SUBJ: Helicopter Area Navigation (RNAV) Instrument Procedure Construction

These criteria are the Federal Aviation Administration (FAA) standards for developing helicopter area navigation (RNAV) instrument procedure construction based on Global Positioning System (GPS). This revision adds definitions, changes procedure identification from GPS to RNAV, provides specific holding pattern leg lengths, helicopter en route criteria, decreases navigation system error tolerance for along-track distance in the terminal area, and adds departure criteria, minimums, and requirements. The types of final approaches have been revised. They are Instrument Flight Rules (IFR) to an IFR heliport, IFR to a Visual Flight Rules (VFR) heliport (Proceed Visually), Point-in-Space (PinS) approach (Proceed VFR), and IFR to Runways with separate criteria for each.

The first step to increase helicopter IFR utility is the development of helicopter RNAV instrument procedures. Ongoing testing and criteria development by the FAA for application of the Wide Area Augmentation System (WAAS) will provide the next major step. WAAS with its increased integrity and 3-dimensional (3D) approach capability will allow narrower route widths and approaches with vertical guidance (APV).

James J. Ballough
Director
Flight Standards Service

mame	$\stackrel{\square}{\text { and }}$	manm		ormanusas	${ }_{\text {comem }}$					ormanutse
-					-					
					-					
					-					
-					-					
					-					

Chapter 1. General

$1.0 \quad$ Purpose of This Order.

This order contains criteria for the formulation, review, approval, and publication of area navigation (RNAV) helicopter instrument procedures based on Global Positioning System (GPS) and Wide Area Augmentation System (WAAS) navigation.

1.1 Audience.

This order is distributed in Washington headquarters to the branch level offices of Airport Safety, Standards and Communications, and Navigation and Surveillance Systems; Air Traffic Organization (Safety, En Route and Oceanic Services, Terminal Services, System Operations Services, and Technical Operations Services); Flight Standards Services; National Flight Procedures Office and the Regulatory Standards Division (at the Mike Monroney Aeronautical Center); branch level in the regional Flight Standards and Airports Divisions; special mailing list ZVS-827, and Special Military and Public Addressees.
1.2 Where Can I Find This Order? This information is also available on the FAA's Web site at http://fsims.avs.faa.gov/fsims/fsims.nsf.

1.3
 Cancellation.

Order 8260.42A, Helicopter Global Positioning System (GPS) Nonprecision Approach Criteria.

1.4 Explanation of Changes.

These criteria were written for automated implementation. Formulas are presented in Math notation and standard text to facilitate programming efforts. Calculation examples were eliminated. Instead, an Adobe Acrobat version of the criteria document is available where each formula performs the calculation as an imbedded calculator. Changed format from sections to chapters for user convenience and for harmonization with Order 8260.54A.

1.4.1 Chapter 1.

1.4.1 a. Paragraph 1.7. Numerous definitions added and/or changed to harmonize with Heliport Design AC 150/5390-2 and other documents that were changed since the publication of Order 8260.42A.

1.4.2 Chapter 2.

1.4.2 a. Paragraph Added 2.0. Policy directives and requirements. Wide Area Augmentation System (WAAS) criteria added.
1.4.2 b. Paragraph 2.0. Formulas are numbered by chapter and depicted in standard mathematical notation and in standard text to aid in computer programming. Each formula contains a Javascript functional calculator for more user friendly document. This was harmonized with Order 8260.54A.
1.4.2 c. Paragraph 2.1. Deletes note pertaining to arming the GPS receiver 30 nautical miles (NM) prior to the heliport reference point (HRP) or the airport reference point (ARP).
1.4.2 d. Paragraph 2.1. Data Resolution added to harmonize with Order 8260.54A.
1.4.2 e. Paragraph 2.1.1. Documentation accuracy. Paragraph added to harmonize with Order 8260.54A.
1.4.2 f. Paragraph 2.1.2. Mathematic convention added to facilitate programming efforts and to harmonize with Order 8260.54A. Added explanation of Math notation and support for $\boldsymbol{R N A V}$ and to harmonize with Order 8260.54A.
1.4.2 g. Paragraph 2.1.3. Geospatial Standards added for harmonization with Order 8260.54A.
1.4.2 h. Paragraph 2.1.3.c. Obstacle Evaluation Area (OEA) Construction and Obstacle Evaluation Methodology added for harmonization Order 8260.54A.
1.4.2 i. Paragraph 2.1.4. Evaluation of Actual and Assumed Obstacles (AAO). Added to comply with changes in Order 8260.19.
1.4.2 j. Paragraph 2.2. Special Approach Procedures. Several changes and additions are different from Order 8260.42A. These changes were agreed to after several meetings between the FAA and industry with the Performance-Based Operations Aviation Rulemaking Committee (PARC).
1.4.2 k. Table 2-1. Fix displacement tolerance (FDT) dimensions in table 2-1 were changed. Along-track Tolerance (ATT) replaces FDT throughout document.
1.4.2 1. Paragraph 2.5. Procedure Identification. Changes procedure identification from GPS to RNAV and other procedure identification names. Changes made to comply with changes in Order 8260.19.
1.4.2 m. Paragraphs 2.5.5 and 2.5.6. Formulas 2-2 true airspeed and 2-3 tailwind component. These formulas and calculators were added to permit calculations required for other criteria contained within this document, i.e., wind spirals, radii, etc.
1.4.2 n. Paragraph 2.5.7. Applies tailwind component values to specific segments to harmonize with Order 8260.54A.
1.4.2 o. Paragraph 2.5.8. Table 2-2 added for the application of bank angles. This table was added for criteria changes in this document that require specific bank angles for calculations of wind spirals and turn radii.
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.2
1.4.3
1.4.3
1.4.3
1.4.3
1.4.3
p. Paragraph 2.5.9. Added for calculating the Turn Radius (\boldsymbol{R}) to harmonize with Order 8260.54A.
q. Paragraph 2.7. Turn Construction criteria added for harmonization with Order 8260.54A.
r. Paragraph 2.7.1b. Minimum length of track-to-fix (TF) leg following a flyover turn and Formula 2-6 added to harmonize with Order 8260.54A.
s. Paragraph 2.9. Minimum TF leg. Turn construction to harmonize with Order 8260.54A.
t. Paragraph 2.10. Calculating Descent Gradient formula and calculator added for user convenience.
u. Paragraph 2.11. Missed Approach Segment (MAS) conventions added to harmonize with Order 8260.54A.
v. Paragraph 2.10.1. Charted Missed Approach Altitude added to comply with Order 8260.3 and changes to that order.

Chapter 3.

a. Adds Special en route criteria using GPS and WAAS navigation.
b. Adds construction of GPS and WAAS en route segment criteria to comply with $\boldsymbol{R N A V}$ concepts and to meet industry requests for special airways.
c. Paragraph 3.1.2. Added formula and calculator for determining secondary required obstacle clearance (ROC)
d. Paragraph 3.2. Minimum Crossing Altitude (MCA). Formula and calculator is displayed for determining MCA.
1.4.3 e. Paragraph 3.3.1. Terminal Routes Between Airports/Heliports. Criteria for displaying en route and feeder graphics.
1.4.3 f. Paragraph 3.4. Descent Gradient criteria added to comply with Order 8260.3B, Volume 1, paragraph 1110.

1.4.4 Chapter 4.

1.4.4 a. Paragraph 4.0. Approach Configuration. Criteria changed to harmonize with other documents, e.g., "Y" construction added. Army criteria added per request.
1.4.4 b. Paragraph 4.1.2. ROC formula and calculator added for the convenience of user.

1.4.5 Chapter 5.

a. Paragraph 5.1. States the five procedure types. Added for introduction and clarification. Instrument Flight Rule (IFR) to a visual flight rules (VFR) heliport (IVH), IFR to a VFR Runway (IVR), and point-in-space (PinS) procedures are added to meet industry requests and to formalize criteria previously stated in letters and memos.
1.4.5 b. Paragraph 5.2.2. ROC for the final approach segment (FAS) formula and calculator given for user convenience.
1.4.5 c. Paragraph 5.2.2a. Descent Gradient/Angle from final appoint fix (FAF) to missed approach point ($\mathbf{M A P}$) formula and calculator given for user convenience. This criteria is used for $\boldsymbol{I V H}, \boldsymbol{I V R}$, and PinS procedures.
1.4.5 d. Paragraph 5.2.2b. Descent Gradient/Angle to an IFR Runway or an IFR Heliport. Added for required criteria.
1.4.5 e. Paragraph 5.2.2d. Stepdown Descent Gradient/Angle. Added to meet required criteria for stepdown requirements in the FAS.
1.4.5 f. Paragraph 5.2.2e. Existing Obstacles Close to the FAF or Stepdown Fix to comply with Order 8260.3B, Volume 1, paragraph 289 and to establish an obstacle identification surface (OIS) for the helicopter's operational characteristics using a steeper descent gradient than airplanes.
1.4.5 g. Paragraph 5.3.1. Formulas and calculators added for determining OIS elevations, the Visual Segment Descent Angle, Visual Segment Length, and Distance from Helipoint were added for user convenience.
1.4.5 h. Paragraph 5.4. IVH (Proceed Visually). Criteria added to meet industry requests and to formalize the letters and memos that were applied by industry for approaches to VFR heliports.
1.4.5 i. Paragraph 5.5. IVR (Proceed Visually). Criteria added to meet industry requests for $\boldsymbol{I F R}$ approaches to $\boldsymbol{V F R}$ runways.
1.4.5 j. Paragraph 5.6. PinS Approach (Proceed VFR). Added to modify PinS TERPS chapter 11 criteria to meet industry requests.
1.4.5. k. Paragraph 5.7. IFR to an IFR Runway. Criteria is added for clarification, and to separate from other parts of approach criteria.

1.4.6 Chapter 6.

This chapter is a missed approach criteria redevelopment, necessary because Order 8260.38 was canceled. This criteria harmonizes with Order 8260.54A. It contains wind spirals, flat surfaces, ROC, and OEAs that were not contained in Order 8260.42A.

1.4.7 Chapter 7.

This chapter contains criteria not contained in Order 8260.42A for departures from IFR heliports and to meet industry requests for departures from VFR heliports or runways into $I F R$ protected airspace.

1.4.8 Chapter 8.

This chapter was developed for approach and departure IFR minimum changes to and from IFR heliports. It also furnishes approach and departure minimums to/from PinS, VFR heliports, and VFR runway operations added in chapters 5 and 7.

1.4.9 Chapter 9.

1.4.9 a. Adds Wide Area Augmentation System (WAAS) Localizer Performance (LP) criteria.
1.4.9 b. Adds WAAS LP criteria providing a narrower OEA in the IFR FAS (this may lower the MDA) and OIS in the visual segment. It also can provide narrower route widths when departures and arrivals are networked together. Qualified heliports may also be used as an alternate.
1.4.10 Appendix 1. Adds conditions and assumptions for helicopter GPS airways development.
1.4.11 Appendix 2. Adds TERPS standard formulas for geodetic calculations.
1.4.12 Appendix 3. Adds requirements for special PinS departure criteria.
1.4.13 Appendix 4. Adds conditions and assumptions for special sector and diverse departure criteria from civil IFR heliports.
1.4.14 Appendix 5. Adds conditions and assumptions for special helicopter GPS holding.

1.5 Background.

The analysis of GPS/WAAS navigation flight test data provides the basis for these criteria. A significant difference exists between approach procedures to runways and approach procedures to heliports. Approaches to runways terminate in relatively obstacle-free environments. Approaches to heliports commonly terminate in areas of dense population and large buildings. Speed limitations incorporated in these criteria provide the smallest obstacle clearance areas, the shortest segment lengths, and the lowest ceiling and visibility minimums. The graphic illustrations in this order are not to scale. The guidance published in this directive supersedes previous guidance concerning helicopters published in Terminal Instrument Procedures (TERPS) Instruction Letters (TILs) and other correspondence.

1.6 Effective Date.

1.7 Definitions.

1.7.1 Approach Procedure Types using RNAV (GPS).

1.7.1 a. IFR to an IFR Heliport. An IFR approach to a heliport that meets Advisory Circular (AC) 150/5390-2, Heliport Design, standards for an IFR heliport.
1.7.1 b. IVH (Proceed Visually). An IFR approach to a VFR heliport that meets AC 150/5390-2 standards. This special procedure requires flight standards approval. The phrase "Proceed Visually" is charted on the procedure for the visual segment from the MAP to the heliport. IVR applies IVH criteria to an approach to a VFR runway.
1.7.1 c. PinS Approach (Proceed VFR). An IFR PinS approach to one or more VFR heliports. The procedure can be either a public or special procedure. The phrase "Proceed VFR" is charted on the procedure for the VFR segment following the MAP.
1.7.1 d. IFR to a Runway. An IFR helicopter approach procedure to a runway.

1.7.2 Distance of Turn Anticipation (DTA).

DTA represents the maximum distance prior to a fly-by-fix that a helicopter is expected to start a turn to intercept the course of the next segment. The alongtrack tolerance (ATT) value, associated with a fix, is added to the DTA value when DTA is applied (see figure 1-1 and formula 2-6).

DTA $=$ Radius $\mathrm{x} \tan ($ degrees of turn $\div 2$)

1.7.3 Fly-By Fix.

A fly-by fix is a waypoint where a turn is initiated prior to reaching it.

1.7.4
 Fly-Over Waypoint (WP). 8

A fly-over WP is a waypoint over which an aircraft is expected to fly before one turn is initiated.

1.7.5 Final Approach and Takeoff Area (FATO).

A defined area over which the final phase of the approach to a hover, or a landing, is completed and from which the takeoff is initiated. The guidance for a FATO is published in AC 150/5390-2.

1.7.6 Fictitious Helipoint (FHP).

The $\boldsymbol{F H P}$ is located $2,600 \mathrm{ft}$ beyond the $\boldsymbol{M A P}$ and $9,023 \mathrm{ft}$ in front of the flight path alignment point (FPAP). It is used to establish the approach course width for the WAAS.

1.7.7 Flight Path Alignment Point (FPAP).

The $\boldsymbol{F P A P}$ is a 3-dimensional (3D) point defined by the World Geodetic System of 1984/North American Datum of 1983 (WGS-84/NAD-83) latitude and longitude lying in the same plane as the FHP.

1.7.8 Flight Technical Error (FTE).

FTE is the measure of the pilot or autopilot's ability to control an aircraft so that its indicated position matches the desired position.

1.7.9 Heliport Approach Lighting System (HALS).

The HALS is a distinctive approach lighting configuration designed to prevent it from being mistaken for an airport runway approach lighting system. HALS consists of ten bars of lights at $100-\mathrm{ft}$ increments and has a length of $1,000 \mathrm{ft}$ (305 m). HALS provides a visibility credit of $1 / 4$ statute mile (SM) for nonprecision approaches.
1.7.10 Height Above Landing Area Elevation (HAL).

The HAL is the height of the minimum descent altitude (MDA) above helipoint elevation.
1.7.11 Height Above Surface (HAS).

HAS is the height of the MDA above the highest terrain/surface within a 5,200-ft radius of the MAP in the PinS procedure.

1.7.12 Height Above Threshold (HATh).

The HATh is the height of the MDA above the landing threshold point (LTP) elevation.

1.7.13 Helipoint Crossing Height (HCH).

The $\mathbf{H C H}$ is the height of the vertical guidance path above the heliport elevation at the helipoint.

1.7.14 Helipoint.

The helipoint is the aiming point for the visual segment and is normally centered in the touchdown and lift-off area (TLOF). The TLOF is normally centered in the FATO.

1.7.15 Heliport.

An area of land, water, or structure used or intended to be used for helicopter landings and takeoffs and includes associated buildings and facilities. IFR and VFR heliports are described in AC 150/5390-2.
1.7.16 Heliport Elevation (HE).

For heliports without a precision approach, the heliport elevation is the highest point of the FATO expressed as the distance above mean sea level (MSL).
1.7.17 Heliport Reference Point (HRP).

The geographic position of the helipoint, measured at the center of the FATO or the central point of multiple FATOs, expressed as latitude and longitude to the nearest hundredth of a second of the WGS-84/NAD-83 and the HRP elevation is equal to the heliport elevation.
1.7.18 Initial Departure Fix (IDF).

The first fix on a PinS departure procedure where application of IFR obstruction protection and air traffic separation standards are provided.

1.7.19 IFR Heliports.

Facility specifications for IFR Heliports are described in chapters 6 or 7 as appropriate of Advisory Circular 150/5390-2, Heliport Design. Chapter 6 of AC 150/5390-2 relates to paragraph 5.3 of this order for nonprecision IFR approach procedures to IFR heliports.

1.7.20 Landing and Takeoff Site.

The area of intended landing and takeoff. It can be a heliport, helistop, vertiport, or other point of landing designated for a PinS approach.

1.7.21 Proceed Visually.

This phrase requires the pilot to acquire and maintain visual contact with the FATO or elements associated with the FATO such as heliport lighting, precision approach path indicator (PAPI), etc. at or prior to the MAP. Obstacle and terrain
avoidance from the MAP to the FATO is the responsibility of the pilot. A missed approach procedure is not provided between the MAP and the landing FATO.

1.7.22 Proceed VFR.

For PinS procedures, this phrase requires the pilot to proceed from the $\boldsymbol{M A P}$ to the selected landing area on the approach chart with no less than the visibility and ceiling required on the approach chart. For flights that do not terminate at the selected landing area on the approach chart, the pilot is required to proceed from the MAP under the applicable VFR for ceiling and visibility required by the applicable Code of Federal Regulations (14 CFR) but no less than the visibility required on the approach chart, operations specifications (OpSpec), or letter of agreement (LOA). Obstacle and terrain avoidance from the MAP to the landing site is the responsibility of the pilot. A missed approach procedure is not provided between the MAP and the landing site. The landing site is not required to be in sight from the MAP.

1.7.23 Touchdown and Lift-Off Area (TLOF).

A TLOF is a load bearing, generally paved area, normally centered in the FATO, on which the helicopter lands or takes off (see AC 150/5390-2).
1.7.24 United States Air Force (USAF).
1.7.25 United States Army (USA).
1.7.26 United States Coast Guard (USCG).
1.7.27 United States Navy (USN).

1.7.28 VFR Heliports.

Standards and recommendations for VFR and IFR heliports are described in chapters 2 through 5 and chapter 8 of AC 150/5390-2, Heliport Design.
Paragraph 5.4 of this order relates to VFR heliports.
1.7.29 Visual Segment Descent Angle (VSDA).

The angle of descent in the visual segment.

1.7.30 Visual Segment Reference Line (VSRL).

A line perpendicular to the final course at a distance of $75 \mathrm{ft}(22.9 \mathrm{~m})$ from the helipoint for public use heliports and $50 \mathrm{ft}(15.27 \mathrm{~m})$ from the helipoint for heliports with special instrument procedures. It extends $75 \mathrm{ft}(22.9 \mathrm{~m})$ on each side of the final course centerline for public use heliports and $50 \mathrm{ft}(15.27 \mathrm{~m})$ on
each side of the final course centerline for heliports with special instrument procedures. For $\boldsymbol{I F R}$ procedures the line is $75 \mathrm{ft}(22.9 \mathrm{~m})$ from the helipoint and it extends $75 \mathrm{ft}(22.9 \mathrm{~m})$ on each side of the final approach course.
1.7.31 Wide Area Augmentation System (WAAS) Localizer Performance (LP).

The $\boldsymbol{L P}$ approach applies lateral-only WAAS guidance (and reduced OEA) within the FAS to a PinS.
1.8 Data Resolution. See chapter 2, paragraph 2.1.

1.9 Applicable Directives.

All directives in this order refer to the latest editions.
1.9.1 Order 7130.3, Holding Pattern Criteria.
1.9.2 Order 8260.3, United States Standard for Terminal Instrument Procedures (TERPS).
1.9.3 Order 8260.19, Flight Procedures and Airspace.
1.9.4 Order 8260.40, Flight Management System (FMS) Instrument Procedures Development.
1.9.5 Order 8260.45, Terminal Arrival Area (TAA) Design Criteria.
1.9.6 Order 8260.54, United States Standard for Area Navigation (RNAV).
1.9.7 Advisory Circular (AC) 150/5390-2, Heliport Design.
1.10 Information Update.

For your convenience, FAA Form 1320-19, Directive Feedback Information, is included at the end of this order to note any deficiencies found, clarifications needed, or suggested improvements regarding the contents of this order. When forwarding your comments to the originating office for consideration, please use the "Other Comments" block to provide a complete explanation of why the suggested change is necessary.

MM/DD/YY

THIS PAGE INTENTIONALLY LEFT BLANK

Chapter 2. General Criteria.

2.0 Policy Directives and Requirements.

These criteria assume use of Global Positioning System (GPS) or Wide Area Augmentation System (WAAS) receivers approved for approach operations, in accordance with Advisory Circular (AC) 20-138, Airworthiness Approval of Global Navigation Satellite System (GNSS) Equipment; Technical Standard Order (TSO) C-129 Class A (1) systems; and AC 20-130, Airworthiness Approval of Navigation or Flight Management Systems Integrating Multiple Navigation Sensors, for GPS as part of a multi-sensor system meeting TSO-C129 Class C (1) System or pertinent military guidance. WAAS navigation equipment must be approved in accordance with the requirements specified in TSO-C145, Airborne Navigation Sensors Using the Global Positioning System (GPS) Augmented by the Wide Area Augmentation System (WAAS), or TSO-C146, Stand-Alone Airborne Navigation Equipment Using the Global Positioning System (GPS) Augmented by the Wide Area Augmentation System (WAAS).

Unless otherwise specified, Order 8260.3, United States Standard for Terminal Instrument Procedures (TEPRS), applies. For public use procedures, the heliport must meet the guidance contained in AC 150/5390-2, Heliport Design. Obstacle clearance area dimensions are based on 90 knots indicated airspeed (KIAS) MAXIMUM in the initial and intermediate segments and 70 KIAS MAXIMUM in the final and missed approach segments until passing the missed approach holding fix. USA/USAF/USN/USCG only: procedures are designed for 90 KIAS in the final and missed approach segments.

The following FAA orders apply:
8260.3, United States Standard for Terminal Instrument Procedures (TERPS).
8260.19, Flight Procedures and Airspace.

7130.3, Holding Pattern Criteria.

Apply chapter 2, section 3 of Order 7130.3, Holding Pattern Criteria. Use pattern 4 for all helicopter holding (including climb-in-hold) up to and including $10,000 \mathrm{ft}$. Chart 4 nautical mile (NM) leg lengths.

Formulas are numbered by chapter and depicted in standard mathematical notation and in standard text to aid in computer programming. Each formula contains a Javascript functional calculator.

2.1 Data Resolution.

Perform calculations using an accuracy of at least 15 significant digits; i.e., floating point numbers must be stored using at least 64 bits. Do not round intermediate results. Round only the final result of calculations for documentation purposes. Required accuracy tolerance is 1 centimeter for distance and 0.002 arc-second for angles. The following list specifies the minimum accuracy standard for documenting data expressed numerically. This standard applies to the documentation of final results only; e.g., a calculated adjusted glidepath angle of 5.04178 degrees is documented as 5.05 degrees. The standard does not apply to the use of variable values during calculation. Use the most accurate data available for variable values.

2.1.1 Documentation Accuracy.

2.1.1 a. World Geodetic System of 1984 (WGS-84)latitudes and longitudes to the nearest one hundredth (0.01) arc second; [nearest five ten thousandth (0.0005) arc second for Final Approach Segment (FAS) data block entries].
2.1.1 b. Flight Path Alignment Point (FPAP) mean sea level (MSL) elevation to the nearest foot;
2.1.1 c. FPAP height above ellipsoid (HAE) to the nearest tenth (0.1) meter;
2.1.1 d. Glidepath angle to the next higher one hundredth (0.01) degree;
2.1.1 e. Courses to the nearest one hundredth (0.01) degree; and
2.1.1 f. Course width at threshold to the nearest quarter (0.25) meter;
2.1.1 g. Distances to the nearest hundredth (0.01) unit [except for "length of offset" entry in final approach segment (FAS) data block which is to the nearest 8 meter value].

2.1.2 Mathematics Convention.

Formulas in this document as depicted are written for radian calculation.
Note: The value for 1 NM was previously defined as 6,076.11548 ft. For the purposes of area navigation (RNAV) criteria, 1 NM is defined as the result of the following calculation:

$$
\frac{1852}{0.3048}
$$

2.1.2 a. Conversions:

- Degree measure to radian measure:

$$
\text { radians }=\text { degrees } \cdot \frac{\pi}{180}
$$

- Radian measure to degree measure:

$$
\text { degrees }=\text { radians } \cdot \frac{180}{\pi}
$$

- Feet to meters:

$$
\text { meters }=\text { feet } \cdot 0.3048
$$

- Meters to feet

$$
\text { feet }=\frac{\text { meters }}{0.3048}
$$

- Feet to Nautical Miles (NM)

$$
N M=\text { feet } \cdot \frac{0.3048}{1852}
$$

- $\quad N M$ to feet:

$$
\text { feet }=N M \cdot \frac{1852}{0.3048}
$$

- $\quad \mathbf{N M}$ to meters

$$
\text { meters }=\mathrm{NM} \cdot 1852
$$

- Meters to NM

$$
\mathrm{NM}=\frac{\text { meters }}{1852}
$$

- Temperature Celsius to Fahrenheit:

$$
\mathrm{T}_{\text {Fahrenheit }}=1.8 \cdot \mathrm{~T}_{\text {celcius }}+32
$$

- Temperature Fahrenheit to Celsius

$$
T_{\text {celcius }}=\frac{T_{\text {Fahrenheit }}-32}{1.8}
$$

2.1.2 b. Definition of Mathematical Functions and Constants.

$a+b$ indicates addition
$a-b$ indicates subtraction
$\mathrm{a} \times \mathrm{b}$ or ab or $\mathrm{a} \cdot \mathrm{b}$ or a b indicates multiplication
$\frac{a}{b}$ or a / b or $a \div b$ indicates division
$(a-b)$ indicates the result of the process within the parenthesis
$|a-b|$ indicates absolute value
\approx indicates approximate equality
\sqrt{a} or $\mathrm{a}^{0.5}$ or $\mathrm{a}^{\wedge} 0.5$ indicates the square root of quantity "a"
a^{2} or $a^{\wedge} 2$ indicates $a \times a$
$\ln (a)$ or $\log (a)$ indicates the natural logarithm of "a"
$\tan (\mathrm{a})$ indicates the tangent of "a" degrees
$\tan ^{-1}(\mathrm{a})$ or $\operatorname{atan}(\mathrm{a})$ indicates the arc tangent of "a"
$\sin (a)$ indicates the sine of "a" degrees
$\sin ^{-1}(a)$ or asin(a) indicates the arc sine of "a"
$\cos (\mathrm{a})$ indicates the cosine of "a" degrees
$\cos ^{-1}(\mathrm{a})$ or $\operatorname{acos}(\mathrm{a})$ indicates the arc cosine of "a"
\mathbf{e} The constant \mathbf{e} is the base of the natural logarithm and is sometimes known as Napier's constant, although its symbol (e) honors Euler. With the possible exception of π, \mathbf{e} is the most important constant in mathematics since it appears in myriad mathematical contexts involving limits and derivatives. Its value is approximately 2.718281828459045235360287471352662497757...
r The TERPS constant for the mean radius of the earth for spherical calculations in feet is $\mathbf{r}=20890537$.

2.1.2 c. Operation Precedence (Order of Operations).

First: Grouping Symbols: parentheses, brackets, braces, fraction bars, etc.
Second: Functions: Tangent, sine, cosine, arcsine, and other defined functions;
Third: Exponentiations: Powers and roots;
Fourth: Multiplication and Division: Products and quotients;

Fifth: Addition and subtraction: Sums and differences; e.g., $5-3 \times 2=-1$ because multiplication takes precedence over subtraction $(5-3) \times 2=4$ because parentheses take precedence over multiplication $\frac{6^{2}}{3}=12$ because exponentiation takes precedence over division
$\sqrt{9+16}=5$ because the square root sign is a grouping symbol
$\sqrt{9}+\sqrt{16}=7$ because roots take precedence over addition
$\frac{\sin \left(30^{\circ}\right)}{0.5}=1$ because functions take precedence over division
$\sin \left(\frac{30^{\circ}}{0.5}\right)=0.8660254$ because parentheses take precedence over functions

Notes on calculator usage:

1. Most calculators are programmed with these rules of precedence.
2. When possible, let the calculator maintain all of the available digits of a number in memory rather than re-entering a rounded number. For highest accuracy from a calculator, any rounding that is necessary should be done at the latest opportunity.

2.1.3 Geospatial Standards.

The following standards apply to the evaluation of obstacle and terrain position and elevation data relative to RNAV obstacle evaluation areas (OEAs) and obstacle clearance surfaces (OCSs). Terrain and obstacle data are reported in North American Datum of 1983 (NAD-83) latitude, longitude, and elevation relative to MSL in National Geodetic Vertical Datum of 1929 (NGVD-29) or North American Vertical Datum of 1988 (NAVD-88) vertical datum. Evaluate obstacles using their NAD-83 horizontal position and NAVD-88 elevation value compared to the WGS-84 referenced course centerline (along-track and crosstrack), OEA boundaries, and OCS elevations as appropriate.
2.1.3 a. WGS-84[G873] for Position and Course Construction. This reference frame is used by the FAA and the U.S. Department of Defense (DoD). It is defined by the National Geospatial-Intelligence Agency (NGA) (formerly the National Imagery and Mapping Agency, formerly the Defense Mapping Agency [DMA]). In 1986, the Office of National Geodetic Survey (NGS), redefined and readjusted the North American Datum of 1927 (NAD-27), creating the NAD-83. The WGS-84 was defined by the DMA. Both NAD-83 and WGS-84 were originally defined (in words) to be geocentric and oriented as the Bureau International d I'Heure Terrestrial System. In principle, the three-dimensional (3D) coordinates of a single physical point should therefore be the same in both NAD-83 and WGS-84 Systems; in practice; however, small differences are sometimes found. The original intent was that both systems would use the Geodetic Reference System of 1980 (GRS-80) as a reference ellipsoid. As it
happened, the WGS-84 ellipsoid differs very slightly from GRS-80). The difference is 0.0001 meters in the semi-minor axis. In January 2, 1994, the WGS84 reference system was realigned to be compatible with the International Earth Rotation Service's Terrestrial Reference Frame of 1992 (ITRF) and renamed WGS-84 (G730). The reference system underwent subsequent improvements in 1996, referenced as WGS-84 (G873) closely aligned with ITRF-94, to the current realization adopted by the NGA in 2001, referenced as WGS-84 (G1150) and considered equivalent systems to ITRF 2000.
2.1.3 b. NAVD-88 for elevation values. NAVD-88 is the vertical control datum established in 1991 by the minimum-constraint adjustment of the Canadian-Mexican-U.S. leveling observations. It held fixed the height of the primary tidal bench mark, referenced to the new International Great Lakes Datum of 1985 local MSL height value, at Father Point/Rimouski, Quebec, Canada. Additional tidal bench mark elevations were not used due to the demonstrated variations in sea surface topography, (i.e., the fact that MSL is not the same equipotential surface at all tidal bench marks).

2.1.3 c. OEA Construction and Obstacle Evaluation Methodology.

2.1.3 c. (1) Courses, fixes, boundaries (lateral dimension). Construct straight-line courses as a WGS-84 ellipsoid geodesic path. If the course outbound from a fix differs from the course inbound to the fix (courses measured at the fix), then a turn is indicated. Construct parallel and trapezoidal boundary lines as a locus of points measured perpendicular to the geodesic path. (The resulting primary and/or secondary boundary lines do not display a "middle bulge" due to curvature of the ellipsoids surface since they are not geodesic paths.) NAD-83 latitude/longitude positions are acceptable for obstacle, terrain, and airport data evaluation. Determine obstacle lateral positions relative to course centerline/OEA boundaries using ellipsoidal calculations (see appendix 2).
2.1.3 c. (2) Elevations (vertical dimension). Evaluate obstacles, terrain, and airport data using their elevation relative to their orthometric height above the geoid (for our purposes, MSL) referenced to the NAVD-88 vertical datum. The elevations of OCSs are determined spherically relative to their origin MSL elevation (NAVD-88). Department of Defense (DoD) procedure developers may use EGM-96 vertical datum.

2.1.4 Evaluation of Actual and Assumed Obstacles (AAO).

Apply the vertical and horizontal accuracy standards in Order 8260.19, paragraphs 272, 273, 274, and appendix 3.(USAF, apply guidance per AFI 11-230)

Note: When applying an assumed canopy height consistent with local area vegetation, contact either the National Forestry Service or the FAA regional Flight Procedures Office (FPO) to verify the height value to use.

2.2 Special Approach Procedures.

Publish annotations to require special authorization when the procedure is an instrument flight rules (IFR) approach to a visual flight rules (VFR) heliport, reference paragraph 5.4, or one of the following conditions exists: (USAF/USA/USCG/USN not applicable).
2.2.1 A track change at the final approach fix (FAF) exceeds 30 degrees.
2.2.2 Descent Gradient/Angle exceeds $\mathbf{6 0 0} \mathbf{f t / N M}$ (5.64 degrees) on any IFR segment.
2.2.3 When raising the helipoint crossing height (HCH) to greater than 10 ft in the visual segment.
2.2.4 When a Vmini less than 70 knots indicated airspeed (KIAS) is applied. Data must be entered on FAA Form 8260-7 and annotated on the planview portion of chart.
2.2.5 Where a bank angle other than the standard is used, enter the data on the appropriate FAA Forms 8260-7 and 8260-9, and annotate the information on the chart planview.
2.2.6 When the missed approach point (MAP) to helipoint distance is less than 3,342 ft (0.55 NM).

Note: This criterion applies only to an IFR to a VFR heliport (IVH) procedure.

2.3 Helicopter Special GPS Airways.

The conditions and assumptions contained in appendix 1 are mandatory.

2.4
 Helicopter GPS Fix Displacement Tolerance.

Table 2-1 contains the along-track fix displacement tolerance (ATT) associated with the four modes of receiver operations. Cross-track tolerances are incorporated into the trapezoid width and are not listed in this table.

Table 2-1. Helicopter GPS/WAAS Fix Along-track Tolerance (ATT).						
GPS/ WAAS EN ROUTE	GPS/ WAAS TERMI NAL	GPS APPROACH	$\begin{aligned} & \text { GPS } \\ & \text { MI SSED } \end{aligned}$	WAAS APPROACF	WAAS MI SSED	WAAS MISSED
					$\leq 3^{\circ}$ of FAC unti turn initiation of first WP	$>3^{\circ}$ turn of FAC or turn initiation of first WP
2.0 NM	1.0 NM	0.3 NM	1.0 NM	$\begin{aligned} & 131.234 \mathrm{ft} \\ & (40 \mathrm{~m}) \end{aligned}$	0.3 NM	1.0 NM
En Route	IAF	FAF	Missed Approach (MA) Turn Fix	FAF		
Feeder	Initial Stepdown Fix	Final Stepdown Fix	Missed Approach (MA) Holding Fix	LP Final Step-down Fix		
Feeder Step Down	IF	MAP				
	Intermediate Stepdown Fix					
	IDF (PinS Departure)	IDF (Special PinS Departure)				

$2.5 \quad$ Procedure Identification.

GPS and WAAS are considered to be RNAV systems. The procedure identification begins with "COPTER RNAV (GPS)." The remainder of the identification is based on whether the landing site is a heliport or a runway.

2.5.1 U.S. Army (USA) Helicopter Runways.

USA heliports that have helicopter runways chart the procedure with the letter H and the runway number. To differentiate between parallel runways, use the letter "L" or "R"; i.e., COPTER RNAV (GPS) RWY H22R.

2.5.2 IFR Approach to an IFR Runway (within 30 degrees alignment).

Use the abbreviation "RWY" followed by the runway number. Examples: COPTER RNAV (GPS) RWY 22.

2.5.3 Point-in-Space (PinS) or IVH procedures to a VFR Runway.

Use the magnetic bearing of the final approach course. Example: COPTER RNAV (GPS) 160°.

2.5.4 Multiple Procedures to the Same Runway.

Where more than one approach, using the same final approach guidance is developed to the same location, identify each location/guidance combination with
an alphabetical suffix beginning at the end of the alphabet; e.g., COPTER RNAV (GPS) Z RWY 22 (first procedure), COPTER RNAV (GPS) Y RWY 22 (second procedure), COPTER RNAV (GPS) X RWY 22 (third procedure).
Identify the procedure with the lowest minimums will be identified with " Z " and the next lowest "Y."

2.6 General Airspeed, Tailwind, Bank Turn Radius

2.6.1 True Airspeed. Find true airspeed ($\boldsymbol{V}_{\boldsymbol{K t a s}}$) using formula 2-1.

2.6.2 Tailwind. Calculate tailwind component $\left(\boldsymbol{V}_{\boldsymbol{K T W}}\right)$ using formula 2-2.

Formula 2-2. Tailwind. ($\mathrm{V}_{\text {KTw }}$).	
$\begin{gathered} \mathrm{V}_{\text {ктw }}=0.00198 \cdot \text { alt }+47 \\ \text { where alt }=\text { highest turn altitude } \end{gathered}$	
Note: If "alt" is 2000 or less above airport/heliport elevation, $V_{K T w}=30$	
0.00198*alt+47	
Calculator	
alt	Click here to calculate
$\mathrm{V}_{\text {KTw }}$	

2.6.2 a. Apply tailwind component values as follows.

En route: Apply the formula to the highest MSL elevation of each segment.
Terminal area and the missed approach, and departure segments:
Apply a 30-knot tailwind component from heliport or airport elevation up to and including 2,000 ft above heliport or airport elevation. For departure and missed approach procedure wind spirals, apply a 30-knot tailwind component. Above

2,000-ft altitude above heliport or runway elevation, excluding wind spiral turns, apply the wind component formula for the highest MSL altitude of the procedure.*
*Note: Other tailwind gradients may be required after a site-specific determination of wind based on that location's meteorological history (using available information from other sources). Where a different value is used it must be recorded in the procedure documentation.
2.6.3 Bank Angles. Apply bank angles as specified in table 2-2.

Table 2-2. Bank Angles.		
Knots True Airspeed (KTAS)	<90	≥ 90
Bank Angle (In degrees)	11.0	14.0

2.6.4 Turn Radius (R) Calculations.

The design turn radius value is based on four variables: indicated airspeed, assumed tailwind, altitude, and bank angle. Apply the indicated airspeed of 70 or 90 KIAS as appropriate for the highest speed helicopter that will be published on the approach procedure. Apply the highest expected turn altitude value. The bank angle is 11.0 degrees or 14.0 degrees as appropriate.

For missed approach, project a vertical path along the nominal flight track from the start of climb (SOC) point and altitude to the turn fix that rises at a gradient of $400 \mathrm{ft} / \mathbf{N M}$ (3.77 degrees), or a steeper climb gradient (CG) if specified. For turn at altitude construction, determine the $\boldsymbol{V}_{\text {Kта }}$ calculation altitude based on the climb-to-altitude plus an additive based on a continuous $400 \mathrm{ft} / \mathbf{N M}$ (or higher $\boldsymbol{C} \boldsymbol{G}$ climb for each 12 degrees (or portion) of turn [ϕ^{*} (400 or higher CG)/12], (not to exceed the missed approach altitude). Add 900 ft for a turn of 27 degrees and add $3,000 \mathrm{ft}$ for a turn of 90 degrees. The turn and/or calculation altitude must not be higher than the published missed approach altitude.

2.6.4
 a. Calculating Turn Radius.

Step 1: Using the highest altitude in the turn, determine the knots true airspeed (KTAS) for the turn using formula 2-1. Apply the knots indicated airspeed (KIAS) and the appropriate bank angle from table 2-2.

Note: Apply the highest segment airspeed intended to be published, and the highest altitude in the turn..

Step 2: Calculate the appropriate tailwind component ($\boldsymbol{V}_{\boldsymbol{K T W}}$) using formula 2-2 for the highest altitude within the turn. EXCEPTION: If the MSL altitude is $2,000 \mathrm{ft}$ or less above airport elevation, use 30 knots.

Step 3: Calculate radii (R) using formula 2-3.

2.7
 Turn Construction.

If the outbound course from a fix differs from the inbound course (measured at the fix), a turn is indicated.
2.7.1 Turns at Fly-Over Fixes (see figures 2-1 and 2-2). Turns at Fly-By Fixes (see figure 2-3).
2.7.1 a. Extension for Turn Delay. Turn construction incorporates a delay (rr) in start of turn to account for pilot reaction time and roll-in time. Calculate the extension distance in feet using the formulas 2-4 and 2-5 for terminal and en route segments respectively:

Terminal area segments: (approach, departure, missed):

Formula 2-4. Turn Delay (Terminal Area).	
$\mathrm{rr}=6 * \frac{\overline{0.3048}}{3600} \cdot\left(\mathrm{~V}_{\text {kTAS }}+\mathrm{V}_{\text {Krw }}\right)$	
$\begin{aligned} \text { Where } \mathrm{V}_{\text {KTw }} & =\text { Tailwind Component }(\text { see formula 2-2) } \\ \mathrm{V}_{\text {KTAS }} & =\text { True Airspeed }(\text { see formula 2-1) } \end{aligned}$	
6* $(1852 / 0.3048 / 3600) *\left(\mathrm{~V}_{\text {KTW }}+\mathrm{V}_{\text {KTAS }}\right)$	
Calculator	
$\mathrm{V}_{\text {KTw }}$	Click here to calculate
$\mathrm{V}_{\text {KTAS }}$	
rr	

Note: 6 second delay.

En route and feeder segments:

Formula 2-5. Turn Delay (En Route, Feeder).	
$r r=8 * \frac{\frac{1852}{0.3048}}{3600} \cdot\left(V_{\text {KTAS }}+V_{\text {KTW }}\right)$	
$8 *(1852 / 0.3048 / 3600) *\left(\mathrm{~V}_{\text {KTW }}+\mathrm{V}_{\text {KTAS }}\right)$	
Calculator	
$\mathrm{V}_{\text {KTw }}$	Click here to calculate
$\mathrm{V}_{\text {KTAS }}$	
rr	

Note: 8 second delay.
Step 1: Determine Turn Radius (\boldsymbol{R}) using formula 2-3.

Step 2: Determine rr using formula 2-4 or 2-5.
Step 3: Establish the turn expansion area construction baseline perpendicular to the inbound track at a distance equal to $(\boldsymbol{A T T}+\boldsymbol{r r})$ past the turn fix.

Step 4: On the baseline, locate the center points for the primary and secondary turn boundaries. The first is located at a distance \boldsymbol{R} from the non-turning side primary boundary. The second is located at a distance \boldsymbol{R} from the turning side secondary boundary (see figures 2-1 and 2-2).

Step 5: From these center points construct arcs of radius \boldsymbol{R}. Complete the secondary boundary by constructing additional arcs of radius $\left(\boldsymbol{R}+\boldsymbol{W}_{S}\right)$ from the same centers ($\boldsymbol{W}_{S}=$ width of the secondary). See figure 2-2.

Step 6: The arcs constructed in step 5 are tangent to the outer boundary lines of the inbound segment. Construct lines tangent to the arcs based on the first turn point tapering inward at an angle of 30 degrees relative to the outbound track that joins the arc primary and secondary boundaries with the outbound segment primary and secondary boundaries. If the arcs from the second turn point are inside the tapering lines as shown in figure 2-1, then they are disregarded and the expanded area construction is completed. If not, proceed to step 7.

Step 7: If both the inner and outer arcs lie outside the tapering lines constructed in step 6, connect the respective inner and outer arcs with tangent lines and then construct the tapering lines from the arcs centered on the second center point as shown in figure 2-2.

Step 8: The inside turn boundaries are the simple intersection of the preceding and succeeding segment primary and secondary boundaries.

Evaluate the inbound $\boldsymbol{O E A}$ end $(\pm \boldsymbol{A T T})$ for both inbound and outbound segments.
2.7.1 b. Minimum length of track-to-fix (TF) leg following a fly-over turn. The TF leg length following a fly-over turn must be sufficient to allow the aircraft to return to course centerline. Determine the minimum leg length (\boldsymbol{L}) using formulas 2-6 and 2-7.

Formula 2-6. Distance of Turn Anticipation.

$$
\text { DTA }=R \cdot \tan \left(\frac{\phi}{2} \cdot \frac{\pi}{180}\right)
$$

where $\mathrm{R}=$ turn radius from formula 2-3
$\phi=$ degrees of heading change

$\mathrm{R}^{*} \tan \left(\phi / 2^{*} \pi / 180\right)$		
Calculator		
R		Click here to calculate
ϕ	。	
DTA		

Formula 2-7. TF Leg Minimum Length Following Fly-Over Turn.

$$
L=f 1 \cdot\left(\cos \left(\phi \cdot \frac{\pi}{180}\right)+\sqrt{3} \cdot \sin \left(\phi \cdot \frac{\pi}{180}\right)\right)+R \cdot\left(\sin \left(\phi \cdot \frac{\pi}{180}\right)+4-\sqrt{3}-\sqrt{3} \cdot \cos \left(\phi \cdot \frac{\pi}{180}\right)\right)+\text { DTA }+f 2
$$

where $\mathrm{R}=$ turn radius (NM) from formula 2-3
$\phi=$ degrees of track change at fix
$\mathrm{f} 1=$ ATT (NM) of fly-over fix (segment initial fix)
f2 = ATT (NM) of segment termination fix
DTA = value from formula 2-6 (applicable only if the fix is "fly-by")

$f 1^{*}\left(\cos \left(\phi^{*} \pi / 180\right)+3^{\wedge} 0.5^{*} \sin \left(\phi^{*} \pi / 180\right)\right)+\mathrm{R}^{*}\left(\sin \left(\phi^{*} \pi / 180\right)+4-3^{\wedge} 0.5-\right.$ $\left.3^{\wedge} 0.5^{*} \cos \left(\phi^{*} \pi / 180\right)\right)+$ DTA+f2

Calculator

f 1	
f 2	
ϕ	
R	
DTA	
L	

Click here to calculate

$2.8 \quad$ Fly-By Turn (see figure 2-3).

Step 1: Establish a line through the turn fix that bisects the turn angle. Determine Turn Radius (\boldsymbol{R}) using formula 2-3. Scribe an arc (with origin on bisector line) of radius \boldsymbol{R} tangent to inbound and outbound courses, creating the designed turning flight path.

Step 2: Scribe an arc (with origin on bisector line) that is tangent to each segment's inner primary boundary with a radius equal to $\frac{\text { Primary Area Half-width }}{2}$ (example: half width of $2 \boldsymbol{N M}$, the radius would be $\boldsymbol{R}+1.0 \mathrm{NM}$).

Step 3: Scribe an arc that is tangent to each segment's inner secondary boundary using the origin and radius from step 2 minus the secondary width.

Step 4: Scribe the primary area outer turning boundary with an arc with a radius equal to the segment half width centered on the turn fix.

Step 5: Scribe the secondary area outer turning boundary with the arc radius from step 4 plus the secondary area width centered on the turn fix.

Figure 2-3. Fly-By Turn Construction.

2.9 Minimum length of TF leg following a fly-by turn. Calculate the minimum length for a TF leg following a fly-by turn using formula 2-8.

2.10
 Calculating Descent Gradient (DG).

Determine total altitude lost between the plotted positions of the fixes. Divide the total altitude lost by distance (D) in $\boldsymbol{N M}$ to determine the segment descent gradient using formula 2-9 (see figure 2-4).

Formula 2-9. Descent Gradient.

$$
D G=\frac{r \cdot \ln \left(\frac{r+a}{r+b}\right)}{D}
$$

where $\mathrm{a}=$ beginning altitude
$b=$ ending altitude
D = distance (NM) between fixes
$r=20890537$
$(r * \ln ((r+a) /(r+b))) / D$
Calculator

a		
b		
D		
Click here		
to calculate		

2.11 Missed Approach Segment (MAS) Conventions.

Figure 2-5 defines the MAP point OEA construction line terminology and convention for section 1. The missed approach obstacle clearance standard is based on a minimum helicopter climb gradient of $400 \mathrm{ft} / \mathbf{N M}$, protected by a required obstacle clearance (ROC) surface that rises at $304 \mathrm{ft} / \mathbf{N M}$. The MA ROC value is based on a requirement for a $96 \mathrm{ft} / \boldsymbol{N M}(400-304=96)$ increase in
$\boldsymbol{R O C}$ value from the start-of-climb (SOC) point located at $\boldsymbol{J K}(\underline{A B}$ for $\boldsymbol{L P V})$. The actual slope of the $\boldsymbol{M A}$ surface is ($1 \boldsymbol{N M}$ in feet) $/ 304 \approx 19.987$. In manual application of TERPS, the rounded value of $40: 1$ has traditionally been applied. However, this order is written for automated application; therefore, use the full value (to 15 significant digits) in calculations. The nominal OCS slope ($\mathbf{M A}_{\text {ocsslope }}$) associated with any given missed approach climb gradient is calculated using formula 2-10.

Figure 2-5. MAS Point/Line Identification.

Line CD begins, Line $A B$ ends Section 1
Line EF ends MAP ATT (if used)
Line GH ends distance to accommodate pilot reaction time
Line JK marks SOC
Line PP' indicates the late turn point (if used)
Line P'P" may be used when required
Line LL' indicates the early turn point (if used)
Line L'L" may be used when required
Right Turn

2.11.1 Charted Missed Approach Altitude.

Apply TERPS Volume 1, paragraphs 277d and 277f to establish the preliminary and charted missed approach altitudes.

2.11.2 Climb-In-Holding.

Apply TERPS Volume 1, paragraph 277e for climb-in-holding guidance.

Chapter 3. Special En Route Criteria

3.0
 General.

A helicopter en route segment begins at an en route fix and ends at an en route fix, feeder fix, or an initial approach fix (IAF). The basic en route obstacle protection areas contain a primary area width of ± 3.0 nautical mile (NM) from centerline and a 1.0 NM secondary area (see figure 3-1). The secondary is attached to the primary boundary.

Route width reductions (after full expansion), along routes contained in the data base are authorized where special procedures network departures and arrivals. Minimum Global Positioning System (GPS) route width is ± 2.0 NM primary and 0.5 NM secondary, minimum Wide Area Augmentation System (WAAS) route width is $\pm 1.5 \mathrm{NM}$ primary and 0.5 NM secondary. These routes must be flown using terminal mode with a Course Deviation Indicator (CDI) scale of ± 1 NM. These procedures require operations specifications (OpSpec) approval or a Letter of Authorization (LOA) and must be noted on FAA Form 8260-10.

The required angle of turn connecting en route segments to other en route, feeder, or initial approach segments must not exceed 90 degrees. The MAXIMUM route segment length is 65 NM. Conditions and limitations for operations on these special GPS airways are contained in appendix 1. Apply chapter 2 turn expansion criteria.

Figure 3-1. En Route Segment Turn.

3.1 Required Obstacle Clearance (ROC).

3.1.1 Primary Area.

Apply 1,000 ft (2,000 ft in designated mountainous terrain) of $\boldsymbol{R O C}$ in the primary area (see figure 3-2).

3.1.2 Secondary Area.

The secondary area $\mathbf{R O C}$ tapers from 500 ft at the primary boundary to zero feet at the outer edge for non-mountainous areas (see figure 3-2). The secondary area ROC tapers from 500 ft at the primary boundary to $1,000 \mathrm{ft}$ at the outer edge for designated mountainous areas (see figure 3-3).

Figure 3-2. En Route Segment Cross Section.

3.1.2 a. ROC Formula Secondary Area/Non-Mountainous. Apply formula 3-1 to determine the secondary $\boldsymbol{R O C}$ in non-mountainous areas at a given distance " d " in feet from the primary boundary line to the obstacle (round to nearest foot increment):

Formula 3-1. Secondary ROC.

$$
\mathrm{ROC}_{\text {secondary }}=500 \cdot\left(1-\frac{\mathrm{d}}{\mathrm{D}}\right)
$$

where $\mathrm{D}=$ width (ft) of secondary
$\mathrm{d}=$ distance (ft) from edge of primary area measured perpendicular to boundary

3.1.2 b. ROC Formula Secondary Area/Mountainous. Apply the following formula to determine the secondary ROC in designated mountainous areas in accordance with Part 95 (see figure 3-3). Areas at a given distance " d " in feet from the primary boundary line in mountainous areas are determined by the following formula:

Formula 3-2. ROC in Secondary.	
$\mathrm{ROC}_{\text {secondary }}=500 \cdot\left(1-\frac{d}{\mathrm{D}}\right)+1000$ where $\mathrm{D}=$ width (ft) of secondary $\mathrm{d}=$ distance (ft) from edge of primary area measured perpendicular to boundary	
500*(1-d/D)+1000	
Calculator	
d	Click here to calculate
D	
ROC ${ }_{\text {secondary }}$	

3.1.2 c. The ROC additive may be reduced to a MINIMUM of 500 ft resulting in $1,500 \mathrm{ft}$ ROC above terrain in the designated mountainous areas of the Eastern United States, Commonwealth of Puerto Rico, and the land areas of the State of Hawaii; and the additive may be reduced to a MINIMUM of 700 ft resulting in $1,700 \mathrm{ft}$ above terrain in the designated mountainous areas of the Western United States and the State of Alaska. Consider the following points before altitudes providing less than $2,000 \mathrm{ft} \boldsymbol{R O C}$ are authorized.

