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Lipoprotein lipase (LPL) is a key enzyme in lipoprotein metabolism and a major candidate gene for coronary
heart disease (CHD). The authors assessed associations between 7 LPL polymorphisms and lipid fractions and
CHD risk in population-based cohort, case-control, and cross-sectional studies published by January 2007. Meta-
analyses of 22,734 CHD cases and 50,177 controls in 89 association studies focused on the relations of the T-93G
(rs1800590), DON (rs1801177), G188E, N291S (rs268), Pvull (rs285), Hindlll (rs320), and S447X (rs328) poly-
morphisms to high density lipoprotein cholesterol, triglycerides, myocardial infarction, or coronary stenosis. Car-
riers of 9N or 291S had modestly adverse lipid profiles. Carriers of the less common allele of Hindlll or of 447X had
modestly advantageous profiles. The combined odds ratio for CHD among carriers was 1.33 (95% confidence
interval (Cl): 1.14, 1.56) for 9N, 1.07 (95% CI: 0.96, 1.20) for 291S, 0.89 (95% CI: 0.81, 0.98) for the less common
Hindlll allele, and 0.84 (95% CI: 0.75, 0.94) for 447X. For T-93G (odds ratio (OR) = 1.22, 95% CI: 0.98, 1.52) and
Pvull (OR = 0.96, 95% CI: 0.89, 1.04), there were null associations with lipid levels or CHD risk; information on
G188E was limited (OR = 2.80, 95% CI: 0.88, 8.87). The study of LPL genotypes confirms the existence of close
interrelations between high density lipoprotein cholesterol and triglyceride pathways. The influence of these ge-
notypes on CHD risk warrants further investigation.

cholesterol, HDL; coronary disease; epidemiology; genetics; lipoprotein lipase; meta-analysis; myocardial infarc-

tion; triglycerides

Abbreviations: CHD, coronary heart disease; Cl, confidence interval; HDL, high density lipoprotein; LPL, lipoprotein lipase.

BACKGROUND
Gene and gene variants

Lipoprotein lipase (LPL), an enzyme discovered in 1943
(1), plays a central role in lipid metabolism by hydrolyzing
triglyceride-rich particles in muscle, adipose tissue, and
macrophages, thereby generating free fatty acids and glyc-
erol for energy utilization and storage (2, 3). LPL also plays
a noncatalytic bridging role as a ligand in lipoprotein-cell
surface interactions and receptor-mediated uptake of lipo-
proteins (4) with its ability to bind simultaneously to both
lipoproteins and cell surface receptors. The LPL gene is

located on chromosome 8p22 (OMIM [Online Mendelian
Inheritance in Man] number 609708), spanning approxi-
mately 35 kilobases. It contains 10 exons and encodes
a 448-amino acid mature protein (5).

Since the identification of the first mutations in the LPL
gene (6), more than 100 mutations have been identified
(reviewed in detail by Murthy et al. (7)). Dozens of rare
mutations in the LPL gene have been associated with mark-
edly reduced enzyme activity (7), whereas several relatively
common variants have been associated with moderate
changes in LPL catalytic function. The highly polymorphic
LPL gene and its many single nucleotide polymorphisms in
both the coding region and the noncoding region have been
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studied for associations with lipids, lipoproteins, and ath-
erosclerosis. The majority of these mutations are rare, al-
though they can appear at a relatively high prevalence in
specific subpopulations (7).

No. of
Participants
351
479
391

Gene variant frequency

No. of

For this Human Genome Epidemiology review, we
searched MEDLINE and EMBASE using the search terms
specified in the Appendix for LPL gene polymorphisms that
may be associated with coronary heart disease (CHD). We
identified 7 that had been investigated in multiple studies.
Characteristics of these polymorphisms are summarized in
Web Figure 1 (posted on the Journal’s website (http://aje.
oxfordjournals.org/)), along with their proposed effects on
enzyme function, a protein model, and evidence of linkage
disequilibrium between pairs of variants. We estimated allele
frequencies from the control groups of all studies identified
for inclusion in this review (Table 1). The 2 restriction site
enzyme variants (Pvull and HindIII) have high allele frequen-
cies (46% and 29% respectively, for absence of the restriction
site). The X allele of the S447X polymorphism has an ap-
proximate frequency of 10%, and the other variants (T-93G,
DO9N, and N291S) have frequencies less than 3%, with the
E allele of the G188E variant having a frequency of only
0.03%, so that it does not qualify as a polymorphism.

We did not observe strong evidence of variation in allele
frequencies by ethnicity (Table 1). On the basis of data from
up to 1,758 white participants, strong linkage disequilibrium
was reported between S447X and HindIIl (D’ ~ 0.9), Pvull
(D' = 0.9), N291S (D" =~ 0.9), and DON (D’ ~ —0.9) and
between T-93G and DIN (D’ ~ 0.9); moderate linkage dis-
equilibrium was reported between Pvull and N291S (D' =~
0.7) and between HindIIl and Pvull (D’ ~ 0.6) (8-11). On
the basis of data from up to 467 East Asian participants,
strong linkage disequilibrium was reported for the relation
of S447X with HindIlIl (D’ =~ 0.9) and Pvull (D' ~ 0.9) and
for the relation of HindIIl with Pvull (D’ =~ 0.9); moderate
linkage disequilibrium of S447X with N291S (D" ~ 0.7) was
reported (12-14).

