```
We can follow the monocots down to the Gramineae or
the grass family.
    Here, we have only wheat, rye and barley
that are toxic. Triticale is a cross between wheat
and rye, and so would be expected to be toxic.
    Now, oats I have had to put in both
columns, and I will explain why. There are many
other grasses in which the grains do not have toxic
proteins as far as we know.
    There are only two grains that have been
studied with modern methods and modern approaches
to understanding their relationship to celiac
disease, and that is wheat and oats.
    These others have often been studied very
minimally including rye and barley, but rye and
barley do contain proteins that have sequences
quite close to those in wheat.
    We assume that rye and barley are probably
toxic grains according to the early results of
Dicke in the Netherlands back around 1950, where
they considered rye, barley and oats as part of the
toxic group.
```

Now about 15 years ago, I suggested that if there are only a few grasses that contain the toxic sequences, and they are closely related as you will see, and then there are many other grasses that do not contain the toxic sequences.

I suggested that if you get into the dicot
group -- the buckwheat, quinoa, amaranth, and these other grains -- it would not be toxic, simply because of their distant taxonomic relationship to wheat.

I was a little bit apprehensive about suggesting this, but over the past 15 years since I suggested this, people have been eating these other grains. As far as I know, there hasn't been any serious indication that these do, in fact, have toxicity for celiac patients.

There have been some very fine studies from Finland and throughout the world, indicating. that oats were safe for celiac patients. But towards the end of last year the Oslo, Norway, group under Knut Lundin and Ludvig Sollid. They have found -- well, I'm getting a little bit ahead

```
of myself. Let's deal with this slide first.
    (Slide.)
    DR. KASARDA: If we take a subfamily,
festucoidiae, of the grass family and we look at
the tribal level, and I made this slide before the
results from Oslo were published. The hordeae --
which includes wheat, rye, and barley -- were one
tribe. I thought that oats were probably
non-toxic, so I put them in -- well, they belong in
a separate tribe. It was only this one tribe that
had the toxic sequences.
    Now, it is pretty certain that the oats
are toxic to a few probably rare individuals, but
we don't really know how this works out. They
found three celiac patients who definitely reacted
to oats by the same mechanism that they reacted to
gliadin peptides. This, I think, was pretty well
demonstrated by the work from Norway.
    Now, here I show the proteins that you
find in wheat, gamma-type gliadins and related
low-molecular-weight glutenin subunits, they are
found in rye, barley, not in oats. Alpha-type
```

gliadins are found in wheat, but you don't find them in rye and barley or in oats, and so on down the line.

Now, the avenins are a small fraction of the total proteins in oats. These make up only about 10 percent of the protein. Most of the protein is oat globulin, which as far as we know if not harmful or toxic to celiac patients. There are low-molecular weight proteins related to the avenins in rye, barley, and wheat.
(Slide.)
DR. KASARDA: Now, this is another one of those sequence slides, but let me just try to make a few points here. This top sequence is a gliadin sequence. It starts here (indicating) and runs down to here.

The bottom sequence is an avenin, which shows a lot of homology with the C-terminal half of this gamma-gliadin molecule. This is also true for the alpha gliadins. Where the amino acids are the same, I have colored them in blue.

There is a lot of homology here in the

```
C-terminal half, but that is not where the toxicity
lies. The Oslo group has shown that this
particular sequence, which I have underlined, does
have certain characteristios including glutamic
acid at key positions that are important, as Dr.
Murray pointed out, for binding to MHC proteins.
    Consequently, most of the repeat region is
absent from the avenins. There is just this sort
of residual section here, which does have a lot of
glutamine and a lot of proline and some key
glutamic acid sequences or amino acids that seem to
be responsible in these few patients that have been
studied for the toxicity. This sequence is
certainly capable of stimulating T-cell clones from
these patients.
I think that the evidence is pretty good
that there are at least a few -- it seems as though
there are probably rare individuals who respond to
oats and probably most celiac patients do not
respond to oats.
    This is a rather puzzling situation,
because I have always thought of the proteins as
```

```
being pretty definitive for celiac disease, that
all celiac patients reacted to wheat and probably
to rye and barley, and that this was part of the
definition of celiac disease.
    Now we have a situation here where it
appears that some patients react to oats and some
don't. This is some ongoing research that needs
some elucidation.
    (Slide.)
    DR. KASARDA: Just to jump back into the
classification, this is another subfamily,
panacoideae. Here we have maize and sorghum and
millet. We have actually done a little bit of
end-terminal sequencing on sorghum and millet
proteins, and they do seem fairly close to the maze
protein. This would explain to some degree why
they are not toxic in celiac disease. As far as we
know, it is still wheat, rye, and barley that are
harmful.
```

 (Slide.)
 DR. KASARDA: Now, this is my last slide.
 The currently favored method for determination of

```
gluten in food is the R5 monoclonal antibody ELISA
test developed by Mendez in Spain. This seems to
be a pretty good test; it is not perfect.
    The antibody reacts to monomeric wheat,
rye and barley prolamins, but not the oat avenins,
and it reacts weakly or not at all with the
glutenin or glutelin, pretty good sensitivity,
recognizes these particular motifs more strongly,
although some others that are similar are
recognized weakly.
    The Codex Committee on Methods agreed in
2004 to endorse temporarily the R5 ELISA for the
determination of gluten. Now, there are some
possible problems. There is the failure to detect
the glutenin proteins.
In some preliminary work from our
laboratory, for example, when we look at wheat
starch that is intended for use by celiac patients,
we find that the gliadins are pretty well washed
out, but we do find evidence of
high-molecular-weight glutenin subunits attached to
the starch surface. These would not be picked up
```

by the R5 ELISA.

Then, there is the question about small peptides from hydrolases. There has been some work described using a competitive assay, which might possibly solve the problem of the small peptides from hydrolases.

Also, there is a certain amount of data indicating differences in the results from different labs on the same sample. On the whole, it seems like a pretty good test that can be used. As I say, it is not perfect, but it is a pretty impressive test on the whole, and it may be as close as we are going to get.

Although, I certainly can think of some ideas for maybe improving it. At any case I think I will end my talk here and I thank you very much for your attention.

CHAIRMAN DURST: Thank you.

QUESTION AND ANSWER SESSION
CHAIRMAN DURST: Are there questions?
Okay. Margaret?
DR. BRILEY: Margaret Briley. Can you

```
give us any idea of the use of this ELISA test by
industry in terms of the frequency and the
acceptance and willingness to do it? Do you have
any feel for that?
    DR. KASARDA: Well, I think it is being
used, and Dr. Collin can comment on this,
extensively used in Europe and it is becoming used
in the U.S. Susan Hefle, who spoke yesterday, I
think that they have done a cextain amount of work
using this test for industry.
    My impression is that not much testing is
done in the U.S. Maybe Cynthia could comment on
that. I think it is developing, but we are quite a
bit behind the Europeans in terms of a willingness
to test and desire to test products and make sure
that they are as close to gluten-free as they
possibly get. I can't give you a definitive
comment on that. I haven't made any surveys.
    CHAIRMAN DURST: Any further questions or
discussion?
    Yes?
    DR. CALLERY: Pat Callery. Thank you for
```

```
the review of the relevant biochemistry. Coula you
relate the transglutaminase substrate specificity
to these various glutamine-containing --
    (Simultaneous discussion.)
    DR. KASARDA: Not personally, but other
people have. There are certain sequences that are
susceptible to deamidation and probably
transamidation as well. These have been described
in some recent publications. There are many sites
in the gliadins that are susceptible to
transglutaminase.
    DR. CALLERY: The transglutaminase I
understood was an important feature in binding
these proteins and causing the --
    (Simultaneous discussion.)
    DR. KASARDA: Well, you know, in the MHC
proteins there is a positive charge in the binding
pocket that binds well to a negatively charged
glutamic acid. This does enhance the strength of
the binding to the binding site of DQ2/DQ8.
    Now, I'didn't get into it, although
possibly someone else will, there seems to be two
```

legs to the celiac disease situation. There is the
adaptive immune system, which has been worked on
quite a bit in terms of this presentation of
gliadin peptides to T-cells, to the T-cell
receptor, and stimulation along that leg.
However, one of the peptides I described
that Mike Marsh had studied, that particular
peptide is not immunoactive. It does not stimulate
the T-cells, yet when instilled directly into the
small intestine it produced changes that were
characteristic of celiac disease.
In the last couple of years, there has
been an interest in the role of the innate immune
system in possibly triggering the first leg of
celiac disease, which then progresses on to involve
the adaptive immune system and the CD4 T-cells of
the lamina propria.
I think that part is becoming pretty well.
understood. Ludvig Sollid and his co-workers,
while he was on sabbatical at Stanford, they
actually crystalized a DQ2 with the gliadin peptide
in the binding site. They have defined a number of

```
characteristics of the peptides that are important
for binding.
    However, I think we still don't understand
a good part of what is active or toxic about these
peptides, and it may have to do with this
triggering and innate immune response. That is
research that is really developing right now.
    CHAIRMAN DURST: Soheila.
    DR, MALEKI: Soheila Maleki, USDA.
Essentially, the substrate for the transglutaminase
is the same peptide that is presented by the
antigen-presenting cells?
    DR. KASARDA: Well, after you deaminate a
particular glutamine, then the binding strate goes
up for the receptor site on the MHC protein.
    DR. MAIEKI: Essentially, it is the same
substrate, just after deamination --
    (Simultaneous discussion.)
    DR. KASARDA: Well, there is also the
question of, Why do you have antibodies to the
transglutaminase? This may involve transamination
reactions where you get a binding of gliadin in the
```

transglutaminase, and then this triggers theapparent autoimmune antibodies to transglutaminase.DR. MALEKI: I see. Well, I just find itamazing that when you show the lineup of thepeptides, the homology, that you had a two aminoacid difference and went from immunoreactive tonon-toxic. I'm sure by now they probably canexplain that?
DR. KASARDA: No, they can't.
DR. MALEKI: Well, even in the fitting up
to the transglutaminase or to the processing by
antigen-presenting cells?
DR. KASARDA: Well, it is very puzzling,
very interesting: I really can't answer your
question.
DR. MALEKI: Thank you.
CHAIRMAN DURST: Any further discussion?
(No verbal response.)
CHAIRMAN DURST: All right. Thank you,
Dr. Kasarda.
We are now scheduled for a break. We are
just about on schedule, so we will take a brief

```
break and reconvene at 10:45.
    (Thereupon, from 10:25 a.m. to 10:45 a.m.,
there was a pause in the proceedings.)
    CHAIRMAN DURST: Our first speaker after
the break is Dr. Alessio Easano, professor of
pediatrics, medicine and physiology and director of
the Mucosal Biology Research Center, Center for
Celiac Research, University of Maryland School of
Medicine.
```