- Areas characterized by precipitous terrain.
- Weather phenomena peculiar to the area.
- Phenomena conducive to marked pressure differentials.
- Availability of weather services throughout the area.
- Availability and reliability of altimeter resetting points along routes in the area.
- Following reduction, the minimum altitude must be at least $1,000 \mathrm{ft}$ above manmade obstacles.
3.1.2 d. Altitude Selection. The altitudes selected for each segment must be established in $100-\mathrm{ft}$ increments. The en route charted altitude may be rounded down when the computed altitude is 49 ft or less and must be rounded up when 50 ft or more, e.g., $1,549 \mathrm{ft}$ may be charted as $1,500 \mathrm{ft}$ and $1,550 \mathrm{ft}$ must be charted as $1,600 \mathrm{ft}$.

Order 8260.3B, Volume 1, paragraph 1720 may be applied to reduce ROC in designated mountainous areas.

3.1.3 Minimum Crossing Altitude (MCA).

Establish an MCA when an obstacle prevents a normal climb to a higher minimum en route altitude (MEA). The normal climb gradient is shown in table 3-1. When a $M C A$ is required, chart the required climb gradient and rate of climb on the en route chart.

Table 3-1. Normal Helicopter En Route Climb Gradient.		
Gradient Level (MSL)	Gradient	OCS Slope
at or below 5,000 ft	300 ft per NM	$20.25: 1$
$5,001 \mathrm{ft}$ through $10,000 \mathrm{ft}$	240 ft per NM	$25.3: 1$

The MCA computation is based on the distance from the nearest fix displacement tolerance line to the obstacle. The computation is rounded to the next higher $100-\mathrm{ft}$ increment (see figure 3-4 for an example of computing MCA).

Note: The USA standard climb gradient is $400 \mathrm{ft} / \mathbf{N M}$ for all altitudes.

3.1.4 Determining MCA.

Apply formula 3-3 and 3-4 for determining MCA:

Formula 3-3. Sea Level to 5,000 ft MSL

MCA $=$ A-300.L		
Where:		
A = "Climb to" MSL Altitude $\mathrm{L}=$ Length of segment (NM)		
A-300*L		
Calculator		
A		Click here to calculate
L		
MCA		

Formula 3-4. Sea Level to 10,000 ft MSL

$$
\text { MCA }=5000-300\left(L-\frac{A-5000}{240}\right)
$$

Where:
A = "Climb to" MSL Altitude
L = Length of segment (NM)
5000-300*(L-(A-500)/240)
Calculator

A	
L	
MCA	

Click here to calculate

Figure 3-4. Minimum Crossing Altitude.

Step 1: Add 2,000 ft mountainous ROC to MSL height of obstacle:
Step 2: Apply formula 3-4 to determine the MCA.

3.2 Feeder Segment Route Transitions from GPS to Terminal Route Widths.

3.2.1 Terminal Routes Between Airports/Heliports.

A departure waypoint can be connected to an initial approach fix (IAF) or inital/intermediate fix (IF) of an approach procedure to establish a terminal route for the entire feeder segment. Construct a primary terminal route width of \pm 1.5 $N M$ and a secondary of 0.5 NM between a departure airport/heliport and arrival airport/heliport IAF. The departure route length and arrival route length must be less than 30 NM from the departure and arrival airport reference point/heliport reference point (ARP/HRP) [see figure 3-5, example 1]. The MAXIMUM route length is 60 NM between the departure ARP/HRP to the arrival ARP/HRP. Establish a changeover point IAF, usually mid-way between the departure and arrival ARP/HRP.

Note: For USA, limit turns in feeder segments to no greater than 60 degrees when designing COPTER RNAV (GPS) procedures.
3.2.2 Construct routes originating beyond 30 NM from the ARP/HRP. (For simplicity, transition points are drawn in relation to the ARP/HRP).
3.2.2 a. Ending 30 NM or less from the $\operatorname{ARP} / \mathbf{H R P}$, beginning with standard en route dimensions (primary area width of the $\pm 3.0 \mathrm{NM}$ and a secondary width 1.0 NM) and tapering at a rate 30 degrees inward, relative to course to terminal criteria size, beginning at the latest point the feeder fix can be received (see figure 3-5, example 2).
3.2.2 b. If the distance from the plotted position of the feeder fix to the plotted position of the next fix is less than 4.598 NM (tapered segment is less than 2.598 NM long), taper from the latest position the feeder fix can be received directly to the appropriate area edges abeam the plotted position of the next fix (see figure 3-5, example 3).

Figure 3-5. GPS Feeder Route Examples.

3.3 Descent Gradient.

The OPTIMUM descent gradient is (3.77 degrees) 400 ft NM and the MAXIMUM is (5.64 degrees) $600 \mathrm{ft} / \mathbf{N M}$. Where higher descent gradients are required, Order 8260.3B, Volume 1, paragraph 1110 applies.

Chapter 4. Terminal Operations

4.0 Approach Configuration.

Initial segment course widths are ± 1.5 nautical miles (NM) primary and 0.5 NM secondary. The BASIC "Y" or "T" approach configuration should be the basis of procedure design. Use initial and intermediate segment lengths, as specified in table 4-1, as the first option in procedure design. The optimum design incorporates the basic \mathbf{Y} or \mathbf{T} configuration. This design eliminates the need for a specific course reversal pattern. Where the optimum design cannot be used and a course reversal is required, establish a holding pattern at the initial or intermediate approach fix. See paragraph 2.0. The maximum course change at the fix initial approach fix/initial fix (IAF/IF) is 90 degrees. Design initial/initial and initial/intermediate track-to-fix (TF) segment intersections with the smallest amount of course change that is necessary for the procedure. No course change is optimum. Where a course change is necessary, it should normally be limited to 70 degrees or less; 30 degrees or less is preferred. The maximum allowable course change between TF segments is 90 degrees. Deviations from this configuration in shape and dimension should not be used for public procedures unless there is an operational advantage (see figure 4-1).

Note: For USA, limit turns in initial segments to a MAXIMUM of 60 degrees with a basic " Y " approach configuration when designing COPTER RNAV (GPS) procedures.

Table 4-1. Helicopter GPS MINIMUM Initial/Intermediate/Final Segment Lengths.	
Course Intercept Angle (Degrees)	Minimum Leg Length (NM)
$00-30$	2.0
$>30-90 *$	3.0

* Final segment 30-degree MAXIMUM intercept angle for Global Positioning System (GPS) and Wide Area Augmentation System (WAAS) public procedures. Final segment 60-degree MAXIMUM intercept angle for GPS and WAAS special procedures. A turn exceeding 30 degrees at the final approach fix (FAF) requires documentation of equipment capability.

4.1 Initial Approach Segment.

The initial approach segment begins at the IAF and ends at the IF. The IF may be identified as an along-track distance (ATD) from the FAF. Course change at the IF must not exceed 90 degrees for public and special procedures. If a special procedure requires a course change that exceeds 90 degrees, a waiver is required and is noted on FAA Form 8260-9. No course change exceeding 120 degrees is allowed. Construct the inbound leg of course reversal holding patterns within 30 degrees of the intermediate course (IF/IAF). Apply paragraph 2.6 for course reversal using holding pattern criteria. Do not establish a holding pattern in lieu of procedure turn at the $\boldsymbol{F A F}$. The following examples (figures 4-2a and 4-2b) are initial/ intermediate segment constructions for 30-degree and 70-degree intercepts:

Figure 4-2a. Initial/Intermediate Segment Construction.

Figure 4-2b. Initial/Intermediate Segment Construction.

4.1.1

4.1.1
a. Length. The initial segment length should not exceed 10 NM unless operational requirements mandate a longer segment. Construct IAFs within 25 NM of the airport reference point/heliport reference point (ARP/HRP). The MINIMUM length is governed by the turn magnitude required at the IAF (see table 4-1).
4.1.1 b. Width.
4.1.1 b. (1) Primary Area. 1.5 NM each side of the course centerline.
4.1.1 b. (2) Secondary Area. 0.5 NM on each side of the primary area.

4.1.2 Obstacle Clearance.

Provide a MINIMUM of $1,000 \mathrm{ft}$ of required obstacle clearance (ROC) in the primary area. In the secondary area, provide 500 ft of $\boldsymbol{R O C}$ at the inner edge, tapering uniformly to zero at the outer edge (see figure 4-3). Calculate the secondary ROC using the following formula 4-1:

Formula 4-1. Secondary ROC.	
where $\mathrm{D}=$ width (ft) of secondary $\mathrm{d}=$ distance (ft) from primary area edge, measured perpendicular to boundary	
500*(1-d/D)	
Calculator	
d	Click here to calculate
D	
ROC ${ }_{\text {secondary }}$	

Establish initial segment altitudes in $100-\mathrm{ft}$ increments. The charted altitude may be rounded down when the computed altitude is 49 ft or less and must be rounded up for an altitude of 50 ft or more; e.g., $1,549 \mathrm{ft}$ may be charted as $1,500 \mathrm{ft}$ and $1,550 \mathrm{ft}$ must be charted as $1,600 \mathrm{ft}$. However, do not round down below $1,000 \mathrm{ft}$ of $\boldsymbol{R O C}$.
*Allowance for precipitous terrain should be made as specified in Order 8260.3B, Volume 1, paragraph 3.2.2b.

4.1.3 Descent Gradient for Initial and Intermediate Segments.

The OPTIMUM descent gradient/angle is $400 \mathrm{ft} / \mathbf{N M}$ (3.77 degrees) and the recommended MAXIMUM is $600 \mathrm{ft} /$ NM (5.64 degrees). Where higher descent gradients are required, Order 8260.3B, Volume 1, paragraph 1110 applies.

$4.2 \quad$ Intermediate Segment.

The intermediate segment begins at the $\boldsymbol{I F}$ and ends at the $\boldsymbol{F A F}$. The intermediate segment is used to prepare the helicopter speed and configuration for
final approach segment entry, therefore the gradient should be as flat as possible. If a descent is required, the OPTIMUM descent gradient/angle is $400 \mathrm{ft} / \mathbf{N M}$ (3.77 degrees) and the recommended maximum is $600 \mathrm{ft} / \mathbf{N M}$ (5.64 degrees). At a point beginning 2.0 NM from the FAF, construct a taper to accommodate the course deviation indicator (CDI) scaling and integrity change from terminal to approach mode.

4.2.1 Alignment.

The MAXIMUM course change at the $\boldsymbol{F A F}$ is 60 degrees.

4.2.2

4.2.2 a. Length. MAXIMUM length is 5.0 NM. OPTIMUM length is 3.0 NM. The MINIMUM length is governed by the turn magnitude required at the $\boldsymbol{I F}$ and the segment descent requirement (see table 4-1).
4.2.2 b. Width. The primary area is 1.5 NM each side of the segment centerline, beginning at the earliest IF position. The segment taper begins 2.0 NM prior to the plotted position of the $\boldsymbol{F A F}$ to reach a $\pm 0.55 \boldsymbol{N M}^{*}$ width at the $\boldsymbol{F A F}$ plotted position (see figures 4-2a and 4-2b). The secondary area is 0.50 NM each side of the primary area.
*Note: USAF/USA/USCG/USN operating at 90 KIAS: Change 0.55 NM to 0.70 NM.

4.2.3 Obstacle Clearance.

Provide a MINIMUM of 500 ft of ROC in the primary area. In the secondary area, provide 500 ft of $\boldsymbol{R O C}$ at the inner edge tapering to zero feet at the outer edge. Establish altitudes for each intermediate segment in $100-\mathrm{ft}$ increments, and round to the next higher $100-\mathrm{ft}$ increment. Calculate the secondary ROC using formula 4-2 (see figure 4-4).

Formula 4-2. Intermediate Secondary ROC.

$$
\mathrm{ROC}_{\text {secondary }}=(500+\mathrm{adj}) \cdot\left(1-\frac{\mathrm{d}_{\text {primary }}}{\mathrm{W}_{\mathrm{s}}}\right)
$$

where $\mathrm{d}_{\text {primary }}=$ perpendicular distance (ft)
from primary area edge
$\mathrm{W}_{\mathrm{S}}=$ Width of the secondary area
adj $=$ TERPS para 323 adjustments

Allowance for precipitous terrain should be made as specified in Order 8260.3B, Volume 1, paragraph 323a.

Chapter 5. IFR Final and Visual Segments

$5.0 \quad$ General.

The approach procedure type is determined by the visual segment. The instrument flight rule (IFR) final approach segment (FAS) applies to all five types of procedures.

5.1 The five procedure types are:

- IFR to an IFR Heliport.
- IFR to a VFR Heliport (IVH) (Proceed Visually)
- IFR to a VFR Runway (IVR) (Proceed Visually)
- Point-in-Space (PinS) Approach (Proceed VFR)
- IFR to an IFR Runway

5.2 IFR Final Segment.

The IFR FAS begins at the final approach fix (FAF) and ends at the missed approach point (MAP) (see figure 5-1). MAP location should provide the best compromise of lowest visibility and visual segment descent angle (VSDA). The OPTIMUM distance for the "Proceed Visually" MAP is 0.65 nautical mile (NM) [3/4 statute mile (SM) visibility] from the heliport.

5.2.1 Configuration and Alignment.

Preferred approach/departure paths should be aligned with the prevailing wind direction to avoid downwind and minimize crosswind operations. To accomplish this, a heliport should have more than one approach/departure path and the preferred flight approach/departure path should, to the extent feasible, be aligned with the prevailing wind. Other approach/departure paths should be based on the assessment of the prevailing winds or when this information is not available, the separation between such flight paths and the preferred flight path should be at least 135 degrees.

The IFR final segment alignment is from the FAF to the MAP. For a straight-in approach, the alignment must not exceed 30 degrees MAXIMUM turn at the $\boldsymbol{F A F}$ without special approval. The MAP is located on the final approach course (FAC) between the $\boldsymbol{F A F}$ and a point no closer to the helipoint than $0.3 \mathbf{N M}$ from the visual segment reference line (VSRL). MAP location should provide the best compromise of lowest visibility and visual segment descent angle. For a straightin approach, the alignment must not exceed 30 degrees to a helipoint for an approach to an IFR heliport or 30 degrees from runway centerline ($\boldsymbol{R C L}$) extended to an IFR runway threshold ($\boldsymbol{R W T}$). Optimum alignment is coincident with the $\boldsymbol{R C L}$. When the alignment exceeds 5 degrees the optimum alignment point is $1,500 \mathrm{ft}$ from the $\boldsymbol{R} \boldsymbol{W} \boldsymbol{T}$ on $\boldsymbol{R C L}$.

5.2.1 a. Area. The area considered for obstacle clearance begins at the earliest FAF along-track tolerance (ATT) and ends at the latest MAP ATT (see figure 5-1).
5.2.1 b. Length. The OPTIMUM length is 3 NM. The MINIMUM length (FAF to MAP) is 2 NM (3 NM when a step down fix is established for public procedures). The MINIMUM length is also governed by the required FAF turn magnitude (see table 4-1) and descent gradient. The MAXIMUM length is 10 NM .
5.2.1 c. Width. The primary area boundary begins $0.55 N M^{*}$ each side of the final segment centerline at the earliest FAF ATT. The width remains constant until the
latest FAF ATT. It then tapers to 0.40 NM * at the latest MAP ATT. The secondary area boundary is constant, 0.50 NM each side of the primary area. Calculate the primary half-width at any distance from latest MAP ATT using formula 5.1a.

Formula 5-1a. Final Area Half-Width. $\left(W_{P}\right)$

$$
W_{p}=P_{w 2}+\left(\frac{P_{w 1}-P_{w 2}}{D_{1}}\right) \cdot D_{2}
$$

Where $\mathrm{P}_{\mathrm{w}_{1}}=$ Primary Width, FAF, (0.55 or 0.7) NM
$\mathrm{P}_{\mathrm{w}_{2}}=$ Primary Width, latest MAP ATT, (0.4 or 0.5) NM
$\mathrm{D}_{1}=\mathrm{FAF}$ to MAP distance (NM)
$\mathrm{D}_{2}=$ Latest MAP ATT to desired point (NM)
$\mathrm{W}_{\mathrm{T}}=$ Final Total Width $(\mathrm{ft})(\mathrm{WP}+0.5 \mathrm{NM})$
$\mathrm{P}_{\mathrm{w}_{2}}+\left(\left(\mathrm{P}_{\mathrm{w}_{1}}-\mathrm{P}_{\mathrm{w}_{2}}\right) / \mathrm{D}_{1}\right) * \mathrm{D}_{2}$
Calculator

$\mathrm{P}_{\mathrm{W} 1}$	
$\mathrm{P}_{\mathrm{W} 2}$	
D_{1}	
D 2	
$\mathrm{~W}_{\mathrm{P}}(\mathrm{NM})$	
$\mathrm{W}_{\mathrm{P}}(\mathrm{ft})$	
$\mathrm{W}_{\mathrm{T}}(\mathrm{ft})$	

*Note: USAF/USA/USCG/USN operating at 90 KIAS: Change 0.55 NM to 0.70 NM and 0.4 ONM to 0.50 NM (primary area).

5.2.2 Required Obstacle Clearance.

Primary area required obstacle clearance (ROC) is 250 ft . Secondary ROC is 250 ft at the edge of the primary area, tapering uniformly to zero at the outer edge. Calculate secondary ROC using formula 5-1b.

Formula 5-1b. Secondary Area ROC ($R O C_{\text {secondan }}$).		
$\begin{aligned} & \mathrm{ROC}_{\text {secondary }}=(250+\text { adj }) \cdot\left(1-\frac{\mathrm{d}_{\text {primary }}}{\mathrm{W}_{\mathrm{S}}}\right) \\ & \text { Where adj }=\text { TERPS para } 323 \text { adjustments } \\ & \mathrm{d}_{\text {primary }}=\text { distance (perpendicular to } \mathrm{C} / \mathrm{L} \text { from primary area (} \mathrm{ft} \text {) }) \\ & \mathrm{W}_{\mathrm{S}}=\text { Secondary area width (} \mathrm{ft} \text {) } \end{aligned}$		
$\left(250+\right.$ adj) ${ }^{\text {(}}$ ($\left.1-\mathrm{d}_{\text {primar/ }} / \mathrm{W}_{\mathrm{s}}\right)$		
Calculator		
adj		Click here to calculate
$\mathrm{d}_{\text {primary }}$		
W		
ROC ${ }_{\text {secondary }}$		

5.2.2 a. Descent Gradient/Angle (\measuredangle) (figure 5-2a). For IVH, PinS , and IVR approaches, the descent gradient/angle is measured from the plotted positions of the FAF at FAF altitude to the MAP at MDA. Calculate the final segment descent gradient/angle using formula 5-2:

Formula 5-2 Final Approach Angle to MAP (DescentAngle).

$$
\text { DescentAngle }=\tan ^{-1}\left(\frac{r}{c} \cdot \ln \left(\frac{r+a}{r+b}\right)\right) \cdot \frac{180}{\pi}
$$

Where:
$\mathrm{c}=\mathrm{FAF}$ to MAP distance (ft)
a = FAF altitude MSL
$\mathrm{b}=$ MDA at MAP MSL
$r=20890537$ earth mean radius
$\tan ^{-1}\left(\mathrm{r} / \mathrm{c}^{*} \ln ((\mathrm{r}+\mathrm{a}) /(\mathrm{r}+\mathrm{b}))^{*} 180 / \pi\right.$
Calculator

c		
a		Click here to calculate
b		
Descent Angle		

MAXIMUM: $800 \mathrm{ft} /$ NM (7.5 degrees).
Note 1: USA MAXIMUM descent gradient/angle is $478 \mathrm{ft} / \mathrm{NM}$ (4.5 degrees) without a waiver.

Note 2: The visual segment descent gradient is considered separately in approaches to VFR heliports or VFR runways.
5.2.2 b. Descent Gradient/Angle to an IFR Runway or an IFR Heliport. Apply the same descent gradient/ angle in paragraph 5.2.2a for an IFR approach to an IFR runway, but the distance/elevation calculations begin at the FAF and end at $\boldsymbol{R W T} / \mathbf{T C H}$ elevation (see figure 5-2b). For an IFR approach to an IFR Heliport, the distance/elevation calculations begin at the FAF and end at $\boldsymbol{H C H}$ (see figure 5-2c). Apply formula 5-3:

Formula 5-3. Descent Angle to Runway or HCH (DescentAngle).		
Descent A Where:	$\begin{aligned} & c=\text { FAF to RWT/helipoint distance }(\mathrm{ft}) \\ & a=\text { FAF Altitude MSL } \\ & b=T C H / H C H \text { elevation at RWT or HCH } \\ & r=20890537 \text { earth mean radius } \end{aligned}$	(ft) HCH
$\tan ^{-1}\left(\mathrm{r} / \mathrm{c}^{*} \ln ((\mathrm{r}+\mathrm{a}) /(\mathrm{r}+\mathrm{b}))^{*} 180 / \pi\right.$		
Calculator		
c		Click here to calculate
a		
b		
Descent Angle	。	

Figure 5-2a. Descent Gradient/Angle, FAF to MAP for IVH/PinS/IVR Procedures.

Figure 5-2c. Descent Gradient/Angle, FAF to HCH for IFR Approach to IFR Heliport.

5.2.2 d. Stepdown Descent Gradient/Angle. When a stepdown fix is used, measure the descent gradient/angle from the FAF at the FAF altitude to the stepdown fix at the minimum fix altitude, then to the MAP at the MDA. For a stabilized approach, provide a constant gradient/angle from the $\boldsymbol{F A F}$ to the $\boldsymbol{M A P}$, (may require raising the $\boldsymbol{F A F}$ altitude). A stepdown fix must be located no closer than 0.6 NM to the FAF or MAP.
5.2.2 e. Existing Obstacles Close to the FAF or Stepdown Fix. If the segment descent gradient/angle is less than $800 \mathrm{ft} / \mathbf{N M}$ (7.5 degrees), Order 8260.3B, Volume 1, paragraph 289 may be applied substituting an OIS slope of $3.5: 1$ vice 7:1. Calculate the OIS Elevation and Minimum fix altitude using formula 5-4.

Formula 5-4. OIS Elevation \& Minimum Fix Altitude (OIS \& MFa)

Calculator

a		
c		
O_{x}		Click here to calculate
O_{Z}		
$\mathrm{OIS}_{\mathrm{z}}$		
MFa		

$5.3 \quad$ IFR Heliport Visual Segment.

5.3
a. Area.
5.3
a. (1) Length. The obstacle clearance area (OCA) begins at the Visual Segment Reference Line (VSRL) and extends toward the MAP to the point the visual segment OIS reaches an altitude 250 ft below the MDA, or the latest MAP ATT, whichever is farther from the helipoint (see figures 5-3 and 5-4).

5.3.
a. (2) Width. When the splay reaches the width of the primary area, continue splaying the width by the primary area dimensions to the OIS end (see figures 5-5 and 5-6).

Figure 5-5. IFR Heliport Visual Segment Area.

Figure 5-6. IFR Heliport Visual Segment Area Splays.

5.3.1 IFR Heliport Visual Segment Descent Point (VSDP).

A VSDP may be established for helicopter GPS procedures. Apply the VSDP concepts in Order 8260.3B, Volume 1, paragraph 253, except use helipoint elevation vice $\boldsymbol{R W T}$ elevation and $\boldsymbol{H C H}$ vice TCH. The recommended VSDP visual segment angle is 6.0 degrees. The MAXIMUM angle is 7.5 degrees. Publish the VSDP as an ATD from the MAP. Do not publish a VSDP where the VSDP fall between the MAP and the helipoint. Locate the VSDP on the FAC at the point where the visual glide slope indicator (VGSI) on-glide slope beam intersects the MDA. Where a VGSI is not established, calculate the VSDP to helipoint distance along the FAC using formula 5-5:

Formula 5-5. VDP to Heliport Distance (VSDP ${ }_{\text {dist }}$).

5.3.1 a. Area. Center the VSDP area on the FAC. The VSDP OIS origin is VSRL. The surface splays outward at a 10 -degree angle relative to the $\boldsymbol{F A C}$. It ends at the VSDP, or where the VSDP OIS elevation is equal to the MDA, minus the ROC, whichever occurs first. The VSDP OIS inclines upward and outward from its origin at an angle 1.0 degree below the computed descent angle.
5.3.1 b. Obstacle Clearance. No obstacle penetration is allowed of the VSDP OIS (see figure 5-7). Calculate the OIS elevation (MSL) at a specified obstacle location using formula 5-6.

Formula 5-6. OIS Elevation $\left(O I S_{\text {elev }}\right)$.

$$
\mathrm{OIS}_{\mathrm{elev}}=(\mathrm{r}+\mathrm{HE}) \cdot \mathrm{e}^{\mathrm{r}}-\mathrm{r}
$$

Where:
HE = Helipoint elevation MS
D = Distance obstacle to VSRL
$\beta=$ OIS Angle
$r=20890537$ earth mean radius
$(r+H E) * e^{\wedge}\left(D^{*} \operatorname{Tan}\left(\beta^{*} \pi / 180\right) / r\right)-r$
Calculator

HE		Click here to calculate
D		
β	。	
OIS ${ }_{\text {elev }}$		

Figure 5-7. IFR Heliport VSDP OIS.

5.3.1
c. IFR Heliport Obstacle Clearance of VSDP OIS. Obstacle penetration of the VSDP OIS is not allowed. Evaluate obstacles based on the shortest obstacle to
surface origin distance measured along the visual segment centerline. Calculate the OIS elevation above mean sea level (MSL) at a specified obstacle location using formula 5-6.
5.3.1 d. IFR Heliport HAL, Visual Segment Length (VSL250), and Visual Segment Descent Angle (VSDA) Computations.

Calculate HAL, VSRL to a point 250 ft below MDA (VSL $\mathbf{2 5 0}^{\text {(}}$), and VSDA using the following steps (see figure 5-7):
5.3.1 d. (1) Calculate HAL using formula 5-7:

Formula 5-7. OIS Elevation (HAL).	
HAL= MDA-Helipoint Elevation (HE)	
MDA-HE	
Calculator	
MDA	
HE	
HAL	

5.3.1 d. (2) Calculate VSDA using formula 5-8.

5.3.1
d. (3) Calculate visual segment length from the VSRL to a point 250 ft below MDA (VSL 250) using formula 5-9.

Formula 5-9. Visual Segment Length (VSL250).
$V S L_{250}=\frac{\left(r \cdot \ln \left(\frac{r+a}{r+H E}\right)\right)}{\tan \left((V S D A-1) \cdot \frac{\pi}{180}\right)}$
Where:
HAL = Formula 5-7 output
$a=$ HAL-250 (MSL)
HE = Heliport elevation
$r=20890537$ mean earth radius
VSDA = Formula 5-8 output
$\left(r^{*} \ln ((r+a) /(r+H E))\right) / \tan ((V S D A-1) *(\pi / 180))$
Calculator

HAL		
HE		Click here to calculate
VSDA $^{\text {VSL }} 250$	\circ	

5.3.2

IFR Heliport Visual Segment OIS (figure 5-7).
5.3.2 a. Where no VSDP has been established, apply Order 8260.3B, Volume 1, paragraph 253 . Where a VGSI facility is installed, the VSDP obstacle identification surface (OIS) inclines upward from the VSRL at an angle 1.0 degree below the aiming angle of the on-glide slope beam. Locate the VSDP on the FAC at the point where the VGSI on-glide slope beam intersects the MDA. The recommended VSDP on-glide slope descent gradient/angle is $639 \mathrm{ft} / \mathbf{N M}$ (6 degrees). The MAXIMUM angle is 7.5 degrees (USA MAXIMUM descent gradient/angle is $478 \mathrm{ft} / \mathbf{N M}$ (4.5 degrees) without a waiver). Where no VGSI facility is installed, the VSDP OIS rises at a 5-degree angle from the VSRL to the VSDP. Publish the VSDP as an ATD from the MAP. The MINIMUM HCH is 5 ft . The MAXIMUM $\mathbf{H C H}$ is 20 ft unless approved by Flight Standards.
Calculate the VSDP distance (D) from the helipoint using formula 5-10.

Formula 5-10. Distance from Helipoint (D).

$$
D=\frac{\left(r \cdot \ln \left(\frac{r+H A L+H E}{r+H E}\right)\right)}{\tan \left(V S D A \cdot \frac{\pi}{180}\right)}
$$

Where:

> HAL = Formula 5-7 output

HE $=$ Heliport elevation
VSDA = Formula 5-8 output
$r=20890537$ mean earth radius
$\left(r^{*} \ln ((r+\mathrm{HAL}+\mathrm{HE}) /(\mathrm{r}+\mathrm{HE}))\right) / \tan (\mathrm{VSDA}(\pi / 180))$

Calculator						
HAL						
HE	${ }^{\circ}$	Click here to calculate				
VSDA						
D						

5.4
 IFR Approach to a VFR Heliport (IVH) (Proceed Visually).

5.4.1 General.

The special procedure provides a measure of obstruction protection/identification along the visual track from a MAP to a specific VFR heliport. This procedure requires training and equipment contained in the operations specifications (OpSpec) or letter of authorization (LOA). Three development steps for an IVH are: Heliport, Visual Segment OIS, and Obstacle Clearance Surface (OCS) evaluations. The approach chart must be annotated "Proceed Visually."

5.4.2 Heliport Evaluation.

Before designing a special RNAV (GPS) IVH approach procedure, ensure the heliport meets the following criteria:
5.4.2. a. FAA Form 7480-1, Notice of Landing Area Proposal, has been filed under Part 157.
5.4.2 b. No penetration of the 8:1 surface in AC 150/5390-2 is permitted (see figure $5-8$). Penetrations of either A or B areas, but not penetrations of both areas, are allowed if the obstructions are charted, marked or lighted, and not considered a hazard. Calculate the 8:1 surface height $\left(\boldsymbol{S}_{\boldsymbol{H}}\right)$ at any distance (\boldsymbol{D}) using formula 511.

Figure 5-8. 8:1 Surface in AC 150/5390-2.

Formula 5-11. 8:1 $\operatorname{OCS}\left(S_{H}\right)$.

$$
S_{H}=\frac{D}{8}+H E
$$

Where:

5.4.2 c. An acceptable onsite evaluation of the heliport for VFR use is required. Apply Order 8700.1, General Aviation Inspector's Guide, chapter 61 for the heliport evaluation. Based on the FAA determination, a procedure can be developed under the following conditions:

5.4.2
 c. (1) No objection.

5.4.2 c. (2) Conditional. Conditions have been resolved by the proponent, e.g., obstacle penetrations of the 8:1 approach area, transitional and lateral extension areas, or pertain to the minimum size of the FATO, TLOF, and Safety Area.
5.4.2 c. (3) Objection. If an objection determination is issued, an IVH approach procedure development is not authorized. A Point-in-Space (PinS) (Proceed $\boldsymbol{V F R}$) approach procedure may be developed in accordance with chapter 5, paragraph 5.6.
5.4.2 d. An 'acceptable’ visual segment evaluation for flyability, obstacles, and visual references must be completed in both day and night flight conditions. The heliport or heliport visual references must be in clear view from the MAP to provide visual orientation sufficient to maneuver the helicopter from the $\boldsymbol{M A P}$ to
the landing site based solely on visual reference. The landing site must not be obscured by structures, trees, etc. Buildings and facilities associated with the heliport such as hangers, administration buildings, AWOS equipment, windsock, beacon, etc. located within 500 ft are acceptable visual references. Surrounding buildings and landmarks are not allowable visual references unless approved by Flight Standards. At least one of the following visual references must be visible or identifiable before the pilot may proceed visually:
5.4.2 d. (1) FATO or FATO lights.
5.4.2 d. (2) TLOF or TLOF lights.
5.4.2 d. (3) Heliport Instrument Lighting System (HILS).
5.4.2 d. (4) Heliport Approach Lighting System (HALS) or lead-in lights.
5.4.2 d. (5) VGSI.
5.4.2 d. (6) Windsock or windsock light(s).*
5.4.2 d. (7) Heliport beacon.*
5.4.2 d. (8) Other facilities or systems approved by Flight Standards (AFS-400).
*Note: Windsock lights and heliport beacons should be located within 500 ft of the TLOF.

5.4.3 Visual Segment OIS Evaluation.

The visual segment is based on the premise that the pilot will maintain level flight at the MDA until the helicopter is in a position to initiate a descent to the helipoint. When obstacles preclude an immediate descent at the MAP to the FATO, establish an ATD fix to provide a descent point to the FATO. The MINIMUM distance from the ATD fix to the helipoint is 0.4 NM. Chart a profile note, "Maintain MDA altitude until NM past MAP." Example, "Maintain 560 until 0.2 NM past PEMIE." These procedures should have a VGSI for vertical guidance from the ATD fix to the planned $\boldsymbol{H C H}$. The course from the MAP to the heliport must be within 30.0 degrees of the FAC. Apply paragraphs 5.2.1 and 5.2.2 for the $\boldsymbol{I F R}$ segment $\boldsymbol{O C A}$ and $\boldsymbol{R O C}$. Apply paragraph 5.2.2b in constructing the descent gradient/angle in the IFR segment. When an amended procedure no longer meets the criteria in this paragraph, a PinS procedure applying the criteria in paragraph 5.6 may be published. Compute the distance for the Remote Altimeter Setting Source (RASS) adjustment for the MDA and stepdown altitudes for the IVH approach procedures from the source to the MAP.
5.4.3
5.4.3
5.4.3
5.4.3
5.4.3
5.4.3
5.4.3
b. (2) Straight Course to a Heliport OEA Construction. Connect the final primary area outer edges ($\underline{\mathbf{c d})}$ to the VSRL outer edges ($\underline{\mathbf{e f}) \text { (see figure 5-9). }}$

5.4.3 b. (3) Turn at the MAP Construction. A visual segment course may deviate up to 30 degrees from the IFR FAC. Refer to figure 5-10, and connect the tangent on the turn side (b) of the MAP nearest the heliport to the VSRL at point (e). Connect the non-turn-side primary area corner (d) to the VSRL at point (f).

Figure 5-10. Visual Segment with Turn at MAP OEA.

5.4.3

c. Visual Segment Descent Angle (VSDA).

The VSDA is a developer-specified angle extending from a point 5 to 20 ft directly above the helipoint to the MDA. The VSDA must cross the MDA between the helipoint and the MAP. The MAXIMUM VSDA is 7.5 degrees, OPTIMUM is 6.0 degrees, VSDA angles higher than 7.5 degrees require Flight Standards Service approval and must be documented on FAA Form 8260-10. Consider the specific helicopter equipment and capabilities, pilot training, and demonstrated capability for each case (see figure 5-11).

Figure 5-11. VSDA and OIS.

5.4.3 d. Visual Segment OIS.

The OIS begins at the VSRL and extends upward toward the MA at an angle of (VSDA - 1 degree). The OIS rises to the point it reaches an altitude equal to the MDA minus the ROC and adjustments. When the MAP is beyond this point, the OIS becomes a level surface to the MAP plotted position. Measure obstacles using the shortest distance to the VSRL. Obstacles should not penetrate the OIS; if they penetrate in the initial evaluation, take one of the following actions, listed in preferential order (see figure 5-12):
5.4.3
5.4.3 d. (2) Raise the VSDA to achieve an OIS angle that clears the obstacle, (7.5 degrees MAXIMUM without Flight Standards Service approval), or
5.4.3 d. (3) Identify the obstacle with the greatest penetration. Raise the MDA the penetration amount and round to the next highest $20-\mathrm{ft}$ increment. Initiate action to have the obstacle marked and lighted, if feasible. Depict all obstacles on the approach chart that penetrate the OIS and include in required training.
5.4.3 d. (4) Raise the $\boldsymbol{H C H}$ to $\leq 20 \mathrm{ft}$ provided the height is consistent with the helicopter's ability to hover out of ground effect. When this procedure is applied, raise the OIS origin above the helipoint elevation by the amount that the $\boldsymbol{H C H}$ is increased (see figure 5-12). Operational approval must include a requirement for training to terminate approaches at a high hover. Annotate the procedure for the visual segment descent planned for the $\boldsymbol{H C H}$. An $\boldsymbol{H C H}$ greater than 20 ft , and VSDAs greater than 7.5 degrees require Flight Standards Service approval and must be listed on FAA Form 8260-10. Each case must consider the specific helicopter equipment and capabilities, pilot training, and demonstrated capability.

5.4.3
d. (5) Annotate the procedure for the flight rules after the MAP in the visual segment.
5.4.3 d. (6) Annotate the procedure when night operations are not authorized.

5.4.4 OCS Evaluation.

5.4.4 a. IF R Approach to a VFR Heliport (IVH) Analysis:

Perform the following analysis prior to authorizing an IVH procedure. Apply obstacle clearance surface (OCS) areas using concepts from FAA Order 8260.3 paragraph 251a (1) with the following exceptions:
5.4.4 a. (1) Alignment is always centered on the visual segment centerline.
5.4.4 a. (2) Length OCS-1 and OCS-2.

Measure OCS-1 and OCS-2 length from the FATO edge to abeam the earliest MAP ATT (see figure 5-9).

5.4.4
 a. (3) Area Width OCS-1 and OCS-2.

OCS-1 splays outward 8.5 degrees from the FATO outer edges. OCS-2 splays outward 17 degrees from the FATO outer edges (see figure 5-9).

5.4.4
a. (4) Calculate OCS-1 half-width $\left(\mathbf{W}_{\text {ocs1 }}\right)$ at distance (d) from the FATO edge using formula 5-12.

5.4.4 a. (5) Calculate the OCS-2 width ($\mathbf{W O C S}_{\mathrm{OC} 2}$) at distance (d) from the FATO edge using formula 5-13.

