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ABSTRACT

The optimal control of a CVD reactor is an important issue in the semiconductor

industry. In this report we examine the issues of using large-scale optimization methods

for the solution of the CVD optimal control problem. We consider using the TWAFER

analysis code to compute the temperature distributions inside a CVD reactor and coupling

it with a nonlinear optimization code to find the optimal power curves which achieve a

specified target temperature in minimum time. A model problem is numerically tested

and analyzed to give insight into our proposed method. The test results indicate that this

approach can yield excellent predictions for the optimal power curves.
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1. Introduction

An important resource in the semiconductor

sition (CVD) furnaces for the fabrication of

industry is the use of chemical vapor depo-

wafers. These furnaces are used to heat up

a silicon wafer to a specified temperature so that certain chemical reactions may occur,

thereby creating a circuit pattern on the wafer. It is extremely important that the specified

temperature is achieved and that the temperature is as uniform as possible throughout the

entire wafer so that the correct reaction rates occur. There are many different designs for

CVD furnaces, each with its own set of advantages and disadvantages. In each case, how-

ever, optimal control of the power to the furnace heating elements to meet certain design

criteria is an important issue.

Ideally, a furnace should ramp up so that the target temperature of the silicon wafers

is attained as fast as possible. A typical scenario starts at 300° C. and increases to 1000°

C., which is then maintained while the wafers “cook”. During the process of increasing the

heater powers to reach the target temperature, it is important that the temperature vari-

ation across each individual wafer not exceed a certain tolerance or the wafer may develop

stress fractures. The maximum temperature difference that can be tolerated is usually a

known function of temperature. Thus, the problem of ramping up the temperature as fast

as possible can be viewed as an optimal trajectory problem with known constraints.

The goal of this research is to predict this optimal temperature trajectory through

nonlinear optimization methods. There is also great practical value in developing new

smaller batch furnaces that ramp up temperatures faster than a large furnace. This is a

problem in optimal design, for which computing an optimal heater power trajectory is an

underlying subproblem.  It is expected that this effort will require manipulation of many

basic elements of the furnace design, such as the placement and spacing of the silicon

wafers, and the size and geometry of the furnace and its heating elements. In this report

we focus on optimizing the transient performance of a given furnace design by determining
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heater power control profiles.

The approach we have taken is to apply nonlinear optimization algorithms to solve for

the heater element powers used in a simulation of a CVD reactor furnace. The actual

simulations are conducted by the TWAFER analysis software of Houf and Grcar [7], which

computes the temperature distribution within a furnace by a finite volume technique. One

of the criteria of this project is to regard the TWAFER code as a “black-box”, which

implies that the code is not available for modification.

The TWAFER code is a heat transfer analysis code that can compute the temperature

distribution at all of the elements of the furnace. TWAFER has the capability to model

both conduction and radiation. It does this by satisfying energy conservation laws on a

finite volume model of the furnace components. Mathematically, it solves a discretized

form of the nonlinear partial differential heat equation for the temperatures at each node.

Some of the nodes correspond to heater elements, which introduce power into the system

by electrical resistance heating.

In the following section, we first discuss the various optimization formulations that

can be taken. In Section 3 we discuss one particular approach we have used and give an

example solution from a one dimensional model problem.

2. Optimization Formulation

The straightforward approach to formulating the optimal trajectory problem as an opti-

mization problem is to minimize the time to reach a target temperature. This problem can

be phrased as:

Minimize the time to reach the target temperature,

Subject to temperature variations across each wafer being less than the tolerance.

●

✎

Figure 1 shows the kind of temperature profiles across a wafer that an optimal solution
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should generate (the graph was produced from TWAFER output for an extrapolated guess

of the optimal heater power curves). The solid lower line is the temperature at the center

of one wafer and the dashed upper line is the maximum deviation from this temperature

that is allowed. The dotted lines in between are temperature profiles at various points on

the wafer, all lying within the tolerance. The figure does not show the heater power curves.
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Figure 1: Example of optimal wafer temperature profiles

An algorithm to compute the optimal power curves is conceptually easy to implement.