 PROSPECTIVE STUDIES
 DR. FASANO: Thanks so much. I've got to
 do this. I need really to thank the EDA, who has
been so kind to invite me, but also to be so
sensitive to use Italian candies.
(Laughter.)
DR. FASANO: This is very nice of you
guys, and we appreciate that. I also want to tell
you guys that because of the other speakers, I
decided to reduce a little bit my talk, so a few
slides have been taken out from the handouts to go
straight to the point.
There has been a general perception that

```
this is a quite young disease, in other words,
something that we are dealing with kind of
recently. I want to put this in the right
perspective and give you some of the background to
justify this prospective study to decide what is
threshold of tolerable gluten.
    Eirst of all, believe it or not the first
trace of a description of this disease goes back to
the Roman Empire. This is not something that has
happened in the last few years.
    (Slide.)
    DR. FASANO: Who really put the disease on
the map is this fellow here. Samuel Gee, at the
end of the past century, around 1890, gave an
historical lecture to a place where I had the
privilege to study for a little while at Saint
Bart's Hospital in London.
    He really put celiac disease on the
"scientific map." I took little sentences here and
there from his lectures to give you the sense of
how this guy got the story right more than }12
years ago.
```

```
    He described these as a chronic
indigestion that is met in every single age.
Again, our misconception in the past was celiac
disease was confined to a specific age group. He
knew already that was not the case; it can affect
at any age.
    Of course, it is particularly more
frequent in all kids between one and five years
old, and that was the observation at the time. He
spent time and effort to clarify the fact that
everybody can be affected.
    Now, symbiotics, hands-on, was the way to
do a disease diagnosis at that time. We didn't
have a lot of sophisticated tools, so it was really
hands-on.
    For a gastroenterologist, dealing with a
problem like that means describing feces, stools,
and that's what it is. He introduced with this
description a very important concept about celiac
disease in terms of classical GI presentation,
malabsorption.
    In other words, right before they would
```

```
know about the genetics, right before they would
know about the grains, the eyes are telling us that
the feces are loose, malformed, but not watery,
definitely more bulky than the food taken seems to
account for, i.e., malabsorption.
    What is remarkable is this part here. He
ventured also to understand what was the
pathogenesis of the disease and introduced two
concepts: the genetics and environmental trigger.
    He said kids that suffer from it are not
all weak in constitution, errors in diet. I want
to clarify that the first time that the link
between celiac disease and grains was made was soon
after World War II. Until then we had no clue
whatsoever what was the trigger leading to celiac
disease.
    The link was made during World War II
because there was a higher rate of mortality among
kids in Middle Europe that was not explained.
During World War II, grains were not available
anymore.
```

 They were fed with potato starch, potato
    ```
flour, and the mortality dropped dramatically, to
reappear after the end of the war when flour was
again available. That is when the link was made.
    This guy is already there. Errors in diet
may be perhaps a cause, but whatever. Why, out of
a family of kids all brought up in a much similar
way, should only one suffer?
    Again, he is trying to understand what is
the genetic component, what is the environmental
component, why some people have got it and some not
from the same family eating the same stuff.
    Then, he finished up by saying, "Okay, I
think that I have a way to get to the bottom line
in treatment. The treatment has to be regulating
food in the main part of the treatment. It is
amazing if you come already with this conclusion.
The allowance of farinaceous food must be small.
Again, I find this remarkable. Highly starchy
food, rice, sorghum, corn-flour are unfit.
    Now he is losing himself a little bit when
he says malted food is better. Also, rusks or
bread, provided it is cut thin and well-toasted on
```

```
both sides, will be all right.
    Grant him the benefit of that. "I believe
that, again, in 1890 making this kind of statement,
even if he [made] this little boo-boo here, I think
that it is absolutely remarkable.
    (Slide.)
    DR. EASANO: Now, fast forward that 120
years later, and that is what we understand about
celiac disease. You heard from Dr. Kasarda and
Dr. Murray already that this is an immune-mediated
reaction.
    It is not an allergic reaction, but rather
right now we really truly believe that this is an
autoimmune condition. In other words, we are in
the same kind of range as multiple sclerosis, type
1 diabetes, and so on and so forth.
    Therefore, as such there are two key
elements to develop the disease: You have to be
genetically susceptible. I'm not going to spend
more time about this DQ2/DQ8, but they are the
docking station, the "eyes,", of the autoimmune
system to see the trigger from the environment
```

coming in.

```
    It is unique because the only other
autoimmune disease for which we know everything
specifically is the only autoimmune disease for
which we know the trigger, that is, gluten.
    I wish that we had that kind of
information for other autoimmune diseases, for
which we will have a solution. Theoretically, we
have on hand the possibility of treatment of this
disease.
However, I will argue that unless we have
a clear rule of engagement, i.e., a food labeling
bill that will really clearly define what is
"gluten-free," this is a theoretical solution but
very difficult to put in practice.
    (Slide.)
    DR. FASANO: Again, it is pretty obvious
that you have to have these two ingredients, you
have the genes and you have to have the grains.
When they interplay, you may end up developing
celiac disease.
```

We heard already that variability in terms

```
of the timing, how long it is going to take, the
outcome in terms of symptoms, and so on and so
forth, is unbearable. However, they are all under
the same kind of umbrella of celiac disease.
    What are our treatment options at the
moment? If these two elements are absolutely
necessary to developing the disease, I believe it
is a no-brainer, it is pretty simple, there are
only two solutions.
    First, we can remove the genes, and I
don't think that we can do that. We are not quite
there yet anyhow. As Dr. Murray explained, we know
some of them but we don't know all of them. Or,
secondly, we eliminate the grains. Those are the
options that we have available. There is no other
way to turn from this.
    Don Kasarda went extensively into this. I
didn't know that he was invited, by the way.
However, the bottom line is the only treatment
right now is strict, lifelong -- as you heard, you
don't grow out of this, so you have got to endure
it for the rest of your life -- avoidance of wheat,
```

rye and barley. The oats story, again, I am not going to go back because you heard about that.
(Slide.)
DR. FASANO: It is pretty obvious what are the major sources of gluten. This is the easy part when you have to deal with the patients freshly diagnosed. It is easy to say, "You know what? No bread, pasta, pizza, beer, cookies, muffins, and so on and so forth.
(Slide.)
DR. EASANO: This is a little bit more complicated, and that is where I believe a food labeling bill will help. Of course, it is not necessary to go and say, "You know what? This muffin that you buy at the bakery needs a label." We know that already whether it is gluten-free.

However, this stuff here (showing "Sources of Gluten" slide) definitely, needs a label, some of them, because it is not clear if they have gluten or not because they can be processed with or without gluten.

```
    Gluten is a formidable, extremely cheap
```

```
biological glue. Don told you the phystcal,
chemical characteristics of the molecule. The
reason why manufacturers use that is because when
you have two elements of a processed food that does
not stick together, the cheapest way to keep them
together over time is to use gluten. Right now,
the label can see just the nature of flavor but not
gluten, not necessarily so.
    Then, there are really the tough ones in
which, this is not even food really, a source of
gluten needs to be considered. I can't
conceptualize enough how many times we've gotten
E-mails of people asking, "Is my husband, who has
celiac disease, going to be sick or whatever," or
the Playdough for the kids in kindergarten, and so
on and so forth. These are elements to keep in
mind that we deal with all the time.
    Of course, the big deal is right here.-
medications, prescriptions. As for foods,
processed foods, also medication they enjoy gluten
as an additive to keep elements together.
    Now, while I'was saying adhere to a diet
```

```
is a pure theoretical no-brainer, but in a
practical sense it is extremely complicated. It is
a chronic intervention that you have to do, and you
have to stick with it with full commitment for the
rest of your life.
    Every single individual in this room I am
pretty sure that you have made some commitments
here and there to go on a certain diet or to
exercise or to decide to change your lifestyle. To
keep that constantly for the rest of your life, it
takes a lot of stamina. That is the reality of the
story.
That is true particularly in the American society in which any chronic illness will require chronic treatment, whether it be diet or exercise or medication or whatever, will pose a problem of compliance. Definitely among different interventions, a dict compliance can be really a difficult aspect of treatment.
In my book, food is one of the few joys in life. How many times do we leave home and go to work, we drive, we don't think about it, and we
```