Formula 5-13. OCS-2 Width (Wocs2).	
$\mathrm{W}_{\mathrm{Ocs} 2}=\left[\tan \left(17^{\circ} \cdot \frac{\pi}{180}\right) \cdot d\right]+0.5 \cdot \mathrm{~F}_{\mathrm{W}}$	
```Wocs2 = Perpendicular distance flight path to OCS-2 boundary d = Distance (ft) from FATO edge along flight path Fw = FATO width```	
$\left[(\tan (17 * \pi / 180) * \mathrm{~d}]+0.5 * \mathrm{~F}_{\mathrm{w}}\right.$	
Calculator	
d	Click here to calculate
$\mathrm{F}_{\mathrm{w}}$	
Wocs2	

5.4.4 a. (6) The OCS-1 and OCS-2 slopes equal (VSDA-1 degree), measured from the FATO edge MSL elevation. Determine the OCS-1 and OCS-2 MSL height at distance (D) from the FATO edge using formula 5-14:


### 5.4.4 <br> a. (7) If an unlighted obstacle penetrates OCS-1, a VGSI must be installed at the heliport.

5.4.4
5.4.4
5.4.4
5.4.4
a. (8) If an unlighted obstacle penetrates $\operatorname{OCS}$-2, the heliport must have leadin lights to assist the pilot, with visual cues, to remain within the IVH OCS area.
a. (9) The lead-in lights' operational suitability must be evaluated during the night evaluation.
a. (10) If obstacle penetrations exist outside the OCS-1 and OCS-2 areas, but within the OIS area (see paragraph 5.4.3), these obstacle penetrations must be noted on FAA Order 8260-7 and charted.
b. If any of these conditions are not met, a PinS (Proceed VFR) procedure may be developed in accordance with paragraph 5.6 of this order (see figure 514).

Figure 5-14. IVH (Proceed Visually) versus PinS (Proceed VFR).


Are there obstacle penetrations of the heliport 8:1 approach/departure surface area?

5.5.2 Location on the runway. The helipoint (aiming point) may be located at any point on a runway centerline, but should be at least a distance of ( 1.5 * Rotor Diameter) from the end of the usable runway on centerline. The runway is not required to be marked with heliport markings. The visual track from the MAP to the final approach area helipoint must be charted.
5.5.3 Alignment. The FAS must be aligned within 30 degrees of the extended runway centerline. The optimum flight path is aligned with the extended runway centerline, with the MAP at the threshold.
5.5.4 Day operations. An 'acceptable' visual segment day flight evaluation for flyability and OIS obstacle penetration must be completed.
5.5.5 Night operations. An 'acceptable' visual segment night flight evaluation for flyability must be completed. This includes confirmation that the runway lighting system is visible from the MAP. The Principle Operations Inspector (POI) with geographic responsibility determines the runway lighting system acceptability.
5.5.6 Helipoint Location. The runway final approach area about the heliport must be clearly viewable from the MAP.

Figure 5-15. IFR to a VFR Runway.


## 5.6

PinS Approach (Proceed VFR).
The VFR segment on a PinS (Proceed VFR) approach procedure provides a measure of obstacle protection/identification to allow a safe transition from IFR
to VFR flight. Annotate the procedure with the note: "Proceed VFR to the Landing Site."

Apply Order 8260.3, Volume 1, chapter 11 pertaining to PinS approach criteria except, there is no requirement for a MAP to be located beyond $2,600 \mathrm{ft}$ of the helipoint. A PinS (Proceed VFR) procedure may be developed to a heliport, multiple heliports, or a geographical area not associated with a specific heliport. Refer to paragraph 2.2 of this order to determine whether procedures are specials. Compute the distance for the Remote Altimeter Setting Source (RASS) adjustment for the MDA and stepdown altitudes for the PinS approach procedures from the source to the MAP.

### 5.6.1 Area.

The OEA is a 5,280 -ft radius arc segment centered at the FAC and the latest MAP ATT intersection. The arc segment is laterally bounded by 20 degree splay lines (relative the FAC-extended), originating at the FAS secondary boundaries and the latest MAP ATT (see figure 5-16). This surface MUST NOT be penetrated EXCEPT when a 'special approach procedure' MDA, not providing obstacle clearance in this area, is MANDATORY for mission completion. Special procedure surface penetrations must be charted and included in the required training.

Figure 5-16. PinS (Proceed VFR) VFR Transition Area Obstacle Evaluation (OEA).


### 5.6.2 Obstacle Clearance in the VFR Segment.

Add 250 ft of $\boldsymbol{R O C}$ (minus adjustments) to the highest obstacle/terrain within the VFR area and (round to the next higher 20 - ft increment). The final MDA is the higher of the MDAs calculated for the final and VFR segments. This does not apply to special approaches (see paragraph 5.5.1).

### 5.6.3 Visibility.

The MINIMUM final segment visibility is $3 / 4$ SM for a height above surface (HAS) of 800 ft and below. Where a HAS exceeds 800 ft , the MINIMUM visibility is $1.0 \mathbf{S M}$. The MINIMUM visibility required after the MAP, in the $\boldsymbol{V F R}$ segment is dependent on the Code of Federal Regulations (14 CFR) Part 91 or 135, OpsSpecs, or $\mathbf{L O A}$ as appropriate.

### 5.7 IFR to an IFR Runway.

### 5.7.1 Configuration and Alignment.

The MAP location should provide the best compromise of lowest visibility and VSDA.

Except where the alignment is to the $\boldsymbol{R W T}$, the mandatory MAP location is at the $\boldsymbol{F A C}$ and $\boldsymbol{R C L}$ intersection.

Where the alignment is to the $\boldsymbol{R C L}$, the optimum MAP location is at the $\boldsymbol{R W T}$, with optional MAP location along the FAC between the FAF and the RWT.

### 5.7.2 Area.

The final OCA begins at the earliest FAF ATT and ends at the latest MAP ATT, $\boldsymbol{R} W \boldsymbol{T}$, or a point abeam the $\boldsymbol{R} \boldsymbol{W} \boldsymbol{T}$, whichever is farthest. Apply paragraphs 5.2.1 and 5.2.2 criteria for the IFR segment $\boldsymbol{O C A}$ and $\boldsymbol{R O C}$ (see figure 5-1).

### 5.7.3 Descent Gradient/Angle.

Calculate the FAS descent angle from the FAF altitude at the plotted position of the FAF to the TCH at RWT. Apply paragraph 5.2.2b.

### 5.7.4 Visual Segment.

Apply Order 8260.3B, Volume 1, paragraph 251. Establish a $40 \pm 5 \mathrm{ft}$ TCH for runways where no VGSI is installed. Where a VGSI is installed, a final descent gradient and VSDA may be established to coincide with the established gradients/angles for angles of 3.0 angles or more. If the descent gradient/angle cannot be published coincident (within $\pm 0.20$ degrees) and $\boldsymbol{T C H}$ values within 3 ft of the published VGSI glide slope angle, publish a note on the chart.

### 5.7.5 Visibility.

See paragraph 8.1.2. Apply TERPS paragraph 1127*. Where obstacles penetrate TERPS paragraph 251 surfaces, add the chart note: Visibility Reduction by helicopters NA.
*When a special procedure has a GPA greater than 5.7 degrees and a TCH higher than 45 ft , Order 8260.3B, Volume I, paragraph 1127 may be applied. Table 25 application is required.

MM/DD/YY

# THIS PAGE INTENTIONALLY LEFT BLANK 

## Chapter 6. Missed Approach

## $6.0 \quad$ General.

6.0 a. Missed Approach (MA) Construction.
6.0 a. (1) Speed. Apply 70 KIAS for civil procedures (see paragraph 2.0) and 90 KIAS for military. Apply wind values (see formula 2-2) and bank angles (see table 2-2). For special procedures when $\boldsymbol{V}_{\text {mini }}$ less than 70 KIAS is applied, this application must be noted on FAA Form 8260-10 and on the approach chart.
6.0 a. (2) Optimum Flight Path. The missed approach segment position (MASP) ends at a holding point designated by a missed approach holding fix (MAHF). OPTIMUM routing is straight ahead to a direct entry into holding at the MAHF. If the MA routing terminates at a "T" IAF, OPTIMUM MA holding pattern alignment is with the initial inbound course, with either a teardrop or direct entry into holding (see figure 6-1).

Note: USA: Develop and annotate an alternate RNAV(GPS) MA procedure when requested.
6.0 b. Obstacle Clearance Standard.

Calculate the nominal OCS slope (MA $\mathbf{\text { ocsslope }}$ ) associated with a given missed approach climb gradient using formula 2-10. See paragraph 2.11 for Missed Approach Conventions.

### 6.0.1 Missed Approach Section 1. (MAS-1).

Section 1 begins at earliest MAP along-track tolerance (ATT) and extends to the start-of-climb (SOC), or the point where the aircraft is projected to cross 400 ft above airport/heliport elevation, whichever is the greatest distance from $\boldsymbol{M A P}$. See figure 6-1a for MA segment point and line designations. Figure 6-2 depicts the Section 1 / Section 2 (partial), OCS plan and profile view beginning at an altitude of MDA minus 100 ft plus adjustments (see chapter 5 for greater final segment detail).

### 6.0.1 a. Length.

6.0.1 a. (1). Flat Surface Length (FSL).

- RNAV. Section 1 flat surface begins at CD (0.3 NM prior to the MAP) and extends (distance $\boldsymbol{F} \boldsymbol{S L}$ feet) to $\mathbf{J K}$.
- LP. Section $\mathbf{1}$ flat surface begins at CD [40 meters (131.2336') prior to the $\boldsymbol{M A P}]$ and extends (distance $\boldsymbol{F S L}$ feet) to JK.

Calculate the FSL value using formula 6-1. Use final segment formulas to determine MAS starting widths.
$\left.\begin{array}{|c|}\hline \text { Formula 6-1. Flat Surface Length (FSL). } \\ \hline \text { FSL }=8 * \frac{\frac{1852}{0.3048}}{3600} \cdot\left(\left(\mathrm{~V}_{\text {KIAS }} \cdot \frac{171233 \cdot \sqrt{(288+15)-0.00198 \cdot \mathrm{MDA}}}{(288-0.00198 \cdot \mathrm{MDA})^{2.628}}\right)+10\right)+2 \cdot \text { ATT }\end{array}\right)$

Note: FSL time is 3 seconds reaction, and 5 seconds delay.
6.0.1 b. Section 1 end location (AB).
6.0.1 b. (1) $\mathrm{MDA} \geq 400 \mathrm{ft}$ above airport/heliport elevation. Locate $\underline{\mathrm{AB}}$ coincident with JK.
6.0.1 c. Width. RNAV and LP.
6.0.1 c. (1) RNAV. Splay each secondary area outer boundary line outward 15
6.0.1
6.0.1
b. (2) MDA $<400 \mathrm{ft}$ above airport/heliport elevation. Locate $\underline{\mathbf{A B}}$ at 1852 feet beyond $\mathbf{\text { JK }}$ for each foot of altitude needed to reach 400 ft above airport/heliport/surface elevation. The surface between $\mathbf{J K}$ and $\underline{\mathbf{A B}}$ is a rising slope commensurate with the standard rate of $\operatorname{climb}(400 \mathrm{ft} / \mathbf{N M})$. Find the appropriate CG-related slope using formula 2-10.
b. (3) Required/assigned turning altitude $>400 \mathrm{ft}$ above airport/heliport elevation. Locate $\underline{\mathbf{A B}}$ and apply the surface described in paragraph 6.0.1b(2) until reaching the assigned turning altitude. degrees relative to the missed approach course (MAC) from the secondary area outer edge at $\boldsymbol{C D}(0.3 \boldsymbol{N M}$ prior to $\boldsymbol{M A P})$ until it reaches a point $2 \boldsymbol{N M}$ from MAC. Splay the primary area boundary uniformly outward from the primary area edge at $\boldsymbol{C D}$ to reach $1.5 N M$ from $M A C$ at the same distance the secondary reaches full width. Calculate the distance from MAC to the MAS-1 OEA primary and outer secondary boundary at any distance from $\boldsymbol{C D}$ using formula 6-1a. Calculate final primary and secondary widths at $\underline{\boldsymbol{C D}}$ using final formulas.
6.0.1 c. (2) LP. Splay each secondary area outer boundary line outward 15 degrees relative to the MAC from the secondary area outer edge at $\underline{\boldsymbol{C D}}$ (40 meters or $131.2336^{\prime}$ prior to MAP) until it reaches a point 2 NM from MAC. Splay the primary area boundary uniformly outward from the primary area edge at $\boldsymbol{C D}$ to reach 1.5 NM from MAC at the same distance the secondary reaches full width. Calculate the distance from MAC to the MAS-1 OEA primary and outer secondary boundary at any distance from $\underline{\boldsymbol{C D}}$ using formula 6-1a. Calculate final primary and secondary widths at $\boldsymbol{C D}$ using final sement formulas.

Formula 6-1a. RNAVILP Section 1 Primary \& Secondary Width.

$$
\begin{aligned}
& \text { MAS }_{\text {Yprimary }}=\mathrm{d} \cdot \frac{\tan \left(15 \cdot \frac{\pi}{180}\right) \cdot\left(1.5 \cdot \mathrm{NM}-\mathrm{W}_{\mathrm{p}}\right)}{2 \cdot \mathrm{NM}-\mathrm{W}_{\mathrm{S}}}+\mathrm{W}_{\mathrm{p}} \\
& \mathrm{MAS}_{Y_{\text {secondary }}}=\mathrm{d} \cdot \tan \left(15 \cdot \frac{\pi}{180}\right)+\mathrm{W}_{\mathrm{S}}
\end{aligned}
$$

Where d = along-track distance ( ft ) from the cd line $\leq 45352.743$
NM = 1852/0.3048
$\mathrm{W}_{\mathrm{p}}=$ Primary Start Width (ft) (final formula)
$\mathrm{W}_{\mathrm{s}}=$ Secondary Start Width (ft) (final formula)
MAS $_{\text {Yprimary }}=\mathrm{d} *\left(\left(\tan \left(15^{*} \pi / 180\right) *\left(1.5^{*} 1852 / 0.3048-\mathrm{W}_{\mathrm{P}}\right)\right) /\left(2^{*} 1852 / 0.3048-\mathrm{W}_{\mathrm{S}}\right)\right)+\mathrm{W}_{\mathrm{P}}$ MAS $_{\text {Ysecondary }}=\mathrm{d} * \tan \left(15^{*} \pi / 180\right)+\mathrm{W}_{\mathrm{S}}$

## Calculator

d	
$\mathrm{W}_{\mathrm{P}}$	
$\mathrm{W}_{\mathrm{S}}$	
MAS $_{\text {Yprimary }}$	
MAS $_{\text {Ysecondary }}$	

### 6.0.1 d. Obstacle Clearance Section 1.

6.0.1 d. (1) The nominal MAS-1 OCS is a flat surface. The MSL surface height (HMAS) is equal to the MDA minus 100 ft plus adjustments (see formula 6-1b). No obstacle may penetrate this surface.
6.0.1 d. (2) Where Section 1 extends beyond SOC (JK), no obstacle may penetrate the $\boldsymbol{C G}$-associated $\boldsymbol{O C S}$ slope between $\boldsymbol{S O C}$ and $\underline{\mathbf{A B}}$. Find helicopter altitude at AB using formula 6-1c.

Formula 6-1b. HMAS.		
HMAS $=$ MDA $-(100+$ adj $)$		
Where adj $=$precipitous terrain, remote altimeter (only if full time), and   excessive length of final adjustments		
MDA-(100+adj)		
Calculator		
MDA	Click here   to   tolculate	
adj		
HMAS		

Formula 6-1c. Section 1 End Helicopter Altitude (Copter ${ }_{A B}$ ).

6.0.2 These criteria cover two basic MA constructions:

- Straight missed approach
- Turning missed approach

Note: These construction methods accommodate traditional combination straight and turning missed approaches.

The section 2 obstacle evaluation area (OEA) splays 15 degrees relative to the nominal track to reach full width (see figure 6-3). Apply the Section 2 standard MA OCS slope beginning from $\mathbf{A B}$. Calculate precise OCS slope values using formula 2-10.

Note: All references to 'standard MA OCS slope' and use of '20:1' refer to the output of formula 2-10 with an input climb gradient (CG) of $400 \mathrm{ft} / \mathbf{N M}$.

Where a higher than standard $\boldsymbol{C G}(400 \mathrm{ft} / \mathbf{N M})$ is required, apply the $\boldsymbol{C G}$ and the CG-related OCS from the SOC. Apply secondary areas as specified in this chapter. Measure the $4: 1$ secondary $\operatorname{OCS}$ perpendicular to the nominal track, measured from the primary boundary, or perpendicular to the primary boundary when considering arcs, diagonal corner-cutter, etc.

Locate the MA holding fix (MAHF) within 25 NM of the ARP/HRP.
Use table 4-1, paragraph 4.1, MINIMUM LEG LENGTH for course changes following the first fix after the MAP.

Design MA holding for 90 KIAS.

### 6.1 Straight Missed Approach.

The straight missed approach course (MAC) is a continuation of the final approach course (FAC). The straight MA section 2 OEA begins at secton $\mathbf{1}$ end ( $\mathbf{A B}$ ), and splays at 15 degrees relative to the nominal track until reaching full primary and secondary width (0.5-1.5-1.5-0.5). Apply the section 2 standard OCS, or the OCS associated with a higher $\boldsymbol{C G}$, beginning at $\mathbf{A B}$ from the section $\mathbf{1}$ end $\boldsymbol{O C S}$ elevation. (When the increased CG is no longer required, revert to the section $\mathbf{2}$ standard OCS). Determine primary OCS elevation at an obstacle by measuring the along-track distance from $\underline{\mathbf{A B}}$ to a point at/abeam the obstacle. Where the obstacle is located in the secondary area, apply the primary OCS slope to a point abeam the obstacle, then apply the $4: 1$ secondary slope (perpendicular to the track) from the primary boundary to the obstacle (see figures 6-3, 6-4).

### 6.2 Turning Missed Approach.

Apply turning criteria when requiring a turn at or beyond SOC. Where secondary areas exist in section 1, they continue to full width in section $\mathbf{2}$. Terminate turn-at-fix turn-side secondary areas not later than the early turn point. Do not apply turn-side secondary areas for turn-at-altitude construction.

There are two types of turn construction for the first MA turn:

- Turn at an altitude (see paragraph 6.2.1)
o Always followed by a $\boldsymbol{D F}$ leg ending with a $\boldsymbol{D F} / \mathbf{T F}$ connection
- Turn at a fix (see paragraph 6.2.2)
- Always followed by a TF leg ending with a TF/TF connection.

Following a turn, the minimum segment length must be the greater of:

- The minimum length calculated using the chapter 2 formulas.
- The distance from previous fix to the intersection of the 30-degree converging outer boundary line extension and the nominal track, (plus segment end fix DTA and ATT).

Minimum DF leg length must accommodate 6 seconds (minimum) of flight time based on either 70 KIAS or 90 KIAS, as appropriate, applied between the wind
spiral (WS)/ direct-to-fix-line tangent point, and the earliest maneuvering point of the DF/TF fix. Convert to TAS using the MAHF altitude.

### 6.2.1 Turn At An Altitude.

Apply turn-at-an-altitude construction unless the first $\boldsymbol{M A}$ turn is at a fix. Since pilots may commence the MA at altitudes higher than the MDA and helicopter climb rates differ, turn-at-an-altitude construction protects the large area where turn initiation is expected. This construction also provides protection for 'turn as soon as practicable' and combination straight and turning operations. When a required turning altitude exceeds the minimum turning altitude (typically 400 ft above the airport, heliport, or height above surface), specify the turning altitude in a $100-\mathrm{ft}$ increment. Where operationally required, $20-\mathrm{ft}$ increments may be applied.

When a turn at altitude MA, (low MDA, turn at less than 400 ft above airport/heliport or height above surface, etc.) is required, training and equipment requirements are approved by Flight Standards waiver and entered on FAA Form 8260-10. Annotate the chart "Training and Equipment required."

Track guidance is assumed throughout the operation; therefore, dead reckoning (DR) segments are not considered. Apply turning MA criteria whenever the MAC differs from the FAC. The following applies:

- Section 1/Section 2 connection is depicted in figure 6-5 for a minimum altitude turn-at-altitude MA. The CD is the earliest the MAP can be received. $\underline{\mathbf{A B}}$ is the $\mathbf{S O C}$ (figure 6-6 depicts higher than minimum altitude turns).
- Section 2 and section $\mathbf{1}$ connect at $\underline{\mathbf{A B}}$.
- Construct section 2 outside-turn boundaries using $W S$ vice specified radii. Construct outside boundaries in relation to these WS and possible tracks (see figure 6-7).
- Construct inside-turn boundaries in relation to possible tracks.
- Apply the standard $\boldsymbol{O C S}$ slope (or the assigned $\boldsymbol{C G}$-associated slope) beginning at $\underline{\mathbf{A B}}$ at $\underline{\mathbf{A B}} \mathbf{O C S}$ height. The secondary $4: 1$ surface rises from the primary $\mathbf{O C S}$.


### 6.2.1 a. Turn Initiation Area (TIA).

Construct the TIA, a portion of a straight MA, beginning from the earliest MA turn point ( $\mathbf{C D}$ ), and ending where the specified minimum turning altitude is reached, ( $\underline{\mathbf{A B}}$ or $\underline{\mathbf{L} \mathbf{L}}{ }^{\prime}$ ). Base the TIA length on the climb distance required to reach the turning altitude. The TIA minimum length must place the aircraft at an
altitude from which obstacle clearance is provided in section 2 outside the TIA. The TIA boundary varies with length, the shortest B-A-C-D, where $\underline{\mathbf{A B}}$ overlies JK. Where the TIA is contained within section 1, B-A-J-C-D-K defines the boundary. Where the required turn altitude exceeds that supported by section $\mathbf{1}$, the TIA extends into section 2, (see figure 6-8 and Order 8260.54A for construction examples) and points L'-L-A-J-C-D-K-B define its boundary. In this case, $\mathbf{L}-\mathbf{L}$ ' is the early turn point based on the helicopter climbing at the prescribed CG. Calculate TIA length using formula 6-2a. A 4:1 secondary is depicted on the non-turning side of the primary (see figures 6-6, 6-8, and 6-9).

Step 1: Turn altitude. The turn altitude is either operationally specified (must be at or above altitude required by obstacles) or determined by obstacle evaluation. Evaluate the nominal $\boldsymbol{O C S}$. If the $\boldsymbol{O C S}$ is penetrated, mitigate the penetration with one or a combination of the following:
a. Raise MDA
b. Establish a climb gradient that clears the obstacle
c. Move MAP
d. If the penetration is outside the TIA, consider raising the climb-to altitude
a. (1) Determine the helicopter required minimum turning altitude:

- Identify the controlling obstacle in section 2 (straight MA)
o For straight $\boldsymbol{O C S} / \boldsymbol{C G} /$ length options
- Identify the controlling obstacle in section 2, (typically turn-side)
- Find the shortest distance from the TIA lateral boundary to the obstacle
- Apply this distance and the MA OCS slope to find the TIA-to-obstacle OCS rise
- The minimum TIA boundary, (and OCS end elevation) equals the obstacle elevation minus OCS rise
- The minimum turn altitude is the sum of (TIA OCS boundary elevation) and (final ROC), rounded to the next higher 100 ft -increment (where operationally required, $20-\mathrm{ft}$ increments may be applied)

Note 1: TIA lateral boundary is the straight segment (portion) lateral boundary until the required minimum turn altitude and TIA length are established.

Note 2: Repeat step 1 until acceptable results are obtained.
The specified altitude must equal or exceed the section 1 end altitude. Find section 1 end altitude using formula 6-1c.

Step 2: Calculate TIA length using formula 6-2a (see figures 6-6 and 6-8).

Formula 6-2a TIA $_{\text {enonth. }}$.	
$\begin{aligned} \mathrm{TIA}_{\text {length }}=\mathrm{FSL} & \cdot \frac{\mathrm{r}}{(\mathrm{r}+\mathrm{MDA})}+\frac{\mathrm{r}}{\mathrm{CG}} \cdot \frac{1852}{0.3048} \cdot \ln \left(\frac{\mathrm{r}+\text { turn }_{\mathrm{att}}}{\mathrm{r}+\mathrm{MDA}}\right) \\ \text { Where MDA } & =\text { Final MDA } \\ \mathrm{r} & =\text { Earth Radius }(20890537 \mathrm{ft}) \\ \mathrm{CG} & =\text { Climb Gradient }(\text { Standard } 400) \\ \text { turn }_{\text {alt }} & =\text { required turn altitude } \end{aligned}$	
FSL*r/(r+MDA) $+\mathrm{r} / \mathrm{CG}^{*} 1852 / 0.3048 * \ln \left(\left(\mathrm{r}+\right.\right.$ turn $\left.\left._{\text {alt }}\right) /(\mathrm{r}+\mathrm{MDA})\right)$	
Calculator	
FSL (formula 6-1)	Click here to calculate
MDA	
CG	
turn $_{\text {alt }}$	
TIA length $^{\text {a }}$	

Step 3: Locate the TIA end at a distance TIA length beyond CD (from Step 2) (LL') where the applied OCS reaches the required TIA end surface elevation (from Step 1).

Step 4: Locate the latest turn point, ( $\mathbf{P P}^{\prime}$ ) at distance $\boldsymbol{r r}$ (from formula 2-4) beyond the TIA end ( $\mathbf{\mathbf { A B }} / \underline{\mathbf{L L}}$ '). (See example figures 6-6 and 6-8).

### 6.2.1 b. OEA Construction after TIA.

The OEA includes areas to protect the earliest and latest direct tracks from the TIA to the fix. Construct the obstacle areas about each of the tracks as described below. See figures 6-9 through 6-15 for various turn geometry construction illustrations.

### 6.2.1 b. (1) Early Turn Track and OEA Construction.

Where the early track from the $\boldsymbol{F A C} / \mathbf{C D}$ intersection defines a turn less than or equal to 75 degrees relative to the $\boldsymbol{F A C}$, the tie-back point is $\mathbf{C}$ (see figure 6-5); if the early track defines a turn greater than 75 degrees relative to the $F A C$, tie-back to point $\mathbf{D}$ (see figure 6-7). Where the early track represents a turn greater than 165 degrees $\sim$ (see figures 6-12 and 6-15), begin the early turn track and the 15-degree splay from the non-turn side TIA end $+\mathbf{r r}$ (formula 2-4) ( $\mathbf{P P}^{\prime}$ ).

Step 1: Construct a line (defines the earliest-turn flight track), from the tie- back point to the fix. See figures 6-9, 6-10, 6-14, and 6-15.

Step 2: Construct the outer primary and secondary OEA boundary lines parallel to this line (0.5-1.5-1.5-0.5 segment width). See figures 6-9 and 6-10.

Step 3: From the tie-back point, construct a line splaying at 15 degrees to intersect the parallel boundary lines or segment end, whichever occurs earlier (see figures 6-9 and 6-10).

Apply secondary areas only after the 15 -degree splay line intersects the primary boundary line (see figures 6-9, 6-10, 6-13, etc).

Step 3alt-1: Where Step 3 construction provides less than full-width protection at the $\boldsymbol{D F}$ fix, construct the OEA inner boundary with a line splaying from the tie-back point at 15 degrees relative the direct-to-fix line, (or greater where required to provide full-width protection at the $\boldsymbol{D F}$ fix), until it intersects the parallel boundary lines (not later than tangent/tangent-extension to the full-width-arc about the fix), and provides full-width protection at or before the $\boldsymbol{D F}$ fix. DF secondary areas begin/exist only where full width primary exists. See figures 6-10, 6-14 and 6-15.

Note: Where excessive splay (dependent upon various conditions but generally in the 20-25 degree range), consider modifying the segment to avoid protection and/or construction difficulties.

### 6.2.1 <br> b. (2) Late Turn Track and OEA Construction.

Apply WSs for late-turn outer boundary construction using the following calculations, construction techniques, and bank angles of 11 degrees or 14 degrees, as appropriate.

Step 1: Find the no-wind turn radius $(\boldsymbol{R})$ using formula 6-2b.

Formula 6-2b. No-Wind (R).		
$\left(\mathrm{V}_{\text {KTAS }}+0\right)^{2}$		
$\overline{\tan \left(\text { Bank }_{\text {ANGLE }} \cdot\left(\frac{\pi}{180}\right)\right) \cdot 68625.4}$		
$\begin{aligned} & \text { Where }^{\mathrm{V}_{\text {KAS }}}=\text { True Airspeed }(\text { formula 2-1 }) \\ & \text { Bank }_{\text {ANGLE }}=\text { Table 2-2 value } \end{aligned}$		
$\left(\mathrm{V}_{\text {Ktas }}+0\right)^{\wedge} 2 /\left(\tan \left(\right.\right.$ Bank $\left.\left._{\text {Angle }} * \pi / 180\right) * 68625.4\right)$		
Calculator		
$\mathrm{V}_{\text {KTAS }}$		Click here to calculate
Bank ${ }_{\text {AngLE }}$	-	
R		

Note: Apply the appropriate indicated airspeed and minimum assigned turn altitude when converting to true airspeed for this application.

Step 2: Calculate the Turn Rate (TR) using formula 6-2c. Maximum TR is 3 degrees per second. Apply the lower of 3 degrees per second or formula 6-4a output.


Step 2a: Calculate the Turn Magnitude (TMAG) using the appropriate no-wind turn radius and the arc distance (degrees) from turn start (at $\underline{\mathbf{P P}^{\prime}}$ ) to the point of tangency with a line direct to the fix.

Step 2b: Calculate the highest altitude in the turn using formula 6-2d (MAHF altitude may be used). Determine subsequent fix altitudes using fix-to-fix direct measurement and $400 \mathrm{ft} / \mathbf{N M}$, (or higher assigned) climb rate.

Formula 6-2d. Highest Altitude Gained (Total ALT $^{\text {) }}$.	
$\text { HighestTurn }=\text { MDA }_{\text {ALT }}+\left(2 R \cdot \pi \cdot \frac{\text { Turn }_{\text {Magnitude }}}{360} \cdot C G\right)$	
$\begin{aligned} \text { Where }_{\text {MDA }_{\text {ALT }}} & =\text { Procedure MDA } \\ \mathrm{R} & =\text { No-wind turn radius }(\mathrm{NM}) \\ \text { Turn }_{\text {Magnitude }} & =\text { Turn start to rollout (deg) } \\ \mathrm{CG} & =\text { Standard } 400 \mathrm{ft} / \mathrm{NM} \end{aligned}$	
$\mathrm{MDA}_{\text {ALT }}+\left(2 * \mathrm{R}^{*} \pi^{*}\right.$ Turn $\left._{\text {Magnitude }} / 360 * \mathrm{CG}\right)$	
Calculator	
$\mathrm{MDA}_{\text {ALT }}$	Click here to calculate
R	
Turn $_{\text {Magnitude }}$	
CG	
Total ${ }_{\text {ALT }}$	

Step 3: Find the omni-directional wind component $\left(\boldsymbol{V}_{\boldsymbol{K T W}}\right)$ for the highest altitude in the turn applying paragraph 2.5.6.

Step 4: Apply this common wind value (Step 3) to all first-turn wind spirals.
Note: Apply 30 knots for turn altitudes $\leq 2000$ ft above heliport/airport elevation.
Step 5: Calculate the wind spiral radius increase ( $\Delta \boldsymbol{R}$ ) (relative $R$ ), for a given turn magnitude $(\phi)$ using formulas 6-2c and 6-2e.


### 6.2.2 Turn-At-A-Fix.

The first $\boldsymbol{M A}$ turn-at-a-fix may be a fly-by or fly-over fix. Use fly-by unless a flyover is required for obstacle avoidance or where mandated by specific operational requirements. The turn fix early-turn-point must be at or beyond section 1 end.

### 6.2.2 <br> a. Early/Late Turn Points.

The fly-by fix early-turn-point is located at (FIX-ATT-DTA) prior to the fix.
The fly-by fix late-turn-point is located at a distance (FIX + ATT - DTA + rr) from the fix.

The fly-over early-turn-point is located at a distance (FIX - ATT) prior to the fix.
The fly-over late-turn-point is located at a distance (FIX + ATT + rr) beyond the fix.

Fly-by fixes (see figure 6-16).
EarlyTP = Fix - ATT - DTA
Latetp $=$ Fix + ATT - DTA + rr

Fly-over fixes (see figure 6-16).
Earlytp $=$ Fix - ATT

$$
\text { LateTP }=\text { Fix }+ \text { ATT }+\mathrm{rr}
$$

### 6.2.2 b. Turn-at-a-fix. (First MA turn) Construction.

The recommended maximum turn is 70 degrees; the absolute maximum is 90 degrees. The first turn fix must be located on the final approach track extended.

Step 1: Calculate aircraft altitude at $\underline{\mathbf{A B}}$ using formula 6-1c.
Step 2: Calculate fix distance based on minimum fix altitude. Where the first fix must be located at the point the helicopter reaches or exceeds a specific altitude, apply formula 6-2f (using the assigned/applied $\boldsymbol{C G}$ ), to calculate fix distance ( ft ) $\left(\mathrm{D}_{\text {fix }}\right)$ from $\underline{\mathbf{S O C}}(\underline{\mathbf{A B}} \mathbf{J K})$ (see figures 6-17 through 6-20).

## Formula 6-2f. Fix Distance ( $D_{\text {fix }}$ )

	Formula 6-2f. Fix Distance (	
$\begin{aligned} \mathrm{D}_{\mathrm{fix}} & =\ln \left(\frac{\text { Alt } t_{\mathrm{fx}}+\mathrm{r}}{\text { Coptersoc }+\mathrm{r}}\right) \cdot \frac{\mathrm{r}}{\mathrm{CG}} \\ \text { Where Alt }_{\text {Aix }} & =\text { Minimum altitude required at fix } \\ \text { Copter }_{\text {soc }} & =\text { Copter } \mathbf{A B}(\mathrm{SOC}) \text { altitude } \\ \mathrm{CG} & =\text { Climb Gradient (Standard } 400 \mathrm{ft} / \mathrm{NM}) \end{aligned}$		
$\ln \left((\text { Altfix }+\mathrm{r}) /\left(\text { Copter }_{\text {soc }}+\mathrm{r}\right)\right)^{*} \mathrm{r} / \mathrm{CG}$		
Calculator		
Alt $_{\text {fix }}$		Click here to calculate
Copter $_{\text {soc }}$		
CG		
$\mathrm{Dfix}_{\text {( (NM) }}$		

Step 3: Calculate the altitude a helicopter climbing at the assigned $\boldsymbol{C G}$ would achieve over an established fix using formula 6-2g.

Formula 6-2g Altitude Achieved at Fix (Alt tix $^{\text {a }}$.	
$\left(r+\text { Copter }_{\text {soc }}\right)^{*}{ }^{\wedge}\left(\right.$ (CG* $\left.D_{\text {fix }} / r\right)-r$	
Calculator	
Coptersoc	Click here to calculate
CG	
$\mathrm{D}_{\text {fix ( }}$ (NM)	
Alt $_{\text {fix }}$	

6.2.2 c. Fly-By Turn Calculations and Construction.
(Consider direction-of-flight-distance positive, opposite-flight-direction distance negative).

### 6.2.2 c. (1) Fly-By Turn Calculations.

Step 1: Calculate the fix to early-turn distance ( $\mathrm{D}_{\text {early }}$ тP ) using formula 6-2h.

Formula 6-2h. Early Turn Distance ( $\mathrm{D}_{\text {early }}$ ).	
$\mathrm{D}_{\text {early }}=$ ATT + DTA	
```Where ATT = along-track tolerance DTA = distance of turn anticipation(formula 6-2i)```	
ATT+DTA	
Calculator	
ATT	Click here to calculate
DTA	
$\mathrm{D}_{\text {earlyTP }}$	

Apply formula 6-2i for distance turn anticipation (DTA).

6.2.2 c. (2) Early Turn Point (ETP) and Area construction.

Table 6-1. Inside Turn Expansion Guide.	
Outbound Segment Boundary Relative ETP Connections	Expansion Line Required
Secondary \& Primary PRI OR ETP	15-Degree Line
Secondary Prior ETP	$15-$ Degree Line
Primary Beyond ETP	$\phi / 2$
Secondary \& Primary Beyond ETP	$\phi / 2$

Note: ETP = LL' early turn point connection, 15-degree line relative the outbound segment, $\phi / 2=$ half turn-angle
6.2.2 c. (3) Inside turn (Fly-By) Construction is predicated on the location of LL' and primary/secondary boundary intersections (early turn connections), relative the outbound segment, see table 6-1. (See figures 6-17 and 6-18).

Where no inside turn secondary area exists in section 1, apply secondary areas only after the turn expansion line/s intersect the outbound segment boundaries.

Apply the same technique to primary and secondary area connections when both inbound segment connection points fall either outside the outbound segment, or inside the outbound segment primary area. When both inbound connection points are within the outbound segment secondary area or its extension, table 6-1 provides a connection method for each point.

Note: Where half-turn-angle construction is indicated, apply a line splaying at the larger of, half-turn-angle, or 15 degrees, relative the outbound track. Where a small angle turn exists and standard construction is suitable for one, but not both splays; connect the uncommon splay, normally primary, to the outbound primary boundary at the same along-track distance as the secondary connection. Maintain or increase primary area as required.

Step 1: Construct a baseline ($\mathbf{L L}^{\prime}$) perpendicular to the inbound track at distance $\mathrm{D}_{\text {earlytp }}$ (formula 6-2h) prior to the fix (see figures 6-17 and 6-18).

CASE 1: The outbound segment boundary, or its extension, is beyond the baseline (early-turn connection points are prior to the outbound segment boundary),

Step 1: Construct the inside turn expansion area with a line, drawn at one-half the turn angle from the inbound segment primary early turn connection point, to intercept the outbound segment primary boundary (see figure 6-18).

Step 2 (if required): Construct the inside turn expansion area with a line, drawn at one-half the turn angle, from the inbound segment secondary early turn connection point, to intercept the outbound segment secondary boundary (see figure 6-18).

CASE 2: The outbound segment secondary boundary or its extension is prior to the LL' baseline and outbound segment primary boundary or its extension is beyond the $\underline{\mathbf{L L}}$ ' baseline, (early-turn connection points are both within the outbound segment secondary area or its extension).

Step 1: Construct the inside-turn expansion area with a line splaying at 15degree, (relative the outbound track) from the inbound segment secondary early turn connection point to intersect the outbound segment boundary.

Step 1 Alt: Begin the splay from \mathbf{L} ' when the turn angle exceeds 75 degrees .
Step2: Construct the primary boundary with a line, drawn at one-half the turn angle, from the inbound segment primary early turn connection point to intercept the outbound segment primary boundary (see figure 6-17).

CASE 3: The outbound segment secondary and primary boundaries, or their extensions, are prior to the $\underline{\underline{L}} \mathbf{L}^{\prime}$ baseline (early-turn connection points are inside the outbound segment primary area).

Step 1: Construct the inside turn expansion area with a line, splaying at 15degree (relative the outbound track) from the more conservative point, (\mathbf{L}^{\prime}) or (the intersection of $\underline{\mathbf{L} \mathbf{L}}$, and the inbound segment inner primary boundary), to intersect the outbound segment boundaries.

Step 1 Alt: Begin the splay from \mathbf{L} ' when the turn angle exceeds 75 degrees \sim.
In this case, terminate the inside turn secondary area at the outbound segment primary boundary, since it falls before the early turn points, $\mathbf{L L}^{\prime}$ (see figure 618a).

6.2.2 c. (4) Outside Turn (Fly-By) Construction.

Step 1: Construct the outer primary boundary using a radius of $1 / 2$ primary width (1.5 NM), centered on the plotted fix position, drawn from the inbound segment extended primary boundary until tangent to the outbound segment primary boundary. See figure 6-17.

Step 2: Construct the secondary boundary using a radius of one-half segment width ($2 N M$), centered on the plotted fix position, drawn from the inbound segment extended outer boundary until tangent to the outbound segment outer boundary (see figures 6-17, 6-18, and 6-18a).

6.2.2 d. Fly-Over Turn Construction.

6.2.2 d. (1) Inside Turn (Fly-Over) Construction.

Step 1: Construct the early-turn baseline ($\left.\mathbf{L L}^{\mathbf{\prime}}\right)$ at distance ATT prior to the fix, perpendicular to the inbound nominal track.

Step 2: Refer to paragraph 6.2.2.c(3), (skip Step 1).

6.2.2 d. (2) Outside Turn (Fly-Over) Construction.

Step 1: Construct the late-turn baseline ($\left.\mathbf{P P}^{\boldsymbol{\prime}}\right)$ at distance ($\boldsymbol{A T T}+\boldsymbol{r r}$) beyond the fix, perpendicular to the inbound nominal track. Calculate late turn distance using formula 6-2j (see figure 6-19).

Formula 6-2j. Late Turn Point Distance ($D_{\text {IteteTP }}$).	
$\begin{gathered} \mathrm{D}_{\text {lateTP }}=\mathrm{ATT}+\mathrm{rr} \\ \text { where } \mathrm{ATT}=\text { along-track tolerance } \\ \mathrm{rr}=\text { delay } / \text { roll-in formula 2-4 } \end{gathered}$	
ATT+rr	
Calculator	
ATT	Click here to calculate
rr	
$\mathrm{D}_{\text {lateTP }}$	

Step 2: Apply wind spiral outer boundary construction for the first $\boldsymbol{M A}$ fly-over turn. See paragraph 6.2.1b(2) for necessary data, using the higher of formula $6-2 g$ output, or the assigned fix crossing altitude for TAS and turn radius calculations and paragraph 6.4 for wind spiral construction. A non-turn side secondary area may extend into the WS1 area.
6.2.2 d. (3) Obstacle Evaluations. See paragraph 6.2.3.

6.2.3 Section 2 Obstacle Evaluations.

6.2.3 a. Turn at an Altitude Section 2.

Apply an inclined OCS (MA OCS) slope to section 2 obstacles based on the shortest primary area distance (do) from the TIA boundary to the obstacle. Shortest primary area distance is the length of the shortest line kept within primary segments that passes through the early turn baseline of all preceding segments.

Step 1: Measure and apply the OCS along the shortest primary area distance (do) from the TIA boundary to the obstacle (single and multiple segments). See various obstacle measurement examples in figures 6-19 through 6-22.

Step 2: For obstacles located in secondary areas, measure and apply the OCS along the shortest primary area distance (do) from the TIA boundary to the primary boundary abeam the obstacle, then the $4: 1$ slope along the shortest distance to the obstacle, (taken perpendicular to the nominal track or in expansion areas, to the primary arc, the primary corner-cutter, corner apex, or other appropriate primary boundary). Where an obstacle requires multiple measurements (an obstacle is equidistant from multiple primary boundary points, or lies along perpendiculars from multiple primary boundary points, etc.), apply the more adverse result from each of the combined primary/secondary measurements. See figures 6-19 through 6-22.

6.2.3 b. Turn at Fix Section 2.

Apply an inclined OCS (MA OCS) slope, beginning at SOC at the inboundsegment end OCS height.

Step 1: Measure and apply the $\boldsymbol{O C S}$ along the shortest distance (do) from $\underline{\mathbf{A B}}$ (parallel to track) to $\underline{\mathbf{L L}}$, the shortest primary distance to the obstacle (single and multiple segments). See figures 6-19 and 6-20, for various obstacle measurement examples.

Step 2: For obstacles located in secondary areas, measure and apply the OCS along the shortest primary area distance (do) from the TIA boundary to the primary boundary abeam the obstacle, then the $4: 1$ slope along the shortest distance to the obstacle, (taken perpendicular to the nominal track or in expansion areas, to the primary arc, the primary corner-cutter, corner apex, or other appropriate primary boundary). Where an obstacle requires multiple measurements (where an obstacle is equidistant from multiple primary boundary points, or lies along perpendiculars from multiple primary boundary points, etc.), apply the more adverse result from each of the combined primary/secondary measurements (see figure 6-21).

6.3 Turning Missed Approach (Second Turn).

6.3.1 DF/TF Turn (Second Turn, following turn-at-altitude).

Turns at the $\boldsymbol{D F}$ path terminator fix will be fly-by or fly-over to a $\boldsymbol{T F}$ leg. In either case, the outer boundary provides fly-over protection, and the inner boundary provides fly-by protection. Maximum turn angle is 90 degrees (applicable to both tracks within the $\boldsymbol{D F}$ segment). This application provides that construction under chapter 2 , or this chapter will apply, including cases where the inside and outside turn construction differs.

6.3.1
 a. DF/TF (Fly-By) Turn.

6.3.1 a. (1) Inside DF/TF (Fly-By) construction.

CASE 1: Full width inside secondary exists at the early turn point (LL’).
Step 1: Construct a baseline ($\left.\mathbf{L L}^{\prime}\right)$ perpendicular to the inbound track nearer the turn side boundary at distance $\mathrm{D}_{\text {earlytp }}$ (formula 6-2h) prior to the fix.

Step 2: Apply chapter 2 criteria.
CASE 2: Less than full width inside secondary exists at (LL').
Step 1: Apply paragraph 6.2.2.c(3) criteria.

6.3.1 a. (2) Outside DF/TF (Fly-By) construction.

CASE 1: Full width outside secondary exists at the early turn point ($\left.\underline{L}^{\prime} \mathbf{L}^{\prime}\right)$.
Step 1: Construct a baseline ($\left.\mathbf{L}^{\prime} \mathbf{L}^{\prime}{ }^{\prime}\right)$ perpendicular to the inbound track nearer the non-turn side boundary at distance $\mathrm{D}_{\text {earlytp }}$ (formula 6-2h) prior to the fix.

Step 2: Apply chapter 2 criteria. See figures 6-21 through 6-22.
CASE 2: Less than full width outside secondary exists at ($\left.\underline{\text { L'L}}^{\prime}{ }^{\prime}\right)$.
Step 1: Apply paragraph 6.2.2c(4) criteria.

6.3.1 b. DF/TF (Fly-Over) Turn.

6.3.1 b. (1) Inside DF/TF (Fly-Over) Turn Construction.

Step 1: Construct a baseline ($\mathbf{L L}^{\prime}$) perpendicular to the inbound track nearer the turn side boundary at distance ATT prior to the fix (see figure 6-22).

Note: Where half-turn-angle construction is specified, apply a line splaying at the larger of half-turn-angle or 15 degrees relative the outbound track.

CASE 1: No inside secondary area exists at LL'.

Step 1: Create the OEA early-turn protection by constructing a line, splaying at the larger of one-half $(1 / 2)$ the turn angle, or 15 degrees relative the outbound track, from the intersection of $\underline{\mathbf{L L}}$ ' and the inbound segment inner primary boundary to connect with the outbound TF segment boundaries.

The TF secondary area begins at the intersection of this diagonal line and the outbound segment boundary.

CASE 2: Partial width inside secondary area exists at LL'.

Step 1: Create the OEA early-turn primary area protection by constructing a line, splaying at the larger of one-half $(1 / 2)$ the turn angle, or 15 degrees relative the outbound track, from the intersection of $\underline{\mathbf{L} \mathbf{L}}$, and the inbound segment inner primary boundary to connect with the TF segment primary boundary.

Step 2: Create the OEA early-turn secondary protection by constructing a line, splaying at the larger of one-half $(1 / 2)$ the turn angle, or 15 degrees relative the outbound track, from the intersection of $\underline{\mathbf{L L}^{\prime}}$ and the inbound segment inner boundary to connect with the TF segment boundary.

CASE 3: Full width inside secondary area exists at $\underline{L} L^{\prime}$.

Step 1: Apply chapter 2 criteria. See figure 6-21.

6.3.1 b. (2) Outside DF/TF (Fly-Over) Turn Construction.

Step 1: Construct the late-turn baseline for each inbound track, ($\left.\mathbf{P P}^{\prime}\right)$ for the track nearer the inside turn boundary, and ($\left.\mathbf{P}^{\prime} \mathbf{P}^{\prime} \boldsymbol{\prime}\right)$ for the outer track at distance (ATT + rr) beyond the fix, perpendicular to the appropriate inbound track. See figure 6-22.

Note: A DF/TF Fly-Over turn is limited to 90 degrees (both inbound tracks) and should require no more than one WS per baseline. Construct the outside track WS (WS1) on base line P'P’’), then construct WS2 on baseline PP'.

Step 2: Apply wind spiral construction, see paragraph 6.2.1b(2) for necessary data, and paragraph 6.4 for wind spiral construction See figure 6-22.

6.3.2 TF/TF Turn (Second Turn, following turn-at-fix).

Turns at the TF path terminator fix will be fly-by or fly-over to a TF leg. In either case, the outer boundary provides fly-over protection, and the inner boundary provides fly-by protection. Maximum turn angle is 90 degrees. This application provides that construction under chapter 2, or this chapter will apply, including cases where the inside and outside turn construction differs.
6.3.2 a. TF/TF (Fly-By) Turn.
6.3.2 a. (1) Inside TF/TF (Fly-By) construction.

Step 1: Apply chapter 2 criteria.
6.3.2 a. (2) Outside TF/TF (Fly-By) construction.

Step 1: Apply chapter 2 criteria.
6.3.2 b. TF/TF (Fly-Over) Turn.
6.3.2 b. (1) Inside TF/TF (Fly-Over) Turn Construction.

Step 1: Apply chapter 2 criteria.
6.3.2 b. (2) Outside TF/TF (Fly-Over) Turn Construction.

Step 1: Apply chapter 2 criteria.

6.4 Wind Spiral Cases.

Wind Spiral (WS) construction applies to turn-at-an-altitude, turn-at-a-fix (FlyOver) for the first MA turn, and DF/TF (Fly-Over) for the second turn. The lateturn line \mathbf{P}^{\prime} ' designator is typically placed where the baselines cross. Where baseline extension is required, mark each baseline inner end with \mathbf{P}^{\prime}. Additional WS examples are available in Order 8260.54A.

Each WS has several connection options along its boundary. The chosen connection(s) must provide the more conservative reasonable track and protection areas (see figures 6-23 through 6-25 for examples).

- A 15-degree, (or greater*) splay line to join outbound segment outer boundaries, from:
o WS/direct-to-fix tangent point
o WS to WS tangent line origin
o WS to WS tangent line end
o WS/outbound segment parallel point (DF segment NA)
- A tangent line to join the next WS (figure 6-25)
- A tangent line direct to the next fix (DF segment) (see figure 6-24)
- A tangent line, converging at 30 degrees to the segment track (TF segment) (see figure 6-20)
*Note: See paragraph 6.4.1a and 6.4.1b for alternate connection details.
Note: Where multiple WSs exist, a line from the earlier WS splaying at 15 degrees relative the tangent line between WSs may produce the more conservative construction.

Outbound segment type and turn magnitude are primary factors in WS application. Refer to table 6-2 for basic application differences. Calculate rr using formula 2-4.

Table 6-2. MA First Turn Wind Spiral Application Comparison.

	Turn At Fix (FO)	Turn At Altitude
WS1 Baseline (PP')	Fix $+A T T+r r$	$T I A+r r$
WS2 Baseline (PP')	Fix $+A T T+r r$	$T I A+r r$
WS3 Baseline (CD Ext)	NA	$T I A+r r$
WS Number	1 or 2	1,2, or $3 *$
Final WS Connection (Tangent line)	30 to outbound track	Direct to Fix

* Where a required turn exceeds that served by three wind spirals, consider adding fixes to avoid prohibitively large protection areas resulting from further wind spiral application.

6.4 a Turn-at-Fix (FO) and Turn-at-Altitude WS Comparison.

Three cases for outer-boundary wind spirals commonly exist:

- (Case 1), Small angle turns use one wind spiral (WS1);
- (Case 2), Turns near/exceeding $90^{\circ} \sim$ use a second wind spiral (WS2); and
- (Case 3), turns near/exceeding $180^{\circ} \sim$ use a third wind spiral (WS3).
6.4 a. (1) Turn-at-Altitude WS application concludes with a line tangent to the final $W S$ direct to the next fix.
6.4
a. (2) Turn-at-Fix (FO) WS application concludes with a line tangent to the final WS converging at a 30 -degree angle to the outbound segment nominal track. The intersection of this line with the nominal track establishes the earliest maneuvering point for the next fix. The minimum segment length is the greater of:
- The minimum length calculated using the chapter 2 formulas or,
- The distance from previous fix to the intersection of the 30-degree converging outer boundary line extension and the nominal track, (plus DTA and ATT). See paragraph 6.3.1.
a. (3) Second MA Turn DF/TF Turn-at-Fix (FO) WS application concludes with a line tangent to the final $W S$ converging at a 30 -degree angle to the outbound segment nominal track. This construction requires two $W S$ baselines, one for each inbound track. Each late turn baseline is located (ATT $+\boldsymbol{r r}$) beyond the fix, oriented perpendicular to the specific track. The baseline for the inbound track nearer the inside turn boundary is designated $\underline{\mathbf{P P}}{ }^{\prime}$, the baseline associated with the outside turn track is designated $\mathbf{P}^{\prime} \mathbf{P}^{\prime} \boldsymbol{\prime}$. For convenience \mathbf{P}^{\prime} is often placed at the intersection of the two baselines, but a copy properly goes with each baseline inner end if baseline extensions are required (see figure 6-22).

6.4.1 First MA Turn WS Construction.

Find late turn point distance $\left(\mathrm{D}_{\text {late }}\right.$ TP $)$ using formula 6-2j.
6.4.1 a. CASE 1: Small angle turn using 1 WS.

Step 1: Construct the WS1 baseline, ($\left.\mathbf{P P}^{\prime}\right)$ perpendicular to the straight MA track at the late-turn-point (see table 6-2 for line PP' location). See figures 6-5 and 6-8.

Step 2: Locate the wind spiral center on $\underline{\mathbf{P P} \text { ' }}$ at distance \boldsymbol{R} (no-wind turn radius, using formula $6-2 b$; see figure 6-8) from the intersection of $\mathbf{P P}$ ' and the inbound-segment outer-boundary extension (see figures 6-8 and 6-9).

Step 3: Construct WS1 from this outer boundary point in the direction of turn until tangent to the WS/Segment connecting line from table 6-2 (see figure 6-9).

CASE 1-1: Turn-at-Altitude (WS1 ends when tangent to a line direct to fix).

Step 1: Construct the OEA outer primary and secondary boundary lines parallel to this track (0.5-1.5-1.5-.0.5 segment width). See figure 6-9.

Step 2: Construct a line from the WS1 tangent point, splaying at 15 degrees from the WS1-to-fix track until it intersects the parallel boundary lines or reaches the segment end (see figure 6-9).

Note: Consider 'full-width protection at the fix' to exist where the splay line is tangent to a full-width- radius- circle about the fix.

Step 2alt-1: Where Step 2 construction provides less than full-width protection at the DF fix, construct the OEA outer boundary with a line splaying from the WS1/direct-to-fix tangent point at 15 degrees relative the direct-to-fix line, (or greater where required to provide full-width protection at the $\boldsymbol{D F}$ fix), until it intersects the parallel boundary lines (not later than tangent/tangent-extension to the full width-arc about the fix), and provides full-width protection at or before the $\boldsymbol{D F}$ fix. $\boldsymbol{D F}$ secondary areas begin/exist only where full width primary exists (see figure 6-9).

Note: Where excessive splay (dependent upon various conditions generally in the 35-40 degree range), consider lengthening the segment, restricting the speed, category, etc. to avoid protection and/or construction difficulties.

CASE 1-2: Turn-at-Fix (FO) (WS1 ends when tangent to a 30-degree line converging to nominal track).

Step 1: Construct the OEA outer boundary line using WS1 and the tangent 30degree converging line until it crosses the outbound segment boundaries (see figure 6-19).

Step 1a: Where WS1 lies within the outbound segment primary boundary, construct the OEA boundary using WS1 and a line (from the point WS1 is parallel to the outbound segment nominal track), splaying at 15 degrees relative the outbound segment nominal track until it intersects the outbound segment boundary lines.

Step 1b: Where WS1 lies within the outbound segment secondary boundary, construct the OEA boundary using WS1 and a line (from the point WS1 is parallel to the outbound segment nominal track), splaying at 15 degrees relative the outbound segment nominal track until it intersects the outbound segment boundary line. Continue WS1 and the tangent 30-degree converging line to establish the inner primary/secondary boundary (see similar figure 6-24).
6.4.1 b. CASE 2: Larger turn using more than 1 WS. For turns nearing or greater than 90 degrees, WS2 may be necessary. See figure 6-20.

Step 1: To determine WS2 necessity, locate its center on baseline PP', at distance \boldsymbol{R} from the inbound-segment inner-boundary extension.

Step 2: Construct WS2 from this inner boundary point in the direction of turn until tangent to the WS/Segment connecting line from table 6-2. See figure 6-20.

Step 3: Where WS2 intersects WS1 construction, (including the connecting and expansion lines where appropriate), include WS2 in the OEA construction. Otherwise revert to the single WS construction.

Step 3a: Connect WS1 and WS2 with a line tangent to both (see figure 6-20).
Note: The WS1/ WS2 tangent line should parallel a line between the WS center points.

CASE 2-1: Turn-at-Altitude (WS2 ends when tangent to a line direct to fix).
Step 1: Construct the OEA outer primary and secondary boundary lines parallel to this track ($0.5-1.5-1.5 .0 .5$ segment width).

Step 2: Construct a line from the WS2 tangent point, splaying at 15 degrees from the WS2-to-fix track until it intersects the parallel boundary lines or reaches the segment end (see figure 6-9).

Note: Consider 'full-width protection at the fix' exists where the splay line is tangent to a full-width- radius- circle about the fix.

Step 2alt-1: Where Step 2 construction provides less than full-width protection at the $\boldsymbol{D F}$ fix, construct the OEA outer boundary with a line splaying from the WS2/direct-to-fix tangent point at 15 degrees relative the direct-to-fix line, (or greater where required to provide full-width protection at the $\boldsymbol{D F}$ fix), until it intersects the parallel boundary lines (not later than tangent/tangent-extension to the full-width-arc about the fix), and provides full-width protection at or before the $\boldsymbol{D F}$ fix. Where the turn angle is ≤ 105 degrees, or the divergence angle between the WS/WS tangent line and the direct-to-fix line is ≤ 15 degrees,
apply the splay line form the WS1/WS2 tangent line origin. DF secondary areas begin/exist only where full width primary exists (see figure 6-9).

Note: Where excessive splay (dependent upon various conditions but generally greater than ~ 30 degrees), consider using an earlier splay origin point, lengthening the segment, restricting the speed, category, etc. to avoid protection or construction difficulties (see paragraph 6.4 for origin points) .

CASE 2-2: Turn-at-Fix (FO): (WS2 ends when tangent to a 30-degree line converging to nominal track).

Step 1: Construct the OEA outer boundary line using WS2 and the 30-degree converging line until it crosses the outbound segment boundaries (see figure 6-20).

Step 1a: Where WS2 lies within the outbound segment primary boundary, construct the OEA boundary using WS1, WS2, and a line (from the point WS1 or WS2 is parallel to the outbound segment nominal track, the more conservative), splaying at 15 degrees relative the outbound segment nominal track until it intersects the outbound segment boundary lines.

Step 1b: Where WS2 lies within the outbound segment secondary boundary, construct the OEA boundary using WS1, WS2, and a line (from the point WS2 is parallel to the outbound segment nominal track), splaying at 15 degrees relative the outbound segment nominal track until it intersects the outbound segment boundary line. Continue WS2 and the tangent 30-degree converging line to establish the inner primary/secondary boundary.
6.4.1 c. CASE 3: Larger turn using more than 2 WSs. (Not applicable to Turn-at-Fix due to $\mathbf{9 0}$ degree turn limit). For turns nearing or greater than 180 degrees \sim (such as a missed approach to a holding fix at the IF),

Step 1: Construct the WS3 baseline perpendicular to the straight MA track along $\mathbf{C D}$-extended toward the turn side. See figure 6-15.

Step 2: To determine WS3 necessity, locate its center on the WS3 baseline at distance \boldsymbol{R} from point \mathbf{C}. See figure 6-15.

Step 3: Construct WS3 from point \mathbf{C} in the direction of turn until tangent to the WS/Segment connecting line from table 6-2. See figure 6-15.

Step 4: Where WS3 intersects WS2 construction, include WS3 in the OEA construction. Otherwise revert to the dual WS construction. See figure 6-15.

Step 5: Connect WS2 and WS3 with a line tangent to both (see figure 6-15).

Note: The WS2 \& WS3 tangent line should parallel a line between the WS center points.

CASE 3-1: Turn-at-Altitude: (WS3 ends when tangent to a line direct to fix)
Step 1: Construct the OEA outer primary and secondary boundary lines parallel to this track (0.5-1.5-1.5-0.5 segment width). See figure 6-15.

Step 2: Construct a line from the WS3 tangent point, splaying at 15 degrees from the WS3-to-fix track until it intersects the parallel boundary lines or reaches the segment end. See figure 6-15.
6.4.1 d. Outside Turn Secondary Area. Outbound segment secondary areas following wind spirals begin where either the 30 -degree converging line crosses the secondary and primary boundaries from outside the segment, or the 15-degree splay line crosses the primary boundary from inside the segment.

6.4.2 Second MA Turn WS Construction (DF/TF FO).

To accommodate the two inbound tracks in the $\boldsymbol{D F}$ leg, the second $\boldsymbol{M A}$ turn

Note: Apply table 6-2 PP' location information for each baseline (formula is identical).
6.4.2 a. CASE 1: Small angle turn using 1 WS for each inbound $\boldsymbol{D F}$ track.

Step 1: Construct the WS1 baseline, ($\mathbf{P}^{\mathbf{P}} \mathbf{P}^{\mathbf{\prime}}$) perpendicular to the $\mathbf{D F}$ track nearer the outside of the $\boldsymbol{D F} / \mathbf{T F}$ turn, at the late-turn-point (see table 6-2 for line $\mathbf{P P}{ }^{\prime}$ location).

Step 1a: Construct the WS2 baseline, ($\left.\mathbf{P P}^{\boldsymbol{\prime}}\right)$ perpendicular to the $\boldsymbol{D F}$ track nearer the inside of the DF/TF turn, at the late-turn-point (see table 6-2 for line PP' location).

Step 2: Locate the WS1 center on $\underline{\mathbf{P}^{\prime} \mathbf{P} \text { ' }}$ at distance \boldsymbol{R} (no-wind turn radius, using formula 6-2b; see figure 6-5) from the intersection of $\mathbf{P}^{\mathbf{P}} \mathbf{P}^{\prime}$, and the inbound-segment outer-boundary extension.

Step 2a: Locate the WS2 center on $\underline{\text { PP' }}$ at distance \boldsymbol{R} (no-wind turn radius, using formula 6-2b; see figure 6-5) from the intersection of $\mathbf{P P}^{\prime}$ and the inbound-segment inner-boundary extension.

Step 3: Construct WS1 from this outer boundary point in the direction of turn until tangent to the $\mathbf{W S} /$ Segment connecting line from table 6-2.

Step 3a: Construct WS2 from this inner boundary point in the direction of turn until tangent to the $\mathbf{W S} /$ Segment connecting line from table 6-2.

Step 4: Where WS2 intersects WS1 construction, include WS2 in the OEA construction, and connect WS1 to WS2 with a tangent line. Otherwise revert to the single WS construction.

CASE 1-1: WS1 and/or WS2 lie outside the outbound segment boundary.
Step 1: Construct the OEA outer boundary using WS1 and/or WS2 and the tangent 30 -degree converging line until it crosses the outbound segment boundaries (see figure 6-22).

CASE 1-2: WS1 and WS2 lie inside the outbound segment boundary.
Step 1: Where WS1 and/or WS2 lie inside the outbound segment primary boundary, construct the OEA outer boundary using WS1 and/or WS2 and a line (from the point WS1 or WS2 is parallel to the outbound segment nominal track), splaying at 15 degrees relative the outbound segment nominal track until it intersects the outbound segment boundary lines.

Step 1a: Where WS1 and/or WS2 lie inside the outbound segment secondary boundary, construct the OEA outer boundary using WS1 and/or WS2 and a line (from the point WS1 or WS2 is parallel to the outbound segment nominal track), splaying at 15 degrees relative the outbound segment nominal track until it intersects the outbound segment boundary line. Continue the final WS and 30 degrees converging line to establish the primary/secondary boundary.

6.5 Missed Approach Climb Gradient.

Where the $\boldsymbol{M A}$ standard $\boldsymbol{O C S}$ is penetrated and a $\boldsymbol{C G}$ is required, specify a missed approach $\boldsymbol{C G}$ to clear the penetrating obstruction. MA starting ROC is $\mathbf{1 0 0} \mathbf{~ f t}$ (plus adjustments). ROC increases at $96 \mathrm{ft} / \mathbf{N M}$, measured parallel to the MA track to TIA end (Turn-at-Altitude), or early-turn point (Turn-at-Fix), then shortest primary distance to the next fix. Apply fix-to-fix distance for subsequent segments. Where a part-time altimeter is in use, consider the helicopter SOC altitude to be the MDA associated with the local altimeter (ensures adequate $\boldsymbol{C G}$ is applied).

Step 1: Calculate the ROC, the altitude at which the ROC for the obstacle is achieved, and the required $\boldsymbol{C G}$ ($\mathrm{ft} / \mathbf{N M}$) using formula 6-13.

Step 2: Apply the CG to:

- The altitude which provides appropriate ROC, or
- The point/altitude where the subsequent MA OCS clears all obstacles.

Step 2a: Where a RASS adjustment is applicable for climb-to-altitude operations (prior to turn, terminate $\boldsymbol{C G}$, etc.), apply the $\boldsymbol{C G}$ associated with the lower MDA (formula 6-3). Where there is a local altimeter, to establish the RASS-based climb-to-altitude, add the difference between the Local altimeter-based MDA and the RASS-based MDA to the climb-to-altitude and round to the next higher $100-\mathrm{ft}$ increment (see TERPS chapter 3 for further details).

Formula 6-3. ROC/CG/Minimum Altitude/OCS.

Figure 6-1. Missed Approach Optimum Flight Paths.

Figure 6-2. Missed Approach Section 1.

Figure 6-3. Straight Missed Approach.

Figure 6-4. Straight Missed Approach (RNAV/LP). GPS Straight MAP

Figure 6-5. Turn at Altitude Missed Approach, (Minimum Turning Altitude).

SCALE

LP

Figure 6-6. Turn at Altitude Missed Approach,
(Greater than Minimum Turning Altitude).

Figure 6-8. Turn at Altitude Missed Approach, $>90^{\circ}$ (Greater than Minimum Turn Altitude).

Figure 6-10. Turn ar Altitude Missed Approach, > 90 degrees (Minimum Turn Altitude).

Figure 6-12. 90 KIAS Missed Approach Segment, ≥ 180 degrees (Minimum Turn Altitude).

Figure 6-14. Direct to Fix Segment Following a TIA completion >75 degrees (One WS).

Figure 6-16. Fly-Over/Fly-By Diagrams.

Figure 6-17. Turn at a Waypoint (fly-by).

Figure 6-18. Turn at a Waypoint (fly-by).

Figure 6-18a. Turn at a Waypoint (fly-by).

