NASA Explorer Schools Pre-Algebra Unit
 Lesson 2 Student Workbook

ANSWER GUIDE

Solar System Math

Comparing Mass, Gravity, Composition, \& Density

What interval of values for the mass of a planet or moon has surface conditions suitable for human exploration?

Date: \qquad

Pre-Lesson Activity

Make Observations!

1. Without touching them, look at the three containers and notice their similarities and differences. List your observations below:

same size
same shape
different colors

2. Now observe the containers more closely by touching them and moving them, but do not open them. Write your new observations below:

different weight

different temperature, sound, etc
same texture
3. Measure the weight of each of the three containers. Be sure to record your unit of measurement. Answers will vary but should be recorded as ounces, pounds, grams, kilograms, etc. If possible, use a triple-beam balance to measure the weight in grams.

Container A

$\overline{\text { Container B }}$
Container C
4. Using a single finger, try moving each container one at a time. Record which container is easiest and which is hardest to move. Answers will vary based on the contents of the containers; however, the container with air should be the easiest to move.

Easiest to move
In between
Hardest to move
5. Imagine you are on a spacecraft orbiting Earth with the same containers. If you had to move these containers with just one finger, which container (if any) would be the most difficult to move and which would be the easiest? Answers will be the same as in question 4 , with the air-filled container being the easiest to move.

Name:
Date: \qquad

Mass vs. Weight

MASS is the amount of "stuff" (MATTER) in an object.
WEIGHT is a measurement of the force of gravity on the mass of an object.
6. Would the weight of these three containers change in space?

Yes, because the containers would be nearly weightless in microgravity.
No, because
7. Would the mass of these three containers change in space?

Yes, because \qquad
No, because the mass of the containers would remain the same.

Draw Conclusions!

8. Objects that have the same size and shape may weigh different amounts and have different masses based on their matter or composition.
9. An object's weight will (change / stay the same) in space and on other planets, and its mass will (change / stay the same) in space and on other planets.
10. Objects of greater mass are (easier / harder) to move than objects of lesser mass.
11. Statement 10 would be (true / false) in space and on other planets and moons.

Make a Guess!

12. Based on the observations you have made and the conclusions you have drawn, guess the composition (or content) of each container. Answers will vary based on the contents you selected (water, sand, air, etc).

NOTE: Be sure students recognize that the least massive container is full of AIRit is not empty!

Container B

Name:
Date:

Planetary Mass and Human Exploration

Before you begin gathering data about the planets, you should make a hypothesis (or educated guess) as to which planets or moons have a mass that will support human exploration. Use the following questions to help you formulate your hypothesis.

Student answers will vary and at this point in the lesson, all reasonable answers should be accepted.

Name:
Date:

Minimum and Maximum Values

Imagine you are in Chicago in January. During one day, you check the outside temperature each hour between 7am and 7pm.

The temperature readings in degrees Fahrenheit are:
$6^{\circ}, 5^{\circ}, 7^{\circ}, 10^{\circ}, 11^{\circ}, 11^{\circ}, 14^{\circ}, 16^{\circ}, 18^{\circ}, 20^{\circ}, 16^{\circ}, 12^{\circ}, 10^{\circ}$
Answers will vary, but sample responses are shown below.

1. What is the minimum (least) temperature reading? Why?
minimum reading: 5°
5° is the lowest temperature recorded between 7 am and 7 pm .
2. What is the maximum (greatest) temperature reading? Why?
maximum reading: 20° 20° is the highest temperature recorded between 7 am and 7 pm .
3. Based on the minimum and maximum temperatures, write a number interval that contains all of the temperature readings.

$$
5^{\circ} \leq x \leq 20^{\circ}
$$

4. Create a number line showing your interval of values. Remember to label your line in uniform (equal) segments.

This sample response determined an interval of values from 5 to 20 degrees. Any number between 5 and 20, including 5 and 20, is acceptable.

Name:
Date:

Circles and Spheres

Think about the differences and similarities between circles and spheres, and then answer the questions below.

1. List three objects that are spheres. Answers will vary. (examples below)
\qquad
\qquad
\qquad
2. Draw two lines: one line to indicate the diameter of the circle and one line to indicate the diameter of the sphere.