```
find ourselves at work without having to pay
attention to directions, streets, and so on and so
forth? We are used to it.
    That is the same with food, we are used to
it. However, that is not the case for celiacs
because they have to think about this over and over
and over again. It will become not a natural,
spontaneous activity in life, but it will become a
very, very demanding operation.
    (Slide.)
    DR. EASANO: Why don't people stick with
diets? This is a survey that was done in
Upstate New York, This statement, and this is just
to paraphrase something that Cynthia was telling
us:
    "If I eat less gluten, I will have less
intestinal damage."
    Half of the people say, "You know what? I
really don't have to stay a hundred percent gluten
free. As far as I decrease this, I will have less
problems. I will be all right."
    "I've lived this long eating gluten, how
```

much will a gluten-free diet really help me now? I mean, you know, if it's not been a big deal so far, why should I just dramatically change my iifestyle? I've survived so, far, I'm not going to die from it."

> "It's not me, that I have to do this.

It's my doctor who should tell me when I need follow-up testing or whether I need to stick with a diet, and so on and so forth." One-fourth of the people say that.

Again, you heard Dr. Murray, that unfortunately some of the confusion is generated by the professionals, the healthcare professionals. They don't know the rule of the game, and, therefore, they cannot transmit how to play the game.

It is pretty much the sense that you go to the doctor as an individual that has to teach you how to play chess, and this fellow has no clue whatsoever how to move the pieces. Patients have to learn how to play chess while playing against a professional player. How fair is that? It is an
ongoing process.

This is the one that disturbed me the
most: "Scientists and doctors still haven't proven that gluten really hurts them." You know, there is no clear information that gluten is dangerous to celiacs, and that is quite disturbing.
(Slide.)

DR. EASANO: What are the curxent barriers
in compliance? Again, you heard about the emotion of the person, anxiety. There is a tremendous reaction when you are diagnosed with a chronic illness, no matter how you want to put it. Now, grief and fear and denial are part of the story.

The ability to resist temptation and to be disciplined on a gluten-free diet is tough. There are feelings of deprivation. A few years ago I was with one of the patients, and he got the chance to drink a gluten-free beer. Soon after he started to drink the beer, I saw tears coming down his cheeks. His simple statement was, "I've waited 25 years for this." Imagine, 25 years to drink again beer.

```
it. However, there are many others, particularly
adolescents, in which that kind of discipline is
really hard to obtain.
    This is very much the heart of the
problem, fear generated by inaccurate information.
If we do not have clear ideas, we, as
professionals, and one says black and the other one
says white, and the other one says up and the other
one says down, that creates a lot of confusion and
a lack of trust.
    (Slide.)
    DR. FASANO: Other barriers to compliance
are of course we live in a society that drives i50
miles an hour, and we don't have the time to seek
to prepare our food to enjoy. My kids consider
that the stove is the microwave. The stove does
not exist.
    Cynthia teaches us the fact that the new
generation believes that cooking is just powder
mixed with water, stick it in the microwave, and
the only thing that you've got to do is read how
long should that go on and that's it. What
```

```
sophistication.
    Here, assessing gluten content in food and
label reading is the most compelling change in
lifestyle that these people go through. Right now,
I don't know about you guys, but I don't enjoy food
shopping. I really do not. I tend to go at
midnight when nobody is there, because I want in
and I want out.
That is not an option for celiacs. One thing that will take you, I don't know, half an hour will take four or five hours for celiacs because you've got to read every single label to the nitty-gritty and make decisions.
Many times now I see people with cell phones calling an 800 -number right there on the spot saying, "I have your Box XYZ, is this gluten-free or not?" It is cumbersome.
(Slide.)
DR. FASANO: All of this to come to the heart of what I'm going to share with you guys. How much is too much? Unfortunately, I can't conceptualize and stress enough what Cynthia
```

```
already said. In biology, the absolute zero does
not exist. If you really do believe that we can
achieve zero as gluten-free, this is a pure
theoretical concept that nobody will ever be able
to achieve.
    Assume, just for a moment, that we will
have a sophisticated, super-duper sophisticated,
monoclonal ELISA to really go down to zero. To
manufacture food in that way, people in that
particular factory should be dressed with spray
suits, all antiseptic. A piece of bread will cost
$250, because that is what that level of
sophistication and controlled environments will
take. Consequently, it is impossible.
    At the same time we need to give industry,
manufacturers, a parameter of what is tolerable and
what is not. There have been many retrospective
studies that Dr. Collin is going to tell us about,
very few prospective studies because they are
extremely challenging to do right.
    This study that I am going to show you the
data of has really been coordinated by
```

```
Dr. Carlo Catassi, who has been involved in this
kind of topic for the past }15\mathrm{ years. He is a
member of our center, and we have been doing this
in coordination for the past four years.
    Why do we need to do this? Because again
this is a long-term, strict gluten-free diet. If
we do a prospective study design, we can answer
questions that a retrospective study was not able
to answer.
```

How we did this? We did it in a way that the gluten-free diet, people that come in are already diagnosed on a gluten-free diet. We are monitoring this gluten-free diet in a blind fashion where a given amount of gluten is added to the diet, then, the clinical, serological and biopsy evaluation before and after the microchallenge.

The background noise, this is very important, is caused by possible contamination of the food was minimized by using a control group, in other words, to really do this by the book.
(Slide.)
DR. EASANO: Studies done in the past, for
example, from Dr. Catassi almost a decade ago, showed a linear relationship between the amount of gliadin -- that is the toxic part of the story here -- a daily dose, and it causes damage between 100 and 1,000 milligrams a day.

The intraepithelial lymphocytes -- and we are going to go back to what these intraepithelial lymphocytes are all about, the meaning -- was the most sensitive index, not the serology and not the symptoms.

What you heard already from Dr. Murray is that after all these red flags the antibodies may not be sensitive enough to uncover exposure to gluten. Indeed, even 10 years ago this was very clear.
(Slide.)
DR. FASANO: Why do this again? If it was
done 10 years ago, why revisit this if we have already the information? Several reasons. The need, first of all, to investigate the effects of lower gluten doses. Because at that time they were using large doses, because that was the level of
sensitivity of the tests for the foodstuff.
There is a need for prolonging the duration of the microchallenge. In the pastir the longest that we went was a month, and people would ask, "How about two months or three months?"

How about if the period, the lag period, between the exposure to gluten and when you react is longer? You believe it to be safe for one month, but you keep going, and eventually you react.

There is a need of a control group that was never used before, and, most importantly, you heard that gliadin is part of the story. They are the glutamines.

If you do the study just as done in the past, you may really not uncover what is really the story; in other words, what you leave out there is not pure gliadin but rather this mixture of proteins that Don Kasarda was telling us about. (Slide.)

DR. EASANO: I don't want to spend too
much time on this, but for a matter of

```
quantification, to give a sense of what we are
talking about. In 200 grams of wheat-based
products -- bread, pasta, so on and so forth -- you
heard that the main proteic fraction in wheat is
gluten. For 8 to 14 percent of the overall amount
is wheat. Gluten is 75 percent of all the protein.
Between gluten and glutamine, we can say that all
of this 8 to 14 percent are these toxic proteins
for celiacs. This 8 to 14 percent translates into
15 grams.
```

The real toxicity, the main toxic, is due to the gliadins. Again, glutamines contributed to toxicity. Of the 200 grams, 8 to 14 percent is equal to 15 grams. Half of it is gliadin. Gliadin has more than 50 toxic fragments, and so on and so forth.

If you go on a gluten-free diet, an adult that is on a gluten-free dict, roughly, consumes -I mean, in a normal diet, roughly, the amount that you consume is this, 15 grams. Roughly, you consume 200 grams of wheat-based products.

If you are on a gluten-free diet, a

```
typical gluten-free diet, the subject consumes
gluten-free flour-based, that is roughly }80\mathrm{ grams.
The key element is how much of this 80 grams of
gluten-free products can be contaminated with the
toxic element, gluten? How much is the amount that
you can tolerate? That is the heart of the problem
here.
    (Slide.)
    DR. FASANO: That prompted the design of
the study. It is a quite complicated study. The
aim was to evaluate the consequences of the
protracting just minimal intake, either 10 of 50
milligrams, a very small intake.
    In a group of adult celiacs on long-term
treatment with the gluten-free diet, why this
amount? Because, again, 100 milligrams was already
tested and proved to be dangerous }10\mathrm{ years ago.
    How the study was designed was as a
multicenter, prospective randomized,
placebo-controlled, double-blind and was a
three-year study. It was entirely sponsored by the
Italian Celiac Society.
```

```
    The reason why we did it in Italy, as I
was mentioning befoxe, is mainly because economical
support of such a complicated and expensive study
could be executed at this time only in a place
other than the United States where we don't have
that kind of resources.
    (Slide.)
    DR. EASANO: Who was eligible? Patients
with biopsy-proven celiac disease had to be on a
gluten-free diet for at least two years. These
people that had been diagnosed with all of the
criteria are accepted and have to be complying with
the diet for at least two years.
    If you are younger than }18\mathrm{ years old, poor
compliance, abnormal results at the baseline
evaluation or you have IgE deficiency, that will be
an exclusion criteria.
    (Slide.)
    DR. EASANO: NOw, how we did this? Well,
again, these people were heroes to accept such a
study, but this was the only way to do it. These
people would come in to be scrutinized to see if
```

```
they were eligible.
    If they were eligible, a consent form was
obtained and there was an intense, strict
monitoring of their gluten-free diets for a month
before the beginning of the study was obtained.
Baseline clinical serological and a biopsy was
obtained. In other words, they underwent a
endoscopy with a biopsy to show that they were
fine.
    They were blindly randomized in three
groups, either no gluten, }10\mathrm{ milligrams of gluten
or }50\mathrm{ milligrams of gluten. They were followed for
three months. At a monthly interval there was a
check with the serologist for symptoms.
    At the end of the study, at the end of the
three months, once again there was a clinical
evaluation and a serological evaluation and a
second intestinal biopsy under endoscopy.
    This was the kind of study that this was
the only way, given the fact that the we know
symptoms and serology tests cannot be sensitive
enough to do this right.
```

(Slide.)
DR. FASANO: The purified gluten was used
for the challenge. Gluten -- or lactose-containing
placebo -- capsules were randomly prepared. The
lab tests were centralized. There was monthly
monitoring of adherence to the protocol; it was checked by a nutritionist.

Measurement of gluten contamination in commercially available gluten-free food that they had during the challenge was checked by ELISA. The serum AGA and anti-tTG antibodies were checked; a biopsy was performed with morphometry; there was an intraepithelial lymphocytes count; and control biopsies from non-celiac patients were used. (Slide.)

DR. EASANO: These are the foods that they
had a gluten-free foods. You keep in mind that in Italy right now the food labeling policy is to be labeled as gluten-free you have to have 20 parts per million or less.

Indeed, with this simple exception, the vast majority of the foods that these people there
are eating was gluten-free, by definition of the 20 parts per million.

Consequently, the only gluten that these
people were seeing was actually the ones that were dealing with the challenge, if they were in the group of gluten exposure.
(Slide:)
DR. FASANO: We were able to recruit 39
people, who were divided equally into three groups. There were a couple of things that were interesting to us.

Of all the parameters that we measure, two
are extremely important to establish the health of the intestine and the exposure to gluten damage, one was the villous height/crypt depth ratio. It is very typical use of morphometric analysis that we do in clinical practice.

Typically, we want to see this: roughly, a
ratio of $3: 1$. In other words, the height of the Ine has to be 3 times the depth of the crypt. That is what typically we consider to be normal.