Figure 6-19. Turn at a Waypoint (fly-over) < 90 Degrees.

Figure 6-20. Turn at a Waypoint (fly-over) >90 Degrees.

Figure 6-21. Second Turn Construction.

Figure 6-22. Second Turn Construction.

Figure 6-24. WS Connection
(Inside Outbound Segment Primary Boundary).

Figure 6-25. WS Connection
(Inside Outbound Segment Secondary Boundary).
(

Chapter 7. Departure Criteria

7.1 Departure Criteria.

7.1.1 Development of Departure Procedures from IFR Nonprecision or Precision Heliports.

Paragraphs 7.2, 7.3, and 7.4 provide criteria for departure procedure (DP) development from civil and USA IFR heliports. Paragraph 7.5 criteria applies to DP development from civil and USA VFR heliports. Advisory Circular (AC) 150/5390-2, Heliport Design, applies. Note the FATO/TLOF shape and dimension flexibility provided in the $\boldsymbol{A C}$. Most graphics in this document apply square or rectangular shapes. These criteria are based on a standard $400 \mathrm{ft} / \mathbf{N M}$ helicopter climb performance.

Note: 'VSRL' in this chapter refers to a construction reference line, identical to the chapter 1 definition in dimension and constuction, except it relates to the departure and departure course and may be generally considered synonymous with FATO edge.

Design the simplest $\boldsymbol{D P}$ that serves the operation. $\boldsymbol{D P}$ s and turn protection are based on a MAXIMUM of $70 \boldsymbol{K I I S S}$ ($90 \boldsymbol{K I} \boldsymbol{A S}$ for military) until established on the departure termination fix (DPTF) inbound course. Annotate the MAXIMUM KIAS on the DP, e.g., Do Not Exceed 70 KIAS until established on the (fix-name) inbound course.

The initial departure fix (IDF) may be considered comparable to the departure end of runway for these departures. The visual segment, from Heliport to the IDF, provides a virtual three-dimensional path in space to join the instrument segment.

Apply departure route widths as follows:

- Terminal ≤ 30 NM from HRP (0.5-1.5-1.5-0.5):
o Primary $1.5 N M$
o Secondary $0.5 N M$
- En Route > 30 NM from HRP (1.0-3.0-3.0-1.0):
o Primary 3.0NM
o Secondary 1.0NM

Note: See paragraph 7.4.2b for WAAS widths.

7.1.2 Departure Types.

7.1.2 a. Diverse Departure

A diverse departure supports any-direction departures to an altitude that satisfies all en route flight obstacle clearance requirements. Where the obstacle clearance
surface ($\boldsymbol{O C S}$) is not penetrated, unrestricted diverse departures may be authorized. Publish standard takeoff minimums (see paragraph 7.2).

7.1.2 b. Sector Departure.

The sector departure supports any course/track/heading departure within a specified sector to an altitude that satisfies all en route flight obstacle clearance requirements (see paragraph 7.3).

7.1.2 c. Route Departure.

A route departure provides $\boldsymbol{I F R}$ protection along a route (retrievable from the navigation receiver database), with the navigation receiver operated in the terminal mode, from an IFR heliport or runway (see paragraph 7.4).

7.1.2 d. Point-in-Space (PinS) Special Route Departure.

The PinS Special Route Departure provides IFR protection beginning at a flyover fix along a specific route (retrievable from the navigation receiver database), with the navigation receiver operated in the approach, terminal, or en route mode. Construct this departure using terminal and/or en route criteria (see paragraph 7.5).

7.2 Diverse Departure.

7.2.1 \quad Civil IFR and $\boldsymbol{U S A} \boldsymbol{A}$ VFR/IFR Heliports Criteria.

These criteria apply to civil and USA IFR heliports (see appendix 4). Evaluate the 20:1 OCS (figure 7-1) beginning at the FATO edge and extending outward and upward until the $\boldsymbol{O C S}$ reaches an altitude of $1,000 \mathrm{ft}$ below the specified en route altitude. The MINIMUM en route level-flight required Obstacle Clearance ($\boldsymbol{R O C}$) is $1,000 \mathrm{ft}$ in non-mountainous areas and $2,000 \mathrm{ft}$ in designated mountainous areas. Order 8260.3B, Volume 1, paragraph 1720 applies. Evaluate a level surface, beginning at the $\boldsymbol{H R P}$ throughout the departure area to a MINIMUM distance of 11 NM non-mountainous/21 NM mountainous beyond the 20:1 surface termination. The minimum climb gradient (CG) is $400 \mathrm{ft} / \boldsymbol{N M}$. ROC increases at the rate of $96 \mathrm{ft} / \boldsymbol{N M}$. Determine the distance (NM) to attain a $\boldsymbol{R O C}$ value by dividing the target $\boldsymbol{R O C}$ value by 96 . [ROC/96 = Distance NM; round to next higher $N M$].
7.2.2 Calculate the $\boldsymbol{O C S}(20: 1)$ height at an obstacle using formula 7-1.

Formula 7-1. OCS Elevation (Hocs).	
$H_{o c s}=\frac{D}{20}+H E$ Where $\mathrm{D}=$ Distance, FATO edge/boundary to obstacle (ft) HE = Heliport elevation (MSL)	
D/20+HE	
Calculator	
HE	Click here to calculate
D	
$\mathrm{H}_{\text {ocs }}$	

$7.3 \quad$ Sector Departure.

These criteria apply to civil IFR heliports (see appendix 4) and USA IFR heliports. Establish sector area boundaries within which the helicopter must remain during departure maneuvers. Establish a circle about the HRP of the appropriate MINIMUM radius (50 ft for special procedures, 75 ft for public procedures). Identify obstacles the diverse sector area will avoid or mitigate. Establish the sector outer buffer boundaries using two lines drawn tangent to the circle and to the obstacle edges. Construct the common inner buffer/sector boundary using a set of lines drawn tangent to the circle diverging 20 degrees inward from the buffer outer boundary lines. The MINIMUM authorized sector is 30 degrees between sector boundaries (see figure 7-2).
7.3.1 \quad Evaluate the sector $\boldsymbol{O C S}$ using the applicable portions of paragraph 7.2.1.
7.3.2 Climb instructions must relate to the course established from the $\boldsymbol{H R P}$ waypoint. Departure instructions must assure that helicopter maneuvers remain within the sector boundaries (see Order 8260.46).

7.4 Route Departure.

7.4.1 Initial Climb Area (ICA).

These criteria apply to civil and $\boldsymbol{U S A} \boldsymbol{I F R}$ heliports whose $\boldsymbol{H R P}$ coordinates are contained in the navigation receiver database. Manual waypoint loading is not authorized. All waypoints used in these procedures must be coded in the database as a retrievable sequence of waypoints. The navigational receiver must achieve a terminal Receiver Autonomous Integrity Monitor (RAIM) of 1.0 NM. Construct the initial climb segment to allow climb to an altitude of $\geq 400 \mathrm{ft}$ above heliport elevation ($\boldsymbol{H} \boldsymbol{E}$). Construct the departure course from the Helipoint to a fly-over $\boldsymbol{I D F} \leq 5 \mathbf{N M}$ from the $\boldsymbol{H R P}$. Construct the ICA lateral boundary with lines drawn
from the $\boldsymbol{V} \boldsymbol{S R L}$ ends, splaying 20 degrees relative to the design track/course. Apply a 20:1 planar departure $\boldsymbol{O C S}$ rising from the $\boldsymbol{V S R L}$ toward the IDF. Minimum HRP to $\boldsymbol{I D F}$ distance is $1.0 \boldsymbol{N M}$ unless a $\boldsymbol{C G}$ is published(see figure 7-3).
7.4.2 Continue the 20-degree splays until reaching full terminal or en route width (as applicable). The approximate splay distance to terminal width is 5.5 NM . Do not apply secondary areas within the ICA. Beyond the plotted IDF position, apply secondary areas after full primary width is attained (see figure 7-4). Use table 4-1, paragraph 4.1 MINIMUM leg length for course changes.
7.4.2 a. Global Positioning System (GPS) OEA Width more than 30 NM from the HRP for PinS and Special PinS Procedures.

Beginning where the route centerline reaches $30 \boldsymbol{N M}$ from the $\boldsymbol{H R P}$, expand from terminal route $\boldsymbol{O C A}$ widths to en route widths. Splay the primary area at 20 degrees relative to the course. Connect the secondary area boundaries by straight lines beginning and ending abeam the primary area boundary connection points (see figure 7-5).

7.4.2 b. Wide Area Augmentation System (WAAS) OEA En Route Width

 Route width reductions (after full expansion), along routes contained in the data base are authorized where special procedures network departures and arrivals. Minimum GPS route width is $\pm 2.0 \boldsymbol{N M}$ primary and $0.5 \boldsymbol{N M}$ secondary, minimum $\boldsymbol{W A A S}$ route width is $\pm 1.5 \mathrm{NM}$ primary and 0.5 NM secondary. These routes must be flown using terminal mode with a CDI scale of ± 1 NM. OpsSpec approval and form 8260-10 notation is required.
7.4.3 IFR Departure Areas' Segment Lengths.

The MINIMUM segment length is governed by the turn required at each waypoint and lengths required in table 4-1.

7.4.4 OCS Evaluation.

The 20:1 OCS rises from the VSRL/FATO forward edge until reaching the level surface described in paragraph 7.2.1. Evaluate straight segment primary area obstacles using the shortest distance, measured parallel to the design track/course, from $\mathbf{A B}$ to, or abeam the obstacle (see figure 7-6). Evaluate straight segment secondary area obstacles using the same measurement technique, plus the shortest distance $6: 1$ secondary rise from the primary boundary. Where a turn is involved, evaluate the straight portion until abeam the earliest primary area boundary divergence as described above. From the earliest primary boundary divergence (and its $\boldsymbol{O C S}$ elevation), measure the shortest distance within the primary area to the obstacle. Find the secondary $\boldsymbol{O C S}$ elevation at an obstacle using the same measurement method to the primary boundary nearest the obstacle (for the primary $\boldsymbol{O C S}$ elevation), then add the shortest distance $6: 1$ surface rise to the
obstacle. (see figures 7-6, 7-7). The procedure $\boldsymbol{O E A}$ ends at the $\boldsymbol{D P T F}$ latest $\boldsymbol{A T T}$. Confirm the $\boldsymbol{O C S}$ /obstacle relationship using formula 7-2.

7.4.5 Level Surface Evaluation.

Apply paragraph 7.2.1 (as applicable) within the route boundaries.

7.4.6 Obstacle Penetration of the $O C S$.

Where $\boldsymbol{O C S}$ penetrations exists, paragraph 7.4.7 may be applied to establish a $\boldsymbol{C G}$. Publish a ceiling in $100-\mathrm{ft}$ increments above the controlling obstacle, and a visibility of 1.0 SM (minimum) for $\boldsymbol{I F R} \boldsymbol{D P s}$ from $\boldsymbol{I F R}$ heliports requiring a $\boldsymbol{C G}$ exceeding $400 \mathrm{ft} / \boldsymbol{N M}$. See paragraph 7.5 .4 for MAXIMUM $\boldsymbol{C G}$. Establish a $\boldsymbol{C G}$ sufficient to clear penetrations, and determine an altitude where the $\boldsymbol{C G}$ is no longer required. Ensure the $\boldsymbol{O C S}$ clears all succeeding climb area obstructions, but avoid using a $\boldsymbol{C G}$ above an altitude that satisfies the $\boldsymbol{R O C}$. When a required $\boldsymbol{C} \boldsymbol{G}$ is operationally excessive, adjust fixes to allow lower $\boldsymbol{C} \boldsymbol{G}$ usage within succeeding segments.

7.4.7 Climb Gradient to Relieve OCS Penetrations.

When $\boldsymbol{O C S}$ penetrations exist, consider increasing the minimum required $\boldsymbol{C G}$ to provide the required $\boldsymbol{R O C}$. Maximum $\boldsymbol{C G}$ is $600 \mathrm{ft} / \boldsymbol{N M}^{*}$
*Helicopters using special procedures may have a higher rate. When this applies, document data on FAA form 8260-10.

Step 1: Calculate the $\boldsymbol{R O C}$, the altitude at which the $\boldsymbol{R O C}$ for the obstacle is achieved, and the required $\boldsymbol{C G}$ ($\mathrm{ft} / \boldsymbol{N M}$) applying formula 7-3.

Note: Formula 7-3 Copter $_{\text {soc }}$ refers to the helicopter altitude at start-of-climb (SOC).

Step 2: Apply the $\boldsymbol{C} \boldsymbol{G}$ to:

- The altitude that provides appropriate $\boldsymbol{R O C}$, or
- The point/altitude that the subsequent $\boldsymbol{O C S}$ clears all obstacles.

Formula 7-3. ROC/CG/Minimum Altitude/OCS.

7.4.8 Climb Gradient Termination Altitude Determination.

Specify the $\boldsymbol{C} \boldsymbol{G}$ to an altitude or fix where the higher than standard $\boldsymbol{C} \boldsymbol{G}$ is no longer required. Calculate the gradient from the heliport VSRL/FATO edge for an $\boldsymbol{I F R}$ heliport $\boldsymbol{I F R}$ departure, or from the IDF latest $\boldsymbol{A T T}$ for a $\boldsymbol{V F R}$ heliport PinS departure. Round the $\boldsymbol{C G}$ termination altitude to the next higher $100-\mathrm{ft}$ increment ($20-\mathrm{ft}$ or $50-\mathrm{ft}$ increments may be applied when operationally required). For a climb in holding pattern, apply Order 8260.3B, Volume 1, paragraph $293 b$ criteria (also see appendix 5).

7.5 PinS Special Route Departure for Civil and USA VFR Heliports.

7.5.1 Area.

Begin the terminal $\boldsymbol{I F R}$ route with a fly-over IDF waypoint. Construct the route using terminal or en route width, as appropriate. Expand from terminal to en route widths as described in paragraph 7.4.2.
7.5.1 a. Initial Climb Area. The ICA provides a measure of protection for helicopter climb to the IDF altitude (see figure 7-3). Establish the fly-over IDF within $5 \boldsymbol{N M}$ of the HRP. The ICA begins at the VSRL and extends to the IDF plotted position. Splay the ICA from VSRL width to full primary area width (aligned with the course) at the IDF earliest $\boldsymbol{A T T}$ (see figure 7-8).
7.5.1 b. Obstacle Evaluation, Initial Climb Area. The ICA length is normally that of the $\boldsymbol{I F R}$ to a $\boldsymbol{V F R}$ heliport $(\boldsymbol{I V H})$ approach visual segment. The special PinS departure minimum $\boldsymbol{R O C}$ at the $\boldsymbol{I D F}$ is 100 ft (turn $\leq 15^{\circ}$), or 250 ft (turn $>15^{\circ}$). The OIS starts at the VSRL at $\boldsymbol{H E}$ and rises as a plane 1degree below the approach VSDA. The IDF altitude is normally the approach MDA, but may be lower where the $\boldsymbol{I F R}$ segment $\boldsymbol{O C S}$ is not penetrated and the IDF ROC is adequate. A $\boldsymbol{C G}$ may be applied to mitigate $\boldsymbol{I F R}$ segment $\boldsymbol{O C S}$ penetrations. Where the $\boldsymbol{O I S}$ reaches 250 ft below the $\boldsymbol{I D F}$ altitude (plus adjustments) prior to the $\boldsymbol{I D F}$ (for a special procedure), extend a level $\boldsymbol{O I S}$ to the $\boldsymbol{I D F}$ latest $\boldsymbol{A T T}$. [This applies to an $\boldsymbol{I F R}$ to a $\boldsymbol{V F R}$ heliport $(\boldsymbol{I V H})$]. Mitigate $\boldsymbol{O I S}$ penetrations using the methods listed in paragraph 5.4.3d. Where there is an established PinS approach, the $\boldsymbol{O C S}$ at the $\boldsymbol{I D F}$ is normally MDA minus $\boldsymbol{R O C}$ and adjustments.
7.5.1 c. Special PinS Departure IFR Segment Area. The IFR segment OEA begins at the $\boldsymbol{I D F}$ earliest $\boldsymbol{A T T}$ at $\pm 0.4 \boldsymbol{N M}$ primary width and 0.5 NM secondary width. The ICA to first $\boldsymbol{I F R}$ segment intersection angle must not exceed 30° (see figure 7-9). The $\boldsymbol{I F R}$ segment primary width splays to $\pm 0.55 \boldsymbol{N M}$ at the second $\boldsymbol{W P}$ earliest $\boldsymbol{A T T}$, and maintains this width until abeam the second $\boldsymbol{W P}$ plotted position. The route width then expands to reach terminal area primary width at $2 \boldsymbol{N M}$ past the second $\boldsymbol{W P}$ plotted position (see figures 7-9 and 7-9a). Appendix 3 conditions and assumptions must be satisfied. Where the ICA to first $\boldsymbol{I F R}$ segment intersection angle is $\leq 15^{\circ}$, and where an operational advantage is gained within the initial $\boldsymbol{I F R}$ segment, the area outside 20-degree splay lines from the $\boldsymbol{I D F}$ earliest $\boldsymbol{A T T}$ primary boundaries may be eliminated from consideration (see figure 7-9a). Where the intersection angle exceeds 15 degrees, apply the fly-over fix, outside turn protection principles from chapter 6.
7.5.1 d. Raise the OIS Origin to Avoid Penetration. A hover climb may mitigate a PinS departure ICA OIS penetration. The hover climb height (above $\boldsymbol{H E}$) must be consistent with the helicopter's flight manual operational limitations, and its ability to hover out of ground effect (see figure 7-10). Publish a hover-climb procedure only where the climb exceeds 5 ft above $\boldsymbol{H E}$. A hover height above

20 ft requires Flight Standards approval. Where this procedure is developed, raise the OIS origin by the prescribed hover climb/penetration amount.
7.5.1 e. PinS Departure IFR Segment. This criteria applies to $\boldsymbol{V F R}$ heliport departures with or without an approach procedure. The $\boldsymbol{I F R}$ segment begins at the fly-over IDF earliest $\boldsymbol{A T T}$, and ends at the DPTF. Where no established approach exists, or when otherwise required, establish an IDF based on an $\boldsymbol{O E A}$ evaluation of a level surface from the earliest to latest IDF ATT in the IFR segment and a $20: 1$ surface starting at the latest IDF ATT. In this case, code the $\boldsymbol{H R P}$ at the IDF location. The ICA course and the first $\boldsymbol{I F R}$ segment interception angle should not exceed 30 degrees. Use table 4-1, paragraph 4.1, MINIMUM leg length for course changes. Apply the terminal IFR route width within 30 NM (no $\boldsymbol{W} \boldsymbol{A A S}$ distance limit applies) using a 6:1 secondary area. Establish an $\boldsymbol{I F R}$ segment entry altitude at least 100 ft (turn $\leq 15^{\circ}$), or 250 ft (turn $>15^{\circ}$) above the IFR segment $\boldsymbol{O C S}$ slope beginning elevation (see figure 7-11). Where the turn exceeds 15 degrees, apply the fly-over fix, outside turn protection principles from chapter 6.

7.5.2 OCS Evaluation.

Evaluate the 20:1 OCS, beginning at the IDF latest $\boldsymbol{A T T}$, as specified in paragraph 7.4.4. Where possible, establish the IDF crossing altitude using a STANDARD $\boldsymbol{C G}$ from the heliport. Where the $\boldsymbol{I D F}$ turn is $\leq 15^{\circ}$, and where an operational advantage is gained within the initial $\boldsymbol{I F R}$ segment, the area outside 20-degree splay lines from the IDF earliest $\boldsymbol{A T T}$ primary boundaries may be eliminated from consideration (see figure 7-11a).

7.5.3 Multiple Climb Gradient (All Departures).

Where multiple $\boldsymbol{C} \boldsymbol{G}$ s exist within a segment, e.g., due to multiple obstacle impacts, and/or air traffic control requirements, or to meet en route MINIMUM crossing altitude requirements, publish the highest computed $\boldsymbol{C G}$ for that segment. Subsequent departure segment $\boldsymbol{C G}$ s must not exceed a proceeding segment $\boldsymbol{C G}$. Flight Standards approval is required for more than two higher-than-standard $\boldsymbol{C G}$ s in a procedure.

7.5.4 Maximum Climb Gradient (All Departures).

The MAXIMUM allowable public procedure $\boldsymbol{C G}$ is $600 \mathrm{ft} / \boldsymbol{N M}$. For special procedures, base the MAXIMUM $\boldsymbol{C G}$ in any segment on specific performance information provided by the operator's helicopter flight manual, the helicopter manufacturer, or Rotorcraft Directorate's Office (ASW-100).

Figure 7-1. Diverse Departure Area, Surfaces.

Figure 7-2. Sector Departure.

Figure 7-4. Area Beyond the ICA.

Figure 7-5. GPS Area Widths Within/Beyond 30 NM from HRP.

Figure 7-7. Secondary Area Obstacle Evaluation.

Figure 7-8. Initial Climb OEA, PinS Special Route Departure.

Figure 7-9. Special Point-in-Space Departure Area Within 30NM from the HRP.

Figure 7-9a. Special Point-in-Space Departure (Detail).
Second
Waypoint

Figure 7-11. PinS Departure Area within 30 NM of the HRP (Terminal Raim).

Figure 7-11a. PinS IDF Area (Detail) Terminal Raim.

Chapter 8. Minimums for Helicopter Nonprecision GPS Approaches and Departures

8.1 Application.

Minimums specified for Category "A" aircraft in Order 8260.3, Volume 1, chapter 3, apply to helicopter GPS procedures, except as follow: Paragraph 311 does not apply. For helicopter procedures to heliports or helipoints, substitute "helipoint elevation" for "airport elevation" or "touchdown zone elevation."

8.1.1 Altitudes for IFR Approaches to IFR Heliports.

Order 8260.3B, Volume 1, paragraph 321 applies, except change 40:1 to 20:1. Paragraph 322 does not apply. Heliport minimums are referenced to the helipoint elevation (HE).
8.1.2 Visibilities for IFR Approaches to IFR Heliports and Runways.
8.1.2 a. Approaches to Lighted Heliports. Apply Order 8260.3, Volume 1, paragraph 1127a(2).
8.1.2 b. Approaches to Runways. See Order 8260.3, Volume 1, paragraphs 1127a (1) and 1128.

Note 1: For all procedures where obstacles penetrate paragraph 251 visual surfaces, visibility credit for approach lighting systems must not reduce published visibility to values less than the values specified by paragraph 251 (3/4 or 1 SM as appropriate).

Note 2: For USA, when analyzing the visual position of the final approach segment and a penalty is encountered when applying the basic criteria in Order 8260.3, Volume 1, paragraph 251b, apply 20:1 vice 34:1 and 10:1 vice 20:1.
8.1.2 c. No-Light Visibility. Apply Order 8260.3, Volume 1, paragraph 1127a. MINIMUM visibility must not be less than the distance from the plotted position of the MAP to the helipoint.
8.1.2 d. Credit for Lights. Where a heliport approach lighting system (HALS) is installed, the visibility may be reduced by $1 / 4 \boldsymbol{S M}$ to a value not less than $1 / 4 \boldsymbol{S M}$.

Note: Annotate the procedure to indicate minimum no-light visibility applicable if HALS is inoperative.

8.1.3 IFR to a VFR Heliport (IVH) (Proceed Visually).

8.1.3 a. The MINIMUM visibility is $3 / 4$ SM. If the height above surface (HAS) exceeds 800 ft , the MINIMUM visibility is 1 SM. The MINIMUM visibility must not be less than the distance from the plotted position of the MAP to the helipoint.

8.1.3 b. PINS Approach (Proceed VFR). Required on FAA FORM 8260-10.

Note: "PROCEED VFR." The minimums at the time of conducting the approach are the highest:

- published on the chart
- required by the operating rule
- Operations Specifications(OpsSpecs)

8.1.4 Departures from VFR Heliports.

8.1.4 a. Chart departure minimums from VFR heliports no lower than those contained in table 8-1.

Table 8-1. Heliport Departure Minimums.		
DEPARTURE PROCEDURE	CEI LI NG	VISI BI LITY
Proceed visually from VFR heliport (IVH).	Equal to the MDA raised to the next 100-ft increment.	Equal to the distance from the heliport to the IDF, but not less than 3/4 SM.
Proceed VFR from VFR heliport (PinS)	Minimums are dependent on the rules that apply to the specific operator, e.g., 14 CFR 91, OpSpec, LOA, etc.	Minimums are dependent on the rules that apply to the specific operator, e.g., 14 CFR 91, OpSpecs, LOA, etc.

8.1.5 Departure Minimums from IFR Heliports and Runways.

8.1.5 a. Unless otherwise specified, the standard Part 97 takeoff departure visibility from a runway is $1 / 2 \boldsymbol{S M}$.
8.1.5 b. Where obstacles 1 SM or less from the DER or FATO edge penetrates the 20:1 OCS:
8.1.5 b. (1) Publish standard departure minimums with a required $\boldsymbol{C G}$ (see paragraph 7.4.9) to a specified altitude (see paragraph 7.4.10), and
8.1.5 b. (2) Publish a ceiling and visibility to see and avoid the obstacle(s), and/or
8.1.5 b. (3) Develop a specific textual or graphic route to avoid obstacle(s).
8.1.5 c. Where obstacles more than 1 SM from the DER penetrate the 20:1 OCS:
8.1.5 c. (1) Publish standard departure minimums with a required climb gradient to a specified altitude, or develop a specified textual graphic departure route to avoid the obstacle(s).

8.1.5 d. Ceiling and Visibility.

8.1.5 d. (1) Specify a ceiling value equal to the height of the highest penetrating obstacle above heliport or airport elevation rounded to the next higher $100-\mathrm{ft}$ increment. The ceiling value when specified must be at least 300 ft .
8.1.5 d. (2) Specify a visibility value equal to the distance measured directly from the FATO edge or DER to the obstacle, rounded to the next higher reportable value. The visibility when specified must be at least $1 \mathbf{S M}$.
8.1.5 e. Military Minimums. Departure minimums for military operations are contained in the appropriate service directives.
8.1.6 Lighting Systems for Helicopter GPS Instrument Approach Procedures.
8.1.6 a. Heliport Instrument Lighting System (HILS). A HILS is recommended for all helicopter GPS approach operations to a heliport. An approved runway lighting system is adequate for approaches to runways. A HILS, when installed, must be aligned with the MAP to helipoint course.
8.1.6 b. Heliport Approach Lighting System (HALS). A HALS is necessary for locations desiring lower visibility minimums for approaches designed to heliports.

MM/DD/YY

THIS PAGE INTENTIONALLY LEFT BLANK

Chapter 9. Wide Area Augmentation System (WAAS) Localizer Performance (LP) Criteria

9.1 General.

Use the criteria in chapter 4 for the construction of the initial and intermediate segments up to the $\boldsymbol{F A F}$, and chapter 6 criteria for the missed approach segment construction (see paragraph 9.7 for connection at the MAP). The WAAS LP criteria apply to the final approach only. For all other segments apply GPS criteria except where noted for a turn at the FAF, and missed approach constructions that are different. This implementation of WAAS does not include a glidepath function for these procedures. Criteria in this chapter provide a narrower obstacle evaluation area (OEA) in the instrument flight rule (IFR) final approach segment (FAS), and obstacle identification surface (OIS) in the visual segment. The segment lengths and descent rate/gradients are the same as chapter 5. The intermediate segment begins with the same width at the GPS intermediate fix (IF), reference chapter 4, tailored to the beginning width of the WAAS FAS, reference paragraph 9.3 at the FAF. Apply paragraphs 5.4 through 5.6 in the design of the approaches in the visual/visual flight rule (VFR) segments and apply this chapter for the IFR FAS OEA and FAS required obstacle clearance (ROC). Apply an OIS, reference paragraph 5.4, with the reduced width, reference paragraph 9.9. Apply paragraph 5.4 for the analysis of the VFR area of a Point in Space (PinS) (Proceed VFR) approach.

Figure 9-1 depicts the basic configuration for determining the Flight Path Alignment Point (FPAP) and fictitious helipoint (FHP) coordinates. Locate the $\boldsymbol{F H P} 2,600 \mathrm{ft}$ from the missed approach point (MAP). The FPAP is a point defined by the World Geodetic System 1984 (WGS-84) latitude, longitude, and is located $9,023 \mathrm{ft}$ from the $\boldsymbol{F H P}$.

9.2 Minimums. Apply chapter 8.

9.3 Use The Following Steps for WAAS LP Procedure Construction:

Step 1: Determine the FAS course alignment, MAP, FHP, and FPAP coordinates.

Step 2: Calculate the distance from the $\boldsymbol{F H P}$ to the PFAF ($\boldsymbol{D}_{\text {PFAF }}$) using formula 9-1. Calculate the width of primary and secondary areas at any distance from FHP to the earliest point the PFAF can be received using formulas 9-2 and 9-3 (see figure 9-3).

Formula 9-1. LP PFAF (PrFAF).	
$D_{\text {PFAF }}=\frac{\ln \left(\frac{r+\text { alt }}{r+\mathrm{FHP}_{\text {elev }}+\mathrm{HCH}}\right) \cdot r}{\tan \left(\theta \cdot \frac{\pi}{180}\right)}$	titude
$\left(\ln \left((\mathrm{r}+\mathrm{alt}) /\left(\mathrm{r}+\mathrm{FHP}_{\text {elev }}+\mathrm{HCH}\right)\right)^{*} \mathrm{r}\right) / \tan \left(\theta^{*} \pi / 180\right)$	
Calculator	
FHP ${ }_{\text {elev }}$	Click here to calculate
HCH	
θ	
alt	
$D_{\text {PFAF }}$	

Step 3: After constructing the IFR final trapezoid area, analyze the FAS by determining the controlling obstacle within the IFR final segment by applying the ROC in paragraph 9.3 and determining the minimum descent altitude (MDA).

Step 4: When constructing an IFR to a VFR heliport procedure (IVH, Proceed Visually), or an IFR approach to a VFR runway procedure (IVR, proceed visualy), apply chapter 5 criteria for the visual segment, but construct the narrower OIS in accordance with paragraph 9.9 of this chapter.

Step 5: When constructing a PinS (Proceed VFR) approach, apply the criteria in chapter 5 for the $\boldsymbol{V F R}$ segment and adjust the MDA of the $\boldsymbol{I F R}$ segment after an analysis of the $\boldsymbol{V F R}$ segment if required.

Step 6: Construct the missed approach using paragraph 9.11, and chapter 6.

9.4
 Determine FAS Course Alignment, FPAP and FHP Coordinates.

The FAS course determines the positional relationship between the FPAP and the FHP. Calculate the FPAP latitude and longitude coordinates using the MAP as a starting point after determining the final approach course (FAC) of the procedure. Use the direct program and extend the $\boldsymbol{F A S}$ course as an azimuth at a distance of 2,600 ft from the $\boldsymbol{M A P}$ to determine the $\boldsymbol{F H P}$ coordinates. Extend this course 9,023 ft beyond the $\boldsymbol{F H P}$ to calculate the coordinates of the FPAP (see figure 9-1 and table 9-1).

Figure 9-1. FPAP and FHP Coordinates.

Table 9-1. FPAP Information.

FPAP Distance from FHP	\pm Splay	\pm Width	Length Offset
$\mathbf{9 , 0 2 3 ~ f t}$	2.0°	350 ft $(106.75 \mathrm{~m})^{*}$	0

*Round result to the nearest 0.25 m .

9.4.1
 Area.

The FAS OEA begins at the earliest FAF position and ends at the latest MAP position (see figure 9-2). The FAF and MAP along-track tolerance (ATT) is $131.234 \mathrm{ft}(40 \mathrm{~m})$. Apply 250 ft of $\boldsymbol{R O C}$ in the primary area. The secondary area is 250 ft at the primary boundary tapering uniformly to zero at the outer edge. The beginning width closest to the $\boldsymbol{F H P}$ for the primary area is 867.79 ft and for the secondary areas 468.60 ft (see figures $9-2$ and $9-3$). Calculate the widths at 2,600 ft from the FHP using the formulas in paragraph 9.3.

9.4.1

9.4.1
b. The primary width $\left(\mathbf{D}_{\mathbf{P}}\right)$ is 867.79 ft either side of $\boldsymbol{F A C}$ at the origin, and expands uniformly to 4934.07 ft either side of the course $60,761.15 \mathrm{ft}(10 \mathrm{NM}$) from the $\boldsymbol{F H P}$. Calculate the perpendicular distance (ft) from $\boldsymbol{F A C}$ to the "W" surface boundary at any distance ($\mathrm{d}_{\mathrm{FHP}}$) using formula 9-2:

9.4.1 c. The perpendicular distance from $F A C$ to outer secondary boundary $\left(D_{s}\right)$ is $1,336.39 \mathrm{ft}$ at the origin, and expands uniformly to $9,488.37 \mathrm{ft}$ at $60,761.15 \mathrm{ft}$ (10 NM) from the FHP. Calculate $\boldsymbol{D}_{\boldsymbol{S}}$ using formula 9-3:

Formula 9-3. Perpendicular Distance $\left(D_{\mathrm{S}}\right)$.		
$\mathrm{D}_{\mathrm{S}}=$ Secondary Boundary Dist. (ft$)=0.140162\left(\mathrm{~d}_{\text {FHP }}-200\right)+1000$		
Where $\boldsymbol{D}_{\boldsymbol{s}}=$ Course to Outer Secondary Distance		
$\mathrm{d}_{\mathrm{FHP}}=$ Distance from FHP, along course		

9.5 Required Obstacle Clearance (ROC).

Primary ROC is 250 ft . The MDA can be no lower than the controlling obstacle height adjusted for obstacle accuracy tolerance (see Order 8260.19, appendix 2) plus the ROC value plus adjustments rounded to the next higher $20-\mathrm{ft}$ increment. Calculate secondary area ROC using formula 9-4.

$$
\mathrm{ROC}_{\text {secondary }}=(250+\mathrm{adj}) \cdot\left(1-\frac{\mathrm{d}_{\text {primary }}}{\mathrm{W}_{\mathrm{s}}}\right)
$$

Where adj $=$ TERPS para 323 adjustments
$\mathrm{d}_{\text {primary }}=$ perpendicular distance (ft) from primary area edge
$W_{S}=$ Secondary Area Width
$(250+$ adj $) *\left(1-d_{\text {primary }} / W_{s}\right)$
Calculator

adj		
$\mathrm{d}_{\text {primary }}$		Click here to tolculate
$\mathrm{W}_{\text {s }}$		
ROC $_{\text {secondary }}$		

9.6 Final Segment Stepdown Fixes (SDF).

An SDF may be applied where the MDA can be lowered 60 ft , or a visibility reduction can be achieved.
9.6.1 TERPS, Volume 1, paragraph 289 applies, with the following exceptions:
9.6.1 a. Establish step-down fix locations in 0.10 NM increments.
9.6.1 b. The minimum distance between stepdown fixes is $1 \mathbf{N M}$.
c. Establish stepdown fix altitudes using $20-\mathrm{ft}$ increments, rounded to the next HIGHER 20-ft increment. For example, 2104 becomes 2120.
9.6.1 d. Where a Remote Altimeter Setting Source (RASS) adjustment is in use, the published stepdown fix altitude must be established no lower than the altitude required for the greatest amount of adjustment (i.e., the published minimum altitude must incorporate the greatest amount of RASS adjustment required).
9.6.1 e. Descent gradient: Chapter 5 paragraphs 5.2.2a, 5.2.2b, and 5.2.2.f apply.
9.6.1 f. Obstacles eliminated from consideration (3.5:1 area) under this paragraph must be noted in the procedure documentation.

Note: Where turns are designed at the FAF, the 3.5:1 OIS starts at ATT distance prior to the angle bisector, and extends 1 NM parallel to the FAS centerline (see figure 9-4).

Abstract

9.6.1 g. Use formula 5-3 in paragraph 5.2.2 concerning TERPS paragraph 289 to determine the OIS elevation at an obstacle and minimum fix altitude based on an obstacle height.

9.6.1 h. To mitigate surface penetrations:

- Remove obstruction, or
- Reduce obstruction height, or
- Adjust the MDA, or
- Combination of options.

9.7 FAS Descent Angle/Gradient.

Apply chapter 5, paragraphs 5.2.2a. and 5.2.2b.

9.8 Turns at the FAF.

MAXIMUM turn at the FAF is 30 degrees. When a FAF turn is constructed, MINIMUM FAS length is $3 \boldsymbol{N M}$ for turns greater than 15 degrees. Where the $\mathbf{L P}$ intermediate course is not an extension of the FAC, use the following construction (see figure 9-4).

Step 1: Construct AA' perpendicular to the intermediate course 2 NM prior the FAF.

Step 2: Construct BB' perpendicular to the intermediate course extended 1 NM past the $\boldsymbol{F A F}$.

Step 3: Construct the inside turn boundaries by connecting the points of intersection of $\underline{\mathbf{A A} \mathbf{A}^{\prime}}$ with the turn side intermediate segment boundaries with the intersection of $\underline{\mathbf{B B}^{\prime}}$ with the turn side final segment boundaries.

Step 4: Connect lines from the point of intersection of AA' and the outside primary and secondary intermediate segment boundaries to the final segment primary and secondary final segment lines at a point perpendicular to the final course at the FAF.

The final segment evaluation extends to a point ATT prior to the angle bisector. The intermediate segment evaluation extends ATT past the angle bisector. Evaluate the area within ATT of the angle bisector for both the final and intermediate segments.

9.9 IFR Approach to a VFR Heliport (IVH) or IFR to a VFR Runway (IVR).

Apply paragraphs 5.4 through 5.6 and the criteria in this chapter for the IFR final segment OEA. Construct the IFR FAS by applying paragraph 9.2. The OIS width is like the $\boldsymbol{I F R}$ final segment primary area width at the latest point the MAP can be received ($\pm 867.79 \mathrm{ft}$) then narrows to the VSRL width (see figure 9-5).

Figure 9-5. Straight and Turn at the MAP OIS.

9.10 PinS Approach.

Apply paragraph 5.5 and the criteria in this chapter for the IFR final segment OEA. Apply paragraphs in this chapter to determine a preliminary MDA based on the FAS and paragraph 5.5 for the VFR segment analysis. The final MDA may require adjustment based on the VFR segment for a public procedure.

9.11 Missed Approach.

Construct the missed approach using chapter 6 criteria.

THIS PAGE INTENTIONALLY LEFT BLANK

Appendix 1. Conditions and Assumptions For Special Copter GPS Airways

The following conditions must be inserted on FAA Form 8260-10 for providing guidance and criteria for helicopter special Global Positioning System (GPS) en route criteria.

1. The maximum route length is 65 nautical miles (NM).
2. Route operation requires setting the Course Deviation Indicator (CDI) scaling to $\pm 1.0 \mathrm{NM}$ full-scale deflection to reduce flight technical error (FTE).
3. Any navigational aids (NAVAIDs), that are determined by Air Traffic to be mandatory for transition to the conventional navigation system, must be identified and verified operational prior to dispatch.
4. Predicted receiver autonomous integrity monitoring (RAIM) is checked with the Flight Service Station and found satisfactory prior to dispatch.
5. The Principle Operations, Maintenance, and Avionics Inspectors (POI, PMI, and PAI) must ensure the helicopter avionics navigation and communications suites are appropriate for the proposed routes. These suites must be installed and operated in accordance with HBAT 95-02, Guidance for Using GPS Equipment for IFR En Route and Terminal Operations and for Nonprecision Instrument Approaches, and AC 20-138, Airworthiness Approval of Global Positioning System (GPS) Navigation Equipment for Use as a VFR and IFR Supplemental Navigation System.
6. The Operator's Training Program and General Operations Manual must be revised, as necessary, to provide pilots and other personnel with guidance for use of these routes, including, but not limited to, operational policies, procedures and practices, limitations, and flight crew responsibilities and qualification standards.
7. A letter of agreement between the operator and the appropriate air traffic control facility or facilities must be established. It must contain, but is not limited to provisions for:
a. Flight plan generation, activation, and delivery procedures.
b. Air Traffic and operator/pilot responsibilities when radar contact has been established with helicopters on these routes.
c. Air Traffic and operator/pilot responsibilities when radar contact has not been established, or has been lost with helicopters operating on these routes.
d. Primary and back-up communication procedures.
e. Lost communications procedures.
f. Detailed procedures for transition to the conventional en route structure if GPS navigation capability is lost.

THIS PAGE INTENTIONALLY LEFT BLANK

Appendix 2. TERPS Standard Formulas for Geodetic Calculations

1.0 Purpose.

The ellipsoidal formulas contained in this document must be used in determining RNAV flight path (GPS, RNP, WAAS, LAAS) fixes, courses, and distance between fixes.

Notes:

Algorithms and methods are described for calculating geodetic locations (latitudes and longitudes) on the World Geodetic System of 1984 (WGS-84) ellipsoid, resulting from intersections of geodesic and non-geodesic paths. These algorithms utilize existing distance and azimuth calculation methods to compute intersections and tangent points needed for area navigation procedure construction. The methods apply corrections to an initial spherical approximation until the error is less than the maximum allowable error, as specified by the user.

Several constants are required for ellipsoidal calculations. First, the ellipsoidal parameters must be specified. For the WGS-84 ellipsoid, these are:

$$
\begin{aligned}
& a=\text { semi-major axis }=6,378,137.0 \mathrm{~m} \\
& b=\text { semi-minor axis }=6,356,752.314245 \mathrm{~m} \\
& 1 / f=\text { inverse flattening }=298.257223563
\end{aligned}
$$

Note that the semi-major axis is derived from the semi-minor axis and flattening parameters using the relation $b=a(1-f)$.

Second, an earth radius is needed for spherical approximations. The appropriate radius is the geometric mean of the WGS-84 semi-major and semi-minor axes. This gives

$$
\text { SPHERE_RADIUS }(\mathrm{r})=\sqrt{\mathrm{ab}}=6,367,435.679716 \mathrm{~m} .
$$

Perform calculations with at least 15 significant digits.
For the purpose of determining geodetic positions, perform sufficient iterations to converge within 1 cm in distance and 0.002 arc seconds in bearing.

2.0 Introduction.

The algorithms needed to calculate geodetic positions on the earth for the purpose of constructing and analyzing Terminal Instrument Procedures (TERPS) require the following geodetic calculations, some of which are illustrated in figure A2-1:

1: \quad Find the destination latitude and longitude, given starting latitude and longitude as well as distance and starting azimuth (often referred to as the "direct" or "forward" calculation).

2: Compute the geodesic arc length between two points, along with the azimuth of the geodesic at either point (often referred to as the "inverse" calculation).

3: Given a point on a geodesic, find a second geodesic that is perpendicular to the given geodesic at that point.

4: Given two geodesics, find their intersection point. (Labeled "4")
5: \quad Given two constant-radius arcs, find their intersection point(s). (Labeled " 5 ")

6: \quad Given a geodesic and a separate point, find the point on the geodesic nearest the given point. (Labeled " 6 ")

7: \quad Given a geodesic and an arc, find their intersection point(s). (Labeled " 7 ")

8: \quad Given two geodesics and a radius value, find the arc of the given radius that is tangent to both geodesics and the points where tangency occurs. (Labeled " 8 ")

9: \quad Given an arc and a point, determine the geodesic(s) tangent to the arc through the point and the point(s) where tangency occurs. (Labeled "9")

10: Given an arc and a geodesic, determine the geodesic(s) that are tangent to the arc and perpendicular to the given geodesic and the point(s) where tangency occurs. (Labeled "10")

11: Compute the length of an arc.
12: Determine whether a given point lies on a particular geodesic.
13: Determine whether a given point lies on a particular arc.

The following algorithms have been identified as required for analysis of TERPS procedures that use locus of points curves:

14: Given a geodesic and a locus, find their intersection point.

15: Given a fixed-radius arc and a locus, find their intersection point(s). (Labeled "15")

16: Given two loci, find their intersection.

17: Given two loci and a radius, find the center of the arc tangent to both loci and the points of tangency. (Labeled " 17 ")

The algorithm prototypes and parameter descriptions are given below using a C-like syntax. However, the algorithm steps are described in pseudo-code to maintain clarity and readability.

Figure A2-1. Typical Geodetic Constructions for TERPS.

Numbers refer to the algorithm in the list above that would be used to solve for the point.

2.1 Data Structures.

2.1.1 Geodetic Locations.

For convenience, one structure is used for both components of a geodetic coordinate. This is referred to as an LLPoint, which is declared as follows using C syntax:

```
typedef struct {
    latitude;
    longitude;
    } LLPoint;
```


2.1.2 Geodesic Curves.

A geodesic curve is the minimal-length curve connecting two geodetic locations. Since the planar geodesic is a straight line, we will often informally refer to a geodesic as a "line." Geodesics will be represented in data using two LLPoint structures.

2.1.3 Fixed Radius Arc.

A geodetic arc can be defined by a center point and radius distance. The circular arc is then the set (or locus) of points whose distance from the center point is equal to the radius. If an arc subtends an angle of less than 360 degrees, then its start azimuth, end azimuth, and orientation must be specified. The orientation is represented using a value of ± 1, with +1 representing a counterclockwise arc and -1 representing a clockwise arc. The distance between the start and end points must be checked. If it is less than a predetermined tolerance value, then the arc will be treated like a complete circle.

2.1.4 Locus of Points Relative to a Geodesic.

A locus of points relative to a geodesic is the set of all points such that the perpendicular distance from the geodesic is defined by a continuous function $w(P)$ which maps each point P on the geodesic to a real number. For the purposes of procedure design, $\mathrm{w}(\mathrm{P})$ will be either a constant value or a linear function of the distance from P to geodesic start point. In the algorithms that follow, a locus of points is represented using the following C structure:

```
typedef struct {
    LLPoint geoStart; /* start point of geodesic */
    LLPoint geoEnd; /* end point of geodesic */
    LLPoint locusStart; /* start point of locus */
    LLPoint locusEnd; /* end point of locus */
    double startDist; /* distance from geodesic *
    * to locus at geoStart */
    double endDist; /* distance from geodesic *
    * to locus at geoEnd */
    int lineType; /* 0, 1 or 2 */
} Locus;
```

The startDist and endDist parameters define where the locus lies in relation to the defining geodesic. If endDist=startDist, then the locus will be described as being "parallel" to the geodesic, while if endDist $=$ startDist, then the locus is "splayed." Furthermore, the sign of the distance parameter determines which side of the geodesic the locus is on. The algorithms described in this paper assume the following convention: if the distance to the locus is positive, then the locus lies to the
right of the geodesic; if the distance is negative, then the locus lies to the left. These directions are relative to the direction of the geodesic as viewed from the geoStart point. See figure A2-2 for an illustration.

If memory storage is limited, then either the startDist/endDist or locusStart/locusEnd elements may be omitted from the structure, since one may be calculated from the other. However, calculating them once upon initialization and then storing them will reduce computation time.

The lineType attribute is used to specify the locus's extent. If it is set to 0 (zero), then the locus exists only between geoStart and geoEnd. If lineType=1, then the locus begins at geoStart but extends beyond geoEnd. If lineType=2, then the locus extends beyond both geoStart and geoEnd.

Figure A2-2. Two Examples Loci Defined Relative To A Single Geodesic.

3.0 Basic Calculations.

3.1 Iterative Approach.

For most of the intersection and projection methods listed below, an initial approximation is iteratively improved until the calculated error is less than the required accuracy. The iterative schemes employ a basic secant method, relying upon a linear approximation of the error as a function of one adjustable parameter.

To begin the iteration, two starting solutions are found and used to initialize a pair of two-element arrays. The first array stores the two most recent values of the parameter being adjusted in the solution search. This array is named distarray when the search parameter is the distance from a known point. It is named crsarray when the search parameter is an angle measured against the azimuth of a known geodesic. The second array (named errarray in the algorithms below) stores the error values corresponding to the two most recent parameter values. Thus, these arrays store a linear representation of the error function. The next solution in each iteration is found by solving for the root of that linear function using the findLinearRoot function:

```
void findLinearRoot(double x[2], double y[2],
                        double* root) \{
    if (x[0] == x[1]) \{
    /* function has duplicate \(x\) values, no root */
    /* NOTE: NAN is a macro defined in math.h. It
    is required for any IEEE-compliant C
    environment */
        root \(=\) NAN;
    \} else if (y[0] == y[1]) \{
    if (y[0]*y[1] == 0.0) \{
        *root \(=x[0] ;\)
    \} else \{
    /* function is non-zero constant, no root */
    root \(=\) NAN;
    \} else \{
    *root \(=-y[0] *(x[1]-x[0]) /(y[1]-y[0])+x[0]\)
    \}
\}
```

This function returns the value of the search parameter for which the linear error approximation is zero. The returned root is used as the next value in the adjustable parameter and the corresponding error value is calculated. Then the parameter and error arrays are updated and another new root is found.

This iteration scheme works well for the algorithms described in this paper. Convergence is achieved very quickly because each starting solution is very close to the final solution, where the error is well approximated by a linear function.

3.2 Starting Solutions.

Starting solutions must be provided to start iterating toward a precise solution. Initial solutions may be found in all cases by using spherical triangles to approximate the geodetic curves being analyzed, and then solve for unknown distance and azimuth values using spherical trigonometry formulas.

3.2.1 Spherical Direction Intersect.

Given two points A and B and two bearings A to C and B to C , find C .

Run Inverse to find arc length from A to B and bearings A to B and B to A .
Compute differences of bearings to find angles A and B of the spherical triangle ABC .
More than one valid solution may result. Choose the solution closest to the original points.

Apply the spherical triangle formulas to find the angle C and arc lengths from A to C and from B to C :

$$
\begin{aligned}
& C=\cos ^{-1}\left(-\cos (A) \cdot \cos (B)+\sin (A) \cdot \sin (B) \cos \left(\frac{C}{R}\right)\right), \\
& a=R \cdot \cos ^{-1}\left(\frac{\cos (A)+\cos (B) \cdot \cos (C)}{\sin (B) \cdot \sin (C)}\right), b=R \cdot \cos ^{-1}\left(\frac{\cos (B)+\cos (A) \cdot \cos (C)}{\sin (A) \cdot \sin (C)}\right) .
\end{aligned}
$$

Note: If distances a or b result from a reciprocal bearing, assign appropriate negative sign(s).

Run Direct from A to find C. Use given bearing and computed length b.

3.2.2 Spherical Distance Intersection.

Given A, B and distances AC and BC , find C_{1} and C_{2}.
Run Inverse to find length and bearings between A and B .
Use spherical triangles to find angles $\mathrm{A}=\mathrm{BAC}_{1}=\mathrm{BAC}_{2}, \mathrm{~B}=\mathrm{ABC}_{1}=\mathrm{ABC}_{2}$, and $\mathrm{C}=$ $\mathrm{BC}_{1} \mathrm{~A}=\mathrm{BC}_{2} \mathrm{~A}$:
$A=\cos ^{-1}\left(\frac{\cos \left(\frac{a}{R}\right)-\cos \left(\frac{b}{R}\right) \cos \left(\frac{c}{R}\right)}{\sin \left(\frac{b}{R}\right) \sin \left(\frac{c}{R}\right)}\right), B=\cos ^{-1}\left(\frac{\cos \left(\frac{b}{R}\right)-\cos \left(\frac{a}{R}\right) \cos \left(\frac{c}{R}\right)}{\sin \left(\frac{a}{R}\right) \sin \left(\frac{c}{R}\right)}\right)$,
and $C=\cos ^{-1}\left(\frac{\cos \left(\frac{c}{R}\right)-\cos \left(\frac{a}{R}\right) \cos \left(\frac{b}{R}\right)}{\sin \left(\frac{a}{R}\right) \sin \left(\frac{b}{R}\right)}\right)$.
Run Direct from A to find C_{1} and C_{2}.
To compute the bearing from A to C_{1}, start with the bearing from A to B and subtract angle A.

To compute the bearing from A to C_{2}, start with the bearing from A to B and add angle A.

Use Inverse and spherical triangle formulas to get remaining bearings.

3.2.3 Spherical Tangent Point.

In both cases of the tangent point, distances are signed according to the following sign legend:

Where the arrow indicates the bearing from the first point A to the target point D .

3.2.4 Two Points and a Bearing Case.

Given two points, A and C , and a bearing from the first point (A). Find the point D along the given bearing extended which is closest to C.

Run Inverse to find length and bearings between A and C.
Find difference in bearings to compute angle A.
Use right spherical triangles to calculate y and x :
$y=R \sin ^{-1}\left(\sin \left(\frac{r}{R}\right) \sin (A)\right)$,
$x=R \cos ^{-1}\left(\cos \left(\frac{r}{R}\right) / \cos \left(\frac{y}{R}\right)\right)$.

Run Direct from A to find D using given bearing and computed length x .