East Asians
Studies
0
0
0
0
3
4
3

38.9
9
12.2

Frequency,
%
NA
A
NA
28

9,112
15,494
8,445
15,179
1,928
3,540
16,612

No. of
Participants

Whites
No. of
Studies
5
16
2
16
11
15
18

Allele Frequency

1.5
0.03

Frequency,
%
48.5
29.1
10.3

10,395
18,518
8,595
24,145
8,807
5,244
20,233

No. of
Participants

No. of
Studies
7
21
3
2
18
23
26

Total
5.6-21.1

0.8-6.8

<0.1-8.0
20.1-46.5

Range,
0.7-6.1
32.5-55.1

Disease

CHD, including myocardial infarction, angina pectoris,
and stenosis of the coronary arteries, is a leading cause of
morbidity and mortality worldwide. It is the single most
common cause of death in both the United States and the
United Kingdom, accounting for approximately 1 in 5
deaths (15, 16). It is estimated that each year, about
700,000 Americans experience symptomatic first-ever myo-
cardial infarction; a further 175,000 have “‘silent”” myocar-
dial infarction (i.e., without the normal indicators such as
chest discomfort, shortness of breath, feeling dizzy or light-
headed, or numbness in 1 or both arms); and a further
500,000 have recurrent myocardial infarction (16). In the
United Kingdom, CHD accounts for more than 208,000
deaths each year (15). Although the death rate from CHD
fell by 33% in the United States from 1994 to 2004 (16) and
by 24% in the United Kingdom over the past decade (15),
the condition remains the leading killer worldwide, and its

1.6
21
0.03
9.9

Frequency,
%
2.5
46.3
28.7

Allele
G
N
E
S
restriction
X

restriction
site

Absence of
site

Allele Frequencies Based on Combined Data From the Control Groups of Studies Identified for Inclusion in This Human Genome Epidemiology Review
Absence of

Polymorphism
(rs No. if Available)
enzyme site
enzyme site
(rs320)
S447X (rs328)

(rs285)

Hindlll restriction
Abbreviations: NA, not available; rs, reference SNP.

T-93G (rs1800590)
DON (rs1801177)
G188E

N291S (rs268)
Pwvull restriction

Table 1.
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burden is rising rapidly in low- and middle-income coun-
tries, particularly in South Asia.

Established risk factors for CHD include modifiable factors
(such as smoking and high cholesterol and blood pressure
levels) and nonmodifiable factors (such as family history, eth-
nicity, and age). In recent decades, there has been investiga-
tion of the contribution of genetic variation to CHD risk, with
earlier studies having focused principally on candidate genes
involved in biologically plausible pathways associated with
lipids and hemostasis. For example, apolipoprotein E geno-
types have been shown to be linearly associated with concen-
trations of low density lipoprotein cholesterol and CHD risk
(17). More recently, with the completion of projects such as
the Human Genome Project (18, 19) and the International
HapMap Project (20, 21), genome-wide association studies
have used assumption-free approaches to investigate loci with
as-yet-unknown biologic relevance (22-28). One particular
locus, 9p21.3, has been replicated consistently (22, 23, 25,
27). A recent meta-analysis of the rs1333049 single nucleo-
tide polymorphism (as a proxy marker for 9p21.3) in 12,004
cases and 28,949 controls showed strong evidence of associ-
ation (odds ratio = 1.24, 95% confidence interval (CI): 1.20,
1.29) (29).

LPL is a key enzyme in lipoprotein metabolism, and it has
been studied in relation to CHD risk. Previous meta-analyses,
the most recent of which was published in 2006, have re-
ported associations of some common LPL variants with
circulating concentrations of LPL, high density lipoprotein
(HDL) cholesterol, and triglycerides, as well as, more ten-
tatively, CHD risk (30-33). However, the amount of data
available has increased more than 3-fold since the last com-
prehensive review was carried out in 1999 (33). Moreover,
interpretation of previous reviews has been complicated by
their combination of studies conducted in general popula-
tions and those involving families.

Objectives

Here we report results from a new meta-analysis of 89
association studies addressing the LPL gene, involving a total
of 22,734 CHD cases and 50,177 controls. This analysis up-
dates considerably the evidence available from previous meta-
analyses (30-33). We focused on 7 polymorphisms (the
T-93G, DON, GI88E, N291S, Pvull, Hindlll, and S447X
variants (Web Figure 1)) and concentrations of HDL choles-
terol and triglycerides as well as CHD outcomes (with initially
separate consideration of myocardial infarction and coronary
stenosis). The present report is restricted to population asso-
ciation studies (excluding family-based studies) and contains
an investigation of potential sources of heterogeneity.

