of safety assessment, if you have blinded challenges that are repeated.

I think it is a really different issue than diagnosis and different than the performance of food challenges as how reproducible they are. I'm not enough of an epidemiologist or a risk assessment person to go into that. I'm looking at this from the patient care viewpoint. Does anyone else want to elaborate? Actually, anyone out there can, too.

DR. SILVERSTEIN: Well, so let me ask, then, if we were to use symptoms, which is more sensitive, and you had an individual whose, parents and the physician recommended a food challenge and the food challenge test was negative, no reaction or symptoms, and you knew what the threshold was, then that would be sufficient to make recommendations, or then the person might get an open food challenge?

DR. TEUBER: I'm sorry, that person would actually not have a negative challenge because, again, to be included in a database that would be
adopted by the FDA for determining a threshold, the person who had a negative challenge in the studies would not be included.

See, you have to be getting up to a response, either a subjective response that is reproducible or to something objective, lip swelling or nausea or vomiting or something else. You wouldn't even include that individual in your evaluation.

DR. SILVERSTEIN: There would be a
population of food allergy patients who may have a negative test but might yet have the diagnosis of food allergy?

DR. TEUBER: Again, they may be someone who has developed tolerance now, and so they would be challenged openly for food as they would normally eat it. If they can eat that, then they no longer have a food allergy. Or, they may be somebody with a special situation such as exercise-induced anaphylaxis that is food associated where they only have a reaction in a certain context.

CHAIRMAN DURST: Comment?
MS. HALLORAN: I think that Dr. Teuber, though, is getting to an important issue, which is a concern that I had listening to all of this testimony, which was that the repeated issues as to questions that the data on LOAELs and NOAELs just is not that good.

It is better for peanuts and eggs and milk. However, in the other categories, though, everybody was saying that the data is really not sufficient. I'm interested in Dr. Teuber's suggestion of actually recommending to EDA that possibly they could conduct some research to establish NOAELs and LOAELs. She proposes a methodology that appears to possibly get around some of the medical issues.

DR. TEUBER; None of this is my proposal.
This is all proposed by people already doing it. Again, a lot of these studies are underway right now. I take absolutely no credit. You are looking at some of the people over there who are doing these studies.

It is just that the studies designed specifically for this issue, there area a few that have been mentioned that were done in this way or they are underway right now.

There hasn't been any funding to do them. For instance, for tree nuts there is only one on hazelnut, and none of the other nuts have been addressed at all. We see Dr. Hefle nodding her head over there.

Again, just to be recommending some approaches right now, I think a hybrid approach of a 3.5 of accepting the LOAELs for some of these subjective reactions might be very reasonable, but then I guess some other methods will have to come in for those foods not covered at all.

MRS. MOORE: I'm sorry, I want everybody to remember to say your name.

DR. TEUBER: Oh, I forgot to say my name. Suzanne Teuber.

MS. HALLORAN: Jean Halloran, sorry.
MRS. MOORE: Okay. For the transcriber,
she can probably pick it up with the voice. Okay,

```
do you remember to say your name.
    DR. TEUBER: I'm sorry.
    DR. KELLY: Just a follow up briefly.
    CHAIRMAN DURST: Your name?
    DR. KELLY: Ciaran Kelly, sorry. A brief
question about this issue of positive result on
challenge or maybe more specifically a negative
result on challenge. Then, it is frequent that
there would be a real life challenge with regular
food?
    DR. TEUBER: Yes.
    DR. KELLY: How often would the real life
challenge would be positive where the laboratory
clinical challenge was negative?
    DR. TEUBER: That sort of data is, indeed,
in the literature and in some of the literature
that Dr. Gendel has cited here, some of the
follow-up studies by the Johns Hopkins group.
    Unfortunately, that statistic is not on
the top of my head, so. I would be venturing, but
certainly there are folks -- and in Dr. Bock's
series as well -- who tolerated the dehydrated food
```

```
in challenge and then reacted upon eating the real
deal. I can't give you a percent.
    Again, those folks would not be included,
their data would not be included for this sort of
risk assessment that we are really trying to decide
on approaches for them here today.
    DR. KELLY: It clearly speaks to the
validity of one of the tests that they've used to
establish a threshold.
    DR. IEUBER: Again, the people that would
be used -- this is Suzanne Teuber again -- the
people who would be, hopefully, enrolled in studies
to establish a threshold would be those who very
clearly have had anaphylactic reactions or a range
of reactions that very clearly is to the food in
question and where a diagnosis has already been
established. It would not at all be to use just
data from diagnostic challenges.
    A diagnostic challenge. I think most
people would want to go to an objective sign when
you are trying to figure out a difficult case,
like, is it sesame or was it the peanut in the
```

Asian food in this 34 -year-old who has a new onset of allergy?

You think it's probably sesame, because most peanut allergy has its onset in childhood, but you would really want to be sure because that really determines which food is this person going to avoid, sesame or peanut.

In that case, as a physiciar, I would want to go for a mild, objective sign rather than stopping for a symptom. Again, that is a different issue than trying to give advice to the FDA of which approach to choose for labeling. CHAIRMAN DURST: Yes.

DR. MALEKI: Soheila Maleki here. It seems to me like with all of the methodologies that have been outlined in this report that everybody seems to be looking at or interested in the threshold of those studies.

I think it is pretty much a consensus out there that the threshold dose studies need to be done, and that would be the practical approach to go about determining this somewhere down the line.

```
That seems to be the most important I think to
establish as far as the patients go.
    On that line, I would like to ask
Dr. Hefle if she could tell us how they would go
about this and how long does it take?
    I think it seems like, and of course this
is my opinion in this case, that before you can
take any methodology to determine, say, "Okay, this
is the limit of detection of our analysis," well,
our technology is so high that our limit of
detection can be down to 1 molecule.
In other words, you can probably find peanut dust on this (pointing) tablecloth, if you wanted to. Therefore, at this level we can't say the limit of our detection is going to be what is going to establish this. It is going to have to be human studies.
```

DR. HEFLE: You are asking about your average threshold study? How long does it take? What is required?
(Simultaneous discussion.)
DR. MALEKI: Yes, how long does it take
and how much money.
DR. HEFLE: Yes.
DR. MALEKI: How do you get the money?
what do you do? what is limiting? and so forth:
DR. HEFLE: Nowadays, 29 patients for an
allergen you can find pretty easily like peanuts, at least $\$ 200,000$ U.S. dollars. That primarily is clinic cost and hospital cost:

The hospitals are charging more. They
have costs. They have to have a crash cart ready;
they have to have nurses ready; they have to have a
lot of things ready. Therefore, in most cases, we do this in research centers, so a lot of that is clinical cost. That is the vast majority of it.

We have to make standardized materials and
send these to everybody. We have to find the patients and make sure they are the right kind of patients.

For something like soy, it is one of the
"Big 8" allergens and there are a lot of kids out there allergic to soy, but they are all mostly
infants.

```
To find 29 soy-allergic people, which we are trying to do right now, for our soy threshold study is pretty daunting and we have to go to the ends of the earth to try to do that.
It can take from concept to actually getting the challenges done and getting through the ethics board, maybe two years. Depending on the ethics board you are dealing with, they might take six months to get an approval; it is very individualistic.
Denmark has got two ethic boards they have to go through, so if we hope to get any patients in Denmark, they've got to go through twice as much and get translated in Danish and all sorts of extra things.
But even just developing the food vehicles
in a double-blind mannex and doing the sensory analysis in the studies we need to make sure that it is truly blinded and available to clinicians. To test 29 patients can take easily 6 months to a year to develop the correct vehicle, choose the right representative food to use. It can easily
```

```
take two years even for a really great allergen we
can find lots of patients for.
    Then, the funding, there is no
governmental funding for this to date. All of the
funding to date for threshold studies, I've gotten
a little bit of USDA. Steve and I have gotten a
little bit of USDA funding out of this. The food
industry has paid for the majority of these studies
to date because they really want the answers, so
that is where the funding comes from.
    It is kind of difficult for them to
identify funding, for this, too, rather than just
throw "May Contain" labeling on the products. You
know, what is the choice here? For some companies,
it is easier to sayr "I'm not going to cough up
$50,000 to help you. I'm just going to put
labeling on my products."
We have gotten a lot of support from the food industry, and we are moving ahead as best we can. It has been kind of slow in getting this data out. We need a consensus protocol before we can move ahead.
```

There are some centers in Europe that are choosing to go ahead and do some threshold studies and kind of work that in, if we provide the materials, as they can without having a huge amount of financial support from us, as they can work it into their patients, if they are truly interested in it.

For a specific study, it probably will take at least two years for any one allergen' and at least $\$ 200,000$. Those costs are just going to continue to go up. One clinical investigator that I like to use a lot in Europe just told me that now they are required to have insurance for the study, and that is only going to be $\$ 10,000$ U.S. dollars for this one study. And that is only for about three patients. We will have to do another $\$ 10,000$ the next time we want to do a threshold study. It is getting more and more costly to do.