We choose an initial guess for the electrical currents into each heater, let TWAFER solve

for temperatures throughout the furnace, and then check the temperature variation across
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the wafers. If the temperature variations are within the prescribed tolerance and the time

is minimum, then stop; otherwise, choose new heater powers and continue iterating. The

optimization variables are the heater powers, which the TWAFER analysis code accesses by

reading an input file. This scheme allows TWAFER to operate as a black-box, generating

output temperature profiles for a given input choice of heater powers.

The brief description above ignores a number of important issues that may affect algo-

rithm performance and robustness. For instance, an efficient optimization method needs

derivatives of the problem, which are not provided by the TWAFER code. Can we com-

pute derivative estimates by finite difference approximations in an accurate and efficient

manner? Alternatively, can we use automatic differentiation tools [6] to look inside the

TWAFER source code and generate analytic derivatives? We must also anticipate the

problem being ill-conditioned with respect to some unknowns because of the time stepping

solution process used by TWAFER. As one example, the final temperature and time to

reach it is probably relatively insensitive to the heater power values at time zero. These

early variables are connected to the final temperatures by a long chain of intermediate

values internal to the TWAFER code. Will the optimization algorithm be robust enough

to handle the ill-conditioning, or will we have to adjust the derivatives or impose additional

constraints to obtain physically meaningful solutions?

Some further insight into the optimization process is afforded by considering the “all-

at-once” approach to multi-disciplinary optimization described in [4] (although here we

have just one discipline). The idea is to pull the internal TWAFER variables out into full

view and look at the total mathematical problem. To cast this in standard optimal control

notation, let us designate the “control” or “decision” variables by the vector u, and the

“state” variables by the vector x. In our case, the components of u are the heater power

profiles, each a function of time t. The state variables are temperature profiles at various

points in the furnace (node points determined by the TWAFER finite volume algorithm)

d
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and again are functions of time. Schematically, our optimal control problem looks like

min tf
u(t)

subject to c(x(t), u(t)) = O,

h(x(t)) ~ o.

Here, tf is the unknown time to reach the target temperature, h(z(t)) is a set of inequalities

representing the restrictions on temperature variation across each wafer, and c(x(t), u(t))

is a set of “state” equations inside the TWAFER code that model the heat flow in the

CVD furnace.

Now let’s think about what our optimization procedure does in terms of this problem

description. We choose some values for u(t). This is input to TWAFER, which computes

z(t) such that c(x(t), u(t)) = O is satisfied (in practice, this is only happening at certain

discretized points in time, but we don’t need to worry about that yet). Then we check

the inequalities h(z(t)) and test if tf is minimized. If necessary, we choose a new u(t) and

iterate again.

There are two points to make about this method. First, the quantity tf is not something

we get directly for each choice of heater powers. We must look at the temperature profiles

x(t) generated by TWAFER and decide when they reach the target temperature, and we

might have to do something to make sure the profiles are not drastically overshooting the

target (remember, the furnace is supposed to reach the target temperature and stay there

while the wafers “cook” ).

Second, our optimization method is not solving the problem in an “all-at-once” sense;

that is, it does not let u(t) and x(t) vary independently in reaching a total solution. We

choose u(t) freely, but x(t) is determined completely by u(t) so that c(z(t),  u(t)) = O is

always satisfied. This is a consequence of the black-box nature of TWAFER, which limits

us to using the values of x(t) that it computes. There are good reasons to believe this is

an inefficient way to solve nonlinear constrained optimization problems (e.g., [5, p. 317]),
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but for the moment there is no alternative.

