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Abstract

We propose an explanation for the rapid post-entry growth of surviving �rms found in
recent studies. At the core of our theory is the interaction between adjustment costs and
learning by entering �rms about their ef�ciency. We show that linear adjustment costs, i.e.,
proportional costs, create incentives for �rms to enter smaller and for successful �rms to
grow faster after entry. Initial uncertainty about pro�tability makes entering �rms prudent
since they want to avoid incurring super�uous costs on jobs that prove to be excessive ex
post. Because higher adjustment costs imply less pruning of inef�cient �rms and faster
growth of surviving �rms, the contribution of survivors to growth in a cohort's average size
increases. For the cohort of 1988 entrants in the Portuguese economy, we conclude that
survivors' growth is the main factor behind growth in the cohort's average size. However,
initial selection is higher and the survivors' contribution to growth is smaller in services
than in manufacturing. An estimation of the model shows that the proportional adjustment
cost is the key parameter to account for the high empirical survivors' contribution. In
addition, �rms in manufacturing learn relatively less initially about their ef�ciency and are
subject to larger adjustment costs than �rms in services.
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1 Introduction

In recent years there has been renewed interest in explaining patterns of �rm dynamics, with
new longitudinal datasets con�rming heterogeneities between �rms of different size and age. In
particular, small and young (surviving) �rms tend to grow faster and have higher failure rates
than large and old �rms, and both job creation due to the scaling-up of �rm size and job destruc-
tion due to �rm exit decrease with age.1 Moreover, entering �rms tend to be small, but survivors
grow rapidly after entry and are the main factor behind the shift to the right of a cohort's size
distribution.2 These patterns differ markedly across sectors and countries, suggesting that both
technological differences and country speci�c factors matter.3

This paper proposes an explanation for the leading role of survivors' growth in post-entry
�rm dynamics based on the interaction between adjustment costs and a learning-about-ef�ciency
mechanism. Following a literature that uses adjustment costs to account for some dynamic prop-
erties of �rms' labor demand, such as Campbell and Fisher (2000), we show that proportional
costs can impact the lifetime dynamics of �rms' labor demand in a way consistent with the data.
To implement our theory, we use a standard model of �rm dynamics with passive learning. In
order to check the empirical �t of our model, we also assume that inef�cient �rms are pruned
from the market, although the predictions of our theory hold even in the absence of a selection
mechanism (e.g. when exit is not allowed).
Our contribution is twofold. First, we contribute to the empirical literature by introducing

a decomposition of the change in a cohort's average size into a survivor component and a
non-survivor component, and by using this decomposition as the centerpiece in a structural
estimation of adjustment costs. Given the emphasis on survivors' growth, our measure allows a
quick assessment of how well a particular theory matches the data in that respect. We apply our
decomposition to the 1988 cohort of entrants in the Portuguese economy, using the Quadros
de Pessoal dataset. Similarly to Cabral and Mata (2003), we �nd that growth of survivors is
the main force behind the change in the cohort's average �rm size. However, we also �nd
that growth of survivors is especially intense in the initial years after entry and that there are
signi�cant cross-sector differences in terms of our decomposition. In particular, initial exit rates
are smaller and the survivors' contribution to changes in size is higher in manufacturing than in
services.
Second, we contribute to the theoretical literature by introducing linear adjustment costs into

a model of Bayesian learning about ef�ciency. Our assumption of linear or proportional costs

1See Dunne et al. (1989a, 1989b).
2See Mata and Portugal (1994) and Cabral and Mata (2003).
3See Bartelsman et al. (2005).
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is justi�ed by the �nding of high inaction rates in employment adjustment, in varying degrees
across sectors. Our model builds on Jovanovic (1982) by adding proportional costs that apply
not only to regular labor adjustment, but also to job creation at entry and job destruction at exit.
We show that proportional adjustment costs create incentives for �rms to start smaller and, if
successful, grow faster after entry. We prove this analytically in a simpli�ed model in which
there is no exit of �rms. This result shows that proportional costs can generate �rm growth
without selection. When �rms are allowed to exit, selection intensi�es the effects of adjustment
costs on �rm growth, while costs to adjustment reduce exit rates. Therefore, adjustment costs
increase the contribution of surviving �rms to growth in the cohort's average size.
All that is needed for �rm growth under linear adjustment costs is the existence of a learning

environment that generates a stochastic process for perceived ef�ciency with both persistence
and decreasing uncertainty in age.4 The intuition for why �rms grow faster and display smaller
exit rates under proportional adjustment costs is that initial uncertainty about true pro�tability
makes entering �rms prudent; that is, they enter small and �wait and see� since they want to
avoid incurring super�uous entering/hiring costs and �ring/shutdown costs on jobs that prove to
be excessive ex post. This implies that surviving �rms will grow faster, even though adjustment
costs imply that there are fewer �rms exiting the market and therefore less pruning of inef�cient
�rms.
The assumption that entering �rms face a Bayesian learning problem concerning their ef-

�ciency is standard in selection theories and has been advanced as an explanation for the high
rates of exit, job creation, and job destruction among young �rms. The initial literature on ad-
justment costs used a (strictly) convex speci�cation in an attempt to explain the sluggishness in
input responses to aggregate shocks. However, the assumption that costs of adjustment are lin-
ear is now standard in dynamic labor demand models, following a number of studies since the
late 1980s that have documented the importance of inaction in employment adjustment at the
micro level.5 Since strictly convex costs imply smooth adjustments over time, whereas linear
costs imply immediate adjustment when it occurs, allowing for strictly convex costs, instead
of linear costs, in the context where they also apply at entry and exit, would bias our analysis
and eventually make our argument stronger. In the case of hiring/entering costs, entering �rms
would prefer to start smaller and adjust gradually to their optimal size, even if their perceived
productivity remained unchanged or learning was absent. For �ring/exiting costs, �rms expe-
riencing large declines in perceived productivity would adjust downwards in several steps, a
scenario that would make �rms start smaller to attenuate its effects. Therefore, by avoiding

4For example, �rm growth would occur in our model even if exit was random with a constant probability for
all �rms, whereas that would not be true in a pure selection model.

5See Hamermesh and Pfann (1996).
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a bias towards �rm growth, our decision to assume linear costs is conservative and permits a
simpli�cation of the methods employed to measure the effects of adjustment costs.6

To assess our model quantitatively, we calibrate and estimate a version of the model with
�nite learning horizon and positive dispersion in entry size. We conclude that linear costs are
the key element to account for the high empirical contribution of survivors to changes in a
cohort's average size. A calibration/estimation for the manufacturing and services cohorts also
suggests that �rms in manufacturing learn relatively less initially about their ef�ciency and are
subject to substantially larger adjustment costs than �rms in services.
This paper is related to the literature on both adjustment costs and �rm dynamics. Within

the literature on adjustment costs, the paper is associated with theories that use linear adjust-
ment costs to explain certain aspects of the dynamic behavior of labor demand and job �ows.
Well-known examples are Bentolila and Bertola (1990), Hopenhayn and Rogerson (1993), and
Campbell and Fisher (2000). Bentolila and Bertola (1990) and Hopenhayn and Rogerson (1993)
analyze the effects of proportional �ring (and hiring) costs on the dynamics of hiring and �r-
ing decisions, and on average labor demand. Both papers conclude that high �ring costs make
hiring and �ring adjustments more sluggish, but they disagree on the implications of that for
long-run employment. Campbell and Fisher (2000) use proportional costs of job creation and
job destruction to explain the higher aggregate volatility of job destruction found in the U.S.
manufacturing sector. These costs imply that in reaction to aggregate wage shocks employment
changes at contracting �rms are larger than employment changes at expanding �rms. What is
new in our paper is the assumption that adjustment costs apply equally to the entry/exit deci-
sions and the hiring/�ring decisions.7

Within the literature on �rm dynamics the paper is connected with theories that attempt to
explain the stylized facts on the lifecycle dynamics outlined above. The two main explanations
for these facts are theories based on selection of �rms and theories based on �nancing con-
straints.8 Selection theories stress the tendency for �rms that accumulate bad realizations of
productivity to exit the market and for �rms that accumulate good realizations to survive and
expand. This implies a composition bias towards larger and more ef�cient �rms as smaller,
inef�cient, and slow-growing �rms gradually exit the industry. Representative papers of selec-
tion theories are Jovanovic (1982), Hopenhayn (1992), Ericson and Pakes (1995), and Luttmer
(2007). In all cases productivity realizations are exogenous, except in Ericson and Pakes (1995)

6Although we could have included �xed adjustment costs they seem more relevant in the case of capital.
7Hopenhayn and Rogerson (1993) did consider that the �ring cost applied also at exit, but in their model there

is no learning process and they did not analyze the effect of the �ring cost on �rm growth.
8Rossi-Hansberg and Wright (2007) advance an alternative theory based on mean reversion in the accumula-

tion of industry-speci�c human capital. However, their model only deals with size-dependence of �rm dynamics,
and has nothing to say about age-dependence of �rm dynamics, which is our main concern.
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where they are to some extent endogenous.
Meanwhile, theories employing �nancing constraints argue that some imperfection in �-

nancial markets causes young �rms to have limited access to credit, forcing them to enter at a
suboptimally small scale. As �rms get older and survive, they establish creditworthiness and
build up internal resources that enable them to expand to their optimal size. Important contri-
butions to this literature are those of Cooley and Quadrini (2001), Albuquerque and Hopenhayn
(2004), and Clementi and Hopenhayn (2006). In Cooley and Quadrini (2001) a transaction
cost on equity and a default cost on debt imply that equity and debt are not perfect substitutes,
resulting in a positive dependence of �rm size on the amount of equity. In Albuquerque and
Hopenhayn (2004) and Clementi and Hopenhayn (2006) lenders introduce credit constraints
because of limited liability of borrowers and enforcement of debt contracts, in the �rst case,
and because of asymmetric information on the use of funds or the return on investment, in the
second case.
Cabral and Mata (2003) analyze whether these two theories are consistent with the evolution

of a cohort's size distribution in the Portuguese manufacturing sector. They �nd that, as the
cohort ages, the �rm size distribution shifts to the right largely due to growth of surviving �rms
rather than exit of small �rms. In addition, they �nd that in the �rst year after entry younger
business owners are associated with smaller �rms but that is no longer the case once the cohort
gets to age seven. Assuming that age is a proxy for the entrepreneur's initial wealth, the authors
conclude that the age-size effect supports the idea of �nancially constrained �rms starting at a
suboptimal size and present a model with �nancing constraints capturing this effect.
More recently, Angelini and Generale (2008) use survey and balance sheet information for

Italian manufacturing �rms to analyze the impact of �nancing constraints on the evolution of the
�rm size distribution. They �nd that �nancially constrained �rms tend to be small and young,
although this does not have a signi�cant effect on the overall �rm size distribution. Moreover,
they �nd that �nancing constraints decrease �rm growth, with this effect being entirely due to
small �rms. In particular, being young and �nancially constrained does not have any additional
effect. Based on these results and the fact that young �rms grow faster than old �rms, the
authors conclude that �nancing constraints are not the main factor behind the evolution of the
�rm size distribution. In line with their argument, this paper interprets the facts presented in
Cabral and Mata (2003) and other cross-sector evidence as the result of the interaction between
adjustment costs and learning about ef�ciency.9

To our knowledge, this work is the �rst to suggest adjustment costs as an explanation for

9Our interpretation of the age-size effect is close to the alternative explanation proposed by Cabral and Mata
(2003, footnote 14), in the sense that young business owners would be subject to a more intense learning.
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differences in �rm dynamics by age. The paper by Cabral (1995) is nearest to this paper.
In his model, �rms must pay a proportional sunk cost to increase their production capacity.
He argues that, in a model with Bayesian learning, a proportional capacity cost would make
small entering �rms grow faster than large entering �rms. The reason is that small entrants are
those whose initial pro�tability signals were not good, so their exit probabilities are higher, and
therefore they choose to invest more gradually. Unlike our model, Cabral's model depends on
the existence of selection. Also, by analyzing a size-growth relationship, his model is not able
to explain why some large entering �rms also grow substantially.
The paper is organized as follows. In section 2, we present evidence of �rm dynamics for a

cohort of entering �rms. In section 3, we build the general model, obtain optimality conditions,
and provide heuristic arguments explaining the effects of adjustment costs. In section 4, using
a simpli�ed version of the model we analytically prove the effect of linear adjustment costs on
survivors' growth. In section 5, we calibrate and estimate a �nite learning horizon version of the
model and quantify the contribution of adjustment costs to �rm dynamics. Section 6 concludes.
All proofs are left for an appendix.