3.2.5 Given Three Points Case.

Given three points (A, B, C), find the point (D) on the geodesic line from the first two points which is the perpendicular foot from the third point.

Use Inverse to determine bearing from A to B.
Use Inverse to determine bearing and length from A to C.
Find the difference in bearings to determine angle A.
Use right spherical triangles to find the lengths x and y :
$y=R \sin ^{-1}\left(\sin \left(\frac{r}{R}\right) \sin (A)\right)$,
$x=R \cos ^{-1}\left(\cos \left(\frac{r}{R}\right) / \cos \left(\frac{y}{R}\right)\right)$.
Use Direct to calculate D from A using the computed bearing from A to B and computed distance x .

3.3 Tolerances.

Two different convergence tolerances must be supplied so that the algorithms cease iterating once the error becomes sufficiently small. The first tolerance parameter is used in the forward and inverse routines; it is referred to as eps in the algorithm descriptions. The second parameter, labeled tol, is used in the intersection and projection routines to limit the overall error in the solution. Since the intersection and projection routines make multiple calls to the inverse and forward algorithms, the eps parameter should be several orders of magnitude smaller than the tol parameter to ensure that the iteration methods return correct results. Empirical studies have shown that eps $=0.5 e-13$ and tol $=1.0 e-9$ work well.

Finally, a maximum iteration count and convergence tolerances must be supplied to ensure that no algorithms can remain in an infinite loop if convergence is not reached. This parameter can be set by the programmer, but should be greater than five to ensure that all of the algorithms can reach convergence.

3.4 Direct and Inverse Algorithms.

The Direct and Inverse cases utilize formulae from T. Vincenty's, Survey Review XXIII, No. 176, April 1975: Direct and Inverse Solutions of Geodesics on the Ellipsoid with Application of Nested Equations.

Vincenty's notation is annotated below:
a, b, \quad major and minor semi axes of the ellipsoid.
f, \quad flattening $=\frac{a-b}{a}$.
ϕ, \quad geodetic latitude, positive north of the equator.
L, difference in longitude, positive east.
s, length of the geodesic.
α_{1}, α_{2}, bearings of the geodesic, clockwise from north; α_{2} in the direction $P_{1} P_{2}$ produced.
α, bearing of the geodesic at the equator.
$u^{2}=\frac{a^{2}-b^{2}}{b^{2}} \cos ^{2} \alpha$.
U, \quad reduced latitude, defined by $\tan U=(1-f) \tan \phi$.
λ, \quad difference in longitude on the auxiliary sphere.
σ, \quad angular distance $P_{1} P_{2}$, on the sphere.
σ_{1}, angular distance on the sphere from the equator to P_{1}.
σ_{m}, angular distance on the sphere from the equator to the midpoint of the line.

3.4.1 Vincenty's Direct Formula.

$$
\begin{align*}
& \tan \sigma_{1}=\frac{\tan U_{1}}{\cos \alpha_{1}} \tag{1}\\
& \sin \alpha=\cos U_{1} \sin \alpha_{1} . \tag{2}
\end{align*}
$$

$$
\begin{align*}
& A=1+\frac{u^{2}}{16384}\left\{4096+u^{2}\left[-768+u^{2}\left(320-175 u^{2}\right)\right]\right\} \tag{3}\\
& B=\frac{u^{2}}{1024}\left\{256+u^{2}\left[-128+u^{2}\left(74-47 u^{2}\right)\right]\right\} \tag{4}\\
& 2 \sigma_{m}=2 \sigma_{1}+\sigma \tag{5}\\
& \Delta \sigma=B \sin \sigma\left\{\cos \left(2 \sigma_{m}\right)+\frac{1}{4} B\left[\cos (\sigma)\left(2 \cos ^{2}\left(2 \sigma_{m}\right)-1\right)-\frac{1}{6} B \cos \left(2 \sigma_{m}\right)\left(4 \sin ^{2} \sigma-3\right)\left(4 \cos ^{2}\left(2 \sigma_{m}\right)-3\right)\right]\right\} \tag{6}\\
& \sigma=\frac{s}{b A}+\Delta \sigma \tag{7}
\end{align*}
$$

Equations (5), (6), and (7) are iterated until there is a negligible change in σ. The first approximation of σ is the first term of (7).

Note 1: For 1 cm accuracy, σ can change no more than 1.57e-009.

$$
\begin{align*}
& \tan \phi_{2}=\frac{\sin U_{1} \cos \sigma+\cos U_{1} \sin \sigma \cos \alpha_{1}}{(1-f)\left[\sin ^{2} \alpha+\left(\sin U_{1} \sin \sigma-\cos U_{1} \cos \sigma \cos \alpha_{1}\right)^{2}\right]^{\frac{1}{2}}} \tag{8}\\
& \tan \lambda=\frac{\sin \sigma \sin \alpha_{1}}{\cos U_{1} \cos \sigma-\sin U_{1} \sin \sigma \cos \alpha_{1}} \tag{9}\\
& C=\frac{f}{16} \cos ^{2} \alpha\left[4+f\left(4-3 \cos ^{2} \alpha\right)\right] \tag{10}\\
& L=\lambda-(1-C) f \sin \alpha\left\{\sigma+C \sin \sigma\left[\cos \left(2 \sigma_{m}\right)+C \cos \sigma\left(2 \cos ^{2}\left(2 \sigma_{m}\right)-1\right)\right]\right\} \tag{11}\\
& \tan \alpha_{2}=\frac{\sin \alpha}{-\sin U_{1} \sin \sigma+\cos U_{1} \cos \sigma \cos \alpha_{1}} \tag{12}
\end{align*}
$$

The latitude is found by computing the arctangent of (8) and α_{2} is found by computing the arctangent of (12).

3.4.2 Vincenty's Inverse Formula.

$\lambda=L$ (first approximation)
$\sin ^{2} \sigma=\left(\cos U_{2} \sin \lambda\right)^{2}+\left(\cos U_{1} \sin U_{2}-\sin U_{1} \cos U_{2} \cos \lambda\right)^{2}$
$\cos \sigma=\sin U_{1} \sin U_{2}+\cos U_{1} \cos U_{2} \cos \lambda$

$$
\begin{align*}
& \tan \sigma=\frac{\sin \sigma}{\cos \sigma} \tag{16}\\
& \sin \alpha=\frac{\cos U_{1} \cos U_{2} \sin \lambda}{\sin \sigma} \tag{17}\\
& \cos \left(2 \sigma_{m}\right)=\cos \sigma-\frac{2 \sin U_{1} \sin U_{2}}{\cos ^{2} \alpha} \tag{18}
\end{align*}
$$

λ is obtained by equations (10) and (11). This procedure is iterated starting with equation (14) until the change in λ is negligible. See Note 1.

$$
\begin{equation*}
s=b A(\sigma-\Delta \sigma) \tag{19}
\end{equation*}
$$

Where $\Delta \sigma$ comes from equations (3), (4), and (6)

$$
\begin{align*}
& \tan \alpha_{1}=\frac{\cos U_{2} \sin \lambda}{\cos U_{1} \sin U_{2}-\sin U_{1} \cos U_{2} \cos \lambda} \tag{20}\\
& \tan \alpha_{2}=\frac{\cos U_{1} \sin \lambda}{\cos U_{1} \sin U_{2} \cos \lambda-\sin U_{1} \cos U_{2}} \tag{21}
\end{align*}
$$

The inverse formula may give no solution over a line between two nearly antipodal points. This will occur when λ, as computed by (11), is greater than π in absolute value. To find α_{1}, α_{2}, compute the arctangents of (20) and (21).

3.5 Geodesic Oriented at Specified Angle.

In TERPS procedure design, it is often required to find a geodesic that lies at a prescribed angle to another geodesic. For instance, the end lines of an obstacle evaluation area (OEA) are typically projected from the flight path at a prescribed angle. Since the azimuth of a geodesic varies over the length of the curve, the angle between two geodesics must be measured by comparing the azimuth of each geodesic at the point where they intersect. Keeping that in mind, the following pseudo code represents an algorithm that will calculate the correct azimuth at the intersection. The desired geodesic is then defined by the azimuth returned and the given intersection point.

3.5.1 Input/Output.

double azimuthAtAngle(LLPoint startPt, LLPoint intxPt, double angle, double eps)
returns a double representing the azimuth of the intersecting geodesic, where the inputs are:

LLPoint startPt	$=$	Coordinates of start point of given geodesic
LLPoint intxPt	$=$	Coordinates of intersection of given and desired geodesics
double angle	$=$	Angle between given geodesic and desired geodesic at intersection point $(\pm \pi / 2$ for perpendicular lines $)$
double eps	$=$	Convergence parameter for forward/inverse algorithms

3.5.2 Algorithm Steps.

See figure A2-3 for an illustration of quantities.
STEP 1: Use the inverse algorithm to calculate the azimuth required to follow the given geodesic from intxPt to startPt. Use intxPt as the starting point and startPt as the destination point. Denote the computed azimuth by intxAz.

STEP 2: Convert the intxAz to its reciprocal: intxAz $=$ intxAx $+\pi$.
STEP 3: Add the desired change in azimuth to get the azimuth of the new geodesic:
newAzimuth = intxAz + angle.

STEP 4: Return the calculated azimuth.
Note that if angle is positive, then the new geodesic will lie to the right of the given geodesic (from the perspective of standing at the start point and facing toward the end point); otherwise, the new geodesic will lie to the left.

Figure A2-3. Projecting A Geodesic Through A Point Along The Specified Azimuth.

3.6 Determine If Point Lies on Geodesic.

This algorithm returns a non-zero (true) value if a point lies on and within the bounds of a given geodesic. The bounds of the geodesic are specified by two pieces of information: the end point coordinates and an integer length code. If the length code is set to 0 , then the geodesic is understood to exist only between its start and end points, so a value of true will be returned only if the test point also lies between the start and end points. If the length code is set to 1 , then the geodesic is understood to extend beyond its end point to a distance of one half of earth's circumference from its end point. If the length code is set to 2 , then the geodesic is understood to extend clear around the globe.

3.6.1 Input/Output.

int WGS84PtIsOnGeodesic(LLPoint startPt, LLPoint endPt, LLPoint testPt, int lengthCode, double tol) returns an integer value indicating whether testPt lies on geodesic, where the inputs are:

LLPoint startPt	$=$	Geodetic coordinate of line start point
LLPoint endPt	$=$	Geodetic coordinate of line end point
LLPoint testPt	$=$	Geodetic coordinate of point to test
int lengthCode	$=$	Integer that specifies extent of line. 0 : geodesic exists only between startPt and endPt. 1: geodesic extends beyond endPt.

double tol	$=$	Maximum difference allowed in distance
double eps	$=$	Convergence parameter for forward/inverse algorithms

3.6.2 Algorithm Steps.

See figure A2-4 for an illustration of the variables.
STEP 1: Use inverse algorithm to calculate the distance from startPt to testPt. Denote this value by dist13.

STEP 2: Use inverse algorithm to calculate the azimuth and distance from startPt to endPt. Denote these values by crs12 and dist12, respectively.

STEP 3: Use direct algorithm to project a point from startPt, along crs12, a distance equal to dist13. Denote this point by testPt2.

STEP 4: Use inverse algorithm WGS84InvDist to calculate distance from testPt to testPt2. This distance is the error.

STEP 5: Examine error to determine whether testPt lies on the geodesic within tol as follows:
a. If (error \leq tol) then
i. If (lengthCode >0) or (dist13-dist12 \leq tol) then

1. onLine = true
ii. else
2. onLine = false
iii. end if
b. Else if (lengthCode = 2)
i. Use the direct algorithm to project point from startPt, along $\operatorname{crs} 12+\pi$ a distance dist13. Again, denote this point again by testPt2.
ii. Use the inverse algorithm to recalculate error, which is the distance from testPt to testPt2.
iii. If (error \leq tol) then onLine $=$ true.
iv. Else onLine = false.
v. End if.
c. Else.
i. onLine = false.
d. End if.

Figure A2-4. Entities For Testing Whether a Point Lies on a Geodesic.

3.7 Determine If Point Lies on Arc.

This algorithm returns a non-zero (true) value if the sample point lies on and between the bounds of the given arc. The arc is defined by its center point, radius, start azimuth, end azimuth, and orientation. A positive orientation parameter indicates that the arc is traversed in a counterclockwise sense, while a negative orientation parameter indicates that the arc is traversed clockwise. This algorithm is used in conjunction with the arc intersection functions (Algorithms 4.2, 4.3, and 4.6) to determine whether the computed intersections lie within the bounds of the desired arc.

3.7.1 Input/Output.

 startCrs, double endCrs, int orient, LLPoint testPt, double tol) returns an integer value indicating whether testPt lies on arc, where the inputs are:

LLPoint center	$=$	Geodetic coordinates of arc center
double radius	$=$	Arc radius
double startCrs	$=$	True azimuth from center to start of arc
double endCrs	$=$	True azimuth from center to end of arc
int orient	$=$	Orientation of the arc $[+1$ for counter-clockwise; -1 for clockwise]
LLPoint testPt	$=$	Geodetic coordinate of point to test
double tol	$=$	Convergence parameter for forward/inverse algorithms
double eps		

3.7.2 Algorithm Steps.

See figure A2-5 for an illustration of the variables.
STEP 1: Use inverse algorithm to calculate distance and azimuth from center to testPt. Denote values as dist and crs, respectively.

STEP 2: If (abs (dist-radius) > tol) then testPt is not correct distance from center.
a. onArc $=$ false.

STEP 3: else.
a. Use Algorithm Attachment A. 1 to calculate the angle subtended by the full arc. Denote this value by arcExtent.
b. If $\left(\operatorname{arcExtent}=360^{\circ}\right)$ then
i. onArc = true.
c. else.
i. Use the inverse algorithm to calculate the azimuth from center to testPt. Denote this value by testCrs.
ii. Use Algorithm Attachment A. 1 to calculate the angle subtended by and arc starting at startCrs, but ending at testCrs, with the same orientation. Denote this value by subExtent.
iii. If (subExtent \leq arcExtent) then traversing arc from startCrs to endCrs, one would encounter testPt, so it must lie on arc.

> 1. onArc = true.
d. end if.

STEP 4: end if.

3.8 Calculate Length of Fixed Radius Arc.

A fixed radius arc on an ellipsoid does not generally lie in a plane. Therefore, the length of the arc cannot be computed using the usual formula for the circumference of a circle. The following algorithm takes the approach of dividing the arc into many subarcs. Three points are then calculated on each sub-arc. Since any three points in space uniquely determine both a plane and an arc, the three points on each sub-arc are used to calculate the radius and subtended angle of the planar arc that contains all three points. The length of the approximating planar arc is then calculated for each sub-arc. The sum of the sub-arc lengths approaches the length of the original arc as the number of sub-arc increases (and each sub-arc's length decreases).

A simpler method that is sufficiently accurate for arcs with radius less than about 300 nautical miles (NM) is described in section 6.4.

3.8.1 Input/Output.

double WGS84DiscretizedArcLength (LLPoint center, double radius, double startCrs, double endCrs, int orient, int *n, double tol)
returns a double precision value representing the length of the arc, where the inputs are:

LLPoint center	$=$	Geodetic coordinates of arc center
double radius	$=$	Arc radius
double startCrs	$=$	True azimuth from center to start of arc
double endCrs	$=$	True azimuth from center to end of arc
int orient	$=$	Orientation of the arc $[+1$ for counter-clockwise; -1 for clockwise] $]$
int *n	$=$Reference to integer used to return number of steps in discretized arc	
double tol	$=$Maximum allowed error	
double eps	$=$Convergence parameter for forward/inverse algorithms	

3.8.2 Algorithm Steps.

See figure A2-6 for an illustration of the variables.
STEP 1: Set initial number of sub-arcs to use. The fixed value $\mathrm{n}=16$ has been found through trial-and-error to be a good starting value. Alternatively, the initial value of n may be calculated based on the arc's subtended angle and its radius (i.e., its approximate arc length).

STEP 2: Convert center point to Earth-Centered, Earth-Fixed (ECEF) coordinates, v0, according to Algorithm 6.1.

STEP 3: Compute subtended angle, subtAngle, using Algorithm Attachment A.1.
STEP 4: Set iteration count, $k=0$.

STEP 5: Do while $\mathrm{k}=0$ or ((error $>$ tol) and $(\mathrm{k} \leq$ maximumIterationCount)).
a. Calculate subtended angle of each sub-arc, theta $=$ subtAngle/n.
b. Use direct algorithm from center, using startCrs and distance radius, to project start point of arc. Denote this point by p1.
c. Convert p1 to ECEF coordinates. Denote this vector by v1.
d. Initialize arcLength $=0$.
e. For $\mathbf{i}=0$ to n .
i. Compute azimuth from arc center to end point of sub-arc number i : theta $=$ startCrs $+i * d t h e t a$.
ii. Use direct algorithm from center, using azimuth theta+0.5*dtheta and distance radius, to project middle point of sub-arc. Denote this point by p2.
iii. Convert p2 to ECEF coordinate v2.
iv. Use direct algorithm from center, using azimuth theta+dtheta and distance radius, to project endpoint of sub-arc. Denote this point by p2.
v. Convert p2 to ECEF coordinate v2.
vi. Subtract V2 from V1 to find chord vector between p 1 and p 2 . Denote this vector by chord1. Compute $\mathrm{x} 1=\mid$ chord1|.
vii. Subtract v2 from v3 to find chord vector between p3 and p2. Denote this vector by chord2. Compute $\times 2=\mid$ chord2|.
viii. Compute dot product of chord1 and chord2. Denote this value as d.
ix. Use the following calculation to compute the length L of the subarc: (see figure A2-7)

$$
\begin{aligned}
& \xi=\frac{d}{x_{1} x_{2}} \\
& \sigma=\sqrt{1-\xi^{2}} \\
& R=\frac{x_{2} \sqrt{\left(x_{1} / x_{2}-\xi\right)^{2}+\sigma^{2}}}{2 \sigma} \\
& A=2\left(\pi-\cos ^{-1} \xi\right) \\
& L=R \cdot A
\end{aligned}
$$

Note that since the arc length is a planar (not geodetic) calculation, the subtended angle A is not equal to dtheta.
x. Add L to cumulative arclength to get total length of sub-arcs through sub-arc number i : arcLength $=$ arcLength +L .
f. end for loop.
g, Compute error, which is the change in length calculation between this iteration and the last: error $=\operatorname{abs}(\operatorname{arcLeng} t h-$ oldLength $)$.
h . Increment the iteration count: $\mathrm{k}=\mathrm{k}+1$.
i. Double the number of sub-arcs: $\mathrm{n}=2 * \mathrm{n}$.
j. Save the current length for comparison with the next iteration: oldLength = arcLength.

STEP 6: End while loop.
STEP 7: Return arcLength.

Figure A2-7. Calculating the Sub-Arc Length.

3.9 Find Distance from Defining Geodesic to Locus.

When computing a position on a locus of points, it is necessary to solve for the distance from the defining geodesic to the locus. This distance is constant if the locus is designed to be "parallel" to the defining geodesic. However, it is necessary to allow the locus distance to vary linearly with distance along the geodesic, since in some cases the locus will splay away from the defining geodesic. To account for this, we have included startDist and endDist attributes in the Locus structure defined above. For a given point on the geodesic (or given distance from the geodesic start point), the distance to the locus can then be calculated.

The two algorithms described below carry out the computation of locus distance for different input parameters. If the distance from the geodesic start point to the point of interest is known, then WGS84DistToLocusD may be used to calculate the locus distance. If instead a point on the defining geodesic is given, the WGS84DistToLocusP may be used. The latter algorithm simply computes the distance from the geodesic start point to the given point and then invokes the former algorithm. Therefore, steps are described for WGS84DistToLocusD only.

3.9.1 Input/Output.

double WGS84DistToLocusD (Locus loc, double distance, double eps) returns the distance from the defining geodesic to the locus at the given distance from loc.geoStart, where the inputs are:

Locus loc	$=$	Locus of interest
double distance	$=$	Distance from locus start point to point where distance is to be computed
double eps	$=$	Convergence parameter for forward/inverse algorithms

double WGS84DistToLocusP (Locus loc, LLPoint geoPt, double tol, double eps) returns the distance from the defining geodesic to the locus at the given point, where the inputs are:

Locus loc	$=$	Locus of interest
LLPoint geoPt	$=$	Point on defining geodesic
double tol	$=$	Maximum allowable error
double eps	$=$	Convergence parameter for forward/inverse algorithm

3.9.2 Algorithm Steps.

The following steps are followed if the distance from loc.geoStart is given. If a point on the geodesic (geoPt) is given instead, then first use the inverse algorithm to compute the distance from geoPt to loc.geoStart and then follow the following steps (note that distance must be signed negative if the locus's line type is 2 and geoPt is farther from geoEnd than it is from geoStart):

STEP 1: Use the inverse function to compute the length of the locus's defining geodesic. Denote this value as geoLen.

STEP 2: If (geoLen $=0$) then distToLoc $=0.0$
STEP 3: Else: distToLoc=loc.startDist $+\frac{\text { distance }}{\text { geoLen }} *($ loc.endDist-loc.startDist)
STEP 4: End if

STEP 5: Return distToLoc

3.10 Project Point on Locus from Point on Defining Geodesic.

Given a point on the defining geodesic, this algorithm computes the corresponding point on the locus.

3.10.1 Input/Output.

LLPoint WGS84PointOnLocusP (Locus loc, LLPoint geoPt, double tol, double eps) returns the point on the locus that is abeam the given point, where the inputs are:

Locus loc	$=$	Locus of Interest
LLPoint geoPt	$=$	Point on defining geodesic
double tol	$=$	Maximum allowable error
double eps	$=$	Convergence parameter for forward/inverse algorithms

3.10.2 Algorithm Steps.

STEP 1: Use Algorithm 3.9 (with point input) to determine the distance from geoPt to the locus. Denote this distance as distp.

STEP 2: If(distp $=0$) return geoPt

STEP 3: Use the inverse algorithm to compute the course from geoPt to the start point of the defining geodesic. Denote this value as fers.

STEP 4: If (distp >0.0) then the locus lies to the right of the geodesic. Let tempcrs $=$ fcrs $-\frac{\pi}{2}$
STEP 5: Else, the locus lies to the left of the geodesic. Let tempers $=$ fers $+\frac{\pi}{2}$
STEP 6: End if
STEP 7: Use the direct algorithm to project a point along tempcrs, distance abs(distp) from geoPt. Denote the point as ptOnLoc.

STEP 8: Return ptOnLoc.

3.11 Determine if Point Lies on Locus.

This algorithm compares the position of a given point with the position of the corresponding point on the locus. The corresponding point on the locus is found by projecting the given point onto the locus's defining geodesic curve, computing the correct distance from there to the locus, and then projecting a point at that distance perpendicular to the geodesic. If distance from the corresponding point to the given point is less than the error tolerance, then a reference to the projected point on the geodesic is returned. Otherwise a null reference is returned.

An alternative implementation could simply return true or false, rather than references. However, it is more efficient to return the projected point as this is often needed in subsequent calculations.

3.11.1 Input/Output.

LLPoint* WGS84PtIsOnLocus (Locus loc, LLPoint testPt, double tol) returns a reference to the projection of testPt on the locus's defining geodesic if testPt lies on the locus and NULL otherwise, where the inputs are:

Locus loc $=$ Locus of Interest
LLPoint testPt $\quad=\quad$ Point to test against locus
Double tol $=$ Maximum allowable error
Double eps $=$ Convergence parameter for forward/inverse algorithms

3.11.2 Algorithm Steps.

See figure A2-8 for an illustration of the variables.
STEP 1: Use the inverse algorithm to calculate the course from the start point (geoStart) of the locus's defining geodesic to its end point (geoEnd). Denote this value as fcrs.

STEP 2: Use Algorithm 5.1 to project testPt onto the locus's defining geodesic. Denote the projected point as projPt.

STEP 3: Use Algorithm 3.6 to determine whether projPt lies on the locus's defining geodesic. If it does not, then return 0 (false).

STEP 4: Use Algorithm 3.11 to compute the point on the locus corresponding to projPt. Denote this point by compPt.

STEP 5: Use the inverse algorithm to calculate error, the distance between projPt and compPt.

STEP 6: If (er ror < tol) then return reference to projPt. Otherwise, return NULL.

Figure A2-8. Locating a Point Relative to a Locus.

3.12 Compute Course of Locus

This algorithm is analogous to the inverse algorithm for a geodesic. It is used by other locus algorithms when the direction of the locus is needed.

3.12.1 Input/Output.

double WGS84LocusCrsAtPoint (Locus loc, LLPoint testPt, LLPoint* geoPt, double* perpCrs, double tol) returns the course of the locus at the given point. Also sets values of calculation byproducts, including the corresponding point on the locus's geodesic and the course from the given point toward the geodesic point, where the inputs are:

Locus loc	$=$	Locus of Interest
LLPoint testPt	$=$	Point at which course will be calculated
LLPoint* geoPt	$=$	Projection of testPt on defining geodesic
double* perpCrs	$=$	Course for testPt to geoPt
double tol	$=$	Maximum allowable error
double eps	$=$	Convergence parameter for forward/inverse algorithms

3.12.2 Algorithm Steps.

See figure A2-9 for an illustration of the variables.

STEP 1: Use Algorithm 3.11 to determine whether testPt lies on loc. This same step will return a reference to the projection of testPt onto the defining geodesic. Denote this reference as geoPt.

STEP 2: If (geoPt $=$ NULL) then testPt is not a valid point at which to calculate the locus's course. Return -1.0. (Valid course values are in the range $[0,2 \pi]$.)

STEP 3: Use the inverse algorithm to calculate the course and distance from testPt to geoPt, denoted by perpCrs and perpDist, respectively.

STEP 4: Use Algorithm 3.9 to calculate distToLoc, the distance from the geodesic to the locus at geoPt. This step is required to determine which side of the geodesic the locus lies on because perpDist will always be positive.

STEP 5: Calculate the slope of the locus relative to the geodesic:
slope $=($ loc.endDist-loc.startDist $) /$ geoLen
STEP 6: Convert the slope to angular measure in radians:

$$
\text { slope }=\operatorname{atan}(\text { slope })
$$

STEP 7: Adjust the value of the perpendicular course by slope. This accounts for how the locus is approaching or receding from the geodesic: perpCrs=perpCrs+slope

STEP 8: If (distToLoc < 0), then testPt lies to the left of the geodesic, so perpCrs points to the right of the locus's course:
locCrs $=$ perpCrs $-\pi / 2$
STEP 9: Else, testPt lies to the right of the geodesic so perpCrs points to the left of the locus's course: locCrs $=$ perpCrs $+\pi / 2$

STEP 10: Return locCrs

Figure A2-9. Angle Used to Calculate the Course of a Locus.

4.0 Intersections.

4.1 Intersection of Two Geodesics.

The following algorithm computes the coordinates where two geodesic curves intersect. Each geodesic is defined by its starting coordinates and azimuth at that coordinate. The algorithm returns a single set of coordinates if the geodesics intersect and returns a null solution (no coordinates) if they do not.

4.1.1 Input/Output.

LLPoint* WGS84CrsIntersect(LLPoint point1, double az13, double* az31, double* dist13, LLPoint point2, double az23, double* az32, double* dist23, double tol) returns a reference to an LLPoint structure that contains the intersection coordinates, where the inputs are:

LLPoint point1 $=$ Start point of first geodesic
double az13 $=$ Azimuth of first geodesic at point1
double* az31 $=$ Reference to reverse azimuth of first geodesic at point3 (this is calculated and returned)
double* dist13 $=$ Reference to distance between point1 and point3 (calculated and returned)

LLPoint point2 $=$ Start point of second geodesic
double az23 $=$ Azimuth of second geodesic at point2
double* az32 $=$ Reference to reverse azimuth of second geodesic at point 3 (this is calculated and returned)
double* dist23 $=$ Reference to distance between point2 and point3 (calculated and returned)
double tol $=$ Maximum error allowed in solution
double eps $=$ Convergence parameter for forward/inverse algorithms

4.1.2 Algorithm Steps.

See figure A2-10 for an illustration of the variables.
STEP 1: Use inverse algorithm to calculate distance, azimuth and reverse azimuth from point1 to point2. Denote these values by dist12, crs12 and crs21, respectively.

STEP 2: Calculate the difference in angle between crs12 and crs13, denoted by angle1.

STEP 3: Calculate the difference in angle between crs21 and crs23, denoted by angle2.

STEP 4: If $(\sin ($ angle1 $) * \sin ($ angle2 $)<0)$ then the courses lay on opposite sides of the point1-point2 line and cannot intersect in this hemisphere.
a. Return no intersection.

STEP 5: Else if (angle2 < tol) or (angle2 < tol) then the two geodesics are identical and there is no single unique intersection (there are infinite intersections).
a. Return no intersection.

STEP 6: End if.

STEP 7: Locate the approximate intersection point, point 3, using a spherical earth model. See the documents referenced in section 3.2 methods to accomplish this.

STEP 8: Use the inverse algorithm to calculate dist13, the distance from point1 to point3.

STEP 9: Use the inverse algorithm to calculate dist23, the distance from point2 to point3.

STEP 10: If dist13 < tol, then the intersection point is very close to point1. Calculation errors may lead to treating the point as if it were beyond the end of the geodesic. Therefore, it is helpful to move point1 a small distance along the geodesic.
a. Use the direct algorithm to move point1 from its original coordinates, $1 N M$ along azimuth $\operatorname{crs} 13+\pi$.
b. Use the inverse algorithm to calculate the azimuth crs13 for the geodesic from the new point1.

STEP 11: Repeat steps 10, 10(a), and 10(b) for point2 and crs23.
STEP 12: If (dist23 < dist13) then the intersection point is closer to point2 than point1. In this case, the iterative scheme will be more accurate if we swap point1 and point2. This is because we iterate by projecting the
approximate point onto the geodesic from point1 and then calculating the error in azimuth from point2. If the distance from point2 to the intersection is small, then small errors in distance can correspond to large errors in azimuth, which will lead to slow convergence. Therefore, we swap the points so that we are always measuring azimuth errors farther from the geodesic starting point.
a. newPt = point1
b. point1 = point2
c. point2 $=$ newPt
d. $\operatorname{acrs} 13=\operatorname{crs} 13$
e. crs13 = crs23
f. $\operatorname{crs23}=\operatorname{acrs} 13$
g. dist13 = dist23; We only need one distance so the other is not saved.
h. swapped $=1$; This is a flag that is set so that the solutions can be swapped back after they are found.

STEP 13: End if
STEP 14: Initialize the distance array: distarray[0] = dist13. Errors in azimuth from point 2 will be measured as a function of distance from point1. The two most recent distances from point1 are stored in a two element array. This array is initialized with the distance from point1 to point3:

STEP 15: Use the direct algorithm to project point3 onto the geodesic from point1. Use point1 as the starting point, and a distance of distarray[0] and azimuth of crs13.

STEP 16: Use the inverse algorithm to measure the azimuth acrs23 from point2 to point3.

STEP 17: Initialize the error array: errarray[0] = signedAzimuthDifference(acrs23, crs23).

See Algorithm 6.1 for an explanation of the signedAzimuthDifference function; errarray[0] will be in the range $(-\pi, \pi]$.

STEP 18: Initialize the second element of the distance array using a logical guess: distarray[1]=1.01*dist13.

STEP 19: Use the direct algorithm to project the second approximation of point3 onto the geodesic from point1. Use point1 as the starting point, and a distance of distarray[1] and azimuth of crs13.

STEP 20: Use the inverse algorithm to measure the azimuth acrs23 from point2 to point3.

STEP 21: Initialize the error array (see Algorithm 6.1): errarray[1] = signedAzimuthDifference(acrs23, crs23).

STEP 22: Initialize $\mathrm{k}=0$

STEP 23: Do while ($\mathrm{k}=0$) or ((error > tol) and (k \leq maximumIterationCount))
a. Use linear approximation to find root of er rarray as a function of distarray. This gives an improved approximation to dist13.
b. Use the direct algorithm to project the next approximation of the intersection point, newPt, onto the geodesic from point1. Use point1 as the starting point, and a distance of dist13 (calculated in previous step) and azimuth of crs13.
c. Use inverse algorithm to calculate the azimuth acrs23 from point2 to newPt.
d. Use the inverse algorithm to compute the distance from newPt to point3 (the previous estimate). Denote this value as the error for this iteration.
e. Update distarray and errarray with new values:
distarray[0] = distarray[1]
distarray[1] = dist13
errarray[0] = errarray[1]
errarray[1] = signedAzimuthDifference(acrs23, crs23)
(See Algorithm 6.1)
f. Increment $\mathrm{k}: \mathrm{k}=\mathrm{k}+1$

g. Set point3 $=$ newPt.

STEP 24: End while loop.
STEP 25: Check if k reached maximumIterationCount. If so, then the algorithm may not have converged, so an error message should be displayed.

STEP 26: The distances and azimuths from point1 and point2 to point3 are available at the end of this function, since they were calculated throughout the iteration. It may be beneficial to return them with the point 3 coordinates, since they may be needed by the calling function. If this is done, and if swapped $=1$, then the original identities of point1 and point 2 were exchanged and the azimuths and distances must be swapped again before they are returned.

STEP 27: Return point3.

4.2 Intersection of Two Arcs.

The following algorithm computes the intersection points of two arcs. Each arc is defined by its center point coordinates and radius. The algorithm will return a null solution (no points) if the arcs do not intersect; it will return a single set of coordinates
if the arcs intersect tangentially; and it will return two sets of coordinates if the arcs overlap.

4.2.1 Input/Output.

LLPoint* WGS84ArcIntersect(LLPoint center1, double radius1, LLPoint center2, double radius2, int* n, double tol) returns a reference to an LLPoint structure array that contains the coordinates of the intersection(s), where the inputs are:

LLPoint center1	$=$	Geodetic coordinates of first arc center
double radius1	$=$	Radius of first arc in nautical miles
LLPoint center2	$=$	Geodetic coordinates of second arc center
double radius2	=	Radius of second arc in nautical miles
int* n	=	Reference to integer number of intersection points returned
double tol	$=$	Maximum error allowed in solution
double eps	=	Convergence parameter for forward/inverse algorithms

4.2.2 Algorithm Steps.

See figure A2-11 for an illustration of the variables.
This algorithm treats the arcs as full circles. Once the intersections of the circles are found, then each intersection point may be tested and discarded if it does not lie within the bounds of the arc.

STEP 1: Use inverse algorithm to calculate the distance and azimuth between center1 and center2. Denote these values as dist12 and crs12, respectively.

STEP 2: If(radius1 + radius2 -dist12 + tol < 0) or (abs(radius1radius2) > dist12) then the circles are spaced such that they do not intersect. If the first conditional is true, then the arcs are too far apart. If the second conditional is true, then one arc is contained within the other.
a. Return no intersections.

STEP 3: Else if (abs (radius1+radius2-dist12) \leq tol) then the circles are tangent to each other and intersect in exactly one point.
a. Use direct algorithm to project point from center1, along crs12, distance radius1.
b. Return projected point.

STEP 4: End if
STEP 5: Calculate approximate intersection points, point1 and point2, according to section 3.2.

STEP 6: Iterate to improve approximation to point1:
a. $\mathrm{k}=0$
b. Use inverse algorithm to find azimuth from center2 to point1, denote this value as crs2x.
c. Use direct algorithm to move point1 along crs2x to circumference of circle 2. Use center2 as starting point, crs2x as azimuth, radius2 as distance.
d. Use inverse algorithm to compute distance and azimuth from center1 to point1. Denote these values as dist1x and crs1x, respectively.
e. Compute error at this iteration step: error = radius1 dist1x.
f. Initialize arrays to store error as function of course from center1:
errarray[1] = error
crsarray[1] = crs1x
g. While (k \leq maximumIterationCount) and (abs(error) > tol), improve approximation
i. Use direct function to move point1 along crs1x to circumference of circle1. Use center1 as starting point, crs1x as azimuth, and radius1 as distance. Note that crs1x was calculated as last step in previous iteration.
ii. Use inverse function to find azimuth from center2 to point1, crs2x.
iii. Use direct function to move point1 along crs2x to circumference of circle2. Use center2 as starting point, crs2x as azimuth, and radius2 as distance.
iv. Use inverse algorithm to compute distance and azimuth from center1 to point1. Denote these values as dist1x and crs1x, respectively.
v. Update function arrays:

```
crsarray[0] = crsarray[1]
crsarray[1] = crs1x
errarray[0] = errarray[1]
errarray[1] = r1 - dist1x
```

vi. Use linear root finder to find the azimuth value that corresponds to zero error. Update the variable crs1x with this root value.
vii. Increment k : $k=k+1$
h. End while loop.

STEP 7: Store point1 in array to be returned: intx[0] = point1.
STEP 8: Repeat step 6 for approximation point2.
STEP 9: Store point2 in array to be returned: intx[1] = point2.
STEP 10: Return array intx.

4.3 Intersections of Arc and Geodesic.

The following algorithm computes the point where a geodesic intersects an arc. The geodesic is defined by its starting coordinates and azimuth. The arc is defined by its center point coordinates and radius. The algorithm will return a null solution (no points) if the arc and geodesic do not intersect; it will return a single set of coordinates if the arc and geodesic intersect tangentially; and it will return two sets of coordinates if the arc and geodesic overlap.

4.3.1 Input/Output.

LLPoint* WGS84GeodesicArcIntersect(LLPoint pt1, double crs1, LLPoint center, double radius, int* n, double tol) returns a reference to an LLPoint structure array that contains the coordinates of the intersection(s), where the inputs are:

LLPoint pt1 $=$ Geodetic coordinates of start point of geodesic
doulbe crs1 $=$ Initial azimuth of geodesic at start point
LLPoint center $=$ Geodetic coordinates of arc center point
double radius $=\quad$ Arc radius in nautical miles

int* n	$=$	Reference to number of intersection points returned
double tol	$=$	Maximum error allowed in solution
double eps	$=$	Convergence parameter for forward/inverse algorithms

4.3.2 Algorithm Steps.

This algorithm treats the arc and geodesic as unbounded. Once intersection points are found, they must be tested using Algorithms 3.6 and 3.7 to determine which, if any, lie within the curves' bounds. This algorithm fails if the arc and geodesic describe the same great circle. A test for this case is embedded in step 7. See figure A2-12 for an illustration of the variable names.

STEP 1: Use Algorithm 5.1 to find the perpendicular projection point from arc center point (center) to the geodesic defined by starting point pt1 and azimuth crs1. Denote this point by perpPt.

STEP 2: Use the inverse algorithm to calculate the distance from center to perpPt. Denote this value by perpDist.

STEP 3: If (abs(perpDist - radius) < tol), then the geodesic is tangent to the arc and intersection point is at perpPt.
a. Return intx[0] = perpPt

STEP 4: Else if (perpDist > radius) then geodesic passes too far from center of circle; there is no intersection.
a. Return empty array.

STEP 5: End if
STEP 6: Use inverse algorithm to calculate azimuth of the geodesic at perpPt. Denote the azimuth from perpPt to pt1 as crs.

STEP 7: Use spherical triangle approximation to find distance from perpPt to one intersection points. Since the spherical triangle formed from center, perpPt, and either intersection point has a right angle at the perpPt vertex, the distance from perpPt to either intersection is:
dist = SPHERE_RADIUS*acos(cos(radius/SPHERE_RADIUS)/ cos(perpDist/SPHERE_RADIUS))
where SPHERE_RADIUS is the radius of the spherical earth approximation. Note that a test must be performed so that if $\cos ($ perpDist $/$ SPHERE_RADIUS $)=0$, then no solution is returned

STEP 8: Find ellipsoidal approximation intx [0] to first intersection by starting at perpPt and using direct algorithm with distance dist and azimuth crs. This will place intx[0] on the geodesic.

STEP 9: Initialize iteration count $\mathrm{k}=0$.

STEP 10: Use inverse algorithm to calculate the distance from center to intx[0]. Denote this value by radDist. In the same calculation, calculate azimuth from intx[0] to center. Denote this value by rcrs; it will be used to improve the solution.

STEP 11: Calculate error for this iteration: error = radius - radDist

STEP 12: Initialize arrays that will hold distance and error function values so that linear interpolation may be used to improve approximation:
distarray[0] = dist
errarray[0] = error
STEP 13: Do one iterative step using spherical approximation near intersection point (see figure A2-13).
a. Use the inverse algorithm to calculate the azimuth from intx[0] to perpPt. Denote this value by bcrs.
b. Compute the angle between the arc's radial line and the geodesic at intx[0]. This is depicted by B in A2-13:
$\mathrm{B}=\mathrm{abs}($ signedAzimuthDifference $(\mathrm{bcrs}, \mathrm{rcrs})+\pi-\theta)$
See Algorithm 6.1 for an explanation of "signedAzimuthDifference."
c. Calculate the angle opposite the radial error:
$A=\operatorname{acos}\left(\sin (B) \cos \left(\frac{\text { abs }(\text { error })}{\text { SPHERE_RADIUS }}\right)\right)$
d. If $(\operatorname{abs}(\sin (A))<t o l)$ then the triangle is nearly isosceles, so use simple formula for correction term c: c = error
e. Else, if $(\operatorname{abs}(A)<t o l)$ then the error is very small, so use flat approximation: $\mathrm{C}=\mathrm{error} / \cos (\mathrm{B})$
f. Else, use a spherical triangle approximation for C:

$$
\mathrm{c}=\text { SPHERE_RADIUS*} \operatorname{asin}\left(\frac{\sin (\text { error/SPHERE_RADIUS })}{\sin (\mathrm{A})}\right)
$$

g. End if
h. If (error >0), then intx[0] is inside the circle, so approximation must be moved away from perpPt: dist $=$ dist $+c$
i. Else dist $=$ dist - \mathbf{c}
j. End if
k. Use the direct algorithm to move intx [0] closer to solution. Use perpPt as the starting point with distance dist and azimuth crs.

1. Use the inverse algorithm to calculate the distance from center to intx[0]. Denote this value again radDist.
m. Initialize second value of distarray and errarray: distarray[1] = dist errarray[1] = radius-radDist

STEP 14: Do while (abs(error) > tol) and (k < maximumIterationCount)
a. Use a linear root finder to find the distance value that corresponds to zero error. Update the variable dist with this root value.
b. Use the direct algorithm again to move intx[0] closer to solution. Use perpPt as the starting point with distance dist and azimuth crs.
c. Use the inverse algorithm to calculate the distance from center to intx[0]. Denote this value radDist.
d. Update distarray and errarray with the new values:
distarray[0] = distarray[1]
errarray[0] = errarray[1]
distarray[1] = dist
errarray[1] = radius-radDist
e. Increment the iteration count: $\mathrm{k}=\mathrm{k}+1$

STEP 15: End while loop

STEP 16: Prepare variables to solve for second solution, intx[1].
a. Second solution lies on other side of perpPt, so set crs $=\mathrm{crs}+$ π.
b. Use direct algorithm to find intx[1]. Start at perpPt, using crs for the azimuth and dist for the distance, since the distance from perpPt to intx[0] is a very good approximation to the distance from perpPt to intx[1].
c. Use inverse algorithm to calculate radDist, the distance from center to intx[1].
d. Initialize the error function array: errarray[0] = radius - radDist.

STEP 17: Repeat steps 13 through 15 to improve solution for intx[1]
STEP 18: Return intx[0] and intx[1]

Figure A2-13. Area Near the Appropriate Geodesic-Arc Intersection Point With Spherical Triangle Components That Are Used to Improve the Solution.

4.4 Arc Tangent to Two Geodesics.

This algorithm is useful for finding flight path arcs, such as fitting a fly-by turn or radius-to-fix (RF) leg between two track-to-fix (TF) legs. Note that for the arc to be
tangent to both the incoming and the outgoing geodesics, the two tangent points must be different distances from the geodesics' intersection point.

4.4.1 Input/Output.

LLPoint* WGS84TangentFixedRadiusArc(LLPoint pt1, double crs12, LLPoint pt3, double crs3, double radius, int* dir, double tol) returns a reference to an LLPoint structure array that contains the coordinates of the center point and both tangent points of the arc that is tangent to both given geodesic, where the inputs are:

LLPoint pt1		Geodetic coordinates of start point of first geodesic
double crs12	$=$	Azimuth of first geodesic at pt1
LLPoint pt3	$=$	Geodetic coordinates of end point of second geodesic
double crs3	$=$	Azimuth of second geodesic at pt3
double radius	$=$	Radius of desired arc
int* dir	$=$	Reference to an integer that represents direction of turn. dir $=1$ for left hand turn dir $=-1$ for right hand turn
double tol	=	Maximum error allowed in solution
double eps	=	Convergence parameter for forward/inverse algorithms

4.4.2 Algorithm Steps.

See figure A2-14 for an illustration of the variable names.
STEP 1: Use Algorithm 4.1 to locate the intersection point of the given geodesics. The first geodesic has azimuth crs12 at pt1, while the second geodesic has azimuth crs3 at pt3. Denote their intersection point by pt2.

STEP 2: If intersection point pt2 is not found, then no tangent arc can be found.
a. Return empty array.

STEP 3: End if
STEP 4: Use the inverse algorithm to calculate the distance from pt1 to pt2 (denoted by dist12). Also calculate the azimuth at pt2 to go from pt2 to pt1. Denote this value by crs21.

STEP 5: Use the inverse algorithm to compute the azimuth at pt2 to go from pt2 to pt 3 . Denote this value by crs23.

STEP 6: Calculate angle between courses at pt 2 (see Algorithm 6.1). Denote this value by vertexAngle:
vertexAngle $=$ signedAzimuthDifference $(c r s 21, c r s 23)$
STEP 7: If abs(sin(vertexAngle)) < tol, then either there is no turn or the turn is 180 degrees. In either case, no tangent arc can be found.
a. Return empty array.

STEP 8: Else if vertexAngle > 0 then course changes direction to the right: dir $=-1$

STEP 9: Else, the course changes direction to the left: dir $=1$
STEP 10: End if
STEP 11: Use spherical triangle calculations to compute the approximate distance from pt2 to the points where the arc is tangent to either geodesic. Denote this distance by DTA:
a. $\mathrm{A}=$ vertexAngle $/ 2$
b. If (radius > SPHERE_RADIUS*A) then no arc of the required radius will fit between the given geodesics
i. Return empty array
c. End if
d. DTA=SPHERE_RADIUS $\times \operatorname{asin}\left(\frac{\tan (\mathrm{radius} / \text { SPHERE_RADIUS })}{\tan (\mathrm{A})}\right)$

STEP 12: Use the calculated DTA value to calculate the distance from pt to the approximate tangent point on the first geodesic:
distToStart $=$ dist12 - DTA
STEP 13: Initialize the iteration count: $\mathrm{k}=0$
STEP 14: Initialize the error measure: er ror $=0.0$

STEP 15: Do while (k = 0) or ((abs(error) > tol) and (k<maximumIterationCount))
a. Adjust the distance to tangent point based on current error value (this has no effect on first pass through, because error $=0$):

$$
\text { distToStart }=\text { distToStart }-\frac{\text { error }}{\sin (\text { vertexAngle })}
$$

b. Use the direct algorithm to project startPt distance distToStart from pt1. Use pt1 as the starting point with azimuth of crs12 and distance of distToStart.
c. Use the inverse algorithm to compute azimuth of geodesic at startPt. Denote this value by perpCrs.
d. If (dir < 0), then the tangent arc must curve to the right. Add $\pi / 2$ to perpCrs to get the azimuth from startPt to center of arc:

$$
\text { perpCrs }=\text { perpCrs }+\frac{\pi}{2}
$$

e. Else, the tangent arc must curve to the left. Subtract $\pi / 2$ from perpCrs to get the azimuth from startPt to center of arc:
perpCrs $=$ perpCrs $-\frac{\pi}{2}$
f. End if.
g. Use the direct algorithm to locate the arc center point, centerPt. Use startPt as the starting point, perpCrs for the azimuth, and radius for the distance.
h. Use Algorithm 5.1 to project centerPt to the second geodesic. Denote the projected point by endPt. This is approximately where the arc will be tangent to the second geodesic.
i. Use the inverse algorithm to calculate the distance from centerPt to endPt. Denote this distance by perpDist.
j. Calculate the tangency error: error $=$ radius - perpDist. This error value will be compared against the required tolerance parameter. If its magnitude is greater than tol, then it will be used to adjust the position of startPt until both startPt and endPt are the correct distance from centerPt.

STEP 16: End while.
STEP 17: Assign the calculated points to output array
intx[0] = centerPt
intx[1] = startPt intx[2] = endPt

STEP 18: Return intx.

4.5 Intersections of Geodesic and Locus.

This algorithm is useful for finding the corner points of TF subsegment's OEA, where a parallel (represented as a locus of points) intersects the geodesic end line.

4.5.1 Input/Output.

LLPoint* WGS84GeoLocusIntersect(LLPoint gStart, LLPoint gEnd, Locus loc, double tol) returns a reference to an LLPoint structure array that contains the coordinates of the intersection point., where the inputs are:

LLPoint gStart	$=$	Geodetic coordinates of start point of geodesic
LLPoint gEnd	$=$	Geodetic coordinates of end point of geodesic
Locus loc	$=$	Structure defining locus of points
double tol	$=$	Maximum error allowed in solution
double eps	$=$	Convergence parameter for forward/inverse algorithms

4.5.2 Algorithm Steps.

See figure A2-15 for an illustration of the variable names.
STEP 1: Use the geodesic intersection algorithm (Algorithm 4.1) to find a first approximation to the point where the given geodesic and locus intersect. Use the start and end coordinates of the locus along with the start and end coordinates of given geodesic as inputs to the geodesic intersection algorithm. This will erroneously treat the locus as a geodesic; however, the calculated intersection will be close to the desired intersection. The geodesic intersection algorithm will return the approximate intersection point, pt1, along with the courses and distances from the pt1 to the start points of the locus and given geodesic. Denote these courses and distances as crs31, dist13, crs32, dist23, respectively.

STEP 2: If pt1 is not found, then the locus and geodesic to not intersect.
a. Return empty point.

STEP 3: End if
STEP 4: Use the inverse algorithm to calculate the course from gStart to gEnd. Denote this value as fcrs. This value is needed by the direct algorithm to locate new points on the given geodesic.

STEP 5: Use the inverse algorithm to calculate the distance and course from pt1 to gStart. Denote these value as distBase and crsBase, respectively.

STEP 6: Use the inverse algorithm to calculate the forward course for the locus's defining geodesic. Denote this value as tcrs. This value is needed to project the approximate point onto the defining geodesic in order to calculate the appropriate locus distance.

STEP 7: Use Algorithm 5.1 to project pt1 onto the locus's defining geodesic. Use pt1, loc.geoStart, and tcrs as inputs. Denote the returned point as pInt, the returned course as crsFromPt, and the returned distance as distFromPt.

STEP 8: Use Algorithm 3.9 to calculate the distance from the defining geodesic to the locus at pInt. Denote this value as distLoc. Note that distLoc may be positive or negative, depending on which side of defining geodesic the locus lies.

STEP 9: Calculate the distance from pt1 to the locus. This is the initial error: errarray[1] = distFromPt - abs(distLoc).

STEP 10: Save the initial distance from gStart to the approximate point: distarray[1] = distBase. We will iterate to improve the approximation by finding a new value for distBase that makes errarray zero.

STEP 11: Calculate a new value of distBase that will move pt1 closer to the locus. This is done by approximating the region where the given geodesic and locus intersect as a right Euclidean triangle and estimating the distance from the current pt1 position to the locus (see figure A2-16).
a. Calculate the angle between the geodesic from pt1 to pInt and the geodesic from pt1 to gStart:

```
theta=abs(signedAzimuthDifference(crsFromPt,crsBase))
```

b. Calculate a new value for distBase:

$$
\text { distBase }=\text { distBase }-\frac{\text { errarray[1] }}{\cos (\text { theta })}
$$

STEP 12: Initialize the iteration count: $k=0$.

STEP 13: Do while (abs(errarray[1] > tol) and (k < maxIterationCount))
a. Use gStart, fcrs, and the updated value of distBase in the direct algorithm to update the value of pt 1 .
b. Save the current values of errarray and distarray:
errarray[0] = errarray[1]
distarray[0] = distarray[1]
c. Set distarray[1] = distBase.
d. Repeat steps 7,8 , and 9 to calculate the distance from pt 1 to the locus, distloc, and the corresponding update to errarray[1].
e. Use a linear root finder with distarray and errarray to find the distance value that makes the error zero. Update distBase with this root value.

STEP 14: End while
STEP 15: Return pt1.

Figure A2-15. Intersection of Geodesic with Locus of Points.

Figure A2-16. Computing First Update to Locus-Geodesic Intersection.

