Overview of Biomaterials Characterization

Buddy D. Ratner, Ph.D.

University of Washington Engineered Biomaterials (UWEB)

University of Washington, Box 355061

Seattle, WA 98195 USA

University of Washington Engineered Biomaterials (UWEB)

an engineering research center

Singapore-University of Washington Alliance

NESAC/Bio (NIBIB)

Workshop

In Vitro Analyses of Cell/Scaffold Products

Scaffolds are made of biomaterials!

Porous

Gels

Decellularized tissue

Mechanical/Thermal Properties

stress-strain strain to failure flex fatigue testing over time viscoelastic properties DSC/TGA

Morphological Characteristics

light microscopy scanning electron microscopy atomic force microscopy permeation of aqueous fluids BET

Chemical Characteristics

- Surface electron spectroscopy for chemical analysis (ESCA) static secondary ion mass spectrometry (SIMS) contact angle infrared surface studies
- Bulk infrared spectroscopy NMR

Chemical Stability

in aqueous media in enzyme solutions in oxidant solutions

Biological

cell attachment/proliferation endotoxin

There are many possibilities for characterization of scaffolds

multi-parameter
characterization will be
needed

 not all methods will be relevant or possible in every case

physical Core Issues in Scaffold Characterization

- 1. Match the mechanical properties to the tissue
 - flexing environment?
 - relatively static environment?
 - bone, cartilage, skin, heart, liver or brain?
- 2. Pore size, pore geometry and pore size distribution
- 3. Interconnectivity and % of void space
- 4. Cell interactions (surface properties)
- 5. Controlled release of active molecules?
- 6. Biodegradation (rate, mechanics vs time, cytocompatibility)
- 7. Contamination issues?

Mechanical Properties

stress-strain strain to failure flex fatigue testing over time viscoelastic (dynamic mechanical) properties

Modulus matching

Decay of properties during degradation

Ultimate strength and toughness

Burst pressure for tubular & hollow structures

The mechanical properties of acellular dermal matrices (ADM) after a 4-week in vivo implantation in a ventral hernia repair model were evaluated under tension in an ElectroForce 3200 biomaterials test instrument with DMA Two scaffold examples wil be used throughout this talk:

Decellularized natural tissue

Sphere templated scaffolds

Sphere-Templated Porous Hydrogels: The Steps to "6 S"

6S Vascular Density vs. Pore Diameter

Andrew Marshall, et al

6S fabrication of fibrin scaffolds

Scanning Electron Microscopy

Digital Volumetric Imaging

Michael Linnes, Ceci Giachelli, Buddy Ratner

90 80 70 Young's Modulus (kPa) 60 50 40 30 20 10 0 ■50mg/mL 100mg/mL □ 150mg/mL □ 200mg/mL

Change in Young's Modulus vs. Fg concentration

Michael Linnes

Genipin Crosslinking

Gardenia jasminoides Ellis

http://www.wou.edu/las/physci/ch350/Projects_2006/Vaandering/Genipin.htm

Morphological Characteristics

light microscopy scanning electron microscopy atomic force microscopy permeation of aqueous fluids BET

Darcy's Law

Henry Philibert Gaspard Darcy, (1803-1858)

The rate of flow of liquids through porous media

$$Q = kS \ \underline{H + e}{e}$$

where

- Q = volume of liquid/unit time,
- S = porous bed area,
- e = porous bed thickness,
- H = height of the liquid on the bed
- k = coefficient (nature of the bed, etc.)

http://biosystems.okstate.edu/darcy/

To characterize interconnectivity

 We can use a correlation to determine the critical throat radius from measurable properties.*

$$r_{c} = \text{critical throat radius}$$
$$(\sim 1.4 \ \mu\text{m})$$
$$k = \text{hydraulic permeability}$$
$$(\sim 1.3 \times 10^{-11} \text{ cm}^{2})$$
$$\alpha = \text{tortuosity} (\sim 1.2)$$
$$\phi = \text{porosity} (\% 68)$$

$$r_c = \sqrt{\frac{226k\alpha}{\phi}}$$

*Katz, A.J. and Thompson, A.H., *Phys. Rev. B*, **34**, 8179 (1986)

"Quantitative Characterization of Sphere-templated Porous Biomaterials," A.J. Marshall and B.D. Ratner, <u>AIChE Journal</u>, Vol. 51, No. 4, 1221-1232, 2005.