2 Firm Dynamics in a Cohort of Entering Firms

There is a well established literature on the identi�cation and explanation of differences in
behavior between young and old �rms. In this section, we analyze �rm dynamics in a cohort of
entering �rms. We useQuadros de Pessoal, a database containing information on all Portuguese
�rms with paid employees. This dataset originates from a mandatory annual survey run by the
Ministry of Employment, which collects information about the �rm, its establishments, and its
workers. All economic sectors except public administration are included. The panel we have
access to covers the period 1985-2000. Information refers to March of each year from 1985
through 1993, and to October of each year since the reformulation of the survey in 1994. On
average the dataset contains 250,000 �rms, 300,000 establishments, and 2,500,000 workers in
each year.
The literature on �rm dynamics typically �nds that young �rms grow faster than old �rms.

Using kernel density estimates of the �rm size distribution in a cohort of entrants, Cabral and
Mata (2003) argue graphically that the cohort's evolution is mostly due to growth of survivors
rather than exit of small �rms. Their analysis points to the need for a measure of the con-
tribution of survivors versus non-survivors to the growth in a given cohort's average size. To
accomplish this, we propose a decomposition of the cohort's cumulative growth that will later
allow an assessment of the empirical relevance of adjustment costs. We consider the following
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where τ is the �rm's age, li;τ = ln(Li;τ) is log-employment at �rm i in period τ , Sτ is the set of
age-τ surviving �rms, Dτ is the set of age-τ non-surviving �rms, so that fSτ ;Dτg is a partition
of S0, and N (X) is the number of �rms in set X .10

In general, the growth in a cohort's average size can originate from growth of survivors
or from smaller initial size of non-survivors. Any theory of �rm dynamics should consider
both these sources of growth. Our measure allows a check on whether a particular theory can
explain the key source of growth in a cohort's average size. The survivor component compares
the current average size of period τ survivors with their initial average size, so that it measures
howmuch survivors have grown. The non-survivor component compares the average initial size
of period τ non-survivors with the average initial size of period τ survivors, so that it measures
how relatively small non-survivors were initially.
We can obtain a similar decomposition for employment-weighted moments. The weighted

decomposition contains information about the entire distribution of employment, not just its
cross-sectional mean, and is affected both by within- and between-�rm growth. Therefore, the
weighted decomposition would be more relevant for assessing a richer model that considers the
reallocation of employment shares between �rms within the cohort. In the results that follow
we focus on the unweighted decomposition because it analyzes within-�rm growth, which in
our model is the most relevant statistic to assess the effect of adjustment costs on the incentives
for �rms to grow.11

10Throughout the paper we will assume that �rms enter in some generic period 0. Therefore, τ will represent
both the �rm's age and the period (after entry) we are analyzing.

11For the weighted decomposition, the cumulative change would be ∑i2Sτ
ω
Sτ
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the weight of �rm i in period τ in set X , with ωXi;τ = Li;τ=∑i2X Li;τ . The weighted survivor component can be
further decomposed as
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The �rst term is a within-�rm component, measuring average growth weighted by initial size; the second term is
a between-�rm component, measuring the contribution of changes in employment shares; and the third is a cross

6



We can also produce a decomposition based on the cohort's annual growth instead of the
cohort's cumulative growth. However, the annual version of the above decomposition is more
sensitive to two aspects that would complicate the analysis in the paper. First, the annual sur-
vivor component is signi�cantly affected by the business cycle, especially after the �rst few
years of life. To control for this, we would need to somehow remove the cyclical part of the
survivor component. Second, as the age of the cohort increases, the annual survivor component
becomes increasingly sensitive to downsizing and exit by some survivors that become techno-
logically outdated and consequently relatively less ef�cient. To fully consider this aspect of the
data would force us to introduce additional parameters into the model that we present in section
3. Therefore, we believe that by employing a decomposition based on the cohort's cumulative
growth we avoid having to adjust the analysis for these two aspects, and instead focus on how
intense is survivor's growth while learning-about-ef�ciency effects are signi�cant.
In table 1, we present the evolution of exit rates and the share of �rm growth due to the

survivor component in the 1988 cohort of entering �rms for the overall economy.12 In 1988
there were 22;810 entering �rms. The exit rate is very high initially but tends to decrease as
�rms get older.13 However, ten years after entry only 41:5% of the initial entrants remain active.
There is signi�cant growth in the cohort's average size, especially in the �rst few years, which is
mostly due to the growth of survivors rather than to the exit of small inef�cient �rms: survivors'
growth contributes around 69% to the growth in the cohort's average size.14

Table 2 presents similar evidence on cohort dynamics for the manufacturing and services
sectors.15We include the employment shares of each sector in the 1988 cohort of entering �rms,
which are close to shares in the overall economy. Although manufacturing has a much higher
employment share than services, the number of entering �rms in services surpasses that of

component. For the unweighted decomposition, the last two terms are zero, since in this case ωXi;τ = N (X)
�1.

12We identify entering �rms in year t as those �rms that have not been in the database before t. Given the high
incidence of temporarily missing �rms, we select the 1988 entering cohort, using 1985 and 1986 to detect false
entries. Similarly, we identify exiting �rms in the τ-th period (after entry in 1988) as those �rms that are present
in the database in period τ�1, but do not reappear in any of the following periods. Therefore, we display results
only up to 1999, using 2000 to detect false exits. This procedure eliminates most false entries and false exits.

13We adopt the following procedures concerning temporarily missing �rms. In calculating the exit rate we
do not exclude temporarily missing �rms, considering them as survivors. In calculating the cohort's mean log-
employment at period τ , we scale it with a factor that compares that mean in period 0 between all �rms and those
not temporarily missing in period τ . We also adjust the data in 1994, when the survey moved from March to
October, to correct for a higher than normal exit rate and average growth in this year.

14When we use employment-weighted data, we �nd that larger �rms have smaller exit rates and, as a conse-
quence, average employment increases more intensely than in the unweighted data. This and the fact that high-
growth �rms increase their weight over time, explains a larger survivor component in the employment-weighted
decomposition. A similar exercise for labor productivity reveals that survivors account for about 90% of the change
in the cohort's unweighted average productivity.

15In order to obtain equivalent one-digit SIC87 sectors, we use the following correspondence in terms of CAE
Rev. 1 codes : manufacturing(= 3) and services(= 6:3+8:3:2+8:3:3+9:2+9:3+9:4+9:5).
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manufacturing (6074 and 4834, respectively). Both sectors display a cumulative exit rate around
58% by 1999. However, initial differences in exit rates are more signi�cant, with manufacturing
displaying the smallest values, and services displaying the highest values. In terms of initial
size, manufacturing has the largest entrants, and services the smallest. Although manufacturing
has the largest entrants, it exhibits more growth in average employment and a larger contribution
of survivors to that growth than services.
We perform two robustness checks on the previous �ndings. First, we redo our calculations

using establishments rather than �rms as the unit of analysis. For the 1988 establishment cohort,
we obtain similar results, although exit rates and the survivor component are higher than in the
case of �rms. Second, we examine an alternative cohort to make sure our results are not driven
by business cycle conditions. The Portuguese economy experienced an expansion between 1986
and 1991, a period of slow growth with a recession between 1992 and 1994, and another weaker
expansion between 1995 and 2000. The growth rates of real GDP were 6:4% in 1989, 1:1%
in 1992, and 4:3% in 1995, so that the 1991 cohort did not face as favorable a macroeconomic
environment as the 1988 cohort. However, the results for the 1991 cohort are, in all dimensions,
very similar to those presented above. The results for the 1994 cohort are also very similar, but
with slightly smaller values for the survivor component in the �rst few years after entry.16

In table 3, we provide evidence on the properties of labor adjustment in the 1988 cohort of
entering �rms. Namely, we present three characteristics of the distribution of adjusted growth
rates, conditional on survival, in 1989 and 1993: the fraction of �rms that do not adjust employ-
ment, NA, and the fractions of �rms that increase/reduce their size by less than 30%, P30/N30.17

The table shows that the incidence of inaction is very high, increases with age, and is higher
in services than in manufacturing. This may re�ect technology-induced differences in adjust-
ment costs, or job indivisibilities affecting to a larger extent the services sector for having a
higher share of small �rms. The table also shows that the large majority of �rms have adjust-
ment rates within the (�30%;30%) interval. A high rate of inaction and small adjustment is
usually considered consistent with the presence of linear or proportional adjustment costs. In
addition, comparing the columns P30 and N30 it appears that the 1989 growth distributions are
more left-skewed than the 1993 distributions, suggesting that survivors tend to grow more ini-

16Re�ecting our previous argument about the greater cyclical sensitivity of the decomposition based on the
cohort's annual growth rate, we observe a substantial reduction in the annual survivor component associated with
the 1988 and 1991 cohorts during the 1992-1994 slow growth period. However, a similar pattern does not occur
with the 1994 cohort. This is one of the reasons why we choose a decomposition based on cumulative growth rates.
Note also that the annual non-survivor component is not as sensitive to the business cycle as the annual survivor
component.

17Following Davis and Haltiwanger (1992), the adjusted growth rate in period τ is de�ned as 100 �
(Lτ �Lτ�1)= �Lτ�1, where �Lτ�1 =

1
2 (Lτ +Lτ�1).
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tially, especially in manufacturing. The evidence on inaction justi�es our assumption of linear
adjustment costs in the model that we present next.

3 A Model of Learning with Linear Adjustment Costs

3.1 Assumptions and Solution

In this section, we introduce linear adjustment costs into a model of Bayesian learning about
ef�ciency. We derive conditions for optimal employment over time and present heuristic argu-
ments about the effects of adjustment costs on the path of employment. Our model is based on
Jovanovic (1982), adding adjustment costs and using a different speci�cation for the idiosyn-
cratic shock.
We assume an industry with competitive output and input markets. Current pro�ts of a

representative �rm are de�ned by

Π(L;θ) = F (L)θ �wL,

where F (L)θ is the production function; L is the amount of labor input; θ is a productivity
shock; and w is the wage rate. The output price is normalized to unity, so that all monetary
values are expressed in units of the output price. Given the competitive environment, the �rm
treats w as a constant.
Concerning technology we make the following assumption.

Assumption 1 The two components of the production function satisfy:
(a) F : R+! R+ is C2, F 0 > 0, F 00 < 0, F (0) = 0, F 0 (0+) = ∞, and F 0 (∞) = 0.
(b) Letting τ denote the �rm's age and 0 the period in which the �rm enters, the stochastic
process of θ is de�ned by

θ τ = ξ (ητ) , ητ = µ+ ετ , µ = µ0+µ1, τ = 0;1; : : : (1a)

ετ � N
�
0;σ2

�
, µ0 � N

�
µ̄;σ2µ0

�
, µ1 � N

�
0;σ2µ1

�
, (1b)

where µ0, µ1, fετgτ�0 are mutually independent, ξ : R! R++ is C1, ξ
0 > 0 and ξ (�∞) =

ν1 � 0, ξ (∞) = ν2 < ∞.

Part (a) ensures a well de�ned interior optimum. In some of the analyses below, we will
assume that F is a power function. Meanwhile, part (b) establishes that in each period produc-
tivity is stochastic with a constant mean over the �rm's lifetime. The productivity component,
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µ , is made of two parts: µ0, which is observed before entry, and µ1, which is never directly
observed by the �rm. Intuitively, µ0 can be thought of as indexing ex ante ef�ciency, measur-
ing initial technology choice, while µ1 indexes ex post productivity, measuring how well a �rm
performs within its technology choice.
The introduction of µ0 is essential to obtain a non-degenerate distribution of �rms' entry

size, allowing an analysis of the contribution of survivors to growth in the cohort's average size.
In contrast, the absence of µ0 in Jovanovic's (1982) model generates a degenerate distribution
of �rms' entry size. Under this scenario, for any period after entry, survivors and non-survivors
have the same average initial size implying a value of 100% to our measure of the survivors'
component. By assuming σ µ0 > 0, we avoid this aspect of Jovanovic's model.
Before entry the �rm knows the parameters governing the stochastic process of θ , i.e., µ̄ ,

σ2µ0 , σ2µ1and σ2, and learns its ex ante productivity, µ0, after paying a research cost, I. After
entry, the �rm will learn about its speci�c ex post productivity, µ1, over time as it observes
the realizations of productivity, θ . In particular, the �rm forecasts period-τ productivity based
on the ex ante ef�ciency parameter µ0 and on the past realizations of productivity, fθ sgτ�1

s=0 .
Similarly to Zellner (1971), a �rm with age τ has the following Bayesian posterior distribution
for µ at the beginning of period τ:

µjΩτ
� N (Yτ ;Zτ) , Ωτ �

n
µ0;fηsgτ�1

s=0

o
(2a)

Yτ =
τσ�2

Z�1τ

η̄τ +
σ�2µ1

Z�1τ

µ0, η̄τ =
1
τ

τ�1
∑
s=0

ηs, Zτ =
1

τσ�2+σ
�2
µ1

: (2b)

In lemma 2 of appendix A we show that, for purposes of predicting µ , the information set Ωτ

can be summarized by (θ �τ ;τ), where θ
�
τ is the period-τ forecast of the productivity coef�cient

based on the information available at the beginning of period τ . That is, θ
�
τ = Eτ (θ τ), where

Eτ (�)� E (� jΩτ) is the expectation conditional on the period-τ information set.
We now lay out the timing assumptions.

