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Abstract

A new tool for optimal heat transfer design has been constructed by coupling the OPT++

optimization library to the TAC02D finite element heat transfer code. The optimization

heat transfer code can be used to quickly and efficiently find optimal operating

parameters required for target design criteria. This tool has been applied to the heat

transfer design of a rotating disk chemical vapor deposition reactor. The results from two

reactor design problems indicate that optimal solutions can be found quickly and

efficiently.
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1 Introduction

Computational simulation is a powerful tool for the design of parts and equipment for

material processing. Physically based numerical models can provide insight on heat transfer,

fluid mechanics, chemical kinetics, and structural response for a given design concept. The

integration of computational analysis into the design process can reduce development time

and costs while improving product performance. Computer models allow designs to be

prototype in software thus eliminating the need for the slow and expensive cycle of “build

and test”. The typical goal for a design process is to achieve the best possible performance

within a given set of constraints. Trial-and-error is the common approach used to address

this design optimization problem. The drawback with the trial-and-error evaluation is that

it is time consuming (both with software and hardware) and it does not guarantee that the

best design is found.

We have developed a capability for addressing design optimization problems through

linking optimization software to large-scale analysis codes. This software tool allows a

designer to quickly determine optimal design parameters using computational simulation.

This report describes the software tool and the application of this software capability to the

optimal design of rotating disk chemical vapor deposition (CVD) reactors. The software

tool is constructed from existing software packages developed at Sandia: the OPT++

optimization library [1] is linked to the TAC02D finite-element thermal analysis code [2].

The OPT++ optimization software is an object-oriented library of optimization

routines. Object-oriented programming allows for greater portability and applicability y to

different applications. One of the main features of this approach is that little knowledge

of object-oriented programming is required by the end user in order to use the OPT++

software. In practice, the end user need only supply an interface routine that calls the

TAC02D heat transfer code. This interface routine is called by OPT++ to provide the

response to variations in the design parameters.

The TAC02D finite-element heat transfer code was chosen for the optimization tool

because it has several features that are used extensively in the design of reactor systems.

The code has variable thermophysical  properties, multiple enclosure radiation, contact resis-

tances, and a large set of boundary conditions. The enclosure radiation feature, combined

wit h partially transmitting windows, makes the governing equations highly nonlinear and

difficult to solve. It is also the code we are most familiar with, accelerating the integration

process with the optimization software.

In previous heat transfer design approaches, the optimization process involved ex-

amining the local behavior of the temperature field as a function of the design parameters.

7



This approach involved running the TAC02D code manually for different combinations of

the design parameters. Because the optimization problem is nonlinear, the optimal solution

was difficult to find and several iterations on the local map construction were required.

The use of the OPT++ nonlinear optimization software makes the optimization process less

labor-intensive and more computationally  efficient. At present, the optimization is limited
.

to parameter optimization for a fixed geometry. In the future, we will address geometry

optimization which requires more efficient grid generation and view factor computations.

The candidate heat transfer code for these more complicated optimization problems is the

COYOTE2 code [3, 4]. This code has the desirable features of faster view factor calculations

and moving meshes.

The report is organized to first give and overview of how the software tool is con-

structed and then give examples of how the code is used to optimize the design of two

different rotating disk reactors. The various optimization methods available within the

OPT++ software package are discussed in Section 2. The concept of object-oriented classes

for optimization methods is introduced. The interface between the optimization code and

the analysis code is code-dependent so the mechanics of linking the TAC02D heat transfer

to the OPT++ optimization library are discussed in Section 3. This information can be

used as a model to link any large-scale simulation code to the optimization library. Two

sample heat transfer optimization applications are presented in Section 4. Results of the

heat transfer design optimization are presented and the various optimization methods are

discussed.

.
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2 Object-Oriented Optimization Methods

The OPT++ software consists of a library of object-oriented optimization algorithms written

in C++. Unlike procedural programming which emphasizes the development of algorithms

to accomplish a specific task, object-oriented programming relies on the implementation of

new data types. The major difference in object-oriented programming is the abilit y t o create

user-defined data types and add them to an existing language. It is these new objects that

give object-oriented programming its name. Through these new objects a computer language

can be easily extended to handle new applications.

