability must be specified with either no hessians or analytic hessians. Numerical
Hessians are not currently supported, since, in the case of optimization, this would imply a finite difference-
Newton technique for which a direct algorithm already exists. Capability for numerical Hessians can be
added in the future if the need arises.

8.7.1 No Hessians

The no hessians specification means that the method does not require Hessian information. Therefore,
it will neither be retrieved from the simulation nor computed through other means. The no hessians
keyword is a complete specification for this case.

8.7.2 Analytic Hessians

The analytic hessians specification means that Hessian information is available directly from the
simulation. The simulation must return the Hessian data in the DAKOTA format (enclosed in double
brackets; see DAKOTA File Data Formats in Users Manual) for the case of file transfer of data. The
analytic hessians keyword is a complete specification for this case.
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