Assumption 3 A potential entering �rm, at the beginning of period 0, takes the following ac-
tions:
(i.a) Research cost and ex ante productivity: the �rm pays a �xed cost I, associated with the
process of initial research, after which it observes a realization of ex ante productivity, µ0.
(i.b) Entry decision and entry cost: based on the idiosyncratic realization of µ0, the �rm chooses
whether to enter the industry or not. In case of entry, the �rm pays W for acquiring the (exoge-
nously determined) capital stock.
(i.c) Initial employment and production decisions: conditional on entering the industry, the �rm
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chooses how much labor to use and how much output to produce in period 0.

A �rm of age τ > 0 takes the following actions:
(ii.a) Update of posterior productivity: at the beginning of period τ , the �rm updates its poste-
rior expectation of θ τ , θ

�
τ , based on the observation of θ τ�1 = ξ (ητ�1) at the end of period

τ�1.
(ii.b) Exit decision: given the new posterior productivity estimate, θ

�
τ , and employment from

last period, Lτ�1, the �rm chooses whether to stay or exit the industry. In case of exit, the �rm
sells the capital stock for the value initially paid, W (no depreciation).
(ii.c) Employment and production decisions: conditional on staying, the �rm chooses how much
labor to use and how much output to produce in the current period. At the end of period τ , the
�rm observes the productivity realization, θ τ , and the process repeats itself again until the �rm
decides to leave the industry.18

In the absence of adjustment costs, while deciding whether to stay one more period or to
exit, the �rm compares the expected pro�t in case it stays,V , with the opportunity cost of doing
so,W , the value it would recover by selling the (exogenous) capital initially acquired, i.e.,

V (θ �τ ;τ) =maxLτ

�
Π(Lτ ;θ

�
τ)+βEτ

�
max

�
W;V

�
θ
�
τ+1;τ+1

�	�	
(3)

where V represents expected pro�ts conditional on staying in period τ .
At entry, we have Ω0 � µ0, and in equilibrium expected pro�ts must compensate for the

cost of acquiring capital, i.e., VEN (θ �0) >W . Since markets are competitive and there is no
friction in the entry and exit processes, in equilibrium the research cost equals expected gains at
the research phase, i.e., E(VEN (θ �0)) = I. If E

�
VEN

�
> I more �rms will initiate research and

later enter the industry, causing a decrease in output price until equality is restored. A strictly
positive �xed research cost, I > 0, is essential to avoid the extreme situation where trial research
is so high that only the highest productivity �rms enter and survive. Because there is no reliable
capital stock variable in Quadros de Pessoal, we do not make the capital decision endogenous
to the model. Instead, we assume that �rms are homogeneous along the capital dimension and
face the same opportunity cost of remaining in activity,W .
Up to this point, the only differences between our model and Jovanovic (1982) are that in

the latter model the ef�ciency parameter implicitly affects the cost function and the cohort's
entry size distribution is degenerate. Therefore, without adjustment costs there would be no

18In this model we do not consider the possibility that as �rms get older they might decay or become obsolete.
This could be achieved by assuming exogenous probabilities for those two events. This could generate both a
decrease in size of old �rms (decay) and the exit of old �rms (decay and obsolescence).
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intertemporal linkages in our model aside from the exit decision. As in Jovanovic, because V is
strictly increasing in θ

�, the exit decision is characterized by an age-dependent exit threshold.
For values of θ

�
τ above or equal to that threshold, the �rm would stay and choose employment

to maximize current period pro�ts. For values of θ
�
τ below that threshold, the �rm would

leave the industry, since its expected pro�tability is below the opportunity cost. The increasing
con�dence the �rm puts in θ

�
τ as it grows older implies that the exit threshold is increasing with

age. This is the driving force underlying Jovanovic's result that the size distribution and the
survival probability increase with age.
We now introduce linear adjustment costs into the model. The adjustment cost for continu-

ing �rms,CS, is de�ned as
CS (Lτ ;Lτ�1) = P jLτ �Lτ�1j

where P is the cost per unit of adjustment. Since this is a model with endogenous entry and exit
of �rms, we consider that this cost also applies to the entry and exit decisions, so that the costs
for entering and exiting �rms,CEN andCEX respectively, are given by

CEN (L0) = P L0, CEX (Lτ) = P Lτ .

With adjustment costs, the problem now becomes,

V S (Lτ�1;θ
�
τ ;τ) =maxLτ

nh
Π(Lτ ;θ

�
τ)�CS (Lτ ;Lτ�1)

i
+

βEτ

h
max

n
VEX (Lτ) ;V S

�
Lτ ;θ

�
τ+1;τ+1

�oio
, (4)

for all periods after entry (τ � 1) in which the �rm remains in the industry, and

VEN (θ �0) =maxL0

n�
Π(L0;θ �0)�CEN (L0)

�
+βE0

h
max

n
VEX (L0) ;V S (L0;θ �1;1)

oio
, (5)

for the entry period, where VEX , the value of exiting, is de�ned as

VEX (Lτ) =W �CEX (Lτ) .

Note that contrary to the case without adjustment costs, the previous period employment is a
state variable for the current period optimization problem. Also, in VEN and VEX the costs of
hiring at entry and �ring at exit are taken into account.
In general, we could allow for asymmetry among the cost parameters in CS, CEN , and CEX .

However, asymmetries between the cost of regular �ring and the cost of �ring at exit or between
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the cost of regular hiring and the cost of hiring at entry lead to biases in entry and exit decisions.
For example, if the per unit regular hiring cost is higher than the per unit entry hiring cost, then
�rms will hire more workers at entry in order to save on expected future higher hiring costs.
Similarly, if the per unit regular �ring cost is smaller than the per unit exit �ring cost, then
�rms facing the prospect of exit will �re workers before exiting the industry, saving on expected
future higher exit �ring costs. To avoid these biases, throughout the paper we assume symmetry
between the parameters in CS, CEN , and CEX . A more interesting distinction is between �ring
and hiring costs. We will see below that the conclusion of the paper is immune to asymmetries
between the costs of adding and subtracting workers.
In solving the �rm's problem, we consider a two-step optimization procedure where the

�rm �rst chooses optimal employment in each of three possible scenarios, and then selects the
scenario with the highest pay-off. More precisely,

V S (�) =max
n
V SD (�) ;V SN (�) ;V SU (�)

o
,

where V SD and V SU are obtained by maximizing the objective function in (4) over Lτ � Lτ�1

and Lτ � Lτ�1, respectively, and V SN is obtained by choosing Lτ = Lτ�1 in (4). Although
the adjustment cost function introduces a non-differentiability of the objective function at the
frontiers between adjustment and non-adjustment, the usual properties of the value function V S

and its associated optimal exit policy function hold

Proposition 4 Let V S be de�ned as in (4). Then:
(a) There exists a unique value function V S (Lτ�1;θ

�
τ ;τ) satisfying (4) that is bounded, contin-

uous in (Lτ�1;θ
�
τ), and strictly increasing in θ

�
τ .

(b) There exists a unique optimal exit policy function χ�τ (Lτ�1;θ
�
τ) = 1

�
θ
�
τ < θ

EX (Lτ�1;τ)
�
,

where θ
EX (Lτ�1;τ) is a unique continuous function in Lτ�1.

Proof. See appendix A.19

In contrast, the non-differentiability of the objective function generates an inaction region
in the employment policy, within which optimal employment does not vary with changes in
productivity.

19Because in general V S is not concave, we cannot prove the usual differentiability properties of the value
function. Therefore, in what follows, we implicitly assume that V S

�
Lτ ;θ

�
τ+1;τ+1

�
is differentiable at Lτ with

probability one, in terms of F
�
θ
�
τ+1 j θ �τ ;τ

�
for all θ

�
τ 2 Θ. By part (b) of proposition 4 and the dominated

convergence theorem, this implies that the objective functions associated with V SD, V SN and V SU are continuously
differentiable in L, so that marginal conditions can be applied to �nd interior optima. This assumption also implies
that V S (Lτ�1;θ

�
τ ;τ) is differentiable at Lτ�1 with probability one. In proposition 5 of appendix A, we prove that

this property holds both in a model with a �nite lifetime horizon and a model with in�nite-lived �rms that face a
�nite learning horizon (as in sections 4 and 5).
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Proposition 6 For any period τ > 0, if the �rm adjusts upwards, optimal employment satis�es

�
F 0 (L�τ)θ �τ �w

�
+

∞

∑
s=1
Eτβ

s� �χ�τ+s (�P)+ �χ�τ+s �F 0 �L�τ+s�θ
�
τ+s�w

�	
= P, (6)

whereas if the �rm adjusts downwards optimal employment satis�es

�
F 0 (L�τ)θ �τ �w

�
+

∞

∑
s=1
Eτβ

s� �χ�τ+s (�P)+ �χ�τ+s �F 0 �L�τ+s�θ
�
τ+s�w

�	
=�P, (7)

In period 0, the �rm enters the industry if VEN (θ �0) �W, in which case optimal employment
satis�es �

F 0 (L�0)θ �0�w
�
+

∞

∑
s=1
E0β s

�
�χ�s (�P)+ �χ�s

�
F 0 (L�s )θ �s �w

�	
= P. (8)

L�τ+s is the optimal employment in period τ+s, and �χ�τ+s, �χ
�
τ+s are functions of the optimal exit

decision, χ�
τ+ j, in periods τ+1 to τ+ s, such that �χ�τ+s equals one when the �rm has remained

in the industry until period τ + s� 1, but decides to exit in period τ + s, and �χ�τ+s equals one
when the �rm is still in the industry in period τ+ s.

Proof. See appendix A.

Equations (6), (7) and (8) are marginal conditions, similar to the smooth pasting conditions
in the (S, s) model literature, and they state that if the �rm adjusts then the marginal adjustment
cost must equal the expected present discounted value of the marginal revenue product for all
future periods in which the �rm is still in the industry, minus the increase in the exit cost when
the �rm decides to exit. This is the discrete-time analog of the continuous-time result present in
Nickell (1986) and Bentolila and Bertola (1990), adjusted for the fact that now we also have an
exit decision. Because the �rm will not change employment if the marginal cost of adjustment
exceeds its marginal bene�t for the �rst unit of adjustment, proportional costs imply inaction in
the employment decision of the �rm.
Although the results in proposition 6 do not allow a formal proof of the effects on �rm

growth of adjustment costs in this general model, the following corollary of proposition 6 en-
ables us to make qualitative heuristic statements about those effects.

Corollary 7 For any period τ � 0, the marginal bene�t of one additional unit of labor, that is,
the LHS of expressions (6), (7), and (8), can be recursively represented as

MBτ =
�
F 0 (L�τ)θ �τ �w

�
+βEτ

�
χ
�
τ+1 (�P)+

�
1�χ

�
τ+1
�
MBτ+1

�
(9)
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where L�τ = L�τ (Lτ�1;θ
�
τ), χ�

τ�1 = χ�
τ�1 (Lτ�1;θ

�
τ) are the optimal employment and exit deci-

sions.

Proof. See appendix A.

3.2 Linear Adjustment Cost and Firm Growth

As we have seen above, in the absence of adjustment costs, optimal employment is determined
solely to maximize current period pro�ts, so that F 0 (L�)θ � = w. Therefore, �rms' growth is
essentially a by-product of a selection mechanism: those �rms that are inef�cient, and therefore
small, exit, while those �rms that are ef�cient survive and grow. There is an additional source
of positive growth when the frictionless employment decision rule, L� (θ �), is convex in θ

�.
Because of Jensen's inequality and because θ

�
τ is a Martingale, surviving �rms will grow over

time: Eτ

�
L�
�
θ
�
τ+1
��
> L�

�
Eτ

�
θ
�
τ+1
��
= L� (θ �τ). However, L� will not be convex in θ

� for
general F (L).20

In arguing heuristically about the impact of the proportional cost on �rm growth we use
the property that MBτ is weakly increasing in θ

�
τ , and that L�τ is locally weakly increasing

in θ
�
τ . Because it is not immediately obvious why �ring and hiring costs should give similar

incentives for �rm growth, we analyze separately these two costs.21 We present in �gure 1 the
case where there is a hiring cost, PH > 0, and no �ring cost, PF = 0. This �gure assumes a given
Lτ�1. For that speci�c value of Lt�1, θ

SU and θ
SD are the frontiers between non-adjustment

and upward and downward adjustment, respectively. Therefore, if θ
�
τ 2

�
θ
SD;θ SU

�
there will

be no adjustment and the marginal bene�t of an additional unit of labor (represented by the
dashed line) is contained in the interval

�
0;PH

�
. To simplify the argument, we consider a �rm

whose sequence of productivity draws is such that in every period it has a perceived productivity
equal to the unconditional mean of θ

�, even though the �rm's uncertainty over next period θ
�

decreases with age.