One of the major concepts of object-oriented programming is that of a class. A class

is a user-defined data type that allows the user to concentrate on the use of the new data

type by hiding the actual implementation details. A class typically consists of both a data

structure and a group of subroutines that can manipulate these data structures. The data

inside the structure is hidden from the user in that the only way to access it is through the

subroutines defined as part of the class.

Good examples of these ideas are matrix classes for linear algebra. With a matrix

class, a user can define vectors and matrices as part of the computer language as well

as use the standard matrix operations defined for these objects, such as matrix addition,

matrix multiplication, and inversion. For a more complete description of object-oriented

programming see [1, 5, 6, 7].

2.1 Nonlinear Problem Classes

There are two main features of the problem classes contained in OPT++. The first feature

is the definition of the nonlinear problem. The second feature is the implementation of the

objective function.

A general unconstrained optimization problem can be stated as follows:

For this problem, the cost or objective function ~(z) is assumed to be a general nonlinear

function. There are many ways of classifying nonlinear programming problems. OPT++

defines nonlinear programming problems by the availability of analytic derivatives of the

objective function. The main advantage of this classification is that users can easily decide

what type of problem they have based on whether analytic derivatives are available or not.

For example, OPT++ uses the classification displayed in Table 1.

OPT++ also provides 4 classes derived from these 3 base classes. The first 3 classes

are called NLFO, NLF1, and NLF2 and have a pre-defined calling sequence. These classes

9



Table 1: Nonlinear Problem Classification used by OPT++

NLPO – No derivative information available
NLP1 - Analytic first derivatives available
NLP2 - Analytic first and second derivatives available

can be used to solve some simple optimization problems or can be used as templates for

more sophisticated objective functions. The fourth class is called FDNLF1  and is identical

to NLF1 except that derivatives are internally computed using finite-differences.

In the TAC02D  application, the objective function is computed by using the results

of an analysis code that does not provide derivatives. Therefore, the normal classification

scheme would declare this problem as an NLPO object. However, since we would like to use

gradient-based methods we chose to declare an FDNLF1  object and have OPT++ compute

the derivatives using finite-differences.

The second feature that OPT++ provides is the generality with which the objective

function can be implemented. In OPT++, the functions that evaluate the objective function,

gradient, and Hessian are defined as virtual functions. This allows the software to defer the

definition of how the function, gradient, and Hessian are actually implemented so that users

can create their own definitions. The base classes can be thought of as place-holders for the

codes that will be called to compute the objective function.

2.2 Opt imiza t ion  Method Classes

There are many classifications possible for optimization algorithms, but most well-known

methods can be grouped into one of three classes:

● Direct Search methods

● Conjugate gradient like methods

● Newton-like methods

For example, the Nelder-Mead  simplex method falls into the direct search class, the nonlinear

conjugate gradient method falls into the conjugate gradient class, and the Newton-like class

includes methods such as the quasi-Newton methods. OPT++ contains C++ classes for 5

different methods: 1) a Newton method, 2) a finite-difference Newton method, 3) a quasi-

Newton method, 4) a nonlinear conjugate gradient method and 5) a parallel direct search

method.

The Newton method is potentially the most powerful method, but it requires the

computation of a Hessian matrix which is not available in the TAC02D application. A

10
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finite-difference Newton method is identical to the Newton method but uses finite-differences

to compute the Hessian matrix. In practice this option can be as effective as the Newton

method, but it can be computationally  expensive. The quasi-Newton method is the most

attractive in that theoretically it can be nearly as effective as the full Newton methods, but

computationally  less expensive. Most of our results are based on this option. The nonlinear

conjugate gradient method is also attractive in that it is comput ationally  inexpensive, but

this method can be slow to converge. Although we tried this method on one sample problem

it did not appear effective for this class of problems. The final option, the parallel direct

search method, was not used for these problems. For further details on these algorithms see

references [8, 9].
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3 Linking the Optimizer to the TACO Code

One of the main advantages of object-oriented programming is the relative ease with which

new applications can be developed by interfacing existing analysis codes with the optimiza-

tion methods contained in OPT++. Typically, if the optimization algorithm requires a

particular calling sequence the user is forced into writing a subroutine that will interface

between the optimizer and the function evaluator. Once the interface is in place, OPT++

minimizes the amount of work that is required to add new optimization methods.