METHODS

Selection criteria and identification of studies

Eligible for inclusion were all population-based cohort,
case-control, or cross-sectional studies reporting on associ-
ations of the 7 polymorphisms listed in Web Figure 1 with
concentrations of HDL cholesterol or triglycerides or with
risk of angiographic coronary stenosis (defined as at least
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50% stenosis of 1 or more major coronary arteries) or myo-
cardial infarction (defined by World Health Organization/
MONICA [Monitoring of Trends and Determinants in Car-
diovascular Disease] Study criteria). For lipid fractions, we
used only data from apparently healthy controls (i.e., people
without known coronary or other diseases or clinical lipid
abnormalities).

We performed electronic searches, not limited to the
English language, of MEDLINE, EMBASE, BIOSIS, the Sci-
ence Citation Index, GDPInfo, and LocusLink, as described
in the Appendix. The latest searches were undertaken on
January 10 and 11, 2007. All relevant articles identified in
the search were scanned on the basis of title, keywords, and
abstract (where available) by one of us (I. T. or G. S. S.) and
were rejected in the initial screening if the article clearly
did not meet the inclusion criteria. Where a title/abstract
could not be rejected with certainty, we obtained the full text
of the article for evaluation. We also reviewed the reference
lists of articles retrieved to identify relevant publications.

Data collection

The following data were extracted independently by 2 in-
vestigators, using a piloted data extraction form (with any
discrepancies being resolved by discussion and, when neces-
sary, adjudicated by a third reviewer): genotype frequencies,
by categorical disease outcome; mean values and standard
deviations for lipid fractions, by genotype; mean age of cases;
proportions of males and ethnic subgroups (defined as people
of European continental ancestry, East Asians, or others); fast-
ing status; genotyping and lipid assay methods; use of blind-
ing of laboratory workers to participant case-control status;
and linkage disequilibrium D’ values among the 7 variants
under study. For reports not printed in English, eligibility
decisions and data extraction were done jointly by 1 author
and a colleague fluent in the language of the report. We cal-
culated allele frequencies from control groups only for each of
the 7 variants, assuming Hardy-Weinberg equilibrium where
appropriate. We compared key study characteristics such as
location, time frame, authorship, and participant characteris-
tics to determine the existence of multiple publications from
the same study. In such situations, we extracted data from
each report and included the most complete and up-to-date
information in our analyses. Where important ambiguities
remained or when data could not be extracted for inclusion
in the meta-analysis, the investigators were contacted via let-
ter and e-mail. We contacted all investigators who reported on
CHD outcomes and investigators who reported on studies in-
volving at least 250 participants for lipid fractions.

Data analysis

Primary analyses were conducted using a dominant in-
heritance model to maximize the number of studies in-
cluded. Subsidiary codominant analyses used weighted
logistic regression or weighted linear regression for studies
in which this could be done, yielding either a per-allele odds
ratio for CHD outcomes or a per-allele difference in mean
lipid levels, respectively. Although triglyceride levels are
typically skewed, we analyzed values on the original scale,



1236 Sagoo et al.

following the majority of reported findings, which would
give appropriate confidence intervals for large sample sizes.
Where mean values and standard deviations were given for
log triglyceride levels, we converted these to approximate
means and standard deviations for crude levels, assuming
a log-normal distribution (34). For 3 studies (35-37) that
included separate groups of nonoverlapping coronary steno-
sis cases and nonfatal myocardial infarction cases with a sin-
gle (overlapping) control group, we analyzed the different
case groups separately and then combined them into a sin-
gle CHD group to avoid double-counting of individuals.
Deviance from Hardy-Weinberg equilibrium was assessed
for the controls of each study using the exact test if the
genotype frequencies were low (38). Since tests for deviation
from Hardy-Weinberg equilibrium are known to have low
power, we calculated the fixation coefficient, interpreting an
absolute value greater than 0.03 as an indication of serious
departure from Hardy-Weinberg equilibrium (38, 39). We
conducted meta-analyses of fixation coefficients to assess
global evidence of departure from Hardy-Weinberg equilib-
rium across studies (40).

Consistency of the gene effect sizes across studies was
assessed using a test for heterogeneity and the I statistic,
which describes the percentage of total variation in point
estimates attributable to genuine variation rather than sam-
pling error (41). Funnel plots and associated statistical tests
(42, 43) were used to assess assumptions involved in meta-
analysis and to explore the relation between precision and
magnitude of association. To assess reporting biases, we
compared CHD associations in published data with those
in data we obtained by correspondence.