Chemical Characteristics

- Surfaceelectron spectroscopy for chemical analysis (ESCA)
static secondary ion mass spectrometry (SIMS)
contact angle
infrared surface studies
- Bulkinfrared spectroscopyNMRSize exclusion chromatographyThermal analysis

Surface methods provide information relevant to biological interactions and to contamination issues

Bulk methods are critical for complete characterization, but are of a more routine nature

Basic Repertoire of Surface Analysis Tools

two names for the same technique

Electron Spectroscopy for Chemical Analysis (ESCA)

X-ray Photoelectron Spectroscopy (XPS)

Of all the techniques used in contemporary surface science and surface analysis, ESCA is probably the

most widely

What Information Can We Obtain With ESCA?

in the uppermost 50-100Å:

- 1. all elements present except H and He
- 2. amount of each element (±10%, under good conditions, ±1%)
- 3. molecular environment or oxidation state

 $[e.g., \underline{C}, (\underline{C}H_2)_n, -\underline{C}-OH, -\underline{C}H=O, -\underline{C}F_3]$

- 4. non-destructive depth profile
- 5. shake-up and shake-off information
- 6. inelastic scattering and background information (information on films and overlayers)
- 7. Elemental imaging (10µm spatial resolution)

Secondary Ion Mass Spectrometry (SIMS) Time-of-flight (ToF) SIMS; Static SIMS

Probably the most information-rich of the modern surface analysis methods

Special Advantages of Static SIMS

- High mass resolution (precise identification)
- Very high analytical sensitivity
- High spatial resolution (0.1µm x,y resolution)
- Shallow sampling depth (10-15Å)
- Depth profiling in uppermost layers (recent)

Contact Angle (θ) The \$5 surface analysis method

- Can be performed in any lab
- •Very surface sensitive
- Many artifacts
- Hard to interpret
- Minimally useful for scaffolds

The application of these surface methods to scaffolds

Porous pHEMA hydrogel templated with 40µm beads

Excellent healing sub-Q, percutaneous, in heart muscle, in vaginal wall, but

this is not biodegradable!

Acc.∨ Spot Magn Det WD ⊨ 750 ∨ 3.0 104x SE 6.6 SIS XL.TIF

200 µm

Tissue Engineered Cardiac Muscle

Funded through the NHLBI BRP (BEAT)

PCL Macroinitiator

- PCL diol functionalized using α bromoisobutyrl bromide
- Characterized with ¹H NMR found to be ~80% functionalized

Degradable pHEMA-b-PCL Hydrogels

Precise block lengths by ATRP

- 5 kDa pHEMA is water soluble
- 2 crosslinks per chain

ESCA wide scan 4.5% PCL x-linker No Br No Cu

Adsorb gelatin as an attachment factor and an N signal appears

ESCA wide scan

13.5% PCL x-linker

Si contamination is noted

A p(HEMA-co-MAA) copolymer for EDC/NHS mediated protein immobilization

N-(3 dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC)

N-hydroxy succinimide (NHS)

S. Curtin, D. Mortisen

XPS (C1s) confirms covalent bond formation

Amide bond formation appears at 288.2 eV as reaction time is increased

Disappearance of carboxyl peak (O=C-O) at 289 eV indicates reaction at methacrylic acid

S. Curtin, D. Mortisen

N1s signal increases with EDC/NHS activation time and MAA content

SIMS Spectra Encode for a Huge Amount of Information

ToF-SIMS spectra of PCL scaffolds, positive mode

We can generate huge amounts of data!

