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Abstract

Current supercomputers use large parallel arrays of tightly coupled processors to achieve
levels of performance far surpassing conventional vector supercomputers. Shock-wave
physics codes have been developed for these new supercomputers at Sandia National
Laboratories and elsewhere. These parallel codes run fast enough on many simulations to
consider using them to study the effects of varying design parameters on the performance
of models of conventional munitions and other complex systems. Such studies may be
directed by optimization software to improve the performance of the modeled system.
Using a shaped-charge jet design as an archetypal test case @neipfagallel shock-

wave physics code controlled by tBakota optimization software, we explored the use

of automatic optimization tools to optimize the design for conventional munitions. We
used a scheme in which a lower resolution computational mesh was used to identify
candidate optimal solutions and then these were verified using a higher resolution mesh.
We identified three optimal solutions for the model and a region of the design domain
where the jet tip speed is nearly optimal, indicating the possibility of a robust design.
Based on this study we identified some of the difficulties in using high-fidelity models

with optimization software to develop improved designs. These include developing robust
algorithms for the objective function and constraints and mitigating the effects of
numerical noise in them. We conclude that optimization software running high-fidelity
models of physical systems using parallel shock wave physics codes to find improved
designs can be a valuable tool for designers. While current state of algorithm and software
development does not permit routine, “black box” optimization of designs, the effort
involved in using the existing tools may well be worth the improvement achieved in
designs.
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The Optimization of a Shaped-Charge Jet Design
Using Parallel Computers

1. Introduction

The development of modern conventional weapons systems, such as shaped-charge jet
penetrators and explosively formed projectiles, as well as nuclear weapons systems and
other complex systems, is increasingly costly. The increase in cost arises from several
factors, including the increasing cost of field tests due to stricter environmental laws, the
increasing cost of engineering time, and the decreasing time available in many cases for
the development of new systems. In addition, development budgets are generally
decreasing, rather than increasing. In contrast, the cost of computational power has
steadily and dramatically decreased. Thus it is economically attractive to seek ways to use
the less expensive computational power to reduce the cost of system development.

Costs can be reduced by using computers in a variety of ways. For example, computer-
aided design (CAD) tools can be used to reduce the time to prepare drawings and transmit
them to manufacturing. Accurate, physics-based computer models can be used to predict
the performance of a proposed design in a variety of anticipated environments, such as in
the design of armor [1][2][3], thus allowing virtual testing.

A patrticularly attractive way to use computers to reduce development costs is to
automatically adjust a proposed design to improve its performance by using numerical
optimization techniques. Such techniques seek to improve the value of an objective
function or functions subject to specified constraints. The potential value of such
automatic optimization of designs has long been recognized, and has been explored for
such systems as armor configurations [4], airfoils [5] and the selection of aircraft engines
[6], earthquake-resistant structures [7], shaped-charge jet penetrators [8][9][10][11],
thermodynamic equation-of-state parameters [12], determination of worst-case fire
environments for vulnerability of a safing device [13][14], a geometry for transportation
casks for hazardous materials [13], coating flow dies [13], a vibration isolation platform
[13] and a chemical-vapor deposition reactor [14].

Although the focus in this work is on finding optimal solutions, we note that a solution
which reduces production costs or improves system performance may be valuable in
practice even though it is not a mathematically optimal one.

Various algorithms are used to search for optimal solutions. All the algorithms require
multiple solutions (often hundreds [14] or thousands) of a numerical model of the system
to determine gradients or trial solutions. This can be prohibitive if executing the model
requires tens of minutes or more. One way to reduce the number of solutions of the
engineering model is to construct a response surface of the solution space, and then search
for optimal solutions of the response surface [6][15][16][17]. However, the advent of
parallel computers, in which tens, hundreds, or even thousands of processors are



harnessed to work cooperatively on problems, and the development of engineering
analysis codes to run on them, offer new opportunities for accelerating optimization
analyses. As discussed by Schnabel [18], these developments provide opportunities for
improving the performance of quasi-Newton methods of optimization including the
following:

* By performing multiple evaluations of the objective function or its derivatives
concurrently, or

* By parallelizing the evaluation of the objective function or its derivatives.

Because the objective function evaluations are independent, they can be performed
concurrently. For example, if a function evaluation can be performed on a single
processor, ten evaluations can be performed in approximately the same time on ten
processors, providing a speed up of approximately 10 in the search for an optimal solution
(if the optimization algorithm can utilize the ten concurrent solutions). This capability is
exploited in the concept of speculative gradient evaluation [18]. Speculative gradient
evaluation capability has been implemented inDAKOT Aoptimization package [19].

If the analysis code is written to run on multiple processors of a parallel computer, then an
individual function evaluation can be performed more quickly by using multiple
processors. For example, a function evaluation which might be performed on a single
processor can be performed in approximately one fourth the time on four processors—if
the code scales well. In this study we focussed on this second means for accelerating the
optimization process.

In our study we were interested in optimizing solutions from the class of shock-wave
physics problems characterized by large material deformations. These problems involve
penetration, perforation, fragmentation, high-explosive initiation and detonation, and
hypervelocity impact. These phenomena arise, for example, in armor/antiarmor research
and development, the design of impact shielding for spacecraft, the modeling of lithotripsy
for the disintegration of kidney stones, and hypervelocity impact problems. Many of the
more important of such problems are intrinsically three-dimensional and involve complex
interactions of exotic materials, including alloys, ceramics and glasses, geological
materials €.g, rock, sand, or soil), and energetic materialg,(chemical high

explosives).

Multidimensional computer codes with sophisticated material models are required to
realistically model this class of shock-wave physics problems. The codes must model the
multiphase (solid-liquid-vapor), strength, fracture, and high-explosive detonation
properties of materials. Three-dimensional simulations may require millions of
computational cells to adequately model the physical phenomena and the interactions of
complex systems of components. Many scientists and engineers currently use Eulerian
shock physics codes such as Sandiardicode [1][2] or Los AlamosMESA3] codes to

model such problems.
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CTH andMESAare serial codes which run on Cray vector supercomputers and on
workstations. Owing to the expense of high-speed memory, vector supercomputers do not
have enough memory to model problems which require more than a few million
computational cells. Many problems of interest require tens of millions of cells. Even the
inadequately resolved problems often require tens or hundreds of CPU hours to complete.
Traditional serial vector supercomputers are too slow and have too little memory to allow
analysts to study many important weapon safety problems, or to study complex design
problems, such as the effects of materials selection and design parameters on the
performance of modern armor.

Parallel shock physics codes running on current-generation massively parallel computers
now provide the high resolution and short turnaround time analysts require for these
shock-wave physics problems [20][21][22][23].

The goal of the work described here is to assess the use of automatic optimization
software to identify improved designs for conventional munitions using parallel shock-
wave physics codes. The parallel shock-wave physics codes were run on the “tightly
coupled”Paragon XP /S parallel computer and a cluster of DEC 8400 AlphaServers.

In the remainder of this report we describe @iEH parallel shock-wave physics code we
used in our study (Section 2), discuss performance metrics for parallel computing (Section
3), and describe the two parallel systems we used (Section 4). We then provide an
overview of optimization theory (Section 5) and describe the two optimization software
packages which we used in this study (Section 6). We describe the test problems and the
conditions used in our study (Section 7) and then present the means used to obtain the
solutions (Section 8) and discuss them (Section 9). Finally we present our conclusions
concerning the current feasibility of automatic optimization of complex systems (Section
10) and provide a final summary (Section 11).

1. CTHecan also be run on distributed-memory parallel computers.

-11-



2. TheCTHShock-Wave Physics Code

CTHis an explicit, three-dimensional, multimaterial shock wave physics code which has
been developed at Sandia for a variety of serial and massively parallel con(pUiéis.
designed to model a wide range of two- and three-dimensional problems involving high-
speed hydrodynamic flow and the dynamic deformation of solid materials, and includes a
variety of equations of state and material strength models [1][2].

The numerical algorithms used@THsolve the equations of conservation of mass,
momentum and energy in an explicit, Eulerian finite difference formulation on a three-
dimensional Cartesian mesh. A staggered mesh is used in which density and pressure are
evaluated at the cell centers, and the velocities are evaluated at the cell faces.

The solution at each time step is calculated in two phases, a Lagrangian phase and a remap
(or advection) phase. During the Lagrangian phase, the Lagrangian equations of motion
are solved to obtain the values of the variables corresponding to a fluid element which has
moved and distorted relative to the fixed Cartesian mesh, using a first-order accurate time-
integration scheme.

During the advection phase, the updated variables at the original, fixed cell centers and
faces are calculated. The advection equations are solved using an operator-splitting
scheme in which the advection operator is split into components along the three
orthogonal mesh directions and the fluxes of mass, energy, momentum and stress through
cell faces are calculated for each direction. Corrections for cross terms are not explicitly
included, but approximate corrections are made implicitly by changing the order of the
advection directions in from timestep to timestep. This tends to remove any directional
bias introduced by the operator splitting. In each coordinate direction an upwind or donor-
cell scheme is used to determine the fluxes of cell-centered quantities through the faces of
a cell. A second-order accurate van Leer limiting scheme is used to correct the first-order
accurate donor-cell fluxes. This makes it possible to maintain steep gradients of advected
guantities without introducing non-physical oscillations. Material interfaces for the

volume fluxing are constructed using either the Simple Line Interface Construction (SLIC)
algorithm or the Sandia-Modified Youngs’ Reconstruction algorithm (SMYRA).

Equation-of-state models @THinclude the ideal gas, Mie-Grineisen, SESAME tabular,
and Jones-Wilkins-Lee (JWL) equations of state. Constitutive mod€l§Htinclude an

elastic, perfectly plastic yield stress model with either a von Mises yield surface or a
pressure-dependent yield surface, several viscoplastic models for ductile metals (the
Johnson-Cook, Zerilli-Armstrong, and Steinberg-Guinan-Lund models), and plasticity-
based models for brittle materials (the Johnson-Holmquist and Steinberg models). High-
explosive detonation models @THinclude a programmed burn model, a Chapman-
Jouget volume burn model, and the history-variable reactive burn model. Fracture models
in CTHinclude a pressure-based model and a principal-stress-based fracturedmnbidel.
also includes the Johnson-Cook scalar damage model, and several porosity models (for the
compaction or crushing of pores).

-12-



3. Performance Measurements for Parallel Computer Codes

Various metrics are used to indicated the performance of parallel codes. Here we define
the metrics we will use: the fixed-size speedup, the scaled speedup, and the parallel scaled
efficiency. If the scaled speedup, or, equivalently, the parallel efficiency, varies linearly
with the number of nodes, then the application codeatable[21][24].

We first define thepeedupS(P,N) to be the ratio of the time to solve a problem of bize
on one nodeT;(N), to the time required to solve the same probler® andes;Tp(N):

SP N = Tl(N)/TP(N)
This defines a surface in three dimensions; an example is shown in Figure 1.

Thefixed-size speedup iS the ratio of the time required to solve a problem on a single
node to the time required to solve the same probler® andes, when the problem sikke

is fixed. If the problem size is fixed, the locus of points on the speedup surface generated
as the number of compute nodes is varied is a fixed-size speedup curve. A typical fixed-
size speedup curve is marked on the speedup surface in Figure 1. If we are interested in
solving very large problems which will not fit on a single node (as is often the case), then
fixed-size speedup is not a good measure of performance. However, engineers are often
interested in solving a problem of fixed size as quickly as possible, and hence at or near
the maximum of the fixed-size speedup curve. In this circumstance the fixed-size speedup
is a useful measure of performance.

In contrast to the fixed-size speedup, $italed speedup,® the ratio of the time required
to solve a problem of siZzeN on a single nodd;;(PN), to the time required to solve the
problem of size®N onP nodes with a subproblem of sileon each nod€&p(PN), when
the work per node is fixed [24]. Thus the problem size increases with the number of
computational nodes. The scaled speedup can be calculated directly, as long as the
problem of sizée®N will fit on a single node, from

T,(PN)

SP) = SR PN = £

The locus of points on the speedup surface generated as the number of processors is varied
and the problem size is increased in proportion to the number of processors is the scaled
speedup curve. A typical scaled speedup curve is marked on the speedup surface

(Figure 1). The projections of the fixed-size and scaled speedup curvesRe6 pene

are shown in Figure 2 to illustrate the difference between them.