In our meta-analyses, we used a standard approach,
weighting by precision and incorporating random effects to
allow for the variation in true associations across studies. We
included studies irrespective of any departure from Hardy-
Weinberg equilibrium. We explored interstudy variation by
prespecified subgrouping of studies according to sample size
(<100, 100499, >500), ethnicity (white, East Asian), source
of controls (general population, hospital), design (retrospec-
tive, prospective), and blinding of genotyping to clinical out-
come (yes, no, unknown). We conducted sensitivity analyses
by repeating the meta-analyses assuming recessive, codomi-
nant, and unspecified (44) inheritance models and by per-
forming fixed-effect meta-analyses. Results for lipid levels
are expressed as percentage changes, obtained by applying
absolute differences to mean levels in noncarriers, estimated
as the overall weighted mean (1.33 mmol/L for HDL choles-
terol, 1.53 mmol/L for triglycerides). All analyses were con-
ducted using our own STATA programs, with meta-analyses
performed using the “metan’ subroutine (45).

RESULTS

Characteristics of the included studies

Literature searches yielded 6,202 reports, of which 104
were eligible studies (8—14, 35, 36, 46—139). Eighty-nine of
these studies contributed to the present meta-analyses (8—14,
35, 36, 46-51, 67-139) (Web Tables 1 and 2 (http://aje.
oxfordjournals.org/)); 15 studies (52—-66) (comprising only

about 6% of potentially eligible CHD cases and only about
11% of potentially eligible controls) could not be included
because of insufficient detail and lack of response to corre-
spondence (Web Table 3 (http://aje.oxfordjournals.org/)).
Investigators in 2 studies (108, 140) provided unpublished
data. Study-level characteristics for the Stockholm Heart
Epidemiology Program have previously been published (140).

Fifty contributing studies on CHD outcomes (Web Table 1),
published between 1991 and 2006, were undertaken in a wide
range of geographic settings, with 80% (18,103 of 22,734) of
cases having white European continental ancestry, 3% (794 of
22,734) East Asian, and 17% (3,837 of 22,734) other ethnic
origins (including Mexican-American and Turkish). Nine
studies on CHD outcomes were prospective in design, includ-
ing nested case-control studies (and therefore involved ““in-
ternal” population controls), and 41 were retrospective, of
which 21 involved population-based controls, 14 involved
hospital-based controls, and 6 involved controls from other
sources (e.g., workplaces). Of 22 (44%) studies that re-
ported on blinding of laboratory workers to case-control
status, 17 reported blinded assessments of genotypes and
5 reported unblinded assessments.

Investigators in 73 contributing studies reported on lipid
fractions in articles published between 1989 and 2006 (Web
Table 2), including 45 (62%) prospective studies and 28
(38%) case-control studies (with only noncases contributing
to the lipid analyses). In 63 (86%) of these studies, inves-
tigators obtained blood samples after an overnight fast. Re-
striction fragment length polymorphism was the most
common genotyping method. Twenty-one (42%) studies of
CHD outcomes provided supplementary tabular data, as did
29 (40%) studies of lipid fractions.

In total, 9 studies were found to deviate from Hardy-
Weinberg equilibrium according to the exact test (P < 0.05)
(for studies of CHD outcomes: Qian et al. (124) (HindIIl),
Thorn et al. (132) (Pvull), Duman et al. (102) (Pvull),
Ferencak et al. (105) (D9N), and Keavney et al. (117)
(N291S); for studies of HDL cholesterol: Zhang et al. (50)
(HindIIl) and Duman et al. (102) (Pvull); for studies of
triglycerides: Zhang et al. (50) (HindIll) and Duman et al.
(102) (Pvull)). Approximately 60% of the studies had fixa-
tion coefficients with absolute values larger than 0.03. How-
ever, for all polymorphisms, they seemed evenly distributed
around O (results are presented in Web Table 4 (http://aje.ox-
fordjournals.org/) for those outcome groups with 3 or more
studies by polymorphism). Pooled meta-analysis of the fix-
ation coefficients for each polymorphism did not indicate
substantial overall deviation from Hardy-Weinberg equilib-
rium in a common direction (data not shown). Estimation of
the inheritance model from the data typically yielded esti-
mates with confidence intervals that did not exclude any of
the inheritance models. For 2 polymorphisms, however, the
recessive model was not supported by the data (not shown):
HindIIl (data for CHD outcomes only) and S447X (CHD
outcomes and HDL cholesterol data).

Associations with lipid fractions

Figure 1 summarizes associations of the variants under
study with HDL cholesterol and triglyceride concentrations;
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HDL Cholesterol Triglycerides