4.6 Intersections of Arc and Locus.

This algorithm solves for the intersection of a fixed radius arc and a locus. It is very similar to Algorithm 4.3, which computes the intersections of an arc and a geodesic. It begins by treating the locus as a geodesic and applying Algorithm 4.3 to find approximate intersection points. The approximation is improved by traveling along the locus, measuring the distance to the arc center at each point. The difference between this distance and the given arc radius is the error. The error is modeled as a series of linear functions of position on the locus. The root of each function gives the next approximation to the intersection. Iteration stops when the error is less than the specified tolerance.

4.6.1 Input/Output.

LLPoint* WGS84LocusArcIntersect(Locus loc, LLPoint center, double radius, int* n, double tol) returns a reference to an LLPoint structure array that contains the coordinates of the intersection(s), where the inputs are:

Locus loc	$=$		
Locus of interest			
LLPoint center	$=$		
doodetic coordinates of arc			
int* n	$=$ Arc radius		
double tol	$=$		Number of intersections found
:---			
double eps			

4.6.2 Algorithm Steps.

See figure A2-17 for an illustration of the variables.
STEP 1: Initialize number of intersections: $\mathrm{n}=0$
STEP 2: Use the inverse algorithm to compute the course from loc. locusStart to loc. locusEnd. Denote this value as fers.

STEP 3: Use Algorithm 4.3 to find the point(s) where the arc intersects the geodesic joining loc. locusStart and loc.locusEnd. Denote the set of intersections as intx and the count of these intersections as $n 1$. This gives a first approximation to the intersections of the arc and the locus.

STEP 4: If (n1 = 0), then no approximate intersections were found. Return NULL.

STEP 5: Use the inverse algorithm to compute the course and distance from loc.geoStart to loc. geoEnd. Store these values as gers and gdist, respectively.

STEP 6: For $i=0, i<n 1$
a. Use Algorithm 5.1 to project intx[0] to the locus's defining geodesic. Denote the projected point as perpPt.
b. Use the inverse algorithm to calculate distbase, the distance from perpPt to loc.geoStart.
c. Use Algorithm 3.10 to project locPt onto the locus from perpPt.
d. Use the inverse algorithm to calculate distCenter, the distance from locPt to center.
e. Calculate the error and store it in an array: errarray[1] = distCenter - radius
f. If (abs(errarray[1]) < tol), then locPt is close enough to the circle. Set intx[n] = locPt, $\mathrm{n}=\mathrm{n}+1$, and continue to the end of the for loop, skipping steps g through 1 below.
g. Save the current value of distbase to an array: distarray[1] = distbase
h. Initialize the iteration count: $\mathrm{k}=0$
i. Perturb distbase by a small amount to generate a second point at which to measure the error: newDistbase $=1.001^{*}$ distbase.
j. Do while (k < maxIterationCount) and (abs(errarray[1]) > tol)
i. Project perpPt on the defining geodesic a distance newDistbase along course gers from loc.geoStart.
ii. Use Algorithm 3.10 to project locPt onto the locus from perpPt.
iii. Use the inverse algorithm to calculate distCenter, the distance from locPt to center.
iv. Calculate the error: error $=$ distCenter - radius
v. Update the distance and error arrays:
distarray[0] = distarray[1]
distarray[1] = newDistbase
errarray[0] = errarray[1] errarray[1] = error
vi. Use a linear root finder with distarray and errarray to find the distance value that makes the error zero. Update newDistbase with this root value.
k. End while

1. If locPt is on the locus according to Algorithm 3.11, then
i. copy locPt to the output array: intx[n] = locPt.
ii. Update the count of intersection points found: $\mathrm{n}=\mathrm{n}+1$.

STEP 7: End for loop
STEP 8: Return intx

Figure A2-17. Finding the Intersection of an Arc and a Locus.

4.7 Intersections of Two Loci.

4.7.1 Input/Output.

LLPoint* WGS84LocusIntersect(Locus loc1, Locus loc2, double tol) returns a reference to an LLPoint structure array that contains the intersection coordinates, where the inputs are:
Locus loc1 $=$ First locus of interest
Locus loc2 $=$ Second locus of interest
Double tol $=$ Maximum error allowed in solution
Double eps $=$ Convergence parameter for forward/inverse algorithms

4.7.2 Algorithm Steps.

See figure A2-18 for an illustration of the variables and calculation steps.
STEP 1: Use the inverse algorithm to calculate the course of the geodesic approximation to loc1. Use loc1. locusStart and loc1. locusEnd as start and end points. Denote this course as crs1.

STEP 2: Use the inverse algorithm to calculate the course of the geodesic approximation to loc2. Use loc2. locusStart and loc2. locusEnd as start and end points. Denote this course as crs2.

STEP 3: Use loc1.locusStart, crs1, loc2.locusStart, and crs2 as input to Algorithm 4.1 to calculate an approximate solution to the locus intersection. Denote the approximate intersection point at p1.

STEP 4: If $(\mathrm{p} 1=\mathrm{NULL})$, then the loci do not intersect, so return NULL.

STEP 5: Use the inverse algorithm to calculate the course of loc1's defining geodesic. Use loc1.geoStart and loc1.geoEnd as the start and end points, and denote the course as tcrs1.

STEP 6: Project p1 to the geodesic of loc1 using Algorithm 5.1 with loc1.geoStart and tcrs1 as input parameters. Store the projected point as pint1.

STEP 7: If (pint1 $=$ NULL), then no projected point was found so return NULL.
STEP 8: Use the inverse algorithm to calculate distbase, the distance from loc1.geoStart to pint1.

STEP 9: Initialize iteration counter: $\mathrm{k}=0$
STEP 10: Do while ($k=0$) or ($(\mathrm{k}<\operatorname{maxIterationCount)~and~}$ (fabs(error) > tol))
a. If $(\mathrm{k}>0)$ then apply direct algorithm to project new pint1 on loc1. Use starting point loc1. geoStart, course tcrs1, and distance distbase.
b. Use Algorithm 3.10 to project a point on loc1 from the current pint1. Denote the projected point as ploc1.
c. Project ploc1 to the geodesic of loc2 using Algorithm 5.1 with loc2.geoStart and tcrs2 as input parameters. Store the projected point as pint2.
d. Use Algorithm 3.10 to project a point on loc2 from pint2. Denote the projected point as ploc2. If ploc1 were truly at the intersection of the loci, then ploc2 and ploc1 would be the same point. The distance between them measures the error at this calculation step.
e. Compute the error by using the inverse algorithm to calculate the distance between ploc1 and ploc2.
f. Update the error and distance arrays and store the current values:
errarray[0] = errarray[1]
errarray[1] = error
distarray[0] = distarray[1]
distarray[1] = distbase
g. If ($\mathrm{k}=0$), then project ploc 2 onto loc1 to get a new estimate of distbase:
i. Project ploc2 to the geodesic of loc1 using Algorithm 5.1 with loc1. geoStart and tcrs1 as input parameters. Store the projected point as pint1.
ii. Use the inverse algorithm to calculate distbase, the distance from loc1.geoStart to pint1.
h. Else,
i. Use a linear root finder with distarray and er rarray to find the distance value that makes the error zero. Update distbase with this root value. This is possible only after the first update step because two values are required in each array.
i. End if
j. Increment iteration count: $k=k+1$

STEP 11: End while
STEP 12: Use Algorithm 3.11 with inputs of loc1 and ploc1 to determine if ploc1 lies on the loc1. If not, return NULL.

STEP 13: Use Algorithm 3.11 with inputs of loc2 and ploc1 to determine if ploc1 lies on the loc2. If not, return NULL.

STEP 14: Return ploc1.

4.8 Arc Tangent to Two Loci.

Computing a tangent arc of a given radius to two loci is very similar to fitting an arc to two geodesics. The following algorithm uses the same basic logic as Algorithm 4.4.

4.8.1 Input/Output.

LLPoint* WGS84LocusTanFixedRadiusArc(Locus loc1, Locus loc2, double radius, int* dir, double tol) returns a reference to an LLPoint structure array that contains the coordinates of the center point and both tangent points of the arc that is tangent to both given loci, where the inputs are:

Locus loc1 $=$ Structure defining first locus
Locus loc2 $=$ Structure defining second locus

double radius	$=$	Radius of desired arc
int* dir	$=$	Reference to an integer that represents direction of turn.
	dir $=1$ for left hand turn dir $=-1$ for right hand turn	
double tol	$=$	Maximum error allowed in solution
double eps	$=$	Convergence parameter for forward/inverse algorithms

4.8.2 Algorithm Steps.

See figure A2-19.
STEP 1: Use inverse algorithm to calculate crs12, the course from loc1. locusStart to loc1. locusEnd.

STEP 2: Use inverse algorithm to calculate gcrs1 and geoLen1, the course and distance from loc1. geoStart to loc1. geoEnd.

STEP 3: Use inverse algorithm to calculate crs32, the course from loc2. locusEnd to loc2. locusStart. Convert crs32 to its reciprocal: $\operatorname{crs} 32=\operatorname{crs} 32+\pi$.

STEP 4: Apply Algorithm 4.4 to find the arc tangent to the geodesic approximations to loc1 and loc2. Use loc1. locusStart, crs12, loc2. locusEnd, crs32, and radius as input parameter. Denote the array of points returned as intx. intx[0] will be the approximate arc center point, intx[1] will be the tangent point near loc1, and intx[2] will be the tangent point near loc2. Also returned will be the direction of the arc, dir.

STEP 5: If (intx $=$ NULL) then there is no tangent arc. Return NULL.
STEP 6: Calculate the approximate angle at the vertex where loc1 and loc2 intersect. This will be used only to estimate the first improvement to the tangent point intx[1]. Thus we use an efficient spherical triangles approximation (see figure A2-20):
a. Use the spherical inverse function to calculate the rcrs1, the course from intx[0] (the approximate arc center) to intx[1] (the approximate tangent point on loc1).
b. Use the spherical inverse function to calculate the rers2, the course from intx[0] to intx[2] (the other approximate tangent point).
c. Calculate the angle difference between rcrs1 and rcrs2: angle $=\operatorname{abs}($ signedAzimuthDifference (rcrs1,rcrs2))
d. vertexAngle $=2 * \operatorname{acos}\left(\sin \left(\frac{\text { angle }}{2}\right) \cos \left(\frac{\text { radius }}{\text { SPHERE_RADIUS }}\right)\right)$

STEP 7: Calculate the inclination angle of loc1 relative to its geodesic:
locAngle $=\operatorname{atan}[($ loc1. endDist - loc1. startDist $) /$ geoLen1 $]$
STEP 8: Apply Algorithm 5.1 to project intx[1] onto the defining geodesic of loc1. Use loc1.geoStart and gers1 as input parameters. Denote the projected point as geoPt1.

STEP 9: Use the inverse algorithm to compute distbase, the distance from loc1.geoStart to geoPt1.

STEP 10: Initialize the iteration count: $k=0$
STEP 11: Do while $(k=0)$ or ((k < maxIterationCount) and (fabs(error) > tol))
a. If $(k>0)$, then we need to find new intx[1] from current value of distbase:
i. Use direct algorithm with starting point loc1.geoStart, course gcrs1, and distance distbase to project point geoPt1
b. End If
c. Use Algorithm 3.10 to project a point on loc1 from the current geoPt1. Denote the projected point as intx[1].
d. Use Algorithm 3.12 to calculate lcrs1, the course of loc1 at intx[1].
e. Convert lcrs1 into the correct perpendicular course toward the arc center (note that dir>0 indicates a left-hand turn): 1 crs $1=\operatorname{lcrs} 1-\operatorname{dir} * \frac{\pi}{2}$
f. Use the direct algorithm with starting point intx[1], course lcrs1, and distance radius to project the arc center point, intx[0].
g. Use Algorithm 5.2 to project intx[0] onto loc2. Reassign intx[2] as the projected point.
h. Use the inverse algorithm to calculate r 2 , the distance from int $\mathrm{X}[0]$ to intx[2]
i. Calculate the error: error $=r 2-$ radius
j. Update the distance and error function arrays:
distarray[0] = distarray[1]
distarray[1] = distbase
errarray[0] = errarray[1] errarray[1] = error
k. If $(k=0)$, then estimate better distbase value using spherical approximation and calculated error:

$$
\text { distbase }=\text { distbase }+ \text { error } * \frac{\cos (\text { locAngle })}{\sin (\text { vertexAngle })}
$$

1. Else, use a linear root finder with distar ray and errarray to find the distance value that makes the error zero. Update distbase with this root value.
m. End if

STEP 12: End while
STEP 13: Return intx.

Figure A2-20. Spherical Triangle Construction Used
for Calculating the Approximate Vertex Angle at the Intersection of Two Loci.

5.0 Projections.

5.1 Project Point to Geodesic.

This algorithm is used to determine the shortest distance from a point to a geodesic. It also locates the point on the geodesic that is nearest the given point.

5.1.1 Input/Output.

LLPoint* WGS84PerpIntercept(LLPoint pt1, double crs13, LLPoint pt2, double* crsFromPoint, double* distFromPoint, double tol) returns a reference to an LLPoint structure that contains the coordinates of the projected point, where the inputs are:

LLPoint pt1	$=$	Coordinates of geodesic start point
double crs13	=	Initial azimuth of geodesic at start point
LLPoint pt2	$=$	Coordinates of point to be projected to geodesic
double* crsFrom Point	$=$	Reference to value that will store the course from pt2 to projected point
double* distFromPoint	$=$	Reference to value that will store the distance from pt2 to projected point
double tol	=	Maximum error allowed in solution
double eps	$=$	Convergence parameter for forward/inverse algorithms

5.1.2 Algorithm Steps.

This algorithm treats the geodesic as unbounded, so that projected points that lie "behind" the geodesic starting point pt1 will be returned. If it is desired to limit solutions to those that lie along the forward direction of the given geodesic, then step 5 may be modified to return a null solution (see figure A2-21).

STEP 1: Use the inverse algorithm to calculate the distance, azimuth, and reverse azimuth from point1 to point2. Denote these values as dist12, crs12, and crs21, respectively.

STEP 2: Calculate the angle between the given geodesic and the geodesic between pt1 and pt2. This is accomplished using signedAzimuthDifference function (see Algorithm 6.1)
angle $=$ abs (signedAzimuthDifference $(\operatorname{crs13,crs12)})$.

STEP 3: If(dist12 <= tol), then pt2, pt1, and projected point pt3 are all the same point.

STEP 4: Calculate dist13, the approximate distance from $\mathrm{pt1}$ to the projected point pt3, using a spherical triangles approximation (see figure A2-22):
a. $\quad \mathrm{a}=$ dist12/SPHERE_RADIUS
b. dist13 $=$ SPHERE_RADIUS $\cdot \operatorname{atan}[(\tan a) \cdot \operatorname{abs}(\cos ($ angle $))]$. (Note, the abs() function handles the case when angle $>\pi / 2$, and should be faster than checking the sign of angle using a conditional.)

STEP 5: If angle $>\pi / 2$, then pt3 is behind pt1, so we need to move pt1 back along the geodesic (redefining the geodesic parameters in the process) so that the projected point will fall forward of pt1.
a. Use the direct algorithm to place a point behind pt1 on the given geodesic. Use pt1 as the starting point, dist13+1.0 nautical miles as the distance, and $\operatorname{crs} 13+\pi$ as the azimuth. Denote this new point as newPt1.
b. Redefine dist13 as the distance from newPt1 to the approximate projection point. Since we moved newPt1 to dist13+1.0 nautical miles behind pt 1 , the new approximation to dist 13 is simply 1.0 nautical miles, so set dist13 $=1.0$.
c. Use the inverse algorithm to recalculate the initial azimuth of the geodesic at newPt1. Use newPt1 as the start point and pt1 as the end point. Update crs13 with this value.
d. $\operatorname{Set} \mathrm{pt} 1=$ newPt 1 .

STEP 6: Else, if abs(dist13) <1.0, then the projected point is less than 1.0 nautical miles from pt1. In this case, numerical accuracy may be limited and it is beneficial to move the start point of the geodesic backwards a significant distance. We have achieved good results using 1.0 nautical miles.
a. Use the direct algorithm to place a point behind pt1 on the given geodesic. Use pt1 as the starting point, 1.0 nautical miles as the
distance, and $\operatorname{crs} 13+\pi$ as the azimuth. Denote this new point as newPt1.
b. Redefine dist13 as the distance from newPt 1 to the approximate projection point. Since we moved newPt1 1.0 nautical miles behind pt1, the new approximation to dist 13 is 1.0 nautical miles greater than the original approximation, so set dist13 $=$ dist13 +1.0 .
c, Use the inverse algorithm to recalculate the initial azimuth of the geodesic at newPt1. Use newPt1 as the start point and pt1 as the end point. Update crs13 with this value.
d. $\operatorname{Set} \mathrm{pt} 1=$ newPt 1 .

STEP 7: End If

STEP 8: Use the direct algorithm to project a point on the given geodesic distance dist13 from pt1. Use pt1 for the starting point, dist13 for distance, and crs13 for azimuth. Denote the computed point by pt3.

STEP 9: Use the inverse algorithm to calculate the azimuth crs31 from pt3 to pt1.

STEP 10: Use the inverse algorithm to calculate the azimuth crs32 and distance dist23 from pt3 to pt2

STEP 11: Calculate the angle between the geodesics that intersect at pt 3, and cast that angle into the range $[0, \pi]$ using the following formula (see Algorithm 6.1): angle =abs(signedAzimuthDifference(crs31,crs32))

STEP 12: Calculate the error and store it as the first element in the error function array: errarray[0] = angle - $\pi / 2$

STEP 13: Store the current distance from pt1 to pt3 in the distance function array: distarray[0] = dist13

STEP 14: A second distance/error value must be calculated before linear interpolation may be used to improve the solution. The following formula may be used: distarray[1] = distarray[0]+errarray[0].dist23

STEP 15: Use direct algorithm to project point on the given geodesic distance distarray [1] from pt1. Use pt1 for the starting point, distarray [1] for distance, and crs13 for azimuth. Denote the computed point by pt 3 .

STEP 16: Use the inverse algorithm to calculate the azimuth crs31 from pt3 to pt1.

STEP 17: Use the inverse algorithm to calculate the azimuth crs32 from pt3 to pt2.

STEP 18: Calculate the error in angle (see Algorithm 06.1): errarray[1]= abs(signedAzimuthDifference $(\operatorname{crs} 31, \operatorname{crs} 32))-\pi / 2$

STEP 19: Initialize the iteration count: $\mathrm{k}=0$
STEP 20: Do while $(k=0)$ or $((e r r o r>t o l)$ and $(k<$ maxIterationCount))
a. Use linear approximation to find root of errarray as a function of distarray. This gives an improved approximation to dist13.
b. Use direct algorithm to project point on the given geodesic distance dist13 from pt1. Use pt1 for the starting point, dist13 for distance, and crs13 for azimuth. Denote the computed point by pt 3 .
c. Use the inverse algorithm to calculate the azimuth crs31 from pt 3 to pt1.
d. Use the inverse algorithm to calculate the distance dist23, azimuth crs32, and reverse azimuth crs23 from pt3 to pt2.
e. Update distarray and errarray with the new values:
distarray[0] = distarray[1]
errarray[0] = errarray[1]
distarray[1] = dist13
errarray[1] $=\operatorname{abs}($ signedAzimuthDifference $(\operatorname{crs} 31, \operatorname{crs} 32))-\pi / 2$ (see Algorithm 6.1 for and explanation of "signedAzimuthDifference")
f. Calculate the difference between the two latest distance values. This serves as the error function for measuring convergence:
error $=$ abs(distarray[1]-distrray[0])
STEP 21: End while
STEP 22: Set crsToPoint $=\operatorname{crs} 32$
STEP 23: Set distToPoint $=$ dist23

STEP 24: Return pt3
Figure A2-21. Projecting a Point to a Geodesic.

Figure A2-22. Elements of Spherical Triangle Used to Determine New Geodesic Starting Point When Projected Point Lies Behind Given Starting Point.

5.2 Project Point to Locus.

This algorithm returns the point on a locus nearest the given sample point. It is used in Algorithm 4.8 to calculate an arc tangent to two loci.

5.2.1 Input/Output.

LLPoint* WGS84LocusPerpIntercept(Locus loc, LLPoint pt2, double* crsFromPoint, double* distFromPoint, double tol) returns a reference to an LLPoint structure that contains the coordinates of the projected point, where the inputs are:

Locus loc	$=$	Locus structure to which point will be projected
LLPoint pt2	$=$	Coordinates of point to be projected to locus
double* crsFromPoint	$=$	Reference to value that will store the course from pt2 to projected point
double* distFromPoint	=	Reference to value that will store the distance from pt 2 to projected point
double tol	$=$	Maximum error allowed in solution
double eps	=	Convergence parameter for forward/inverse algorithms

5.2.2 Algorithm Steps.

See figure A2-23 for an illustration of the variables.
STEP 1: Use the inverse algorithm to compute gers and gdist, the course and distance from loc.geoStart to loc.geoEnd.

STEP 2: If(abs(loc.startDist-loc.endDist) < tol), then the locus is "parallel" to its defining geodesic. In this case, the projected point on the locus will lie on the geodesic joining pt 2 with its projection on the defining geodesic, and the calculation is simplified:
a. Apply Algorithm 5.1 to project pt 2 onto the defining geodesic of loc. Use loc.geoStart, gcrs, and pt2 as input parameters. The intersection point, geoPt, will be returned along with the course and distance from pt2 to geoPt. Denote the course and distance values as crsFromPoint and distFromPoint, respectively.
b. Use Algorithm 3.10 to project a point locPt on the locus from perpPt on the geodesic.
c. Use the inverse algorithm to recalculate distFromPoint as the distance between pt2 and locPt.
d. Return locPt.

STEP 3: End If
STEP 4: Use the inverse algorithm to compute lcrs, the course from loc.locusStart to loc.locusEnd.

STEP 5: Use Algorithm 5.1 to project pt 2 onto the geodesic approximation of the locus. Pass loc.locusstart, lcrs, and pt 2 as parameters. Denote the computed point as locPt. (In general, this point will not exactly lie on the locus. We will adjust its position so that it is on the locus in a subsequent step.)

STEP 6: Calculate the locus inclination angle, relative to its geodesic:

$$
\text { locAngle }=\operatorname{atan}\left(\frac{\text { loc.startDist }- \text { loc.endDist }}{\text { gdist }}\right)
$$

STEP 7: Use Algorithm 5.1 to project locPt onto the locus's defining geodesic. Pass loc.geostart, gcrs, and locPt as parameters. Denote the computed point as geoPt.

STEP 8: Use the inverse function to calculate the distance from loc. geostart to geopt. Store this value as distarray [1].

STEP 9: Initialize the iteration count: $\mathrm{k}=0$
STEP 10: Do while $(\mathrm{k}=0)$ or (abs(errarray[1]) > tol) and (k < maxIterationCount))
a. Use Algorithm 3.10 with distarray [1] to project a point onto the locus. Reassign locPt as this point.
b. Use Algorithm 3.12 to recompute lcrs, the course of the locus at locPt.
c. Use the inverse algorithm to compute crsToPoint and distToPoint, the course and distance from locPt to pt2.
d. Compute the signed angle between the locus and the geodesic from locPt to pt2: angle $=\operatorname{abs}($ signedAzimuthDifference(lcrs,crsToPoint $))$
e. Store the approximate error as errarray[1]=-distToPoint*cos(angle) This converts the error in angle into an error in distance which can be compared to tol.
f. If $($ abs $($ errarray [1] $)<$ tol $)$, then the approximation is close enough, so return locPt.
g. If $(\mathrm{k}=0)$ then a direct calculation is used to improve the approximation: newDist = distarray[1]+errarray[1]* $\cos ($ locAngle)
h. Else, use a linear root finder with distarray and errarray to solve for the distance value that makes the error zero. Denote this value as newDist.
i. End If
j. Update the distance and error arrays:
distarray[0] = distarray[1]
errarray[0] = errarray[1] distarray[1] = newDist

STEP 11: End while
STEP 12: Return locPt

Figure A2-23. Projecting a Point to a Locus.

5.3 Tangent Projection from Point to Arc.

This projection is used in obstacle evaluation when finding the point on an $\boldsymbol{R F}$ leg or fly-by turn path where the distance to an obstacle must be measured.

5.3.1 Input/Output.

LLPoint* WGS84PointToArcTangents (LLPoint point, LLPoint center, double radius, int* n, double tol) returns a reference to an LLPoint structure that contains the coordinates of the points where geodesics through point are tangent to arc, where the inputs are:

LLPoint point	$=$	Point from which lines will be tangent to arc
LLPoint center	$=$	Geodetic centerpoint coordinates of arc
double radius	$=$	Radius of arc
int* n	$=$	Reference to number of tangent points found $(0,1$, or 2$)$
double tol	$=$	Maximum error allowed in solution

double eps $=$ Convergence parameter for forward/inverse algorithms

5.3.2 Algorithm Steps.

This algorithm treats the arc as a complete circle, so either zero or two tangent points will be returned. If the arc is bounded and two tangent points are found, then each point must be tested using Algorithm 3.7 to determine whether they lie within the arc's bounds. (See figure A2-24)

STEP 1: Use the inverse algorithm to calculate the distance, azimuth, and reverse azimuth from point to center. Denote these values by crsToCenter, crsFromCenter, and distToCenter, respectively.

STEP 2: If abs(distToCenter - radius) < tol, then point lies on the arc and is a tangent point.
a. $\operatorname{Set} \mathrm{n}=1$
b. Return tanPt $=$ point

STEP 3: Else, if distToCenter < radius, then point lies inside of the arc and no tangent points exist.
a. Return no solution.

STEP 4: End if
STEP 5: There must be two tangent points on the circle, so set $\mathrm{n}=2$
STEP 6: Use spherical trigonometry to compute approximate tangent points.
a. $\mathrm{a}=$ distToCenter/SPHERE_RADIUS
b. $b=$ radius/SPHERE_RADIUS
c. $\quad \mathrm{C}=\mathrm{acos}(\tan (\mathrm{b}) / \tan (\mathrm{a}))$.

This is the approximate angle between the geodesic that joins point with center and the geodesic that joins center with either tangent point.

STEP 7: Initialize iteration count: $\mathrm{k}=0$
STEP 8: Do while $(\mathrm{k}=0)$ or (abs(error) > tol and k < maxIterationCount)
a. Use the direct algorithm to locate tanPt [0] on arc. Use center as the starting point, radius as the distance, and courseFromCenter $+C$ as the azimuth.
b. Use the inverse algorithm to calculate the azimuth from tanPt [0] to center. Denote this value as radCrs.
c. Use the inverse algorithm to calculate the azimuth from tanPt [0] to point. Denote this value as tanCrs.
d. Use the function in Algorithm 6.1 to calculate the angle between the two courses and cast it into the range $(-\pi, \pi]$: diff $=$ signedAzimuthDifference $($ radCrs,tanCrs)
e. Compute the error: error $=\operatorname{abs}($ diff $)-\frac{\pi}{2}$
f. Adjust the value of C to improve the approximation: $\mathrm{C}=\mathrm{C}+$ error
g. Increment the iteration count: $\mathrm{k}=\mathrm{k}+1$

STEP 9: End while loop.
STEP 10: Repeat steps 7-9 to solve for tanPt [1]. In each iteration; however, use crsFromPoint-C for azimuth in step 8(a).

STEP 11: Return tanPt [0] and tanPt [1]

5.4 Project Arc to Geodesic.

This algorithm is used for obstacle evaluation when finding a point on the straight portion of TF leg where distance to an obstacle must be measured.

5.4.1 Input/Output.

void WGS84PerpTangentPoints (LLPoint lineStart, double crs, LLPoint center, double radius, LLPoint linePts [2], LLPoint tanPts [2], double tol) returns no output, where input values are:

LLPoint lineStart	$=$	Start point of geodesic to which arc tangent points will be projected
double crs	$=$	Initial course of geodesic
LLPoint center	$=$	Geodetic coordinates of arc cetner
double radius	$=\quad$ Arc radius	
LLPoint linePts	$=\quad$ Array of projected points on geodesic	
LLPoint tanPts	$=\quad$ Array of tangent points on arc	

double tol	$=$	Maximum error allowed in solution
double eps	$=$	Convergence parameter for forward/inverse algorithms

5.4.2 Algorithm Steps.

See figure A2-25 for an illustration of the variable names.
STEP 1: Use the inverse algorithm to calculate the distance, azimuth, and reverse azimuth from lineStart to center. Denote these values as distStartToCenter, crsStartToCenter, and crsCenterToStart, respectively.

STEP 2: Compute the angle between the given geodesic and the geodesic that joins lineStart to center (see Algorithm 6.1):
angle1 = signedAzimuthDifference(crs,crsStartToCenter)
STEP 3: If abs(distStartToCenter* $($ crsStartToCenter-crs) $)<$ tol, then center lies on the given geodesic, which is a diameter of the circle. In this case, the tangent points and project points are the same.
a. Use the direct algorithm to compute tanPts [0]. Use lineStart as the starting point, crs as the azimuth, and distStartToCenter-radius as the distance.
b. Use the direct algorithm to compute tanPts [0]. Use lineStart as the starting point, crs as the azimuth, and distStartToCenter+radius as the distance.
c. Set linePts [0] = tanPts[0]
d. Set linePts [1] = tanPts[1]
e. Return all four points.

STEP 4: End if

STEP 5: Use Algorithm 5.1 to project center to the geodesic defined by lineStart and crs. Denote the projected point by perpPt.

STEP 6: Use the inverse algorithm to calculate the distance, azimuth, and reverse azimuth from perpPt to lineStart. Denote these values by dist 12 and crs21, respectively.

STEP 7: Set delta = radius

STEP 8: Initialize iteration count: $k=0$
STEP 9: Do while $(\mathrm{k}=0)$ or (abs(error) $>$ tol and k < maxIterationCount)
a. Use the direct algorithm to compute linePts [0]. Use perpPt as the starting point, delta as the distance, and crs $21+\pi$ as the azimuth.
b. Use the inverse algorithm to calculate the course from linePts [0] to perpPt. Denote this value by strCrs.
c. Calculate the azimuth, perpCrs, from linePts [0] to the desired position of tanPts[0]. The azimuth depends upon which side of the line the circle lies, which is given by the sign of angle1: perpCrs $=\operatorname{strCrs}-\operatorname{sign}($ angle 1$) * \pi / 2$.
d. Use Algorithm 5.1 to project center onto the geodesic passing through linePts [0] at azimuth perpCrs. Algorithm 5.1 will return the projected point, tanPts [0], along with the distance from center to tanPts [0]. Denote this distance by radDist.
e. Calculate the error, the amount that radDist differs from radius:
error = radDist-radius
f. Adjust the distance from lineStart to linePts [0]:
delta = delta - error
g. Increment the iteration count: $k=k+1$

STEP 10: End while loop.
STEP 11: Repeat steps 7-10 to solve for linePts [1] and tanPts [1]. In each iteration; however, use crs21 for azimuth in step a). Note that using the final delta value for the first iteration in the search for linePts [1] will make the code more efficient (i.e., don't repeat step 7).

STEP 12: Return linePts [0], linePts[1], tanPts[0], and tanPts [1].

Attachment A-Useful Functions.

Attachment B - Calculate Angular Arc Extent.

When calculating the angle subtended by an arc, one must take into account the possibility that the arc crosses the northern branch cut, where $0^{\circ}=360^{\circ}$. The following algorithm accounts for this case.

5.4.3 Input/Output.

double WGS84GetArcExtent(double startCrs, double endCrs, int orientation, double tol) returns a double precision value containing the arc's subtended angle, where the input values are:

| double startCrs | $=\quad$ Azimuth from center to start point of arc |
| :--- | :--- | :--- |
| double endCrs | $=\quad$ Azimuth from center to end point of arc |

int orientation $=$ Integer that indicates the direction in which the arc is traversed to go from startCrs to endCrs. orientation $=1$ if the arc is traversed counterclockwise,
orientation $=-1$ if the arc is traversed clockwise.
double tol $=$ Maximum error allowed in calculations
double eps $\quad=\quad$ Convergence parameter for forward/inverse algorithms

5.4.4 Algorithm Steps.

STEP 1: If(abs(startCrs-endCrs) < tol) return $2 * \pi$
STEP 2: If orientation <0, then orientation is clockwise. Cast the arc into a positive orientation so only one set of calculations is required
a. temp $=$ startCrs
b. startCrs = endCrs
c. endCrs = temp

STEP 3: End if
STEP 4: If startCrs > endCrs, then angle = startCrs - endCrs
STEP 5: Else angle $=2 * \pi+$ startCrs - endCrs
STEP 6: End if
STEP 7: If orientation <0, then angle $=$-angle
STEP 8: Return angle

6.0 Converting Geodetic Latitude/Longitude to ECEF Coordinates.

Geodetic coordinates may be converted to rectilinear ECEF coordinates using the following formulae ${ }^{1}$. Given geodetic latitude φ, geodetic longitude θ, semi-major axis a and flattening parameter f, calculate the square of the eccentricity

$$
e^{2}=f(2-f)
$$

and the curvature in the prime vertical:

$$
N=\frac{a}{\sqrt{1-e^{2} \sin ^{2} \varphi}}
$$

The ECEF coordinates are then

$$
\begin{aligned}
& x=N \cos \varphi \cos \theta \\
& y=N \cos \varphi \sin \theta \\
& z=N\left(1-e^{2}\right) \sin \varphi
\end{aligned}
$$

6.1 Signed Azimuth Difference.

It is often necessary to calculate the signed angular difference in azimuth between two geodesics at the point where they intersect. The following functions casts the difference between two geodesics into the range $[-\pi, \pi)$:

$$
\text { signedAzimuthDifference }\left(a_{1}, a_{2}\right)=\bmod \left(a_{1}-a_{2}+\pi, 2 \pi\right)-\pi
$$

This function returns the angle between the two geodesics as if the geodesic that is oriented along azimuth a_{1} were on the positive x-axis and the geodesic oriented along azimuth a_{2} passed through the origin. In other words, if signedAzimuthDifference $\left(a_{1}, a_{2}\right)>0$ azimuth a_{2} is to the left when standing at the geodesics' intersection point and facing in the direction of azimuth a_{1}.
The mod function in the definition of signedAzimuthDifference must always return a non-negative value. Note that the C language's built in fmod function does not have this behavior, so a replacement must be supplied. The following code suffices:

```
double mod(double a, double b) {
a = fmod (a,b) ;
    if (a<0.0) a = a + b;
return a; }
```


6.2 Approximate Fixed Radius Arc Length.

Algorithm 3.8 describes a method for computing the length of an arc to high precision. The following algorithm provides a solution accurate to 1 centimeter for an arc whose radius is less than about 300 nautical miles (NM). This algorithm approximates the ellipsoid at the center of the arc in question with a "best fit" sphere, whose radius is

[^0]computed as the geometric mean of the meridional and prime-vertical curvatures at the arc's center.

Given the arc center's latitude θ, the ellipsoidal semi-major axis a and flattening f, compute the local radius of curvature R as follows:

$$
\begin{aligned}
& e^{2}=f(2-f) \\
& M=\frac{a\left(1-e^{2}\right)}{\left(1-e^{2} \sin ^{2} \theta\right)^{\frac{3}{2}}} \\
& N=\frac{a}{\sqrt{1-e^{2} \sin ^{2} \theta}} \\
& R=\sqrt{M N}
\end{aligned}
$$

If the radius and subtended angle of the of the constant radius arc are r and A, respectively, then the length of the arc is given by:

$$
L=A R \sin \left(\frac{r}{R}\right)
$$

Test results for this formula and comparisons to Algorithm 3.8 are given in section 7.7.

Attachment C

7.0 Sample Function Test Results.

The following pages provide test inputs with expected outputs. This data is included here to make it easy to verify that an independent implementation of these algorithms produces the same results. All of these results were obtained using the tolerance parameter tol $=1.0 \mathrm{e}-9$ and forward/inverse convergence parameter $\mathrm{eps}=0.5 \mathrm{e}-13$.

Test results are not included for those algorithms that are fairly straightforward applications of other algorithms, such as 3.9, 3.10, and 3.11.

WGS84 Direct Test Results

Test Identifier	Starting Latitude	Starting Longitude	Distance (NM)	Initial Azimuth (degrees)	Computed Destination Latitude	Computed Destination Longitude
test1	40:10:24.50000N	70:12:45.60000W	200.0	90.0	40:05:30.77099N	65:52:03.22158W
test2	40:10:24.50000N	70:12:45.60000W	200.0	0.0	43:30:29.87690N	70:12:45.60000W
test3	40:10:24.50000N	70:12:45.60000W	200.0	180.0	36:50:12.19034N	70:12:45.60000W
test4	40:10:24.50000N	70:12:45.60000W	200.0	270.0	40:05:30.77099N	74:33:27.97842W
test5	40:10:24.50000N	70:12:45.60000W	200.0	46.0	42:26:44.93817N	66:58:26.80185W
test6	40:10:24.50000N	70:12:45.60000W	200.0	127.0	38:06:56.47029N	66:50:21.71131W
test7	40:10:24.50000N	70:12:45.60000W	200.0	199.0	37:00:37.63806N	71:34:01.15378W
test8	40:10:24.50000N	70:12:45.60000W	200.0	277.0	40:29:56.05779N	74:33:04.77416W
test9	40:10:24.50000N	70:12:45.60000W	2.0	90.0	40:10:24.47060N	70:10:09.05140W
test10	40:10:24.50000N	70:12:45.60000W	2.0	0.0	40:12:24.58831N	70:12:45.60000W
test11	40:10:24.50000N	70:12:45.60000W	2.0	180.0	40:08:24.41100N	70:12:45.60000W
test12	40:10:24.50000N	70:12:45.60000W	2.0	270.0	40:10:24.47060N	70:15:22.14860W
test13	40:10:24.50000N	70:12:45.60000W	2.0	46.0	40:11:47.90520N	70:10:52.95004W
test14	40:10:24.50000N	70:12:45.60000W	2.0	127.0	40:09:12.20998N	70:10:40.61155W
test15	40:10:24.50000N	70:12:45.60000W	2.0	199.0	40:08:30.95052N	70:13:36.54366W
test16	40:10:24.50000N	70:12:45.60000W	2.0	277.0	40:10:39.10616N	70:15:20.99098W
test17	40:10:24.50000N	70:12:45.60000W	3000.0	90.0	24:30:24.17902N	13:01:17.08239W
test18	40:10:24.50000N	70:12:45.60000W	3000.0	0.0	89:58:28.94717N	109:47:14.40000E
test19	40:10:24.50000N	70:12:45.60000W	3000.0	180.0	10:00:44.08298S	70:12:45.60000W
test20	40:10:24.50000N	70:12:45.60000W	3000.0	270.0	24:30:24.17902N	127:24:14.11761W
test21	40:10:24.50000N	70:12:45.60000W	3000.0	46.0	55:17:03.30750N	4:30:00.21623E
test22	40:10:24.50000N	70:12:45.60000W	3000.0	127.0	3:28:31.38990N	32:28:57.95936W
test23	40:10:24.50000N	70:12:45.60000W	3000.0	199.0	8:09:04.17050S	84:46:29.97795W
test24	40:10:24.50000N	70:12:45.60000W	3000.0	277.0	29:06:16.65778N	130:30:47.88401W
test25	50:10:52.50000N	123:06:57.10000W	200.0	90.0	50:03:56.42973N	117:56:18.19536W
test26	50:10:52.50000N	123:06:57.10000W	200.0	0.0	53:30:36.93183N	123:06:57.10000W
test27	50:10:52.50000N	123:06:57.10000W	200.0	180.0	46:51:01.16657N	123:06:57.10000W
test28	50:10:52.50000N	123:06:57.10000W	200.0	270.0	50:03:56.42973N	128:17:36.00464W
test29	50:10:52.50000N	123:06:57.10000W	200.0	46.0	52:25:49.36941N	119:11:51.80053W
test30	50:10:52.50000N	123:06:57.10000W	200.0	127.0	48:06:24.18375N	119:08:33.75213W
test31	50:10:52.50000N	123:06:57.10000W	200.0	199.0	47:01:13.78683N	124:42:04.78016W
test32	50:10:52.50000N	123:06:57.10000W	200.0	277.0	50:28:19.21956N	128:17:55.21964W
test33	50:10:52.50000N	123:06:57.10000W	2.0	90.0	50:10:52.45833N	123:03:50.41132W
test34	50:10:52.50000N	123:06:57.10000W	2.0	0.0	50:12:52.37823N	123:06:57.10000W
test35	50:10:52.50000N	123:06:57.10000W	2.0	180.0	50:08:52.62108N	123:06:57.10000W
test36	50:10:52.50000N	123:06:57.10000W	2.0	270.0	50:10:52.45833N	123:10:03.78868W
test37	50:10:52.50000N	123:06:57.10000W	2.0	46.0	50:12:15.75291N	123:04:42.74250W
test38	50:10:52.50000N	123:06:57.10000W	2.0	127.0	50:09:40.32859N	123:04:28.06612W
test39	50:10:52.50000N	123:06:57.10000W	2.0	199.0	50:08:59.14786N	123:07:57.83998W
test40	50:10:52.50000N	123:06:57.10000W	2.0	277.0	50:11:07.06846N	123:10:02.41284W
test41	50:10:52.50000N	123:06:57.10000W	3000.0	90.0	29:37:18.55208N	61:31:12.91277W
test42	50:10:52.50000N	123:06:57.10000W	3000.0	0.0	80:00:57.51620N	56:53:02.90000E
test43	50:10:52.50000N	123:06:57.10000W	3000.0	180.0	0:02:43.03479N	123:06:57.10000W
test44	50:10:52.50000N	123:06:57.10000W	3000.0	270.0	29:37:18.55208N	175:17:18.71277E

test45	50:10:52.50000N	123:06:57.10000W	3000.0	46.0	56:40:22.79938N	33:42:20.71403W
test46	50:10:52.50000N	123:06:57.10000W	3000.0	127.0	11:23:14.37898N	84:34:26.55554W
test47	50:10:52.50000N	123:06:57.10000W	3000.0	199.0	1:35:14.22889N	137:32:13.52544W
test48	50:10:52.50000N	123:06:57.10000W	3000.0	277.0	33:39:39.03338N	171:08:27.87014E
test49	42:44:32.10000N	66:27:19.60000E	200.0	90.0	42:39:10.81410N	70:58:29.15259E
test50	42:44:32.10000N	66:27:19.60000E	200.0	0.0	46:04:32.07438N	66:27:19.60000E
test51	42:44:32.10000N	66:27:19.60000E	200.0	180.0	39:24:25.11928N	66:27:19.60000E
test52	42:44:32.10000N	66:27:19.60000E	200.0	270.0	42:39:10.81410N	61:56:10.04741E
test53	42:44:32.10000N	66:27:19.60000E	200.0	46.0	45:00:33.43147N	69:50:07.10761E
test54	42:44:32.10000N	66:27:19.60000E	200.0	127.0	40:40:50.71563N	69:57:17.17656E
test55	42:44:32.10000N	66:27:19.60000E	200.0	199.0	39:34:47.61048N	65:03:08.96220E
test56	42:44:32.10000N	66:27:19.60000E	200.0	277.0	43:03:35.51327N	61:56:24.98803E
test57	42:44:32.10000N	66:27:19.60000E	2.0	90.0	42:44:32.06784N	66:30:02.45101E
test58	42:44:32.10000N	66:27:19.60000E	2.0	0.0	42:46:32.13452N	66:27:19.60000E
test59	42:44:32.10000N	66:27:19.60000E	2.0	180.0	42:42:32.06478N	66:27:19.60000E
test60	42:44:32.10000N	66:27:19.60000E	2.0	270.0	42:44:32.06784N	66:24:36.74899E
test61	42:44:32.10000N	66:27:19.60000E	2.0	46.0	42:45:55.46641N	66:29:16.78884E
test62	42:44:32.10000N	66:27:19.60000E	2.0	127.0	42:43:19.84058N	66:29:29.61668E
test63	42:44:32.10000N	66:27:19.60000E	2.0	199.0	42:42:38.60108N	66:26:26.60774E
test64	42:44:32.10000N	66:27:19.60000E	2.0	277.0	42:44:46.69688N	66:24:37.95230E
test65	42:44:32.10000N	66:27:19.60000E	3000.0	90.0	25:52:49.48262N	124:39:55.85184E
test66	42:44:32.10000N	66:27:19.60000E	3000.0	0.0	87:25:13.54228N	113:32:40.40000W
test67	42:44:32.10000N	66:27:19.60000E	3000.0	180.0	7:25:57.78702S	66:27:19.60000E
test68	42:44:32.10000N	66:27:19.60000E	3000.0	270.0	25:52:49.48262N	8:14:43.34816E
test69	42:44:32.10000N	66:27:19.60000E	3000.0	46.0	55:52:47.54426N	144:47:50.12500E
test70	42:44:32.10000N	66:27:19.60000E	3000.0	127.0	5:30:44.95719N	104:18:35.77997E
test71	42:44:32.10000N	66:27:19.60000E	3000.0	199.0	5:39:14.93608S	51:58:13.27568E
test72	42:44:32.10000N	66:27:19.60000E	3000.0	277.0	30:21:08.45258N	4:52:35.40656E
test73	31:12:52.30000N	125:28:47.50000E	200.0	90.0	31:09:21.00038N	129:21:55.26637E
test74	31:12:52.30000N	125:28:47.50000E	200.0	0.0	34:33:15.83037N	125:28:47.50000E
test75	31:12:52.30000N	125:28:47.50000E	200.0	180.0	27:52:22.52362N	125:28:47.50000E
test76	31:12:52.30000N	125:28:47.50000E	200.0	270.0	31:09:21.00038N	121:35:39.73363E
test77	31:12:52.30000N	125:28:47.50000E	200.0	46.0	33:30:10.60726N	128:20:48.89100E
test78	31:12:52.30000N	125:28:47.50000E	200.0	127.0	29:10:03.77133N	128:31:13.43437E
test79	31:12:52.30000N	125:28:47.50000E	200.0	199.0	28:02:57.01708N	124:15:14.09016E
test80	31:12:52.30000N	125:28:47.50000E	200.0	277.0	31:33:48.07660N	121:36:24.04854E
test81	31:12:52.30000N	125:28:47.50000E	2.0	90.0	31:12:52.27886N	125:31:07.43524E
test82	31:12:52.30000N	125:28:47.50000E	2.0	0.0	$31: 14: 52.56685 \mathrm{~N}$	125:28:47.50000E
test83	31:12:52.30000N	125:28:47.50000E	2.0	180.0	$31: 10: 52.03253 \mathrm{~N}$	125:28:47.50000E
test84	31:12:52.30000N	125:28:47.50000E	2.0	270.0	$31: 12: 52.27886 \mathrm{~N}$	125:26:27.56476E
test85	31:12:52.30000N	125:28:47.50000E	2.0	46.0	$31: 14: 15.83349 \mathrm{~N}$	125:30:28.18558E
test86	31:12:52.30000N	125:28:47.50000E	2.0	127.0	31:11:39.90782N	125:30:39.23361E
test87	31:12:52.30000N	125:28:47.50000E	2.0	199.0	$31: 10: 58.58265 \mathrm{~N}$	125:28:01.95668E
test88	31:12:52.30000N	125:28:47.50000E	2.0	277.0	31:13:06.93605N	125:26:28.60187E
test89	31:12:52.30000N	125:28:47.50000E	3000.0	90.0	19:27:03.05786N	179:41:20.83695E
test90	31:12:52.30000N	125:28:47.50000E	3000.0	0.0	81:07:29.93181N	125:28:47.50000E
test91	31:12:52.30000N	125:28:47.50000E	3000.0	180.0	18:59:46.09922S	125:28:47.50000E
test92	31:12:52.30000N	125:28:47.50000E	3000.0	270.0	19:27:03.05786N	71:16:14.16305E

test93	31:12:52.30000N	125:28:47.50000E	3000.0	46.0	52:04:30.90569N	171:09:46.53647W
test94	$31: 12: 52.30000 \mathrm{~N}$	125:28:47.50000E	3000.0	127.0	3:37:54.96189S	163:12:50.99996E
test95	31:12:52.30000N	125:28:47.50000E	3000.0	199.0	16:50:15.39672S	110:24:43.33889E
test96	31:12:52.30000N	125:28:47.50000E	3000.0	277.0	24:24:11.81091N	69:01:02.24210E
test97	49:10:24.50000S	75:12:45.60000W	200.0	90.0	49:03:42.87631S	70:08:25.93407W
test98	49:10:24.50000S	75:12:45.60000W	200.0	0.0	45:50:31.05302S	75:12:45.60000W
test99	49:10:24.50000S	75:12:45.60000W	200.0	180.0	52:30:11.00366S	75:12:45.60000W
test100	49:10:24.50000S	75:12:45.60000W	200.0	270.0	49:03:42.87631S	80:17:05.26593W
test101	49:10:24.50000S	75:12:45.60000W	200.0	46.0	46:48:17.31010S	71:43:18.85029W
test102	49:10:24.50000S	75:12:45.60000W	200.0	127.0	51:06:09.21946S	70:59:16.31551W
test103	49:10:24.50000S	75:12:45.60000W	200.0	199.0	52:18:31.88478S	76:58:48.10816W
test104	49:10:24.50000S	75:12:45.60000W	200.0	277.0	48:39:31.53843S	80:12:23.46911W
test105	49:10:24.50000S	75:12:45.60000W	2.0	90.0	49:10:24.45978S	75:09:42.72995W
test106	49:10:24.50000S	75:12:45.60000W	2.0	0.0	49:08:24.60011S	75:12:45.60000W
test107	49:10:24.50000S	75:12:45.60000W	2.0	180.0	49:12:24.39920S	75:12:45.60000W
test108	49:10:24.50000S	75:12:45.60000W	2.0	270.0	49:10:24.45978S	75:15:48.47005W
test109	49:10:24.50000S	75:12:45.60000W	2.0	46.0	49:09:01.18981S	75:10:34.11555W
test110	49:10:24.50000S	75:12:45.60000W	2.0	127.0	49:11:36.63156S	75:10:19.49448W
test111	49:10:24.50000S	75:12:45.60000W	2.0	199.0	49:12:17.86267S	75:13:45.17447W
test112	49:10:24.50000S	75:12:45.60000W	2.0	277.0	49:10:09.84830S	75:15:47.09213W
test113	49:10:24.50000S	75:12:45.60000W	3000.0	90.0	29:08:15.41939S	14:06:51.81153W
test114	49:10:24.50000S	75:12:45.60000W	3000.0	0.0	0:58:06.24146N	75:12:45.60000W
test115	49:10:24.50000S	75:12:45.60000W	3000.0	180.0	81:01:11.20478S	104:47:14.40000E
test116	49:10:24.50000S	75:12:45.60000W	3000.0	270.0	29:08:15.41939S	136:18:39.38847W
test117	49:10:24.50000S	75:12:45.60000W	3000.0	46.0	7:52:38.83544S	41:28:29.05694W
test118	49:10:24.50000S	75:12:45.60000W	3000.0	127.0	52:04:51.42106S	7:52:24.35518E
test119	49:10:24.50000S	75:12:45.60000W	3000.0	199.0	73:51:36.66725S	168:08:53.56896E
test120	49:10:24.50000S	75:12:45.60000W	3000.0	277.0	25:11:20.18815S	132:13:38.05215W
test121	43:10:45.70000S	123:42:43.40000W	200.0	90.0	43:05:19.50216S	119:09:38.75232W
test122	43:10:45.70000S	123:42:43.40000W	200.0	0.0	39:50:39.63379S	123:42:43.40000W
test123	43:10:45.70000S	123:42:43.40000W	200.0	180.0	46:30:44.75296S	123:42:43.40000W
test124	43:10:45.70000S	123:42:43.40000W	200.0	270.0	43:05:19.50216S	128:15:48.04768W
test125	43:10:45.70000S	123:42:43.40000W	200.0	46.0	40:49:05.78329S	120:33:14.53881W
test126	43:10:45.70000S	123:42:43.40000W	200.0	127.0	45:07:29.89631S	119:57:05.47191W
test127	43:10:45.70000S	123:42:43.40000W	200.0	199.0	46:19:13.99376S	125:16:37.84869 W
test128	43:10:45.70000S	123:42:43.40000W	200.0	277.0	42:41:04.43281S	128:11:59.62018W
test129	43:10:45.70000S	123:42:43.40000W	2.0	90.0	43:10:45.66735S	123:39:59.39209W
test130	43:10:45.70000S	123:42:43.40000W	2.0	0.0	43:08:45.67398S	123:42:43.40000W
test131	43:10:45.70000S	123:42:43.40000W	2.0	180.0	43:12:45.72532S	123:42:43.40000W
test132	43:10:45.70000S	123:42:43.40000W	2.0	270.0	43:10:45.66735S	123:45:27.40791W
test133	43:10:45.70000S	123:42:43.40000W	2.0	46.0	43:09:22.30610S	123:40:45.46715W
test134	43:10:45.70000S	123:42:43.40000W	2.0	127.0	43:11:57.91229S	123:40:32.37455W
test135	43:10:45.70000S	123:42:43.40000W	2.0	199.0	43:12:39.18273S	123:43:36.82325W
test136	43:10:45.70000S	123:42:43.40000W	2.0	277.0	43:10:31.04038S	123:45:26.17463W
test137	43:10:45.70000S	123:42:43.40000W	3000.0	90.0	26:06:37.08296S	65:19:15.88930W
test138	43:10:45.70000S	123:42:43.40000W	3000.0	0.0	6:59:37.06995N	123:42:43.40000W
test139	43:10:45.70000S	123:42:43.40000W	3000.0	180.0	86:59:08.38590S	56:17:16.60000E
test140	43:10:45.70000S	123:42:43.40000W	3000.0	270.0	26:06:37.08296S	177:53:49.08930E

test141	43:10:45.70000S	123:42:43.40000W	3000.0	46.0	2:51:33.84923S	90:17:19.02340W
test142	43:10:45.70000S	123:42:43.40000W	3000.0	127.0	50:58:42.47481S	48:01:25.22327W
test143	43:10:45.70000S	123:42:43.40000W	3000.0	199.0	75:32:45.23169S	140:44:35.89858E
test144	43:10:45.70000S	123:42:43.40000W	3000.0	277.0	21:49:17.43560S	178:34:03.34260W
test145	30:13:55.50000S	54:53:17.40000E	200.0	90.0	30:10:32.24599S	58:44:04.46955E
test146	30:13:55.50000S	54:53:17.40000E	200.0	0.0	26:53:23.96278S	54:53:17.40000E
test147	30:13:55.50000S	54:53:17.40000E	200.0	180.0	33:34:20.90547S	54:53:17.40000E
test148	30:13:55.50000S	54:53:17.40000E	200.0	270.0	30:10:32.24599S	51:02:30.33045E
test149	30:13:55.50000S	54:53:17.40000E	200.0	46.0	27:52:57.82170S	57:35:36.72392E
test150	30:13:55.50000S	54:53:17.40000E	200.0	127.0	32:12:18.30198S	58:01:31.85506E
test151	30:13:55.50000S	54:53:17.40000E	200.0	199.0	33:23:02.92727S	53:35:33.92865E
test152	30:13:55.50000S	54:53:17.40000E	200.0	277.0	29:46:10.92312S	51:05:09.54001E
test153	30:13:55.50000S	54:53:17.40000E	2.0	90.0	30:13:55.47966S	54:55:35.92341E
test154	30:13:55.50000S	54:53:17.40000E	2.0	0.0	30:11:55.21431S	54:53:17.40000E
test155	30:13:55.50000S	54:53:17.40000E	2.0	180.0	30:15:55.78508S	54:53:17.40000E
test156	30:13:55.50000S	54:53:17.40000E	2.0	270.0	30:13:55.47966S	54:50:58.87659E
test157	30:13:55.50000S	54:53:17.40000E	2.0	46.0	30:12:31.93209S	54:54:57.02201E
test158	30:13:55.50000S	54:53:17.40000E	2.0	127.0	30:15:07.87646S	54:55:08.05224E
test159	30:13:55.50000S	54:53:17.40000E	2.0	199.0	30:15:49.22963S	54:52:32.28676E
test160	30:13:55.50000S	54:53:17.40000E	2.0	277.0	30:13:40.82086S	54:50:59.91478E
test161	30:13:55.50000S	54:53:17.40000E	3000.0	90.0	18:52:29.86498S	108:49:20.15190E
test162	30:13:55.50000S	54:53:17.40000E	3000.0	0.0	19:58:48.22673N	54:53:17.40000E
test163	30:13:55.50000S	54:53:17.40000E	3000.0	180.0	80:08:58.44983S	54:53:17.40000E
test164	30:13:55.50000S	54:53:17.40000E	3000.0	270.0	18:52:29.86498S	0:57:14.64810E
test165	30:13:55.50000S	54:53:17.40000E	3000.0	46.0	7:58:13.96628N	88:37:37.35172E
test166	30:13:55.50000S	54:53:17.40000E	3000.0	127.0	46:16:23.75384S	116:51:12.92431E
test167	30:13:55.50000S	54:53:17.40000E	3000.0	199.0	71:41:54.15847S	2:36:27.57861E
test168	30:13:55.50000S	54:53:17.40000E	3000.0	277.0	14:01:56.87883S	3:23:24.56420E
test169	71:03:45.50000S	155:13:37.40000E	200.0	90.0	70:47:04.46404S	165:21:13.27121E
test170	71:03:45.50000S	155:13:37.40000E	200.0	0.0	67:44:32.20108S	155:13:37.40000E
test171	71:03:45.50000S	155:13:37.40000E	200.0	180.0	74:22:54.50904S	155:13:37.40000E
test172	71:03:45.50000S	155:13:37.40000E	200.0	270.0	70:47:04.46404S	145:06:01.52879E
test173	71:03:45.50000S	155:13:37.40000E	200.0	46.0	68:37:38.70618S	161:47:11.03268E
test174	71:03:45.50000S	155:13:37.40000E	200.0	127.0	72:51:42.35787S	164:14:58.08728E
test175	71:03:45.50000S	155:13:37.40000E	200.0	199.0	74:09:55.67082S	151:16:06.01068E
test176	71:03:45.50000S	155:13:37.40000E	200.0	277.0	70:23:23.03906S	145:22:23.31016E
test177	71:03:45.50000S	155:13:37.40000E	2.0	90.0	71:03:45.39916S	155:19:45.39068E
test178	71:03:45.50000S	155:13:37.40000E	2.0	0.0	71:01:45.98931S	155:13:37.40000E
test179	71:03:45.50000S	155:13:37.40000E	2.0	180.0	71:05:45.01026S	155:13:37.40000E
test180	71:03:45.50000S	155:13:37.40000E	2.0	270.0	71:03:45.39916S	155:07:29.40932E
test181	71:03:45.50000S	155:13:37.40000E	2.0	46.0	71:02:22.42883S	155:18:01.80054E
test182	71:03:45.50000S	155:13:37.40000E	2.0	127.0	71:04:57.35874S	155:18:31.58931E
test183	71:03:45.50000S	155:13:37.40000E	2.0	199.0	71:05:38.48847S	155:11:37.40237E
test184	71:03:45.50000S	155:13:37.40000E	2.0	277.0	71:03:30.83602S	155:07:32.22736E
test185	71:03:45.50000S	155:13:37.40000E	3000.0	90.0	37:33:28.76348S	130:07:28.60879W
test186	71:03:45.50000S	155:13:37.40000E	3000.0	0.0	21:04:35.11214S	155:13:37.40000E
test187	71:03:45.50000S	155:13:37.40000E	3000.0	180.0	59:09:32.80147S	24:46:22.60000W
test188	71:03:45.50000S	155:13:37.40000E	3000.0	270.0	37:33:28.76348S	80:34:43.40879E

test189	$71: 03: 45.50000 \mathrm{~S}$	$155: 13: 37.40000 \mathrm{E}$	3000.0	46.0	$25: 50: 57.88581 \mathrm{~S}$
test190	$71: 03: 45.50000 \mathrm{~S}$	$155: 13: 37.40000 \mathrm{E}$	3000.0	127.0	$49: 25: 34.58238 \mathrm{~S}$
test191	$71: 03: 45.50000 \mathrm{~S}$	$155: 13: 37.40000 \mathrm{E}$	3000.0	199.0	$57: 40: 40.95961 \mathrm{~S}$
test192	$71: 03: 45.50000 \mathrm{~S}$	$155: 13: 37.40000 \mathrm{E}$	3000.0	277.0	$94: 05: 40.45264 \mathrm{~W}$