Case 1: Hiring Cost: PH > 0, PF = 0
20In general, from the optimal employment condition, F 0 (L)θ � = w, we have

L̄00 (θ �) =

 
F 000 (L̄)F 0 (L̄)�2F 00 (L̄)2

F 00 (L̄)2 θ
�

!
L̄0 (θ �) , F 00 (L̄)< 0, L0 (θ �)> 0,

whose sign depends on F 000 (L̄). Therefore, if decreasing returns to labor do not decrease too fast, that is, F 000 (L̄)<
2F 00 (L̄)2 =F 0 (L̄), then we will have L̄00 (θ �) < 0. When F (L) = ln(L), then L̄00 (θ �) = 0, and when F (L) = Lα ,
α 2 (0;1), then L̄00 (θ �)> 0.

21In the discussion that follows, the hiring cost applies both to regular hiring and to hiring at entry and the �ring
cost applies both to regular �ring and to �ring at exit.
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Because the �rm starts at the hiring margin, we must have MB0 = PH at entry, and MBτ 2�
0;PH

�
, for all subsequent periods, τ = 1;2; : : : , with the two extremes of the interval repre-

senting �ring and hiring of workers, respectively. Consider �rst a situation where exit is not
allowed. Under this assumption, (9) would become

MBτ =
�
F 0 (L�τ)θ �τ �w

�
+βEτMBτ+1

For the entry period, we have MB0 (θ �0) = PH , which implies that the �rm will start smaller
when PH > 0 than when PH = 0.22 Since MB1 (θ �1) 2

�
0;PH

�
, E0 (MB1) < PH and thus we

must have pF 0 (L0)�w > 0, for all β 2 (0;1), if PH > 0. In the following period, �rms will
adjust upwards as frequently with PH > 0 as when PH = 0, because they start at the hiring
margin and E0θ �1 = θ

�
0, even though they might have smaller magnitudes of adjustment due to

the hiring cost. The proportional hiring cost implies that �rms will adjust downwards only if
θ
�
1 < θ

SD
1 , so that there is a region of inaction when PH > 0 that is not present when PH = 0.

That is, �rms hire fewer workers initially because the resulting smaller probability of having to
�re them, and therefore wasting the initial hiring cost, compensates for the expected decrease
in pro�ts this period. Consequently, in period 1 more �rms will hire than �re, and this tendency
towards growth in young �rms will persist for several periods.
The Bayesian learning mechanism implies both persistence and a reduction in variance with

age in the Markov process associated with θ
�. The effect of persistence, that is, the fact that

E
�
θ
�
τ+1 j θ �τ ;τ

�
= θ

�
τ , was analyzed in the previous paragraph. The reduced uncertainty in

the posterior estimate of productivity will be re�ected in a smaller inaction region as �rms
accumulate information on realized productivity; that is, θ

SU decreases with τ . This causes an
increase in Eτ (MBτ+1) for those �rms already at the hiring margin, which must be balanced by
an increase in L�τ for the right hand side of (9) to remain equal to PH . As �rms become more
certain about their true productivity they are more willing to adjust to their long run optimal
size. Because most �rms are at the hiring margin, this will cause a further increase in average
size.
Consider now the possibility of exit. In this case, the uncertainty reduction as the �rm ages

implies a decrease in the exit probability, and a further increase in the future-periods component
of MB in (9). Consequently, L�τ needs to increase further in order to offset that.23 On the other
hand, the smaller exit probability implies less pruning of inef�cient slow-growing �rms as a
cohort ages, which tends to make growth in average �rm size smaller. Therefore, we will

22When exit is not allowed, we can prove that V S is concave (and continuously differentiable) in L, so that L0
must decrease forMB0 to increase.

23This effect is similar to that of Cabral (1995).

16



have less cohort growth due to non-survivors and more cohort growth due to survivors, so
that survivors' contribution to average �rm growth in the cohort should increase when exit is
allowed.

Case 2: Firing Cost: PF > 0, PH = 0
In this case, we have MB0 = 0, MBτ 2

�
�PF ;0

�
, τ = 1;2; : : : . Assume �rst that exit is not

allowed. The intuition is the same as in case 1. In comparison with PF = 0, when PF > 0 �rms
start smaller and subsequently hire more frequently than they �re. As �rms age, the reduction
in variance of θ

� causes an increase in Eτ (MBτ+1), which must be compensated by an increase
in L�τ for �rms at the hiring margin. When exit is possible, those effects become more intense,
since the exit probability will decrease as �rms age.

From the heuristic intuition we have just given it becomes clear that proportional hiring and
proportional �ring costs reinforce each other in creating incentives for �rms to grow. In the end,
our assessment of the relevance of linear adjustment costs for �rm growth will depend on how
well a pure selection model can �t the empirical evidence, and on how much adjustment costs
improve the �t. Before we move into a quantitative assessment, we present analytical results
for a simple version of the general model.

4 Model with One Period Learning Horizon and No Exit

In this section, we analyze a model where �rms' ef�ciency is revealed after the �rst period of
life and where �rms' lifetime horizon is know with certainty at entry. We assume that �rms live
for T̄ periods, where T̄ is any integer greater than 1, and that no exit is allowed prior to age
T̄ . These two simpli�cations allow us to determine the effect of linear adjustment costs on �rm
growth.
The introduction of adjustment costs implies an additional expected operating cost for en-

tering �rms. Therefore, the equilibrium price must increase to generate higher expected future
pro�ts that compensate for the costs incurred while adjusting to optimal size. As a consequence,
pre-entry pruning of inef�cient �rms should increase while post-entry pruning should decrease.
This is optimal from a social point of view, since with higher adjustment costs there should be
less experimentation in order to save in unrecoverable costs. Therefore, the assumption that exit
is exogenous is not critical for the results in this section. Since adjustment costs attenuate post-
entry pruning, even if exit was endogenous to the model, the relative contribution of survivors
to growth in the cohort's average size would increase through this channel. By eliminating any
exit prior to T̄ we focus only on the incentives for survivors to grow.
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To formulate the problem, we use the fact that once the �rm learns its true ef�ciency in
period 2, it will adjust once and for all to its long run employment level.24 Then, if upon exit at
age T̄ �rms recover the initial investment net of exit costs, in period 2 we have

V S (L1;θ �2) =maxL2

n
δ (T̄ )Π(L2;θ �2)�CS (L2;L1)+β

T̄�1VEX (L2)
o

(10)

where δ T̄ � ∑T̄�2s=0 β
s =
�
1�β

T̄�1
�
=(1�β ). In period 1, we then have

VEN (θ �1) =maxL1

n
Π(L1;θ �1)�CEN (L1)+βE1

h
V S (L1;θ �2)

io
:

Finally, in equilibrium potential entrants break even, i.e., E0
�
VEN (θ �1)

�
= I.

We examine the impact of adjustment costs on the log growth rate of employment, rather
than the standard growth rate, in order to attenuate the effect of Jensen's inequality on �rm
growth.25 In this simple model, the inaction region of optimal employment can be expressed
as an interval: ΘSN =

�
θ
SD;θ SU

�
. Therefore, the average log growth rate between period 1 and

period 2, conditional on θ
�
1, is de�ned as

g(θ �1) = E [ln(L�2)� ln(L�1)] =Z
θ
SD

ν1

n
ln
�
L�SD2

�
� ln(L�1)

o
dFθ

�
1
(θ �2)+

Z
ν2

θ
SU

n
ln
�
L�SU2

�
� ln(L�1)

o
dFθ

�
1
(θ �2)

where Θ � [ν1;ν2] is the support of the distribution of θ
�
2, and θ

SD (L�1) and θ
SU (L�1) are the

frontiers between non-adjustment and downward and upward adjustment, respectively. De-
pending on the speci�c value of θ

�
1 and the magnitude of the adjustment cost parameters, we

might have θ
SD (L�1) = ν1 and/or θ

SU (L�1) = ν2. However, in the results that follow, we assume
that θ

�
1 and the adjustment cost parameters are such that both downward adjustment and up-

ward adjustment occur with positive probability, i.e., θ
SD (L�1) > ν1 and θ

SU (L�1) < ν2. Since
we assume exogenous exit, we ignore the indirect effect of adjustment costs that works through
changes in the equilibrium price, and implicitly assume that the research cost, I, adjusts to
maintain an equilibrium. This indirect price effects in�uence average �rm size in both periods,
but are of second order importance for the average log-growth rate.26

24This result is formalized in proposition 10 below.
25As we saw above, when optimal employment is a convex function of θ

�, Jensen's inequality implies positive
expected growth, even in the absence of adjustment costs. Because the log transformation is concave, it will offset
the convexity of the optimal employment function. For example, when F (�) is a power function, the log growth
rate eliminates the effect of Jensen's inequality, since ln(L�τ) becomes linear in θ

�
τ .

26In proposition 8 below, if F (�) is a power function the indirect price effects cancel out.
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Optimal employment in period 2 is determined by

L�2 (L1;θ �2) =

8>>>>>>><>>>>>>>:

L�SU2 = F 0�1
 
w+ β T̄�1PF

δ T̄
+P

H
δ T̄

θ
�
2

!
, θ

�
2 > θ

SU (L1)

L�SN2 = L1, θ
SU (L1)� θ

�
2 � θ

SD (L1)

L�SD2 = F 0�1
 
w+ β T̄�1PF

δ T̄
�PF

δ T̄
θ
�
2

!
, θ

SD (L1)> θ
�
2

where the frontiers of adjustment are de�ned as

θ
SU (L1)�

w+ β
T̄�1PF
δ T̄

+ PH
δ T̄

F 0 (L1)
, θ

SD (L1) =
w+ β

T̄�1PF
δ T̄

� PF
δ T̄

F 0 (L1)
.

Note that the numerator of θ
SU equals the pro-rated per-period cost of adding another worker,

including the wage, the marginal hiring cost, and the discounted cost of �ring the worker after
period T̄ . The numerator of θ

SD has a similar interpretation, as the bene�t of shedding a worker.
We then have the following result concerning the effects of changes in PH and PF on the

cohort's average log growth rate of employment.

Proposition 8 Assuming that F (�) is a power function and that θ
SD > ν1 and θ

SU < ν2:27

(a) The marginal effect of PH on g(θ �1), assuming PF = 0, is positive for T̄ suf�ciently high.
(b) The marginal effect of PF on g(θ �1), assuming PH = 0, is positive for all T̄ .

Proof. See appendix A.

Consider �rst the hiring cost. In the proof, we show that an increase in PH decreases both
L�1 and L�SU2 . The impact of PH on the growth rate depends on two opposing effects. First,
while in the case of L�SU2 the cost of hiring can be equally spread out over T̄ � 1 periods with
certainty, in the case of L�1 it will be spread out over either T̄ periods or one period, depending
on whether the �rm learns in period 2 that it has overhired. Therefore, ex ante a proportionately
greater part of PH is attached to period 1 in the case of L�1 than in the case of L�SU2 , affecting
more L�1 than L�SU2 . This explains the positive effect on growth of PH for T̄ = ∞. Second, the
hiring cost on L�1 can possibly be spread out over T̄ periods, while the hiring cost on L�SU2 can
only be spread out over T̄ � 1 periods. This affects more L�SU2 than L�1, and explains why the

27In the proof, we consider a general production function and then specify a power function in order to obtain
the sign of the effect. From that general setup, we can say that the form of F (�) should not be determinant for these
results when the elasticity of the marginal product of labor does not vary much with the amount of labor used.
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effect of PH on growth is not necessarily positive for �nite T̄ . However, as T̄ increases the �rst
effect dominates so that PH decreases L�1 more than L�SU2 and growth increases.28

With respect to PF there is always a positive effect on growth, independently of the lifetime
horizon. This occurs because an increase in PF decreases L�1 and increases L�SD2 . This positive
effect always dominates the uncertain effect due to the fact that L�SU2 also decreases with PF .
When there are both hiring and �ring costs and these costs are identical (PH = PF = P),

then an increase in P has a positive effect on g(θ �1), for suf�ciently high T̄ , where the required
T̄ is lower than in item (a) of proposition 8.