Study No. of  No. of No. of  No. of

Characteristics Studies Participants Studies Participants
T-93G

Cohort 4 8,970 —0— 3 4 8,955

2500 participants 2 9,652 —0— —_—0— 2 9,636

Fasting blood 6 1,865 —p— —_— 6 1,866

Combined 7 10,442 —0 — 7 10427
DON

Cohort 7 13,861 —— —{— 8 16,154

>500 participants 8 17,296 —L{— —(— 9 19,534

Fasting blood 1 7,871 — —0— 12 7,987

Combined 15 18,688 —— —@ 16 21,040
N291S

Cohort 9 14,231 D —A— 10 16,813

>500 participants 9 22,347 —0— —{ 10 24,874

Fasting blood 13 8,848 D — —0— 13 8,848

Combined 19 24,678 —@— —@— 20 27,204
Pvull

Cohort 7 3,116 P s 6 2,669

2500 participants 5 7,692 l g o 5 7,696

Fasting blood 19 4,936 I ol 19 4,885

Combined 20 9,764 | o e 20 9,713
Hindlll

Cohort 12 4,357 | o o 11 3,913

>500 participants 6 4,578 | o— —o] 5 3,293

Fasting blood 24 6,401 —o— 0 26 6,528

Combined 26 8,186 —e— Py 27 7,028
S447X

Cohort 20 37,569 [} N 18 35,724

>500 participants 18 41,527 1 IF 17 39,979

Fasting blood 27 31457 iy Ir 27 30,350

Combined 35 45079 () @ 34 43242

T I I I I I I T T I
Difference in mean plasma levels (mmol/L) -02 -0.1 0.1 ~0.3 -0.2 -0.1 01 02 03 04
T T T T T T T T T T T T
Percentage difference in plasma levels (%) -15-10 -5 5 10 -1%5-10 -5 0 5 10 15 20

Figure 1. Associations between plasma high density lipoprotein (HDL) cholesterol and triglyceride levels and 6 polymorphisms of the lipoprotein
lipase gene, grouped by various study characteristics using a dominant genetic model (carriers vs. noncarriers). Point estimates are shown as
unfilled boxes for subgroup analyses and filled circles for the overall combined analyses. Horizontal lines, 95% confidence interval.

results for each individual study are provided in Web
Figures 2 and 3 (http://aje.oxfordjournals.org/). Based on
data on up to 10,442 participants, carriers of the —93G
polymorphism had 0.02 mmol/L (95% CI: —0.02, 0.06)
lower HDL cholesterol levels and 0.02 mmol/L (95% CI:
—0.17, 0.21) lower triglyceride levels than noncarriers.
Based on data on up to 21,040 participants, carriers of the
9N polymorphism had 0.05 mmol/L (95% CI: 0.02, 0.09)
lower HDL cholesterol levels and 0.14 mmol/L (95% CI:
0.08, 0.20) higher triglyceride levels than noncarriers. Based
on data on up to 27,204 participants, carriers of the 291S
polymorphism had 0.12 mmol/L (95% CI: 0.07, 0.18) lower
HDL cholesterol levels and 0.19 mmol/L (95% CI: 0.12,
0.26) higher triglyceride levels than noncarriers. There
was evidence of considerable heterogeneity in the HDL cho-
lesterol findings (I2 = 83%, 95% CI: 75, 88; P < 0.0001).
Based on data on up to 9,764 participants, carriers of the less
common allele of the Pvull polymorphism had 0.03 mmol/L
(95% CI: 0.00, 0.05) higher HDL cholesterol levels and 0.04
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mmol/L (95% CI: —0.02, 0.10) lower triglyceride levels
than noncarriers. Based on data on up to 8,186 participants,
carriers of the less common allele of the HindIII polymor-
phism had 0.04 mmol/L (95% CI: 0.02, 0.06) higher HDL
cholesterol levels and 0.09 mmol/L (95% CI: 0.05, 0.14)
lower triglyceride levels than noncarriers. Based on data
on up to 45,079 participants, carriers of the 447X polymor-
phism had 0.05 mmol/L (95% CI: 0.04, 0.07) higher HDL
cholesterol levels and 0.15 mmol/L (95% CI: 0.12, 0.19)
lower triglyceride levels than noncarriers. We express these
findings in terms of percentage differences in lipid fractions
in Table 2.

Associations between each of these LPL variants and
lipid fractions did not vary materially when analyses using
recessive or codominant inheritance models were performed
or when results were grouped by study design, size, or fast-
ing status (Figure 1) or by ethnicity or source of controls
(not shown). Only the funnel plot of HindIII and triglycer-
ides suggested the possibility of an excess of smaller studies
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Table2. Comparison of Findings of the Present Meta-Analysis of Data From 89 Studies (Including 22,734 Cases of Coronary Heart Disease and
50,177 Controls) With Those Reported in Previous Meta-Analyses of 7 Polymorphisms in the Lipoprotein Lipase Gene, Obtained Using the Same
Genetic Model (Carriers vs. Noncarriers)