In this section, the mechanics of interfacing the TAC02D heat transfer code to the

OPT++ optimization library are discussed. The approach taken in linking the two pieces

of software is to be as nonintrusive as possible. A custom built interface is constructed so

that the two software packages can communicate. This discussion is intended as a guide for

making changes to the problem-dependent

any analysis code to the OPT++ libraries.

3 . 1  T A C 0 2 D — O P T + +  I n t e r f a c e

interface and also as an example of interfacing

Interface routines are required to pass information between TAC02D and OPT++. The

TAC02D code, by itself, is a stand-alone heat transfer code. The OPT++ code is a set

of object-oriented software libraries containing optimization tools. The coupling between

codes is complicated by the fact that the OPT++ libraries are written in C++ while the

TAC02D code is written in FORTRAN. All these pieces of code are combined into one

executable program. The compiling and linking of these subroutines of different languages

is discussed in the Appendix.

The optimization heat transfer code is constructed from four different blocks of code.

The code hierarchy is shown in Figure 1. Two existing pieces of code are the analysis code

and optimization library. Two pieces of code must be written by the user: the top-level

program and the interface code. The top-level program (written in C++) manipulates the

optimization tools. It makes calls to the analysis code through an interface subroutine.

The interface code extracts information from the analysis code and performs other problem-

dependent tasks. For the TAC02D interface, there are two levels of interface code to facilitate

the communication of information between OPT++ and TAC02D. The top-level interface

code (written in C) is used to manipulate input and restart files for the analysis code,

read the target parameters, and compute the objective function. The objective function

is a measure of how close the solution is to the target design criteria and is generated by

running the analysis code for a particular set of input parameters. In order to extract the

proper information from the analysis code, a second-level interface, called TAC02DOPT,

.

.
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Figure 1: Code hierarchy for TAC02D—OPT++

is required. The second-level interface (written in FORTRAN) calls TAC02D directly and

extracts information from COMMON blocks. The only modification to the TAC02D code

consists of changing the main FORTRAN program to a subroutine.

The second-level interface code extracts temperatures from the analysis code COM-

MON blocks for use in the calculation of the objective function. Passing parameters such

as heating rates or boundary conditions into the analysis code can sometimes be tricky

since they are usually passed into the analysis code through an input file. Writing filters

for input decks can be tedious, but fortunately the TAC02D code has a feature that

simplifies passing those parameters—user-defined subroutines. In our case, the optimization

parameters are passed into the analysis code through user-defined subroutines (page 28 of the

TACO manual [2]) and the interface code has direct access to those subroutine COMMON

blocks.
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3.2 P r a c t i c a l  I m p l e m e n t a t i o n

The heat transfer optimization tool is only useful if it can return solutions in a timely manner.

The optimizer calls the analysis code many times in order to find the optimal solution. The

analysis code, in turn, must iterate in time to steady-state each time it is called. The time

marching method is the most stable and predictable solution strategy for nonlinear problems .
in the TAC02D code. The duration of the time iteration process is dependent upon how

close the initial solution guess is to the steady-state solution. Therefore, it is crucial to

begin each cycle through the optimizer with the most current solution reflecting changes in

the optimization parameters. Since each call to the TAC02D  code acts as a self-contained

run, converged solutions must be passed along as restart files. New solutions are passed

along by copying the analysis code restart file from the last optimization step to the analysis

code input file for the next optimization step. The code copying steps are executed by the

interface code through UNIX operating system calls.