When the problem of siZzéN will no longer fit on a single nod&;(PN) must be
estimated. One way to estimate the tilm@°N) is to extrapolate it from the behavior of
T,(PN) on a single node @\ increases [25]. For large problems, this may require
extrapolation over several orders of magnitude, which introduces uncertainty into the

-13-
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Figure 1: lllustration of the speedup surface. A fixed-size speedup curve and a scaled
speedup curve are also shown.

validity of the resultant speedup. In this report we estimate theTy(@&) by PT;(N).

This represents the time required by a single node to perform the necessary calculations on
each subdomain serially, assuming that no time is required to swap the subdomains in
memory and assuming sufficient memory to store all the subdomains. Itis thus the shortest
time that a single node could perform the same calculation as the parallel computer.
Making this estimate is straightforward for an explicit code GHéH for codes with

implicit components, however, one must ensure that the same computational work is done
by the single node in processing all the subdomains as is done by the parallel computer.
Here we calculate the scaled speefp) from the ratio of the product of the time

required to solve the problem of si¥eon a single nodd;;(N) and the number of nodes,

P, to the time taken to solve the problem of $taéon P nodes,Tp(PN):

_ PT{(N)
SRR FQY

For many scientific and engineering simulations (such as the test problems presented later
in Section 7 and simulated withTH the ratioT,(P)/Tp(PN) becomes constant whéhis
sufficiently large, an&(P) varies directly witiP [26][27], that is, the simulations are
scalable.
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Figure 2: Fixed-size and scaled speedup curves project on the P-S plane.

Theparallel scaled efficiency is the scaled speedup divided by the number of
computational nodes

g = S(P)/P = T,(N)/Tp(PN)

The closer the parallel scaled efficiency is to one, the more efficient the parallel
performance of the code is. The parallel scaled efficiency will always be less than one,
owing to algorithmic, communication, or load-balancing overhead.
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4. Two Parallel Computing Systems

In this section we describe the parallel computing systems we used, tHeahaigbn
XP/S and the DEC 8400 Cluster, both located at Sandia National Laboratories.

The Intel Paragon XP IS

The IntelParagon XP /S is a a Multiple-Instruction, Multiple-Data (MIMD) massively
parallel computer that can be used with either the Single-Program, Multiple-Data (SPMD)
or Multiple-Program, Multiple-Data (MPMD) programming models. It uses explicit
message passing for communications between nodes, which are arranged in a two-
dimensional mesh of 19x16 nodes, for a total of 300 computational nodes, three service
nodes, and one boot node. Each node has 32 MB of memory and contains two Intel i860-
XP processors, one for computing and one for message co-processing. Each processor
operates at 50 MHz with a performance of 75 MFLOPS using 64-bit arithmetic. The
nodes are shared among users via space sharing. The OSF-1/AD operating system (Open
Software Foundation) offers full UNIX functionality and presents a single-system image
to the user.

TheParagon at Sandia uses a heterogeneous operating system environment in which
OSF runs on the service nodes and SUNMOS (Sandia/University of New Mexico

Operating System) runs on the compute nodes. SUNMOS was designed as a single-
tasking operating system whose main task is run user processes, pass messages (using the
NX, theParagon message-passing library, or the MPI message-passing interface

standard protocol) and provide an interface to OSF for 1/0 [28].

Programming languages supported include C, C++ and Fortran developed by Portland
Group, Inc. There are also SUNMOS versions of the compilers for C, C++ and Fortran

that use the Portland Group compilers to create object files and then link these with the
SUNMOS libraries.

The DEC 8400 Cluster

The DEC 8400 cluster is a cluster of seven DEC AlphaServer 8400 systems. Each system
has 12 622-MHz Alpha processors, 4 GB of main memory, 2 GB of system disk, one 12-
GB scratch disk, one Memory Channel interface connected to a Memory Channel | hub,
one 155-MB ATM interface, one 100-MB FDDI interface, and one 10/100 Ethernet
interface. The cluster can be used as a MIMD computer supporting either the Single-
Program, Multiple-Data or Multiple-Program, Multiple-Data programming models. It

uses explicit message passing for communications between nodes via the MPI message-
passing interface standard.

The DEC cluster runs the Digital UNIX 4.0B operating system. Programming languages
supported include C, C++ and Fortran 77 and Fortran 90. The nodes are time-shared
among users.

-16-



5. Overview of Optimization Theory

In this section we briefly review optimization theory, to introduce the type of problems to
be solved and the terminology for describing them. A variety of texts providing this
information are available.g., [29].

5.1 Optimization Problem Formulation

Consider a mathematical model

F@=0i=12..,Mz00Q L
G2 =0 =12.,N203Q 2)
z= (292 .. 2p) 3)

where the; are functions of the variable= (zj, 2, ..., zp)" in the domaim with
boundary conditions G- 0 on the boundar§Q  d@

An optimization problem for this model is one which has the following form:

minimize f(X) (4)
subjectto hi(x) = 0,i = 1,2 ...,r (5)
gj(x)so,j =12..,5s (6)
X = (X, Xpr ooy Xy) OS )

wheref, h;, andg; are real-valued functions of the variatleThe seSSis a subset of. The
functionf is theobjective functiorand the equations (5), inequalities (6) and set
restrictions (7) are theonstraints For example in a problem to design a waste shipping
container, the objective function might be container weight, while constraints might be
wall thickness and cost. Clearly more than one optimization problem may be formulated
for a given mathematical model.

A continuous optimization problem involves only continuous variables. A discrete
optimization problem involves only discrete variables)( only integer variables). A
mixed optimization problem involves both continuous and discrete variables.

It is useful to distinguish between the analysis and the design of a mathematical model of
a system. The mathematical model of a system to be optimized consists of a set of
parameters and variables, referred taraaysis variableswhich are related by a set of
functions, referred to amalysis functionsA design is a unique set of values for the
analysis variables. In this context an analysis of the model refers to the process of
calculating the analysis function values given the variable valeggjiven the design.

Design of the mathematical model refers to the process of selecting the values for the
analysis variables. We also distinguish a subset of the analysis variables, callieditre

-17-



variables which are the variables whose values will be modified in seeking an optimal
design. In addition, we identify the objective and constraint functions ate$ign
functions these are usually a subset of the analysis functions, but need not be.

A feasible desigis a design which satisfies all the constraints.

5.2 Optimization Algorithms

Various algorithms have been devised for searching for optimal solutions. Some are
specific to discrete optimization problems (those with only discrete variables), others are
specific to continuous problems (those with only continuous variables). Some will find
global optimal solutions; the majority will find local optimal solutions. Optimization
algorithms for continuous problems are based on gradients or second derieagiyves (
sequential quadratic programming and the simultaneous perturbation stochastic
algorithm) or on samplinge(g, example, simulated annealing and genetic algorithms).

Gradient-Based Algorithms

Gradient-based algorithms are useful for finding local optimal solutions to continuous
constrained or unconstrained optimization problems. These algorithms include sequential
guadratic programming (SQP) and the simultaneous perturbation stochastic algorithm.

The sequential quadratic programming algorithm is used to find local optimal solutions to
continuous optimization problems with or without constraints. It generates a sequence of
iterates, given by

Xg+1 = X 0Py

wherep, is the search direction ang Is a step size. At each iteration, a quadratic
programming problem is solved to determine a search direction and then a line search
problem is solved to determine a step size that reduces the value of the objective function
f(x), sometimes by reducing the value of an associated “merit” function (which may have
other desirable properties).

Consider the Taylor series expansion of the objective function:
f(x +0x) — f(x) = dxOf(x)+ %éxﬂzf(x)éxT + O(||6x||3)
The quadratic programming algorithm minimizes the function
T 17
g kp+ 5P Hyp
whereg, = Uf|,  is the gradient of the objective functiomgandH is an

approximation to'the Hessian foditx,, subject to linearized constraints evaluatexj at
(the superscript denotes the matrix transpose). The line search then detegines

Various algorithms may be used for approximatifygthe most popular is the Broydon-
Fletcher-Goldfarb-Shanno (BFGS) algorithm [30].
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Another choice for approximatirtdy is the Fletcher-Reeves algorithm [31]. This

algorithm modifies the steepest-descent search diregtion-[ f by the addition of a
term directly proportional to the product of the square of the current gradient of the
objective function and the previous search direction, and inversely proportional to the
square of the gradient of the objective function at the previous iteration. This is the
conjugate search direction. The primary advantage of this algorithm is that it uses very
little computer storage, compared to the Broydon-Fletcher-Goldfarb-Shanno algorithm (in
which the upper half of the symmetric Hessian matrix must be stored) while significantly
improving the rate of convergence to an optimum solution, compared to the steepest
descent search direction.

Various algorithms can be devised by the choices for updating the Hessian (or, more
generally, for determining the search direction) and for determining the step size.

The simultaneous perturbation stochastic algorithm [32][33] is a relatively new algorithm
that may drastically reduce the number of function evaluations required to approximate
the objective function gradient for problems for which the stochastic approximation
procedure is appropriate. Such problems include finding a root of a multivariate gradient
equation. The gradient approximation in the simultaneous perturbation stochastic
algorithm is based on two function measurements, regardless of the dimension of the
gradient vector, and achieves the same accuracy for the same number of iterations as
finite-difference-based methods [33]. These results can be achieved under reasonably
general conditions.

Sampling Algorithms

Sampling algorithms use stochastic or deterministic means for sampling the design space
to determine global optimal solutions to continuous optimization problems, discrete
optimization problems, and mixed optimization problems.

The simulated annealing algorithm is a stochastic algorithm that is used to find global
optimal solutions to continuous optimization problems, discrete optimization problems,
and mixed optimization problems. It is based on an analogy between the energy in the
process of annealing solids and the value of the objective function in the search for an
optimal solution. As the temperature of a solidifying solid is reduced, the atoms or
molecules assume a global minimum energy state. Random fluctuations in the
configuration which produce a higher energy state may be accepted according to the
Boltzmann probability. This process is modeled in the simulated annealing algorithm:
random perturbations are made to the design which are accepted if they result in a lower
value for the objective function; designs producing higher values for the objective function
may be accepted according to the Boltzmann probability. This allows the algorithm to
escape from local minima. As the value of the objective function is reduced, the
probability of accepting a worse design decreases. The implementations of the algorithm
are not guaranteed to find the global optimum, but can be quite efficient at finding nearly
optimal designs. Further information concerning simulated annealing and brief
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descriptions of the wide variety of problems solved with simulated annealing or some of
its variants €.g, simulated quenching) may be found in [34].

Genetic algorithms (sometimes called “evolutionary” algorithms) select design variables
by considering objective function values for a “population” of designs [35]. Populations
evolve according to genetic rules and the “fittest” members of the population are
propagated into the succeeding generation. Genetic algorithms require large numbers of
objective function evaluations to generate sufficiently large populations, and hence are less
useful when these are expensive.

Structured sampling techniques deterministically sample the response surface. An
especially promising structured sampling methodology has recently been proposed by
Romero [36]. This technique is specifically designed to treat problems with expensive and
“noisy” objective function evaluations, such as arise in complex engineering problems like
the one in this study or those in [14]. The methodology uses a global search phase
followed by a local search phase. The global search phase uses the structured sampling
methodology of [37] and a lower fidelity model to determine the topography of the
response surface and hence to locate regions that may contain optima. The local search
phase uses two models of differing fidelity to refine the value of the objective function in a
region of interest. The methodology provides natural points to assess the progress of the
optimization and to determine when to start the local search phase, based on changes in
the locations of candidate optima. Once the location of an optimal value is determined, a
high-fidelity model is used to determine its converged value. This methodology resembles
the scheme proposed in Section 8 (Table 5) in that it provides a way to identify candidate
optima (“regions of interest”) followed by local refinement of the candidate optima.
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6. Optimization Software

In this study, we considered the use of two optimization software packjgegsX
[38] andDAKOTA19]. OptdesX is a commercial packagpAKOTAS a package being
developed at Sandia National Laboratories.