Previous Review Present Review
Variant % %
Study Details (Ref. No.) Difference 95% CI Study Details Difference 95% CI
or OR or OR
High Density Lipoprotein Cholesterol Levels®
T-93G Not done 7 studies; 10,442 participants —2° -5,2
D9N 4 studies; 4,999 participants (33) —6° -9, -8 15 studies; 18,688 participants —4 -7, -2
G188E  Not done® Not done
N291S 8 studies; 14,760 participants (33) -9 -11, -7 19 studies; 24,678 participants -9 —14, -5
Pvull Not done 20 studies; 9,764 participants 2 0,4
Hindlll Not done 26 studies; 8,186 participants 3 2,5
S447X 7 studies; 4,388 participants (33) 3 2,5 35 studies; 45,079 participants 4 3,5
Triglyceride Levels®
T-93G Not done 7 studies; 10,427 participants —1° -14, 11
DON 5 studies; 6,496 participants (33) 20 9, 33 16 studies; 21,040 participants 9 5,13
G188E  Not done® Not done
N291S 8 studies; 15,509 participants (33) 31 20, 43 20 studies; 27,204 participants 12 8,17
Pvull Not done 20 studies; 9,713 participants -3 -7,1
Hindlll Not done 27 studies; 7,028 participants —6 -9, -3
S447X 8 studies; 4,567 participants (33) -8 —-11, -4 34 studies; 43,242 participants -10 —-12, -8
Coronary Heart Disease®
T-93G Not done 7 studies; 5,045 cases, 1.22f 0.98, 1.52
10,395 controls
DON 3 studies; 979 cases, 1.4 08,24 20 studies; 9,792 cases, 1.33 1.14, 1.56
981 controls (33) 18,469 controls
G188E 1 study; 948 cases, 4.9 1.2,19.6 2 studies; 2,374 cases, 2.80 0.88, 8.87
9,259 controls (33) 8,445 controls
N291S 4 studies; 2,252 cases, 1.2 09,15 21 studies; 13,883 cases, 1.07 0.96, 1.20
10,235 controls (33) 24,145 controls
Pvull 6 studies; 2,618 sample size (30) 0.90 0.80, 1.01 18 studies; 8,407 cases, 0.96 0.89, 1.04
8,807 controls
Hindlll 6 studies; 2,259 sample size (30) 0.84 0.73,0.96 23 studies; 6,226 cases, 0.89 0.81, 0.98
5,244 controls
S447X 5 studies; 1,576 cases, 0.8 0.7,1.0 26 studies; 11,046 cases, 0.84 0.75, 0.94
1,862 controls (33) 20,223 controls

Abbreviations: Cl, confidence interval; OR, odds ratio.

@ Percent differences are given for high density lipoprotein cholesterol and triglyceride levels.

b Because the mean difference in high density lipoprotein cholesterol levels between carriers and noncarriers in the previous review was
reported as absolute difference in mmol/L (rather than as percentage difference), the percentage difference has been calculated using the mean
level in noncarriers from the present meta-analysis.

° By application of estimated mean difference to weighted mean value across noncarrier groups, confidence intervals reflect uncertainty in
absolute difference in means.

9 The G188E variant has been previously reviewed (30, 31, 33), but those reviews included familial studies and so have not been included here.

¢ Odds ratios are given for coronary heart disease.

f A random-effects meta-analysis will tend to have wider confidence intervals despite the larger set of cases and controls. Previous meta-
analyses used fixed-effect models (30) or unclear models (33), whereas our analysis uses random-effects models. This explains why our intervals
are not necessarily narrower despite large increases in data.

with striking results (data available upon request), but even Associations with CHD risk
for these analyses, findings in the larger studies (which may
be less prone to selective reporting) were very similar to the
overall results.

The odds ratios for myocardial infarction and coronary
stenosis were similar within each of the 7 variants studied

Am J Epidemiol 2008;168:1233—1246
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Controls
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No. of
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2,809
6,033

No. of
Studies
3
10
NA
10
5
9
11

9.5
17.2
0.0
4.6
2.6

12, %°
15.7

49.8*

95% CI
1.14, 1.56¢

122 0.98,1.52°
2.80 0.88,8.87
1.07 0.96, 1.20°
0.96 0.89, 1.04
0.89 0.81,0.98
0.84 0.75,0.94¢

OR
1.33

All CHD
No. of
Controls
10,395
18,469
8,445
24,145
8,807
5,244
20,223

No. of
Cases
5,045
9,792
2,374
13,883
8,407
6,226
11,046

No. of
Studies®

7
20

2
21
18
23
26

Variant
° The Copenhagen City Heart Study (37) was included in both CHD subgroup analyses, but only the nonoverlapping cases were combined for the total CHD analysis because both case

b Because studies such as the Copenhagen City Heart Study (37) contained multiple case groups that were combined in the overall analysis and because of the inclusion of studies with
groups shared the same overlapping control group (to avoid double counting of the control group).

CHD outcomes other than myocardial infarction or coronary stenosis (death by CHD), the number of studies is not always the sum of the 2 clinical subgroups.
9 In addition to the Copenhagen City Heart Study (37), the total CHD outcome also included data from an unpublished study (8) investigating death by CHD.

2 |2 is a measure of the extent to which between-study variation is not due to chance alone, on a scale from 0% to 100%.

Abbreviations: CHD, coronary heart disease; Cl, confidence interval; NA, not available; OR, odds ratio.

* P < 0.01 (P for heterogeneity).