Circle

Sphere

3. Draw two lines: one line to indicate the circumference of the circle and one line to indicate the circumference of the sphere.

4. A great circle is a circle on the surface of a sphere that divides the sphere into two equal hemispheres. Great circles have the same \qquad circumference as the sphere.

5. ALL lines of longitude are great circles.
6. ONE line of latitude is a great circle. It is called the equator.

Name:
Date:
Lesson 2 Planet Data Sheet - Inner Planets

Planet	Mercury	Venus	Earth	Mars
Diameter in km	4,878 km	$12,104 \mathrm{~km}$	12,755 km	6,790 km
Circumference in km	15,329 km	38,025 km	40,075 km	21,344 km
Mass in kg	$33 \times 10^{22} \mathrm{~kg}$	$487 \times 10^{22} \mathrm{~kg}$	$597 \times 10^{22} \mathrm{~kg}$	$64.2 \times 10^{22} \mathrm{~kg}$
Density in $\mathrm{kg} / \mathrm{m}^{3}$	$5,427 \mathrm{~kg} / \mathrm{m}^{3}$	$5,243 \mathrm{~kg} / \mathrm{m}^{3}$	$5,515 \mathrm{~kg} / \mathrm{m}^{3}$	$3,933 \mathrm{~kg} / \mathrm{m}^{3}$
Gravity in m/s ${ }^{2}$	3.70 m/s ${ }^{2}$	$8.87 \mathrm{~m} / \mathrm{s}^{2}$	$9.80 \mathrm{~m} / \mathrm{s}^{2}$	$3.71 \mathrm{~m} / \mathrm{s}^{2}$
Composition (rocky, frozen, gaseous, etc)	rocky	rocky	rocky	rocky
Surface fly by description	barren, no atmosphere	mountainous, harsh atmosphere	water, life, atmosphere	dry, rugged, some atmosphere

Name:
Date:
Lesson 2 Planet Data Sheet - Outer Planets

					Saturn

Name:
Date:

Lesson 2 Planet Data Sheet - Moons

Planet	The Moon	Titan	10	Europa	Triton
Diameter in km	3,476 km	5,150 km	3,630 km	3,138 km	2,700 km
Circumference in km	10,916 km	16,171 km	11,398 km	9,583 km	8,748 km
Mass in kg	$7.35 \times 10^{22} \mathrm{~kg}$	$13.5 \times 10^{22} \mathrm{~kg}$	$8.93 \times 10^{22} \mathrm{~kg}$	$4.80 \times 10^{22} \mathrm{~kg}$	$2.14 \times 10^{22} \mathrm{~kg}$
Density in kg/m ${ }^{3}$	$3,350 \mathrm{~kg} / \mathrm{m}^{3}$	$1,881 \mathrm{~kg} / \mathrm{m}^{3}$	$3,530 \mathrm{~kg} / \mathrm{m}^{3}$	$3,010 \mathrm{~kg} / \mathrm{m}^{3}$	$2,050 \mathrm{~kg} / \mathrm{m}^{3}$
Gravity in $\mathbf{m} / \mathbf{s}^{2}$	$1.62 \mathrm{~m} / \mathrm{s}^{2}$	$1.35 \mathrm{~m} / \mathrm{s}^{2}$	$1.80 \mathrm{~m} / \mathrm{s}^{2}$	$1.31 \mathrm{~m} / \mathrm{s}^{2}$	$0.78 \mathrm{~m} / \mathrm{s}^{2}$
Composition (rocky, frozen, gaseous, etc)	rocky	crust, icy watery mantle, rocky core	crust, molten \& solid mantle, iron core	watery icy crust, rocky, metal core	crust, icy methane, small core
Surface flyby description	rocky, barren, no atmosphere	rocky, barren, harsh atmos	rocky, volcanic, no atmosphere	rocky, maybe water, no atmosphere	rocky, barren, cold, frozen
Parent Planet (see "planetary symbol")	Earth	Saturn	Jupiter	Jupiter	Neptune

Name:
Date:

Scale Model: Mass

Calculate the mass of each planet and moon, and then determine the number of cotton balls that will be needed for each planet (and moon) in the scale model.

