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Introduction - Sampling Working Group 
 

As mentioned in the executive summary on sampling, an understanding of the sampling 
and measurement procedures is necessary for obtaining confidence that the obtained results 
“represent” the intended population or fulfill a study’s purpose.   The confidence of results can 
be undermined if care is not taken to control and minimize the variation of observed results due 
to sampling and measurement.  To address this concern, the information below is presented as a 
foundation for and linkage to the two documents on measurement error (Enclosure A) and 
statistical process control sampling (Enclosure B).   

Sampling and Measurement 
 
 An important reason, and the one that is of interest for this Committee, for analyzing 
samples in the first place is to characterize some aspect of the distribution of the “true level”, x, 
or most generally, to determine the distribution of x, within some well-defined population of 
product that the analyzed samples are “representing.”   The values of x could refer to levels or 
densities of some measurand or could refer to whether or not a pathogen is present in a sampled 
material.   The results are a collection, {yj, j = 1, …n} where n is the number of samples (here 
assumed randomly drawn for some population, with equal probability of selection). Thus values 
of y refer to the measured result, either a measurement of level or density of some measurand, 
or whether or not the pathogen was found.  The value of y thus represents the “known” 
evidence, from which an inference is made regarding the possible values of x.  In the 
interferential process there is always uncertainty associated with any conclusion or 
characterization made about possible value of x. 
 
 Mathematically this uncertainty can be represented by a “likelihood” function. This 
function can be derived in stages.  First consider the probabilities of possible values of y for 
hypothetical values of x,  g(y|x).  This is a function of the true value of x.  However, x is not 
known, but rather y is known. The values of x, being unknown, are (next) assumed to occur 
with some probability density which can be labeled, f(x).  With this supposition, the (full) 
probability relationship between y and x can be written down mathematically. To distinguish 
the case of y being known and x being unknown (from the case of x being known) the phrase 
“probability of y” is not used, but rather the phrase used is the “likelihood of y.”  More 
specifically, if the density of the distribution of x is f(x), then the likelihood (L) of obtaining a 
value of y can be expressed as a joint probability integral equation: 
 
    L(y) = ∫g(y|x)f(x)dx     (1) 
 
This equation includes results reported as non-detects, ND, as a possible value.  That is,  
 

L(ND) = ∫g(ND|x)f(x)dx     (2) 
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where g(ND|x) is the probability of ND (of getting a non-detect, or a false negative) given a true 
value of x in the sample.  An estimate of f(x) can be derived from the above integral equation, 
assuming g(y|x) is known.   If f(x) is of known (or assumed to be a specific) mathematical form, 
parameterized with parameter vector, θ, of (often) unknown values, then using maximum 
likelihood (MLE) estimation or method of moments (MOM), estimates of values of θ can be 
obtained. 
 
 Often, the forms of f(x) and even g(y|x) will not be known, but their first two moments 
(mean and variance) can be estimated and be considered sufficient for many purposes.  An 
example of this is with statistical process control (SPC), discussed in Enclosure B (SPC 
document), where SPC procedures depend upon specifying the mean and variance of the 
process.  If it is assumed that the relationship between the expected value and variance of y 
given x and x is known, then the mean and variance of the distribution of x can be obtained.  
The relationship for the means and the variances are: 
 
   E(y) = Ef(E(y|x))      (4) 
                             Var(y) = varf(E(y|x)) + Ef(var(y|x))     (5) 
 
where Ef and varf refer to the expected value and variance of the distribution with density 
function f, and E and var, without subscripts, refer to expected value and variance of 
distribution g.  The terms on the left are determined directly from the collection of {yj, j = 1, … 
n}of sample results; the terms E(y|x) and var(y|x) are assumed known functions of x, so that the 
above equations can be used to solve for Ef(x) and varf(x).  
 