5 Calibration/Estimation Under Finite Learning Horizon

In the previous two sections, we developed heuristic and some formal arguments about the effect
of adjustment costs on the incentives for �rms to start smaller and grow faster after entry. In
this section, we assess the contribution of adjustment costs to explain some of the basic facts on
�rm dynamics found in section 2, both for the overall economy and for the manufacturing and
services sectors. To accomplish this, we perform a calibration/estimation of the model using
computational methods.
To simulate the in�nite learning horizon model we follow the suggestion of Ljungqvist and

Sargent (2004) and consider an approximation where �rms live forever, but learn their ex post
true productivity component, µ1, with certainty at some age T .29

We assume that F (�) is a power function, i.e., F (L)= Lα , α 2 (0;1). Under this assumption,
when adjustment is costless, optimal employment conditional on survival is a convex function
of θ

�
τ , so that Jensen's inequality implies growth of employment even if there is no selection.

As in the previous section, in order to avoid any growth due to Jensen's inequality, we take logs
of all variables and analyze the effects of adjustment costs on the log-growth rate.
Concerning the productivity distribution, we assume that θ τ is lognormally distributed, i.e.,

ξ (η) = expfηg.30 This assumption is made for computational simplicity, and it seems reason-
able on empirical grounds (see Aw et al. 2004). In addition, this assumption is not critical as the
results in section 4 suggest that the distribution of productivity mostly affects the intensity of
the effect of adjustment costs on �rm growth, but not the sign. In fact, proposition 8 is derived

28In our simulations, T̄ = 3 was enough to generate a positive effect on growth.
29Note that this T differs from the lifetime horizon T̄ used in section 4, with T̄ � T . In this section, we assume

an in�nite horizon, so that T̄ = ∞. In our simulations below, we assume that T = 15 (years), and present results
until year 10. Assuming a higher value for T would slow down the algorithm's execution without improving
signi�cantly the accuracy of the model simulations.

30Under log-normality, ν1 = 0 and ν2 = ∞. Although this violates assumption 1, this is not a problem in this
section, since we will be using a discrete approximation to the productivity distribution.
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independently of the particular distribution of θ
�
τ . With the log-normal distribution assumption,

the transition law for the θ
�s is as follows.

Proposition 9 Let θ τ = expfητg be generated as in assumption 1. Then,
(a) The posterior distribution of θ τ+ j ( j � 0), given the information set at time τ , Ωτ =

n
µ0;

fηsgτ�1
s=0

o
if τ < T , and Ωτ = fµ0;µ1g if τ � T , is

θ τ+ j jΩτ
� logN

�
Yτ ;Zτ +σ

2� ,
where, for τ < T , Yτ and Zτ are de�ned in (2), and, for τ � T , Yτ = µ and Zτ = 0. Let
θ
�
τ = E (θ τ jΩτ) = E (θ τ j θ �τ ;τ). Then the distribution of θ

�
τ+ j ( j � 1) given (θ �τ ;τ) is

θ
�
τ+ j j(θ�τ ;τ)� logN

�
ln(θ �τ)�

1
2
�
Zτ �Zτ+ j

�
;Zτ �Zτ+ j

�
.

Also, the unconditional distribution of θ
�
τ (τ � 0) is

θ
�
τ � logN

�
µ̄+

1
2
�
Zτ +σ

2� ;σ2µ �Zτ

�
,

where σ2µ = σ2µ0+σ2µ1 .

Proof. See appendix A.

Since we assume that the �rm enters the industry already knowing its ex ante productivity
component µ0 (see assumption 1), we will get a non-degenerate distribution of initial size. This
occurs because L0 = L�0 (θ

�
0), and θ

�
0 has positive variance in the cohort's initial distribution.

The next proposition analyzes the properties of the optimization problem after µ is revealed to
the �rm in period T .

Proposition 10 If µ is revealed to the �rm at period T , then all adjustments are made at period
T , and the �rm will not change its exit and employment decisions after that period. This means
that

V S (θ �T ;LT�1;T ) =maxL

�
1

1�β
Π(L;θ �T )�CS (L;LT�1)

�
, (11)

L�s = L� (θ �T ;LT�1;T ) , s� T , χ
�
T = 1

h
V S (θ �T ;LT�1;T )<VEX (LT�1)

i
.

Proof. See appendix A.
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This result allows a considerable simpli�cation of the computational algorithm, since it im-
plies a �nite horizon dynamic programming problem. In appendix B, we present some details
concerning the computational algorithm used to simulate and estimate the model. In the fol-
lowing subsections we calibrate and estimate the model and do a sensitivity analysis.

5.1 Calibration and Estimation of Model with Costly Adjustment

We calibrate and estimate our model to match statistics from the 1988 cohort of entering �rms,
both for the overall economy and the manufacturing and service sectors. We �rst calibrate para-
meters related to inputs directly from the data. We then use the simulated method of moments
to estimate the parameters associated with the learning process and the adjustment cost. These
estimates are obtained so that the model generated moments match the evolution of �rm size,
of exit rates, and of the survivor component observed in the data. As discussed in appendix B,
we �nd the set of parameter values that minimize the method of moments objective function
by using a simulated annealing method. This optimization method is robust to local minima,
to discontinuities, and to the discretization implemented in order to simulate the model.31 A
central element to our estimation strategy is a decomposition of the change in the cohort's aver-
age size into a survivor component and a non-survivor component. This decomposition forces
the model to match not only the growth in the cohort's average size but also the contribution of
surviving and non-surviving �rms to that growth. Similarly to section 2, with lτ � ln(Lτ), our
decomposition is de�ned as

E [lτ j Sτ ]�E [l0 j S0] = E [lτ � l0 j Sτ ]| {z }
Survivor Component

+Pr(Dτ j S0)fE [l0 j Sτ ]�E [l0 j Dτ ]g| {z }
Non-Survivor Component

(12)

Prior to estimation, we calibrate some parameters. The parameters α and w are calibrated
with data from INE (1997) containing the Inquérito Annual às Empresas from 1990 to 1995.
These data are considered reliable and cover all �rms in the Portuguese economy, with sampling
among �rms with less than 20 workers. We measure α as the 1990-1995 average of the cost
share of labor in value added, and w as the 1990-1995 average cost per worker. We can also
obtain these values at the sectoral level. We de�ate all nominal variables using the GDP sectoral
price indices available in the updated version of Séries Longas para a Economia Portuguesa in
Banco de Portugal (1997). The real interest rate is calibrated as the 1990-1995 average of the
implicit real interest rate on public debt transactions on the secondary market of the Lisbon

31The objective function is de�ned as Q=
�
N�1∑Ni=1 fi

�0 �N�1Σ��1 �N�1∑Ni=1 fi
�
, where N�1∑ fi are the dif-

ferences between the sample and model simulated moments, and Σ is the estimated covariance matrix of fi.
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Stock Exchange. The data was also taken from Banco de Portugal (1997). We de�ate the
nominal interest rates using the December-to-December consumer price index from INE (1990-
5). The discount rate is then obtained as β = 1

1+r , where r is the average real interest rate.
The remaining parameters, µ̄ , σ µ0 , σ µ1 , σ , W , and P are estimated using a simulated

method of moments estimator, which attempts to make the model match closely the evidence
on cohort dynamics presented in section 2. In particular, the estimates are selected to mini-
mize a weighted sum of the distance between the following moments in the model and the data:
(a) the time-series of the mean of log-employment conditional on survival, E [lτ j Sτ ]; (b) the
time-series of the cumulative change in the standard deviation of log-employment conditional
on survival, SD [lτ j Sτ ];32 (c) the time-series of the cumulative exit rate, Pr(Dτ j S0); (d) and the
time-series of the survivor component, as de�ned in (12). In estimating the above parameters,
the output price is normalized to 1, and the initial research cost, I, is obtained by the equilibrium
condition I = E

�
VEN (θ �0)

�
.33

The decision to estimate W , instead of calibrating it, deserves some discussion. First, the
main purpose of this parameter is to induce endogenous exit as it represents the �rm's oppor-
tunity cost of remaining in activity. In Hopenhayn (1992), the same result is accomplished
using a �xed per period operating cost. Since the per period operating cost can be seen as the
periodic payment in an annuity with a present discounted value ofW , the two mechanisms are
equivalent. Second, because Quadros de Pessoal misses any reliable capital stock variable, we
consider the capital decision to be exogenous. A rough estimate of the magnitude ofW is the
present discounted value of an annuity with annual payments equal to the 1990-1995 average of
value added minus labor costs, using the same de�ators as for w.34 Because the sample is biased
towards surviving �rms, this measure overestimates the value ofW , and we cannot use it as a
reference to calibrateW . Consequently, we estimateW jointly with the remaining parameters
in the model.
We present in table 4 the calibrated and estimated parameters for the three cohorts, both for

the model with (AC) and without (NAC) adjustment costs, and in �gures 2 and 3 we plot the
data and simulated moments in the estimated AC and NAC models. We start by making some
general remarks on our estimates. First, more information is revealed ex post (σ µ1 > σ µ0) and
there is signi�cant noise in the learning process (σ > σ µ0 , σ > σ µ1). Second, consistently
with our expectations, all estimates of W are below the rough estimates presented in footnote

32We use the change in instead of the level of dispersion because imputing all the dispersion in size to the
learning process would make it dif�cult to capture the level of growth in the model, as we discuss below.

33To make the computation of equilibrium easier for a given set of parameters, instead of changing the output
price we change the �xed research cost so that the equilibrium condition is satis�ed.

34The estimates are 1373:8 for the overall economy cohort, 3317:1 for the manufacturing cohort, and 269:1 for
the services cohort.
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34. Third, the inferred values for I are close to 10% of W . Finally, the standard errors of the
estimated parameters are relatively small, suggesting that parameters are estimated with good
precision.35

For the overall economy cohort, the AC model implies an estimate for the proportional cost
of about 6:3% of the annual wage. By comparing the estimated NAC and ACmodels, in terms of
the objective function Q� and the simulated moments in �gure 2, we conclude that the propor-
tional cost clearly improves the overall �t of the model, with a particularly notable improvement
in the �t of the survivor component. Although the NAC model can generate moments on �rm
size and exit rates that are close to equivalent empirical moments, it cannot satisfactorily match
the empirical survivors' contribution. That is, the NAC model cannot explain the main source of
growth in the cohort's average size, since survivors contribute much more to growth in the data
than in the NAC model. This shortcoming is especially intense in the initial years after entry,
when the distance between the survivor component in the simulated NAC model and in the data
is largest, suggesting that in the absence of adjustment costs learning has a larger initial impact
on the exit of small inef�cient �rms than on growth of survivors.
In discussing the results for the manufacturing and services sectors we consider the esti-

mates for the AC model. Manufacturing �rms learn relatively less initially about their ef�ciency
than services �rms (σ µ0=σ µ1 is smaller in manufacturing). Moreover, in order to account for
the higher survivor component, adjustment costs in manufacturing are larger than in services
(proportional costs amount to 16:6% and 0:8% of the annual wage, respectively). Because of
larger adjustment costs and lesser relative knowledge about ef�ciency at entry, manufacturing
�rms have higher incentives to start relatively small and to gradually adjust to optimal size as
they survive and their uncertainty is resolved. In addition, the smaller relative knowledge at
entry in manufacturing explains the lower relative initial research cost (I=W is lower in man-
ufacturing) and the higher entry rate (1�Pr(S0) equals 27:4% in manufacturing and 47:9% in
services).
As can be seen from the last row of table 4, while the introduction of adjustment costs

improves markedly the �t of the model for the overall economy and manufacturing cohorts, it
improves only marginally the �t for the services cohort.36 Therefore, the form of adjustment
costs considered in the paper seems more relevant for the average �rm in the manufacturing
sector and the overall economy than for the average �rm in the services sector. More gener-
ally, although the introduction of adjustment costs clearly improves the overall �t of model,

35The magnitudes we obtain for both Q� and the standard errors resemble those obtained by Cooper and Halti-
wanger (2006) in a study about capital adjustment costs using a similar estimation methodology.

36This is re�ected in the small estimate for the proportional cost in the services cohort when compared with the
same estimate for the two other cohorts.
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especially in what concerns the survivor component, the model cannot explain entirely the path
of the survivor component in the data. In fact, in all three cohorts the initial growth of sur-
vivors seems larger than what the AC model can explain. This might be a consequence of the
discretization scheme adopted for θ

� in the simulation.37 More importantly, this might re�ect
other explanations for �rm growth that cannot be captured by adjustment costs in our model,
such as some mechanisms through which �nancing constraints operate.