CHAIRMAN DURST: This is Dick Durst. I
would just like to pick up on one comment that Dr. Maleki made concerning the sensitivity of the analytical methods. It is true that for a great

```
many of the allergens we are talking about, we can
get down to very low levels.
    We don't want to get into the situation
that we had with the Delaney clause with
carcinogens. At one point you set a level based on
the state of the art, which may have been parts per
million, and the law says, "Well, as much as you
can trace or detect, that is the limit."
    The analytical methods got better and
better, and it got to parts per billion and
trillion and quadrillion. Therefore, the
analytical methods, per se, probably are not the
way we want to establish a threshold. However, you
do need the analytical methods, then, to verify
that the foods that the thresholds are set on
actually conform to it.
    I think, again, we have to keep going back
to these challenge methods, you know, the actually
biological studies to set the threshold, and then
the analytical methods can provide the validation.
    DR. MALEKI: Soheila Maleki. I agree with
you a hundred percent that we definitely need the
```

```
analytical methods once the thresholds are
established or a range is established in order to
determine if we can comply with that -- in other
words, compliance -- but I don't think that alone
they could be used in that way. Since, as you
instructed, we are supposed to be evaluating some
of these methods, that is the point I was making,
    CHAIRMAN DURST: Marc.
    DR. SILVERSTEIN: Marc Silverstein. I
would like to follow up on the "N" equals 29
patients for a modest size study. That would be
assuming that the hypoallergenic formula, or a
percentage of }10\mathrm{ percent, was an appropriate
prevalence of a reaction in the population of
generally allergic individuals that you are
testing.
    However, I think we need to say -- it is
different for us to say that we believe that only
1 0 \text { percent or fewer than } 1 0 \text { percent of patients}
like those tested will go on to experience an
episode of food allergy, which could be of very
different severity even if only a third were
```

severe.

```
    I think we need to say the sample size in
power calculations to have meaningful assessments
are as a risk that is probably important to
patients would be much greater, orders of magnitude
greater.
```

 In Dr. Luccioli's handout, there is a
 slide where the top row is 10 percent, which then
equals 29 for a 95 percent confidence interval.
The bottom line, as I can read it, is "1/5,000" or
"1/10,000." We might want to have very high levels
of confidence, more than 95 percent, if the true
rate may be less than $1 / 1,000$ or $1 / 10,000$ who would
have such an event. I do think that you are being
very optimistic, and even so will just be confident
about a rate of 10 percent.

CHAIRMAN DURST: Okay. Petr and then
Margaret.
DR. BOCEK: Petr Bocek. I have actually
one question and one comment: Regarding the
analytical methods, I absolutely agree that we do
need them. We talk about 1 part per billion or
million. What is that part?

I would like to know the analytical
method. Does it relate to the major allergen, let's say, RH1/RH2, polyclonal serum ELISA? What is the physiological relevance? I'm missing that point as far as the analytical methods.

DR. HEFLE: Well, the analytical methods
were not originally designed to find the allergens. That wasn't the purpose of the food industry. They wanted to find out, Do they have peanut, or do they not have peanut? It is claimed? Is it not claimed? In that case, then, it is not necessary and when we are designing these to look for the allergen specifically.

In addition, not every allergy is known for every food yet, either. If you target just one, you could miss the rest of them. The approach that has been very successful is to use polyclonal serum, a more crude extract in general, and they seem to work very well at picking up peanut/no peanut.

The parts per million varies from kit to
kit as to what it really means. It can mean parts per million peanut, which is the whole food. What does that mean? It can mean peanut butter or whatever.

In some cases, the companies will say that means part per million peanut protein. What that means is the soluble proteins from the peanut that can be detected in an aqueous situation. That is one of the debates about what these numbers mean when they are crunched out at the end. What is it expressed in? How do you relate that to other test kits? That is a challenge. However, they are not specific for the allergens:

CHAIRMAN DURST: petr.
DR. BOCEK: Petr Bocek again. There was a comment, which was a clinical comment, which relates to point number three on the food allergens of the charge, which is basically asking whether if we have any specific data for one of the major eight allergens, if it can be easily transferrable to others.

Obviously, that is not an easy answer, but

```
we know from clinical studies as far as development
of tolerance, outgrowing actually a food allergy,
there are significant differences between these
eight groups, specifically peanut stands out.
    Frequently, kids who outgrow peanut
allergy, which current studies show it is up to
about 20 percent, still retain their high levels of
specific IgE, which is absolutely not true for milk
and egg.
    At least as far as development of
tolerance we can be certain there are differences
between these eight allergenic groups, and it may
also apply to thresholds of these eight allergenic
groups.
    CHAIRMAN DURST: Erica.
    DR. BRITTAIN: Hi, this is Eric Brittain.
Back to the sample size. I guess obviously there
is a concern with the 29. You are very limited in
the statistical conclusions you can draw. I think
the presentation that talked about the modeling may
be the way to go if you are wanting to rule out
very, very small rates of reactions. I don!t see
```

```
any other way to allow very, very small risk.
    CHAIRMAN DURST: David.
    MR. ORYANG: Yes, David Oryang. Can you
stay there, please?
    (General laughter.)
    MR. ORYANG: Yes, I'm just going to back
to this just briefly. You mentioned that detection
levels should be tied to threshold levels in your
presentation earlier. Until the threshold levels
are determined, we need to know what the detection
levels are in order to determine threshold levels.
    However, this analytical methods-based
approach I am just wondering whether there have
been any studies that have looked at the detection
levels, taken the detection level, let's say,
2.5 parts per million for peanuts and then taken
it, whether it is peanut butter or a whole peanut,
and at that detection level maybe looked for a
specific protein within the peanut that an
individual reacts to?
    You take that detection level and you
design your study and challenge people at that
```

```
really low level and increment from that point as
opposed to increment from a much, much higher
level. I don't know whether there are any studies
that have done that and whether there have been any
results that have shown any positive results?
    DR. HEFLE: There have been no studies
that have started out at a detection level for a
commercial study and then decided to challenge at
those levels. That decision has not gone from that
aspect of it.
    When we sat around and thought about the
consensus protocol, the levels were designed to try
to incorporate what we felt were good starting
levels and lower starting levels than normal.
    When you calculate from those-levels -- we
came up with starting at }10\mathrm{ micrograms or starting
at }100\mathrm{ micrograms, which 100 micrograms is kind of
a magic number that has been used out there for
subjective symptoms reported as causing subjective
symptoms in peanut-allergic people -- when you
calculate what you can detect, then 100 micrograms
is appropriate in the detection limit of the
```

```
assays, around }10\mathrm{ parts per million or so.
    Where those subjective symptom numbers
lie, the test kits can easily do that level. Right
now, actually they are better than that. However,
no one has designed a study to actually see if the
detection limits are protecting human health at
this point. We think that they are lower than what
they need to be, but we've never designed a study
that way.
MR. ORYANG: Okay. David Oryang again.
Just following up on that, I see the
analytical-based approach at least beginning to set
some of those lower limits. If industry has
already looked at these things, there is some value
In at least starting there and then adding on with
some of the other methodologies the challenge test
to really find out whether people react and
starting to understand the dose response.
    Why I'm talking about these analytical
methods-based approach, I think it has implications
on other allergens that have: cumulative effects as
an example.
```

```
    DR. HEFLE: I'm sorry? Other allergens--?
    MR. ORYANG: That have cumulative effects.
    DR. HEFLE: I'm not as good a person to
ask that question of. I guess I would point to one
of the physicians.
    DR. TEUBER: Suzanne Teuber here. Yes, in
a situation of disorders like chronic atopic
dermatitis, there may certainly be effects from
small doses ingested.
    (Simultaneous discussion.)
    MR. ORYANG: Small doses?
    DR. TEUBER: Yes, you have exacerbation.
Some of the challenge studies that are in the
literature, actually symptoms don't show up for
three days to seven days. That is also true with
some of the gastroenterological disorders, it may
take a little more time.
    CHAIRMAN DURST: Yes.
    DR. NELSON: Mark Nelson. I just wanted
to make sure we understand what we are talking
about when we mention the analytical approach or
the analytical method.
```

As I read it, it reads that we would set a threshold based on whatever we can measure in a validated way, and then next week if we can measure something $1 / 10$ th of that, then that is the new threshold. It is not necessarily connected with a reaction or a lack of reaction.
MR. ORYANG: Yes. David Oryang. Yes, that is true, and that is why I am not saying that they should be used to set the threshold levels. I'm just saying that this should be a starting point I believe that will enable more studies to be done, the challenge tests, and so forth. I think it is a good starting point, if that is the only thing that one has.
DR. NELSON: This is Mark Nelson again.
That raises a question I wondered, Sue, if you could clarify. You mentioned 100 micrograms was the magic number for a challenge test, and then it was equated at 10 ppm in the test. Was that 100 micrograms of peanut, or 100 micrograms of peanut protein versus 10 micrograms of peanut, or 10 micrograms of peanut protein?

```
DR. HEFLE: I'm going to pass that. I'm going to pass that to Dr. Taylor.
(General laughter:)
DR. TAYLOR: When we published the "Threshold Paper One," 10 parts per million is 10 milligrams per kilogram. If we then assume that the serving size for the food is 100 grams, and we could have a whole day's debate on serving sizes for food, but if we did that, then that is one milligram.
DR. NELSON: Gotcha.
DR. TAYLOR: If we look at the clinical threshold trials that have been done, 1 milligram is in the neighborhood of where the most sensitive individuals that have been reported have the onset of these mild, objective reactions.
Therefore 100 micrograms, where the subjective reactions have started in some of these studies equates to 1 part per million, which is about the lower detection limit of some of the analytical methods.
That is why we think that the analytical
```

methods are pretty much in the order of magnitude of sensitivity that they need to be because of what we do know about threshold doses.

If you get below the limit of detection in
one of these analytical methods, you can be reasonably certain as a food industry that you don't need to declare the presence of milk or peanut or whatever it is on the label of that product.

CHAIRMAN DURST: Doug, did you have something?