Another factor affecting the time to convergence within each call to the analysis code

is the definition of convergence. The analysis code must return a steady-state solution to

avoid introducing artificial time gradients into the optimizer. The original TAC02D  code

allows no method of monitoring convergence. It only integrates out to a given fixed point

in time. In order to ensure convergence to steady-state, this time must be made large. It

was found that a large amount of computational time was unnecessarily used because, with

a good initial guess, the time to steady-state was much smaller. A new feature was added

to the TAC02D code to monitor convergence when integrating in the unsteady, nonlinear

mode. The L2-norm of the right-hand side of the linearized system (similar to a physical

conservation law in a finite volume scheme) is used to determine convergence.

●

l\ K(Tn)Tn - F(T”)[12

The stiffness matrix is K and the loads are contained in F. When this norm goes to zero,

the discrete governing equations are satisfied. This criterion is used because it does not scale

with the time step. The only drawback in using a convergence tolerance is in determining

how small the L2-norm must be in order to guarantee convergence to steady-state. This

norm scales with the physical size of the problem and the tolerance must be determined a

flTiOTi.
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4 Heat Transfer Design Optimization

.

Two test cases are presented to demonstrate the design optimization capabilities of the

OPT/TACO tool. Both cases involve design aspects of rotating disk reactors. Rotating disk

chemical vapor deposition reactors are commonly used for growing opto-electronic  devices.

A critical factor in this process is the temperature distribution on the substrate material

which directly affects the quality of the final electronic device. A common time consuming

task in the design analysis of these reactors is to define optimal heater powers and their

placement in order to achieve a prescribed temperature profile on the wafer surface.

The first case is a design for a model problem configuration of a rotating disk CVD

reactor. The heater power densities are optimized to give a desired wafer temperature profile.

The results of the optimization indicate an interesting relationship between the heating

elements that may prove useful in optimal control. The second case is more representative

of an actual rotating disk reactor design. In this problem, the contact resistance inside the

wafer carrier is optimized to give a desired wafer temperature. The optimization of contact

resistance indicates that a wafer carrier of variable thickness may improve temperature

uniformity.

The numerical issues associated with the optimization are discussed in each case.

These “lessons learned” provide useful information on the efficient use of the optimization

heat transfer design tool.

4.1 Power  Densi ty  Opt imizat ion

This model problem is created to demonstrate heater power density optimization. The

optimization study is used to explore power density requirements for different wafer temper-

ature set tings. The configuration is a simplified model of a rot sting disk reactor consisting

of a wafer carrier, four radiative heaters, and a heat shield. The rotating drive shaft and

support assembly have been removed. The carrier/heater assembly sits inside a stainless steel

reaction chamber with cooled walls. The reactor is axisymmetric so only a two-dimensional

cross-section is modeled. The discrete wafers are modeled as a continuous annular ring

on the carrier. A close-up view of the wafer carrier, heaters, and heat shield is shown in

Figure 2. The wafer carrier rotates about the vertical axis. The cross-section of the reactor

configuration including the reaction chamber is shown in Figure 3. The graphite wafer carrier

has a radius of 2.5 inches and a thickness of 0.3 inches. A sapphire wafer 25 roils thick and

2.0 inches in diameter is embedded in the top surface of the wafer carrier, 0.25 inches away

from the center. Four graphite heating elements are placed beneath the wafer carrier. A

molybdenum heat shield is placed beneath the heating elements to reflect heat back towards

15



Wafers

./\.

/
Heat Shield

Figure2: Enlarged View of Model Problem Carrier/Wafer Configuration with Heat Shield

the wafer carrier.

The heating is introduced in the finite-element model using uniform volumetric heat-

ing within the heating elements. The heating elements radiate and form a radiation enclosure

wit h the heat shield, wafer carrier, and the reaction chamber. The radiation surfaces are

modeled as diffuse gray surfaces. Each material is assumed to have a constant emissivity,

shown in Table 2. The wafer and carrier surfaces are cooled by convection and enclosure

radiation to the cooled reactor chamber walls. A convection coefficient of 500 W /m2 /K is

applied to the outside of the canister with a reference temperature of 300 K. The outside

of the canister also radiates to a uniform background of 300 K with an emissivity of 0.3.