```
gluten-free diet, despite that, they fulfilled the
criteria. They were gluten-free, symptom-free,
immunologically negative, and all the 9 yards.
They went on a one-month controlled diet.
    When we did the starting biopsy, there was
a slight decrease of the villus-crypt ratio,
meaning, the villi were a little bit shorter. That
is what happens when you have an insult, the villi
become short and the crypts go deeper.
    The other parameter is the number of
CD3-positive cells, the intraepithelial lymphocytes
if you wish, was again 20 per hundred entrocytes
and controls and 30 in the celiacs on a gluten-free
diet.
    Therefore, at baseline already something
was going on. It is like there is a status of
inflammation in which this is like a very
well-trained athlete, ready to react to anything if
it smells gluten coming through. It is really at
the edge, ready to jump.
    There was a strong correlation between the
number of intraepithelial lymphocytes and the
```

```
villus/crypt ratio, meaning, that the more healthy
is tissue, the less intraepithelial lymphooytes.
The healthier the tissue -- when the crypts are
elongated and the villa get short, the more
intraepithelial lymphocytes are there. The
intraepithelial lymphocytes are really soldiers
that the immune system sensed at the forefront and
ready to fight the battle. That is what it is.
    (Slide.)
    DR. FASANO: Now, what kind of symptoms
after the three months these people experienced in
the three groups? There were not really
significant differences: abdominal distention,
anemia, iron deficiency, loss of appetite,
bloating, and so on and so forth.
    There were equally distributed in all
groups including the placebo, but two really stand
out -- all in the 50 milligrams. This stomatitis
and the mouth, there are the typical signs of
mucosal involvement of the oral cavity in celiacs,
well-described, it was present only in the
50 milligrams. Weight loss was experienced only in
```

the 50 milligrams. For the rest, we didn't see any major differences.

To revisit the concept that the antibodies were useless -- these are the antibodies, IgA and anti-tTG and IgG anti-gliadin antibodies -- before and after the challenge in placebo 10 and 50 milligrams, there was no difference. Pretty much there was no difference among the groups.

What we saw as the difference was the villus/crypt ratio, that all in the 50 milligrams started to decrease to a level of significance. After three months, we saw the crypts become a little bit deeper and the villi to become a little bit shorter. This translates in the fact that there was damage that started to occur, or possibly damage that started to occur.

The intraepithelial lymphocytes, there are these spots here (indicating). Again, these are lymphocytes under normal circumstances you see in a smaller quantity in between epithelial cells.

It came to be of a very increased number
in people with 50 but not in 10 , not reaching
statistical significance, but these are trends that
I have the obligation to report. It is not
significant that there are more of these cells in
the 50 milligrams compared to the starting point, but it is a trend there.
(Siide.)
DR. EASANO: I believe the heart of all of
this is this table. I believe this really cuts to
the chase. It is extremely confusing, particularly
to patients, when you talk about milligrams and
parts per million. What the heck are you talking
about? Why do we use this parameter of parts per
million and not just straight milligrams?
Because, by the way, say, you do the study
and you show that 50 milligrams could be dangerous,
so how can it be 10 milligrams? How much is 10
milligrams? How much of a pizza is 10 milligrams?
You say, "Well, let me give you the bad news. It's
less than a fraction of a crumb of a piece of
bread. That is what we're talking about.
Still, it doesn't give you clearly what is
the magnitude of the stuff that we are talking
about. The reason why we prefer to express in part per million rather than in milligrams is because the amount that is tolerable really depends on how much you eat.

```
    (Slide.)
    DR. FASANO: As you see here, this is the
daily intake of gluten-free flour or whatever
products are based on gluten-free. If you eat
50 milligrams, of course you end up to ingest much
less than 300 milligrams of the substance that you
are eating.
    Let's say that, for example, we set the
parameter at 200 parts per million. If we want to
accept the outcome of this study as something to
keep in mind, }10\mathrm{ milligrams is safe for everybody,
50 milligrams start to be questionable.
    If you set the threshold at 200 parts per
million, if you eat a relatively small amount of
the stuff a day, you are okay. If you eat a little
bit more, you are in an area that we don't quite
know, because again it is between 10 to 50
milligrams. You can argue, "Is 40 okay? Is 30
```

```
okay?" We don't know.
    Definitely, if you eat 300 grams a day --
in other words, you eat large amounts of
gluten-free products that is contaminated to the
level of 200 parts per million -- you start to go
into the red zone. That is dangerous.
    If you go down this table, you see that if
you set 20 parts per million, no matter how much
your Italian lifestyle of eating like crazy food
that is gluten-free based, no matter how far you
go, you still are well below the threshold.
    Therefore, at least based on this study,
that I believe has been done really the way that it
is supposed to be done, long enough, because three
months is definitely a long period, a threshold of
20 parts per million should be safe for the vast
majority of the people because it will keep you way
below the cutoff that seems to be dangerous, i.e.,
the 10 milligrams.
```

 (Slide.)
 DR. EASANO: Now, this litany of names is
 just to explain that this was not a trivial study.

```
It was a multicenter study that involved a
tremendous amount of work and a tremendous amount
of dedication of people that have no business to
undergo this, particularly two endoscopies with two
biopsies. However, it is only because of the
dedication and the commitment of these people that
we have an answer and we have a chance to come to
you today with something that is a little bit less
foggy than so far we have had in terms of
prospective studies.
    I will stop there, and I will take any
questions that you have.
    CHAIRMAN DURST: Thank you very much.
                                    QUESTION AND ANSWER SESSION
    CHATRMAN DURST: Questions?
    Margaret.
    DR. BRILEY: Margaret Briley. Can you
tell me, I didn't understand, how often did they do
the biopsies? Every month? Every three months?
    DR. FASANO: No. No, no, no, that would
kill us if we do it every month. No, the biopsy
was done at the beginning of the study, at the
```

```
entrance, and at the end of the study, three months
after, the idea being how much insult did you get
in two months.
    What was done at intermediate intervals
was a survey of the diet, to make sure that they
were complying with a gluten-free diet, survey
compliance of taking the pill, and the serological
tests for the antibodies. Those were done on a
monthly basis.
    DR. BRILEY: On a monthly basis?
    DR. EASANO: That's right.
    DR, BRILEY: Thank you. That was good.
    CHAIRMAN DURST: Erica.
    DR. BRITTAIN: Erica Brittain. If I'm
understanding correctly, the conclusion of the
study is that }10\mathrm{ milligrams daily would be safe,
was shown at least to be fairly similar to your
placebo group in this four-month exposure. How
would you know how that would translate to four
decades of exposure?
    DR. FASANO: Only with decades of
prospective study. You are a statistician, and you
```

know better than I do that you've got to start somewhere.

There is no question in my mind that the only way to do that is like when you put a new drug on the market, and you go to Phase I and you do 10 people. When you do Phase II, you do 100 people. You do Phase III, and 10,000 people. Everything is fine. Ten years later, because millions of people took it, it may be that something wrong will come up, a classical example.

I don't have an answer for you. How do I know in 10 years what's going to happen? But, you know, we have to have some way to start. I believe that this study is giving us a parameter, a justification, a scientific rationale to say, "Let's start here."

CHAIRMAN DURST: Okay. Soheila. DR. MALEKI: Soheila Maleki. I was just wondering, this is probably not directly related to your topic, I heard earlier mention of wheat flour and exposure. How much is inhaled exposure involved in some of these reactions?