DR. HEIMBURGER: Yes. Doug Heimburgex. I don't know if this will shift the discussion, it is a little bit related but not entirely. With regard to the question raised by Ms. Atagi, the first person that made public comment, urging FDA to consider sensitization as a possible endpoint of concern, how much is known about sensitization? Are there levels that can be associated with sensitization as opposed to not? This may be for Suzanne or anyone else. I don't know, maybe you can dispense with it quickly, and say we know

```
nothing.
    (General laughter.)
    DR. TEUBER: Yes, you see my smile and I'm
shaking my head. Oh, gosh, there is a vacuum here.
There is great concern that there is sensitization
via breast milk. There is concern that in some
cases because of first-exposure reactions as a
neonate with first feeding that there has been
sensitization in utero.
    There is concern about cutaneous,
sensitization. This is an area of tremendous
research right now of just the environmental
presence of peanuts causing sensitization
transcutaenously, in kids who do have atopic
dermatitis or some breakdown in the skin barrier.
    In terms of the amount that causes that --
oh, my goodness, yes, I can say that we just are
not there at all to be able to make that an
endpoint.
DR. HEIMBURGER: Okay.
    DR. TEUBER: It is a wonderful point that
she raised, but I don't think we have the science
```

to be able to do that. Again, this. is Suzanne Teuber.

CHAIRMAN DURST: Petr.
DR. BOCEK: Petr Bocek. Just a comment. Probably if you draw blood on all of us sitting here and do a RAST for the eight major allergens, a number of us will have, I don't know, 3 kilo units per liter to various allergens.

We eat those foods, and we are completely
fine, but we are sensitized. It is very difficult. That is why the RAST is always something what has to be considered, with the clinical picture.

The "sensitization," first of all, how do we define it? We define it by level of specific IgE, if we talk about immunohypersensitivity.

Then, we have to go what is the level when we say that we are sensitized? Is that more than zero of the CAP/RAST that Pharmacia has, let's say. Sensitization is not really practical, I think.

DR. BOCEK: It is not practical?
DR. TAYLOR: It is not because if you
define it a RAST to some extent without any
clinical histomorphology, what does it mean?
DR. HETMBURGER: Right. Doug Heimburger
again. Are you saying that because we would find that all of us had specific IgE to various ones of these allergens but we wouldn't have had any knowledge of how much exposure we'd had, therefore we wouldn't know what doses had been required or what exposure levels had been required to create the sensitization that you pick up in the RAST test?

DR. BOCEK: Petr Bocek again. Well, as
far as the exposure levels, anybody with a regular diet is exposed to tons of major allergen groups.

DR. HEIMBURGER: Right. Right, so you
couldn't set a threshold in that case because we have been exposed to a lot and perhaps we have developed a little bit of specific IgE.

DR. MALEKI: Again, Soheila Maleki. There
are still theories out there about low-dose
exposure kinds of sensitization at an early age and others say high-dose exposure is protected.

High dose frequently is protected, and low

```
dose at low frequency or intermittent, that is
sensitization. Right now, all of this is being
challenged, and it is all theory, so there is
really not much speculation about determining a
threshold for sensitization because we really have
no idea how it happens in the first place.
        CHAIRMAN DURST: Petr.
        DR. BOCEK: Petr Bocek again. Just in
connection to that, there were current reports by
Gideon Lack's group from the Royal College for
London where they looked at kids in Israel, and kids
in England and looked at peanut allergy.
    Surprisingly, there is about more than an
order of magnitude lower peanut allergy in Israel
than in Europe. One of the possible reasons, which
is now being intensely investigated, is the fact
that Israeli children, Jewish children, have early
exposure to high doses of peanut protein through a
snack called Bamba, which basically since most of
them starting at six months of age start sucking on
it and eating it and eat basically 2 full grams of
peanut protein a week.
```

There is certainly high-tolerance probably happening, and it is currently in a clinical trial by Gideon Lack in London looking at that.
DR. BRITTAIN: I haven't really heard anybody talk about this, but just because something is a serving size doesn't mean somebody is going to eat just one serving size. Someone might eat 20 cookies. It seems like that should be taken into account. If something is labeled essentially by the absence of saying it has peanuts in it or whatever, people may think it's safe and then they eat 10 servings worth. That should be taken into account.
CHAIRMAN DURST: David.
MR. ORYANG: Yes, David Oryang. Just
going back to methodology, just briefly, the analytical methods-based approach. The issues that FDA has put before us here that need to be considered when using analytical methods-based approach.
Just touching on one of those issues, I
don't know whether Dr. Taylor could comment on
this, if anything has been done, but someone had earlier brought up the issue of sensitivity and specificity of the methods and of the kits, the fact that there were varied kits and a lot of them hadn't been specifically validated. Are there any that you know the specificity of and the sensitivity? Is this standard published before you start using the kits?

DR. HEFLE: Well, these are proprietary
products, but when people ask questions manufacturers are glad to provide things that aren't apparently trade secrets. They will provide manufacturers and others with information on cross-reactivity.

You can get tables from them. They have done all of this. If you ask for i.t, you can get the data. It is not something they put in the kit inserts that the average person pulling off the shelf can read about all of the cross-reactivity, so they test out with a matrices.

There is specificity and sensitivity known and cross-reaction amongst things, but I guess you

```
have to call the manufacturer and ask the
questions. Some people aren't willing to do that.
They expect it to be out there and everywhere.
That has been one of the hurdles in getting people
to just call and ask.
    For most of the companies that I know of,
they are willing to share this information with
somebody that is truly interested and not just
looking for trouble. That information should be
available from the manufacturers, to my knowledge,
and be available from the government, too.
    MR. ORYANG: The methods have been
validated by the manufacturers?
    DR. HEELE: Yes. By the manufacturers,
yes.
```

MR. ORYANG: Okay.
DR. HEFLE: The only validation that
hasn't really been done in a lot of cases is in an
interlaboratory kind of trial to make sure that it
performs the same way in different -- that is
pretty much the way I understand the validation
that needs to be done.

MR. ORYANG: I see. Is there any move to do that or--?

DR. HEFLE: There are lots of efforts going on around the world not so much at FDA right now, although I know they have been working on as best they can, given the budget that they have.

Yes, if we could get past this validation, I think everybody could be comfortable that we could use the methods for a lot of different things. It is already being used and being, validated in other parts of the world. Germany has their own system.

They do their own validations. They do ring trials to get it done, and they use it. I think we just need to get some more of these international trials done. There are efforts. Again, that takes money and time and materials and reference matexials, too, which is why some of this has not been done yet. There is no funding available to do these. That is a pretty substantial amount of funding to run one of these and coordinate one of these, so that is not
inconsequential.
CHAIRMAN DURST: pat.
DR. CALLERY: Pat Callery. To follow up on that, it looks like thexe will probably be some good advancements in this area. The concern about sensitivity and specificity comes in part from the comment I think I heard a few minutes ago, that in fact this test is related to peanuts rather than the allergen itself. The specificity might very well be to deal with the specific allergen.

In our writeup that we were given, in the preliminary information, there is one reference by Shefcheck that is on the confirmation of the allergenic peanut protein, Ara h 1, in a model food matrix using liquid chromatography/tandem mass spectrometry.

This is a technique that is incredibly sensitive and specific, and if they can look for the specific protein, I think that there will be great advancements. I think the method was not supported much in the writeup, because it is a potentially expensive, time-consuming method, but
it has a chance of providing the information that we are after.

DR. MALEKI: Soheila Maleki. One, manufacturers as well as consumers wouldn't really necessarily care if there was a specific allergen in there. They just want to know if that food is in there. Particularly, the different allergens and the different proteins interact with different processing in different ways.

For example, Ara h 1 becomes highly
insoluble in the case of roasting. You can't test it if you are just testing for that. You have a much better chance of detecting peanut protein or something in there if you are actually targeting the peanut protein, in other words, you have much more sensitivity. You have really high specificity to detect small amounts.

Now, if you had large amounts of something
else in there that it possibly would cross react with, then you would get a non-specific response. However, when you have small amounts and you are trying to detect trace amounts, in that case

```
cross-reactivity is very rare. I don't know if
that helps.
DR. CALLERY: Pat Callery. If you are
trying to set a value, it is best to look for a
single entity that is not going to be changed from
matrix to matrix.
DR. MALEKI: That is a good idea, but it won't work because those individual allergens will change from within one matrix to another. Like I said, you have a much better chance of detecting them, if you can detect multiple proteins rather than just one.
That way if it is there, you will always know. Even if Ara h 1 doesn't go in the solution or Ara \(h 2\) falls out of the solution or is broken down, you still have a chance to say, yes, there is peanut there. There is less chance of exror, actually. That is pretty much well known within the industry and the manufacturers.
CHAIRMAN DURST: Yes.
DR. KELLY: That brings me to another
comment or question.
```

CHAIRMAN DURST: Name?
DR. KELIY: Ciaran Kelly.
(General laughter.)
DR. KELLY: Ciaran Kelly. That is, the
issue when we are talking about validation of assays, we also need to consider standardization of assays. They are not quite the same. Someone may have done a lot of work to validate and demonstrate that their assay measures what they say their assay measures.

However, we also want to be in a world where if different assays are being used, they can be cross referenced. I think that is very important.

There are also important methodological considerations there, particularly when we are talking about polyclonal reagents. That is something that I think also needs to be addressed, because ultimately it is likely that those assays will be used to measure whatever threshold levels are being used.