The convection coefficient applied to the wafer and to the top side of the wafer carrier

is 30 W/m2/K with a reference temperature of 300 K. There is a cent act resist ante of

8000 W/m/K applied between the wafer and the wafer carrier.

The optimization target is to have a uniform temperature across the surface of the

wafer, achieved by varying the heating element power densities. The power is delivered to

the heating elements such that certain groups of heaters have the same power density. These

groups are called zones and each zone is on a separate power circuit. The power is varied in

two zones, making this a two parameter optimization, The two inboard heaters are Zone 1

and the two outboard heaters are Zone 2.

.

.
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Figure 3: Model Problem Rotating Disk Reactor with Enclosure

Table 2: Material Surface Emissivities  for Model Problem

Material Emissivity
Stainless Steel 0.3

I

Molybdenum 0.4
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The wafer temperature and uniformity in the optimization process are found by min-

imizing the objective function with respect to the power densities. The objective function is

a function of power density, though it is calculated from the wafer surface temperatures. The

objective function is constructed from the difference between the discrete nodal temperatures,

Z’i, on the wafer surface and the target temperature,

Note that this is an unconstrained optimization and no restrictions are placed on allowable

temperatures within the heating elements.

The heater power densities are optimized for three different wafer temperature set-

tings. These may be three different processing temperatures that occur along a process

path. The optimum zone power densities for the three different target temperatures are

shown in Table 3. The temperature variation across the wafer increases with increasing wafer

temperature and heater power. The corresponding temperature distributions are shown in

Figure 4. An increase in uniformity by variations in heater configuration can only be achieved

by changing the heater placement or breaking up the two zones into three or four zones.

Table 3: Optimized Heater Power Densities for Model Problem Reactor

Target Zone 1 Zone 2 Temperature Variation
1000 K 28.2 MWlm3 117. MWlm3 &8 K

I

1125 K 42.3 MWim3 178. MWim3 +13 K
1250 K 63.3 MWlm3 261. MWlm3 +20  K

The different optimization points may be set points for a larger process. The surface

temperature may be ramped up and down within the processing steps. By plotting the

temperature set points as a function of the two optimal zone heater power densities, it is

found that there is a linear relation between power densities, shown in Figure 5. This is

an interesting observation from the point of optimal control. This figure indicates that the

power densities for optimum wafer temperature can be controlled by a single parameter.

The two zonal power densities always have a fixed ratio. This path between different wafer

temperatures may not be optimal in terms of shortest time to change the temperature, but

the figure provides a quick way of determining the end point power densities.

There have been several lessons learned about successfully running the OPT/TACO

heat transfer design tool. These lessons are outlined below in context to the rotating disk

model problem. The first lesson is that round-off errors can cause the optimizer to fail if

.
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scaling is not properly addressed. The optimization parameters should be scaled to order one

when passed to the optimization routines. These numbers are scaled back to their physical

dimensions for use in the analysis code. If the parameters are too large when they are passed .

into the optimizer, the associated numerical round-off errors adversely affect the convergence

of the optimization routines. Consider the example where the heater powers for the CVD ~

reactor model are optimized to give a desired wafer temperature distribution. The heater

power densities are expected to be on the order of 1 x 107 W/m3. The initial guess at heater

power for the optimization routine is set to 1 and this number is scaled by 107 for use in the

analysis code. The optimizer works with numbers of order one while the heat transfer code

works with the actual physical size.