T-93G
D9N
G188E
N291S
Pwull
Hindlll
S447X

Table 3. Relations Between 7 Lipoprotein Lipase Polymorphisms and Coronary Heart Disease Outcomes in a Meta-Analysis of Data From 89 Studies (Including 22,734 Cases and

50,177 Controls), Obtained Using a Dominant Genetic Model (Carriers vs. Noncarriers)
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(Table 3), encouraging combined analyses of the 2 CHD
outcomes. Using a dominant genetic model, the combined
odds ratios for total CHD were 1.22 (95% CI: 0.98, 1.52) for
carriers of —93G (5,045 cases, 10,395 controls), 1.33 (95%
CI: 1.14, 1.56) for carriers of 9N (9,792 cases, 18,469 con-
trols), 2.80 (95% CI: 0.88, 8.87) for carriers of 188E (2,374
cases, 8,445 controls), 1.07 (95% CI: 0.96, 1.20) for carriers
of 2918 (13,883 cases, 24,145 controls), 0.96 (95% CI: 0.89,
1.04) for carriers of the less common allele of Pvull (8,407
cases, 8,807 controls), 0.89 (95% CI: 0.81, 0.98) for carriers
of the less common allele of HindIIl (6,226 cases, 5,244
controls), and 0.84 (95% CI: 0.75, 0.94) for carriers of
447X (11,046 cases, 20,223 controls). There was little ev-
idence of heterogeneity among the available studies, with
the exception being studies of S447X (I> = 50%, 95% CI:
11, 67; P = 0.003). Findings did not change materially
when different inheritance models were assumed or when
studies were grouped by genotyping conditions, type of
controls used, or study size (Figure 2) or by ethnicity or
study design (not shown). We did not observe visual or
statistically significant asymmetry in funnel plots, and pub-
lished data were not consistently nearer to (or further away
from) the null than data obtained via correspondence. Web
Figures 4-9 (http://aje.oxfordjournals.org/) plot the avail-
able data for each variant.

DISCUSSION
Main findings

We have presented new data and meta-analysis results on
the associations between 7 LPL polymorphisms and HDL
cholesterol, triglycerides, and CHD risk in 22,734 cases and
50,177 controls from 89 studies, counting every study’s
cases and controls only once. Four variants (i.e., 9N, 2918,
HindlIll, and 447X) were each found to have modest and
opposing effects on HDL cholesterol and triglyceride con-
centrations, suggestive of close interrelations between path-
ways regulating these lipid fractions. Our findings, based on
3 times as many data as in earlier reviews (30, 31, 33),
indicate that the percentage increases in triglyceride levels
in carriers of the 9N or 2918 alleles are approximately 10%
for each, rather than the 20%-30% increases previously
reported (Table 2). In addition, the direction of association
between CHD risk and carrier status for each of 9N, 2918,
HindlIll, and 447X was consistent with their corresponding
lipid effects; however, as noted below, further data are
needed to enhance precision in this regard. Proposed guide-
lines for assessing the strength of evidence from gene-disease
association studies (141) would designate the findings as
showing “moderate” evidence for S447X, DON, and HindIIl
and “weak” evidence for the other 4 variants (Web Table 5
(http://aje.oxfordjournals.org/)).

Limitations

Although available data on each of 6 polymorphisms in
this review (i.e., all those but GI188E) comprised at least
5,000 CHD cases and at least 5,000 controls, there was still
insufficient power to reliably assess relative risk reductions
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Polymorphism No. of No. of Cases /
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Blinded studies 2 3,033/9,071
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2500 cases 4 4,267 /9,815 ~
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2500 cases 3 5,957 1 6,747 —{0—F
Combined 18 8,407 / 8,807 — @
Hindlll
Blinded studies 8 2,707 /1 1,995
General population controls 10 3,758 /3,332 [ S
2500 cases 4 3,284 /2,435 R S
Combined 23 6,226 / 5,244 —
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>500 cases 6 6,939/ 13,607 —
Combined 26 11,046/20223 ——@——
[ [ [
0.5 1 1.5 2

Odds Ratio (Carriers vs.Noncarriers)

Figure 2. Meta-analyses of studies of coronary heart disease and 7 polymorphisms of the lipoprotein lipase gene, grouped by various study
characteristics using a dominant genetic model (carriers vs. noncarriers). No filled circle is shown for G188E because the point estimate is off the
scale. Point estimates are shown as unfilled boxes for subgroup analyses and filled circles for the overall combined analysis. Horizontal lines,

95% confidence interval.

of approximately 10%—20% in carriers of these LPL alleles,
particularly for the less common polymorphisms studied.
Without data on individual participants, we were unable to
conduct more detailed analyses (e.g., studies of haplotypes
or investigation of any joint effects of gene-gene or gene-
lipid factors), direct assessment in these populations of the
impact of changes in lipid concentrations on CHD risk, or
“Mendelian randomization” analyses (142). Nonetheless, pre-
vious prospective studies of HDL cholesterol and triglycerides
suggest that even the modest changes observed in these lipid
concentrations related to LPL variants should be associated
with an approximately 10% change in the risk of CHD, if the
lipid markers have causal effects (143).