CHAIRMAN DURST: Dick Durst. Along

```
similar lines, the matrix effect is one of the most
serious problems I think with these assays. The
assays in buffer solutions, and so on, can show
tremendous specificity, sensitivity, and so on.
    However, when you have the matrix effect,
that can greatly affect the extraction of the
protein that you are interested in and cause
interferences, and so on. That is where a lot of
the problems come in. A lot of work also has to be
done in the development of protocols for extracting
the active ingredient, the allergen that we are
interested in.
    DR. MALEKI: Soheila Maleki. Just in
answer to Dr. Callery, again, to reference what you
are talking about between standardizing between the
kits, that has come up a lot.
    It is an issue that I think is going to be
addressed in developing some type of standard by
maybe one manufacturer that can allow all the kit
manufacturers to standardize their kits, so that
later that can be related to actually what the
threshold doses are, which is what they are
```

determining now. That is one thing.
As far as the matrix effect, there is really not a whole lot you can do with that except as technology increases. Right now, the extraction methods are getting better and better.

Better buffers are being, used and better
treatments, whereas you are getting a lot more consistent results between the kids and by the kids themselves. Therefore, when you do the experiments, you are getting more, essentially, consistent results, and so forth.

CHAIRMAN DURST: David first and then
Ciaran.
DR. KELLY: Ciaran Kelly. This is on a
different topic, so I don't know if there is another question on the same topic.

CHAIRMAN DURST: Okay. David.had his hand
up.
DR. KELLY: You might want to continue. MR. ORYANG: Well, it is similar, about the sensitivity again. I just wanted to follow up with Dr. Taylor or anyone else, again, just

```
highlighting this analytical methods-based. What
allergens have, let's say, caused a response in
individuals at the levels of detectability of some
of these methods? Do we have a list of that so
that at least we can begin to say, okay, the
analytical methods-based approach could be used on
these things, because right now we know that the
level of detectability is similar to--?
    DR. TAYLOR: Well, when we worked to
develop the detection levels of these tests, it was
absolutely our goal that no patient would react at
the limit of sensitivity of the test. I am
actually quite hopeful that I will never find that
case, because we were trying to be conservative.
    If you get a negative result on this, test,
you are going to advise the food industry to go
forth and not label this product. Why? All of
these people are going to buy this product and you
don't want their children to react to it. We don't
know that anyone reacts to reasonable serving sizes
at those levels, limits, of detection.
    MR. ORYANG: Okay. The follow up, what
```

allergens react to, let's say, hundredfold levels, a hundred times the level of detection?

DR. TAYLOR: Again, that is kind of a hard question to answer.
(General laughter.)

DR. TAYLOR: Help me work through this analytically, 2.5 parts per million, a hundredfold higher than that, 250 parts per million. Two hundred and fifty parts per million would be 250 milligrams per kilogram, 25 milligrams.

If I looked at all of the data, and again I'm assuming a 100-gram serving size -- a neck of an assumption, but we will go with that because the math I can do in my head in the late afternoon -if we look at all the data on all of those studies, I would say that a relatively modest percentage of the challenge patients with published data would react at 25 milligrams to peanut, milk and egg.

We have almost no data on wheat and soybean and fish. and crustacean shellfish. In fact, there wouldn't be any data out there, limited as it might be, on soybean to suggest that 25

```
milligrams of soybeans is hazardous to anyone.
    MR. ORYANG: Thank you. I just wanted to
get some kind of reference point for the
applicability, direct applicability, of the
analytical methods-based approach.
    DR. TAYLOR: Yes, I mean, I see what
you're driving at. It would be my view that if you
use the 2.5 part:per million level as your interim
threshold level, that would be a very conservative
approach.
```

Like I said, I hope I never meet the person that would react at that level, because it
was the intent for that level to be safe for
virtually everyone, if not everyone.
DR. KETJLY: Ciaran Kelly. Actually,
Dr. Taylor, you may want to address this question
also. I wanted to return to the question of the
sensitivity of the challenge studies, particularly
the question as regards whether symptoms or signs
are used.
I am a physician also and I reiterate
Marc's comment that for a physician about objective

```
symptoms versus subjective symptoms. It burns a
hole in our --
    (General laughter.)
    DR. TAYLOR: I usually call them
"reactions," so I guess I get away with it either
way.
DR. KELLY: In any event, can you give us a sense of where the field is at present? Because the objectives may be different in terms of clearly signs are going to be much more objective and much more specific, but we perhaps would have a greater desire to have sensitivity in identifying thresholds that may cause an allergic reaction.
Are you aware of any studies that are specifically looking at that, looking, for example, at what is the difference in dose between a symptom but then goes to a sign? Is that being looked at, or has the field sort of abandoned symptoms?
DR. TAYLOR: Well, I don't know if they've abandoned, maybe neglected it. Dr. Teuber made this point earlier, and she is absolutely correct. Many of these studies that I referred to and that
```

```
Rene Crevel used in drawing his curves are actually
diagnostic challenge trials.
    If you are trying to diagnose a patient to
determine if they actually have a given food
allergy, you want to see signs. Almost all of
those clinicians; I think, would proceed to
actually physically observable symptoms.
    However, that doesn't mean they wouldn"t
pay attention to subjective symptoms that might
occur along the way as they are increasing the
doses and the person says, "My mouth itches" or "My
stomach hurts." I think you would pay attention to
that because it would alert you to the fact that
the guy might have a more significant event the
next dose.
There have only been a limited number of studies where people have done threshold trials where they actually went through the subjective symptoms and got to the objective signs.
The study we did with Jonathan Hourihane and others on peanut thresholds published in 1997 was one of those. Admittedly, it was modest. It
```

was the first threshold trial that ever got done.
It was 14 subjects, 2 of them reacted with subjective symptoms at 100 micrograms. They got several doses after that, and one of those individuals first developed mild, objective signs at 2 milligrams and the other at 5.

As you wrestle with this, in my view, whether you use signs or symptoms, it is a question of how much uncertainty you assign to those numbers, how big the uncertainty factor is.

As I alluded to this morning, I would advocate using a smaliex uncertainty factor if you go with subjective symptoms than you would if you went with objective signs.

Although, it is still not even that simple, because if the person had objective signs at 500 milligrams in a diagnostic trial, I am real concerned about what might happen at levels far below that.

DR. KELLY: The consensus protocol, how does that address this issue?

DR. TAYLOR: The consensus protocol that

```
we published last year, the consensus was to go to
objective signs in these threshold trials, but to
pay attention to subjective symptoms and record
them, record the doses at which they occurred.
    I mean, these studies cost a lot of money.
I believe in capturing every conceivably
significant data point; because I don't know how
regulators are going to use this information, so
let's give it all to them and let the wisest people
decide what to do.
    DR. KELLY: Ultimately, I guess that is my
point, that these data, hopefully, will be gathered
and it will be possible to look at subjective
symptoms as a secondary endpoint and see how it.
relates.
DR. TAYLOR: Yes. : Another point I didn't
make is that I am convinced that even though
clinicians have only reported LOAELs in their
studies, that many of these clinicians have NOAEL
data on their charts. They just haven't taken the
time and effort.
    In fact, I asked Dr. Sampson that question
```

last week and he said, "Yes, I have more than a thousand charts. If you'd like to send me some money so I can have someone sit down and look at these charts, I would be able to give you the individual NOAELs for all of the patients who did not react at the first dose. I have never published that data; I have never collated it; I've never computerized it. It is all on paper, charts."

CHAIRMAN DURST: Okay. One more question from Marc, and then I would like to move on to the specific questions that EDA has asked us to address.

Marc, do you want to just finish up?
DR. SILVERSTEIN: I wanted to ask the scientific rationale for an uncertainty factor? Is it just giving you a wider range to be right about the prognostic value, that is, the likelihood that in those who are positive or negative their subsequent events, whether it be anaphylaxis or other food allergy related events?

Is the scientific rationale for
uncertainty factors just being careful, or is the

```
scientific rationale based on what we saw earlier,
intraspecies individually between species and
within individual variations, or is it between
symptoms and signs? What is your best judgment
about the rationale by which you can provide the
uncertainty factors?
    DR. TAYLOR: I think uncertainty factors,
the old standard -- I went to school in toxicology
-- was this hundredfold uncertainty factor. It was
tenfold for extrapolating from mice or rats to
humans and tenfold for interindividual variations
among humans. That is mostly very arbitrary.
Although I was told in graduate school, and never
went back to look it up, that it actually has a
basis in fact.
    It came about from some famous drug
contamination episode called the "elixir of
sulfanilamide episode," back in the 1930s, where
they actually had animal data and they actually had
human data from the poor, unfortunate souls that
succumbed to this contaminated drug. It has some
basis in fact, but it is a lot of expert judgment
```

not so much biologically based in some cases. DR. SILVERSTEIN: Let me comment, then, and again highly relevant to the FDA with that historical example, this would be inferences drawn, from toxicologic studies where live proportions of the population might be susceptible to some range of exposure?

In contrast, though, in allergic diseases we are dealing with not a large proportion of the population but a substantial fraction of the population that might have within individuals much more range in terms of sensitivity.

What I'm leading to is I might want to be more cautious about taking from a toxicologic exposure to an allergic disease mechanism the same range of uncertainty.

DR. TAYLOR: Yes. It is hard to address that point, because most of our experience with uncertainty factors deals with toxicologic exposures where the whole entire population is conceivably at risk. Here, admittedly, we have a smaller proportion of the population that is at
risk.

```
Conceptually, I don't have a problem with using uncertainty factors, because the goal is still the same: Protect a fraction of the population or protect the whole.
I think I'm bringing you back to what Rene
``` said about using the models and then doing a better job of documenting whether the decisions that are made are appropriate by attempting to validate whether the model is correct or not.

We actually have a lot of data now accumulating very rapidly from all of these analytical determinations that are being done in industry and in academic laboratories and government laboratories about levels of allergens in products that do not have adverse reactions associated with them.