Planet / Moon	Mass in $\mathbf{k g} \times 10^{\mathbf{2 2}}$	Mass in scientific notation (kg)	Number of cotton balls based on Earth's mass
Mercury	$33.0 \times 10^{22} \mathrm{~kg}$	$3.30 \times 10^{23} \mathrm{~kg}$	0.055 (~ 1/20 or half of one-tenth)
Venus	$487 \times 10^{22} \mathrm{~kg}$	$4.87 \times 10^{24} \mathrm{~kg}$	0.816 (8/10 or 4/5)
Earth	$597 \times 10^{22} \mathrm{~kg}$	$5.97 \times 10^{24} \mathrm{~kg}$	1.0 cotton ball
Mars	$64.2 \times 10^{22} \mathrm{~kg}$	$6.42 \times 10^{23} \mathrm{~kg}$	$0.108(\sim 1 / 10)$
Jupiter	$190,000 \times 10^{22} \mathrm{~kg}$	$1.90 \times 10^{27} \mathrm{~kg}$	318.258
Saturn	$56,800 \times 10^{22} \mathrm{~kg}$	$5.68 \times 10^{26} \mathrm{~kg}$	95.142
Uranus	$8,680 \times 10^{22} \mathrm{~kg}$	$8.68 \times 10^{25} \mathrm{~kg}$	14.539
Neptune	$10,200 \times 10^{22} \mathrm{~kg}$	$1.02 \times 10^{26} \mathrm{~kg}$	17.085
Pluto	$1.25 \times 10^{22} \mathrm{~kg}$	$1.25 \times 10^{22} \mathrm{~kg}$	0.002 (very small piece)
Moon	$7.35 \times 10^{22} \mathrm{~kg}$	$7.35 \times 10^{22} \mathrm{~kg}$	0.012
Titan	$13.5 \times 10^{22} \mathrm{~kg}$	$1.35 \times 10^{23} \mathrm{~kg}$	0.023
lo	$8.93 \times 10^{22} \mathrm{~kg}$	$8.93 \times 10^{22} \mathrm{~kg}$	0.015
Europa	$4.80 \times 10^{22} \mathrm{~kg}$	$4.80 \times 10^{22} \mathrm{~kg}$	0.008
Triton	$2.14 \times 10^{22} \mathrm{~kg}$	$2.14 \times 10^{22} \mathrm{~kg}$	0.004

Name:
Date:

Scale Model: Circumference

Calculate the scale circumference of each planet (and moon) based on Pluto's scale circumference being equal to 1 centimeter.

Planet / Moon	Diameter in km	Circumference in km	Scale circumference in cm
Mercury	4,878 km	15,329 km	2.1 cm
Venus	$12,104 \mathrm{~km}$	$38,025 \mathrm{~km}$	5.3 cm
Earth	$12,755 \mathrm{~km}$	$40,075 \mathrm{~km}$	5.5 cm
Mars	6,790 km	$21,344 \mathrm{~km}$	3.0 cm
Jupiter	142,796 km	449,179 km	62.1 cm
Saturn	120,660 km	$378,675 \mathrm{~km}$	52.4 cm
Uranus	$51,118 \mathrm{~km}$	160,592 km	22.2 cm
Neptune	$49,528 \mathrm{~km}$	$155,597 \mathrm{~km}$	21.5 cm
Pluto	2,300 km	7,232 km	1.0 cm
Moon	$3,476 \mathrm{~km}$	$10,916 \mathrm{~km}$	1.5 cm
Titan	5,150 km	$16,171 \mathrm{~km}$	2.2 cm
lo	3,630 km	11,398 km	1.6 cm
Europa	$3,138 \mathrm{~km}$	9,583 km	1.3 cm
Triton	2,700 km	8,748 km	1.2 cm

Name:
Date:

Scale Model: Observations

Quietly walk around the room and observe the scale model(s) that you and your classmates created. Gently use your hands to feel the differences in the models of the planets. Read the information on the cards.

What do you notice or wonder about:

- the relationship between how the planets feel and their compositionf?
- the relationship between how the planets feel and their mass?
- the relationship between how the planets feel and their gravity?

What else do you notice or wonder? Write your observations and questions in the spaces below. Answers will vary. Sample responses are shown below.