How can we convert data into useful information? Multivariate analysis methods, sometimes called "chemometrics"

Allows us to identify trends that might be hidden in the data Makes use of large amounts of data Uses all the data, not just that which we think is important A hypothesis generator!

No clear relationship between points

A high correlation between points

Multivariate Calibration Methods for Quantitative Spectral Analysis

CLA - Classical Least-Squares

ILA - Inverse Least-Squares MLR - multiple linear regression

PCA - Principal Component Analysis

PCR - Principal Component Regression PCA followed by a regression step

PLS - Partial Least-Squares

Maximum Entropy Method

Artificial Neural Networks

TOF-SIMS with PCA easily distinguishes linker chemistries, and protein immobilization

1 - pHEMA + protein

2 - NHS/EDC, no protein

A 3 - NHS/EDC + protein, pH 9

D. Mortisen, S. Curtin J. Apte, C. Cezar, NESAC/BIO (UW)

Polycaprolactone ($C_6H_{10}O_2$):

- [M+H⁺] @ m/z=115
- C₆H₉O⁺ @ m/z=97
- C₅H₉⁺ @ m/z=69
- C₆H₁₁O₃⁻ @ m/z=131

PHEMA :

 $C_2H_5O^+$ @ m/z=45 $C_2H_3O_2^-$ @ m/z=59

Copper :

⁶³Cu⁺ @ m/z=63 (69%) ⁶⁵Cu⁺ @ m/z=65 (31%)

Bromine :

⁷⁹Br⁻ @ m/z=79 (51%)

⁸¹Br⁻ @ m/z=81 (49%)

Remarks:

Positive ionization probability of Br is probably very low...

+ ⁶³CuO and ⁶⁵CuO @ m/z 79 and 81 in the negative mode ! Isotopic ratios were used to distinguish those signals.

PCA peak assignments Polycaprolactone (PCL)-containing scaffolds

Samples studied

ND - Nondegradable (TEGDMA) slab

NDP- nondegradable porous

NDG- Nondegradable slab + gelatin

D4.5 - Degradable PCLX 4.5 mol% slab

DP - Degradable PCLX 4.5 mol% Porous

D 4.5 G - Degradable PCLX 4.5 mol% slab + gelatin

D 13.5 - Degradable PCLX 13.5 mol% slab

PCA on PCL specimens – Positive ion mode

Some conclusions about PCI-containing scaffolds:

there is residual copper only in the nondegradable samples.

Br was found

There are polycaprolactone groups on the surface of degradable gels.

ToF-SIMS images, **positive** mode, 100x100µm² Sample: DP2

Do They Really Degrade?

Measure Degradation 3 Ways

-Swelling Ratio swelling ratio = $\frac{m_{WF}}{m_F}$

– Tensile Modulus

- Mass Loss % mass loss =
$$\frac{m_I - m_F}{m_I} \times 100$$

Swelling Ratio **f** For Degradable Gels

Tensile Modulus For Degradable Gels

PCL Gels: Mass Loss at Two Enzyme Concentrations

Degradation Products are NOT Cytotoxic

• MTT colorimetric method that measures cell proliferation

Scanning Electron Micrographs of Surfaces of Decellularized Tissues

ToF SIMS Scores for Decellularized Tissues

Chris Barnes

ToF SIMS Loadings for Decellularized Tissues

Conclusions

We have an impressive tool chest of methods to bring to bear on scaffold characterization

We can distinguish scaffold types, observe degradation and measure contamination

What do we really need for optimal tissue engineering?

Acknowledgements:

Investigators, researchers and students

The NIH for funding BEAT and NESAC/Bio

A*Star for funding the SUWA initiative

The NSF for nucleating BEAT through UWEB

An NSF Engineering Research Center