```
DR. FASANO: I don't think that anybody can answer with scientific confidence that inhaling is or is not a possible port of entry of gluten for people with celiac disease to react to.
What we know as a fact, an undisputable fact, is that the intestine is the port of entry, the key port of entry. I can tell you anecdotally that we have patients that react to inhalation of gluten leading to asthma as an allergic reaction to gluten rather than to celiac disease.
How confident am I that this could be an alternative to the other route? I'm not really confident, because I don't think that we have the scientific proof beyond any reasonable doubt, as we do with the other route, that it could be a possibility.
DR. MALEKI: Thank you.
CHAIRMAN DURST: Ciaran.
DR. KELLY: Yes.
Thank you, Alessio, I agree. Thank you
for sharing the data with us, and I agree that at least it is a basis that we can begin to work from
```

```
and make some rational approaches to what is best
for our patients with celiac disease.
A couple of questions: The first relates to the earlier question about the 40 -year experiment. There is one that there is a 20 part-per-million threshold set already in Italy. Could you comment on how well that is tolerated by every or the vast majority of celiac patients in Italy?
```

DR. FASANO: Actually, it is much more than that. There are interesting natural experiments being done. Italy for many years now reinforced the 20 parts per million. England has this 20 to a hundred, and so on and so forth.

As far as I can tell you, this is something that in Italy the food labeling legislation setting it at 20 parts per million has been there for 7 years. It has been considered to be absolutely safe with very sporadical reports of reactions.

Now, I think it was telling you when you have a stomachache and you are a celiac, you tend

```
to go that way to the extreme that some people say,
"Today's ache is because I had gluten."
    I mean, this is the reality of the story.
But if you want to, statistically speaking, work on
the large numbers, I would say that }20\mathrm{ parts per
million has been proved to be safe.
DR. KELLY: In your study, then, and this
is something that we discussed a lot yesterday in
the context of food allergy and challenge studies,
is there the potential for bias in selection; in
other words, individuals who are highly sensitive,
in terms of symptomatically highly sensitive, to
low levels of gluten would either be afraid or not
choose to enter the study?
DR. FASANO: Absolutely. Absolutely, no question about it. The reality of the story is that if you are extremely sensitive to gluten, you would be less willing to expose yourself to something that you know is going to harm you.
The point is, What percentage of the
population does that represent? Is it 10 percent,
20 percent, 50 percent, or a fraction of 1 percent
```

```
of the celiac population?
You know, I'm pretty sure everybody that is involved in the clinical care of people with celiac disease has run into people who are extremely, extremely sensitive to gluten out there. The exception are people where actually the problem is the opposite; these are people who can eat dangerous amounts of gluten and they do not react. That is a problem.
CHAIRMAN DURST: Dick Durst. Just to follow up on that, How did you recruit the people for these studies?
DR. FASANO: The method of recruitment is a major advantage of the Italian setting is that there is a single Celiac Society, and they are extremely committed. What we did was very simple. They have a national bulletin, both electronically and on paper, that is read pretty much by the vast majority of the members of the celiac community.
I believe that we originally asked for 45
volunteers. That is the number that the biostatistician told us to go for to have a
```

```
meaningful outcome. We got 470 volunteers, so we
had to turn people down.
    CHAIRMAN DURST: Did you at that point
know which ones were the hypersensitive or the more
sensitive versus other and select on that basis at
all?
    DR. FASANO: No. The way that these
people were selected was completely random. In
other words, the least that we had every "X," three
or four up -- I don't know, to make the number --
were called to make that unbiased. We really
wanted a representative portion of the population.
This was done by also sex and age.
    Yes?
    DR. KELLY: Ciaran Kelly again. I do have
one other question, and it has to do with the
interpretation of the data on villus/crypt ratio
and IEL counts in the controls versus the
well-controlled celiacs.
    You showed that there was a small
difference at baseline, even though those
individuals were doing well on a gluten-free diet.
```

```
Your interpretation is that there is an underlying
immune activation. My question is, Is it possible
or likely or relevant that the 20 parts per million
that they are taking is perpetuating that?
    DR. EASANO: What I am trying to convey is
the difference is that the recovery -- even if you
are completely, religiously gluten-free -- is not
100 percent. That is what I meant.
    I don't know if this is due to an ongoing
immune response. I believe that to not probably be
the case. Because after all, after all with all of
the machinery in the community, these people have
been proved not to go back to normal. Whereas,
again, the fact is that no matter how you push it,
you can't really go back to normal.
    I think that the fact that for three
months, even if you were really "touched," so to
speak, you did not react to. }10\mathrm{ milligrams. For me
it was a great level of confidence that this is the
way to go -- together again with data with a
retrospective study, that we are going to hear
about in a moment, and on-the-field exercise in
```

Italy.
CHAIRMAN DURST: Jean?
MS. HALLORAN: Another question about the sample group. When you did the baseline study, how much variability did you find in the members of that group?

DR. EASANO: Let me see if I can go back on this.

MS. HALIORAN: You had two factors that you looked at, the villus height --

DR. FASANO: Can you put on the slide show for a second?
(Ms. Sylvia Smith complies.)
DR. FASANO: You will see that there was
--
MS. HALIORAN: Slide 32.

DR. FASANO: Can you bring me over there,

```
please?
```

(Slide.)
DR. FASANO: There is a fair amount of
variability. You see that, and there is some overlapping at baseline.

```
    If you go down -- keep going -- now, if
you can go up to 28, please?
    (Slide.)
    MS. HALLORAN: It is 32, I think.
    DR. EASANO: You want 32? I thought that
you were talking about the variability of the
villus/crypt ratio. Is that what you are talking
about?
    CHAIRMAN DURST: Yes.
    MS. HALLORAN: Yes.
    DR. FASANO: It is a little bit higher
than that.
    Can you go higher?
    MS. HALLORAN: Ah.
    DR. FASANO: Stop here. I need 26.
    (Slide.)
    DR. FASANO: All right. You see here;
this is the variability. You see here that this is
the variability. These are the single points. If
there was somebody that was high right here
(indicating), and someone like here, these are the
celiacs. There was a continuum, so it is not that
```

```
there are people here, people there; it is a
continuum.
    This is the standard deviation, and this
is the mean. Again, there is some variability but
not huge. There is much more variability in the
intraepithelial lymphocytes -- you can see this
scatter -- that are being monitored.
    CHAIRMAN DURST: Suzanne.
    DR. TEUBER: Suzanne Teuber. I would
assume, and this may be a completely incorrect
assumption, that in the population that is
following a gluten-free diet strictly, as those you
indicated you recruited, would actually be a subset
of patients who perceive themselves to be very
sensitive, and thus would have a higher motivation
to follow such a diet.
    This would bring up in Italy what percent
of patients do comply with the gluten-free diet?
We heard about the extreme difficulties here and
the poor compliance rate. Is it better in Italy?
Would this mean that, perhaps, this population that
you recruited from really might be a good sensitive
```

```
population?
```

DR. FASANO: I think, and I'm paraphrasing
Joe Murray on this, that the compliance with the
diet is the results of many factors, some of them
diet there. Education I believe is at the top of
all.
It is not that you feel it to be more
sensitive or less sensitive. If you understand the
facts, if you understand the rules of the game, no
matter how you are perceived as being sensitive or
not sensitive, you know that you can't cheat. you
know that you need to start with that.
If you go to lo doctors and they say all
the same things, "I'm sorry, you don't have an
alternative," then the level of confidence
increases. We don't have that here. We don't have
it, honesty.

Let's be honest. We have people, doctors, that will tell you, "You know, you need to go on a gluten-free diet." These are the teaching sheets that were printed 20 years ago. "After three months, go back on a regular diet. You're going to

```
grow out of it." What level of confidence do you
have?
Definitely, a study like here, like this
done here, will have a tremendous amount of bias.
Because who is going to do that? It will be only
the ones that are extremely compliant. The
population in Italy that is compliant -- in Italy?
    I should not say in Italy, in Europe --
because they are like 10 or }15\mathrm{ years ahead of us in
this, because the level of awareness has been there
for quite a long time -- is pretty high.
    They understand exactly what is at risk.
That is the reality of the story. It is more than
to be the people with high cholesterol, high blood
pressure and to be on medication because there is
much more flexibility there.
    These people they understand that if they
don't comply the pay a price, and they do. The
level of frustration, particularly here, is that
they want to do that, the ones that understand the
game, but they can't because there is no way in
their current situation they can comply.
```

```
    CHAIRMAN DURST: DOug.
    DR. HEIMBURGER: DOug Heimburger. Would
you go to the next slide, please, after this one?
    DR. EASANO: Sure.
    (Slide.)
    DR. HEIMBURGER: Does this graph include
the controls or only celiac patients?
    DR. FASANO: These are only the celiacs.
    DR. HEIMBURGER: Just out of interest, did
you test for this correlation in the controls?
    DR. FASANO: Yes, it is the same. We put
it all together, yes. There is a strong
correlation. Again, if you conceptualize this
intraepithelial lymphocytes as, again, the first
folks to go there -- just two weeks ago, for
example, there was a paper in science in which they
claimed that the lymphocytes, they are called
gamma/delta, they are able to present antigens.
    They can see gluten and they can start the
entire reaction, at least to the adaptive immunity
Th2 response to interferon-gamma, that will
translate in damage, i.e., to make the villi short
```

and the crypt deeper. That makes a lot of sense.The more you have, the more cytokines you can use,the more damage you have.
CHAIRMAN DURST: Dr. Fasano, will you be
around for the discussion this afternoon?
DR. EASANO: Yes. Yes, I will.
CHAIRMAN DURST: Because I think maybe we
will stop the questions.
DR. FASANO: I have my candy so I can't
leave you.
(General laughter.)
CHAIRMAN DURST: Okay. We will probably
move on so we don't go too far into the lunch hour.
Our next speaker is Dr. Pekka Collin. He
is a professor at the University of Tampere Medical
School in Einland. He will discuss retrospectivestudies.
RETROSPECTIVE STUDIES
DR. COLLIN: Yes, good morning everyone.
I come from Tampere. You probably know where
Finland is and Tampere is a hundred miles north ofour capitol, Helsinki.
(Slide.)
DR. COLITN: We at least in Tampere think that is the celiac center of Finland, but maybe somebody disagrees with that. We have a half a million people around our hospital and now our clinical prevalence of celiac disease is approaching 1 percent. I think it is .7 at the moment, so we have 1,000 patients with celiac disease. Consequently, we have tried to examine both the symptoms and the diet. (Slide.) DR. COLLIN: I had some specific issues which I should address at this meeting, and they are here. I should explain why we carried out our retrospective analysis of the gluten content in our gluten-free products; then, also, calculate what is the significance of daily gluten exposure in this small amount of gluten; and then, also, to discuss is there some variability in the sensitivity of people with gluten intolerance which has been discussed here already many times. That should also include patients who are taking with