I Notice	I Wonder
Rocky planets have more tightly-	Do gaseous planets have a surface?
compacted cotton balls (more dense)	
Larger planets have more mass.	Do planets with greater mass
Larger planets have more gravity.	

Based on what you have observed and learned from the scale model and the information on the cards, which planets do you think would be best for humans to visit? Why?

Answers will vary. Sample response...
I think it would be best to visit rocky planets because they have a solid surface,
are closer to Earth, have a lesser mass, and have a lesser gravity.

Name:
Date:

Volume and Density

If you know the volume and mass of an object, then you can calculate its density. Follow the steps below to first calculate the volume of each planet and then to calculate each planet's density. Student answers may vary slightly based on rounding.

Note: In this exercise, we will assume that each planet is a perfect sphere.
Step 1: Refer to the Lesson 2 Planet Data Sheets to find a planet's diameter in km.
Step 2: Divide the diameter by 2 to find a planet's radius in km .
Step 3: Convert kilometers to meters using a unit ratio.
Step 4: Solve for the volume of a planet using the formula: volume $=\frac{4 \pi r^{3}}{3}$
Step 5: Solve for the density of a planet using the formula: density $=\frac{\text { mass in } \mathrm{kg}}{\text { volume in } \mathrm{m}^{3}}$

Planet (diameter)	Volume $\left(\mathbf{m}^{3}\right)$	Mass $(\mathbf{k g ~ x ~ 1 0 2 2})$	Density $\left(\mathbf{k g} / \mathrm{m}^{3}\right)$
Mercury $(4,878 \mathrm{~km})$	$\approx 6.08 \times 10^{19} \mathrm{~m}^{3}$	$33.0 \times 10^{22} \mathrm{~kg}$	$\approx 5,428 \mathrm{~kg} / \mathrm{m}^{3}$
Venus $(12,104 \mathrm{~km})$	$\approx 9.29 \times 10^{20} \mathrm{~m}^{3}$	$487 \times 10^{22} \mathrm{~kg}$	$\approx 5,242 \mathrm{~kg} / \mathrm{m}^{3}$
Earth $(12,755 \mathrm{~km})$	$\approx 1.08 \times 10^{21} \mathrm{~m}^{3}$	$597 \times 10^{22} \mathrm{~kg}$	$\approx 5,528 \mathrm{~kg} / \mathrm{m}^{3}$
Mars $(6,790 \mathrm{~km})$	$\approx 1.64 \times 10^{20} \mathrm{~m}^{3}$	$64.2 \times 10^{22} \mathrm{~kg}$	$\approx 3,915 \mathrm{~kg} / \mathrm{m}^{3}$
Jupiter $(142,796 \mathrm{~km})$	$\approx 1.52 \times 10^{24} \mathrm{~m}^{3}$	$190,000 \times 10^{22} \mathrm{~kg}$	$\approx 1,250 \mathrm{~kg} / \mathrm{m}^{3}$
Saturn $(120,660 \mathrm{~km})$	$\approx 9.20 \times 10^{23} \mathrm{~m}^{3}$	$56,800 \times 10^{22} \mathrm{~kg}$	$\approx 617 \mathrm{~kg} / \mathrm{m}^{3}$
Uranus $(51,118 \mathrm{~km})$	$\approx 7.00 \times 10^{22} \mathrm{~m}^{3}$	$8,680 \times 10^{22} \mathrm{~kg}$	$\approx 1,240 \mathrm{~kg} / \mathrm{m}^{3}$
Neptune $(49,528 \mathrm{~km})$	$\approx 6.36 \times 10^{22} \mathrm{~m}^{3}$	$10,200 \times 10^{22} \mathrm{~kg}$	$\approx 1,604 \mathrm{~kg} / \mathrm{m}^{3}$
Pluto $(2,300 \mathrm{~km})$	$\approx 6.37 \times 10^{18} \mathrm{~m}^{3}$	$1.25 \times 10^{22} \mathrm{~kg}$	$\approx 1,962 \mathrm{~kg} / \mathrm{m}^{3}$

How do your answers for each planet's density compare to the density measurements you collected on your Lesson 2 Planet Data Sheets from What's the Difference?