5.2 Sensitivity Analysis

In this subsection we explain some aspects of the calibration/estimation exercise and provide a
detailed sensitivity analysis to all parameters in the model. First, we do not attempt to match the
level of the cross-sectional variance of log-employment, but only its change over time. This is
because to �t the dispersion in employment, the model would require substantially larger values
for both σ µ0 and σ µ1 . This would allow the model to match Var [lτ j Sτ ] and Pr(Dτ j S0) but
would also imply an excessive rate of growth in E [lτ j Sτ ]. However, this shortcoming is not a
serious problem. It implies that only a fraction of the observed cohort's employment dispersion
can be attributed to a Bayesian learning process about ef�ciency. The remaining part could be
attributed to heterogeneity in the initial choice of technology.
For instance, consider a model where capital is endogenous and suppose that a �rm chooses

its initial stock of capital, K0, based on the realization of a random variable indexing tech-
nology choice. Assume further that, after selecting K0, the �rm keeps its capital stock un-
changed for the remainder of its life. If the production function has constant returns to scale,
if the total opportunity cost is proportional to K0, i.e., �W =WK0, then we can easily prove
that �V (K0;Lτ�1;θ

�
τ ;τ) = K0V

�
Lt�1
K0 ;θ

�
τ ;τ
�
, where �V is the value function conditional on the

chosen K0. Therefore, in this alternative framework, dispersion in K0 would govern the initial
dispersion in employment and only the subsequent evolution in employment dispersion would
depend on the Bayesian learning process.38 This is the reason why we attempt to match only the
evolution of SD [lτ j Sτ ], but not its level. In the estimated models presented in table 4 less than
40% of the observed dispersion in the cohort's log-employment can be attributed to the learn-
ing process, with the percentage smaller in the manufacturing sector and higher in the services

37From point (i) in appendix B, we see that the range implicit in the support of the uniform discrete aproximation
to the θ

�
τ distribution increases with τ .

38We implicitly assume that P would also be proportional to K. If this is not the case, then the proportional
adjustment cost would be less important for large-K �rms, intensifying the tendency for higher growth among
small �rms. Although augmenting the model with this capital decision would allow us to match the level of size
dispersion in the data, the numerical complexity of the model simulation would increase even further.
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sector.39

Second, the value of σ µ0=σ µ1 affects the long-run contribution of survivors, since a rel-
atively smaller initial dispersion would make the average size of exiting �rms closer to the
average size of surviving �rms in the entry period, and in this case most growth would be due
to survivors. In the aforementioned extended model with an initial choice over K0, if we had
σ µ0 = 0 we would have a non-degenerate initial distribution of size, entirely due to the hetero-
geneity in K0, but the survivors' component would be 100% in each period. This would occur
because the distribution of initial size among exiting �rms would be equal to the distribution of
initial size among surviving �rms. This also explains why even with heterogeneity over K0, we
would still need to assume σ µ0 > 0 in order to match the empirical facts on the importance of
the survivor component.
While we could increase the long-run contribution of survivors by tinkering with the ratio

σ µ0=σ µ1 , without adjustment costs the model cannot match satisfactorily the observed �atness
in the path of the survivor component. For any choice of σ µ0 and σ µ1 , it will always be the
case that the survivor component will exhibit a substantially increasing path in the absence of
adjustment costs. Note also that the ratio σ µ0=σ µ1 affects both the exit rate and the evolution of
the �rm size dispersion. If this ratio becomes too small, post-entry exit rates become excessively
high and the size dispersion increases too fast. This is the reason why in the NAC model we
cannot �nd a value for this ratio that attains the long-run contribution of survivors found in the
data, and simultaneously matches the behavior of the cumulative exit rate and the evolution of
the size dispersion. Therefore, the value we select for this ratio is disciplined by the exit rates
and the evolution of �rm size dispersion in the cohort.
Third, to show that proportional adjustment costs are crucial to �t the evidence on the con-

tribution of survivors to growth in the cohort's average size, in �gure 4 we perform a sensitivity
analysis with respect to each parameter in the model. We take as benchmark the estimated NAC
model for the overall economy cohort in table 4. We vary each parameter around its benchmark
value and plot the implied cumulative exit rate and survivor component at four different ages
of the cohort (ages 1, 2, 5, and 9). We present both the exit rate and the survivor component to
show that the essential shortcoming of the NAC model is the inability to increase the survivor
component without an unreasonable increase in exit rates.
From �gure 4, we see that the model with costless adjustment cannot match satisfactorily

the contribution of survivors to growth, even if we allow parameters (except for the proportional
cost) to vary one by one from their benchmark values. In fact, no other parameter besides the
proportional cost (in the lower-right plot) can increase the survivor component without changing

39In �gure 2, we rescale the estimated initial values of SD [lτ j Sτ ] to the level found in the data.
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much the exit rate. In addition, adjustment costs imply more than just a mere level effect on
the survivor component, as the increase in the survivor component at age 1 is larger than the
increase at age 9, shrinking the distance between the survivor component at different ages of
the cohort. In summary, the main effect of these costs is to put more emphasis on individual
�rm growth in the initial years of life, when exit of inef�cient �rms is very intense.40

To emphasize the role of the proportional adjustment cost in replicating the evidence on
the contribution of survivors, in �gure 5 we present the impact of changes in P on the survivor
component, using as benchmark the estimates for the AC model in the overall economy cohort.
We conclude that allowing for even a small value of P has a substantial impact on the survivors'
contribution, with a larger effect in the initial years after entry.

6 Conclusion

In this paper, we show that a model with linear adjustment costs and learning about ef�ciency
generates incentives for �rms to enter smaller and, if successful, expand faster after entry. For a
cohort of entrant �rms in the Portuguese economy, we present evidence showing that growth in
the cohorts' average size is driven largely by growth of survivors rather than by pruning of small
inef�cient �rms, with rapid growth of survivors in the initial post-entry years and signi�cant
cross-sector differences in the contribution of survivors. A calibration and estimation of the
model reveals that the proportional cost is the key parameter to explain the high contribution of
survivors to growth in the cohorts' average size. Furthermore, due to a higher contribution of
survivors, adjustment costs need to be substantially higher in manufacturing than in services.
The empirical success of our model in better approximating the growth of survivors as the

main source for growth suggests that adjustment costs do play a signi�cant role in post-entry
�rm size adjustments. Our results suggest that selection theories are more relevant to explain
�rm exit than growth of survivors. Our speci�cation of adjustment costs assumes that they
are proportional to the adjustment size and apply equally at entry, exit, and during regular job
creation and destruction. These costs could capture aspects such as costs to the organization,
layout, and optimization of the production process, and hiring and �ring costs. Although we
have not collected evidence documenting the nature of these costs, we would expect them to be
larger in sectors employing more complex technologies, such as in manufacturing industries.
Potentially, part of the adjustment costs we estimate could also re�ect the impact of �nancial

40Note that we would not be able to identify the hiring/entry cost, PH , and the �ring/exit cost, PF , separately
because PH and PF produce almost identical results. This should be expected as the incentives created by propor-
tional hiring/entry and �ring/exit costs differ only in the displacement of time by one period.
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frictions, although we would expect these to be concentrated in entry costs associated with the
acquisition of capital, and not so much in regular job creation and destruction costs.
More generally, �nancing constraints theories should also play a role in explaining growth

of survivors, besides what can possibly be captured by adjustment costs in our model, al-
though there is not much evidence that �nancing constraints can explain cross-sector differ-
ences. Notwithstanding this, Angelini and Generale's (2008) conclusion that �nancing con-
straints are not the main determinant behind the evolution of the �rm size distribution suggests
that any government intervention to eliminate �nancing constraints might not change the life-
time dynamics of �rm size we �nd in this paper. In addition, this paper suggests that, in sec-
tors where adjustment costs are high and learning is important, government policies aimed at
curbing �nancing constraints might not produce the intended results, as �rms under those cir-
cumstances have incentives to start smaller and, if successful, expand faster, even if �nancing
constraints are eliminated.

A Appendix: Proofs
Lemma 2 Ωτ �

�
µ0;fητgτ�0

	
can be summarized by (θ �τ ;τ), and the distribution function F

�
θ
�
τ+1 j θ

�
τ ;τ) is a

continuous and strictly decreasing function of θ
�
τ .

Proof. From (2) we have

θ
�
τ = g(Yτ ;τ) = E (ξ (ητ) j Yτ ;τ) = ν1+

Z ∞

�∞
[1�Fη (ητ j Yτ ;τ)]dξ (ητ) ,

where Fη (� j Yτ ;τ) is the posterior distribution of ητ . Because Fη (ητ j Yτ ;τ) is continuous and strictly decreasing
in Yτ , and ξ (ητ) is strictly increasing in ητ , we conclude that g(Yτ ;τ) is continuous and strictly increasing in Yτ

(see theorem 3.4.1 in Swartz 1994). Therefore, for the purpose of predicting θ τ ,Ωτ �
n

µ0;fηsg
τ�1
s=0

o
� fYτ ;τg �

fθ �τ ;τg, since Yτ = g�1Y (θ �τ ;τ), where g�1Y is the inverse function of g with respect to Yτ . Using the recursion

Yτ+1 =
σ�2

Z�1
τ+1

ητ +
Z�1τ

Z�1
τ+1
Yτ ,

the conditional distribution of θ
�
τ+1 can be represented as

F
�
θ
�
τ+1 j θ �τ ;τ

�
= Fη

"
Z�1

τ+1
σ�2

g�1Y
�
θ
�
τ+1;τ+1

�
� Z

�1
τ

σ�2
g�1Y (θ �τ ;τ) j g�1Y (θ �τ ;τ) ;τ

#
,

since we need to integrate the density of ητ over the domain where g(Yτ+1;τ+1)� θ
�
τ+1. From this, we conclude

that F
�
θ
�
τ+1 j θ �τ ;τ

�
is a continuous and strictly decreasing function of θ

�
τ . Therefore, the transition function

associated with F
�
θ
�
τ+1 j θ �τ ;τ

�
is monotone and satis�es the Feller property (see pp. 376-9 in Stokey et al. 1989).
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Proof of proposition 4. We use the following notation: (i) X � R+�Θ�N0 and x � (L;θ ;τ) 2 X , where
Θ � [ν1;ν2] � R+, ν1 � 0, ν2 < ∞; (ii) T is the operator associated with (4); (iii) M denotes the following
operator �

MV S
�
(Lτ ;θ

�
τ ;τ) =

Z
ν2

ν1
max

�
VEX (Lτ) ;V S

�
Lτ ;θ

�
τ+1;τ+1

�	
dF
�
θ
�
τ+1 j θ �τ ;τ

�
;

(iv) V SO, V
SD
O , and V SUO denote the objective functions associated with V S, V SD, and V SU ; that is, for j = S;SD;SU

V jO (Lτ ;Lτ�1;θ
�
τ ;τ) =Π(Lτ ;θ

�
τ)�C j (Lτ ;Lτ�1)+β

�
MV S

�
(Lτ ;θ

�
τ ;τ) .

We prove the proposition in several steps.
(a.i) Existence and Uniqueness: This follows from the Contraction Mapping Theorem and Blackwell's suf�-

cient conditions (see theorems 3.2 and 3.3 in Stokey et al. 1989).
(a.ii) Continuity in (Lτ�1;θ

�
τ): Let C12 (X) be the space of bounded functions on X which are continuous in

(Lτ�1;θ
�
τ). This is clearly a closed subset of B(X), the space of bounded functions V S : X ! R. Since B(X) with

the sup norm
V S= supx2X ��V S (x)�� is a Banach space, then C12 (X) is also a Banach space. Now consider V S 2

C12 (X). Because max
�
VEX ;V S

	
is also continuous and F

�
θ
�
τ�1 j θ �τ ;τ

�
satis�es the Feller property (see lemma

2), then MV S is continuous in (Lτ ;θ
�
τ) (see lemma 9.5 in Stokey et al. 1989). Since Π(Lτ ;θ

�
τ)�CS (Lτ ;Lτ�1)

is continuous, then V SO (Lτ ;Lτ�1;θ
�
τ ;τ) is continuous in (Lτ ;Lτ�1;θ

�
τ). Therefore, applying the maximum the-

orem, we conclude that V S (Lτ�1;θ
�
τ ;τ) is continuous in (Lτ�1;θ

�
τ). Note that the set of admissible values for

employment can be made compact. First, only non-negative values are acceptable for employment. Second, we
can choose a value for Lτ high enough, say LUB, such that LSU�τ (Lτ�1;θ

�
τ ;τ)� LUB, for all Lτ�1 � LUB, so that all

values of interest are considered. LUB is �nite since F 0 (∞) = 0, andMV S is bounded. Therefore, V S as de�ned by
(4) is continuous in (Lτ�1;θ

�
τ).