 A simple example is to assume that var(y|x) is some linear function of x: var(x) = ax + b, 
where a and b are constants.  For some methods, such as methods of measuring densities of 
chemical residues, the coefficient of variability (CV) is assumed to be equal to 100(a + b/x), 
when x is the true level of some analyte, so that the variance, var(y|x), would be (ax+b)2.  
Assuming that E(y|x) = x – that is, the method is unbiased - the above equations become: 
 

E(y) = Ef(x)       (4a) 
Var(y) = varf(x) + Ef(ax+b) , or in the second case,  (5a)                      

 
Var(y) =[1 + a2] varf(x) + [aEf(x) + b]2   (5b) 

 
If E(y) and Var(y) can be estimated from a priori information, for example, from inter- or intra-
laboratory studies, then Ef(x) and varf(x) can be estimated by solving the above equations. 
 

Often there is a need for imputation or assigning a value of y when the imputed value is 
a non-detect value (ND).  A standard procedure for imputation is to impute ½ the limit of 
detection (LOD) (EPA, 2000), and then compute the average and standard deviation using the 
imputed values for ND. A justification of this imputation procedure could be based on the 
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“principle of indifference,”1 which here would invoke an assumption that the values of y that 
could have been measured would be uniformly distributed between 0 and L (where L = LOD).  
In other words, if it is thought that y represents an estimate of x on a sample, then the “best” 
estimate of x given that y is below the LOD = L, by the principle of indifference, is L/2.   This is 
a confusing assumption and its very premise leads to contradictions, as is well known; for 
example, by the same “principle of indifference” applied to the square root of the true level, x1/2, 
the imputed estimate would be L1/2/2, so that for x, the imputed estimate would be the square of 
this value, specifically, L/4. Ideally if the true distribution were known (or assumed) then values 
for ND results could be derived using statistical estimation procedures.  Based on assumptions 
for the distribution, procedures for imputation of results reported below the LOD have been 
proposed (Cohen, 1959; Persson and Rootzen, 1977; Singh and Nocerino, 2002). In any case, at 
least with chemical measurements, the LOD/2 imputation is commonly used (EPA, 2000) and 
would permit the above calculations to proceed.   

Importance for sampling 
 

It might be (as is often the case) that the percentage of the variance component (of the 
total variance) due to measurement is small relative to the variance component due to sampling 
variation.  However, even in this situation, the variance of individual results can be of such 
magnitude to affect significantly the confidence that is associated with individual results.  For a 
simple example, assume that the distribution of APC counts is lognormal, and that the mean of 
the log10 of the sample values, y, is 3 and the sample standard deviation is 1.  Since we are 
assuming that the distribution of the log10(y) is normal, a 95% probability interval would be 
approximately 1 (log10) to 5 (log10).  Consequently, if there were a specification that “permitted” 
no more than 4.5 log10 on a sample2, then based on the normal  distribution for the logarithm of 
the APC counts, assuming a mean value of 3 log10 and a standard deviation of 1,  there is a 
probability of 6.7% that a sample value would exceed 4.5 log10 (the z-score corresponding to the 
limit, 4.5 log10 is z =( 4.5-3)/1 = 1.5, which has associated cumulative probability of  93.3%, so 
that probability of being greater than 4.5 is 6.7%).    
 
 For simplicity here, assume that the distribution of log10(y), given a sample with a true 
level of x, such that the expected value of log10(y) is log10(x), and the standard deviation is 0.3 
log10, independent of the value of x.  From Equation 5a, 12 = Var(log10(y)) = varf(log10(x)) + 
0.32, so that the population variance of log10(x) is 1- 0.32 = 0.91; and the standard deviation of 
log10(x) is (0.91)1/2 = 0.954.  Hence the 95% probability interval, symmetric about the mean of 
the log10 of the true levels for the population, is 1.13 to 4.87 log10 and there would be a 6.3% 
probability that a sample value would exceed 4.5 log10.  The difference between the two 

 
1 Also referred to as the “principle of insufficient reason” developed in the 19th century, and later renamed ‘priciple 
of indifference’ by the economist John Maynard Keynes (http://en.wikipedia.org).  It basically stipulates that 
lacking any other information one can assume equal probablites for a set of events.  Where the events refer to 
values of continuous variables the principle leads to ambiguity as described within the text.   
2 In some situations, a specification would refer to the true level in a sample so that it would be necessary to know 
the measurement error to determine compliance.  Some adjustment might be made then to account for measurement 
error.   
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intervals is not large (1 to 5 versus 1.13 to 4.87 log10). Now, if the measurement standard 
deviation were reduced by a factor of 2, to 0.15 log10, then the probability of a single result 
obtained on a randomly drawn sample being greater than 4.5 log10 would be about 6.0%, 
reduced from 6.3%, hardly a change at all. 
 