For most optimization problems, the use of forward-differencing to numerically evalu-

ate function gradients is sufficient for convergence. The solutions to the power density design

problems were found using a quasi-Newton method. Two different methods for calculating

objective function gradients were tested: central-differences and forward-differences. Al-

though both methods converged in the same number of iterations, the forward-differencing

took less time to reach the optimal solution than the central-differencing.  The forward-

differenced solution required 12 minutes of CPU time on a HP 735 workstation, running in

double precision arithmetic. The central-differenced  solution required 20 minutes of CPU

time. For most problems, the forward-differencing  is accurate enough to find the optimum

solution. In some cases the central-differencing  adds enough accuracy to converge to a better

solution than the forward-differencing.  It was hypothesized that the increased accuracy of

the central-differencing  might increase the convergence rate. Instead the convergence rate is

the same as the forward-differencing  at twice the cost. The solution strategy is to use the

forward-differencing to converge to near the solution as fast as possible. Then the central-

differencing is used to refine the solution.

The time required to find the optimum solution also depends upon how good the

initial guess to the solution is. Knowledge of the behavior of the objective function as a

function of optimization parameters can be used to find a good initial guess. A contour

map of the objective function with respect to the optimization parameters provides such

information. A contour map of the zonal  power densities for the target temperature of

1250 K is shown in Figure 6. In this map, the optimal solution is in the middle of the broad

flat central valley. The valley is bounded by steep sides. The optimizer quickly finds its way

to the valley floor. It then spends most of the time bouncing along the sides of the valley

on its way to the minimum. The purpose of the nonlinear optimizer is to find the minimum

point in fewer function evaluations (calls to the heat transfer code) than are required to

generate a function map and read the minimum point manually.

.
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The optimization methods available in the OPT++ library are all unconstrained. It

is possible for the optimizer to select a set of parameters that are physically meaningless to

the designer. The optimal design solutions for the rotating disk reactor do not fall across

any ‘iwould be” constraint boundaries, but the optimizer sometimes overshoots the boundary

of physically realizable solutions during the transient steps. This is a critical issue for the

model problem because negative power densities are sometimes selected. In the early phase

of the optimization process, the step size became large causing the optimizer to attempt

to evaluate the function at points that correspond to negative heater powers. Since this is

physically unreasonable, the heat transfer code fails. The problem is solved by placing an

upper bound on the allowable step size in the optimization method. The maximum step size

is problem dependent and is determined empirically. In the future, the OPT++ library will

contain constrained optimization methods which will allow for a better treatment of these

problems.

4.2 Contac t  Res is tance  Opt imiza t ion

This test problem is presented to demonstrate the use of radial variation in wafer carrier

assembly thickness to achieve uniform wafer temperature. The radial thickness parameter is

modeled with a contact resistance and the thickness profile can be backed out of the contact

resistance profile. The use of the internal boundary condition to model changes in geometry
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avoids remeshing as the geometry changes.

The geometry used for this model is a more complete description of a rotating disk

react or than the model problem discussed previously. In this respect, it is a more difficult

problem to solve. The finite-element modeling is carried out in a manner similar to that of

the model problem. Only a cross-section of the axisymmetric reactor is modeled and the

discrete wafers on the wafer carrier are modeled as a continuous ring. The cross-section of

the reactor configuration is shown in Figure 7. In this configuration, the wafers are attached

to an assembly which consists of a carrier and a susceptor. The

carrier which sits on top of the susceptor. The wafer carrier and

and is heated from below.

The wafer temperature is refined to a target temperature

wafer rests on the wafer

susceptor assembly spins

by changing the contact

resistance between the wafer carrier and susceptor. The contact resistance is a modeling

parameter that represents the thermal resistance caused by the small gap between the wafer

carrier and susceptor. This provides for radial control of heat transfer to the wafer and

refinement of the wafer temperature uniformity. For modeling purposes, the gap variation is

broken up into four zones. The target temperature is 1175 K and it is assumed that heating
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Figure 8: Wafer Surface Temperature

power is fixed.