```
starch-based, gluten-free products and who are
taking oats where we have a lot of experience.
    (Slide.)
DR. COLLIN: I think that celiac disease has been described very well by previous speakers, so I will go straight into the point. However, I will emphasize that now we are talking about parts per million or 10 milligrams or 20 milligrams of gluten intake.
```

(Slide.)

DR. COLLIN: In real life, if you have 100
patients with celiac disease, I think 90 percent of them are taking 15 grams of gluten a day because they do not know that they have celiac disease. Only 10 out of 100, for instance, in the U.S.A. I think know that they suffer from celiac disease. Of the remainder 10, maybe 3 or 4 do not follow a gluten-free diet strictly because they don't care, or it is more likely because there are not enough products when they are eating out or eating in restaurants, and so on.

I think that is very important, that we

```
have a good choice of products. That is more
important than some parts per million in order to
achieve a good percentage of compliance.
    The amount of threshold, I think it
started more than }10\mathrm{ years ago in Europe. The
celiac societies were very, very active in these
respects. From southern countries, some people say
that we are in northern countries poisoning our
people because they know that we are giving them
wheat-starch-based, gluten-free products.
    On the other hand, our society, I think
they are very -- I don't find the right word -- but
I admire them because they said, "Please make the
study. Look at what we are now eating. Celiac
patients are the last who will have some extra,
unnecessary dietary restrictions, so please make a
study where you show whether we are now eating
safely or not." I think that was the background
for our so-called "retrospective study."
    At that time we were quite relased. We
were not afraid that we are poisoning our people,
because we published a study where we showed that
```

```
in our patients we did not have, in treating
patients we did not have, any extra mortality and
even we did not have any extra risk of malignant
conditions at that time.
    Then, we looked at what the Einnish
celiacs are eating. As expected, the majority of
them took wheat-starch-based, gluten-free products.
    (Slide.)
    We can also see that compliance was very
good. These patients they were invited, after 5 or
1 0 \text { years on a gluten-free diet they were invited, a}
cohort of those patients, both so-called
"sensitive" and not sensitive, and we can see that
only a small percentage of patients had dietary
transgressions. Although there were a few who
daily or twice a week or once a month had dietary
lapses, most people preferred to follow a naturally
gluten-free diet.
    We also show that for these patients their
quality of life is good, and they did not have any
additional symptoms compared to the population. As
has been mentioned many times earlier, symptom is
```

```
not a very reliable objective sign of gluten
intolerance.
    (Slide.)
    DR. COLLIN: This is an example how
symptoms can be misleading. This is maybe a little
bit out of the topic, but I think this is very
interesting.
    We ask family doctors to send us all such
patients who spontaneously reported that they get
symptoms after taking wheat or rye. The majority
of them had also on their own account tried to
avoid or withdraw these products from their diets,
and they experienced clear improvement in symptoms.
    We thought that many of them had latent or
overt celiac disease, but to our surprise only 10
percent of people with a clear history of
intolerance to gluten had really celiac disease.
Then, there are some which we thought that they
maybe had wheat allergy.
    When I was here yesterday I heard about
that. Yes, the diagnosis is so difficult, so I
hope that I don't have to discuss this in more
```

```
detail.
    However, the majority of them, even with
sophisticated methods, they did not have any signs
of celiac disease and probably they have irritable
bowel syndrome. Hence, we cannot trust symptoms
even in the diagnosis of celiac disease.
    (Slide.)
    DR. COLLIN: Then, of course we have to go
to small bowel biopsy as they did also earlier. We
took a control biopsy after 5 to 10 years from
these patients who had been diagnosed with celiac
disease and who were asked to come to our hospital.
    (Slide.)
    DR. COLLIN: What we can see here is that
this is the same villous height/crypt depth ratio
which has been measured by, for instance,
Alessio Fasano. Here is our reference value for
people who have no suspicion of celiac disease.
They have come to endoscopy because of suspected
some gastrointestinal disorder, reflux symptoms or
dyspepsia.
    We can see that in our long-term treated
```

```
patients, there is a 95 confidence interval, so it
was exactly the same as in our non-celiac people.
I could show also a similar slide of
intraepithelial lymphocytes, very similar. They
did not have extra intraepithelial lymphocytes.
    We did not either have any so-called
"highly sensitive" patients with celiac disease.
We had some here who had not a complete recovery in
the mucosa.
    After dietary inspection, it turned out
that all of these people are taking occasionally
gluten. Even once a month, I think that was in the
data, the histological recovery was not complete
Then, we had also here are the celiac patients
where the ratio was of course low.
    Then, we had some short-term treated
patients, that means from half year to one year.
We show that the healing was not complete at that
time. From this slide we had two questions.
    First, when we have a complete recovery,
are those patients still taking some small amounts
of gluten or are their products complete
```

gluten-free?
The second question was, When we have this incomplete recovery, does it depend on wheat starch or gluten contamination or is it normal life in celiac disease? In other woxds, would the healing be better if instead of wheat starch used, the use of raturally gluten-free products?

To the first issue, Are those products contaminated which have shown that our people are doing well and their mucosal is healthy? It was not surprising that most of naturally gluten-free products had less than 10 ppm gluten.

However, I think it is very important to realize that some of the so-called naturally gluten-free products, they may be contaminated with gluten, even quite high. All of these were fulfilling the current European Codex standard.

If we go to the wheat-starch-based, gluten-free flours, there were two with zero gluten, and as expected most of them contained trace amounts of gluten. Two had more than 100 , but the majority has less than 100. That was our
idea that maybe we can set the limit to 100 pprn.
When I had this slide and my conclusion in
Europe, one of the representatives of industry said that he was disappointed because I am talking about 100 ppm , and I should have talked about the limit of 200 ppm because it is much easier for them. However, I said that we had too few products here to assert that 200 ppm would be recommendable. I think I will remind you that 90 percent of our celiacs have used this product for 40 years or even more, and we have biopsy-proven results from that so-called challenge from 5 to 10 years. The mucosal recovery, as I said, was perfect.
(Slide.)
DR. COLLIN: We also looked at how much
they did use those flours. Maybe somebody who has taken gluten-free products can know that they are not necessarily as good as wheat, baking with wheat.

Nevertheless, here are how the patients used these products. There was no difference

```
between wheat-starch-based products or a naturally
gluten-free diet. The average was }80\mathrm{ grams, and
the majority took less than }150\mathrm{ grams as you can
see here. There was no correlation between the
villus damage and the amount of data used of loss.
    (Slide.)
    DR. COLLIN: Erom here we come to this
conclusion, which maybe you have seen this kind of
table in Alessio Easano's presentation. Provided
that we set the limit to }100\textrm{ppm}\mathrm{ , and provided that
each of these products also contained the maximum
amount allowed, when patients are taking 100 grams
of those or 200 grams of those the gluten
contamination is from 10 to 20 milligrams.
    If you look at Fasano's results and if you
look at some earlier, small studies -- even the
Catassi study, which was referred to, and some
smaller studies made by Sturgis and so on -- I
think we are very, very safe here at the 100 ppm.
I think also that our clinical experience will show
that the same.
    Of course, this is not a prospective
```

```
study, and we did not have any control group, and,
unfortunately, we did not have many patients who
have clear dietary restrictions, so we cannot make
any statistical analogies between those who are --
what is the word -- cheating with their diet and
who are not. However, I think with this kind of
system, we can treat our patients and have good
compliance.
    (Slide.)
    DR. COLLIN: If I can, go to the issue
whether patients are more sensitive or
hypersensitive patients with celiac disease. When
we look at those patients, we can see that their
mucosal recovery takes place in a different way in
different people. That has been very well shown in
some challenge studies. Where earlier it was
customary to accept diagnosis, we have once again
to challenge the patients to gluten-free diets and
look at if there will emerge new villus atrophy.
    We show that in some cases it took two
months or one month to see a mucosal relapse, but
in some cases it took two or three years. Our
```

```
record is 15 years. Fifteen years with normal diet
and earlier diagnosed celiac disease, after 15
years a mucosal relapse occurred.
    Here we can see that in the short-term
some people do not respond, and you could think
that these might be so-called "hypersensitive," If
we give enough time and the patients are truly
following the gluten-free diet, which means that we
must be really accurate that they do not take wheat
at the same time, I think in the long-term we have
almost complete recovery. We did not have, any
so-called "hypersensitive."
    I think patients with refractory sprue
they can be very sensitive because they do not
respond at all to celiac disease, but that is a
different issue. It is probable that even zero
gluten would not help them. There is something
wrong in their gut. Probably the diagnosis has
been made too late, and it does not recover any
more. I think that refractory sprue is outside of
the topic of this day.
```

 Also, we were discussing with Peter Chen,
    ```
when he wrote to "Gastrointestinal Endoscopy" that
complete mucosal recovery is not possible, and we
had a very friendly, friendly discussion in the
pages of that journal. However, we said that it is
possible when we have a good choice of products and
people also outside the home know what celiac
disease is what this means for the patient with a
gluten-free diet.
    The second issue in my slide was that
could it be that the mucosal healing would be more
rapid in those who are on a naturally gluten-free
diet than in those who are maintaining
wheat-starch-based, gluten-free products?
    Here, we carried out a randomized
prospective study of one year in newly detected
celiac disease patients. If we look at the villus
healing here and here, villous height/crypt depth
ratio, there were no differences between these two
groups. We can also see that in one year, you
cannot achieve the limit of three, which is
considered normal.
```