The density calculations above differ from the density data in What's the Difference. Factors such as rounding calculations, estimating pi (π), varying planetary compositions, and non-perfectly spherical planets are some of the reasons the density data here may differ from the density data in What's the Difference.

Name:
Date:

Density: Large Planets vs. Small Planets

Density describes how tightly packed something is—how much matter (stuff) is in a certain volume.

Compare the density of the nine planets by listing them from greatest density to lowest density based on the scale model. The first one (Earth) has been done for you. most dense

Planet	Density $\mathbf{k g} / \mathbf{m}^{3}$	Rocky or Gaseous	Mass $\mathbf{k g ~ x ~ 1 0 ² 2 ~}$
1. Earth	$5,515 \mathrm{~kg} / \mathrm{m}^{3}$	rocky	$597 \mathrm{~kg} \times 10^{22}$
2. Mercury	$5,427 \mathrm{~kg} / \mathrm{m}^{3}$	rocky	$33 \mathrm{~kg} \mathrm{\times 10}^{22}$
3. Venus	$5,243 \mathrm{~kg} / \mathrm{m}^{3}$	rocky	$487 \mathrm{~kg} \times 10^{22}$
4. Mars	$3,933 \mathrm{~kg} / \mathrm{m}^{3}$	rocky	$64.2 \mathrm{~kg} \times 10^{22}$
5. Pluto	$1,750 \mathrm{~kg} / \mathrm{m}^{3}$	rocky	$1.48 \mathrm{~kg} \times 10^{22}$
6. Neptune	$1,638 \mathrm{~kg} / \mathrm{m}^{3}$	gaseous	$10,200 \mathrm{~kg} \mathrm{\times 10}^{22}$
7. Jupiter	$1,326 \mathrm{~kg} / \mathrm{m}^{3}$	gaseous	$190,000 \mathrm{~kg} \times 10^{22}$
8. Uranus	$1,270 \mathrm{~kg} / \mathrm{m}^{3}$	gaseous	$8,680 \mathrm{~kg} \times 10^{22}$
9. Saturn	$687 \mathrm{~kg} / \mathrm{m}^{3}$	gaseous	$56,800 \mathrm{~kg} \times 10^{22}$

least dense

1. Which planets have higher densities?
2. Which planets have lower densities?

X rocky
\square rocky
\square gaseous
X gaseous

Circle the 4 planets with the greatest mass.
3. Which planets have higher densities?
4. Which planets have lower densities?
\square more massive
X more massive

X less massive
less massive

Name:
Date:

Characteristics: Large Planets vs. Small Planets

You have observed the planets in the scale model in terms of mass, volume, composition, and density. Use the chart below to organize general characteristics of large planets vs. small planets.

Write your conclusions about the planets and their characteristics below.
Answers will vary but may include:
The least dense planets are composed mostly of gas.
The more dense planets are composed mostly of rock.
The more massive planets have a greater volume; however, they are less dense.
The less massive planets have a lesser volume; however, they are more dense.
The larger planets have more mass, which causes them to have more gravity.
The planets with a smaller amount of gravity are composed mostly of rock.

Name:
Date:

Graphing Resource

Student Guide

Types of Graphs

There are several types of graphs that scientists and mathematicians use to analyze sets of numbers or data.

Line graphs are often used to show rates of change.

Name:

Date:

Before You Begin

When you are planning to graph data, you need to answer some questions before you begin.

1. What type of graph will you use?
2. What unit of measurement will you use?
3. What scale will you use?
4. What will be the minimum and maximum values on your graph?
5. Will your graph start at 0 ?

Making Bar Graphs and Line Graphs

Every graph needs a title and labels on the horizontal "x" axis (side-to-side) and the vertical "y" axis (up and down).

The unit of measurement you are using needs to be clearly shown (inches, kilograms, etc.). The unit for the bar graph above is "number of books" as is written in the vertical y -axis label.

You also must choose a scale for your vertical y-axis. The vertical scale on the bar graph above goes from 0 to 80 in increments of 10 .

Name:
Date:
The scale is determined by the data you are graphing. To determine the scale, look at the largest and smallest numbers you will be graphing.