Both OptdesX andDAKOTAwere linked taCTHusing scripts (Figure 3). Once either
optimizer was running on a workstation, a UND&hell script (labeledpt_fn in

Figure 3) coordinated the optimizer and the objective function evaluationaqudén

performs three functions: it extracts the values of design variables from the optimizer
output file, constructs an input file for the analysis code and copies the file to the parallel
computer; it signals the parallel computer that it is ready for a new objective function
evaluation and waits for it; and then it extracts the design function values from the analysis
code output file and creates an input file for the optimizer.

6.1 TheOptdesX Software Package

OptdesX [38] is a software package for developing optimal engineering designs. It was
developed at Brigham Young University and is marketed by Design Synthe§§jhac.

user can easily define optimization problems using a “point-and-click” X-windows
interface, optimize the problem using one of several algorithms, examine sensitivities to
the design variables, and produce graphical representations of the design space.

OptdesX supports discrete, continuous, and mixed optimizafigpidesX can perform
robust design analysis, in which the design variables in an optimal design may vary within
prescribed tolerances and the design will remain operatiOpédesX handles multiple-
objective problems by forming a linear combination of the objectives with user-specified
weights.

For continuous problems, gradients of the analysis or design functions may be computed
by either a forward or central difference method, or the software will recommend one of
these two methods and a perturbation step size for computing gradients with the
recommended method. Several optimization algorithms may be selected by the user.

We ran several test optimizations wifiptdesX . OptdesX was started on a workstation,
and then ran the analysis code remotely on a parallel computer usisf tlieemote

shell) command. Whil®ptdesX incorporated many convenient features, it did not
update the windows very often, and for long-running objective function evaluations, the
(many) windows opened 9ptdesX cluttered the monitor and obscured other windows.
OptdesX seemed better suited to optimizations for which the objective function

2. Design Synthesis, Inc., 3883 North 100 East, Provo, UT 84604, (801) 223-9525, FAX (801) 223-9526
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Figure 3: Diagram illustrating how the analysis code was linked to the optimizers
opt_fn is a UNIX C shell script that extracted the values of the design variables from
the dakota.in file and created an input file for the analysis code, and copied it to the
parallel computer; waited for the analysis code to finish; and extracted the values of the
design functions from the analysis code output file and created an input file for the
optimizer.

evaluation is relatively fast (say, a few minutes at most) than to the long-running objective
function evaluations required in this work.

6.2 TheDAKOTATool Kit

TheDesignAnalysisKit for OpTimizAtion tool kit, DAKOTAIs being developed at

Sandia [19] to provide parameter optimization for computationally intensive simulations
using a broad range of numerical methods which have the need for repeated execution of
simulation codes [13][14]. Libraries available throughE#KOTAool kit include DOT

[31], NPSOL [39], OPT++ [40], and SGOPT [41]. In addition, hybrid optimization
strategies, in which two or more stand-alone optimization strategies are combined, and
sequential approximation optimization strategies can also be defined using the tool kit.
DAKOTAalso includes non-deterministic simulation and parameter study algorithms.
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When required, gradients usedBRKOTAcan be computed HYAKOTAusing forward

or central finite differences (using step sizes specified by the user) or analytical functions
(which must be provided by the user), or may be suppli&RAKOTArom an external

source.

DAKOTAcan be run from a command line, or in batch mode, and thus is easy to run in the
background for the long periods of time required when objective function evaluations
require tens of minutes or hours to complete.

For calculations conducted on the Ifeglragon , DAKOTAwas started on a workstation

by a script that ran on a service node of Beragon . This arrangement allowed us to run
optimization problems using the batch queuing system: the batch job DA TAon a
remote workstation and then ran design function evaluations on the parallel computer as
required until the batch job time limit was reached.

More specificallyCTHwas linked tdAKOTAor theParagon as follows. A UNIX

shell script calledun_opt 3, which can be run interactively or from a batch queuing
system on a parallel computer, was used to start an optimization analysis. This script in
turn starts a second scrigipt_nqgs , which startdD AKOTAon a remote workstation via a
script calledstart_optimizer in which the optimizer to be used wWillAKOTAs
specified and also runs the analysis code when requesi2AK®TAand copies the

output files from the analysis code to the remote workstation (Figure 3).

For the interactive DEC cluster, we wrote a simple server that waited for requests from
DAKOTAand then ran the requestediHjob to evaluate the objective function. More
specifically, the shock-wave physics code was linkddABOTAor the DEC cluster as
follows. opt_ngs was run as a server in the background on one processor of the cluster,
and waited for requests frodMAKOTAWhenopt_ngs receives a request, it runs an
objective function evaluation as described ab®&KOTAwas started on a processor of

the cluster via thetart_optimizer script. DAKOTAhen controls the optimization
process, requesting objective function evaluations fsptnngs .

3. The scripts and files used to lilfkTHto DAKOTAor theParagon and the DEC cluster may be obtained
from the authors.
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Figure 4: An idealized shaped-charge jet design. A wave shaper and definitions of
variables for the shaped-charge jet wave-shaper problem are shown.
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7. The Shaped-Charge Jet Wave-Shaper Problem

We considered an optimization problem for a shaped-charge jet device previously
considered by Baker [8][9][10]. In this problem, the optimum location and radius of a
wave shaper are determined to maximize the jet tip velocity in the BRL 81-mm shaped
charge jet design. The standard BRL 81-mm shaped-charge design is a conservative
copper liner shaped-charge design that produces a jet with a relatively low tip velocity. A
wave shaper is sometimes used to adjust the jet tip velocity. An idealized shaped-charge
design is shown in Figure 4, with a wave shaper in place. Baker used analytical models for
the formation of the jet and custom optimization software to find an optimum solution, and
then compared the solution to a simulation with a two-dimensional shock-wave physics
code and to a test. The test agreed well with both calculations (Table 1).

Owing to differences in how the physics is formulated for the analytical models used by
Baker and th€THshock-wave physics code, we were unable to use exactly the same
constraints in the optimization problem as Baker. Thus we first present the optimization
problem solved by Baker, and then present the optimization problem we attempted, with
comments on the significance of the differences. We then discuss modificatis to
required to extract the design function values. Next we presef@Titmodel we used for

the BRL 81-mm shaped-charge design. We present our optimal solutions and compare
them to Baker’s solution in Section 9.
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7.1 Baker's Wave-Shaper Optimization Problem and Solution

Baker formulated an optimization problem to improve the performance of the BRL 81-

mm shaped charge by adding a wave shaper in the high explosive [8][9][10]. The wave
shaper had a fixed thickness. The radius and axial position of the shaper were determined
such that the resulting jet had an increased tip speed while remaining stable and also
having a reasonable mass.

Current shaped-charge jet theory [10] maintains that a stable jet cannot form if the Mach
number of the collapsing liner relative to the collapse point (that is, the Mach number of
the material entering the collapse point) is greater than a critical value (this is called the
sonic criterior). Jets formed at greater Mach numbers are said ¢odydrivenand show
splashing, hollowness, and particulation, which reduce the performance of the jet. A
critical Mach number of 1.23 (based on the static speed of sound) is often used for a
copper liner. A design in which the Mach number of the collapsing liner is less than but
close to the critical Mach number is said toezreme

More precisely, Baker’'s optimization problem [8][9][10] was: Determine the radius and
axial position for a wave shaper with a fixed thickness in the BRL 81-mm shaped-charge
design in order to produce the maximum axial jet tip velogity subject to the

constraints

1. The liner collapse Mach number based on the static speed of sound in the copper
must be less than 1.23. This constramp (s imposed to ensure a coherent jet tip.
Let Mg be the critical Mach number, and I8 be the static speed of sound in the
liner material. Let/; be the velocity of the liner material entering the collapse
point. Then define

h; = My—max(v,)/C, (8)

2.  Thejet profile radius at 5@s must be greater than 0.5 mm for the entire jet. This
constraint ,) is imposed to ensure a reasonable jet mass:

h, = Zmin(o, riz;)—0.5 (9)

3.  There must be no jet inverse velocity gradient. This constraghig imposed to
ensure a continuous jet.
min(0, V(7 , 1) —v(2))

h, =
3 Z Z,,-7

(10)

4.  The wave shaper radius must be less than 34.15 mm (0.25 inches less than the
charge radius). This constraitiy) is imposed to ensure detonation transfer

around the wave shaper. lrgio(Figure 4) be the inside radius of the case, and
letr.eqr DE the specified clearance value. Then define
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h4 = rcase_(rws"' rclear) (11)

5.  The wave shaper radius must be greater than or equal to zero.

he = s (12)

6. The wave shaper position must be between the end of the case and the apex of the
liner (constraintig andh;). Lett.,sebe the initial thickness of the case, and let
tyete the initial thickness of the detonator. kgt be the initial axial thickness of
the wave shaper. Leg,e,be the initial axial location of the apex of the liner, and
let x,,s be the initial axial location of the rear face of the wave shaper (Figure 4).

Then define
he = Xus— (tease™ tged (13)
hy = Xapex— (Xus* o) (14)
Then the optimization problem is
maximizg(Vy;p) (15)
subjectto h; 20,i =1...7 (16)

Note that other problems might be of interest to a designer, such as selecting liner or high-
explosive materials, or selecting an optimum liner shape [11] or an optimum shape for the
wave shaper.

Baker used Octol 70/30 as the high explosive, and modeled its detonation using the Jones-
Wilkins-Lee-Baker [12] equation of state.

Baker used the sequential quadratic programming algorithm with the Broydon, Fletcher,
Goldfarb, and Shanno (BFGS) update (Section 5.2) to solve this problem. His optimal
solution was a wave shaper radius of 3.415 cm (the maximum allowed by the constraints)
and a wave shaper offset (from the liner apex) of 2.72%g0F ((Xapex- Kws *+ tws) =

2.725 cm in the variables defined in Figure 4), with a tip velocity of 10.1 km/s (Table 1).
At this solution, the collapse-point Mach number attained the critical value and there was
no inverse jet velocity gradient.

Baker performed a simulation of his optimal design with a shock-wave physics code, and
also performed an experiment using the optimal design. The jet tip speed in the simulation
was 9.79 km/s. The jet tip speed in the experiment was 9.8 km/s, and resulted in a 19%
increase in the depth of penetration in a target [8][9][10].

7.2 TheCTHModel for the BRL 81-mm Shaped-Charge Design

The BRL 81-mm shaped-charge design has a cylindrical aluminum case, a conical copper
liner, and is filled with octol high explosive (Figure 4). For @&@Hmodel for this device,

we used Mie-Grlineisen equations of state and Steinberg-Guinan constitutive models for
the aluminum and the copper. The octol was modeled as Octol 78/22 us@igHhe

history variable reactive burn model.
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Figure 5: lllustration of the non-uniform, coarse mesh. The mesh is uniform in the axial
direction, z, and varies as shown in the radial direction, r.

We used the two-dimensional, cylindrical geometry optio@Ti{ with the jet axis the

axis of symmetry. The mesh extended radially to twice the case radius, and axially from 2
cm behlnd the device to approximately one case length in front of the device. A velocity of
~7.5%x 10° cm/s was added to the mesh apao reduce the axial extent of the mesh
required and retain the jet within the mesh. A non-uniform mesh was used (Figure 5) to
provide extra resolution around the jet. A coarser mesh, with 42 radial cells and 433 axial
cells (26846 cells total), a normal mesh, with 126 radial cells and 855 axial cells (107730
cells total), were used for the optimization calculations. A sequence of meshes denoted
coarse, normal, fine, and very fine (Table 4) were used to explore the convergence of the
jet tip velocity.