Now, you could probably get even better data if you could analyze what some of these consumers have actually eaten that did not make them sick. Based on my experience, I am almost sure that they eat tiny, tiny amounts of milk and
egg periodically, even though they don't know about it. That would help you determine whether the numbers you selected were achieving the goal you wanted to reach, and I don't know how to determine that otherwise.

DR. SILVERSTEIN: Dr. Crevel is not here. Could I follow up with one question about the modeling approach?

CHAIRMAN DURST: Okay.
DR. SILVERSTEIN: I found that modeling approach very interesting. He selected an ED10 and EDI. Is there a rationale for having the EDI, which for me would be saying we're looking, to see a threshold that would affect 1 percent of the population?

DR. TAYLOR: One percent of the allergic
population?

DR. SILVERSTEIN: Yes.
DR. TAYLOR: Yes. Well, the EDIO, your
model should predict that because if you've got 29 observations, you've got the EDIO. If your model doesn't predict an ED10, it is truly a lousy model.

The ED1, I can't remember the binomial distributions, but you've got to have a lot of participants to get to the ED1, so you have to extrapolate.

I'm not much of a statistician, but you are going to get a lot more variability in guessing EDI, and you get even more variability if you tried to surmise what the ED 0.1 is.

But then if you used one of those, my argument is you could see what the experience is of the allergic individuals in the population. If you choose well, then all of the allergic individuals stay well; and, if you don't choose well, some of them are going to get sick. That is why I think it is important to follow this up and see whether we chose well enough.

CHAIRMAN DURST: okay. Thank you very much.

I think, as I mentioned, we really do have to address some of these questions put to us by the FDA, since our time is going to be limited tomorrow. We will be focused on glutens, and then
```

Fricay will probably be a somewhat, truncated
session. Hopefully, we can get through a number of
these questions before 7:00 or 8:00 tonight.
(General laughter.)
CHAIRMAN DURST: I think the general
questions probably can wait until we've had the
gluten discussion because they probably address
both aspects, but, specifically, the food
allergens. Why don't we just take these questions
one by one, and, hopefully, come up with some kind
of conclusion or, consensus for the EDA.
The first one: "Are there distinct
subpopulations of highly sensitive individuals
within the allergic population for each of the
major food allergens?"
Would anyone like to address that?
(No verbal response.)
CHAIRMAN DURST: My goodness, what
happened to that talkative group?
(General laughter.)
DR. HEIMBURGER: This is Doug Heimburger.
Clinically, anecdotally, yes, people do respond,

```
```

allergic people within the subpopulation. There
are subpopulations who respond both more severely
and at lower levels, but it sounds like we really
don't have nearly enough data to be able to say
just how we identified those people; is that
correct?
DR. BRITTAIN: Erica Brittain. Yes, I
don't know how you would distinguish between a
subpopulation versus a continuum. I mean,
obviously there is variability and sensitivity,
that's for sure.
DR. HEIMBURGER: Yes.
DR. BRITTAIN: Whether it is a continuum, I certainly don't know.
DR. MALEKI: Soheila Maleki. I think that Dr. Wood, who unfortunately isn't here, really addressed that question fairly well this morning, showing the range of the reactions and the populations.
However, I also think the answer to that is, yes, that there are individuals that are highly sensitive that can be set apart from the rest of

```
```

the group in some ways.
Generally, I think if we go back to that
presentation that it would be very sufficient in
explaining the percentages a's well as the range of
reactions going from IgE-mediated to
gastrointestinal and other types such as celiac
disease.
CHAIRMAN DURST: Does the Committee feel
that this applies to each of the allergens or--?
DR. MALEKI: I think so. I mean, I think
even, for example, in some cases when egg and milk
are outgrown as an infant, there is a severely
allergic population that will not outgrow it.
There are always the exceptions or the highly
allergic. Maybe Sue or one of the clinicians may
be able to address that,
DR. HEIMBURGER: Doug Heimburger. The
fact that they grow some of those means that they
are at some points in their lives more sensitive
than they are at other points in their lives. The
answer is, yes, there are definitely more sensitive
and less sensitive.

```
DR. MALEKI: Yes, I agree.
DR. KELLY: Ciaran Kelly here. Sorry to disagree and maybe pick on words, but are there distinct subpopulations? How can we identify these individuals?
If there are individuals who at one point in their life are very sensitive and later less sensitive, then to me they are not distinct; they merge one into another.
I think my clinical experience is that it is a continuum, that there is not a group of individuals who are highly sensitive, a different group who are moderately sensitive and another group who are not sensitive at all. There is a whole population. I don't think we can supdivide them into subpopulations.
DR. WASLIEN: Carol Waslien. Can you divide them on the basis of how many epitopes they are sensitive to? Some, are sensitive to only one of the proteins in peanut protein, some are sensitive to two, some are sensitive to three, and some are sensitive to soybeans as well as peanuts.

There is that kind of subpopulation, and those are not on a continuum. Those are distinct characteristics. There is that kind of differentiation on the basis of some of the differences.

DR. HEIMBURGER: Doug Heimburger.
(Simultaneous discussion.)
DR. MAIEKI: Soheila Maleki. Oh, I'm sorry.

I was just going to say that right now, they are doing microarray analysis on individualized epitope mapping in relation to what relationship that has to the type of reactivity that these individuals are having. They have identified specific dominant epitopes that are more likely to occur -- their IgE is more likely to recognize, if the individuals have severe reactions.

Again, going back to what you were you were saying -- and I would like to hear from the clinicians, maybe Suzanne Teuber, about the fact that, yes, there are definitely subpopulations that
are severely allergic. Does anybody else have a comment on that?

CHATRMAN DURST: Petr.
DR. BOCEK: Petr Bocek. Well, I think the
question is posed in order to then actually follow
with the uncertainty factor. It is not whether we can define this subpopulation by a specific biomarker, but it is asking whether the eight major food allergy groups, are there people with severe allergy? The answer is yes.

It is basically asking within the
population of people who are allergic to these foods, what is the range, what is the factor we apply in order to be safe? I think the simple answer to the first question is yes.

DR. MALEKI: I agree.
CHAIRMAN DURST: Okay. David.
MR. ORYANG: Yes. Just following up on
Dr. Bocek -- David Oryang -- I think the sensitive
individuals, the allergic population, has already
been divided up. The children react differently
from adults to a lot of the allergens, so there is
already those subpopulations.
Beyond that, maybe there are even
subpopulations within that. Right now, are the safety factors to be applied to children the same as the safety factors to be applied to adults or not? That is the question. Should they be the same? I don't know.

CHAIRMAN DURST: By the "safety factors," are you talking about these uncertainty factors?

MR. ORYANG: The uncertainty factors,
right. Yes, the uncertainty factors.
DR. HEIMBURGER: Severity of response
factor as well.
DR. MALEKI: Soheila Maleki here. I think
that one, not all, but maybe some of the allergenic substances for adults and children will be the same. However, there are specific allergens that are adult allergens that are not child allergens, for example, egg and milk. I don't think we should consider the safety of a child more than we should consider the safety of an adult. I think life is precious.
```

    MR. ORYANG: That's true.
    DR. MALEKI: I don't think that is the
    term to subdivide it. If you were going to divide
it into anything, it might be the different foods
to consider. Even in that case, I don't think we
should make that distinction. I think everybody
should be protected or that's who we should
consider.
MR. ORYANG: You axe saying'we shouldn't
divide it into any subpopulations?
DR. MALEKI: Well, I think severe reaction
versus non-severe reaction but not, like,
separating children versus adults or men versus
women, and so forth.
MR. ORYANG: That's an example. If there
is a real difference in their reaction or an adult
response, and so forth.
DR. MALEKI: Oh, I see.
MR. ORYANG: I mean, if there are major
differences, if you can break the whole population
up into different ways in which they react to the
same dose, a child versus an adult, are they going

```
```

to react the same? Then, also, the exposure maybe
also needs to be considered and all those things.
The safety factor I think in children's
food, isn't there a much higher safety factor for
some of those kinds of things than other
commodities? I don't know whether some of the
industry people can respond to that.
CHAIRMAN DURST: Okay. Suzanne and then

```

Doug.

DR. TEUBER: I had a specific question. I was just going to bring up that between children and adults, for instance, most of the deaths are caused by peanuts and tree nuts and then seafood for a smallex percent, at least that is in our culture.

As time goes on, Sicherer in that
Johns Hopkins group and now Mount Sinai have shown that in follow-up interviews for many of the kids who have peanut/tree nut allergies, the reactions actually became more severe with time, but we don't know what happens to the thresholds. I don't think we have that kind of age data, and I don't know if
anybody is studying that right now.
DR. HEIMBURGER: Doug Heimburger. To
point back to the question again, as Petr did, the question is not asking us to identify subpopulations; the question is asking us is 10 times 10 equals 100 a sufficiently wide range. That is a different question from can we identify them.

CHAIRMAN DURST: What is the answer?

DR. MALEKI: Soheila Maleki. I just
wanted to add a comment to Suzanne's comment, that they have actually identified, they have determined, that individuals between 11 and 33 are more likely to suffer anaphylaxis and have fatal anaphylaxis, because that is when they start experimenting with food. That is the age range, if that was a question. Again, the bottom line answer to this is pretty much yes.