Making a Pie Graph

A pie graph is shown using a circle, which has 360 degrees. To make an accurate pie graph you will need a compass or a similar instrument to trace a circle and a protractor to measure angles in degrees.

Start by making a circle. You will then have to multiply your fractions or percents (in decimal format) by 360 degrees to find out how many degrees you will need in each wedge. For example:

Color	\% of class that likes the color
Blue	45%
Green	25%
Red	20%
Pink	10%
Total:	$\mathbf{1 0 0 \%}$

The sum of your fractions should total to 100\%. \square

Name:
Date:

To find out how many degrees of the pie graph will represent the number of students in the class who like the color blue, you would multiply 360 degrees by 0.45 . The result of your calculation is 162 degrees. To find out how many degrees of the pie graph will represent the number of students in the class who like the color green, you would multiply 360 degrees by 0.25 . The result of your calculation is 90 degrees.

To mark off the blue portion of the pie graph, start by drawing a radius of the circle (a line segment from the center of the circle to the circle itself). Then use the protractor to measure an angle of 162 degrees and draw the corresponding radius. The green portion will have an angle measure of 90 degrees, the red portion will have an angle measure of 72 degrees, and the pink portion will have an angle measure of 36 degrees. The sum of these angles will have an angle measure of 360 degrees, the number of degrees in a circle.

Pink	$=36^{\circ}$
Blue	$=162^{\circ}$
Green	$=90^{\circ}$
Red	$=72^{\circ}$
Total	$=360^{\circ}$

When the portions have been drawn into the circle, you then need to color each portion, label each portion with both the category and the percent or fraction, and give the graph an overall title.

Name:
Date:

Lesson 2 Extension Problems

Fractions, Percents, and Planets

A pie chart is a way to represent fractions or percents of a whole. The following example calculates what percent of the total mass of the nine planets is contained in a given planet.

1. How is the mass of the solar system distributed amongst the nine planets? In other words, what percent of the total mass of all nine planets is contained in each planet? Be sure to include descriptions and pictures to explain how you solved the problem.

Planet	Mass (kg)	\% of Total Mass
Mercury	3.30×10^{23}	0.0124%
Venus	4.87×10^{24}	0.1824%
Earth	5.97×10^{24}	0.2236%
Mars	6.42×10^{23}	0.0240%
Jupiter	1.90×10^{27}	71.1610%
Saturn	5.68×10^{26}	21.2734%
Uranus	8.68×10^{25}	3.2509%
Neptune	1.02×10^{26}	3.8202%
Pluto	1.25×10^{22}	0.0005%
Total:	$\mathbf{2 . 6 7 \times 1 \mathbf { 1 0 } ^ { 2 7 }}$	$\sim \mathbf{1 0 0 \%}$

After finding solutions to the above problem, complete the following:
2. Which planets contain most of the mass of the nine planets? Jupiter \& Saturn
3. If you made a pie chart showing the percent of mass for each of the nine planets, would you be able to represent the mass of the smaller planets? No
4. Find the sum of the percent of mass for the inner planets and Pluto. Use that as one value and use the mass of each of the gas giants planets to create a pie chart to represent the distribution of mass in the solar system.

Planets	\% of Total Mass
Smaller planets	0.44%
Jupiter	71.16%
Saturn	21.27%
Uranus	3.25%
Neptune	3.82%

Name:
Date:

Additional Ratio and Proportion Problems

The following are problems that will require multiple steps to obtain a solution. You will need to measure lengths inside the classroom and apply what you know about scale, ratio, and proportion to solve them. You may choose the units you work with, as long as they are appropriate. Be sure to include descriptions and pictures to explain how you solved the problem.