 On the other hand, the impression of the effect of reducing the standard deviation of the 
measurement error could be different when considering its impact on inferring a value for 
sample using single measurements.  For a single measurement, a standard deviation of 0.3 log10 
would imply that, the 95% confidence interval associated with that true sample value of 
log10(x), would be log10(y) – 0.588, log10(y) + 0.588, a range of 1.176 log10, or a factor of  about 
15.   If the true value for a sample was 4 log10, which is well below the specified limit amount of 
4.5 log10, there would be about a 5% chance that a measured value would exceed 4.5, assuming 
a standard deviation of 0.3 log10 for the measured result.  If the standard deviation were reduced 
by a factor of 2, then the range of the 95% confidence interval associated with a measured value 
would be log10(y) – 0.294, log10(y) + 0.294, a range of 0.588 log10, or a factor of about 3.9, a 
seemingly substantial reduction.  The probability of a result being greater than 4.5 log10 given a 
true log10 value of 4 would be 0.043%, virtually zero, compared to the 5% when the 
measurement standard deviation is 0.3 log10.  This could be considered a significant change.  
 

Thus, overall, when considering the effect on sampling populations, reducing the 
measurement standard deviation from 0.30 to 0.15 does not amount to a significant change in 
the operating characteristic (OC) curve (which provides the probability of acceptable results 
given assumed true conditions (Juran, JM, 1951) when the results of the measurements are 
being used for assessing a distribution of levels within some population - in our example, the 
probability of failing was reduced from 6.3% to 6.0%, about a 5% reduction of the probability 
of obtaining failed samples.  The effort needed to reduce the standard deviation by a factor of 2 
would be at least 4 samples per analysis, and perhaps more, as discussed below.  As shown by 
way of this example, it may not be worth the extra time and effort to increase the number of 
analyses per sample.  However, when inferring a true value for a specific sample, perhaps in a 
legal setting, the reduction of the standard error of the mean might be significant, as illustrated 
by the above example. 

 
In determining how many samples would be needed to reduce the standard error of the 

mean (compared to the standard deviation of a single result), the magnitude of the variance 
components associated with the sampling and measurements would need to be known.  For 
example, very simply, the standard deviation may include significant day-to-day effects.  In 
other words, samples analyzed on the same day would not be independent results, but rather 
would be correlated within the population of possible results that would be obtained for the 
sample if it were analyzed on different days with different reagents and so forth.  This notion is 
expressed by identifying a parameter, δ, called the intra-day correlation, which is the proportion 
of the between-day variance to the total variance -  that is, the sum of the between-and within-
day variance.   For n samples analyzed per day for m days, the variance of the mean would be  

 
    Fm

2 = F0
2δ/m +   F0

2 (1-δ)/(mn)     (6) 
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where the first term on the right side represents the contribution of the between-day variance 
component (sampling for m days), and the second term represents the contribution of the 
within-day variance component (for mn samples).   For example, for a value of δ of 0.3, the 
mean of 56 samples, analyzed over 8 days, 7 samples per day has the same variance as that of 
the mean of 98 samples analyzed over 7 days, 14 samples per day.  An intra-day correlation of 
0.3 is large, but not unbelievable, particularly for microbiological measurements wherein 
“causes” of contamination or high levels of organisms could vary day- to-day by substantial 
amounts.    
 

Assume that a result needs to be obtained daily for some quality assurance or control 
purpose and thus results are analyzed in one day, so that m = 1.  A question might be: how 
many samples are needed (in one day) in order that the standard error (of the mean) is a fraction 
r of  the standard deviation, F0, of a single result?  From Equation 6, assuming δ < r2, the 
number of samples needed would be: 

        2

1n
r
−δ

=
−δ

      (7) 

 
Thus, for example, if δ = 0.1 and r = ½, 6 samples per day would be needed to have a variance 
of the mean be ½ the variance of a single result.  
 