A typical input file is listed in Appendix A. £THsimulation of a shaped-charge device
with no wave shaper is shown in Figure 6, and one with a wave shaper is shown in
Figure 7 . Comparison of the 55 image in each figure shows that wave shaper increases
the jet tip speed.
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Table 1: Baker’s Optimal Wave Shaper Solution

Optimal Jet Tip Speed (Analytical Model) 10.1 kmfs
Jet Tip Speed (Hydrocode Simulation) 9.79  kmys
Measured Jet Tip Speed 9.8 kmfs
Increase in Jet Penetration Depth 19%

Wave Shaper Radius 3.415 cm
Wave Shaper Position (offset from the liner apex) 2725 cip
Critical Mach Number (Constraiiht) Active

Jet Profile (Constrairity) Not Active

No Inverse Jet Axial Velocity Gradient (Constramg} Not Active
Maximum Wave Shaper Radius (Constrdugjt Active
Minimum Wave Shaper Radius (Constrdig) Not Active
Maximum Wave Shaper Offset from the Liner (Constrhgt Not Active
Minimum Wave Shaper Offset from the Liner (Constrai)t Not Active

7.3 The Sandia Wave-Shaper Optimization Problem

We started with the optimization problem formulated by Baker (Section 7.1). We
formulated the objective function and constraints forGhgéimodel of the BRL 81-mm
shaped-charge design (Section 7.2), modifying the constraint definitions to enable us to
implement them for thETHmModel.

The CTHsource code was modified to compute the objective function, the axial jet tip
velocity v, Details of the algorithm developed for this are discussed in Section 8.

The definition of the sonic criterion (constram} remained the same as given in Section
7.1, but its implementation involved significant difficulties and it was eventually dropped
from the optimization problem. This is discussed in the next subsection.

The geometric constraints (constraingghroughh-) for the optimization problem
remained the same as those given in Section 7.1.

The jet profile and jet axial velocity gradient constraints (constriajraadhs,
respectively) were reformulated as described below. Following this description, we
present the modified optimization problem.
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The Sonic Criterion, Constraint b

Evaluating the sonic criterion requires that the velocity of the liner material entering the
collapse point be calculated. We attempted to calculgj@ising Lagrangian tracer
particles in the copper liner, using the axial point of maximum pressure as the collapse
point. Simulations revealed that the material which forms the jet comes from a thin layer
of material on the outside of the liner. Unless the tracer particles are located within this
layer, the particles move into the slug (Figure 8).

To assess the value of using tracer particles for computing the sonic criterion, we
computed Mach numbers for three simulations:

» The midpoint solution, in which the wave shaper had a radius that was half the
maximum radius and was located at the center of the high explosive,

» Baker’s solution, in which the wave shaper had the radius and location determined by
Baker (Table 1), and

« Solution 1, a solution identified as optimal for the problem in which the sonic criterion
is not imposed.

For each simulation the coarser mesh was used, and the tracer particles started on the

curve midway between the two curves delineating the liner in the two-dimensional model
(Figure 8). We calculated Mach numbers for each simulation using the maximum velocity
of all the tracer particles prior to p@ for the collapse velocity,. These are given in

Table 2. All the Mach numbers were significantly less than the critical Mach number and
varied very little over the problem domain.

Table 2: Mach Numbers Computed fr@mHTracer Particle Velocities for Three

Solutions.

Midpoint Baker’s Sandia

Solution Solution Solution 1
Wave Shaper Axial Location [cm] 3.363 3.409 5.990
Wave Shaper Radius [cm] 1.720 3.415 2.98(¢
Maximum Tracer Radial Velocity [km/s] -2.20 -2.30 -2.45
Maximum Tracer Axial Velocity [km/s] 3.70 3.20 2.20
Mach Number 1.08 0.99 0.83
Jet Tip Speed [km/s] 8.89 8.91 9.84
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Figure 6: The evolution of shaped-charge jet simulation with no wave shaper.
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Figure 7: The evolution of shaped-charge jet simulation with a wave shaper.
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Therefore, owing to the difficulty to determining the velocity of the material into the
collapse point in an Eulerian code likdH we did not impose the sonic criterion. Since
the sonic criterion was an active constraint in Baker’s solution (Table 1) [8][9][10], we
may find an optimal solution that is different from Baker’s solution if we do not impose
this constraint. In fact, we find many different solutions, one of which is listed in Table 2.
These solutions will be discussed in Section 8.

The Jet Profile Constraint, h

As in Baker’s problem (Section 7.1), we imposed a constraint on the jet profile to ensure a
jet of sufficient mass. The constraint was imposed as the fraction of the jet for which the
radius is greater than the specified minimum ragjsat 50pus (0.5 mm), and set the
minimum acceptable fractidjy to a value close to 1. We usigl= 0.95. Leff; be the

fraction of the jet that has a radius greater than Then define

h, = f;—f (17)

TheCTHsource code was modified to compute the fradfion

The Axial Velocity Gradient Constraint, f

As in Baker’s problem (Section 7.1), the jet was constrained to have no inverse axial
velocity gradient, to ensure a stretching jet. This was imposed as follows beethe
axial velocity at axial positiog. Then define

B ) i1V
hy = mlnja%—:—l—:?;5+(fv“p)/mz) (18)

whereAz is the average axial computational cell width &rgda fraction on the order of

0.01 (we used a value of 0.05). The second term in the constraint was added after
experience showed that negative axial velocity gradients in a few cells at the jet tip were
falsely indicating that the constraint was violated.

The CTHsource code was modified to compute the minimum axial jet velocity gradient.
The constrainhz was then calculated by a postprocessing script (cabiechct.pl)

using the value of the axial tip velocity, the known computational cellsizand the
user-specified fractioh

The Sandia Optimization Problem

Thus the optimization problem we investigated is
maximize(Vy;,) (19)

subjectto h,20,i=2...7 (20)
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8. Solving the Sandia Wave-Shaper Optimization Problem

In this section we discuss the determination of parallel computer resource requirements,
the development of the jet tip location algorithm, and a proposal for a multilevel scheme
for engineering optimization problems.

8.1 Determination of Parallel Computer Resource Requirements

In order to solve the Sandia wave-shaper optimization problem, we first determined the
fixed-size speedup curve for a coarse-mesh model (14480 computational cells) in order to
determine how many processors to use for each calculation The fixed-size speedup curve
for this model on the IntdParagon is shown in Figure 9. We would like the optimization
calculation to run overnight, or between 5 p.m. one day and 8 a.m. the next (15 hours). If
forty objective function evaluations are required (30 to 40 is typical in our experience with
this problem), each objective function evaluation must complete in 22 minutes or less (the
time for the optimizer to run is less than a minute and so is negligible compared to the
objective function evaluation). So for tRaragon , we needed to use 16 processors or
more.

We did not determine a fixed-size speedup curve for the DEC cluster. Because the nodes
are time-shared and the machine is frequently heavily loaded, a job distributed to more
nodes encounters greater competition for nodes from other users than one distributed to
fewer nodes. Most calculations on the DEC cluster were therefore run on four or eight
nodes, and such calculations typically finished in under 20 minutes.

8.2 Development of the Jet Tip Location Algorithm

The initial version of the algorithm to determine the location of the jet tip was to find the
first computational cell to contain copper, as detected by a search alongxisefrom the
maximum extent of the domain in the positagirection toward the origin. The jet tip

speed was taken to be the axial velocity in this cell. To verify that the jet tip speed
converges as the mesh is refined, we calculated the jet tip speed on several different
meshes. The results from the first such study are shown in Table 3, and show that the mesh
tip speed did not converge and that the jet tip speed calculated on the finest mesh was not
close to the results obtained by Baker. We attempted to produce a better match to Baker’s
results by improving the uniformity of the mesh around the jet and by improvements to the
equation of state, but these were insufficient to improve the convergence or to improve the
agreement with Baker’s results. These results suggested that improvement of the
algorithm for determining the jet tip was required.

Examination of portions of the response surface generated with the initial jet tip algorithm
revealed that there were many apparent local maxima that might be found by the
optimization software. For example, in Figure 10 the radial variation of the jet tip speed
for a fixed axial location of the wave shaper (0.134 cm from the liner apex) is plotted.
There are three local maxima in this figure, one at 0 cm, one at 0.3 cm, and one at 1.0 cm.
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Table 3: Initial Mesh Resolution Study

MeshH Number of Smallest Cell Tip Speed
Cells (cmx cm) [km/s]
Coarse 12960 0.250000.13333 8.5076
Normal ~49950 0.061500.06150 9.4921
Fine ~183866 0.030760.03075 10.387
Normal 1 153738 0.061500.06150 9.9807
Normal 2 153738 0.061500.06150 10.100
Fine 1 405653 0.030760.03075 11.970
Fine 2 405653 0.0307%60.03075 11.746

* Meshes denoted “1” had a uniform mesh throughout the case. Meshes denoted “2” had the more
uniform mesh and a modified equation of state for octol 70/30.
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Figure 10: Radial variation of the jet tip speed for a fixed axial wave shaper
displacement. The graph shows the radial variation of the jet tip speed for an axial
displacement for the wave shaper of 6.0 cm (0.134 cm from the liner) and illustrates the
local maxima in the response surface.

-36-



If an initial wave shaper location of 0.134 cm from the liner apex and an initial radius of
0.1 cm were used, then a local optimization algorithm might determine that the jet tip
speed was “maximized” when there was no wave shaper. This illustrates the importance of
scoping an optimization problem or using a global optimization algorithm. In this case, the
multiple local maxima resulted primarily from defining the jet tip speed to be the velocity
in the computational cell which was the first to contain copper. This is not a good choice
for the tip velocity, because if the cell is a mixed one, containing both copper and void,
then the velocity for the cell (which is the average velocity for the materials in the cell,
based on volume fraction) will be less than the velocity of the copper. The result is a
“noisy” objective function and one that does not converge.

Therefore we embarked on a study to improvedhelmodel and the algorithm used to
locate the jet tip, to improve the agreement between the calculated jet tip speed and the
experimental result.

In consultation with Eugene S. Hertel, Jr., @EHmodel was improved by making the

mesh uniform within the initial shaped-charge geometry and along the jet. The velocity
addition option was used to add an axial velocity of -7.5 km/s to the jet material at a time
of 40us, so that a shorter mesh could be used and hence the calculation required less
memory for a given resolution and could finish in a shorter time.

Several versions of the algorithm for determining the jet tip were investigated. For the final
version,CTHwas modified so that the jet tip velocity was determined from the last cell
with a volume fraction of copper of 1.0 and a copper density of at least 80% of the
reference density of copper, as detected by a search alongxisan the positive

direction from the point of maximum pressure in the copper toward the jet tip. Closer
examination of the jet tip indicated that the negative velocity gradients were generated in a
few cells at the jet tip. To treat this, we added a bound on the velocity gradient equal to a
small fraction of the tip velocity divided by the average axial cell size in the jet (Equation
18). This allowed the velocity gradient to be slightly negative and still be valid. This
scheme tends to exclude any “particles” at the tip of the jet in determining the jet tip
velocity.

Plots of the axial density in the simulation showed that the jet tip was easy to identify
visually. We thus added a density criterion to the scheme used to identify the jet tip. The
current scheme is: search along the axis from the maximum extent of the domain in the
positivez direction toward the origin, to find the first cell which satisfies the three criteria
that (1) the volume fraction of copper in the cell is greater than 0.5, (2), the volume
fraction of the adjacent cell in the negata@irection has a volume fraction of copper
greater than 0.5, and (3) the density of copper in the cell is greater than 90% of the
reference density. This scheme skips small, low-density particles with high axial velocity.
Note that this scheme will not correctly identify a jet tip that is not located aretis,

such as may occur if the tip flares. This scheme appears to provide a smoother function of
the design variables (Figure 11), although it is clear that a local optimizer could
erroneously identify the local maximum at 0.2 cm as an optimum solution.
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Figure 11: The radial variation of the jet tip speed, using the redefined jet tip. The axial
location of the wave shaper was 0.134 cm from the liner apex.