CHAIRMAN DURST: Yes?
DR. BRITTAIN: Well, are you asking to answer the factoring question.
(General laughter.)
```

    CHAIRMAN DURST: Yes, the statistician,
    please.
DR. BRITTAIN: Well, to me it feels really
arbitrary. It goes back to the question I posed at
the beginning of the discussion. I mean, I don't
know if we are aiming at -- we want to make sure
there are almost no reactions in the most sensitive
population. If that is our goal, that affects how
we would choose the uncertainty factor.
We would want a bigger uncertainty factor
if we are really trying to focus on the
supersensitive patients. If we are just trying to
say something about all allergic patients, then you
might not need as big an uncertainty factor.
It also depends on what data you used
amongst the studies. Are you only including those
studies in allergic patients? That is all part of
it, too. It is sort of hard to answer this
question in isolation.
CHAIRMAN DURST: She asked and answered
it.
DR. BOCEK: Petr Bocek. Well, I think at

```
```

least what I'm hearing is we agree that the safety
assessment-based approach is good and valid and it
is fine. The concern I have, and we have already
addressed that, whether the current data is
targeting the right population.
At least in this country even considering
the more aggressive approach in Europe, we're still
certainly missing the most allergic patients
because we are doing diagnostic challenges, the
majority of them.
If you want to base the uncertainty factor
on that, on the LOAEL determined from these
studies, and you'think about, let's say, 2,500
milligrams being the LOAEL in these studies.- I'm
just pulling a number -- and then you have a
patient, anecdotal evidence of kids anaphylaxing
and adults anaphylaxing just to the peanut powder
when somebody opens a bag of peanut, and there are
case reports of that, that certainly is more than
100, less milligram exposure than 100 milligrams in
those challenges:
I'm not sure, you may not like me, but I

```
think the hundredfold, if I were thinking about the current data from the current double-blind challenges, I don't think it is sufficient.

DR. BRITTAIN: Yes. Adding to that they mention there is one millionfold, the previous statistic today, one-millionfold range in sensitivity, so I don't see how the hundred address that.

CHAIRMAN DURST: Anything else on this?
DR. MALEKI: Soheila Maleki. Just to
comment, yes, there is a range of one-millionfold of sensitivity. On the other hand, just like zero levels of a particular allergen in a food is virtually impossible for the industry and manufacturers, I think to set your statistics on zero tolerance, that nobody is ever going to have a reaction, is also unachievable.

You want to determine threshold levels, that means the most severe reactors, and then pick a level severalfold below that, and that might increase the safety factor.

With the knowledge and what we have today,

I don't think it is possible to say we have to pick a level of a millionfold less. I know, I understand why you're saying it, that it is probably because of the range that is different. However, if you pick the lowest level then --

DR. HEIMBURGER: `Then, a hundredfold uncertainty factor applied to that, then perhaps it is sufficient.

DR. BRITTAIN: If you had the right data?
DR. HEIMBURGER: If you have the data on who is the most sensitive person and who is that at one millionth of the other person, and then you have a hundredfold uncertainty factor. The question is, Is that a sufficient uncertainty factor? It is sounding a little more sufficient, I think, if you phrase it that way.

DR. MALEKI: Soheila Maleki. Just one comment again. Being able to test these people, most of the data that has been shown or is available is based on diagnostic challenges.

The threshold studies that are actually
going to be valid for the first time or some that
have been done, maybe there are two studies, this is a beginning type of study going on.

Right now, there may not be all of that data available, but I think they are going up the right track where they are picking the most severe reactors and they are treating them and waiting and recording subjective and then objective data. That is going to give us the closest we can get with the funds and opportunities and what we know available. CHAIRMAN DURST: Suzanne.

DR. TEUBER: Again on that, I would hate to see some of the subjective symptoms thrown out of the analysis. There are going to be individual physicians who are involved in these threshold studies who are not going to go above that, at least this is what I had heard. They are going to be more comfortable if they have a reproducible, subjective symptom in stopping.

Again, if we talk about the safety
assessment as it is written, it would throw out all that data and throw out these patients who may be exceedingly sensitive, and this is some of the
```

population that we want.
I think this just keeps coming. up as a
concern for the EDA in evaluating what approach is
to be used and how the future data comes in to be
evaluated.
CHAIRMAN DURST: Okay. Anything else?
Erica.
DR. BRITTAIN: Erica Brittain: I guess I
just wanted to make a general comment about the
report. The report seemed to me, if I understood
it, the recommendations in the report seemed to be
feeling that the modeling approach wasn't really
ready for prime time, if I understood the
conclusions they drew.
I guess I'm a little confused why this,
which seems, you know, just like a very vague
standard or just finding some uncertainty factor,
why that would be preferable to the modeling, even
if it hadn't been completely validated. I just
wanted to make that comment.
CHAIRMAN DURST: Is there anything else on
this?

```
```

    (No verbal response.)
    CHAIRMAN DURST: I guess we've answered it
    to their satisfaction.
Yes.
DR. BARACH: Jeff Barach. I have one
comment to add to it. I think it is probably a
little bit premature that we should start to set
values for these uncertainty factors of tenfold or
whatever.
We heard from Steve Taylor that he was
looking at uncertainty factors of maybe one or two.
I think that reflects the fact that if we go with a
10 and 10, we are using a standard approach that
has been used for pesticide residues in the food
system for a while, so there is some comfort level
associated with that.
However, I don't think we really have the
comfort level from the data and the population
studies and the challenge studies to really pin
down these numbers.
I would say that using uncertainty factors
will be a benefit, but I don't think we are really

```
quite ready to even identify the magnitude of those uncertainty factors is at this point.

CHAIRMAN DURST: David.
MR. ORYANG: Yes, David Oryang. I concur with Dr. Barach in a sense, but I add that I think more work could be done to try different safety factors and apply it in the context of the model that evaluates how many people might come up with symptoms, if the safety factor was a certain value for a specific allergen, given people's;reactivity.

We can begin to capture the outliers, in other words, those highly reactive people. I think there is some data which indicates the percentage of people that would probably react up to the million times more than the average person.

DR. TEUBER: There is that, that is what has been brought up.

MR. ORYANG: Okay. There is that data, so I think some modeling probably could be done, to find out, to determine, how many cases would come out of setting a safety factor at a specific level, if the appropriate models were developed to do
that. That is where the risk assessment-based approach is.

I think we can begin to start doing some of that, if we put in the distributions even the safety factor, but the NOAEL could be put in as a distribution as opposed to a point value, as an example, and you can then run a model to determine how many cases there would be of reaction at a specific safety level.

I think that is the kind of thing that EDA could do to take this a little bit further as opposed to just deciding.

I mean, it is impossible to decide just like this, to say, well, is a hundredfold good enough? There has to be a basis for saying that it is good enough.

The basis might be, well, we've reduced the number of cases tenfold or reduced it a hundredfold or we've reduced the number of cases to less than one in a miliion, or whatever the case is, and then you, can decide that you have taken it to the right level.

CHAIRMAN DURST: Okay.
DR. WASLIEN: This is Carol Waslien.
Maybe because there are so many studies; it sounds like they are almost ready to be reported, Using some of the kind of data that we would need to set uncertainty factors, maybe we can say that, yes, there may very well be differences, but we can't tell what they are right now.

However, when that data becomes available, we should be able to say what they are and make those calculations for differences using subjective and objective, using prognostic information.

Therefore, we should then use the correct
scientific approach to determine uncertainty
factors in something besides pesticide residues that all of us are sensitive to.

CHAIRMAN DURST: Erica.
DR. BRITTAIN: I think you would also want to think about maybe doing both approaches, both modeling and uncertainty factors, and hope to see some kind of agreement in the approaches. I want to emphasize for both you need the right data.

CHAIRMAN DURST: Jean.
MS. HALLORAN: Yes. I think very good comments have been made here about that. This type of uncertainty factor is very different from pesticides. For one thing, we are not extrapolating from rats to humans. We are working with human data to start with.

Another one we are not dealing with sort of variability from an average person. We are trying to start with the most sensitive person and set a safety factor for them.

It is a really different task, but, it is also a task for which we don't have the data that you need to start with, which is the number for the most sensitive person.

Perhaps, as a principle, we could suggest
to FDA something like what Steve said, which is basically: the better the data, the less of an uncertainty factor you may need; the worse the data, perhaps the bigger the uncertainty factor that should be built in.

DR. MALEKI: Soheila Maleki. I just want
to ask, I know the Food Allergy and Anaphylaxis Network has helped in a lot of research studies because they have 27,000 members of food-allergic people.

I wonder if anybody has done, or are there any studies done to divide up highly severe to moderate to low allergic individuals? It seems like that is one of the questions that David was asking.

MS. MUNOZ-FURLONG I have not done that with our membership. I'm not aware of any studies. I will tell you from the fatality registry and the fatality studies that have been published, there have been a number of people who have died who had only previously had mild reactions.

I'm not sure we are ever going to be able to put people in neat, little boxes that says, "You're a mild reactor, and you will always stay there." This seems to move and nobody can predict when or why.

CHAIRMAN DURST: Margaret.
DR. MCBRIDE: Margaret McBride. As I
```

listen to all of this, a couple of things come to
mind, and one is that we really are looking at
risk. No matter how you define the range of
sensitivity there is going to be an outlier or
there are going to be outliers of that very
sensitive end.
In a sense, that is what people have been asking, What are we aiming for? We really know that we can't set something that will be truly safe for everyone.
The other things is, if understand again, LOAELs, if we, in fact we could test everyone, we would get a LOAEL and we wouldn't need any safety factor.
The safety factor is because we can't test everyone and because we are assuming that we are not testing the most sensitive individual. Does anybody want to comment on that?
I mean; what we are trying to say is easy to say. I would certainly agree that we don't have the data to set a safety factor, but remember that we are setting a safety factor because we can't

```
```

test everyone or because, understandably, the most
sensitive people won't sign up for the testing.
We have a conundrum, but we still have
folks who need to read labels. I mean, I'm a
clinician, so it is easy for me to live with some
uncertainties because I'm forced to every day when
the data isn't available.
DR. BRITTAIN: Yes, this is Erica
Brittain. That brings up something that I keep
thinking about. There really isn't a safety
threshold overall so much as each person has their
own threshold.