Before concluding this section, let us mention a different optimization formulation for

the CVD furnace problem proposed by Norman [9] [10]. He did not try to solve the full

optimal control problem as we are. Norman assumed the user provides a near-optimal

guess of the temperature profile at one point in the furnace, then he formulates an opti-

mization problem that calculates the heater control curves necessary to produce this given

temperature profile. From his solution the temperatures at all other points in the furnace

are known, so the wafer temperature variations can be checked. If the variations are too

large, then a new guess of the one fixed temperature profile is made and the algorithm re-

peats. Norman’s method never tries to minimize tf, although an engineer could get lucky

and guess a temperature profile that is optimal. The advantage of this simplification is

that each optimization subproblem  is linear and therefore much easier to solve. We have

decided to try and solve the full optimal control problem and determine power curves that

truly minimize the furnace ramp time.

This section has outlined a candidate method for finding the optimal control trajectory,

but our examination has raised many questions about the method, The full CVD furnace

problem is highly nonlinear and will have thousands of variables. As mentioned, it will

probably be ill-conditioned, and the optimization objective tf must be computed indirectly.

Before tackling these difficulties, we decided to first investigate a simplified heat transfer

problem that does not require the use of TWAFER but still captures the essence of the

design optimization problem.

3. Optimizing a Model Problem

.

Let us consider a homogeneous circular rod of unit length and constant cross-sectional area.

one end is perfectly insulated (no heat loss), while the temperature at the other end is the

control variable we want to optimize. Heat is transferred through the rod by conduction,
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and lost to the surrounding environment by radiation (a nonlinear phenomenon). The

object is to choose a controlling temperature that raises the temperature at the insulated

end of the rod to a target value Tta~9e~ as fast as possible. To simulate the variation tolerance

of the CVD problem, we insist that the temperature difference between the midpoint of

the rod and the insulated end never exceed a fixed tolerance ATmaz.

t t t t

x=() + I I J X=l

Figure 2: Radiating rod problem geometry

To write down a mathematical description, let the rod lie along the x-axis between

zero and one, with the insulated end at x = 1 (see Figure 2). Let T(t, z) be the absolute

temperature (in degrees Kelvin) at time t and point x. This is the state variable of the

system. The state equation is an energy conservation law of the form

pcp dT d2T
—  -  ~(T4 - T:mb),

kx=axz

where p, Cp, k, and c are material constants, R is the radius of the rod, a is the Stefan-

Boltzmann  constant, and T.~b is the fixed ambient temperature surrounding the rod. For

the rest of the paper we will write this equation more compactly as

a lT t = T.z – a2(T4 – T~mb),

where the constants have been collapsed into al and a2.

Like the real furnace problems we want to solve, this system model is a second-order

nonlinear parabolic PDE. It requires an initial condition and two boundary conditions. In

addition, the problem statement requires that the system be approximately steady state

at the target temperature.

temperature is reached, the

We enforce this condition by saying that when the target

partial derivative of T with respect to time is zero at one

11



particular point. Let tj be the final time, and denote the controlling temperature function

at the left end by u(t). Then we have

min tf
u(t)

subject to alT” = T,z – a2 ( T4

T(o, x) = To

T(t, o) = u(t)
ixr(t, 1) = o

ax

(3.1)

‘T&~) (nonlinear state equation),

(initial condition),

(boundary condition at x = O),

(boundary condition at x = 1),

(stop at the target temperature),

(reach steady state at T~aTge~),

\T(t, 0.5) - T(t, 1)1 < ATm.z (limit on temperature variation). )

Now we may discretize the space and time variables, apply a collocation principle, and

convert the partial derivatives into algebraic quantities. We use an implicit time stepping

scheme so that the discretized PDE is numerically stable. This converts the PDE state

equation and its initial and boundary conditions to a single large system of nonlinear

equations. The discretized optimization problem is therefore an algebraic system with

nonlinear equality constraints and linear inequalities.

The numerical solution of the discretized version of (3.1) is particularly difficult because

we are trying to minimize the final time if. The value of tf influences our discretization

scheme, determining either the spacing between time steps or the total number of steps.

A standard method for handling this situation [2, pp. 71-75, 225–233] is to treat tf as an

independent variable and determine its optimal value by an outer loop. We make a guess

of tf and fix it at that value, then try to find an optimal control u(t) that satisfies all the

constraints. Information from this subproblem  is used to refine the guess of tf, and the

process is repeated.