 Similarly, when we look at intraepithelial
    ```
lymphocytes, they decreased in a similar way in
both patients. At that time, unfortunately, we
could not measure what was the exact amount of
gluten these patients were taking; we did not have
methods. We can assume they took those same
products which were mentioned in my last slide
which contained trace amounts of gluten but not
more than 100 ppm.
    (Slide.)
    DR. COLLIN: If I may say some words about
oats. It was in Einland, the first publication.
After that, very soon it was accepted for celiacs
in Finland that they may use oats. At the
beginning we were very careful. We followed up
with them each month and looked at what to do, but
now we do not do, it anymore.
    We made a question out, too. We sent a
question out to members of the Celiac Society, how
do they appreciate oats. As you can see, they like
about the permission to eat oats.
    Almost all said that it is a very
significant part of every day gluten-free diet in
```

```
terms of tasty and low lost. They even thought
that it is healthy, diversifies the diet, and we
have a good availability in Finland of oat
products. I understand that maybe in some
countries oat is not so important.
    Some might say that in Finland they are
not eating good, so maybe people in Italy do not
operate yet in the same manner as in Finland, but
we can discuss it.
    (Slide.)
DR. COLLIN: Here are how our people have
now used oats, the majority of patients -- not
great amounts, it is only 20 grams, 15 or 20 grams.
There, most of the studies are about approximately
50 grams, so less than in those randomized studies.
    Some people do not prefer oats, and that
is the same thing in people in general not only in
celiac patients. Some of them had stopped, and the
reason is that they had developed symptoms. Some
even got a rash, basically dermatitis
herpetiformis. We do not have any proof that the
reason for stopping would be that they
```

simultaneously had mucosal damage. Usuallyr the
mucosa is good even though the patient has stopped
the diet.
The rest, in dermatitis herpetiformis, we
also saw that even in patients with no oat diet, so
even they may have a temporary rash. There are
some clinical relapses in patients with dermatitis
herpetiformis also.
It is excellent to study these questions;
because we can change the subjective symptoms quite
rapidly to objective science, count the number of
blisters, for instance.
(Slide.)
DR. COLLIN: We also looked at the quality
of life in patients with oats. Actually, there was
no change, difference, compared to patients, with no
oats. This also was a prospective, randomized
study in treating celiac disease.
Interestingly, those patients who were
taking oats, they reported more symptoms of
diarrhea, which was statistically significant.
They also reported more constipation, which was not
significant. Even in these patients, we did not have any mucosal deterioration.

From this we learned that if we start on a gluten-free diet with oats, we must inform the patient that "You may have symptoms after this. If you have symptoms, why continue. But it is improbable that we have done any harm to your small-bowel mucosa.

We also saw that those who were taking oats had a little bit more intraepithelial lymphocytes, not CD3 lymphocytes, which. we have discussed today, but gamma/delta lymphocytes.

The gamma/delta lymphocytes were a little bit increased in the oat group. I cannot explain the reason for that, and that has not been published elsewhere -- but that is the fact. (Slide.)

DR. COLLIN: Here are my conclusions to the questions which I was asked to answer. Maybe I also specific questions which you have, specific issues which you have to address in the final report.

If I may say something about the subpopulation, the most highly sensitive people, I think such people of course may be, but eventually they have good mucosal recovery, provided that they follow a gluten-free diet. The majority of these highly sensitive patients are probably such people who have advertent or inadvertent gluten intake.

We can also remember that even if it happens, the consequences are not disastrous, because they do not develop an anaphylaxis aspect as do people with peanut allergy as we heard today.

We can quite easily detect these highly sensitive, if we after the diagnosis, one year after the diagnosis, take a small-bowel biopsy and look at whether there is an improvement in the mucosal architecture. If there is not, we must consider that they may be very sensitive, but usually they do not follow the gluten-free diet. About the risk of malignant diseases, I think the whole literature tells that those people who are at an increase risk of malignant lymphoma, their diagnosis has been made too late. They

```
already have lymphoma when the symptoms of celiac
disease appear and when they get the diagnosis of
celiac disease, or they have had dietary
transgressions for a prolonged time.
    Of over 1,000 patients I have seen during
the 15 years, I have seen one patient who has
developed lymphoma after being 5 or }10\mathrm{ years on an
apparently gluten-free diet. The risk of these
severe complications in those small daily intake is
probably very low. Even our new data show the
same, which is now published only in abstract.
    Similarly, the mortality, it depends on
those patients who come to the hospital together
with the diagnosis of celiac disease and later,
usually within six months, we can see that they
also have lymphoma.
    (Slide.)
    DR. COILIN: What about the oats? Here I
summarized some studies. Those with plus signs
they are those who have shown that oats have no
adverse effect on the mucosa. I think nearly
almost all of these studies are randomized;
```

```
open-randomized. They have a control group with
non-oat. We have hundred of patients who seem to
tolerate oats.
    But I think I would be stupid if, I did not
see also those two papers and patients who are
sensitive. I cannot close my eyes from the
results, because Don Kasarda told the data.very
convincingly.
    I don't know who they are. Maybe there
are some who really develop villus atrophy after
taking oats, but that must be an extremely rare
condition. Because, as you see, we have so many,
many patients who are taking oats, and we have not
seen this phenomenon.
Still, we must be careful, and we must be
careful because patients with oats may develop
symptoms. If everything does not go well, of
course we stop the use of oats. However, we must
be aware of that, that maybe there are some rare
patients where it acts the same as gliadin for most
people with celiac disease.
    I don't know whether these, my results and
```

```
recommendations, can be applied in the United
States but that is how we are doing now. Our
celiac society is very happy because we said that
you can continue with starch-based, gluten-free
products.
Thank you very much.
CHAIRMAN DURST: Thank you.
QUESTION AND ANSWER SESSION
CHAIRMAN DURST: Do we have questions?
Suzanne.
DR. TEUBER: Suzanne Teuber. My question relates to the applicability of the diet parameters to the United States dealing with how much gluten-free flour do people in different parts of the world ingest, if they were to have the option of knowing that something was truly, truly gluten-free.
You talk about 100 parts per million. It was your data that came up with the 80 grams a day that people ingest. I'm wondering -- you know, we are not setting any level here today - in terms of United States' folks, I have no idea how that would
```

```
apply. Would this be a safe level for them? Or,
here, would people be preferring to adjust much
more? Do you have any input on that?
    DR. COLLIN: I think there is not much
data on that, how much people really in different
parts of the world are really using wheat or other
flours which may be harmful to patients with celiac
disease.
```

 I think that this is a subject for further
 studies. Maybe somebody here knows how much celiac
patients are here using gluten-free flours, but I
don't know. I have not seen any publications about
this issue.

CHAIRMAN DURST: Any other questions?
DR. MCBRIDE: Margaret MCBride. Did I understand correctly that gluten-free in Finland means 100 part per million?

I guess for me, as I'm thinking about it, maybe part of the difference between the two studies, aside from the obvious
retrospective/prospective, et cetera, is that in
Italy the gluten-free diet did contain some,
although very little at 20 parts per million
gluten, in addition to what was administered.
I don't know if there is an estimation of
how much that would be. I'm also thinking maybe
there is more interest in pasta in Southern Europe than in Northern Europe.

DR. COLLIN: I think that today we have
given the formal Codex standard which says that
200 ppm is okay, but of course we need to
reconsider that.
I think that in the whole of Europe there
will be two limits, that is the 20 milligram which can be used in the highly sensitive people, but in the majority of people it is 100 ppm .

Of course, there is a problem with
labeling, how we should label that. We cannot say
that it is "low gluten," because then people will
use that. That is our problem.
What our recommendation is, is that maybe
the majority of people with celiac disease can
tolerate products which are under the limit of

100 ppm.

```
DR. KELIY: Ciaran Kelly. I wonder in
terms of compliance with the diet and acceptance of the diet, is there a big difference between 20 parts per million or 100 parts per million from the perspective of the palatability of the food?
DR. COLIIN: I think the important thing is, at least the industry in Europe says, that, if we go to very low level, there are not so many alternatives for gluten-free products, which again may result in that general compliance will be worse than I have shown now.
How the products, how they--? I think that those wheat-starch products, I think they are very tasteful. Does it depend on the small milligrams of gluten of not? I don't know. But, as can be seen, most of the people are preferring those products instead of naturally gluten-free.
CHAIRMAN DURST: Anyone else?
(No verbal response.)
CHAIRMAN DURST: If not, thank you,
``` Dr. Collin.

Our final speaker for this morning is
Rhonda R. Kane from the Consumer Safety Office of CFSAN, EDA, on international perspectives on gluten-free.
INTERNATIONAL PERSPECTIVES ON GLUTEN-EREE MS. KANE: Good afternoon. My name is Rhonda Kane. I am with the Food and Drug Administration, and I was asked to present information to the Food Advisory Committee about how the term "gluten-free" is defined in other countries and the basis for those definitions. (Slide.)
MS. KANE: My presentation today will focus on four examples of international or national definitions of the term "gluten-free" that apply to labeled packaged foods.
The first two examples I will be discussing pertain to Codex, Alimentarius and they include, the first one, Codex. Standard 118-1981, which pertains to the Codex standard for gluten-free foods that was established in 1981, was amended in 1983 and is in effect today; and, two, the Proposed Draft Revised Standard for Gluten-Free

Foods at Step 7 that is now under consideration by the Codex Committee on Nutrition and Foods for Special Dietary Uses as a replacement for the current standard.

For ease in my presentation, I am going to refer the Codex Committee on Nutrition and Foods for Special Dietary Uses simply as the "Codex Nutrition Committee,"

In the early 1990s, members of the Codex Nutrition Committee agreed that developments in the characterization of gluten on studies on gluten tolerance warranted a revisiting of the current standard and an updating of it.

The current proposed standard has undergone several revisions and is now at step 7 of an 8-step process pending resolution of certain issues including what method of detection is going to be used for gluten and the results of gluten threshold studies in celiac patients. The Codex Nutrition Committee will be meeting in November 2005, and will be discussing the proposed standard.

The third example of gluten-free that I
```

will be discussing is found in Canada's Food and
Drug Regulations at Section B.24.018. It became
effective on May 1, 1996.
Lastly, I will review the definitions of
both "gluten-free" and "low-gluten" that are found
in Clause 16 of Standard 1.2.8 of the Australia
New Zealand Food Standards Code, and I will also
discuss the definition of gluten found in Clause 1
of that same standard.
(Slide.)
MS. KANE: The current Codex standard that
is in effect today defines "gluten" as "Those
proteins commonly found in wheat, triticale, rye,
barley or oats to which some persons are
intolerant."
The current standard further defined the term "gluten-free" to mean that "The total nitrogen content of gluten-containing cereal grains used in the product does not exceed 0.5 gram nitrogen per 100 grams of the cereal grains on a dry weight basis."

```
```