A convergence study was conducted for this final jet tip algorithm, using a design with no
wave shaper. The results of this study are presented in Table 4. Figures 12, 14, 16 and 18
show the axial density and velocity of the jet atj®on the coarse, normal, fine, and very

fine meshes, respectively. Figures 13, 15, 17 and 19 show the jgisabBQhe coarse,

normal, fine, and very fine meshes, respectively. The narrow breaks visible in the density
plot in Figure 18 are attributed to the simple material failure model used in the

Table 4: Improved Mesh Resolution Study (the No Wave-Shaper Solutiorua) 50

vesn | Number | smallestCell | gotegl | b | runTimd
[km/s] [hh:mm:ss]

Coarse 25,320 040.1 8.733 S S 0:19:10
Normal 96,280 0.0% 0.05 9.170 S S 1:20:52
Fine 378,609 0.0250.025 9.087 S S 7:57:42
Very Fine | 1,494,54( 0.01260.0125 9.10 S S 52:30:56

* “s” means satisfied. “v’ means violated.
t Calculations on 8 processors of the DEC 8400 Cluster.
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simulations, and could probably be removed by using a more sophisticated model. Note
that they are insufficient to cause a violation of the jet continuity condteaint

From the run times given in Table 4 and the previous discussion (Section 8.1) it is evident
that for optimization calculations to complete overnight, we must use the coarse mesh.
The normal mesh could be used for calculations running over a weekend.

8.3 A Multilevel Scheme for Engineering Optimization Calculations

We therefore propose the following scheme for performing practical optimization
calculations using a mesh-based engineering model (such as a finite-difference or finite-
element code) (Table 5). The concept of the scheme is to use a coarser mesh to identify
candidate optima, and then improve the objective function values at the candidate optima
using a finer mesh, followed by a final ranking of the optima based on the converged value
of the objective function. The coarse mesh must be fine enough to find useful optima, but
coarse enough for the objective function evaluation to be completed in a practical amount
of time.

Step 1. Construct a model for the system that is consistent with good modeling practice.
The model must be a good representation of the physical system if the optimal designs are
to be worth investigating.

Step 2. Refine the mesh until a converged value of the objective function is achieved. If the
mesh required to obtain a converged value is obviously prohibitively fine, then revise the
model (step 1) if possible to permit a coarser mesh with a smaller computer execution
time.

Step 3. Select an acceptable precision for the objective funetpn90% of the
converged value). The intent is to provide a rationale for selecting a coarser mesh which
runs faster for identifying the candidate optimal solutions.

Step 4. Select a mesh (from the refinement study, step 2) which achieves the precision
selected in step 3.

Step 5. Measure the fixed-size speedup for the mesh selected in step 4. The intent is to find
the set of processors which provide the fastest run time for the model commensurate with
the available resources.

Step 6. Select a minimum execution time for the model from the fixed-size speedup study
(step 5).

Step 7. Select a parallel computer by locating the minimum execution time on the fixed-
size speedup curve. If the minimum execution time is not in the range of the fixed-size
speedup, then repeat steps 3—7 until an appropriate mesh is selected. (It may also be
necessary return to step 1, and modify the model. Or one may need to look for a more
powerful computer.)
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Figure 12: The axial jet density and velocity with no wave shaper at§@alculated on
the coarse mesh. The true axial velocity may be found by adding 0PEm/s to the
velocities in the lower graph.
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Figure 13: The jet with no wave shaper at|i) calculated on the coarse mesh.
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Figure 14: The axial jet density and velocity with no wave shaper gi§@alculated on
the normal mesh. The true axial velocity may be found by addingc@@®m/s to the
velocities in the lower graph.
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Figure 15: The jet with no wave shaper at|i) calculated on the normal mesh.
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Figure 16: The axial jet density and velocity with no wave shaper gi§@alculated on
the fine mesh. The true axial velocity may be found by adding(@@®scm/s to the
velocities in the lower graph.
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Figure 17: The jet with no wave shaper at|i) calculated on the fine mesh.
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Figure 18: The axial jet density and velocity with no wave shaper gi§@alculated on
the very fine mesh. The true axial velocity may be found by adding 0f&m/s to the
velocities in the lower graph.
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Figure 19: The jet with no wave shaper ati) calculated on the very fine mesh.
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Table 5: A Multilevel Scheme for Engineering Optimization Calculations

Step Description

1 Construct a model for the system that is consistent with good modelirig
practice.

2 Refine the mesh until a converged value of the objective function is
achieved.

3 Select an acceptable precision for the objective function.

4 Select a mesh from the refinement study that achieves the precision sejected
in step 3.

5 Measure the fixed-size speedup for the mesh selected in step 4.

6 Select a minimum execution time for the model (from step 5).

7 Select a parallel computer using the fixed-size speedup curve (step 5).
Repeat steps 3—7 if necessary.

8 Select the step size for the (gradient-based) optimizer for each design
variable.

9 Select the maximum number of candidate optima to find.

10 Run the optimizer, and deflate the objective function by the candidate
optimum solution.

11 Repeat step 10 until the maximum number of candidate optima have peen
found.

12 Calculate the converged value of the objective function for each of thg
candidate optima and select the optimum design based on these vaIqu.

Step 8. Select the step size for the (gradient-based) optimizer for each design variable to
be twice the scaled manufacturing tolerance for that variable (where the scaled
manufacturing tolerance is defined to be the absolute manufacturing tolerance divided by
the nominal value of the variable). If the optimizer uses a single step size, then use twice
the minimum scaled tolerance for all the variables. The intent here is to only look for
optimal solutions to within the manufacturing tolerance and so avoid some of the noisiness
of the model.

Step 9. Select the desired number of candidate optima to find. Often it is helpful to know if
there are some nearly optimal solutions that provide a sufficient increase in performance to
justify investigating them further. Such nearly optimal solutions may provide more robust
designs than the true global optimal solution. This is illustrated in Figure 20.

Step 10. Run the optimizer. When an optimal solution has been found, store itin a list, and
deflate the objective function by the candidate optimum solution so that the optimizer does
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not find the same optimal solution more than once. In the process of deflation, the
objective function is replaced by the objective function modified by a norm of the
difference between the dependent variabdad the optimal solutionx,:

f(x) - F)||x X"

nis 1 if the objective function is being maximized, and -1 if the objective function is being
minimized.

Step 11. Repeat step 10 until the desired number of candidate optimal solutions have been
found.

Step 12. Calculate the converged value of the objective function for each of the candidate
optima and select the optimum design based on these values.

The same concept can be used for non-mesh models as long as there is a construct
analogous to the mesh that if increased results in increasing resolution of the model and
increasing run time on the computer.

More generally, one can consider using a lower fidelity model to identify candidate
optima, followed by verification using a higher fidelity model. The higher fidelity model
might be obtained by increasing the resolution of the computational mesh, as we propose
here, or by increasing the fidelity of the physical model to the physical syistery

“including more physics”). Jameson [42] described the use of this concept in developing
an improved design for an aircraft wing. A candidate design was found using the Euler
equations (thus ignoring viscous effects) to model the flow around the wing, and the
design performance was then verified using a flow calculation used the Reynolds-averaged
Navier-Stokes equations (thereby including viscous effects). Boekal,[43] describe a
powerful framework for using and managing approximations to the objective function to
replace expensive function evaluations with less expensive evaluations of surrogate
functions that can guarantee convergence to an optimizer of the original problem in some
special cases, such as when global pattern search [44] or trust region methods [45] are
used. The approximations can be of various fidelities, and can change from iteration to
iteration.

In the proposed scheme, the model from which the objective function is calculated is
assumed to converge pointwise. That is, it is assumed that at any given point in the design
space, the solution converges as the mesh is refined. However, the convergence may not be
uniform (that is, the rate of convergence may vary from point to point).

Note that both the magnitude and location of an optimum solution may depend on the
mesh. Thus using a coarse mesh may result in missing a local optimum which is not
resolved by the coarse mesh. However, if the coarser mesh is chosen appropriately, optima
which are not resolved on it will be sufficiently narrow to not be of interest for an
engineering solution owing to manufacturing tolerances. That is, the manufacturing
tolerances required to use the narrow optimum are considered uneconomical. Even if it is
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Figure 20: An illustration of a useful local optimum that provides a more robust design
than the global optimum. The global optimum locateq,dtas a larger objective

function value than the local optimum gt but will require significantly higher
manufacturing tolerances to achieve. The figure also illustrates how the location of an
optimum value may change as the mesh used to compute it is refined, as the location of
the optimum neargmoves from yto r, to r3 as the mesh is refined from mesh 1 to mesh

3, respectively.

economical to manufacture a design to use the narrow optimum, small variations in
operating conditions may also move the design quickly away from the optimum, with a
consequent, unacceptable loss in performance.

Figure 20 illustrates this point. The optimum solution located, dias a significantly

higher objective function value than the local optimum locateg &towever,

manufacturing the system to take advantage of the optimymveitl be significantly

more difficult (and hence expensive) than manufacturing the system to use the local
optimum atr3. Or the design utilizing the optimum g}, may quickly lose performance if
operating conditions cause relatively slight deviations from the design. In other words, a
design utilizing the optimum &, is probably not robust.
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In contrast, a design utilizing the local optimunmgis relatively insensitive to the
manufacturing tolerances or the operating conditions, and so is more robust. It may be
more economically viable even through it has a lower performance (i.e., lower objective
function value) than the optimum solutionrgt For manufactured systems, for example,

a significantly improved design may be economically important, even if it is not the true
global optimum. A modest improvement in performance—say, 10%—may be sufficient to
justify manufacturing the partially optimized design.

Figure 20 also illustrates that the location of an optimum objective function value may
depend on the mesh used to compute the values. Suppose meshes 1, 2, and 3 are
successively finer, ang, r,, andrj are, respectively, the locations of the local optimum.
The location of the optimum will converge (if the model converges), but the location
calculated from a given mesh may vary with the mesh.

For this concept to be useful, one must have some confidence that the solution of the
model converges as the mesh is refined. (Speculation: For most engineering problems, the
convergence is uniform in the design space, or nearly so.) One must also be able to find a
mesh which is fine enough to give reasonable approximations to the local optima, but
coarse enough to run on an available platform in a practical amount of time.

Having thus an improved CTH model for the BRL 81-mm shaped charge and an improved
scheme for locating the jet tip, we employed the scheme presented in Table 5 to find an
optimum solution to the Sandia wave-shaper optimization problem.
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9. Optimized Solutions to the Wave-Shaper Problem

Using the improved@THmodel for the BRL 81-mm shaped charge and the improved
scheme for locating the jet tip (Section 8), we employed the scheme presented in Table 5
to find optimized solutions to the Sandia wave-shaper optimization problem, using
DAKOTAwith the modified method of feasible directions from the Design Optimization
Tools (DOT) software package [31].

The modified method of feasible directions is a gradient-based algorithm (Section 5.2) and
is used for constrained, continuous optimization problems. The modified feasible
directions algorithm in the Design Optimization Tools software package uses the Fletcher-
Reeves search algorithm (see Section 5.2; the BFGS algorithm could be used instead) as
long as no constraints are active or violated. If there are active constraints, but no violated
ones, then an optimization subproblem is solved to find a search direction which will
improve the design while remaining within the feasible region. If one or more constraints
are violated, then an optimization subproblem with an artificial variable is used to move
the design back into the feasible region.

For reference, the jet tip speeds on the coarse and normal meshes with no wave shaper are
8.80 km/s and 9.212 km/s, respectively.

We selected an initial wave shaper axial location of 3.362525 cm (the midpoint of its
allowed range) and an initial radius of 1.71525 cm (half the maximum allowed radius),
reasoning that if the wave shaper provides any improvement in the jet tip speed, it will
have some significant size. Since many engineering optimization problems have their
optimum value at one of the constraints, one could also select the maximum wave shaper
radius (3.415 cm) as a good starting value.

Using the coarse mesDAKOT Aselected the path shown in Figure 21, and found the
locally optimum solution (denoted solution 1) given in Table 6. Starting from this solution
and using the normal mesDAKOT Averified that the solution is locally optimal (Table 6).
Note that this solution was determined prior to generating the response surface on which
the optimization path is display in Figure 21.

We started a second optimization sequence with a wave shaper of maximum radius (3.415
cm) located at the midpoint of the axial range (3.362525 cm). The optimizer found its way
around a depression in the response surface (Figure 22) and discovered a second locally
optimal solution (denoted solution 2), which is given in Table 7. Starting from this

solution with the normal mesAKOT Averified this solution to be locally optimal (Table

7). This solution was also determined prior to generating the response surface on which
the optimization path is display in Figure 22. The formation of the jet for this optimum
solution is shown in Figure 23.