WGS84 Inverse Test Results

Test Identifier	Starting Latitude	Starting Longitude	Destination Latitude	Destination Longitude	Computed Azimuth (degrees)	Computed Reverse Azimuth (degrees)	Computed Distance NM)
test1	40:10:24.50000N	70:12:45.60000W	40:05:30.77099N	65:52:03.22158W	90.00000	272.80147	200.00000
test2	40:10:24.50000N	70:12:45.60000W	43:30:29.87690N	70:12:45.60000W	0.00000	180.00000	200.00000
test3	40:10:24.50000N	70:12:45.60000W	36:50:12.19034N	70:12:45.60000W	180.00000	0.00000	200.00000
test4	40:10:24.50000N	70:12:45.60000W	40:05:30.77099N	74:33:27.97842W	270.00000	87.19853	200.00000
test5	40:10:24.50000N	70:12:45.60000W	42:26:44.93817N	66:58:26.80185W	46.00000	228.13861	200.00000
test6	40:10:24.50000N	70:12:45.60000W	38:06:56.47029N	66:50:21.71131W	127.00000	309.13021	200.00000
test7	40:10:24.50000N	70:12:45.60000W	37:00:37.63806N	71:34:01.15378W	199.00000	18.15487	200.00000
test8	40:10:24.50000N	70:12:45.60000W	40:29:56.05779N	74:33:04.77416W	277.00000	94.19092	200.00000
test9	40:10:24.50000N	70:12:45.60000W	40:10:24.47060N	70:10:09.05140W	90.00000	270.02805	2.00000
test10	40:10:24.50000N	70:12:45.60000W	40:12:24.58831N	70:12:45.60000W	0.00000	180.00000	2.00000
test11	40:10:24.50000N	70:12:45.60000W	40:08:24.41100N	70:12:45.60000W	180.00000	0.00000	2.00000
test12	40:10:24.50000N	70:12:45.60000W	40:10:24.47060N	70:15:22.14860W	270.00000	89.97195	2.00000
test13	40:10:24.50000N	70:12:45.60000W	40:11:47.90520N	70:10:52.95004W	46.00000	226.02019	2.00000
test14	40:10:24.50000N	70:12:45.60000W	40:09:12.20998N	70:10:40.61155W	127.00000	307.02239	2.00000
test15	40:10:24.50000N	70:12:45.60000W	40:08:30.95052N	70:13:36.54366W	199.00000	18.99087	2.00000
test16	40:10:24.50000N	70:12:45.60000W	40:10:39.10616N	70:15:20.99098W	277.00000	96.97215	2.00000
test17	40:10:24.50000N	70:12:45.60000W	24:30:24.17902N	13:01:17.08239W	90.00000	302.81413	3000.00000
test18	40:10:24.50000N	70:12:45.60000W	89:58:28.94717N	109:47:14.40000E	0.00000	0.00000	3000.00000
test19	40:10:24.50000N	70:12:45.60000W	10:00:44.08298S	70:12:45.60000W	180.00000	0.00000	3000.00000
test20	40:10:24.50000N	70:12:45.60000W	24:30:24.17902N	127:24:14.11761W	270.00000	57.18587	3000.00000
test21	40:10:24.50000N	70:12:45.60000W	55:17:03.30750N	4:30:00.21623E	46.00000	285.35933	3000.00000
test22	40:10:24.50000N	70:12:45.60000W	3:28:31.38990N	32:28:57.95936W	127.00000	322.25100	3000.00000
test23	40:10:24.50000N	70:12:45.60000W	8:09:04.17050S	84:46:29.97795W	199.00000	14.57444	3000.00000
test24	40:10:24.50000N	70:12:45.60000W	29:06:16.65778N	130:30:47.88401W	277.00000	60.28734	3000.00000
test25	50:10:52.50000N	123:06:57.10000W	50:03:56.42973N	117:56:18.19536W	90.00000	273.97445	200.00000
test26	50:10:52.50000N	123:06:57.10000W	53:30:36.93183N	123:06:57.10000W	0.00000	180.00000	200.00000
test27	50:10:52.50000N	123:06:57.10000W	46:51:01.16657N	123:06:57.10000W	180.00000	0.00000	200.00000
test28	50:10:52.50000N	123:06:57.10000W	50:03:56.42973N	128:17:36.00464W	270.00000	86.02555	200.00000
test29	50:10:52.50000N	123:06:57.10000W	52:25:49.36941N	119:11:51.80053W	46.00000	229.05914	200.00000
test30	50:10:52.50000N	123:06:57.10000W	48:06:24.18375N	119:08:33.75213W	127.00000	310.00613	200.00000
test31	50:10:52.50000N	123:06:57.10000W	47:01:13.78683N	124:42:04.78016W	199.00000	17.81022	200.00000
test32	50:10:52.50000N	123:06:57.10000W	50:28:19.21956N	128:17:55.21964W	277.00000	93.00968	200.00000
test33	50:10:52.50000N	123:06:57.10000W	50:10:52.45833N	123:03:50.41132W	90.00000	270.03983	2.00000
test34	50:10:52.50000N	123:06:57.10000W	50:12:52.37823N	123:06:57.10000W	0.00000	180.00000	2.00000
test35	50:10:52.50000N	123:06:57.10000W	50:08:52.62108N	123:06:57.10000W	180.00000	0.00000	2.00000
test36	50:10:52.50000N	123:06:57.10000W	50:10:52.45833N	123:10:03.78868W	270.00000	89.96017	2.00000
test37	50:10:52.50000N	123:06:57.10000W	50:12:15.75291N	123:04:42.74250W	46.00000	226.02867	2.00000
test38	50:10:52.50000N	123:06:57.10000W	50:09:40.32859N	123:04:28.06612W	127.00000	307.03179	2.00000
test39	50:10:52.50000N	123:06:57.10000W	50:08:59.14786N	123:07:57.83998W	199.00000	18.98704	2.00000
test40	50:10:52.50000N	123:06:57.10000W	50:11:07.06846N	123:10:02.41284W	277.00000	96.96046	2.00000
test41	50:10:52.50000N	123:06:57.10000W	29:37:18.55208N	61:31:12.91277W	90.00000	312.48202	3000.00000
test42	50:10:52.50000N	123:06:57.10000W	80:00:57.51620N	56:53:02.90000E	0.00000	360.00000	3000.00000
test43	50:10:52.50000N	123:06:57.10000W	0:02:43.03479N	123:06:57.10000W	180.00000	0.00000	3000.00000
test44	50:10:52.50000N	123:06:57.10000W	29:37:18.55208N	175:17:18.71277E	270.00000	47.51798	3000.00000

test45	50:10:52.50000N	123:06:57.10000W	56:40:22.79938N	33:42:20.71403W	46.00000	303.05928	3000.00000
test46	50:10:52.50000N	123:06:57.10000W	11:23:14.37898N	84:34:26.55554W	127.00000	328.48986	3000.00000
test47	50:10:52.50000N	123:06:57.10000W	1:35:14.22889N	137:32:13.52544W	199.00000	12.06222	3000.00000
test48	50:10:52.50000N	123:06:57.10000W	33:39:39.03338N	171:08:27.87014E	277.00000	49.84895	3000.00000
test49	42:44:32.10000N	66:27:19.60000E	42:39:10.81410N	70:58:29.15259E	90.00000	273.06555	200.00000
test50	42:44:32.10000N	66:27:19.60000E	46:04:32.07438N	66:27:19.60000E	360.00000	180.00000	200.00000
test51	42:44:32.10000N	66:27:19.60000E	39:24:25.11928N	66:27:19.60000E	180.00000	0.00000	200.00000
test52	42:44:32.10000N	66:27:19.60000E	42:39:10.81410N	61:56:10.04741E	270.00000	86.93445	200.00000
test53	42:44:32.10000N	66:27:19.60000E	45:00:33.43147N	69:50:07.10761E	46.00000	228.34339	200.00000
test54	42:44:32.10000N	66:27:19.60000E	40:40:50.71563N	69:57:17.17656E	127.00000	309.32917	200.00000
test55	42:44:32.10000N	66:27:19.60000E	39:34:47.61048N	65:03:08.96220E	199.00000	18.07623	200.00000
test56	42:44:32.10000N	66:27:19.60000E	43:03:35.51327N	61:56:24.98803E	277.00000	93.92550	200.00000
test57	42:44:32.10000N	66:27:19.60000E	42:44:32.06784N	66:30:02.45101E	90.00000	270.03070	2.00000
test58	42:44:32.10000N	66:27:19.60000E	42:46:32.13452N	66:27:19.60000E	360.00000	180.00000	2.00000
test59	42:44:32.10000N	66:27:19.60000E	42:42:32.06478N	66:27:19.60000E	180.00000	0.00000	2.00000
test60	42:44:32.10000N	66:27:19.60000E	42:44:32.06784N	66:24:36.74899E	270.00000	89.96930	2.00000
test61	42:44:32.10000N	66:27:19.60000E	42:45:55.46641N	66:29:16.78884E	46.00000	226.02210	2.00000
test62	42:44:32.10000N	66:27:19.60000E	42:43:19.84058N	66:29:29.61668E	127.00000	307.02451	2.00000
test63	42:44:32.10000N	66:27:19.60000E	42:42:38.60108N	66:26:26.60774E	199.00000	18.99001	2.00000
test64	42:44:32.10000N	66:27:19.60000E	42:44:46.69688N	66:24:37.95230E	277.00000	96.96952	2.00000
test65	42:44:32.10000N	66:27:19.60000E	25:52:49.48262N	124:39:55.85184E	90.00000	305.21226	3000.00000
test66	42:44:32.10000N	66:27:19.60000E	87:25:13.54228N	113:32:40.40000W	360.00000	0.00000	3000.00000
test67	42:44:32.10000N	66:27:19.60000E	7:25:57.78702S	66:27:19.60000E	180.00000	0.00000	3000.00000
test68	42:44:32.10000N	66:27:19.60000E	25:52:49.48262N	8:14:43.34816E	270.00000	54.78774	3000.00000
test69	42:44:32.10000N	66:27:19.60000E	55:52:47.54426N	144:47:50.12500E	46.00000	289.76179	3000.00000
test70	42:44:32.10000N	66:27:19.60000E	5:30:44.95719N	104:18:35.77997E	127.00000	323.83257	3000.00000
test71	42:44:32.10000N	66:27:19.60000E	5:39:14.93608S	51:58:13.27568E	199.00000	13.92399	3000.00000
test72	42:44:32.10000N	66:27:19.60000E	30:21:08.45258N	4:52:35.40656E	277.00000	57.70460	3000.00000
test73	31:12:52.30000N	125:28:47.50000E	31:09:21.00038N	129:21:55.26637E	90.00000	272.01250	200.00000
test74	31:12:52.30000N	125:28:47.50000E	34:33:15.83037N	125:28:47.50000E	0.00000	180.00000	200.00000
test75	31:12:52.30000N	125:28:47.50000E	27:52:22.52362N	125:28:47.50000E	180.00000	360.00000	200.00000
test76	31:12:52.30000N	125:28:47.50000E	31:09:21.00038N	121:35:39.73363E	270.00000	87.98750	200.00000
test77	31:12:52.30000N	125:28:47.50000E	33:30:10.60726N	128:20:48.89100E	46.00000	227.53504	200.00000
test78	31:12:52.30000N	125:28:47.50000E	29:10:03.77133N	128:31:13.43437E	127.00000	308.52956	200.00000
test79	31:12:52.30000N	125:28:47.50000E	28:02:57.01708N	124:15:14.09016E	199.00000	18.39361	200.00000
test80	31:12:52.30000N	125:28:47.50000E	31:33:48.07660N	121:36:24.04854E	277.00000	94.98210	200.00000
test81	31:12:52.30000N	125:28:47.50000E	31:12:52.27886N	125:31:07.43524E	90.00000	270.02014	2.00000
test82	31:12:52.30000N	125:28:47.50000E	$31: 14: 52.56685 \mathrm{~N}$	125:28:47.50000E	0.00000	180.00000	2.00000
test83	31:12:52.30000N	125:28:47.50000E	$31: 10: 52.03253 \mathrm{~N}$	125:28:47.50000E	180.00000	360.00000	2.00000
test84	31:12:52.30000N	125:28:47.50000E	$31: 12: 52.27886 \mathrm{~N}$	125:26:27.56476E	270.00000	89.97986	2.00000
test85	31:12:52.30000N	125:28:47.50000E	31:14:15.83349N	125:30:28.18558E	46.00000	226.01450	2.00000
test86	31:12:52.30000N	125:28:47.50000E	31:11:39.90782N	125:30:39.23361E	127.00000	307.01608	2.00000
test87	31:12:52.30000N	125:28:47.50000E	31:10:58.58265N	125:28:01.95668E	199.00000	18.99345	2.00000
test88	31:12:52.30000N	125:28:47.50000E	31:13:06.93605N	125:26:28.60187E	277.00000	96.98000	2.00000
test89	31:12:52.30000N	125:28:47.50000E	19:27:03.05786N	179:41:20.83695E	90.00000	294.84102	3000.00000
test90	31:12:52.30000N	125:28:47.50000E	81:07:29.93181N	125:28:47.50000E	0.00000	180.00000	3000.00000
test91	31:12:52.30000N	125:28:47.50000E	18:59:46.09922S	125:28:47.50000E	180.00000	360.00000	3000.00000
test92	31:12:52.30000N	125:28:47.50000E	19:27:03.05786N	71:16:14.16305E	270.00000	65.15898	3000.00000

test93	31:12:52.30000N	125:28:47.50000E	52:04:30.90569N	171:09:46.53647W	46.00000	271.27816	3000.00000
test94	$31: 12: 52.30000 \mathrm{~N}$	125:28:47.50000E	3:37:54.96189S	163:12:50.99996E	127.00000	316.76433	3000.00000
test95	31:12:52.30000N	125:28:47.50000E	16:50:15.39672S	110:24:43.33889E	199.00000	16.92311	3000.00000
test96	31:12:52.30000N	125:28:47.50000E	24:24:11.81091N	69:01:02.24210E	277.00000	68.81857	3000.00000
test97	49:10:24.50000S	75:12:45.60000W	49:03:42.87631S	70:08:25.93407W	90.00000	266.16411	200.00000
test98	49:10:24.50000S	75:12:45.60000W	45:50:31.05302S	75:12:45.60000W	0.00000	180.00000	200.00000
test99	49:10:24.50000S	75:12:45.60000W	52:30:11.00366S	75:12:45.60000W	180.00000	0.00000	200.00000
test100	49:10:24.50000S	75:12:45.60000W	49:03:42.87631S	80:17:05.26593W	270.00000	93.83589	200.00000
test101	49:10:24.50000S	75:12:45.60000W	46:48:17.31010S	71:43:18.85029W	46.00000	223.40538	200.00000
test102	49:10:24.50000S	75:12:45.60000W	51:06:09.21946S	70:59:16.31551W	127.00000	303.75602	200.00000
test103	49:10:24.50000S	75:12:45.60000W	52:18:31.88478S	76:58:48.10816W	199.00000	20.36902	200.00000
test104	49:10:24.50000S	75:12:45.60000W	48:39:31.53843S	80:12:23.46911W	277.00000	100.76518	200.00000
test105	49:10:24.50000S	75:12:45.60000W	49:10:24.45978S	75:09:42.72995W	90.00000	269.96156	2.00000
test106	49:10:24.50000S	75:12:45.60000W	49:08:24.60011S	75:12:45.60000W	0.00000	180.00000	2.00000
test107	49:10:24.50000S	75:12:45.60000W	49:12:24.39920S	75:12:45.60000W	180.00000	0.00000	2.00000
test108	49:10:24.50000S	75:12:45.60000W	49:10:24.45978S	75:15:48.47005W	270.00000	90.03844	2.00000
test109	49:10:24.50000S	75:12:45.60000W	49:09:01.18981S	75:10:34.11555W	46.00000	225.97237	2.00000
test110	49:10:24.50000S	75:12:45.60000W	49:11:36.63156S	75:10:19.49448W	127.00000	306.96929	2.00000
test111	49:10:24.50000S	75:12:45.60000W	49:12:17.86267S	75:13:45.17447W	199.00000	19.01253	2.00000
test112	49:10:24.50000S	75:12:45.60000W	49:10:09.84830S	75:15:47.09213W	277.00000	97.03815	2.00000
test113	49:10:24.50000S	75:12:45.60000W	29:08:15.41939S	14:06:51.81153W	90.00000	228.53270	3000.00000
test114	49:10:24.50000S	75:12:45.60000W	0:58:06.24146N	75:12:45.60000W	0.00000	180.00000	3000.00000
test115	49:10:24.50000S	75:12:45.60000W	81:01:11.20478S	104:47:14.40000E	180.00000	180.00000	3000.00000
test116	49:10:24.50000S	75:12:45.60000W	29:08:15.41939S	136:18:39.38847W	270.00000	131.46730	3000.00000
test117	49:10:24.50000S	75:12:45.60000W	7:52:38.83544S	41:28:29.05694W	46.00000	208.40144	3000.00000
test118	49:10:24.50000S	75:12:45.60000W	52:04:51.42106S	7:52:24.35518E	127.00000	238.15368	3000.00000
test119	49:10:24.50000S	75:12:45.60000W	73:51:36.66725S	168:08:53.56896E	199.00000	130.11219	3000.00000
test120	49:10:24.50000S	75:12:45.60000W	25:11:20.18815S	132:13:38.05215W	277.00000	134.10803	3000.00000
test121	43:10:45.70000S	123:42:43.40000W	43:05:19.50216S	119:09:38.75232W	90.00000	266.88737	200.00000
test122	43:10:45.70000S	123:42:43.40000W	39:50:39.63379S	123:42:43.40000W	0.00000	180.00000	200.00000
test123	43:10:45.70000S	123:42:43.40000W	46:30:44.75296S	123:42:43.40000W	180.00000	0.00000	200.00000
test124	43:10:45.70000S	123:42:43.40000W	43:05:19.50216S	128:15:48.04768W	270.00000	93.11263	200.00000
test125	43:10:45.70000S	123:42:43.40000W	40:49:05.78329S	120:33:14.53881W	46.00000	223.88618	200.00000
test126	43:10:45.70000S	123:42:43.40000W	45:07:29.89631S	119:57:05.47191W	127.00000	304.37967	200.00000
test127	43:10:45.70000S	123:42:43.40000W	46:19:13.99376S	125:16:37.84869W	199.00000	20.10232	200.00000
test128	43:10:45.70000S	123:42:43.40000W	42:41:04.43281S	128:11:59.62018W	277.00000	100.05767	200.00000
test129	43:10:45.70000S	123:42:43.40000W	43:10:45.66735S	123:39:59.39209W	90.00000	269.96883	2.00000
test130	43:10:45.70000S	123:42:43.40000W	43:08:45.67398S	123:42:43.40000W	0.00000	180.00000	2.00000
test131	43:10:45.70000S	123:42:43.40000W	43:12:45.72532S	123:42:43.40000W	180.00000	0.00000	2.00000
test132	43:10:45.70000S	123:42:43.40000W	43:10:45.66735S	123:45:27.40791W	270.00000	90.03117	2.00000
test133	43:10:45.70000S	123:42:43.40000W	43:09:22.30610S	123:40:45.46715W	46.00000	225.97759	2.00000
test134	43:10:45.70000S	123:42:43.40000W	43:11:57.91229S	123:40:32.37455W	127.00000	306.97509	2.00000
test135	43:10:45.70000S	123:42:43.40000W	43:12:39.18273S	123:43:36.82325W	199.00000	19.01016	2.00000
test136	43:10:45.70000S	123:42:43.40000W	43:10:31.04038S	123:45:26.17463W	277.00000	97.03094	2.00000
test137	43:10:45.70000S	123:42:43.40000W	26:06:37.08296S	65:19:15.88930W	90.00000	234.37420	3000.00000
test138	43:10:45.70000S	123:42:43.40000W	6:59:37.06995N	123:42:43.40000W	0.00000	180.00000	3000.00000
test139	43:10:45.70000S	123:42:43.40000W	86:59:08.38590S	56:17:16.60000E	180.00000	180.00000	3000.00000
test140	43:10:45.70000S	123:42:43.40000W	26:06:37.08296S	177:53:49.08930E	270.00000	125.62580	3000.00000

test141	43:10:45.70000S	123:42:43.40000W	2:51:33.84923S	90:17:19.02340W	46.00000	211.73748	3000.00000
test142	43:10:45.70000S	123:42:43.40000W	50:58:42.47481S	48:01:25.22327W	127.00000	247.60161	3000.00000
test143	43:10:45.70000S	123:42:43.40000W	75:32:45.23169S	140:44:35.89858E	199.00000	108.26051	3000.00000
test144	43:10:45.70000S	123:42:43.40000W	21:49:17.43560S	178:34:03.34260W	277.00000	128.69292	3000.00000
test145	30:13:55.50000S	54:53:17.40000E	30:10:32.24599S	58:44:04.46955E	90.00000	268.06441	200.00000
test146	30:13:55.50000S	54:53:17.40000E	26:53:23.96278S	54:53:17.40000E	0.00000	180.00000	200.00000
test147	30:13:55.50000S	54:53:17.40000E	33:34:20.90547S	54:53:17.40000E	180.00000	360.00000	200.00000
test148	30:13:55.50000S	54:53:17.40000E	30:10:32.24599S	51:02:30.33045E	270.00000	91.93559	200.00000
test149	30:13:55.50000S	54:53:17.40000E	27:52:57.82170S	57:35:36.72392E	46.00000	224.68558	200.00000
test150	30:13:55.50000S	54:53:17.40000E	32:12:18.30198S	58:01:31.85506E	127.00000	305.37336	200.00000
test151	30:13:55.50000S	54:53:17.40000E	33:23:02.92727S	53:35:33.92865E	199.00000	19.68306	200.00000
test152	30:13:55.50000S	54:53:17.40000E	29:46:10.92312S	51:05:09.54001E	277.00000	98.90168	200.00000
test153	30:13:55.50000S	54:53:17.40000E	30:13:55.47966S	54:55:35.92341E	90.00000	269.98063	2.00000
test154	30:13:55.50000S	54:53:17.40000E	30:11:55.21431S	54:53:17.40000E	0.00000	180.00000	2.00000
test155	30:13:55.50000S	54:53:17.40000E	30:15:55.78508S	54:53:17.40000E	180.00000	360.00000	2.00000
test156	30:13:55.50000S	54:53:17.40000E	30:13:55.47966S	54:50:58.87659E	270.00000	90.01937	2.00000
test157	30:13:55.50000S	54:53:17.40000E	30:12:31.93209S	54:54:57.02201E	46.00000	225.98607	2.00000
test158	30:13:55.50000S	54:53:17.40000E	30:15:07.87646S	54:55:08.05224E	127.00000	306.98452	2.00000
test159	30:13:55.50000S	54:53:17.40000E	30:15:49.22963S	54:52:32.28676E	199.00000	19.00631	2.00000
test160	30:13:55.50000S	54:53:17.40000E	30:13:40.82086S	54:50:59.91478E	277.00000	97.01923	2.00000
test161	30:13:55.50000S	54:53:17.40000E	18:52:29.86498S	108:49:20.15190E	90.00000	246.00043	3000.00000
test162	30:13:55.50000S	54:53:17.40000E	19:58:48.22673N	54:53:17.40000E	0.00000	180.00000	3000.00000
test163	30:13:55.50000S	54:53:17.40000E	80:08:58.44983S	54:53:17.40000E	180.00000	0.00000	3000.00000
test164	30:13:55.50000S	54:53:17.40000E	18:52:29.86498S	0:57:14.64810E	270.00000	113.99957	3000.00000
test165	30:13:55.50000S	54:53:17.40000E	7:58:13.96628N	88:37:37.35172E	46.00000	218.90713	3000.00000
test166	30:13:55.50000S	54:53:17.40000E	46:16:23.75384S	116:51:12.92431E	127.00000	265.83428	3000.00000
test167	30:13:55.50000S	54:53:17.40000E	71:41:54.15847S	2:36:27.57861E	199.00000	63.35732	3000.00000
test168	30:13:55.50000S	54:53:17.40000E	14:01:56.87883S	3:23:24.56420E	277.00000	117.80900	3000.00000
test169	71:03:45.50000S	155:13:37.40000E	70:47:04.46404S	165:21:13.27121E	90.00000	260.42680	200.00000
test170	71:03:45.50000S	155:13:37.40000E	67:44:32.20108S	155:13:37.40000E	360.00000	180.00000	200.00000
test171	71:03:45.50000S	155:13:37.40000E	74:22:54.50904S	155:13:37.40000E	180.00000	360.00000	200.00000
test172	71:03:45.50000S	155:13:37.40000E	70:47:04.46404S	145:06:01.52879E	270.00000	99.57320	200.00000
test173	71:03:45.50000S	155:13:37.40000E	68:37:38.70618S	161:47:11.03268E	46.00000	219.84014	200.00000
test174	71:03:45.50000S	155:13:37.40000E	72:51:42.35787S	164:14:58.08728E	127.00000	298.41826	200.00000
test175	71:03:45.50000S	155:13:37.40000E	74:09:55.67082S	151:16:06.01068E	199.00000	22.77938	200.00000
test176	71:03:45.50000S	155:13:37.40000E	70:23:23.03906S	145:22:23.31016E	277.00000	106.30428	200.00000
test177	71:03:45.50000S	155:13:37.40000E	71:03:45.39916S	155:19:45.39068E	90.00000	269.90331	2.00000
test178	71:03:45.50000S	155:13:37.40000E	71:01:45.98931S	155:13:37.40000E	360.00000	180.00000	2.00000
test179	71:03:45.50000S	155:13:37.40000E	71:05:45.01026S	155:13:37.40000E	180.00000	0.00000	2.00000
test180	71:03:45.50000S	155:13:37.40000E	71:03:45.39916S	155:07:29.40932E	270.00000	90.09669	2.00000
test181	71:03:45.50000S	155:13:37.40000E	71:02:22.42883S	155:18:01.80054E	46.00000	225.93054	2.00000
test182	71:03:45.50000S	155:13:37.40000E	71:04:57.35874S	155:18:31.58931E	127.00000	306.92270	2.00000
test183	71:03:45.50000S	155:13:37.40000E	71:05:38.48847S	155:11:37.40237E	199.00000	19.03153	2.00000
test184	71:03:45.50000S	155:13:37.40000E	71:03:30.83602S	155:07:32.22736E	277.00000	97.09595	2.00000
test185	71:03:45.50000S	155:13:37.40000E	37:33:28.76348S	130:07:28.60879W	90.00000	204.21144	3000.00000
test186	71:03:45.50000S	155:13:37.40000E	21:04:35.11214S	155:13:37.40000E	360.00000	180.00000	3000.00000
test187	71:03:45.50000S	155:13:37.40000E	59:09:32.80147S	24:46:22.60000W	180.00000	180.00000	3000.00000
test188	71:03:45.50000S	155:13:37.40000E	37:33:28.76348S	80:34:43.40879E	270.00000	155.78856	3000.00000

test189	$71: 03: 45.50000 \mathrm{~S}$	$155: 13: 37.40000 \mathrm{E}$	$25: 50: 57.88581 \mathrm{~S}$	$167: 05: 40.45264 \mathrm{~W}$	46.00000	195.07128	3000.00000
test190	$71: 03: 45.50000 \mathrm{~S}$	$155: 13: 37.40000 \mathrm{E}$	$49: 25: 34.58238 \mathrm{~S}$	$94: 31: 25.79851 \mathrm{~W}$	127.00000	203.51009	3000.00000
test191	$71: 03: 45.50000 \mathrm{~S}$	$155: 13: 37.40000 \mathrm{E}$	$57: 40: 40.95961 \mathrm{~S}$	$2: 56: 35.65351 \mathrm{E}$	199.00000	168.59567	3000.00000
test192	$71: 03: 45.50000 \mathrm{~S}$	$155: 13: 37.40000 \mathrm{E}$	$35: 23: 25.31483 \mathrm{~S}$	$86: 40: 04.05968 \mathrm{E}$	277.00000	156.67990	3000

WGS84PtIsOnGeodesic Test Results

Test Identifier	Geodesic Start Point Latitude	Geodesic Start Point Longitude	Geodesic End Point Latitude	Geodesic End Point Longitude	Test Point Latitude	Test Point Longitude	Length Code	Result
test1	40:10:24.50000N	70:12:45.60000W	42:04:35.80000N	68:12:34.70000W	41:32:28.56417N	68:47:19.47018W	0	1
test2	40:10:24.50000N	70:12:45.60000W	42:04:35.80000N	68:12:34.70000W	42:04:35.80000N	68:12:34.70000W	0	1
test3	40:10:24.50000N	70:12:45.60000W	42:04:35.80000N	68:12:34.70000W	41:47:53.25338N	68:30:44.96922W	0	1
test4	40:10:24.50000N	70:12:45.60000W	42:04:35.80000N	68:12:34.70000W	41:26:00.91053N	68:54:13.28237W	0	1
test5	40:10:24.50000N	70:12:45.60000W	42:04:35.80000N	68:12:34.70000W	41:09:22.65915N	69:11:50.60000W	0	1
test6	40:10:24.50000N	70:12:45.60000W	42:04:35.80000N	68:12:34.70000W	40:10:24.50000N	70:12:45.60000W	0	1
test7	42:04:35.80000N	68:12:34.70000W	40:10:24.50000N	70:12:45.60000W	42:04:35.80000N	68:12:34.70000W	0	1
test8	42:04:35.80000N	68:12:34.70000W	40:10:24.50000N	70:12:45.60000W	41:09:22.65915N	69:11:50.60000W	0	1
test9	42:04:35.80000N	68:12:34.70000W	40:10:24.50000N	70:12:45.60000W	40:10:24.50000N	70:12:45.60000W	0	1
test10	42:04:35.80000N	68:12:34.70000W	40:10:24.50000N	70:12:45.60000W	38:47:17.80000N	69:11:50.60000W	0	0
test11	42:04:35.80000N	68:12:34.70000W	40:10:24.50000N	70:12:45.60000W	39:35:17.80000N	69:11:50.60000W	0	0
test12	42:04:35.80000N	68:12:34.70000W	40:10:24.50000N	70:12:45.60000W	44:47:17.80000N	69:11:50.60000W	0	0
test13	40:10:24.50000N	68:12:45.60000E	42:04:35.80000N	70:12:34.70000E	41:47:17.80000N	68:11:50.60000E	0	0
test14	40:10:24.50000N	68:12:45.60000E	42:04:35.80000N	70:12:34.70000E	42:04:35.80000N	70:12:34.70000E	0	1
test15	40:10:24.50000N	68:12:45.60000E	42:04:35.80000N	70:12:34.70000E	41:47:18.13124N	69:53:49.92815E	0	1
test16	40:10:24.50000N	68:12:45.60000E	42:04:35.80000N	70:12:34.70000E	40:29:59.59453N	68:32:40.35274E	0	1
test17	40:10:24.50000N	68:12:45.60000E	42:04:35.80000N	70:12:34.70000E	40:29:10.95567N	68:31:50.60000E	0	1
test18	40:10:24.50000N	68:12:45.60000E	42:04:35.80000N	70:12:34.70000E	40:10:24.50000N	68:12:45.60000E	0	1
test19	42:04:35.80000N	70:12:34.70000E	40:10:24.50000N	68:12:45.60000E	40:43:56.24806N	68:47:00.28971E	0	1
test20	42:04:35.80000N	70:12:34.70000E	40:10:24.50000N	68:12:45.60000E	41:07:48.28268N	69:11:50.60000E	0	1
test21	42:04:35.80000N	70:12:34.70000E	40:10:24.50000N	68:12:45.60000E	40:10:24.50000N	68:12:45.60000E	0	1
test22	42:04:35.80000N	70:12:34.70000E	40:10:24.50000N	68:12:45.60000E	40:27:32.30453N	68:30:09.76991E	0	1
test23	42:04:35.80000N	70:12:34.70000E	40:10:24.50000N	68:12:45.60000E	38:47:17.80000N	72:11:50.60000E	0	0
test24	42:04:35.80000N	70:12:34.70000E	40:10:24.50000N	68:12:45.60000E	43:47:17.80000N	72:11:50.60000E	0	0
test25	41:50:24.50000S	70:12:45.60000W	39:55:35.80000S	68:12:34.70000W	40:12:17.80000S	69:11:50.60000W	0	0
test26	41:50:24.50000S	70:12:45.60000W	39:55:35.80000S	68:12:34.70000W	39:55:35.80000S	68:12:34.70000W	0	1
test27	41:50:24.50000S	70:12:45.60000W	39:55:35.80000S	68:12:34.70000W	40:12:53.41991S	68:30:06.40714W	0	1
test28	41:50:24.50000S	70:12:45.60000W	39:55:35.80000S	68:12:34.70000W	40:34:15.03903S	68:52:01.67681W	0	1
test29	41:50:24.50000S	70:12:45.60000W	39:55:35.80000S	68:12:34.70000W	40:53:18.36384S	69:11:50.60000W	0	1
test30	41:50:24.50000S	70:12:45.60000W	39:55:35.80000S	68:12:34.70000W	41:50:24.50000S	70:12:45.60000W	0	1
test31	39:55:35.80000S	68:12:34.70000W	41:50:24.50000S	70:12:45.60000W	41:50:24.50000S	70:12:45.60000W	0	1
test32	39:55:35.80000S	68:12:34.70000W	41:50:24.50000S	70:12:45.60000W	40:53:18.36384S	69:11:50.60000W	0	1
test33	39:55:35.80000S	68:12:34.70000W	41:50:24.50000S	70:12:45.60000W	41:50:24.50000S	70:12:45.60000W	0	1
test34	39:55:35.80000S	68:12:34.70000W	41:50:24.50000S	70:12:45.60000W	42:12:17.80000S	69:11:50.60000W	0	0
test35	39:55:35.80000S	68:12:34.70000W	41:50:24.50000S	70:12:45.60000W	38:12:17.80000S	69:11:50.60000W	0	0
test36	39:55:35.80000S	68:12:34.70000W	41:50:24.50000S	70:12:45.60000W	43:12:17.80000S	69:11:50.60000W	0	0
test37	41:50:24.50000S	68:12:45.60000E	39:55:35.80000S	70:12:34.70000E	40:12:17.80000S	68:11:50.60000E	0	0
test38	41:50:24.50000S	68:12:45.60000E	39:55:35.80000S	70:12:34.70000E	39:55:35.80000S	70:12:34.70000E	0	1
test39	41:50:24.50000S	68:12:45.60000E	39:55:35.80000S	70:12:34.70000E	40:13:19.06538S	69:54:40.06070E	0	1
test40	41:50:24.50000S	68:12:45.60000E	39:55:35.80000S	70:12:34.70000E	40:11:49.41238S	69:56:11.14294E	0	1

test41	$41: 50: 24.50000 \mathrm{~S}$	$68: 12: 45.60000 \mathrm{E}$	$39: 55: 35.80000 \mathrm{~S}$	$70: 12: 34.70000 \mathrm{E}$	$40: 54: 53.06605 \mathrm{~S}$	$69: 11: 50.60000 \mathrm{E}$
test 42	$41: 50: 24.50000 \mathrm{~S}$	$68: 12: 45.60000 \mathrm{E}$	$39: 55: 35.80000 \mathrm{~S}$	$70: 12: 34.70000 \mathrm{E}$	$41: 50: 24.50000 \mathrm{~S}$	$68: 12: 45.60000 \mathrm{E}$
test43	$39: 55: 35.80000 \mathrm{~S}$	$70: 12: 34.70000 \mathrm{E}$	$41: 50: 24.50000 \mathrm{~S}$	$68: 12: 45.6000 \mathrm{E}$	$39: 55: 35.80000 \mathrm{~S}$	
test44	$39: 55: 35.80000 \mathrm{~S}$	$70: 12: 34.70000 \mathrm{E}$	$41: 50: 24.50000 \mathrm{~S}$	$68: 12: 45.60000 \mathrm{E}$	$41: 47: 33.72993 \mathrm{~S}$	
test45	$39: 55: 35.80000 \mathrm{~S}$	$70: 12: 34.70000 \mathrm{E}$	$41: 50: 24.50000 \mathrm{~S}$	$68: 12: 45.60000 \mathrm{E}$	$41: 50: 24.50000 \mathrm{~S}$	$68: 15: 50.60000 \mathrm{E}$
test 46	$39: 55: 35.80000 \mathrm{~S}$	$70: 12: 34.70000 \mathrm{E}$	$41: 50: 24.50000 \mathrm{~S}$	$68: 12: 45.60000 \mathrm{E}$	$43: 29: 17.80000 \mathrm{~S}$	$69: 11: 50.60000 \mathrm{E}$
test47	$39: 55: 35.8000 \mathrm{~S}$	$70: 12: 34.70000 \mathrm{E}$	$41: 50: 24.50000 \mathrm{~S}$	$68: 12: 45.60000 \mathrm{E}$	$38: 29: 17.80000 \mathrm{~S}$	$69: 11: 50.60000 \mathrm{E}$
test48	$39: 55: 35.80000 \mathrm{~S}$	$70: 12: 34.70000 \mathrm{E}$	$41: 50: 24.50000 \mathrm{~S}$	$68: 12: 45.60000 \mathrm{E}$	$41: 49: 17.80000 \mathrm{~S}$	69

WGS84PtIsOnArc Test Results

Test Identifier	Arc Center Latitude	Arc Center Longitude	Arc Radius	Arc Start Azimuth	Arc End Azimuth	Arc Direction	Test Point Latitude	Test Point Longitude	Result
test1	40:10:24.50000N	70:12:45.60000W	100.0	90.0	100.0	-1	39:55:12.84696N	68:04:03.03796W	1
test2	40:10:24.50000N	70:12:45.60000W	100.0	100.0	90.0	1	40:04:24.98785N	68:02:37.73455W	1
test3	40:10:24.50000N	70:12:45.60000W	100.0	100.0	90.0	1	40:27:01.27947N	68:03:50.83114W	0
test4	40:10:24.50000N	70:12:45.60000W	100.0	20.0	120.0	-1	39:39:01.64315N	68:09:21.02760W	1
test5	40:10:24.50000N	70:12:45.60000W	100.0	355.0	10.0	-1	41:50:27.82240N	70:11:34.70000W	1
test6	40:10:24.50000N	70:12:45.60000W	100.0	15.0	350.0	1	41:50:27.82240N	70:11:34.70000W	1
test7	40:10:24.50000N	70:12:45.60000W	100.0	15.0	350.0	-1	41:50:27.82240N	70:11:34.70000W	0
test8	40:10:24.50000N	70:12:45.60000W	100.0	250.0	300.0	-1	40:22:32.07141N	72:22:27.11102W	1
test9	40:10:24.50000N	70:12:45.60000W	100.0	330.0	200.0	1	41:12:48.70166N	71:55:32.15119W	1
test10	40:10:24.50000N	70:12:45.60000W	100.0	200.0	230.0	-1	38:51:33.35407N	68:53:10.34405W	0
test11	40:10:24.50000N	70:12:45.60000E	100.0	90.0	100.0	-1	39:57:28.59246N	72:21:55.36432E	1
test12	40:10:24.50000N	70:12:45.60000E	100.0	100.0	90.0	1	40:04:25.10140N	72:22:53.47612E	1
test13	40:10:24.50000N	70:12:45.60000E	100.0	100.0	90.0	1	40:26:53.80980N	72:21:41.88661E	0
test14	40:10:24.50000N	70:12:45.60000E	100.0	20.0	120.0	-1	39:39:10.70047N	72:16:14.18085E	1
test15	40:10:24.50000N	70:12:45.60000E	100.0	355.0	10.0	-1	41:50:27.82240N	70:11:34.70000E	1
test16	40:10:24.50000N	70:12:45.60000E	100.0	15.0	350.0	1	41:50:27.82240N	70:11:34.70000E	1
test17	40:10:24.50000N	70:12:45.60000E	100.0	15.0	350.0	-1	41:50:27.82240N	70:11:34.70000E	0
test18	40:10:24.50000N	70:12:45.60000E	100.0	250.0	300.0	-1	40:22:28.60052N	68:03:03.59248E	1
test19	40:10:24.50000N	70:12:45.60000E	100.0	330.0	200.0	1	41:13:31.30530N	68:30:43.58125E	1
test20	40:10:24.50000N	70:12:45.60000E	100.0	200.0	230.0	-1	39:05:41.34977N	71:51:29.95766E	0
test21	40:10:24.50000S	70:12:45.60000E	100.0	90.0	100.0	-1	40:12:40.39213S	72:23:13.39076E	1
test22	40:10:24.50000S	70:12:45.60000E	100.0	100.0	90.0	1	40:04:25.10140S	72:22:53.47612E	0
test23	40:10:24.50000S	70:12:45.60000E	100.0	100.0	90.0	1	39:39:10.70047S	72:16:14.18085E	0
test24	40:10:24.50000S	70:12:45.60000E	100.0	20.0	120.0	-1	40:26:53.80980S	72:21:41.88661E	1
test25	40:10:24.50000S	70:12:45.60000E	100.0	355.0	10.0	-1	38:30:19.45513S	70:11:34.70000E	1
test26	40:10:24.50000S	70:12:45.60000E	100.0	15.0	350.0	1	38:30:19.45513S	70:11:34.70000E	1
test27	40:10:24.50000S	70:12:45.60000E	100.0	15.0	350.0	-1	38:30:19.45513S	70:11:34.70000E	0
test28	40:10:24.50000S	70:12:45.60000E	100.0	250.0	300.0	-1	40:23:20.88344S	68:03:11.35606E	1
test29	40:10:24.50000S	70:12:45.60000E	100.0	330.0	200.0	1	39:47:33.58163S	68:06:05.87892E	1
test30	40:10:24.50000S	70:12:45.60000E	100.0	200.0	230.0	-1	41:45:30.73148S	70:53:47.69121E	0
test31	40:10:24.50000S	70:12:45.60000W	100.0	90.0	100.0	-1	40:12:32.98018S	68:02:17.71481W	1
test32	40:10:24.50000S	70:12:45.60000W	100.0	100.0	90.0	1	40:04:11.30750S	68:02:39.04105W	0
test33	40:10:24.50000S	70:12:45.60000W	100.0	100.0	90.0	1	39:23:12.36192S	68:18:22.61369W	0
test34	40:10:24.50000S	70:12:45.60000W	100.0	20.0	120.0	-1	40:39:21.80200S	68:07:26.05449W	1
test35	40:10:24.50000S	70:12:45.60000W	100.0	355.0	10.0	-1	38:30:19.45513S	70:11:34.70000W	1
test36	40:10:24.50000S	70:12:45.60000W	100.0	15.0	350.0	1	38:30:19.45513S	70:11:34.70000W	1
test37	40:10:24.50000S	70:12:45.60000W	100.0	15.0	350.0	-1	38:30:19.45513S	70:11:34.70000W	0
test38	40:10:24.50000S	70:12:45.60000W	100.0	250.0	300.0	-1	40:23:44.12558S	72:22:16.19656W	1
test39	40:10:24.50000S	70:12:45.60000W	100.0	330.0	200.0	1	39:54:28.73386S	72:21:18.43758W	1
test40	40:10:24.50000S	70:12:45.60000W	100.0	200.0	230.0	-1	41:29:48.15752S	68:52:34.09229W	0