(a.iii) Strict Monotonicity in θ
�
τ : From lemma 2 (the transition function associated with F

�
θ
�
τ+1 j θ �τ ;τ

�
is

monotone) if V S
�
Lτ ;θ

�
τ+1;τ+1

�
is weakly increasing in θ

�
τ+1, then

�
MV S

�
(Lτ ;θ

�
τ ;τ) is also weakly increas-

ing in θ
�
τ . Then, because Π(Lτ ;θ

�
τ) is strictly increasing in θ

�
τ (and the constraint set is not affected by θ

�
τ ),

V S (Lτ�1;θ
�
τ ;τ) is strictly increasing in θ

�
τ (see theorem 9.11 in Stokey et al. 1989).

(b) Exit Policy: The exit policy is determined by the condition

VEX (Lτ�1)�V S (Lτ�1;θ
�
τ ;τ) .

Because, for each Lτ�1, VEX is constant and V S is strictly increasing in θ
�
τ , then it is obvious that θ

EX (Lτ�1;τ)

is a unique function de�ned by the value of θ
� 2 [ν1;ν2] that satis�es the above equation, if it exists, or by ν1,

when VEX (L) < V S (L;ν1;τ), or by ν2, when VEX (L) > V S (L;ν2;τ). Because both VEX and V S are continuous
functions, then θ

EX is also a continuous function in L.

Proposition 5 Let T̄ be the maximum allowed age, so that a �rm entering in period 0 must exit the industry at the
end of period T̄ . Then Pr

�
θ
�
τ+1 2ΘDT̄ (Lτ ;τ+1) j θ �τ ;τ

�
= 1, for all Lτ 2 R+, τ 2 f0; : : : ; T̄ �1g where

ΘDT̄ (Lτ ;τ+1) =
�

θ
�
τ+1 2Θ :V ST̄

�
Lτ ;θ

�
τ+1;τ+1

�
is differentiable at Lτ

	
.

Consequently, the objective functions associated with V SDT̄ and V SUT̄ are continuously differentiable in L, and all
optima are interior in the region of their de�nition.41

41A similar result would hold for the case of in�nite-lived �rms that face a �nite learning horizon, as in sections
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Proof of proposition 5. We prove this by induction. In period T̄ , we have

V ST̄
�
LT̄�1;θ �T̄ ; T̄

�
=max

LT̄

�
Π
�
LT̄ ;θ �T̄

�
�CS

�
LT̄ ;LT̄�1

�
+βVEX (LT̄ )

	
,

so that V SDT̄ ;O, V
SN
T̄ and V SUT̄ ;O are continuously differentiable functions of LT̄ , LT̄�1, and LT̄ , respectively. Since

V SDT̄ ;O (L;L;θ
�; T̄ )=V SNT̄ (L;θ �; T̄ ),V SUT̄ ;O (L;L;θ

�; T̄ )=V SNT̄ (L;θ �; T̄ ), F 0 (0+)=∞, F 0 (∞)= 0, andVEX is bounded
above, then V SDT̄ ;O and V

SU
T̄ ;O have interior optima in the regions of de�nition of V

SD
T̄ and V SUT̄ . Therefore, those op-

tima are independent of LT̄�1, and we must have ∂V SDT̄ =∂LT̄�1 = �P, ∂V SUT̄ =∂LT̄�1 = P, in the regions of their
de�nition, and

∂V SNT̄
∂LT̄�1

= F 0
�
LT̄�1

�
θ
�
T̄ �w�βP.

We conclude that V ST̄
�
LT̄�1;θ �T̄ ; T̄

�
is continuously differentiable at LT̄�1 2 R+, with probability one (given

F
�
� j θ �T̄�1; T̄ �1

�
and for all θ

�
T̄�1 2Θ).

Now consider a generic period τ 2 f1; : : : ; T̄ �1g, and assume that V ST̄
�
Lτ ;θ

�
τ+1;τ+1

�
is continuously dif-

ferentiable at Lτ 2 R+ with probability one. Because θ
EX (Lτ ;τ+1) is a unique continuous function of L, we can

apply the dominated convergence theorem to conclude that
�
MV ST̄

�
(Lτ ;θ

�
τ ;τ) is continuously differentiable at Lτ ,

for all θ
�
τ 2 Θ (see theorems 3.2.16 and 3.4.3 in Swartz 1994). Consequently, the same argument used for period

T̄ can be repeated here.
Proof of proposition 6. For given (Lτ�1;τ) we partition the state-space associated with θ

�
τ , Θ, into regions of

exit, ΘEX , downward adjustment, ΘSD, non-adjustment, ΘSN , and upward adjustment, ΘSU :42

ΘEX (Lτ�1;τ) =
�

θ :VEX >V S
	
,

ΘSD (Lτ�1;τ) =
�

θ 2Θ :V SD >V SN , V SD �V SU , V SD �VEX
	
,

ΘSN (Lτ�1;τ) =
�

θ 2Θ :V SN �V SD, V SN �V SU , V SN �VEX
	
,

ΘSU (Lτ�1;τ) =
�

θ 2Θ :V SU >V SN , V SU �V SD, V SU �VEX
	
.

If it is optimal for the �rm to adjust upwards, then we must solve

ASU =
�
F 0 (L�τ)θ �τ � (w+P)

�
+β

∂
�
MV S

�
(L�τ ;θ �τ ;τ)

∂L
= 0,

and if it is optimal for the �rm to adjust downwards, we must solve

ASD =
�
F 0 (L�τ)θ �τ � (w�P)

�
+β

∂
�
MV S

�
(L�τ ;θ �τ ;τ)

∂L
= 0

4 and 5. However, in this case we would need to use proposition 10 �rst.
42In ΘSD and ΘSU we need to use V SD >V SU and V SU >V SD because V S, in general, is not concave in L.
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Now, the derivative can be rewritten as

∂
�
MV S

�
(Lτ ;θ

�
τ ;τ)

∂L
=
Z

ΘEX

∂VEX (�)
∂Lτ

dF
�
θ
�
τ+1 j θ �τ ;τ

�
+
Z

ΘSD

∂V SD (�)
∂Lτ

dF
�
θ
�
τ+1 j θ �τ ;τ

�
+
Z

ΘSN

∂V SN (�)
∂Lτ

dF
�
θ
�
τ+1 j θ �τ ;τ

�
+
Z

ΘSU

∂V SU (�)
∂Lτ

dF
�
θ
�
τ+1 j θ �τ ;τ

�
,

where some of the regions might be empty, and in separating the integrals we have taken into account the continuity
of the integrand inMV S at the frontiers.

For each of the above derivatives we have

∂VEX (Lτ)

∂L
=�P,

∂V SD (�)
∂L

����
θ
�
τ+12ΘSD(Lτ ;τ+1)

=�P=
�
F 0
�
L�τ+1

�
θ
�
τ+1�w

�
+β

∂
�
MV S

��
L�

τ+1;θ
�
τ+1;τ+1

�
∂L

,

∂V SN (�)
∂Lτ

=
�
F 0 (Lτ)θ

�
τ+1�w

�
+β

∂
�
MV S

��
Lτ ;θ

�
τ+1;τ+1

�
∂L

,

∂V SU (�)
∂L

����
θ
�
τ+12ΘSU (Lτ ;τ+1)

= P=
�
F 0
�
L�τ+1

�
θ
�
τ+1�w

�
+β

∂
�
MV S

��
L�

τ+1;θ
�
τ+1;τ+1

�
∂L

,

where we have used the fact that ASU = 0, when it is optimal to adjust upwards, and ASD = 0, when it is optimal to
adjust downwards. Therefore, we have

∂
�
MV S

�
(L�τ ;θ �τ ;τ)

∂L
= Eτ

 
χ
�
τ+1 (�P)+

�
1�χ

�
τ+1
�(�

F 0
�
L�τ+1

�
θ
�
τ+1�w

�
+

β
∂
�
MV S

��
L�

τ+1;θ
�
τ+1;τ+1

�
∂L

)!
,

Using the law of iterated expectations, we can rewrite the above as

∂
�
MV S

�
(L�τ ;θ �τ ;τ)

∂L
=

∞

∑
s=1
Eτ β

s�1� �χ�τ+s (�P)+ �χ�τ+s �F 0 �L�τ+s�θ
�
τ+s�w

�	
,

The result now follows by plugging this expression in ASU , and ASD.
Proof of corollary 7. We can rewrite the LHS of (6) and (7) as follows

MBτ =
�
F 0 (L�τ)θ �τ �w

�
+βEτ �χ�τ+1 (�P)+βEτ

(
�χ�τ+1

�
F 0
�
L�τ+1

�
θ
�
τ+1�w

�
+

∞

∑
s=1
Eτ+1β

s � �χ�τ+1+s (�P)+ �χ�τ+1+s �F 0 �L�τ+1+s�θ
�
τ+1+s�w

��)
:

Taking into account that �χ�τ+1 �χ
�
τ+1+s = �χ

�
τ+1+s, �χ

�
τ+1 �χ

�
τ+1+s = �χ

�
τ+1+s, �χ

�
τ+1 = 1�χ�

τ+1, and �χ
�
τ+1 = χ�

τ+1, then
we get the stated result.
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Proof of proposition 8. With proportional costs, optimal employment at entry is determined by

F 0 (L1)θ �1�
�
w+PH

�
+β

 Z
θ
SD

ν1
�PFdFθ

�
1
(θ �2)+

Z
θ
SU

θ
SD

n
δ T̄
�
F 0 (L1)θ �2�w

�
�β

T̄�1PF
o
dFθ

�
1
(θ �2)+

Z
ν2

θ
SU
PHdFθ

�
1
(θ �2)

!
= 0

(a) In the case of a proportional hiring cost, assuming PF = 0, we have

L1 = F 0�1
�
w

θ
SD

�
= F 0�1

0@w+ PH
δ T̄

θ
SU

1A ,
∂L�1
∂PH

=
F 0 (L�1)
F 00
�
L�1
� �wH
w �ww+PH �wH

,

�ww = 1+βδ T̄

h
Fθ

�
1

�
θ
SU��Fθ

�
1

�
θ
SD�i , �wH = 1�β

h
1�Fθ

�
1

�
θ
SU�i .

After some algebra we get

∂g
∂PH

=� 1
Fel
�
L�1
� �wH
w �ww+PH �wH

Fθ
�
1

�
θ
SD��
Z

ν2

θ
SU

(
1

Fel
�
L�1
� �wH
w �ww+PH �wH

� 1
Fel
�
L�SU2

� 1
wδ T̄ +PH

)
dFθ

�
1
(θ �2) ,

where Fel (L) = F 00 (L)L=F 0 (L) stands for the elasticity of the marginal product of labor. If F (L) = ALα , we have
Fel = (α�1), and the above expression simpli�es to

∂g
∂PH

= (1�α)�1
�

�wH
w �ww+PH �wH

n
Fθ

�
1

�
θ
SD�+h1�Fθ

�
1

�
θ
SU�io�

1
wδ (T̄ )+PH

h
1�Fθ

�
1

�
θ
SU�i� ,

which is positive when T̄ is high enough so that

w
n

δ T̄Fθ
�
1

�
θ
SD��β

T̄�1
h
1�Fθ

�
1

�
θ
SU�io+PH n1�β

h
1�Fθ

�
1

�
θ
SU�ioFθ

�
1

�
θ
SD�> 0

(b) In the case of a proportional �ring cost, assuming PH = 0, we get similarly

∂g
∂PF

=
Z

θ
SD

ν1

8<: 1
Fel
�
L�SD2

� β
T̄�1�1

wδ T̄ +
�

β
T̄�1�1

�
PF
� 1
Fel
�
L�1
� β �wF
w �ww+βPF �wF

9=;dFθ
�
1
(θ �2)+

Z
ν2

θ
SU

(
1

Fel
�
L�SU2

� β
T̄�1

wδ T̄ +β
T̄�1PF

� 1
Fel
�
L�1
� β �wF
w �ww+βPF �wF

)
dFθ

�
1
(θ �2) ,

32



where

�ww = 1+βδ T̄

h
Fθ

�
1

�
θ
SU��Fθ

�
1

�
θ
SD�i

�wF = Fθ
�
1

�
θ
SD�+β

T̄�1
h
Fθ

�
1

�
θ
SU��Fθ

�
1

�
θ
SD�i

Under the assumption that marginal productivity is always positive, we need PF < w
1�β

or otherwise the �rm would
prefer to pay the worker his lifetime salary, instead of �ring him. If F (L) = ALα , we have F 0=(LF 00) = (α�1)�1,
and the above expression simpli�es to

∂g
∂PH

= (1�α)�1

0@ β �wF
w �ww+βPF �wF

n
Fθ

�
1

�
θ
SD�+h1�Fθ

�
1

�
θ
SU�io�

β
T̄�1�1

wδ T̄ +
�

β
T̄�1�1

�
PF
Fθ

�
1

�
θ
SD�� β

T̄�1

wδ T̄ +β
T̄�1PF

h
1�Fθ

�
1

�
θ
SU�i1A

which is positive for all T̄ .
Proof of proposition 9. The result concerning the posterior distribution of θ τ+ j follows directly from

ln(θ τ+ j) jΩτ
= µ jΩτ

+ετ+ j, µ jΩτ
� N (Yτ ;Zτ) .