Let us think about a subproblem  with tf fixed. As the control

increased at x = O, it creates a temperature distribution across the

12

temperature u(t)  is

rod. Although this

.



distribution cannot be solved for analytically, it seems reasonable to assume the temper-

ature will decrease monotonically from the heated end at x = O to the insulated end at

x = 1. There will be a temperature drop between the points x = 0.5 and x = 1, whose

size varies with u(t). Now if tf is fixed at too small a value, it will be impossible to reach

Tt.T~.~  without violating the inequality constraints; i.e., the temperature drop will exceed

AT~.z. We don’t know in advance how large to make tf; therefore, we need to relax some

constraint to make sure we have a sensible subproblem  for every possible value of tf. One

simple idea might be to dispense with  the requirement to reach the target T~~~ge~. Instead,

we could find a control trajectory that gets as close to T&et  as possible in the time avail-

able, without violating the inequality constraints. Our optimization subproblem  for fixed

t f would then be

min (T(tf, 1) - Tt.rge,)2u(t)

subject to alTt = Tzz – a2(T4 – T&b)

T(O, X) = TO

(3.2) T(t, O) = u(t)
dT(t, 1) = o

J?f, 1) = o

lT(~O.5) - T(t,

(nonlinear state equation),

(initial condition),

(boundary condition at x = O),

(boundary condition at x = 1),

(reach steady state at T~~~,~t),

(limit on temperature variation).

The system (3.2) can be discretized and solved, but it becomes underdetermined if

tf is chosen too large. In this case Ttarget  is reached easily without violating any of the

inequality constraints. The constraints are inactive – effectively not part of the problem.

The underdetermined system has infinitely many solutions, some of which don’t make any

physical sense (for instance, u(t) becomes negative at certain times, or fluctuates wildly).

We could try to eliminate the nonphysical solutions by imposing other constraints, but

there is a simpler approach.

We note that our objective is just to raise the temperature of the rod as fast as possible
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before leveling out to a steady state value at tf. Foragiventf  each subproblem  should

tell us how high we can raise the temperature without violating the inequality constraints.

This information can be used by an outer loop to find the particular tj which reaches

exactly T~~r~e~. Thus, a better defined optimization subproblem  for fixed tf is

max T(tf, 1)
u(t)

subject to alTt = TXZ – a2(T4 – Tjmb)

T(O, z) = TO

(3.3) T(t, o) = u(t)
t?T(t, 1) = o

m%, 1) = o

lT(t7L5) - T(t,

(nonlinear state equation),

(initial condition),

(boundary condition at x = O),

(boundary condition at x = 1),

(reach steady state at T&~,),

(limit on temperature variation).

The system (3.3) is easy to discretize and has a unique solution. It turns out that

T@f, 1) varies almost linearly as a function of tf for reasonable radiation loss values, so

the outer loop does not need much information to figure out the optimal value of if.

4. Results for Optimal Heating of the Model Problem

We implemented a discretized version of (3.3) and solved it numerically using constrained

optimization techniques. The problem was coded in accordance with the CUTE [1] op-

timization interface standard. Although this interface is somewhat cumbersome to use,

it automatically computes analytic derivatives and allows the use of various sophisticated

optimization codes.

The state variable T(t, x) was discretized uniformly in space and time to generate the

set of collocation points

T(~tj,~), f o r  z=l,.. .,N a n d  j= O,. ... M.
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This gave a total of N(M + 1) discrete variables, with N of them acting as control temper-

atures.

The radiation term in the nonlinear state equation requires that T(t, Z) be measured

in an absolute temperature scale such as degrees Kelvin. We found that a scaling trans-

formation which keeps variables roughly between zero andonesignificantly improved the

numerical accuracy of the algorithm. Therefore, our implementation was in terms of the

scaled quantities
T(+tf, +) – To

Yi,j  Z

Ttarget  –  TO “

This equality is approximate in the sense that the variables ~z,j were computed from finite

difference approximations of the partial differential equations.