Summary 
 

For microbiological measurements, true levels of the measurand are often highly 
variable over time, so that in general, given resources for a fixed number of samples, more 
samples over time with less samples per day, and more days of sampling is preferable if the 
purpose of sampling is to examine trends or get a good profile of the distribution of the 
measurand over time. However, if decisions are to be made on sample results for a given day, 
to ensure that product is safe then more samples per day might be needed.   
 
Composite sampling 
 

To minimize costs, composite sampling can be considered, when k samples (for example 
in one day) are divided into m composites of n samples (so that k =mn). The variance of the 
mean of the results obtained from the m composite samples would be: 

 
 Fm

2 = (F0
2δ +Fa

2) /m +  F0
2 (1-δ)/k = F0

2(1+ δ(n-1))/k  + Fa
2/m   (8) 

 
where, δ now refers to the intra-composite correlation, F0

2 is the between sample variance, 
ignoring measurement variance, and Fa

2 is the pure analytical measurement (referred to as 
repeatability) variance.  From Equation 8, it is seen that it is desirable that δ be small, which 
would be the case if it could be expected that true differences of levels between composite 
samples be negligible.  Stratifying the population being sampled or selecting systematically 
from every mth sample to form composite samples (for example, from 12 samples, selecting the 
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first, fourth, seventh and 10th as the first composite, and so forth, for 3 composite samples 
consisting of 4 samples each) would effectively minimize the value of δ. Assuming δ is small 
and can be ignored in Equation 8, the variance of the mean would depend upon the relative 
magnitude of F0

2 and Fa
2; if m (the number of composites) is small, then, even with n being 

large, the variance of the mean could be large since the term Fa
2 /m could be large.   

 
 However, often microbiological analyses are not able to handle large samples, and thus 
there may be a limit to the size of the composite samples.  The limiting factors regarding the 
size of composite samples are the container size required for a (for example) 1/10 dilution, the 
ability to homogenize large samples and incubator space.  Some laboratories may be equipped 
to handle large size samples, using walk-in incubators and such; however, most laboratories do 
not have such equipment.     
 
  Consideration also needs to be given to the sensitivity of the analytical procedure as a 
function of the sample size.  In other words, analyzing composite samples might introduce a 
bias if the sensitivity of recovery were affected by compositing.  These considerations might 
lead to limiting the number of samples, n, within a composite sample.  This in turn might make 
less innocuous the assumption of a small δ.  
 
 Suppose it is decided that M grams (or ml if liquid samples are being considered) is the 
size of the composite sample.  That is, the number of individual samples, n, in a composite 
sample, times the weight, w, (or liquid volume) of each individual sample, nw, should be equal 
to M.  The total number of samples, k = mM/w.  Equation 8 for the standard error of the mean 
of m composite sample results becomes: 
 

m
n

mM
w aw

m

22
02 ))1(1(

σ
δ

σ
σ +−+=                                                         (9) 

 
where the symbol σ0w refers to the between-sample variance for samples of weight (or volume) 
w.  As w decreases (and thus increasing the number of samples, k) it would be expected that σ0w 
would increase.  The relationship between the two quantities: w and σ0w would need to be 
explored in order to design an optimal composite sampling plan. 
 
 While composite sampling can lead to decrease of costs of sampling, it should be 
pointed out that the results obtained from composite sampling can mask information concerning 
the distribution of the levels of the measurand within the population being sampled.  
Information of the distribution of levels might be important for evaluating process control and 
for risk assessments that are primarily concerned with estimating risks typically associated with 
(occasional) high levels of some pathogen in food.  Hence, for designing sampling plans, an 
understanding of how the results might be used is needed.   
 

Designing sampling plans thus requires knowledge of variance components related to 
measurement and sampling variability associated with the sampling unit.  In the SPC document 
(Enclosure B), the discussion does not address the effects of measurement error explicitly; 
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rather the document concentrates on the issues related directly to SPC, and estimated variances 
would include the contribution due to measurement.  The total variability (due to sampling and 
analytical measurement) should be known or estimated in order to rationally design sampling 
plans– regarding the number of samples, composites, and repeat analyses that might be needed -
and for constructing realistic OC curves.  Information concerning specifics of this analysis can 
be found by reading Enclosures A, as well as reviewing the references in each case. 
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