MS. KANE: The current standard states that it does not apply to foods which in their normal form do not contain gluten. Gluten-free foods are defined according to two categories, those that contain the cereal ingredients -- wheat, triticale, rye, barley or oats or their constituents, which have been rendered gluten-free
-- or those foods in which any ingredients normally
present that contain gluten have been substituted
by other ingredients that do not contain gluten.
(Slide.)
MS. KANE: In comparison, the Codex
Proposed Draft Revised Standard for Gluten-Free
Foods at Step 7 defines "gluten" to be "The protein
fraction from wheat, rye, barley oats or their
crossbred varieties and derivatives to which some
persons are intolerant and that is insoluble in
water and 0.5 molar solution of sodium chloride."
You will see that in this definition and
in others that are occurring in the proposed
standard information within brackets is intended to
indicate that that information is pending

```
```

additional discussion at the Codex Nutrition
Committee. Their next session meets in November.
2005.
The Proposed Standard also defines the
term "Prolamin" to mean "The fraction from gluten
that can be extracted by 40 to 70 percent aqueous
ethanol." This definition specifically identifies
the prolamins: gliadin from wheat, secalin from
rye, hordein from barley, and avenin from oats.
(Slide.)
MS. KANE: The Proposed Standard also
states that it applies to those foodstuffs and
ingredients which have been especially processed or
prepared to meet the dietary needs of persons
intolerant to gluten.
Therefore, this parameter is similar to
the one for the current standard in that neither of
the two standards, the current and the proposed,
would include foods that are naturally or
inherently free of gluten.
The proposed standard also identifies
three categories of gluten-free foods where their

```
definitions specify gertain limits on their gluten content.
(Slide.)
MS. KANE: In the first proposed category, gluten-free foods consisting of ingredients which do not contain any prolamins from wheat or all Triticum species -- rye, barley, oats -- or their crossbred varieties cannot have a gluten level that exceeds 20 parts per million. Again, you will see that "20 parts per million" is within brackets, therefore, this number is pending.
(Slide.)
MS. KANE: This proposed definition also specifically cites three examples of grains within different species of Triticum, they are: spelt, kamut, and durum wheat.

Although triticale is not one of the grains that is identified within the definition by its name, it is included because it is a crossbred hybrid of wheat and rye.

In the second proposed category of
gluten-free foods, they are those consisting of
ingredients from wheat, rye, barley, oats, spelt or their crossbred varieties that have been rendered gluten-free and cannot have a gluten level that exceeds 200 parts per million, Again, "200 parts per million" is cited in brackets, and it is therefore pending.
(Slide.)
MS. KANE: In the third proposed category, gluten-free foods consisting of any mixture of the ingredients as described in the previous two categories, cannot have a gluten level that exceeds 200 parts per million. Again, "200 parts per million" is cited in brackets and it is pending.
(Slide.)
MS. KANE: Based upon my reading of the session reports for the Codex Nutrition Committee and related documents, it appears that the rationale for including two levels, the 20 and 200 parts per million, in the definition of gluten-free foods was to accommodate different points of view of the Codex member countries that thought there should be a different level of gluten based upon
their experience with their populations, what would be adequately protective.

There were some countries that believed either the lowest limits of detection or 20 parts per million would be most protective of those that are very sensitive to gluten.

Twenty parts per million was considered a practical limit to make it more feasible for industry to produce gluten-free foods in that category.

Other countries believed that the higher
level of 200 parts per million would be appropriate, because they had experiences with citizens in their country that had celiac disease where they had been consuming wheat-starch-based products for years without harm, and they enjoyed them.

The 20 parts per million level would essentially prohibit the inclusion of those wheat-starch-based products. Therefore, it was a compromise, the low limit and the high limit, and they realized they could create some confusion on
the part of the consumer.
I also want to point out that the proposed definition of gluten-free foods specifically cites that whatever detection method is used it should have a detection limit of at least 10 parts per million gluten in the product on a dry weight basis.
(Slide.)
MS. KANE: The next definition I will discuss is that found in Canada's Eood and Drug Regulations at Section B.24.018, and it states: "No person shall label, package, sell or advertise a food in a manner likely to create an impression that is a gluten-free food unless the food does not contain wheat, including spelt and kamut, or oats, barley, rye, triticale or any part thereof."
(Slide.)
MS. KANE: Canada's definition of
gluten-free prohibits the use of derivatives or constituents of any of the cited grains. Therefore, wheat starch would not be allowed in a product that was labeled gluten-free.

It is my understanding based upon communication with staff who work with Health Canada and the Canadian Eood Inspection Agency, that the definition that Canada is using was developed using a rule-making process, but they closely coordinated with the Canadian Celiac Association in the parameters for this definition.

Canada underwent a rule-making process similar to the one that we use in the United States where they reviewed the relevant scientific literature, they published a proposed rule, considered comments before it went final, and they determined that back in the mid-1990s that there was insignificant or insufficient I should say scientific evidence to support establishing a level that would be safe for all celiac patients.
(Slide.)
MS. KANE: In the last definitions of gluten-free that I will be discussing, in the Australia New Zealand Food Standards Code, first, in Clause 1 of Standard 1.2.8 of the "Code," which I will refer to simply as that rather than
```

repeating that long name, it defines "gluten" as
"'The main protein in wheat, oats, barley,
triticale and spelt relevant to the medical
conditions, Coealic disease and dermatitis
herpetiformis.'"
It also defines in Clause 16 of that same
standard the terms "gluten-free" and "low gluten."
(Slide.)
MS. KANE: "Gluten-free" is defined as
those foods that contain no detectable amount of
gluten. They also cannot contain any oats or their
products or any cereals containing gluten that had
been malted or their products. It has to meet all
of those three criteria not just one.
In addition, their Code defines the term
"low-gluten foods" to mean those that contain no
more than 20 milligrams of gluten per 100 grams of
food. Now, although not stated in the code as
such, this level of gluten is equivalent to 200
parts per million.
(Slide.)
MS. KANE: It is my understanding based

```
```

upon communication with Food Standards Australia
New Zealand's staff that they also underwent a
rule-making process where they proposed these
definitions for "gluten-free" and "low-gluten"
before they went final.
They did a review of the relevant
scientific literature. They considered public
comment, and they also consulted with experts in
the appropriate fields to develop the definitions
that are in effect today.
In addition, the fair trading laws in both
Australia and New Zealand were interpreted as
prohibiting the term "gluten-free" from being used
with any foods that contained any detectible amount
of gluten.
(Slide.)
MS. KANE: Further, the definition of
gluten-free was influenced by a lack of reliable
analytical methods to detect gluten in oats and
malted cereals. Essentially, their definition says
not only no detectible amount of gluten, but no
oats or other products, no malted cereals

```
```

containing gluten and their products because of
this limitation of analytical methods.
(Slide.)
MS. KANE: The Code includes two
definitions, "gluten-free" and "low gluten," to
provide citizens who have celiac disease a choice
between which level of gluten-containing foods they
want to consume based upon their individual gluten
tolerance level and the advice of their healthcare
provider.
In closing, I would like to sincerely
thank the staff that I consulted with at Health
Canada, and the Canadian Food Inspection Agency, as
well as Food Standards Australia and New Zealand.
With that, I will take any questions.
CHAIRMAN DURST: Thank you very much.
QUESTION AND ANSWER SESSION
CHAIRMAN DURST: Does the Committee have a
question or comment?
Erica.
DR. BRITTAIN: Erica Brittain. I guess I
find it appealing the idea of the two levels, just

```
as a comment, in the last one you cited. This might be applicable to the allexgy situation as well.

CHAIRMAN DURST: Okay. Anything else?
Mark.
DR. NELSON: Mark Nelson. Did your
contacts in Australia, New Zealand and Canada give
any indication that they might change their definitions or their categorizations if there were more work done on thresholds, if that data based changed?

MS. KANE: That sort of conversation didn't occur between me and them, but I would think because they are government agencies, just like EDA is, if there wexe newer information on the horizon, they would probably consider it. Whether they would go through the rule-making process and change it, I guess they would base it on the needs of their own populations.

DR. NELSON: I guess the opportunity for
-- this is Mark Nelson again -- two categories does
```

have some attractiveness. I guess at Codex it is

```
```

going to be gluten-free and really gluten-free.
(General laughter.)
CHATRMAN DURST: Suzanne.
DR. TEUBER: Suzanne Teuber. To your
knowledge in talking with these folks, have their
been any consumer-preference studies or behavior
studies completed or underway with how the celiac
disease patient is using these standards in terms
of their overall intake?
MS. KANE: I don't have personal knowledge
of that. However, the Canadian Celiac Association
is very supportive of Canada's definition of
gluten-free. Because they were instrumental in
helping develop it, so they were very supportive of
it.
CHAIRMAN DURST: Yes.
DR. McBRIDE: Margaret McBride. Do I
understand from your slides about the Codex
proposed changes that the term "gluten-free" would
be applied both to those foods that contained none
of the products in question and are lower than 20
parts per million, and to those foods that are

```
```