```
 This is a totally different way of
thinking about it. However, if you could label the
food by the quantity instead of saying yes/no it is
above some magic line, is that a solution, that
people would know their own tolerability?
 DR. McBRIDE: It may change over time, you
know, maybe we need to look at yearly threshold
testing or something.
 DR. MALEKI: Soheila Maleki. Exactly, as
Anne just mentioned, you don't even know the
```

reactors much less the threshold levels for each
person changing. You can just choose a population
that you believe to be the most reactive and
determine what you best can determine.
Maybe technology will improve with time,
and you an do a lot better, or more people can be
tested in that way. Yes, that is a nice thought,
but I don't think most people know what their
thresholds would be.
CHAIRMAN DURST: Okay. Shall we move on?
(No verbal response.)
CHAIRMAN DURST: As far as the second one,
we touched on it a little bit the LOAELs and
NOAELs: "Is the initial objective response seen in
a clinical challenge study always an adverse effect
that poses a risk to human health?"
DR. TEUBER: I find this question a little
bit ambiguous. An objective response in one
person, so, yes, that particular response in many
of these studies has been an extremely severe
response, but not in the studies that were designed
as a true threshold study.

```
```

    They are just saying clinical challenge
    study. Since so many of these studies were
diagnostic, there were so many people who reacted
on the first dose. Yes, it could be a
life-threatening reaction; but in the
well-performed threshold studies, the first
objective reactions have not been life threatening,
It could still be clinically significant. You
would want to account for that with the uncertainty
factor going down below that.
DR. MALEKI: Soheila Maleki. Just an
addition, the dosage again that Steve also
mentioned before, the dosage with a clinical
challenge study is very different than the dosage
that use for threshold doses. For a threshold, you
are obviously trying to determine a threshold.
With a clinical challenge, you want to have a
clinical reaction to say, yes, this person is
allergic.
Am I correct, Suzanne?
DR. TEUBER: Yes. They could have chosen lower doses to start with, but I think people are

```
```

now choosing far lower doses to start with, even in
diagnostic challenges. However, there had to be
something to start with in the literature, and that
is what we have.
CHAIRMAN DURST: Marc.
DR. SILVERSTEIN: Marc Silverstein. If I
were to try to operationalize a question like that
for an epidemiologic study or a clinical study, the
words that I would be focused on is "always" and
"risk."
For me "always" might be 90 or }95\mathrm{ percent.
An attorney might say it is 50 percent or greater.
There would be some, "Well, what is always?" It
would be some large number. For us in the clinical
realm, we might say it is 80, 90, }95\mathrm{ percent.
Then, risk to human health? Well, if the
outcomes of an allergic reaction could include
death among the spectrum of anaphylaxis; then we
might be thinking of risks that were weak risks.
Low risk would be clinically important risk,
In an epidemiologic study, we might say
even those variables where the risk ratio was less

```
```

than two might be important, or we may say we are
going to consider large risks that might be risk
ratios of four or greater.
As I try to answer some of these
questions, other than an absolute no risk and
never, I would try to operationalize them in terms
of magnitude knowing that in the real world
clinicians and policymakers have to make some
decisions.
Having'said that, my subjective
inclination would be to say I would think that
clinicians caring for patients and policymakers
would make assume that if a patient reacted
positively in a diagnostic challenge with objective
symptoms, that patient is at risk probably to the
point where they would translate it into a
recommendation for patient and the family with
regard to diet.
With regard to that, I would say it seems
to me that it is reasonable to say, yes, objective
symptoms would be tantamount to saying essentially
risk would be of sufficient frequency and

```
sufficient magnitude to answer this question yes.

That would be the way I might approach it.
CHAIRMAN DURST: Petr.
DR. BOCEK: Petr Bocek. I think the
remainder of the paragraph is actually looking at the subjective response and the objective response. I understand this first question as if you do a challenge study and your stopping point would be the initial objective response, it is asking, does it always impose this risk to human health?

Well, my answer is no. Because if you do a challenge study, a clinical challenge study, and your endpoint is the first initial objective, most of the time it is not life-threatening.

The data we have, how many people actually
die during the challenge study? It is usually cutaneous manifestation, hives, or something like that. To me that doesn't pose a risk to human health. That is how I understand the question. CHAIRMAN DURST: Yes.

DR. NELSON: Mark Nelson. Yes, I was
trying to understand the question as well. It
```

struck me as ambiguous. I guess I have a guestion
of the clinicians. Is the objective of a clinical
challenge to try to get a response to see?
As Petr said, following on the subsequent
questions, I think my interpretation of the
questions it that they seem to be asking us whether
the clinical challenge approach is really the best
way to try to set a threshold as opposed to use it
as a diagnostic tool.
DR. TEUBER: Suzane Teuber here. Again; in interpreting this question, I am trying to figure out if they mean should they be throwing out the data of people who reacted on the first dose in the diagnostic challenge studies; and, if so, we know that they really have to have a lower LOAEL level than that.
The next question is, Is it scientifically sound to use this response to determine a LOAEI? My answer to that would be no. Again, the question is ambiguous of what was intended. Again, I would throw out data on people who are first-dose responders because they really would probably react

```
```

at lower levels. Is that what it is asking?
CHAIRMAN DURST: Steve, would you be able
to address that ambiguity?
DR. GENDEL: Let me get back to you on
that.
CHAIRMAN DURST: I beg your pardon?
DR. GENDEL: Let me get back to you on
that.
(General laughter.)
CHAIRMAN DURST: Jean.
MS. HALLORAN: Yes. My reading was that
they were trying to get at how you interpret data
from clinical challenges where you've got LOAELs in
the absence of NOAELs.. I think all of our experts
have said that if you only have a LOAEL and not a
NOAEL, then you don't know what the NOAEL is:
(General laughter.)
MS. HALLORAN: Then, the third question
for the safety-assessment approach, Is a proposed
uncertainty factor of tenfold sufficient and
appropriate to use in the absence of a NOAEL?
I don't know what others think, but from

```
what I've heard it seems to me like the answer is not necessarily. You just can't necessarily guess, because there is no standardized procedure. DR. HEIMBURGER: It would be much more than tenfold. MS. HALLORAN: Yes. DR. HEIMBURGER: The difference between the LOAEL and what you did and the NOAEL -Doug Heimburger -- so I think the answer to that question is no.

DR. MAIEKI: Soheila Maleki. I think the
answer to the first three questions is no, no, no. (General laughter.)

CHAIRMAN DURST: That was easy. I wish
they were all that easy.
(General laughter.)
CHAIRMAN DURST: Margaret.
DR. MCBRIDE: Margaret McBride. Just
along the same lines, really the issue of the
increment, even if you are doing a threshold study,
is important.
CHAIRMAN DURST: Sure.
```

    DR. McBRIDE: Probably that's something
    that needs some standards.
DR. MALEKI: Soheila Maleki. I think the
better question would have been that instead of a
clinical challenge study to ask us about a
threshold dose study, and then all of these
questions would be relevant. In a clinical
challenge study where you usually use higher doses,
and again you don't know the NOAEL, then it is not
relevant to ask the question.
DR. HEIMBURGER: Doug Heimburger. The
overarching thing here is, Should data from
clinical challenge study be used to set these
levels?
DR. MAtEKI: It is no.
DR. HEIMBURGER: The overarching answer is
no.
DR. MALEKI: Soheila Maleki again. If you
actually change that question to what $I$ believe might have been intended as some clinical
challenges for threshold dose studies, then you can answer some of these questions or address them.

```
```

Because most of the data that is in the literature is clinical challenge studies, the question was actually intended to see if --
(Simultaneous discussion.)
DR. HEIMBURGER: Should we answer the question after changes those words and then re-answer it?
(General laughter.)
DR. MALEKI: Actually, I think they might have been to look at the literature. Since most of the literature is on clinical challenges, they wanted to know if they can use that data in order to answer these questions. It is actually an appropriate question, and the answer is again no. DR. HEIMBURGER: No.
(General laughter.)
CHAIRMAN DURST: Yes.
DR. KELIY: Ciaran Kelly. I agree with
the second two numbers, but I would like to revisit the first numbers. The question is, "Do objective responses in clinical challenge studies always have an adverse event that poses risk to human health?" I

```
```

agree absolutely with Petr, that these are not
life-threatening responses.
On the other hand, are they acceptable
responses? Would an individual experiencing this
response at a meal consider that they'd had a
healthy meal?
I think if you look at it in that way the
answer would be, yes, these are significant to risk
human health, if you have a broad sense of health
and well-being. Although, I agree that they are
not by any means a risk to life -- probably no risk
to life.
DR. BOCEK: Petr Bocek. They are asking
about clinical challenge, and I don't think anybody
is having a happy, healthy meal doing clinical
challenges.
(General laughter.)
DR. KELLY: Yes, but the question as I
understand it is -- Ciaran Kelly again -- if an
individual has that level of symptomatology, would
that be considered an allergic reaction in everyday
life? I think the answer to that is yes, I

```
believe.

CHAIRMAN DURST: Marc?
DR. SIEVERSTEIN: Marc Silverstein. I
would like to just clarify. My thinking would be that if clinicians would translate a positive response to a clinical challenge or a food challenge test into a recommendation for dietary modification, that basically is affecting the patient's care and that is affecting their health. To me that is a simple-minded but very realistic issue.