1. An interesting relationship

Circles and spheres are very special geometric shapes. They have no corners. The formulas for the circumference and area of a circle, as well as for the surface area and volume of a sphere, are very different from the formulas for figures with straight edges like rectangles and squares. The following problem allows you to investigate an interesting relationship between two often-used measurements of any circle or any sphere.
a. Calculate the ratio of each planet's circumference to its diameter. (Refer to p.11) For example, the ratio for the planet Mercury would be as follows:

$$
\begin{aligned}
\frac{\text { Circumference of Mercury }}{\text { Diameter of Mercury }} & =\frac{15,329 \mathrm{~km}}{4,878 \mathrm{~km}} \\
& \approx 3.14(\mathrm{or} \approx 22 / 7)
\end{aligned}
$$

Calculate this ratio for each of the planets. Express your answers as both a fraction and as a decimal. What do you notice?
b. Measure the circumference of a great circle on a basketball. Measure the diameter of the basketball by holding a ruler against its widest point. Calculate the ratio of the circumference of the basketball to the diameter of the basketball. What do you notice? Try this for other spheres and their great circles. What is your result?
c. Look up the word "pi" on the Internet. Summarize what you learned about this very interesting number called pi (π).

For every ratio calculated for a planet's circumference to its diameter, depending on the accuracy of the measurement, the value should be approximately 3.14. The students have experimented in finding estimates for the value of pi. Pi is defined as the ratio of the circumference to the diameter of any circle.

Name:
Date:

2. A Bus to Pluto...

The mass of each planet is a measurement that is sometimes hard to conceptualize. It is helpful to compare the mass of a planet to objects that have a mass with which we are familiar. Here is an example.

a. Pluto is the least massive planet in the solar system. A public bus has a mass of approximately 14,515 kilograms. If the mass of Pluto is $125,000 \mathrm{~kg}$ followed by 17 zeros, estimate how many buses it would take to equal the mass of Pluto? Calculate the value (and then add 17 zeros to the end of the number!) How close was your estimate?

8.61×10^{17} buses would equal the mass of Pluto

(861,000,000,000,000,000 buses)
b. You calculated in this lesson that Pluto's mass is 0.002 of Earth's mass. Use this relationship to calculate how many buses it would take to equal the mass of Earth. (Be sure that your answer makes sense-Earth is more massive than Pluto.)

4.31×10^{20} buses would equal the mass of Earth

(431,000,000,000,000,000,000 buses)
c. If Earth's mass is equal to the mass of the number of buses you calculated in part b, estimate how many buses it would take to equal the mass of Jupiter-the most massive planet in the solar system. (You calculated in this lesson that the mass of Jupiter is approximate 318 times the mass of Earth.) Calculate the number of buses that it would take to represent the mass of Jupiter. (Be sure your answer makes sense-Jupiter is more massive than Earth.) How close was your estimate?

1.37×10^{23} buses would equal the mass of Jupiter

(137,000,000,000,000,000,000,000 buses)

Name:
Date:

3. I Gained HOW Much??!!

In this lesson, you learned that weight is affected by gravity. On another planet, an object would weigh less or more, depending on the gravity on that planet.

a. Weigh yourself here on Earth (Be careful! Think about what units you should use to record your weight and what units are on a typical scale. Remember: your mass will not change from planet to planet.)
b. For each of the other planets, use the percentage value of the other planet's gravity in terms of the Earth's gravity to calculate your weight on another planet. (For example, if Mercury has 0.4 of Earth's gravity, on Mercury you would weigh 40% of your weight on Earth.) Make a chart of what you would weigh on different planets in our solar system.
c. In addition to affecting your weight, the amount of gravity on a planet affects how high you can jump. Get a friend to measure how high you can jump standing in one spot (It might be helpful to try a few times and average your jumps.) What units of measurement will you use? This time you will use the inverse of the percentage value. To calculate the inverse, divide 1 by the decimal value of the gravity. For example, Mercury has only 40% of Earth's gravity. One divided by 0.4 is 2.5. You can jump 2.5 times higher on the surface of Mercury than you can on the surface of Earth! Make a chart showing how high you could jump on different planets in our solar system.
For a 100 lb person who can jump 30 cm on Earth standing still.

Planet/Moon	Decimal of Earth's Gravity	Weight on Planet in pounds (lbs)	Height of Jump in centimeters (cm)
Jupiter	2.5	250	12
Neptune	1.1	110	27
Saturn	1.0	100	30
Earth	1.0	100	30
Uranus	0.9	90	33
Venus	0.9	90	33
Mars	0.4	40	75
Mercury	0.4	40	75
Io	0.2	20	150
Moon	0.2	20	150
Titan	0.1	10	300
Europa	0.1	10	300
Triton	0.1	10	300
Pluto	0.06	6	500