Because two different solutions were found, we generated the response surface in order to
better understand them.
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Examination of the response surface revealed that there is a design with a larger jet tip
speed near solution 2. However, with a forward difference approximation to the gradients,
the optimizer is unable to move away from g = 0 boundary. Hence the optimizer was
restarted from the coarse-mesh solution given in Table 8 but using a central difference
approximation to the gradients. The resulting solution (Solution 3) is given in Table 8.
This illustrates that the details of the optimizer may significantly affect the optimized
solutions found. Again, this solution was refined using a normal mesh; the result is given
in Table 8. This solution also has a lower jet tip speed than at least one other point on the
response surface, as determined by examining the points calculated for the surface. It
appeared that there is a “ridge” of points with nearly equal jet tip speeds.

To explore this, we fitted a quadratic polynomiat,jgto the two coarse-mesh, locally
optimal solutions from Tables 6 and 7, and the highest point on the response sujfgce, (
Zys Vip) = (3.0 cm, 0.134 cm, 9.83497 km/s)(§ Zys Vtip) = (3.0 cm, 0.134 cm, 10.2718
km/s) on the normal mesh.) The curve is given by

z,s = 0.15267162 + 0.6441655,  —3.172541 (21)

The jet tip speed was calculated at equidistant points along the curve fom,d) =
(3.000 cm, 0.134 cm) to (0.716 cm, 3.360 cm). These calculations did in fact reveal a
“ridge” (Table 9). The jet tip speed varies less than 0.7% along the ridge.

For completeness, we calculated the response surface in the vicinity of the ridge on a finer
discretization of (s Z%,9 Space. These calculations revealed a previously unsuspected
optimum solution near{,s, Zys Vtjp) = (2.5 ¢cm, 0.0 cm, 10.0066 km/s) (denoted solution 4
and visible in Figures 25 and 26). The jet tip velocity calculated for this point using the
normal mesh is 10.05 km/s, which is less than the jet tip velocities for solutions 1, 2, or 3,
and hence it is not the global optimal solution. (Table 10). This illustrates that while the
solutions may converge pointwise as the mesh is refined, the convergence may not be
uniform throughout the problem domain.

The optimized solutions found on the normal mesh are given in Table 11 with Baker’s
optimal solution. Illustrations of the paths taken by the optimizer on the coarser mesh
response surface are given in Figures 24, 25 and 26. The response surface was generated
by taking all the coarser mesh solutiongs(zys Vtjp) and triangulating a finite-element

mesh in ther(,s Z,9 plane. This procedure thus utilizes all the information known in
constructing the response surface.

Any of the optimized solutions found—1, 2, 3, or 4—is an improvement over the solution
with no wave shaper: The jet tip speed is 9% to 11% greater (based on the coarse-mesh
results, and using the jet tip velocity of 8.80 km/s with no wave shaper) or 12% to 13%
(based on the normal-mesh results, and using the jet tip velocity of 9.21 km/s with no
wave shaper). This may be sufficient to justify the use of a wave shaper. The improved jet
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Figure 21: The optimization path taken BAKOTAo the first optimal solution. The
path started at the center of the computational domaint¢ find an optimal solution
for the coarse-mesh modél), The optimal solution, solution 1, is given in Table 6.
Baker’s solution is also showryy.

Table 6: CTHSolution to the Sandia Wave-Shaper Optimization Problem: Solution 1

Coarse Mesh Normal Mesh
Optimal Jet Tip Speed 9.840 km/s 10.29 km/d
Wave Shaper Radius 3.360 cm 3.360 cm
Wave Shaper Position (offset from the liner apex) 0.716 cm 0.716 cm
Critical Mach Numbertl{;) Not Imposed Not Imposed
Jet Profile i) Active Active
No Inverse Jet Axial Velocity Gradierits) Not Active Not Active
Maximum Wave Shaper Radius) Not Active Not Active
Minimum Wave Shaper Radiulsg] Not Active Not Active
Maximum Wave Shaper Offset from the Linbg)( Not Active Not Active
Minimum Wave Shaper Offset from the Linég) Not Active Not Active
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Figure 22: The optimization path taken BAKOTAo a second optimal solution. The

path started at the center of the axial range and the maximum of the radial range of the
computational domain«) to find a second optimum solution for the coarse-mesh model
(O). The solution (solution 2) is given in Table 7.

Table 7: CTHSolution to the Sandia Wave-Shaper Optimization Problem: Solution 2

Coarse Mesh Normal Mesh
Optimal Jet Tip Speed 9.632 km/s 10.38 km/{d
Wave Shaper Radius 3.102 cm 3.102 cm
Wave Shaper Position (offset from the liner apex) 0.0 cm 0.0 cm
Critical Mach Numbertl{y) Not Imposed Not Imposed
Jet Profile ify) Not Active Active
No Inverse Jet Axial Velocity Gradierttd) Not Active Not Active
Maximum Wave Shaper Radius,) Not Active Not Active
Minimum Wave Shaper Radiubs] Not Active Not Active
Maximum Wave Shaper Offset from the Ling)( Not Active Not Active
Minimum Wave Shaper Offset from the Linég) Active Active
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Figure 23: The formation of the jet in the second Sandia solution.

-52-



Table 8: Revised Solution 2: Solution 3

Coarse Mesh Normal Mesh
Optimal Jet Tip Speed 9.808 km/s 10.31 km/d
Wave Shaper Radius 3.157 cm 3.187 cm
Wave Shaper Position (offset from the liner apex) 0.382 cm 0.287 cm
Critical Mach Numbert{;) Not Imposed Not Imposed
Jet Profile if,) Not Active Not Active
No Inverse Jet Axial Velocity Gradierttd) Not Active Not Active
Maximum Wave Shaper Radius,) Not Active Not Active
Minimum Wave Shaper Radiubg] Not Active Not Active
Maximum Wave Shaper Offset from the LinBg)( Not Active Not Active
Minimum Wave Shaper Offset from the Linég) Not Active Not Active

Table 9: Predicted Jet Tip Speed Along the Ridge in the Response Surface

Wave Shaper Wave Shaper Displacemenj, Axial Jet Tip Speed
Radius ry,s[cm] [cm] [km/s]
3.0000000 0.134000 9.83497
3.0360035 0.190370 9.80283
3.0720070 0.247137 9.79710
3.1080105 0.304299 9.81037
3.1440140 0.361856 9.78806
3.1800175 0.419810 9.79029
3.2160210 0.478159 9.77901
3.2520245 0.536904 9.79174
3.2880280 0.596045 9.81181
3.3240315 0.655582 9.78489
3.3600350 0.715515 9.84097

tip speed occurs over a region in thigd 7,9 plane, as is shown in Figure 27, in which are
plotted 5% contours of increase in jet tip speed over the jet with no wave shaper. Thus a
wave shaper radius and location can be selected which makes manufacturing as easy as
possible and still gives improved performance. For example, it may be easier to
manufacture a shaped charge with a wave shaper which is immediately adjacent to the
liner, rather than spaced some distance away from it.
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Table 10: Response Surface Maximum Solution: Solution 4

Coarse Mesh Normal Mesh
Optimal Jet Tip Speed 10.0066 km/s 10.05 km/s
Wave Shaper Radius 2.500 cm 2.500 cm
Wave Shaper Position (offset from the liner apex) 0.0 cm 0.0 cm
Critical Mach Numbert{;) Not Imposed Not Imposed
Jet Profile Igy) Not Active Not Active
No Inverse Jet Axial Velocity Gradierttd) Not Active Not Active
Maximum Wave Shaper Radius,) Not Active Not Active
Minimum Wave Shaper Radiubgf Not Active Not Active
Maximum Wave Shaper Offset from the Linbg)( Not Active Not Active
Minimum Wave Shaper Offset from the Linég) Active Active

Table 11: Optimal Jet Tip Speeds PredictedCh

T Wave Shaper Jet Tip
Solution Opt|m|_zat|on Wavg Shaper OffsetfromLiner | Velocity
Algorithm Radius [cm]
Apex [cm] [km/s]
Sequential
Baker Quadratic 3.415 2.725 10.1
Programming
Modified Method
Sandia 1 of Feasible 3.360 0.716 10.29
Directions
Modified Method
Sandia 2 of Feasible 3.102 0.0 10.38
Directions
Modified Method
Sandia 3 of Feasible 3.182 0.287 10.31
Directions
Inspection of
Sandia4 | Response Surface 2.500 0.0 10.05

A comparison of the jets at 505 for three different designs, the mid-point design, Baker’s
optimum design, and designi2( solution 2), is given in Figure 28.
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Figure 24: Path taken by the optimizer to Solution 1. The starting point is marked with
a solid delta @) and the final point is marked with a solid gradient symiwgl (

10.5

=
o

©
o

©

0.5

Jet Tip Speed [km/sec]

Figure 25: Path taken by the optimizer to Solution 2. The starting point is marked with
a solid delta @) and the final point is marked with a solid gradient symiwgl (
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Figure 26: Path taken by the optimizer to Solution 3. The starting point is marked with
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Figure 27: Jet-tip speed improvement contours. Contours of 5%, 10%, and 15%
increase in the jet tip speed.
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Figure 28: Comparison of the jet profiles for three solutions. (a) The midpoint solution.
(b) Baker’s solution. (c) Solution 2.
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10. Challenges in Automatic Optimization

In solving an optimization problem, there are three essential parts to the problem: The
formulation of the optimization problem (Sections 7.1 and 7.3), the development of the
simulation model (Section 7.2), and the selection of the optimization algorithm and the
software that implements it. Each of these parts plays a crucial role in the successful
solution of the problem.

In this section we discuss some of the issues and challenges in automatic optimization of
designs as illustrated by this project. These include issues in model development, problem
formulation and algorithm development, optimization algorithm and software selection,
and computer resource accessibility.

10.1 Model Development

Gill, et. al [46] review some basic principles for developing models for the formulation of
the optimization problem. One of these principles is to “Formulate a simple model first
and add features in conjunction with running the optimization.” This can be done in
several ways, such as adding physical phenomena to the simulation (as did Jameson [42])
or refining the mesh, as we did in this study.

In our study, a fine mesh was required to obtain converged values of the jet tip speed. This
in turn resulted in long run times to evaluate the objective function. Timely solution of the
optimization problem requires that objective function evaluations be performed as quickly
as possible. Successful solution of the optimization problem therefore requires that
analysts use good modeling practice in developing the models: The models must not only
provide a good representation for the physical system, but must also run efficiently. For
example, in th&€THmodel for the shaped charge, care must be exercised when the
optimum solution is near the boundaries of the geometric domain, to use sufficient
resolution for small gaps, such as between the wave shaper and the liner. The coarser mesh
model may not provide sufficient resolution of the gap between the liner and the wave
shaper when the two are close together. In such cases a variable mesh that puts more cells
in such small gaps may be useful. However, convergence problems may result when a
variable mesh is used (Section 8.2) and very small computational cells in a region of the
mesh may lead to undesirably long run times.

In addition to mesh refinement, in some cases it may be valuable to use simple material
models (such as simple constitutive or fracture models) in identifying potentially optimal
designs, and then to verify these designs using more accurate material models. This would
be worthwhile if using the more accurate material model produces a significant increase in
the time required to evaluate the objective function.

10.2 Problem Formulation and Algorithm Development

The definition of the objective function and the constraints also play an important role in
the successful solution of an optimization problem.
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Where possible, the objective function should be smooth [46]. The importance of this is
illustrated by the development of the algorithm for located the jet tip (Section 8.2). The
objective function or constraint values may not vary smoothly as functions of the design
variables. Local optimization algorithms may then identify an instance of numerical noise
as a local optimum value noise rather than a true optimum value @geEigure 10).
Smoothing requires either modifying the simulation code to provide smoother output, or
smoothing via the use of a response surface. The former requires detailed knowledge of
and access to the source code. The latter may lead to unnecessary calculations
(calculations for which one or more constraints are violated), but may be more efficient
than using a global optimization algorithm. Smoothing may be accomplished by
appropriate averaging,g, averaging the velocity over several cells at the tip of the jet, or
by selecting a more representative location for determining the velocity.