We did not find evidence of appreciable biases affecting
the results of the studies. Subgrouping of studies by charac-
teristics such as design, source of controls, laboratory meth-
ods, and use of blinding did not reveal any major
differences; and case definitions were comparable across
studies, so the likelihood of spectrum bias is low. However,

this does not mean that the studies were free from internal
biases. A more substantial potential problem is reporting
bias, in the form of either selective reporting of findings
within the identified studies or the omission of whole studies
with less striking findings. Although we reduced the scope
of publication bias through collation of unreported data by
correspondence with authors (and we noted that findings
were similar in previously unreported studies and in pub-
lished studies), it remains impossible to exclude entirely the
likelihood of reporting biases in literature-based meta-anal-
yses (144—146). Nevertheless, at least for the lipid outcomes
studied, any material effect seems unlikely given the scale
and consistency of the findings observed in the larger studies.

Biology

The observed associations between LPL variants and con-
centrations of HDL cholesterol and triglycerides may help
correlate genetic epidemiology with current understanding

Am J Epidemiol 2008;168:1233—1246
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of the LPL enzyme’s structure and function. The modestly
adverse lipid profile in carriers of 9N or 2918 is consistent
with reduced enzyme activity owing to amino acid substi-
tutions in the N-terminal domain of LPL (see Web Figure 1),
the part of the enzyme that is important for catalytic function
(147). In particular, the 291S variant (i.e., the Asn291Ser
substitution) is located in a heparin-binding cluster and may
therefore affect the interaction of LPL with the cell wall
glycosaminoglycans, whereas the 9N variant (the Asp9Asn
substitution) is situated near a glycosylation site that may
influence overall catalytic activity and secretion (148). By
contrast, the modestly advantageous lipid profile in carriers
of the 447X variant (the Ser447Ter substitution) is consis-
tent with the increased receptor binding affinity that this
2-amino acid truncation confers on the C-terminal domain
(see Web Figure 1), the part of the enzyme important for the
LPL-mediated uptake of lipoproteins by receptors on the cell
surface (149-151). This change could explain the altered
lipid profile seen in carriers of 447X, as well as in carriers
of the intronic HindIlIl variant, which is in nearly complete
linkage disequilibrium with 447X.

Potential public health impact and other implications of
results

Each of several LPL variants, known to be in linkage
disequilibrium, has modest effects on HDL cholesterol
and triglyceride concentrations, as well as modest associa-
tions with CHD risk in directions consistent with their re-
spective lipid effects. At present, the potential public health
impact is limited, given the small magnitude of these asso-
ciations. Studies involving at least 10,000 cases and a similar
number of controls with concomitant information on genetic
and lipid markers would be required to enhance precision
appreciably in relation to CHD and to facilitate informative
Mendelian randomization analyses. Such studies would also
permit investigation of any interactions among LPL (and
other genetic) variants and assessment of haplotype-based
associations.

CONCLUSION

The modest and opposing effects of each of 4 LPL var-
iants on HDL cholesterol and triglyceride concentrations
underscore the close interrelations between these lipid path-
ways. Although the associations of these LPL genotypes with
CHD risk each pointed in directions consistent with their
respective lipid effects, larger genetic studies will be required
to judge the relevance of these lipid markers to CHD.
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APPENDIX
Search Strategy Used in the Updated Meta-Analysis

The MEDLINE search strategy using PubMed for assess-
ing the association between lipoprotein lipase (LPL) polymor-
phisms and coronary heart disease was the following:
(lipoprotein lipase* OR lipoprotein lipase[MeSH] OR LPL*
OR lipid*) AND (gene* OR polymorphi* OR genetic* OR
mutation* OR allel* OR genotyp*) AND (coronary stenosis*
OR coronary stenosisfMeSH] OR coronary artery disease*
OR coronary artery disease[MeSH] OR CAD* OR coronary
arteriosclerosis* OR coronary arteriosclerosisfgMeSH] OR
myocardial infarction®* OR myocardial infarction[MeSH]
OR MI OR coronary heart disease® OR coronary heart dis-
ease[MeSH] OR ischemic heart disease* OR ischemic heart
disease[MeSH] OR myocardial ischemia* OR myocardial
ischemia[MeSH]).

The search strategy for assessing the associations between
LPL polymorphisms and measures of lipid metabolism was the
following: (lipoprotein lipase* OR lipoprotein lipase[MeSH]
OR LPL* OR lipid*) AND (gene* OR polymorphi* OR ge-
netic* OR mutation* OR allel* OR genotyp*) AND (triglyc-
eride* OR triglyceridesfMeSH] OR TG OR high density
lipoprotein OR high density lipoproteinflMeSH] OR HDL
OR intermediate density lipoprotein OR intermediate density
lipoprotein[MeSH] OR IDL OR low density lipoprotein OR
low density lipoproteinfMeSH] OR LDL OR very low density
lipoprotein OR very low density lipoprotein[fMeSH] OR
VLDL OR cholesterol OR cholesterol[MeSH] OR hyperlip-
idemia OR hyperlipidemia[MeSH] OR hypertriglyceridaemia
OR hypertriglyceridaemia[MeSH]).

Searches of other databases translated these strategies
term by term, using equivalent thesaurus terms as
appropriate.
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