Does it mean that the patient, will have a risk of dying? Yes. How big of a risk? Maybe 10 or 15 or whatever percent is graded by the risk ratio. What proportion of patients may have it? Some proportion of the population. What would you do as a clinician based on that?

If it is a sufficient threshold for clinicians to change the management, I think it would be a sufficient threshold for parents and individuals to say that would affect what they would like to see in labeling. That is why I think

I couldn't say no.
DR. TEUBER: Suzanne Teuber. This is
again why \(I\) did not say no to that, either. I said yes, if you have an objective response. You have to remember there is an uncertainty factor, and I don't know the right term to apply, but that applies to that individual based on the multiple factors that have been discussed: whether their asthma is under control, time of year, time of day, circadian rhythm, other medications, exercise. I think if you have an objective response at a dose, it certainly could pose a risk in another circumstance with that same dose.

DR. GONSALVES: I think we are doing a lot of talking here, but it seems like Dr. Taylor said that he is convinced that if you go back and look at the clinical data, you could get the NOAEL response there.

It seems to me that one would want to go back and put this on a more scientific basis, once you go back and look at those data and see where you come to your NOAEL reactions.
DR. TEUBER: Suzanne Teuber here again. Again, this would be going back to clinical data that was mainly on diagnostic challenges in populations that do not reflect all of the extremely sensitive people that folks are most concerned about, whereas the threshold studies have been really trying to recruit these extremely sensitive people.
The NOAEL data that might be obtained from funding, say, the Johns Hopkins group and the Mount Sinai group to go back might not give the levels that you would get from a new prospective challenge study that is realiy recruiting these people.
CHAIRMAN DURST: I think we have kind of moved into the third question there with some of these comments concerning the thresholds established for the major food allergens, so I guess we will continue on along those lines.
"Is it scientifically sound to use the threshold established for a single food allergen as a threshold for all major food allergens?"

Suzanne?
DR. TEUBER: Suzanne Teuber. I would say
no, because we have the examples from soy, at least from the data that we have, that the thresholds are higher. It is actually again very, very difficult to obtain people with lasting soy allergy.

CHAIRMAN DURST: Does anybody disagree or support that?

Soheila?
DR. MALEKI: Soheila Maleki. I don't know
if I would say I agree or disagree, because I'm not a clinician, but I actually have a question to add to that, to anybody that can answer it.

Is there a particular food -- again, like
they say, for example, peanut -- that is the most
sensitizing, that if you picked that, you would
pretty much cover the thresholds for the rest,
Suzanne, or somebody that might want to answer
that?
CHAIRMAN DURST: David?
MR. ORYANG: It would seem from the safety
perspective, the public health perspective, it says
```

here, "In the absence of specific data," okay. Is
it scientifically sound to use a threshold
established for a single food allergen?
Yes, if you get the one that more people
react to or react most adversely to and use that as
a safety factor, you know that the other ones that
people don't react as much to will be covered.
Wow, I see all of these looks.
(General laughter.)
CHAIRMAN DURST: Okay. Mark?
DR. NELSON: This is Mark Nelson. I guess
the concern I have is that to use a single number,
one wouldn't be basing it on the science because we
do have some evidence that there are different
thresholds or different sensitivities for the other
allergens.
Also, then, objectively from a policy
standpoint, if you are going to label everything in
terms of the most sensitive or the most adverse
allergen, then you are going to be ending up
labeling incredible parts of the food supply, which
would hamper the choices of the allergic

```
population.
```

    MR. ORYANG: David Oryang. I would add to
    that and say, yes, in the absence of specific data
and if the allergen has data and it can be
compared.
I mean, if you know what to apply to a
specific allergen, then I think you use what is
applicable because you have the data. However, if
you don't have the data, and you know that people
react to it, where do you set the level? Maybe you
tie it to something that you believe is rather
similar or more reactive, and you know that you've
covered it in the absence of data.
CHAIRMAN DURST: Okay.
DR. KELLY: Ciaran Kelly. I have two
difficulties with this approach. The first is
exactly what Mark mentioned, and that is, that
would be setting an unnecessarily low level. For
example, soy would have to be reduced to the level
of some far more generally allergenic compound such
as tree nuts or peanuts, that's the first.
The second is there is a fallacious

```
```

assumption here that somehow you can know which is
the most allergic without knowing the level, the
threshold level, for each. In order to choose the
most allergic, you have to know which is the most
allergic.
(General laughter,)
DR. KELIY: Basically, when you work
through it, you can't do it.
CHAIRMAN DURST: Marc?
DR. SILVERSTEIN: Mark Silverstein. We
often use epidemiologic studies to make inferences
about individuals. We may make an inference based
on the prevalence in a population or the severity
of a condition in a population about what that may
have as an impact for individuals.
However, that usually assumes homogeneity
in the population when we are going from population
data to individual data; and, similarly, going from
specific allergen, we are basically assuming some
homogeneity in the response.
I think we have enough evidence from other
areas to say that it is this homogeneity assumption

```
```

that we are uncomfortable with. I think there is
reason to believe, because we have some insight
into the nature of allergic responses, how variable
it is across allergens and individuals, that maybe
the assumptions going from allergens to rather
specific allergens wouldn't be valid; and,
similarly, going from population studies to
individual studies might not be met.
CHAIRMAN DURST: Dick Durst. I would just
like to comment that to me this approach is very
arbitrary. To me it is similar to the statutory
approach. It seems to be a one-size-fits-all type
of approach.
I think we have probably in the iiterature
enough data to see that is not really a realistic
way of going about it. We certainly need more data
to nail these thresholds down. Erom what's out
there even now, I think it is not the best approach
to use.
Marc? Oh, I'm sorry, either Marc or Mark.
DR. SILVERSTEIN: I was just going to ask,
Is Catherine Copp likely be here tomorrow?

```

MRS. MOORE: Yes. Yes, she is here right
now.
DR. SILVERSTEIN: Oh, she is? May I ask her a question. What I found was interesting was the paradigm for the statutory approach under an exemption would say "Demonstrates that ingredient 'does not cause an allergic response that poses a risk to human health.'"

I was wondering whether there is some regulatory precedence for what degree of risk, either in terms of severity or proportion of population affected that operationalizes that: no fatalities, no hospitalizations, or is just less than some amount in a population? Are there precedents? What would you use to accept a position that said that there would be no risk?

MS. COPP: Well, I think in a way
Steve Gendel answered your question when it was posed in a more general way, and that is, we are asking you to give us guidance on how to, for lack of a better term, do risk assessment evaluation, lower case risk assessment.

I'm sorry, I didn't put my name on the record, Catherine Copp. It seems to be a problem with all of us this late.
(General laughter.)
MS. COPP: In terms of applying what is the statutory standard, that would involve risk management, which could involve and likely involve more factors than simply the scientific information, so that is one piece of the answer.

The other piece is in implementing this statute we would seek to implement Congress' intention. I'm not in a position -- I am not counsel to the Center anymore, I was, some of you know that. We need to think about that along with what does that statutory language mean.

There are, just as a general rule -- and we have counsel here but \(I\) don't think he is going to answer the question any more than I am -- the general tools that we use for statutory construction would be available to us. I know that is not a specific answer, but that is really
because we are not there really yet.
```

    Do you want to ask a follow-up and see if
    I can avoid that one, too?
(General laughter.)
DR. SILVERSTEIN: No, I would just like to reserve the right to ask a follow-up. I need time to think about this.
(General laughter.)
DR. SILVERSTEIN: I guess I will make the inference that there isn't a lot of guidance in terms of high the risk might be or the nature of that risk?
MS. COPP: To the extent that there is guidance, maybe I can answer it this way. To the extent that there is guidance, I think as a scientist you would not find it very specific. Is that a fair response?
CHAIRMAN DURST: Mark, I think you had your hand up?
DR. NELSON: I just wanted to respond to your comment, Mr. Chairman, about the arbitrariness of the statutory approach, and to some extent it is. It is based on the scientific expertise of the

```
U.S. Congress.
(General laughter.)
DR. NELSON: I think also as pointed out
here and I think the results of the Threshold
Working Group's report this would give us a
starting point to deal with some of the allergens
potentially as we gather information, gather more
data to deal with the others. I think it is astarting point from an operational and a policystandpoint.
DR. KELLY: A related question. To my
mind, the statutory approach isn't so much an
approach as almost a loophole or a back door method
to set a relatively arbitrary threshold.
My impression is that the intent was to
say since there is no negligible allergen present
in the oils and since they are widely used, that
you could continue using them, not to say that the
level that might be present inadvertently in someis safe.
That is another approach that hasn't been
discussed, and that is to take foods which are
```

currently well tolerated by individuals with
allergies and determine what the levels of
contaminating allergens are and use that
information as a mechanism to approach what are
currently well-tolerated levels.
That is an approach that perhaps hasn't
received sufficient consideration because that is
an approach, for example, that we will be hearing
about tomorrow in relationship to celiac disease.
It is an approach that has been taking patients who
are currently taking foods with trace levels of
gluten but are doing very well clinically.
CHATRMAN DURST: Soheila?
DR. MALEKI: Soheila Maleki. I kind of
want to -- well, it maybe semi-controversial --
follow up what Marc, too, said. Yes, it may seem
like a box, kind of loophole type of thing again.
Actually, I posed the question originally, but I
never made any comments on this.
Anne, if you have any comments on this,
well, feel free to make them because I don't want
to speak for the consumer.

```
```