We employed a second-order accurate Crank-Nicholson finite differencing scheme to

approximate the nonlinear state equation alTt = Tzz — az (T4 — T&b). This scheme is

not the most accurate and it does not properly match the dissipative nature of heat flow,

but it is an implicit scheme that is numerically stable for all discretizations. The primary

purpose of this investigation was to demonstrate the feasibility of finding tf using (3.3),

and an implicit scheme makes this possible

points in the interior of the rod (i.e., i > 1

equation is

with reasonably small values of N and M. For

andj= l,..., M – 1), the approximate state

(P+ al) Y2+l,j + (P - al)Yi,j = ~(Yi+l,j+l + Yi+l,j-1 + Yi,j+l + Yi,j-1)

a2[(Tt~~get  – ‘ O )  Yi+l,j  + To]4
(4.1) —

z(~target –  To)
a2  [(~target –  ~O)Yi,j +  ~0]4 @T:rnb— —

2(Tta,get – T o ) Ttmget  – TO ‘

where p = At/(Az)2  = tfM2/N is the mesh size parameter. The adiabatic boundary

condition can be incorporated into the state equation for points at the right end of the rod
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by using

(p+ al)!/i+l,M + (p  -  al)!/z,M  = k%+l,M-1  + !/z,M-1)

a2[(~t~~gd  –  ~O)?A+I,M +  TO]4
(4.2)

—
‘Lrge~  –  

TO

a2[(~t.rget – ‘To)l/i,M + TO]4 2azT&b— —
Ttarget  – TO Ttarget – ‘To “

The initial condition T(O, x) = To simply means that

(4.3) yo,j = o.

The equations (4.1)-(4.3) account for the nonlinear PDE and its initial and boundary

conditions. They constitute a set of NM nonlinear algebraic equations in N(M+l)  unknowns.

The steady state condition adds another equation

(4.4) YN,M  =  YN-l,M,

and the scaled temperature variation inequalities take the form

(4.5)
ATm.z

?/i, M/2 – ‘?/i,M < fOr Z=l, . . ..N.
Ttarget  – TO ‘

assuming that M is an even number. Thus, up to N – 1 of the inequalities can be active at a

solution. If all N inequalities are active, then the problem is overdetermined and potentially

inconsistent, but in practice this situation did not occur.

This completes the conversion of (3.3) into a discretized algebraic optimization problem.

For clarity, the full optimization procedure is outlined below in Algorithm 4.1.

Algorithm 4.1 selects trial values of tf according to a quadratic model based on three

optimization subproblem  solutions. Note that the quadratic model is not updated with

derivative information, just simple iterative refinement. Derivatives could be estimated by

finite differences, but the relationship between tj and T(tj, 1) is smoothly varying enough

that this is not necessary,
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Algorithm 4.1. Numerical  procedure for optimizing the heated rod problem

1.  Make three  initial  guesses  oft~, called t}, t~ andt~

2. Foreach  guess $solvet  hediscretizedf  ormof (3.3); that is,

max TO+YN,M(T~.rge~  ‘TO)

subject to equations (4.1)-(4.5) and with t~ fixed at t}

Let the maximum temperature found be called T&Z

3. Fitaquadratic  curve through thethree  points (t}, T~.z), (t~,T#az),and  (t~,T&z)

4. Setke4

5. From the quadratic model calculate a value t; that maps to the point (t!, T~.rge~)

6. Solve the discretized form of (3.3) using t?, and call the solution T&Z

7. If the solution T&Z = Tt.,g.t,  then stop

8. Make a new quadratic model using (t~, T&Z ) and two previously calculated points

9. Set k - k + 1 and go to step 5.

As a typical example for a conducting metal rod, we set al = 1, a2 = 10-11, To = T.~b =

300° C., and sought to raise the temperature to Tt.rg,t = 600° C. with no temperature

variations greater than AT~.Z = 1° C. We found that discretizing the system (3.3) using

constants of N = 24 and M = 12 was sufficient to compute T~~Z = T(t~, 1) to an accuracy

better than one degree. Starting from the three guesses t} = 25, t; = 50 and t? = 75

seconds, Algorithm 4.1 gave the results shown in Table 1.