The discussion of the development of the jet tip location algorithm (Section 8.2) also
illustrates that significant effort may be required to formulate a robust algorithm for
determining the objective function or nonlinear constraint values, especially when these
are extracted from complex computer models.

Even when an objective function is smooth, it may converge only pointwise and not
uniformly as the mesh is refined. That is, at any given point, the objective function may
converge, but the rate at which it converges varies from point to point. This contributes to
the “noise” that may be exhibited in the objective function (compare Figures 10 and 11
and see the illustration in Figure 20). Reducing this source for noise requires either
extremely fine meshes (which produces a model that may be too computationally
expensive) or some means of filtering. The multilevel scheme presented in Table 5
(Section 8) provides such filtering.

In addition, extracting the objective function value and related information may require
detailed knowledge of or modifications to the parallel source code. Extensive knowledge
of and access to the source code was required to n©@io extract the necessary

objective value and some the of the constraints. The necessary changes were very specific
to the shaped-charge simulati&iTHcould not be treated as a “black box” for evaluating

the design functions. Thus complex computer codes cannot easily be used routinely for
optimization problems, unless the design function values can be extracted from the normal
output automatically.

Finally, in some problems it is valuable to distinguish between “hard” and “soft”
constraints. A “hard” constraint is one that must not be violated for the simulation to be
physically meaningful. For example, conservation equations for mass and energy are hard
constraints. A “soft” constraint is one that may be violated to some extent and the
simulation remains valid. For example, the minimum radial gap permitted between the
wave shaper and the case in Baker’s wave shaper optimization problem (egn. 11 in Section
7.1) could be violated and the simulation would remain physically valid. The judgment of
how much soft constraints may be violated and the design remain feasible may be difficult
to automate.
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10.3 Optimization Algorithm and Software Selection

The selection of the optimization algorithm and the software package that implements it is
also important in successfully optimizing a design automatically. The user must decide
whether a global or a local algorithm is appropriate. While global algorithms such as
genetic algorithms will find the global optimum, the large number of objective function
evaluations required to sample the design space may make them too computationally
expensive (Section 5.2). Gradient-based, local algorithms can be very efficient at finding
local optima, but computing the gradients via finite-difference approximations is often
computationally expensive and they can have difficulty handling noisy objective function
or constraint values.

The software implementing a given algorithm should support the optimization algorithm
in several significant ways. For example, the software should scale the design variables
and functions [46] (botDAKOTA19] andOptdesX [38] perform automatic scaling of

the design variables based on the bounds supplied by the user).

A number of difficulties arise from using finite-difference approximations for gradients in

a gradient-based algorithm. Calculating gradients involves multiple, possibly expensive,
objective function evaluations. For example, using a simple forward difference
approximation for the first derivative of the objective function requNkek function
evaluations folN design variables. When calculations to determine the objective function
or constraint values take more than a few minutes, the time required to compute gradients
becomes large, and it is important to avoid redundant calculations. For example, it may be
possible to reuse calculations from the one-dimensional (line) search, as illustrated in
Figure 29. If the final step in the line search is less than or equal to the finite-difference
step size, the two final points in the line search could be used in calculating the gradient.
That is, ifh" in Figure 29 is sufficiently small, both the previously calculated objective
function values could be used to compute new gradients, so that only three new points
would need to be computed. The gradients can then be projected into the original
coordinate system if required.

The software should allow the user to control the step size used in estimating the gradients
and the type of approximation usexq, forward or central differences). (BAlAKOTA

[19] andOptdesX [38] allow users to select the finite difference step size.) The step size
should be small enough to provide a reasonable approximation to the gradient, but large
enough to filter out some of the “noise” in the objective function. It may not always be
possible to simultaneously satisfy these constraints. When there are several local optimal
solutions, the solution found by the optimizer may depend on the startingeagint (

Sandia solutions 1 and 2), as well as on the step size used by the optimizer and on the
means used to compute the gradieetg,(Sandia solutions 2 and 3). Generating the
response surface may help, but can still be misleading, if it is not generated on a fine
enough mesh to resolve the optimal solutions.
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Search direction

Figure 29: lllustration of the reuse of solutions from the one-dimensional search. The
solid circles @) represent points calculated in the one-dimensional search. The open
circles ©) represent the additional points needed to calculate the partial derivatives in
the search direction and perpendicular to it. If needed, the partial derivatives can be
projected to the | and 7,5 axis directions.

In some cases, the optimizer should not use points from outside the design region in
calculating gradients. Consider, for example, calculating the gradient of the jet tip speed in
the radial direction when the wave shaper radius is close to its upper bound. If the radial
finite-difference step size is large enough so that the wave shaper contacts the case, then
the detonation wave will be completely blocked by the wave shaper and the behavior of
the model will change dramatically. The use of the jet tip speed from such a simulation
will probably result in a poor approximation to the gradient.

10.4 Computer Resource Issues

We now discuss issues related to computer resources, and in particular the coordination
and utilization of resources.

In this study we ran the optimizer on one computer and the objective function evaluator on
a different computer. We note that coordinating the calculations of the optimizer and the
objective function evaluator may not be easy. Complex interacting scripts running on more
than one platform were required to link them, owing to the files required by and produced
by CTH and the scripts required to extract the jet tip speed (the objective function), the jet
profile fraction (used th,) and the maximum axial velocity gradient (used to calcutgje

from the output file (Section 7.3). With further development (which was not warranted for
this study) the scripts could be simplified to some extent. However, the coordination of
distributed computing resources for optimization calculations remains an issue to be
considered.
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A consequence of using distributed resources is that the resources, in particular parallel
computing resources, may not be available on demand. For example, jobs that start on the
Paragon have exclusive use of the computational nodes (Section 4), so if the requested
number of nodes is not available, a job will not run. Computational nodes on the DEC
cluster are time-shared, so a job will run with the requested number of nodes, but it may
run very slowly if the cluster is heavily loaded. A parallel computer may be unavailable
owing to preventive maintenance or to a system crash. It is possible to develop
optimization software that is tolerant of delays in running an objective function evaluation
or of the failure of an evaluation. This is especially important for objective function
evaluations that may take an hour or more. Fast-running objective function evaluations
(say, less than an hour per evaluation) can alleviate some of the difficulty by allowing
more objective function evaluations—and hence greater progress toward the solution—in
a shorter period of time.

In order to decrease the run time for an objective function evaluation, non-optimal parallel
problem decompositions can be used. An optimal problem decomposition places the
largest possible (or nearly the largest possible) subdomain on each computational node of
the parallel computer. An optimal decomposition yields the greatest parallel efficiency. As
discussed in Section 3, the fixed-size speedup of a parallel calculation can be exploited to
decrease the run time by increasing the number of computational nodes while keeping the
problem size fixed. Eventually communication overhead becomes comparable to the
computational time, and continuing to increase the number of computational nodes
actually increases the run time (Figure 2). Simulation codes with good fixed-size speedup
are required to make this process feasible. All the calculations presented here were
performed on non-optimal decompositions to decrease their execution time.

Finally, for optimizations to be practical, a complete series should probably run overnight,
or within 24 hours. (We assume that the requisite computing resources will be available
overnight at some time, and that a designer is willing to wait overnight for an improved
design but probably not for several days.) Suppose 60 objective function evaluations are
required; this is double the number typical for the calculations in this study. Then for a
single level of parallelism, each calculation should require no more than 15 minutes to run.
For the BRL 81-mm wave shaper problem, we needed at least 16 computational nodes of
the IntelParagon to run the calculations sufficiently quickly to make optimization
feasiblej.e., in 20 minutes. Four processors of the DEC 8400 cluster were required for the
same calculations.

Eldred and Hart have provided an analysis that shows that, under reasonable assumptions,
better overall performanced., shorter run time) is achieved by using two-level

parallelism [47]. In particular, they show that better performance is achieved by running
each objective function evaluation on the minimum number of computational nodes
required and running several objective function evaluations in parallel, than by devoting
more computational nodes to accelerating a single objective function evaluation. For
example, using the fixed-size speed up data for the BRL 81-mm shaped charge model on
theParagon (Figure 9), an objective function evaluation run on two computational

nodes completed in 2870 seconds and on four computation nodes in 1590 seconds. Thus
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two objective function evaluations on four computation nodes would take a minimum of
3180 seconds. In contrast, two objective function evaluations run on two computation
nodes each in parallel would take a minimum of 2870 seconds, or 11% faster. Higher
levels of parallelism can also be used, and#&KOT Asoftware has been and continues to
be modified to allow multiple levels of different types of parallelism [48].

10.5 Application and Analysis

Finally, we note that the process of formulating and solving an optimization problem is
iterative. The problem formulation, the model definition, and algorithms for the objective
function and constraints may all change and be improved in the course of solving the
optimization problem. This is illustrated by the iterations in the development of the
formulation for the wave-shaper optimization problem (Section 7.3), the development of
the model for the BRL 81-mm shaped charge (Sections 8.2 and 10.1), the iterations in the
development of robust algorithms for the objective function and some of the nonlinear
constraints (Sections 8.2 and 10.2), the iterations in the selection of the optimization
algorithm or software used to solve the problem (Sections 6.1, 6.2and 10.3). Thus
optimization software cannot be used as a “black box”: the application of optimization
techniques to solving engineering problems requires significant human analysis and
judgment.
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11. Summary

We solved the wave shaper optimization problem for the BRL 81-mm shaped charge
previously solved by Baker [9][10], but without the sonic criterion. We used®EOTA
optimization software [13][19] to control the optimization, and used the modified method
of feasible directions from the DOT library [31] as the optimization metD&&KOTA
evaluated the axial jet tip speed (the objective function) usinG TiEulerian shock-

wave physics code [1][2] to model the shaped charge, and calculated gradients using finite
differences.

We used a multistep procedure in which the optimization calculations were initially run
using a quick-running, coarse-mesh model for the shaped charge. Then candidate optimal
solutions were refined using a finer mesh (called the normal mesh). Jameson [42] used a
scheme in which a lower fidelity model (an inviscid flow model) was used to obtain
interesting design candidates for a jet wing, followed by confirmation of the design using a
higher fidelity model (that included viscous effects). Boog&keal [43] proposed a

powerful framework for managing variable fidelity approximations to the objective
function; in some cases the approximations are guaranteed to converge to an optimizer of
the original function [44][45]. Romero [36] used a two-phase structured sampling scheme
in which a global search is conducted using a model with loose convergence tolerances
followed by a local search with models with tighter convergence tolerances. In our
scheme, the difference in fidelity is obtained by changing the resolution of the mesh,
rather than changing the physical phenomena included. With our sdDAK©,TA

typically found candidate optimal solutions overnight using the coarse-mesh model.
Refining the candidate solutions using the finer mesh model required significantly longer.
A combination of the two means of changing model fidelity may be worthwhile.

We identified several optimal solutions, and in doing so illustrated several of the issues in
finding optimal designs. The optimizer initially found two locally optimal solutions when
started from two different locations (Figures 24 and 25). One of these (Sandia Solution 2)
was locally optimal on both the coarser and finer meshes when forward finite differences
were used to compute the gradients, but not when central finite differences were used.

We generated a response surface for the model using the coarser mesh in order to illustrate
our solutions. Examination of the response surface revealed other locally optimal
solutions that the optimizer had not discovered. This was in part due to the noisiness of the
response surface. A point on the response surface that appeared to be the global optimal
solution proved to be suboptimal when evaluated on the finer mesh. This illustrates that
while the model predictions may converge pointwise, they may not converge uniformly in
the computational domain.

The response surface showed a region of the design spage,§ space) in which the
jet tip speed was close to optimal. Thus a robust design could be developed by selecting a
point near the middle of this region.
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As a result of this study, we drew a number of conclusions regarding the state of automatic
optimization of designs using parallel computers. Models developed for use in
optimization studies must be developed using good modeling practice, so that they provide
not only appropriately accurate representations of the physical system but also run
efficiently on the available computer hardware. Developing smooth, robust algorithms for
the objective function and nonlinear constraints may require significant effort and require
access to source code. Such algorithms are often limited to a very specific optimization
problem, and not be generally useful for other problems. If the design space contains more
than one locally optimal solution, then different solutions may be found by starting from
different points in the design space, and may also depend on the finite difference
approximation used to compute gradiertg { forward or central differences) and on the
step size. It may not be easy to coordinate distributed computing resources. Non-optimal
problem decompositions may be needed to speed up the objective function evaluation to
obtain the turnaround time needed for effective optimizations. Optimization calculation
sequences should probably run overnight or within 24 hours to be useful for designers.