For the distribution of θ
�
τ+ j conditional on (θ �τ ;τ), we use the fact that

ln
�
θ
�
τ+ j
�
jΩτ
= Yτ+ j jΩτ

+
1
2
�
Zτ+ j+σ

2�
Yτ+ j = σ

�2Zτ+ j

τ+ j�1

∑
s=τ

ηs+
Zτ+ j

Zτ

Yτ ,

Zτ+ j = Zτ �σ
�2Zτ+ jZτ j,

ηs jΩτ
� N

�
Yτ ;Zτ +σ

2� ,Cov(ηs;ηs0 jΩτ+τ) =Var (µ jΩτ) = Zτ , s, s0 � τ , s 6= s0

so that, in the end, we get

E
�
ln
�
θ
�
τ+ j
�
jΩτ

�
= Yτ +

1
2
�
Zτ+ j+σ

2� ,
Var

�
ln
�
θ
�
τ+ j
�
jΩτ

�
= Zτ �Zτ+ j.

From here the result follows by noting that ln(θ �τ) = Yτ +
1
2
�
Zτ +σ2

�
.

For the unconditional distribution, just note that ln(θ �τ) is a sum of normal random variables, and that

E [ln(θ �τ)] = µ̄+
1
2
�
Zτ +σ

2�
Var [ln(θ �τ)] = σ

2
µ0
+(Z0�Zτ)

Proof of proposition 10.
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After period T � 1 the optimization problem is time invariant, since there is no uncertainty concerning E (θ).
Therefore, for periods s, s� T , we have

V S (θ �T ;Ls�1;T ) = max
Ls�0;χs2f0;1g

��
Π(Ls;θ �T )�CS (Ls;Ls�1)

�
+

β
�

χs
�
W �CEX (Lτ+s)

�
+(1�χs)V

S (θ �T ;Ls;T )
		
.

Consider a �rm that is in the industry at time s, s� T . We now prove that this �rm will not change its employment
level in period s+ 1. For this, we use the easily proven fact that it is less costly to adjust in one step than in two
steps, i. e.,

CS (Ls+1;L�s )+CS (L�s ;Ls�1)�CS (Ls+1;Ls�1) ,

where L�s = Ls (θ �T ;Ls�1;T ). We then have

Π(Ls+1;θ �T )�CS (Ls+1;L�s )+β max
�
VEX (Ls+1) ;V S (θ �T ;Ls+1)

	
� Π(Ls+1;θ �T )�CS (Ls+1;Ls�1)+β max

�
VEX (Ls+1) ;V S (θ �T ;Ls+1)

	
+CS (L�s ;Ls�1)

� V S (θ �T ;Ls�1)+CS (L�s ;Ls�1)

= Π(L�s ;θ �T )�CS (L�s ;Ls�1)+β max
�
VEX (L�s ) ;V S (θ �T ;L�s )

	
+CS (L�s ;Ls�1)

= V SN (θ �T ;L�s ) .

Therefore, at time s+1 it is optimal to set L�s+1 = L�s .
We now prove that the �rm does not exit at time s+1 after remaining in the industry at time s, s� T . Because

the �rm stays at time s, then V S
�
θ
�
T ;L�s�1;T

�
� VEX

�
L�s�1

�
. Now assume that in period s+ 1 the �rm exits, so

that
V S (θ �T ;L�s ;T )<VEX (L�s ),Π(L�s ;θ �T )< (1�β )VEX (L�s ) .

This then implies

V S
�
θ
�
T ;L�s�1;T

�
< (1�β )VEX (L�s )�CS

�
L�s ;L�s�1

�
+βVEX (L�s )

= VEX (L�s )�CS
�
L�s ;L�s�1

�
�VEX

�
L�s�1

�
which is a contradiction

B Appendix: Simulation and Estimation Algorithm
(i) Discretization and transition probability matrices associated with θ

�:
We discretize θ

�
τ with a uniform discrete approximation (with 25 mass points) to the distribution logN

�
µ+ 1

2
�
Zτ +σ2

�
;σ2µ �Zτ

�
.

We then use Tauchen's (1986) method to build the transition matrices, computing integrals via Gauss-
Legendre quadrature.

(ii) Discretization of L

34



Based on the decision rules for problem (11) we consider

l � ln(L)� N
�
µL;σ

2
L
�
,

µL =
1

1�α

(
µ̄+

1
2

σ
2+ ln

 
α pp

[w+PSU +βPEX ] [w� (1�β )PSD]

!)
,

σ
2
L =

1
(1�α)2

σ
2
µ .

For µL we assume that at the upper end of the grid the �rm decreases employment, and at the lower end
of the grid the �rm increases employment and exits next period. We then discretize L similarly to θ

� (with
800 mass points) using a unique grid for all periods.

(iii) Choice for T
We choose T = 15, and display results until period 10.

(iv) Model simulation
For a given set of parameters we numerically compute the optimal entry, employment, and exit policy rules.
First, for each θ

� grid point, we compute optimal employment in

�V SU (θ �τ) = max
Lτ

�
Π(Lt ;θ �τ)�PLτ +βEτmax

�
VEX (Lτ) ;V S

�
Lτ ;θ

�
τ+1
�		

,

�V SD (θ �τ) = max
Lτ

�
Π(Lt ;θ �τ)+PLτ +βEτmax

�
VEX (Lτ) ;V S

�
Lτ ;θ

�
τ+1
�		

,

as these do not depend on Lτ�1. We �rst �nd the maximizer on the grid for L and then use a golden
section method to obtain a more precise maximizer.43 Second, we get V SU andV SD, determine the inaction
regions, and get V S. Third, we compute all endogenous decisions associated with each realization of the
Ns = 150;000 random lifetime histories of fθ

�
τg. Fourth, we compute the (simulated) moments.

(v) Moments used in estimation
Let �T = f1;2;3;4;5;6;7;8;9;10g. We consider four sets of moments:
(a) Exit rate: For τ 2 �T ,

faτi = 1
�
χτ;i = 1

�
�Pr(Dτ j S0)

(b) Average current size conditional on survival: For τ 2 f0g[ �T ,

fbτi = lτ;i1
�
χτ;i = 0

�
�E [lτ j Sτ ]Pr(Sτ j S0)

(c) Relative change in variance of current size conditional on survival: For τ 2 �T ,44

fcτi = flτ;i�E [lτ j Sτ ]g2 1
�
χτ;i = 0

�
�
n
l20;i�E [l0 j S0]

2
o
�n

E[l2τ j Sτ ]�E [lτ j Sτ ]
2
o
Pr(St j S0)=

n
E[l20 j S0]�E [l0 j S0]

2
o

43See Press et al. (2007).
44This moment condition can be expressed in terms of the ratio of the time-τ and time-0 variances.
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(d) Average entry size conditional on survival: For τ 2 �T ,45

fdτi = l0;i1
�
χτ;i = 0

�
�E [l0 j Sτ ]Pr(Sτ j S0)

(vi) Weighting matrix
The weighting matrix is estimated as the sample covariance matrix of the moments in (v), adjusted for the
simulation size

Σ=
�
1+

1
Ns=N

�
Var ( f��i) , f��i = [ f 0a�i f 0b�i f

0
c�i f 0d�i]

0

(vii) Estimation method
We use a simulated annealing method to search for the set of parameter values b=

�
µ̄;σ µ0 ;σ µ1 ; σ ;W;P)0

that minimizes the method of moments objective function,46

Q=
�
1
N ∑N

i=1 f��i
�0� 1

N
Σ
��1� 1

N ∑N
i=1 f��i

�

(viii) Standard errors
The standard errors of the estimated parameters are obtained as follows

std(�b) =

" 
∂
�
N�1∑Ni=1 f��i

��b��
∂b0

!0�
1
N

Σ
��1 

∂
�
N�1∑Ni=1 f��i

��b��
∂b0

!#�1
,

where the matrix of derivatives is computed numerically.
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Table 1: 1988 Firm Cohort: All Economy

Year CumEx AvEmp CGrEmp SurComp
1988 1.11
1989 15.6 1.27 15.2 69.5
1990 24.4 1.36 24.8 70.4
1991 30.8 1.43 31.2 69.7
1992 35.4 1.46 34.2 69.3
1993 40.0 1.46 34.6 68.9
1994 43.4 1.47 35.3 69.1
1995 46.7 1.48 36.1 68.7
1996 49.9 1.49 37.4 67.2
1997 52.7 1.51 39.6 68.5
1998 55.5 1.52 40.7 68.3
1999 58.5 1.54 43.0 68.9
Notes: CumEx is the cumulative exit rate, 100� N(Dτ)=N(S0);
AvEmp is the mean of log-employment among survivors,
N(Sτ)

�1∑i2Sτ
lτ ; CGrEmp is the cumulative log-growth rate (in

%) of employment among survivors, 100 � [N(Sτ)
�1∑i2Sτ

lτ �
N(S0)�1∑i2S0 l0]; SurComp is the survivor component (in %),
100 � [N(Sτ)

�1∑i2Sτ
lτ � N(Sτ)

�1∑i2Sτ
l0)]=[N(Sτ)

�1∑i2Sτ
lτ �

N(S0)�1∑i2S0 l0].



Table 2: 1988 Firm Cohort: Summary Characteristics by Sector

Sector EmpSh CumEx AvEmp CGrEmp SurComp
88 89 92 99 88 89 92 99 89-99

All 100.0 15.6 35.4 58.5 1.11 15.2 34.2 43.0 69.0
Manu 41.8 14.6 35.9 58.9 1.58 17.4 38.7 45.5 82.8
Serv 20.1 17.1 36.6 58.0 0.99 11.7 30.8 40.2 61.7
Notes: EmpSh is the employment share of the sector in the overall economy cohort;
CumEx, CGrEmp, SurComp are as de�ned in table 1.



Table 3: 1988 Firm Cohort: Characteristics of Labor Adjustment by Sector

Sector 89 93
N30 NA P30 N30 NA P30

All 7.9 43.0 13.7 13.7 45.3 17.1
Manu 10.8 31.5 20.7 20.9 33.4 24.6
Serv 7.3 47.7 11.8 11.3 50.3 15.0
Notes: N30 is the fraction of �rms with an adjusted
growth rate of employment, conditional on survival, in
the interval (�30%;0%); NA is the fraction of �rms
that do not adjust employment, conditional on survival;
P30 is the fraction of �rms with an adjusted growth rate
of employment, conditional on survival, in the interval
(0%;30%).



Table 4: Calibration/Estimation: 1988 Firm Cohort

Parameter All Manufacturing Services
NAC AC NAC AC NAC AC

α 0.56 0.56 0.57 0.57 0.73 0.73
β 0.956 0.956 0.956 0.956 0.956 0.956
w 11.8 11.8 13.1 13.1 7.5 7.5
µ̄ 2.923 3.196 3.368 3.755 2.393 2.419

(0.016) (0.038) (0.032) (0.012) (0.018) (0.014)
σ µ0 0.245 0.188 0.236 0.083 0.133 0.123

(0.005) (0.008) (0.009) (0.004) (0.006) (0.006)
σ µ1 0.319 0.250 0.296 0.186 0.166 0.154

(0.005) (0.008) (0.010) (0.006) (0.006) (0.006)
σ 0.884 0.661 0.707 0.440 0.436 0.402

(0.016) (0.036) (0.034) (0.016) (0.021) (0.018)
W 767.5 815.2 1294.5 1494.2 200.2 198.7

(5.2) (8.2) (18.6) (21.9) (3.1) (3.5)
P 0 0.74 0 2.17 0 0.06

(0.05) (0.07) (0.02)
I 89.1 64.0 167.6 90.0 19.8 17.8
Q� 1866.9 1516.9 700.0 423.9 356.1 351.5

Notes: NAC refers to no-adjustment-costs case; AC refers to proportional-
adjustment-costs case; numbers in (�) are standard deviations of the parame-
ters; Q� is the value of the objective function.



*
τθ

( )*
1

*
1 τττ θθθ −− =< ESUSDθ

0

HP

τMB

( ) 11
** , −− = ττττ θ LLL( ) 11

** , −− < ττττ θ LLL ( ) 11
** , −− > ττττ θ LLL

Figure 1: Proportional Hiring/Entry Cost
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Figure 2: Firm Dynamics for Overall Economy Cohort
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Figure 3: Firm Dynamics for Manufacturing and Services Cohorts
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Figure 4: Sensitivity Analysis
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Figure 5: Sensitivity to Proportional Adjustment Cost