Notice from Table 1 that T(tf, 1) was very nearly a linear function of tj. We could have

extrapolated the solution tj = 47.2 seconds using just the first two guesses. However, a

more realistic CVD furnace problem may not have a linear relation, so the quadratic curve

fitting in Algorithm 4.1 is still important for general problems.

The optimal control solution of each discretized subproblem  had exactly N – 1 of the
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k t; rnazimzm T(tj, 1)

1 25.0 seconds 464.6° C.

2 50.0 seconds 616.1° c. I
3 75.0 seconds 752.6° C. I
4 47.2 seconds 600.0° C.

I

Table 1: Solution for radiating rod problem

inequality constraints (4.5) active. Thus, each solution was characterized by having N(M +

1) = 312 equalities for the 312 unknowns. In every subproblem  it was the final inequality

T(tf,  0.5) – T(tf, 1) < ~T~.Z that was inactive. This is reasonable, since the quasi-steady

state condition forced the temperature at T(tf, 1) to stop increasing and level off.

We used two different large-scale constrained optimization algorithms to solve the dis-

cretized subproblems.  LANCELOT [3] is a commercial software package that uses an aug-

mented Lagrangian penalty function to handle nonlinear constraints. ETR [8] [11] is our

own code that uses an SQP method to solve problems with equality constraints. We were

able to use ETR because we know which inequality constraints are active and which are

not. Both codes use analytic first and second derivatives of the problem to compute a

solution.

The subproblems  turned out to be quite difficult for the LANCELOT algorithm to solve.

We deliberately initialized all the scaled state and control variables to zero to make the

optimization subproblems  find a solution from scratch. The ETR code took less than a

second to solve each subproblem, while LANCELOT took over 200 seconds (this was the

best performance of the eleven preconditioning options provided in LANCELOT). All results

were obtained with a Silicon Graphics workstation under the IRIX 5.2 operating system

using a 150 MHz MIPS R4400 processor. We suspect the poor performance of LANCELOT
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stems from the use of the augmented Lagrangian function on an ill-conditioned problem.

The optimization subproblems  were harder to solve with a finer mesh or bigger values

of the radiation loss constant az. In both cases this was due to ill-conditioning. If we think

of the discrete state variables arranged in a rectangular grid of N by M points, then each

state equation (4. 1) couples the temperature at a point to the temperature at five of its

neighbors. Our goal is to choose values of yi,o that produce a maximum value of YN,M,

but the influence of the control variables is felt at YN,M only after propagating through

all intermediate points, one state equation at a time. Thus, YN,M is not very sensitive to

changes in variables near yl,0. Increasing N or M makes this worse. Increasing a2 causes

more heat to be lost as radiation before it can conduct to the right end, which again

decreases the influence that power applied at yl,o has on YIV,M. The ill-conditioning is an

inherent feature of this problem, although performance was improved when variables were

started close to a suspected solution instead of at zero.

5. Conclusions

Our investigation of the model problem in $3 and $4 gives us several clues for how to

proceed with solving real furnace problems using TWAFER. Instead of directly minimizing

the final time tf, a more tractable problem is to maximize the final temperature for fixed

t~ and modify tf in an outer loop. It is important to impose some condition that makes the

temperature profile level off at tf, especially if each subproblem  seeks to maximize the final

temperature. In the model problem the optimum solution has most of the temperature

variation inequality constraints active, particularly those at early times. This kind of

information is very helpful in solving large optimization problems. Finally, we observed that

ill-conditioning is a significant problem, indicating the need for a sophisticated optimization

algorithm and careful interpretation of the results.

In conclusion, we believe the problem of finding an optimum heater power control
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trajectory for a CVD furnace is challenging, but attainable. Our next step is to find a way

to get derivatives from the TWAFER code, then couple it with a suitable optimization

algorithm.
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