We also identified some potentially useful enhancements to optimization software to
prevent redundant or unnecessary evaluations of the objective function, such as restricting
the optimizer from using points outside the design space.

Optimization software running high-fidelity models of physical systems using parallel
shock wave physics codes to find improved designs can be a valuable tool for designers.
The current state of algorithm and software development does not permit routine, “black
box” optimization of designs, but the effort involved in using the existing tools may well
be worth the improvement achieved in designs.

-65-



Intentionally blank page

-66-



Appendix A A Typical CTHInput File for the BRL 81-mm

Shaped-Charge Device

*eor* genin

CTHGEN input for the BRL 81-mm Shaped-Charge

+ +
| + +
|l /

|| +--+
[0 /
[0
[0 |

[0
[0 \

|| +--+

'l \

| + +
+ +
Aluminum shell 1)
Copper liner (2)

Octol 78/22 detonator (3) (HVRB model)

Octol 78/22 high explosive (3) (HVRB model)
(Octol 78/22 fills interior space)

Copper wave shaper 4)

Exterior space is vacuum

Cylindrical Case - 6061 Aluminum
Case_inner_radius = 40.655 mm = 4.0655 cm
Case_outer_radius =42.50 mm =4.25cm
Length = =18 cm
Case thickness = 1.845 mm =0.1845 cm

Detonator - Octol 75/25 (Programmed burn model)
Outer radius =1 of case inner radius
=4.0655 cm
Detonator_Length = 0.1 of detonator radius
Detonator_Length = 0.40655 cm
Detonation radius =1 cm

Liner - Copper
Static speed of sound 398000 cm/sec
Maximum liner collapse Mach No. = 1.23
Fraction of jet length > 0.05 cm= 0.95

b . T T S T T R N B N N T S N R I . T T R R N R . N N R N N N S N T N S T R
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Fraction of jet tip speed =0.05
21-degree half-angle cone 21 degrees
Inner radius (base) = 39.87 mm = 3.987 cm
Outer radius (base) =41.81 mm =4.181 cm
Outer Height =93.26 mm =9.326 cm
Inner Height =91.36 mm =9.136 cm
Outer radius (apex) = 10.8 mm =1.08 cm
Inner radius (apex) = 8.890 mm = 0.889 cm
Liner thickness = mm = 0.191 cm
Notch radius =39.87 mm = 3.987 cm
Notch displacement = 1.25 mm = 0.125 cm
Liner offset = mm = 8.674 cm
Number of apex points = 5

Number of cells through liner thickness = 4
Number of cells through case thickness = 4

* Wave Shaper - Copper

Thickness =2.54cm

Clearance =3.4305 cm
Minimum radius  =0.01 cm
Radius =1.72025 cm

Axial location =3.362525 cm
Minimum location = 0.59105 cm
Maximum location =6.134 cm

JET: xws = 3.362525 cm, axial location of the wave shaper
JET: rws = 1.72025 cm, radius of the wave shaper
JET: MachNo =1.23 maximum allowed Mach number
JET: snd_spd = 398000 cm/sec, static speed of sound in the liner
JET: frim = 0.95, fraction of jet length with radius greater
than 0.05 cm
JET: fvtip =0.05, fraction of jet tip speed for velocity gradient
threshold
JET: h4 = 1.71025 cm, wave-shaper clearance
JET: h5= 1.72025 cm, wave-shaper radius
JET: h6 = 2.771475 cm, xws - (tcase + tdet)
wave-shaper axial location greater than detonator
JET: h7 = 2.771475 cm, xapex - (xws + tws)
wave-shaper axial location less than apex

JET: avs = -750000 cm/sec, axial velocity shift.

End of brl81mm.h

Steinberg-Guinan constitutive model is not used for aluminum.
Steinberg-Guinan constitutive model is used for copper.

Steinberg-Guinan constitutive model is not used for the wave shaper.
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Mesh Parameters

Radial Mesh
Start of radial domain = 0 cm (must be 0.0!)
Radial domain extent, xdomain 6.375 cm
Initial radial active mesh, from 0.0 to 4.25 cm

Variable Mesh Parameters ----------------
Coarse mesh, Refinement factor = 0.5

Reset numcell_case from 4 to (refinement factor) x numcell_case
=2

First mesh segment:
xlwidth= 4.25cm
x1first= 0.09225 cm
xllast = 0.09225 cm

Second mesh segment:
x2width = 2.125cm
x2first = 0.09225 cm
x2last = 0.1845cm

Axial Mesh
Start of axial domain =-2 cm
Axial domain extent, ydomain 38 cm
Initial axial active mesh, from 0.0to 9 cm

Variable Mesh Parameters ----------------
Axial domain extent, ydomain 38 cm
First mesh segment:
ylwidth= 2cm
ylfirst= 0.1 cm
yllast= 0.09225cm
Second mesh segment:
y2width = 38 cm
y2first = 0.09225 cm
y2last = 0.09225 cm

JET: aacs = 0.09225 cm, average axial cell size

Path for SESAME data: /usr/community/cth/data/sesame
Path for IWL data: /usr/community/cth/data/jwl

b O T R T R R T R T I N N SN N N N TN N N SN S N N N SN . SR S N N I T T T R . N R .

Title Record

D Cylindrical BRL 81-mm Shaped Charge with Wave Shaper
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*

* Control Records
Control

InsertEcho

MMP

EP
EndControl

*

*

* Mesh Records
*

Mesh

*

Block 1 Geometry=2DCylindrical Type=Eulerian

*

Radial dimension

X0=0
X1 DXf=0.09225 DXI=0.09225 Width=4.25
X2 DXf=0.09225 DXI=0.1845 Width=2.125

EndX

*  Axial dimension
Y0 =-2
Y1 DYf=0.1 DYI=0.09225 Width=2
Y2 DYf=0.09225 DYI=0.09225 Width=38

EndY

*  Define the active mesh.
xaction = 04.25
yaction= -2 9

EndBlock

*

EndMesh

*

Material Models

Material Insertion Records

* % F ¥ X

nsertion_of Material

*

Block 1

*

Package ‘Aluminum Case’

Material 1
Numsub =50
Insert UDS
* Radius Axial Position
pointl 0.000 0.000

point2 4.25  0.000
point3 4.25 18
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point4 4.0655 18
point5 4.0655  0.1845
pointé  0.000 0.1845

EndInsert
EndPackage

Package ‘Copper Liner’

Material 2
Numsub =50
Insert UDS
Radius Axial Position
tpoint  0.000 8.674

Generate outer apex.

pointl 0.0000000000 0.0000000000
point2 0.2576161342 0.0311749777
point3 0.5003597179 0.1229001344
point4 0.7142168145 0.2698800448
point5 0.8868411459 0.4636293469
pointé 1.0082668606 0.6929626145

Generate outer side.
point7 4.181 9.326

Generate inner side.
point8 3.987 9.326

Generate inner apex.

point9 0.8299529992 0.7614108929
pointl0 0.7300016469 0.5726356383
pointll 0.5879062483 0.4131512591
pointl2 0.4118701752 0.2921650181
pointl3 0.2120562438 0.2166616252
pointl4 0 0.191

EndInsert
EndPackage

Package ‘Wave Shaper’
Material 4
Numsub =50
Insert Box
pl=0.0 3.362525
p2 = 1.72025 5.902525
Endinsert
EndPackage

Package ‘Octol Detonator’

Material 3
Numsub =50
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Pressure =3.42e+11
Temperature = 0.35

Insert Box
pl=0.0 0.0
* pl=0.0 0.1845
p2 =4.0655 0.59105
Endinsert
EndPackage
*
Package ‘Octol HE’
Material 3
Numsub =50
Insert UDS
* Starting point number = 1
pointl 0.0 0.0

point2 4.0655 0.0
point3 4.0655 18

* Generate outer apex.

point4 1.008266861 9.366962614
point5 0.8868411459 9.137629347
pointé 0.7142168145 8.943880045
point7 0.5003597179 8.796900134
point8 0.2576161342 8.705174978
point9 0 8.674

Endinsert
EndPackage

EndBlock

*

EndInsertion

*

*

* Equation of State Records
*

*

EOS * number_of _materials =4

*

* Mie-Gruneisen model for aluminum.
Materiall MGRUN 6061-T6_AL

* Mie-Gruneisen model for copper.
Material2 MGRUN COPPER

* HVRB model for octol 78/22 explosive.
Material3 HVRB OCTOL
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* Mie-Gruneisen model for copper wave_shaper.
Material4 MGRUN COPPER

*

*

EndEOS

*

*

* Constitutive Model Records
*,

EPData

*

* 6061_T6 Aluminum

* Use the von Mises elastic, perfectly plastic model
Materiall EP =1, Yield = 7.0€9, Poisson = 0.33

Copper Liner
Use the Steinberg-Guinan model
Material2_EP = 2, Steinberg=COPPER, TMelt=10.0

* X F X

Wave Shaper
Use the von Mises elastic, perfectly plastic model
Material4_EP =1, Yield = 2.0e9, Poisson = 0.33

E I

Yield strength in mixed cells is the volume-fraction weighted sum
of the yield strengths of the materials in the cell.

Mix = 3

*

EndEPData

*

* %k X X X

*

* CTH input for the BRL 81-mm Shaped-Charge

*

*eor* cthin
*,

* Title Record

*

2D Cylindrical BRL 81-mm Shaped Charge with Wave Shaper
*

*

*

* Control Records

*

Control
*

MMP1

*

* No long first edit.
NLFEdit

*
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* No long edits.
NLEdit

*

Stop cycle
NSCycle = 10000

*

Stop time
TStop =5.0e-5 * Stop at 50 microseconds

Viscosity

* X * X

NTBad
NTBad = 99999999

*

EndControl

*

* Restart Records

*

Restart
Number =1 * Start from the beginning.
EndRestart

*

* Fracture Records

*

Fracts
Stress
PFracl -9.0e9
PFrac2 -6.0e9
PFrac3 -1.0e7
PFrac3 -1.0e7
PFrac4 -6.0e9

PFMix -1.0e99
PFVoid -1.0e99
EndFracts

*

* Velocity Addition Records

*

VAdd
TAdd 40.0e-6

* Axial velocity shift -750000 cm/sec
YVel -750000

EndV

*

* Material Discard Records
*,

* Discard the high explosive(s)

Discard

Material 3 Pressure 1.0e7 Density -0.01

Material 3 Pressure 1.0e12 Density 100.0 TOn=30.0e-6
TOff=30.5e-6

Material 3 Pressure 1.0e12 Density 100.0 TOn=30.0e-6
TOff=30.5e-6

*
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* Discard the wave shaper material 4
* Material 4 Pressure 1.0e12 Density 100.0 TOn=30.0e-6
TOff=30.5e-6

*

EndDiscard

*

* Edit Control Records

*

Edit
* Short edits.
ShortT
Time = 0.0 DtFrequency = 1.el
EndShortT
*
LongT
Time = 0.0 DtFrequency = 1l.el
EndLongT
*
PlotT

Time =0.0 DtFrequency = 2.e-6
Time = 1.0e-5 DtFrequency = 5.e-6
EndPlotT

PlotData
mass
volume
pressure
velocity

EndPlotData

* % kX

HistT
Time =0.0 DtFrequency = 2.e-6
HTracer All

EndHistT

*
*

EndEdit

*

* Convection Records

*

Convct
Convection =1
Interface = High_Resolution

*

* No fragmentation for Octol 78/22
NoFragment = 3

*

EndConvct

*

* Boundary Condition Records
*
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Boundary
BHydro
Block =1
* The y axis is the axis of symmetry.
BXBot=0

* Transmissive boundary.
BXTop =2

* Transmissive boundary.
BYBot = 2

* Transmissive boundary.
BYTop =2

EndBlock
EndHydro
EndBoundary

*

*
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