A baseline solution is established by finding the optimal uniform gap spacing required

to achieve the target temperature for a prescribed heater power density. The four zone

optimization problem is then run for the same heater power density. Varying the contact

resist ante allows the wafer surface temperature tolerance to be tightened. The wafer temper-

atures before and after the four parameter optimization are shown in Figure 8. The baseline

solution exhibits a 4 K variation in temperature, but the optimized solution is refined to a

0.5 K variation. The mean temperatures are above the target temperature for both cases.

This is thought to be a function of the temperature jump at the end points of the wafer. The

optimized contact resistance leads to a wafer carrier/susceptor interface with variable gap

spacing, shown in Figure 9. The gap spacing is exaggerated for the purpose of visualization.

Several lessons were learned in trying to solve this larger optimization problem. This

problem is more difficult to solve than the model problem because it has more unknowns,

it is more nonlinear, and there are more optimization parameters. The first lesson involves

numerical round-off errors. These optimization problems have been run with 32-bit and

64-bit arithmetic. In all cases, the optimization routines were run with 64-bit arithmetic.

Only the precision in the TAC02D code varied. Numerical round-off errors from the 32-bit

“single precision” arithmetic cause the optimization routines to stop prematurely. Although

the actual temperatures calculated by the heat transfer code in 32-bit and 64-bit mode are

23



“,

.,’.

.

(Not to scale)

Figure 9: Carrier/Susceptor Gap Spacing for Optimized Contact Resistance

equal by engineering standards, the loss of accuracy is enough to cause convergence problems

within the optimizer.

The quasi-Newton optimization method shows the best performance for these rotating

disk design problems. Various optimization algorithms available in the OPT++ library were

compared to determine the most efficient way of solving these design problems. For the

“contact resistance problem”, the quasi-Newton and finite-difference Newton methods and a

nonlinear conjugate gradient method were tried. In addition, for the quasi-Newton method,

both central and forward-differences for the gradient evaluations were tried. The results

are shown in Table 4. The nonlinear conjugate gradient was the worst method of all of

the methods tried. All three of the Newton methods converged in essentially the same

number of iterations. The major difference between the methods is in the computation of

derivatives. For this particular problem, the best approach was to use forward-differences
●

for the computation of the first derivatives and a quasi-Newton approximation to the second

derivatives.

Table 4: Optimization Method Performance for Contact Resistance Problem

Optimization
Method
Nonlinear CG
Finite-Difference Newton
Quasi-Newton (FD)
Quasi-Newton (CD)

Objective
Function value Iter Function Calls Time(minutes)

1.1283 100 1940 4162
1.0094 22 428 926
1.0094 20 120 251
1.0094 20 204 432
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5  Summary

Anewtool foroptimal heat transfer design has beenpresented. Thedesign  toolis  constructed

from existing pieces of software: the OPT++ optimization library andthe TAC02D finite

element heat transfer code. The code integration process is simple and nonintrusize  because

of the object-oriented construction of the OPT++ library. The code integration procedure

outlined in this report can be generalized to a procedure for adding optimization capabilities

to any large-scale simulation code.

The OPT/TACO software tool allows for the rapid prototyping of reactor designs.

This design tool has been applied to the heat transfer design of rotating disk chemical

vapor deposition reactors. Results for two reactor design problems are presented along with

practical strategies for performing the optimization. The optimization design tool, as it exists

now, can be used for parameter optimization. Future work for heat transfer optimization

involves adding constraint feat ures and looking towards geometric optimization.
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A Compiling and Linking

The mixture of C++, C, and FORTRAN languages required to construct the optimization

heat transfer code may seem intimidating, but is actually straightforward. The code has

been constructed on a SGI/R8000,  a SGI/R4000,  and a HP 735/125. On the HP 735, the

native FORTRAN and C compilers were used, but the C++ compiler was the GNU g++

compiler. (This is available through a no-fee license from the Free Software Foundation and

can be downloaded through the Internet from the anonymous ftp site: gat ekeeper.dec  .com,

/pub/GNU.)

Each type of code is compiled to the object code level ( .o) with the specific compiler.

Then all the object code is linked together with the C++ compiler. The FORTRAN system

libraries must be included in the call to the linker, for example:

c++ - 0  opt.taco  $ (  OBJ.CODE) -  lc1 -  1U77 -  lm.
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