WGS84PtIsOnLocus Test Results

Test Identifi er	Geodesic Start Latitude	Geodesic Start Longitude	Geodesic End Latitude	Geodesic End Longitude	Locus Start Latitude	Locus StarT Longitude	Locus End Latitude	Locus End Longitude	Locus Start Distanc $\mathrm{e}(\mathrm{nm})$	$\begin{array}{\|l\|} \hline \text { Locus } \\ \text { E nd } \\ \text { Distanc } \\ \mathrm{e}(\mathrm{mn}) \\ \hline \end{array}$	Test Point Latitude	Test Point Longitude	(ti
test1	$\begin{array}{\|l\|} \hline 42: 54: 35.0000 \\ 0 \mathrm{~N} \end{array}$	$\begin{aligned} & \hline 70: 51: 34.00000 \\ & \mathrm{~W} \end{aligned}$	$\begin{aligned} & 42: 54: 31.7652 \\ & 1 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \hline 70: 24: 21.10373 \\ & \mathrm{~W} \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline 42: 55: 05.0078 \\ 2 \mathrm{~N} \end{array}$	$\begin{array}{\|l\|} \hline 70: 51: 34.00000 \\ \text { W } \end{array}$	$\begin{array}{\|l\|} \hline 42: 55: 01.7725 \\ 9 \mathrm{~N} \end{array}$	$\begin{array}{\|l\|} \hline 70: 24: 20.8836 \\ 8 \mathrm{~N} \end{array}$	-0.5	-0.5	$\begin{aligned} & \text { 42:55:05.0017 } \\ & 5 \mathrm{~N} \end{aligned}$	$\begin{array}{\|l\|} \hline 70: 50: 23.28330 \\ \mathrm{~W} \end{array}$	1
test2	$\begin{array}{\|l} \hline 42: 54: 35.0000 \\ 0 \mathrm{~N} \end{array}$	$\begin{aligned} & \text { 70:51:34.00000 } \\ & \text { W } \end{aligned}$	$\begin{aligned} & 42: 54: 31.7652 \\ & 1 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \hline 70: 24: 21.10373 \\ & \mathrm{~W} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 42:55:05.0078 } \\ & 2 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:51:34.00000 } \\ & \text { W } \end{aligned}$	$\begin{aligned} & \text { 42:55:01.7725 } \\ & 9 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 24: 20.8836 \\ & 8 \mathrm{~N} \end{aligned}$	-0.5	-0.5	$\begin{aligned} & 42: 55: 05.0077 \\ & 1 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \hline 70: 51: 24.71201 \\ & \mathrm{~W} \end{aligned}$	1
test3	$\begin{array}{\|l} \hline 42: 54: 35.0000 \\ 0 \mathrm{~N} \\ \hline \end{array}$	$\begin{aligned} & \hline 70: 51: 34.00000 \\ & \mathrm{~W} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 42:54:31.7652 } \\ & 1 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 70: 24: 21.10373 \\ \mathrm{~W} \\ \hline \end{array}$	$\begin{aligned} & \text { 42:55:35.0155 } \\ & 9 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 70: 51: 34.00000 \\ & \mathrm{~W} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 42: 55: 31.7799 \\ & 3 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline 70: 24: 20.6635 \\ 6 \mathrm{~N} \\ \hline \end{array}$	-1.0	-1.0	$\begin{aligned} & \hline 42: 55: 35.0077 \\ & 6 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline 70: 50: 13.66761 \\ \mathrm{~W} \\ \hline \end{array}$	1
test4	$\begin{aligned} & \text { 42:54:35.0000 } \\ & 0 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 51: 34.00000 \\ & \text { W } \end{aligned}$	$\begin{aligned} & 42: 54: 31.7652 \\ & 1 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 24: 21.10373 \\ & \mathrm{~W} \\ & \hline \end{aligned}$	$\begin{aligned} & 42: 52: 34.9683 \\ & \text { 0N } \end{aligned}$	$\begin{aligned} & \text { 70:51:34.00000 } \\ & \text { W } \end{aligned}$	$\begin{aligned} & 42: 52: 19.7321 \\ & 9 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 24: 22.0712 \\ & 7 \mathrm{~N} \end{aligned}$	2.0	2.2	$\begin{aligned} & 42: 52: 34.0141 \\ & 3 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \hline 70: 49: 26.93090 \\ & \mathrm{~W} \end{aligned}$	1
test5	$\begin{array}{\|l} \hline 42: 54: 35.0000 \\ 0 \mathrm{~N} \end{array}$	$\begin{aligned} & 70: 51: 34.00000 \\ & \mathrm{~W} \end{aligned}$	$\begin{aligned} & 42: 54: 31.7652 \\ & 1 \mathrm{~N} \end{aligned}$	$\begin{array}{\|l\|} \hline 70: 24: 21.10373 \\ \mathrm{~W} \\ \hline \end{array}$	$\begin{aligned} & 42: 57: 35.0462 \\ & 4 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \hline 70: 51: 34.00000 \\ & \text { W } \end{aligned}$	$\begin{aligned} & \hline 42: 53: 31.7503 \\ & 1 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 70: 24: 21.5436 \\ 7 \mathrm{~N} \\ \hline \end{array}$	-3.0	1.0	$\begin{aligned} & \hline 42: 56: 58.6919 \\ & 6 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 70: 47: 27.05896 \\ \mathrm{~W} \\ \hline \end{array}$	1
test6	$\begin{array}{\|l} \hline 42: 54: 35.0000 \\ 0 \mathrm{~N} \end{array}$	$\begin{aligned} & \hline 70: 51: 34.00000 \\ & \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 42:54:31.7652 } \\ & 1 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \hline 70: 24: 21.10373 \\ & \mathrm{~W} \end{aligned}$	$\begin{array}{\|l} \hline 42: 50: 34.9359 \\ 0 \mathrm{~N} \end{array}$	$\begin{aligned} & \hline 70: 51: 34.00000 \\ & \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 42:50:31.7045 } \\ & 5 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 24: 22.8620 \\ & 5 \mathrm{~N} \end{aligned}$	4.0	4.0	$\begin{aligned} & \text { 42:50:34.8184 } \\ & 3 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \hline 70: 46: 22.99515 \\ & \mathrm{~W} \end{aligned}$	1
test7	$\begin{array}{\|l} \hline 42: 54: 35.0000 \\ 0 \mathrm{~N} \end{array}$	$\begin{aligned} & 70: 51: 34.00000 \\ & \text { W } \end{aligned}$	$\begin{aligned} & 42: 54: 31.7652 \\ & 1 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:24:21.10373 } \\ & \text { W } \end{aligned}$	$\begin{aligned} & 42: 59: 35.0761 \\ & 8 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:51:34.00000 } \\ & \mathrm{W} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 42: 59: 01.8300 \\ 8 \mathrm{~N} \end{array}$	$\begin{array}{\|l} \hline 70: 24: 19.1210 \\ 9 \mathrm{~N} \\ \hline \end{array}$	-5.0	-4.5	$\begin{aligned} & 42: 59: 28.7760 \\ & 9 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 70: 45: 58.16124 \\ & \mathrm{~W} \end{aligned}$	1
test8	$\begin{array}{\|l} \hline 42: 54: 35.0000 \\ 0 \mathrm{~N} \end{array}$	$\begin{aligned} & \text { 70:51:34.00000 } \\ & \text { W } \end{aligned}$	$\begin{aligned} & 42: 54: 31.7652 \\ & 1 \mathrm{~N} \end{aligned}$	$\begin{array}{\|l\|} \hline 70: 24: 21.10373 \\ \mathrm{~W} \\ \hline \end{array}$	$\begin{aligned} & 42: 48: 34.9027 \\ & 9 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \hline 70: 51: 34.00000 \\ & \mathrm{~W} \end{aligned}$	$\begin{array}{\|l\|} \hline 42: 48: 07.6668 \\ 0 \mathrm{~N} \end{array}$	$\begin{aligned} & 70: 24: 23.9152 \\ & 2 \mathrm{~N} \end{aligned}$	6.0	6.4	$\begin{aligned} & \text { 42:48:27.5379 } \\ & 7 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \hline 70: 43: 32.97138 \\ & \mathrm{~W} \end{aligned}$	1
test9	$\begin{array}{\|l} \hline 42: 54: 35.0000 \\ 0 \mathrm{~N} \\ \hline \end{array}$	$\begin{aligned} & \hline 70: 51: 34.00000 \\ & \mathrm{~W} \end{aligned}$	$\begin{aligned} & 42: 54: 31.7652 \\ & 1 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:24:21.10373 } \\ & \mathrm{W} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 43:01:35.1054 } \\ & 3 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \hline 70: 51: 34.00000 \\ & \mathrm{~W} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 43:01:31.8645 } \\ & 9 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 24: 18.0175 \\ & 4 \mathrm{~N} \\ & \hline \end{aligned}$	-7.0	-7.0	$\begin{aligned} & \text { 43:01:34.9363 } \\ & 5 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \hline 70: 45: 20.32134 \\ & \mathrm{~W} \\ & \hline \end{aligned}$	1
test10	$\begin{array}{\|l} \hline 42: 54: 35.0000 \\ 0 \mathrm{~N} \\ \hline \end{array}$	$\begin{aligned} & \text { 70:51:34.00000 } \\ & \text { W } \end{aligned}$	$\begin{aligned} & \text { 42:54:31.7652 } \\ & 1 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \hline 70: 24: 21.10373 \\ & \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 42:46:34.8689 } \\ & 9 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \hline 70: 51: 34.00000 \\ & \mathrm{~W} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 42:53:31.7503 } \\ & 1 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 70: 24: 21.5436 \\ 7 \mathrm{~N} \\ \hline \end{array}$	8.0	1.0	$\begin{array}{\|l\|} \hline 42: 48: 36.3742 \\ 8 \mathrm{~N} \end{array}$	$\begin{array}{\|l} \hline 70: 43: 41.44040 \\ \mathrm{~W} \end{array}$	1
test11	$\begin{array}{\|l} \hline 42: 54: 35.0000 \\ 0 \mathrm{~N} \end{array}$	$\begin{aligned} & \hline 70: 51: 34.00000 \\ & \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 42:54:31.7652 } \\ & 1 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \hline 70: 24: 21.10373 \\ & \mathrm{~W} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 42:55:05.0078 } \\ & 2 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \hline 70: 51: 34.00000 \\ & \text { W } \end{aligned}$	$\begin{array}{\|l} \hline 42: 55: 01.7725 \\ 9 \mathrm{~N} \end{array}$	$\begin{array}{\|l\|} \hline 70: 24: 20.8836 \\ 8 \mathrm{~N} \end{array}$	-0.5	-0.5	$\begin{array}{\|l} \hline 42: 53: 60.0000 \\ 0 \mathrm{~N} \end{array}$	$\begin{aligned} & \hline 70: 50: 23.28330 \\ & \mathrm{~W} \end{aligned}$	0
test12	$\begin{aligned} & \text { 42:54:35.0000 } \\ & 0 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 51: 34.00000 \\ & \text { W } \end{aligned}$	$\begin{aligned} & 42: 54: 31.7652 \\ & 1 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \hline 70: 24: 21.10373 \\ & \mathrm{~W} \\ & \hline \end{aligned}$	$\begin{aligned} & 42: 46: 34.8689 \\ & 9 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:51:34.00000 } \\ & \mathrm{W} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 42:46:31.6410 } \\ & 8 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline 70: 24: 24.6165 \\ 8 \mathrm{~N} \\ \hline \end{array}$	8.0	8.0	$\begin{aligned} & \text { 42:42:00.0000 } \\ & 0 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline 70: 43: 42.62942 \\ \mathrm{~W} \\ \hline \end{array}$	0
test13	$\begin{array}{\|l} \hline 42: 54: 35.0000 \\ \text { OS } \\ \hline \end{array}$	$\begin{aligned} & \text { 70:51:34.00000 } \\ & \text { W } \end{aligned}$	$\begin{array}{\|l\|} \hline 42: 54: 31.7652 \\ 1 \mathrm{~S} \\ \hline \end{array}$	$\begin{array}{\|l} \hline 70: 24: 21.10373 \\ \mathrm{~W} \\ \hline \end{array}$	$\begin{aligned} & \text { 42:54:04.9921 } \\ & 4 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 70:51:34.00000 } \\ & \text { W } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 42: 54: 01.7577 \\ & 8 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 70: 24: 21.3237 \\ & 3 \mathrm{~S} \end{aligned}$	-0.5	-0.5	$\begin{array}{\|l} \hline 42: 54: 04.9860 \\ 8 \mathrm{~S} \end{array}$	$\begin{array}{\|l\|} \hline 70: 50: 23.30236 \\ \mathrm{~W} \end{array}$	1
test14	$\begin{aligned} & \text { 42:54:35.0000 } \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \hline 70: 51: 34.00000 \\ & \mathrm{~W} \end{aligned}$	$\begin{aligned} & 42: 54: 31.7652 \\ & 1 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \hline 70: 24: 21.10373 \\ & \mathrm{~W} \\ & \hline \end{aligned}$	$\begin{aligned} & 42: 54: 04.9921 \\ & 4 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \hline 70: 51: 34.00000 \\ & \mathrm{~W} \end{aligned}$	$\begin{array}{\|l} \hline 42: 54: 01.7577 \\ 8 \mathrm{~S} \end{array}$	$\begin{array}{\|l} \hline 70: 24: 21.3237 \\ 3 \mathrm{~S} \end{array}$	-0.5	-0.5	$\begin{aligned} & \text { 42:54:04.9920 } \\ & 4 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & 70: 51: 24.70232 \\ & \mathrm{~W} \\ & \hline \end{aligned}$	1
test15	$\begin{array}{\|l} \hline 42: 54: 35.0000 \\ \text { OS } \end{array}$	$\begin{aligned} & \text { 70:51:34.00000 } \\ & \text { W } \end{aligned}$	$\begin{aligned} & 42: 54: 31.7652 \\ & 1 \mathrm{~S} \end{aligned}$	$\begin{array}{\|l\|} \hline 70: 24: 21.10373 \\ \mathrm{~W} \\ \hline \end{array}$	$\begin{aligned} & 42: 55: 35.0155 \\ & 9 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 70:51:34.00000 } \\ & \text { W } \end{aligned}$	$\begin{aligned} & \text { 42:55:31.7799 } \\ & 3 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 70: 24: 20.6635 \\ & 6 \mathrm{~S} \end{aligned}$	1.0	1.0	$\begin{aligned} & \text { 42:55:35.0077 } \\ & \text { 6S } \end{aligned}$	$\begin{array}{\|l} \hline 70: 50: 13.66761 \\ \mathrm{~W} \end{array}$	1
test16	$\begin{aligned} & \text { 42:54:35.0000 } \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 70:51:34.00000 } \\ & \mathrm{W} \\ & \hline \end{aligned}$	$\begin{aligned} & 42: 54: 31.7652 \\ & 1 \mathrm{~S} \end{aligned}$	$\begin{array}{\|l} \hline 70: 24: 21.10373 \\ \mathrm{~W} \\ \hline \end{array}$	$\begin{aligned} & \text { 42:52:34.9683 } \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 70:51:34.00000 } \\ & \text { W } \\ & \hline \end{aligned}$	$\begin{aligned} & 42: 52: 19.7321 \\ & 9 \mathrm{~S} \end{aligned}$	$\begin{array}{\|l\|} \hline 70: 24: 22.0712 \\ 7 \mathrm{~S} \end{array}$	-2.0	-2.2	$\begin{aligned} & 42: 52: 34.0141 \\ & 3 \mathrm{~S} \end{aligned}$	$\begin{array}{\|l} \hline 70: 49: 26.93090 \\ \mathrm{~W} \\ \hline \end{array}$	1
test17	$\begin{aligned} & \text { 42:54:35.0000 } \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \hline 70: 51: 34.00000 \\ & \text { W } \end{aligned}$	$\begin{aligned} & \text { 42:54:31.7652 } \\ & 1 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 70: 24: 21.10373 \\ & \mathrm{~W} \end{aligned}$	$\begin{aligned} & 42: 57: 35.0462 \\ & 4 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \hline 70: 51: 34.00000 \\ & \mathrm{~W} \end{aligned}$	$\begin{aligned} & \hline 42: 53: 31.7503 \\ & 1 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \hline 70: 24: 21.5436 \\ & 7 \mathrm{~S} \end{aligned}$	3.0	-1.0	$\begin{array}{\|l} \hline 42: 56: 58.6919 \\ 6 \mathrm{~S} \end{array}$	$\begin{array}{\|l\|} \hline 70: 47: 27.05896 \\ \mathrm{~W} \\ \hline \end{array}$	1
test18	$\begin{aligned} & \text { 42:54:35.0000 } \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 70:51:34.00000 } \\ & \text { W } \end{aligned}$	$\begin{aligned} & \text { 42:54:31.7652 } \\ & \text { 1S } \end{aligned}$	$\begin{array}{\|l\|} \hline 70: 24: 21.10373 \\ \mathrm{~W} \\ \hline \end{array}$	$\begin{aligned} & \text { 42:50:34.9359 } \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \hline 70: 51: 34.00000 \\ & \mathrm{~W} \end{aligned}$	$\begin{aligned} & 42: 50: 31.7045 \\ & 5 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 70: 24: 22.8620 \\ & 5 \mathrm{~S} \end{aligned}$	-4.0	-4.0	$\begin{aligned} & \text { 42:50:34.8184 } \\ & 3 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \hline 70: 46: 22.99515 \\ & \mathrm{~W} \end{aligned}$	1
test19	$\begin{aligned} & \text { 42:54:35.0000 } \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \hline 70: 51: 34.00000 \\ & \text { W } \end{aligned}$	$\begin{aligned} & 42: 54: 31.7652 \\ & \text { 1S } \end{aligned}$	$\begin{array}{\|l} \hline 70: 24: 21.10373 \\ \mathrm{~W} \\ \hline \end{array}$	$\begin{aligned} & 42: 59: 35.0761 \\ & 8 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \hline 70: 51: 34.00000 \\ & \mathrm{~W} \end{aligned}$	$\begin{aligned} & \hline 42: 59: 01.8300 \\ & 8 \mathrm{~S} \end{aligned}$	$\begin{array}{\|l} \hline 70: 24: 19.1210 \\ 9 \mathrm{~S} \end{array}$	5.0	4.5	$\begin{array}{\|l} \hline 42: 59: 28.7760 \\ 9 \mathrm{~S} \end{array}$	$\begin{array}{\|l} \hline 70: 45: 58.16124 \\ \mathrm{~W} \end{array}$	1
test20	$\begin{array}{\|l} \hline 42: 54: 35.0000 \\ \text { OS } \end{array}$	$\begin{aligned} & \text { 70:51:34.00000 } \\ & \mathrm{W} \end{aligned}$	$\begin{aligned} & 42: 54: 31.7652 \\ & 1 \mathrm{~S} \end{aligned}$	$\begin{array}{\|l\|} \hline 70: 24: 21.10373 \\ \mathrm{~W} \end{array}$	$\begin{aligned} & 42: 48: 34.9027 \\ & 9 \mathrm{~S} \end{aligned}$	$\begin{array}{\|l} \hline 70: 51: 34.00000 \\ \mathrm{~W} \\ \hline \end{array}$	$\begin{array}{\|l} 42: 48: 07.6668 \\ 0 \mathrm{~S} \end{array}$	$\begin{aligned} & 70: 24: 23.9152 \\ & 2 \mathrm{~S} \end{aligned}$	-6.0	-6.4	$\begin{aligned} & \text { 42:48:27.5379 } \\ & 7 \mathrm{~S} \end{aligned}$	$\begin{array}{\|l} \hline 70: 43: 32.97138 \\ \mathrm{~W} \end{array}$	1
test21	$\begin{aligned} & \hline 42: 54: 35.0000 \\ & \text { OS } \end{aligned}$	$\begin{array}{\|l} \hline 70: 51: 34.00000 \\ \mathrm{~W} \end{array}$	$\begin{aligned} & \text { 42:54:31.7652 } \\ & \text { 1S } \end{aligned}$	$\begin{array}{\|l} \hline 70: 24: 21.10373 \\ \mathrm{~W} \end{array}$	$\begin{array}{\|l\|} \hline 43: 01: 35.1054 \\ 3 \mathrm{~S} \end{array}$	$\begin{array}{\|l} \hline 70: 51: 34.00000 \\ \mathrm{~W} \\ \hline \end{array}$	$\begin{aligned} & \text { 43:01:31.8645 } \\ & 9 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 70: 24: 18.0175 \\ & 4 \mathrm{~S} \end{aligned}$	7.0	7.0	$\begin{aligned} & \text { 43:01:34.9363 } \\ & 5 \mathrm{~S} \end{aligned}$	$\begin{array}{\|l} \hline 70: 45: 20.32134 \\ \mathrm{~W} \end{array}$	1
test22	$\begin{aligned} & \text { 42:54:35.0000 } \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \hline 70: 51: 34.00000 \\ & \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 42:54:31.7652 } \\ & \text { 1S } \end{aligned}$	$\begin{aligned} & \text { 70:24:21.10373 } \\ & \mathrm{W} \end{aligned}$	$\begin{aligned} & 42: 46: 34.8689 \\ & 9 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \hline 70: 51: 34.00000 \\ & \text { W } \end{aligned}$	$\begin{aligned} & \text { 42:53:31.7503 } \\ & 1 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \hline 70: 24: 21.5436 \\ & 7 \mathrm{~S} \end{aligned}$	-8.0	-1.0	$\begin{aligned} & 42: 48: 36.3742 \\ & 8 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \hline 70: 43: 41.44040 \\ & \mathrm{~W} \end{aligned}$	1

test23	$\begin{array}{\|l\|l\|} \hline 42: 54: 35.0000 \\ 0 \mathrm{~S} \end{array}$	$\begin{aligned} & \text { 70:51:34.00000 } \\ & \mathrm{W} \end{aligned}$	$\begin{aligned} & \text { 42:54:31.7652 } \\ & \text { 1S } \end{aligned}$	$\begin{aligned} & \hline 70: 24: 21.10373 \\ & \mathrm{~W} \\ & \hline \end{aligned}$	$\begin{aligned} & 42: 54: 04.9921 \\ & 4 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 70: 51: 34.00000 \\ \mathrm{~W} \\ \hline \end{array}$	$\begin{array}{\|l} \hline 42: 54: 01.7577 \\ 8 \mathrm{~S} \\ \hline \end{array}$	$\begin{aligned} & 70: 24: 21.3237 \\ & 3 \mathrm{~S} \\ & \hline \end{aligned}$	-0.5	-0.5	$\begin{aligned} & \text { 42:53:60.0000 } \\ & \text { OS } \\ & \hline \end{aligned}$	$\begin{aligned} & 70: 50: 23.30236 \\ & \mathrm{~W} \end{aligned}$	0
test24	$\begin{aligned} & \text { 42:54:35.0000 } \\ & 0 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 70:51:34.00000 } \\ & \mathrm{W} \end{aligned}$	$\begin{aligned} & \text { 42:54:31.7652 } \\ & 1 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 70:24:21.10373 } \\ & \mathrm{W} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 42:46:34.8689 } \\ & 9 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 70:51:34.00000 } \\ & \mathrm{W} \end{aligned}$	$\begin{aligned} & \text { 42:46:31.6410 } \\ & 8 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 70:24:24.6165 } \\ & 8 \mathrm{~S} \\ & \hline \end{aligned}$	-8.0	-8.0	$\begin{array}{\|l\|} \hline \text { 42:42:00.0000 } \\ \text { oS } \end{array}$	$\begin{aligned} & \hline 70: 43: 42.62942 \\ & \mathrm{~W} \\ & \hline \end{aligned}$	

WGS84LocusCrsAtPoint Test Results

Test Identif ier	$\begin{aligned} & \text { Inpu } \\ & \mathrm{t} \end{aligned}$	Geodesic Start Latitude	Geodesic Start Longitude	Geodesic End Latitude	Geodesic End Longitude	Locus Start Latitude	Locus Start Longitude	Locus End Latitude	Locus End Longitude	Locus Start Distan ce (nm)	Locus End Distan ce (nm)	Test Point Latitude	Test Point Longitude
	Outp ut	Geodesic Point Latitude	Geodesic Point Longitude	Locus Azimuth at Test Point (degrees)	Azimuth from Test Point to Geodesic Point (degrees)								
Test1	$\begin{aligned} & \text { Inpu } \\ & \mathrm{t} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 42: 54: 35.00 \\ & 000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:51:34.000 } \\ & 00 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \hline 42: 54: 31.76 \\ & 521 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 24: 21.103 \\ & 73 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 42:55:05.00 } \\ & 782 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 70:51:34.000 } \\ & \text { 00W } \end{aligned}$	$\begin{aligned} & \text { 42:55:01.77 } \\ & 259 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & 70: 24: 20.88 \\ & 368 \mathrm{~N} \\ & \hline \end{aligned}$	-0.5	-0.5	$\begin{aligned} & 42: 55: 05.00 \\ & 175 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 50: 23.283 \\ & \text { 30W } \end{aligned}$
	Outp ut	$\begin{aligned} & 42: 54: 34.99 \\ & 393 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 50: 23.292 \\ & 83 \mathrm{~W} \end{aligned}$	180.01337	90.01337								
Test2	$\begin{aligned} & \text { Inpu } \\ & \mathrm{t} \end{aligned}$	$\begin{aligned} & 42: 54: 35.00 \\ & 000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:51:34.000 } \\ & 00 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \hline 42: 54: 31.76 \\ & 521 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:24:21.103 } \\ & 73 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 42: 55: 05.00 \\ & 782 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:51:34.000 } \\ & 00 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 42: 55: 01.77 \\ & 259 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 24: 20.88 \\ & 368 \mathrm{~N} \end{aligned}$	-0.5	-0.5	$\begin{aligned} & 42: 55: 05.00 \\ & 771 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 51: 24.712 \\ & 01 \mathrm{~W} \end{aligned}$
	Outp ut	$\begin{aligned} & 42: 54: 34.99 \\ & 990 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 51: 24.713 \\ & 27 \mathrm{~W} \end{aligned}$	180.00176	90.00176								
Test3	$\begin{aligned} & \text { Inpu } \\ & \mathrm{t} \end{aligned}$	$\begin{aligned} & 42: 54: 35.00 \\ & 000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:51:34.000 } \\ & 00 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 42: 54: 31.76 \\ & 521 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:24:21.103 } \\ & 73 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 42: 55: 35.01 \\ & 559 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:51:34.000 } \\ & \text { 00W } \end{aligned}$	$\begin{aligned} & 42: 55: 31.77 \\ & 993 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 24: 20.66 \\ & 356 \mathrm{~N} \end{aligned}$	-1.0	-1.0	$\begin{aligned} & 42: 55: 35.00 \\ & 776 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 50: 13.667 \\ & 61 \mathrm{~W} \end{aligned}$
	Outp ut	$\begin{aligned} & 42: 54: 34.99 \\ & 218 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:50:13.689 } \\ & 26 \mathrm{~W} \\ & \hline \end{aligned}$	180.01519	90.01519								
Test4	$\begin{aligned} & \text { Inpu } \\ & \mathrm{t} \end{aligned}$	$\begin{aligned} & 42: 54: 35.00 \\ & 000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:51:34.000 } \\ & \text { 00W } \end{aligned}$	$\begin{aligned} & 42: 54: 31.76 \\ & 521 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \hline 70: 24: 21.103 \\ & 73 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 42: 52: 34.96 \\ & 830 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:51:34.000 } \\ & 00 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 42: 52: 19.73 \\ & 219 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 24: 22.07 \\ & 127 \mathrm{~N} \end{aligned}$	2.0	2.2	$\begin{aligned} & 42: 52: 34.01 \\ & 413 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 49: 26.930 \\ & 90 \mathrm{~W} \end{aligned}$
	Outp ut	$\begin{aligned} & 42: 54: 34.98 \\ & 039 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 49: 26.861 \\ & 88 \mathrm{~W} \\ & \hline \end{aligned}$	0.59697	90.59697								
Test5	$\begin{aligned} & \text { Inpu } \\ & \mathrm{t} \end{aligned}$	$\begin{aligned} & 42: 54: 35.00 \\ & 000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:51:34.000 } \\ & 00 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 42: 54: 31.76 \\ & 521 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:24:21.103 } \\ & 73 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 42: 57: 35.04 \\ & 624 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:51:34.000 } \\ & \text { 00w } \end{aligned}$	$\begin{aligned} & 42: 53: 31.75 \\ & 031 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 24: 21.54 \\ & 367 \mathrm{~N} \end{aligned}$	-3.0	1.0	$\begin{aligned} & 42: 56: 58.69 \\ & 196 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 47: 27.058 \\ & 96 \mathrm{~W} \end{aligned}$
	Outp ut	$\begin{aligned} & 42: 54: 34.92 \\ & 612 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & 70: 47: 27.218 \\ & 38 \mathrm{~W} \\ & \hline \end{aligned}$	191.35663	101.35663								
Test6	$\begin{aligned} & \text { Inpu } \\ & \mathrm{t} \\ & \hline \end{aligned}$	$\begin{aligned} & 42: 54: 35.00 \\ & 000 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 70:51:34.000 } \\ & 00 \mathrm{~W} \\ & \hline \end{aligned}$	$\begin{aligned} & 42: 54: 31.76 \\ & 521 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 70: 24: 21.103 \\ & 73 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 42: 50: 34.93 \\ & 590 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 70:51:34.000 } \\ & 00 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 42: 50: 31.70 \\ & 455 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & 70: 24: 22.86 \\ & 205 \mathrm{~N} \\ & \hline \end{aligned}$	4.0	4.0	$\begin{aligned} & \hline 42: 50: 34.81 \\ & 843 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 70: 46: 22.995 \\ & 15 \mathrm{~W} \\ & \hline \end{aligned}$
	Outp ut	$\begin{aligned} & 42: 54: 34.88 \\ & 240 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 46: 22.659 \\ & 89 \mathrm{~W} \end{aligned}$	0.05882	90.05882								
Test7	$\begin{aligned} & \text { Inpu } \\ & \mathrm{t} \\ & \hline \end{aligned}$	$\begin{aligned} & 42: 54: 35.00 \\ & 000 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 70:51:34.000 } \\ & \text { 00W } \\ & \hline \end{aligned}$	$\begin{aligned} & 42: 54: 31.76 \\ & 521 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & 70: 24: 21.103 \\ & 73 \mathrm{~W} \\ & \hline \end{aligned}$	$\begin{aligned} & 42: 59: 35.07 \\ & 618 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 70:51:34.000 } \\ & \text { 00W } \end{aligned}$	$\begin{aligned} & 42: 59: 01.83 \\ & 008 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & 70: 24: 19.12 \\ & 109 \mathrm{~N} \\ & \hline \end{aligned}$	-5.0	-4.5	$\begin{aligned} & 42: 59: 28.77 \\ & 609 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & 70: 45: 58.161 \\ & 24 \mathrm{~W} \\ & \hline \end{aligned}$
	Outp ut	$\begin{aligned} & 42: 54: 34.86 \\ & 353 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 45: 58.604 \\ & 48 \mathrm{~W} \end{aligned}$	181.49561	91.49561								
Test8	$\begin{aligned} & \text { Inpu } \\ & \mathrm{t} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 42:54:35.00 } \\ & 000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \hline 70: 51: 34.000 \\ & 00 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 42: 54: 31.76 \\ & 521 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 70: 24: 21.103 \\ & 73 \mathrm{~W} \\ & \hline \end{aligned}$	$\begin{aligned} & 42: 48: 34.90 \\ & 279 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 70:51:34.000 } \\ & \text { 00W } \end{aligned}$	$\begin{aligned} & \text { 42:48:07.66 } \\ & 680 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & 770: 24: 23.91 \\ & 522 \mathrm{~N} \end{aligned}$	6.0	6.4	$\begin{aligned} & 42: 48: 27.53 \\ & 797 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 43: 32.971 \\ & 38 \mathrm{~W} \end{aligned}$
	Outp ut	$\begin{aligned} & 42: 54: 34.71 \\ & 836 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & 70: 43: 32.178 \\ & 26 \mathrm{~W} \\ & \hline \end{aligned}$	1.23674	91.23674								
test9	$\begin{aligned} & \text { Inpu } \\ & \mathrm{t} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 42:54:35.00 } \\ & 000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \hline 70: 51: 34.000 \\ & 00 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \hline 42: 54: 31.76 \\ & 521 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 70: 24: 21.103 \\ & 73 \mathrm{~W} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 43:01:35.10 } \\ & 543 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 70:51:34.000 } \\ & \text { 00W } \end{aligned}$	$\begin{aligned} & 43: 01: 31.86 \\ & 459 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 70: 24: 18.01 \\ & 754 \mathrm{~N} \\ & \hline \end{aligned}$	-7.0	-7.0	$\begin{aligned} & \text { 43:01:34.93 } \\ & 635 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 45: 20.321 \\ & 34 \mathrm{~W} \end{aligned}$
	Outp ut	$\begin{aligned} & 42: 54: 34.83 \\ & 124 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 45: 21.026 \\ & 28 \mathrm{~W} \\ & \hline \end{aligned}$	180.07067	90.07067								

Test10	$\begin{aligned} & \hline \text { Inpu } \\ & \mathrm{t} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 42: 54: 35.00 \\ & 000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:51:34.000 } \\ & \text { 00W } \end{aligned}$	$\begin{aligned} & \hline 42: 54: 31.76 \\ & 521 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 24: 21.103 \\ & 73 \mathrm{~W} \\ & \hline \end{aligned}$	$\begin{aligned} & 42: 46: 34.86 \\ & 899 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 70:51:34.000 } \\ & \text { 00W } \end{aligned}$	$\begin{aligned} & \text { 42:53:31.75 } \\ & 031 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & 70: 24: 21.54 \\ & 367 \mathrm{~N} \end{aligned}$	8.0	1.0	$\begin{aligned} & \text { 42:48:36.37 } \\ & 428 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 43: 41.440 \\ & \text { 40W } \\ & \hline \end{aligned}$
	Outp ut	$\begin{aligned} & 42: 54: 34.72 \\ & 821 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 43: 40.679 \\ & 98 \mathrm{~W} \\ & \hline \end{aligned}$	-19.20067	70.79933								
Test11	$\begin{aligned} & \text { Inpu } \\ & \mathrm{t} \end{aligned}$	$\begin{aligned} & 42: 54: 35.00 \\ & 000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:51:34.000 } \\ & 00 \mathrm{~W} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 42: 54: 31.76 \\ & 521 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 24: 21.103 \\ & 73 \mathrm{~W} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 42: 55: 05.00 \\ & 782 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:51:34.000 } \\ & \text { 00W } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 42: 55: 01.77 \\ & 259 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 24: 20.88 \\ & 368 \mathrm{~N} \end{aligned}$	-0.5	-0.5	$\begin{aligned} & \text { 42:55:05.00 } \\ & 175 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 50: 23.283 \\ & \text { 30W } \end{aligned}$
	Outp ut	$\begin{aligned} & 42: 54: 34.99 \\ & 393 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & 70: 50: 23.292 \\ & 83 \mathrm{~W} \\ & \hline \end{aligned}$	180.01337	90.01337								
Test12	Inpu t	$\begin{aligned} & 42: 54: 35.00 \\ & 000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:51:34.000 } \\ & \text { 00W } \end{aligned}$	$\begin{aligned} & \hline 42: 54: 31.76 \\ & 521 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & 70: 24: 21.103 \\ & 73 \mathrm{~W} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 42:46:34.86 } \\ & 899 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:51:34.000 } \\ & \text { 00W } \end{aligned}$	$\begin{aligned} & 42: 46: 31.64 \\ & 108 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & 70: 24: 24.61 \\ & 658 \mathrm{~N} \\ & \hline \end{aligned}$	8.0	8.0	$\begin{aligned} & 42: 46: 34.59 \\ & 884 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 43: 42.629 \\ & 42 \mathrm{~W} \end{aligned}$
	Outp ut	$\begin{aligned} & 42: 54: 34.72 \\ & 928 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & 70: 43: 41.613 \\ & 15 \mathrm{~W} \end{aligned}$	0.08915	90.08915								
Test13	$\begin{aligned} & \text { Inpu } \\ & \mathrm{t} \end{aligned}$	$\begin{aligned} & 42: 54: 35.00 \\ & 000 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 70:51:34.000 } \\ & 00 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \hline 42: 54: 31.76 \\ & 521 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 70:24:21.103 } \\ & 73 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \hline 42: 54: 04.99 \\ & 214 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 70:51:34.000 } \\ & 00 \mathrm{~W} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 42:54:01.75 } \\ & 778 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 70: 24: 21.32 \\ & 373 \mathrm{~S} \end{aligned}$	-0.5	-0.5	$\begin{aligned} & \text { 42:54:04.98 } \\ & \text { 608S } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 70:50:23.302 } \\ & \text { 36W } \end{aligned}$
	Outp ut	$\begin{aligned} & \text { 42:54:34.99 } \\ & 393 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 70: 50: 23.292 \\ & 83 \mathrm{~W} \\ & \hline \end{aligned}$	179.98663	89.98663								
Test14	Inpu	$\begin{aligned} & 42: 54: 35.00 \\ & 000 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 70:51:34.000 } \\ & 00 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \hline 42: 54: 31.76 \\ & 521 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 70: 24: 21.103 \\ & 73 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \hline 42: 54: 04.99 \\ & 214 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 70:51:34.000 } \\ & 00 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 42:54:01.75 } \\ & 778 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 70: 24: 21.32 \\ & 373 \mathrm{~S} \\ & \hline \end{aligned}$	-0.5	-0.5	$\begin{aligned} & \hline 42: 54: 04.99 \\ & 204 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 70:51:24.702 } \\ & 32 \mathrm{~W} \\ & \hline \end{aligned}$
	Outp ut	$\begin{aligned} & \text { 42:54:34.99 } \\ & 990 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & 70: 51: 24.701 \\ & 07 \mathrm{~W} \\ & \hline \end{aligned}$	179.99824	89.99824								
Test15	$\begin{aligned} & \hline \text { Inpu } \\ & \mathrm{t} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 42:54:35.00 } \\ & 000 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 70:51:34.000 } \\ & \text { 00W } \end{aligned}$	$\begin{aligned} & \hline 42: 54: 31.76 \\ & 521 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & 70: 24: 21.103 \\ & 73 \mathrm{~W} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 42:55:35.01 } \\ & 559 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 70:51:34.000 } \\ & \text { 00W } \end{aligned}$	$\begin{aligned} & \hline 42: 55: 31.77 \\ & 993 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \hline 70: 24: 20.66 \\ & 356 \mathrm{~S} \\ & \hline \end{aligned}$	1.0	1.0	$\begin{aligned} & \text { 42:55:35.00 } \\ & 776 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 70:50:13.667 } \\ & 61 \mathrm{w} \end{aligned}$
	Outp ut	$\begin{aligned} & \text { 42:54:34.99 } \\ & 218 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 70:50:13.689 } \\ & \text { 26W } \\ & \hline \end{aligned}$	359.98481	89.98481								
Test16	Inpu	$\begin{aligned} & \text { 42:54:35.00 } \\ & 000 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 70:51:34.000 } \\ & \text { 00W } \end{aligned}$	$\begin{aligned} & \text { 42:54:31.76 } \\ & 521 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 70: 24: 21.103 \\ & 73 \mathrm{~W} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 42:52:34.96 } \\ & 830 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 70:51:34.000 } \\ & \text { 00W } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 42:52:19.73 } \\ & 219 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 70: 24: 22.07 \\ & 127 \mathrm{~S} \end{aligned}$	-2.0	-2.2	$\begin{aligned} & \text { 42:52:34.01 } \\ & 413 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 70:49:26.930 } \\ & 90 \mathrm{~W} \\ & \hline \end{aligned}$
	Outp ut	$\begin{aligned} & \text { 42:54:34.98 } \\ & 039 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 70: 49: 26.861 \\ & 88 \mathrm{~W} \end{aligned}$	179.40303	89.40303								
Test17	Inpu t	$\begin{aligned} & \text { 42:54:35.00 } \\ & 000 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 70:51:34.000 } \\ & \text { 00W } \end{aligned}$	$\begin{aligned} & \hline 42: 54: 31.76 \\ & 521 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & 70: 24: 21.103 \\ & 73 \mathrm{~W} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 42: 57: 35.04 \\ & 624 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 70:51:34.000 } \\ & \text { 00W } \end{aligned}$	$\begin{aligned} & \text { 42:53:31.75 } \\ & \text { 031S } \end{aligned}$	70:24:21.54	3.0	-1.0	$\begin{aligned} & \text { 42:56:58.69 } \\ & \text { 196S } \end{aligned}$	$\begin{aligned} & 70: 47: 27.058 \\ & 96 \mathrm{~W} \end{aligned}$
	Outp ut	$\begin{aligned} & 42: 54: 34.92 \\ & 612 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & 70: 47: 27.218 \\ & 38 \mathrm{~W} \end{aligned}$	348.64337	78.64337								
Test18	Inpu t	$\begin{aligned} & \text { 42:54:35.00 } \\ & 000 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 70:51:34.000 } \\ & \text { 00W } \end{aligned}$	$\begin{aligned} & \hline 42: 54: 31.76 \\ & 51 \mathrm{~s} \end{aligned}$	$\begin{aligned} & \text { 70:24:21.103 } \\ & 73 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \hline 42: 50: 34.93 \\ & 590 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 70:51:34.000 } \\ & \text { 00W } \end{aligned}$	$\begin{aligned} & \hline 42: 50: 31.70 \\ & 455 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \hline 70: 24: 22.86 \\ & 205 \mathrm{~S} \end{aligned}$	-4.0	-4.0	$\begin{aligned} & \text { 42:50:34.81 } \\ & 843 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & 70: 46: 22.995 \\ & 15 \mathrm{~W} \end{aligned}$
	Outp ut	$\begin{aligned} & \text { 42:54:34.88 } \\ & 240 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & 70: 46: 22.659 \\ & 89 \mathrm{~W} \\ & \hline \end{aligned}$	179.94118	89.94118								
Test19	$\begin{aligned} & \hline \text { Inpu } \\ & \mathrm{t} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 42:54:35.00 } \\ & 000 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 70:51:34.000 } \\ & \text { 00W } \end{aligned}$	$\begin{aligned} & \hline 42: 54: 31.76 \\ & 521 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 70: 24: 21.103 \\ & 73 \mathrm{~W} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 42:59:35.07 } \\ & \text { 618S } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 70:51:34.000 } \\ & \text { 00W } \end{aligned}$	$\begin{aligned} & \text { 42:59:01.83 } \\ & 008 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \hline 70: 24: 19.12 \\ & 109 \mathrm{~S} \\ & \hline \end{aligned}$	5.0	4.5	$\begin{aligned} & \text { 42:59:28.77 } \\ & 609 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 70:45:58.161 } \\ & 24 \mathrm{~W} \end{aligned}$
	Outp ut	$\begin{aligned} & \text { 42:54:34.86 } \\ & 353 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 70:45:58.604 } \\ & 48 \mathrm{~W} \\ & \hline \end{aligned}$	358.50439	88.50439								
Test20	Inpu t	$\begin{aligned} & \text { 42:54:35.00 } \\ & 000 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 70:51:34.000 } \\ & \text { 00W } \end{aligned}$	$\begin{aligned} & \hline 42: 54: 31.76 \\ & 521 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & 70: 24: 21.103 \\ & 73 \mathrm{~W} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 42: 48: 34.90 \\ & 279 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 70:51:34.000 } \\ & \text { 00W } \end{aligned}$	$\begin{aligned} & \hline 42: 48: 07.66 \\ & 680 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \hline 70: 24: 23.91 \\ & 522 \mathrm{~S} \\ & \hline \end{aligned}$	-6.0	-6.4	$\begin{aligned} & \hline 42: 48: 27.53 \\ & 797 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & 70: 43: 32.971 \\ & 38 \mathrm{~W} \end{aligned}$
	Outp ut	$\begin{aligned} & \text { 42:54:34.71 } \\ & 836 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 70:43:32.178 } \\ & \text { 26W } \\ & \hline \end{aligned}$	178.76326	88.76326								
Test21	$\begin{array}{\|l} \hline \begin{array}{l} \text { Inpu } \\ \mathrm{t} \end{array} \\ \hline \end{array}$	$\begin{aligned} & \text { 42:54:35.00 } \\ & 000 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 70:51:34.000 } \\ & \text { 00W } \end{aligned}$	$\begin{aligned} & \text { 42:54:31.76 } \\ & 521 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 70:24:21.103 } \\ & \text { 73W } \end{aligned}$	$\begin{aligned} & \text { 43:01:35.10 } \\ & 543 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 70: 51: 34.000 \\ & 00 \mathrm{~W} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 43:01:31.86 } \\ & 459 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 70:24:18.01 } \\ & 754 \mathrm{~S} \end{aligned}$	7.0	7.0	$\begin{aligned} & \text { 43:01:34.93 } \\ & 635 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 70: 45: 20.321 \\ & 34 \mathrm{~W} \end{aligned}$
	Outp ut	$\begin{aligned} & 42: 54: 34.83 \\ & 124 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & 70: 45: 21.026 \\ & 28 \mathrm{~W} \\ & \hline \end{aligned}$	359.92933	89.92933								
Test22	Inpu	42:54:35.00	70:51:34.000	42:54:31.76	70:24:21.103	42:46:34.86	70:51:34.000	42:53:31.75	70:24:21.54	-8.0	-1.0	42:48:36.37	70:43:41.440

	t	000S	00W	521S	73W	899S	00W	031 S	367S			428S	40W
	Outp ut	$\begin{aligned} & \text { 42:54:34.72 } \\ & 821 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 70:43:40.679 } \\ & 98 \mathrm{~W} \end{aligned}$	199.20067	109.20067								
Test23	$\begin{aligned} & \text { Inpu } \\ & \mathrm{t} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 42: 54: 35.00 \\ & 000 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 70: 51: 34.000 \\ & 00 \mathrm{~W} \\ & \hline \end{aligned}$	$\begin{aligned} & 42: 54: 31.76 \\ & 521 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 70:24:21.103 } \\ & 73 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 42: 54: 04.99 \\ & 214 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 70:51:34.000 } \\ & 00 \mathrm{~W} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 42:54:01.75 } \\ & 778 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \hline 70: 24: 21.32 \\ & 373 \mathrm{~S} \\ & \hline \end{aligned}$	-0.5	-0.5	$\begin{aligned} & \hline 42: 54: 04.98 \\ & 608 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & 70: 50: 23.302 \\ & 36 \mathrm{~W} \end{aligned}$
	Outp ut	$\begin{aligned} & \hline 42: 54: 34.99 \\ & 393 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 70:50:23.292 } \\ & 83 \mathrm{~W} \end{aligned}$	179.98663	89.98663								
Test24	$\begin{aligned} & \text { Inpu } \\ & \mathrm{t} \\ & \hline \end{aligned}$	$\begin{aligned} & 42: 54: 35.00 \\ & 000 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 70:51:34.000 } \\ & \text { 00w } \end{aligned}$	$\begin{aligned} & 42: 54: 31.76 \\ & 521 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 70:24:21.103 } \\ & 73 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 42: 46: 34.86 \\ & 899 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 70:51:34.000 } \\ & 00 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 42: 46: 31.64 \\ & 108 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & 70: 24: 24.61 \\ & 658 \mathrm{~S} \end{aligned}$	-8.0	-8.0	$\begin{aligned} & 42: 46: 34.59 \\ & 884 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 70: 43: 42.629 \\ & 42 \mathrm{~W} \end{aligned}$
	Outp ut	$\begin{aligned} & 42: 54: 34.72 \\ & 928 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 70: 43: 41.613 \\ & 15 \mathrm{~W} \end{aligned}$	179.91085	89.91085								

WGS84DiscretizedArcLength Test Results

Test Identifier	Arc Center Latitude	Arc Center Longitude	Arc Radius	Start Azimuth	End Azimuth	Direction	Computed Arc Length (Algorithm 0) (nm)	Direct Computation Result (Section 6.4) (nm)	Difference (meters)
test1	38:13:25.10000N	77:54:23.40000W	5.0	91.0	226.0	-1	11.780968	11.780968	$1.60 \mathrm{e}-007$
test2	38:13:25.10000N	77:54:23.40000W	5.0	91.0	226.0	1	19.634947	19.634947	$2.60 \mathrm{e}-008$
test3	38:13:25.10000N	77:54:23.40000W	5.0	0.0	0.0	1	31.415915	31.415915	$2.17 \mathrm{e}-007$
test4	38:13:25.10000N	77:54:23.40000W	50.0	0.0	0.0	1	314.148211	314.148211	$2.83 \mathrm{e}-006$
test5	38:13:25.10000N	77:54:23.40000W	100.0	0.0	0.0	1	628.230102	628.230102	$4.62 \mathrm{e}-005$
test6	38:13:25.10000N	77:54:23.40000W	150.0	0.0	0.0	1	942.179365	942.179365	$3.33 \mathrm{e}-004$
test7	38:13:25.10000N	77:54:23.40000W	200.0	0.0	0.0	1	1255.929721	1255.929722	$1.39 \mathrm{e}-003$
test8	38:13:25.10000N	77:54:23.40000W	250.0	0.0	0.0	1	1569.414934	1569.414936	$4.23 \mathrm{e}-003$
test9	38:13:25.10000N	77:54:23.40000W	300.0	0.0	0.0	1	1882.568820	1882.568826	$1.05 \mathrm{e}-002$
test10	38:13:25.10000N	77:54:23.40000W	350.0	0.0	0.0	1	2195.325269	2195.325282	$2.27 \mathrm{e}-002$
test11	38:13:25.10000N	77:54:23.40000W	400.0	0.0	0.0	1	2507.618252	2507.618275	$4.42 \mathrm{e}-002$
test12	38:13:25.10000N	77:54:23.40000W	450.0	0.0	0.0	1	2819.381836	2819.381879	$7.95 \mathrm{e}-002$
test13	38:13:25.10000N	77:54:23.40000W	500.0	0.0	0.0	1	3130.550201	3130.550274	$1.34 \mathrm{e}-001$
test14	30:34:17.18000N	105:40:50.70000W	4.0	30.0	340.0	1	3.490658	3.490658	$1.27 \mathrm{e}-008$
test15	30:34:17.18000N	105:40:50.70000W	4.0	30.0	340.0	-1	21.642078	21.642078	$7.24 \mathrm{e}-008$
test16	30:34:17.18000N	105:40:50.70000W	4.0	0.0	0.0	1	25.132736	25.132736	$7.62 \mathrm{e}-008$
test17	30:34:17.18000N	105:40:50.70000W	4.0	0.0	0.0	-1	25.132736	25.132736	$7.63 \mathrm{e}-008$
test18	30:34:17.18000N	105:40:50.70000E	4.0	30.0	340.0	1	3.490658	3.490658	$1.23 \mathrm{e}-008$
test19	30:34:17.18000N	105:40:50.70000E	4.0	30.0	340.0	-1	21.642078	21.642078	$7.28 \mathrm{e}-008$
test20	30:34:17.18000N	105:40:50.70000E	4.0	0.0	0.0	1	25.132736	25.132736	$7.63 \mathrm{e}-008$
test21	30:34:17.18000N	105:40:50.70000E	4.0	0.0	0.0	-1	25.132736	25.132736	$7.62 \mathrm{e}-008$
test22	30:34:17.18000S	105:40:50.70000E	4.0	30.0	340.0	1	3.490658	3.490658	$2.65 \mathrm{e}-008$
test23	30:34:17.18000S	105:40:50.70000E	4.0	30.0	340.0	-1	21.642078	21.642078	$7.89 \mathrm{e}-008$
test24	30:34:17.18000S	105:40:50.70000E	4.0	0.0	0.0	1	25.132736	25.132736	$7.62 \mathrm{e}-008$
test25	30:34:17.18000S	105:40:50.70000E	4.0	0.0	0.0	-1	25.132736	25.132736	$7.62 \mathrm{e}-008$
test26	30:34:17.18000S	105:40:50.70000W	4.0	30.0	340.0	1	3.490658	3.490658	$2.65 \mathrm{e}-008$
test27	30:34:17.18000S	105:40:50.70000W	4.0	30.0	340.0	-1	21.642078	21.642078	$7.89 \mathrm{e}-008$
test28	30:34:17.18000S	105:40:50.70000W	4.0	0.0	0.0	1	25.132736	25.132736	$7.62 \mathrm{e}-008$
test29	30:34:17.18000S	105:40:50.70000W	4.0	0.0	0.0	-1	25.132736	25.132736	$7.62 \mathrm{e}-008$
test30	30:34:17.18000N	105:40:50.70000W	40.0	30.0	340.0	1	34.905798	34.905798	$9.65 \mathrm{e}-005$
test31	30:34:17.18000N	105:40:50.70000W	40.0	30.0	340.0	-1	216.415945	216.415946	$9.71 \mathrm{e}-005$
test32	30:34:17.18000N	105:40:50.70000W	40.0	0.0	0.0	1	251.321743	251.321743	$5.82 \mathrm{e}-007$
test33	30:34:17.18000N	105:40:50.70000W	40.0	0.0	0.0	-1	251.321743	251.321743	$5.82 \mathrm{e}-007$
test34	00:04:00.00000N	90:33:72.0000W	11.1	136.0	380.0	1	22.472820	22.472820	$7.34 \mathrm{e}-008$
test35	00:04:00.000000N	90:33:72.0000W	11.1	136.0	380.0	-1	47.270415	47.270415	$3.17 \mathrm{e}-007$
test36	00:04:00.00000N	90:33:72.0000W	11.1	0.0	0.0	1	69.743235	69.743235	$4.14 \mathrm{e}-007$
test37	00:04:00.00000N	90:33:72.0000W	11.1	136.0	20.0	1	22.472820	22.472820	$7.34 \mathrm{e}-008$
test38	00:04:00.00000N	90:33:72.0000W	11.1	136.0	20.0	-1	47.270415	47.270415	$3.17 \mathrm{e}-007$
test39	00:04:00.00000N	90:33:72.0000W	11.1	0.0	0.0	1	69.743235	69.743235	$4.14 \mathrm{e}-007$
test40	80:00:00.00000N	90:33:72.0000W	11.1	136.0	20.0	1	22.472821	22.472821	$2.25 \mathrm{e}-007$
test41	80:00:00.00000N	90:33:72.0000W	11.1	136.0	20.0	-1	47.270416	47.270416	$7.27 \mathrm{e}-007$
test42	80:00:00.00000N	90:33:72.0000W	11.1	0.0	0.0	1	69.743237	69.743237	$9.51 \mathrm{e}-007$

WGS84CrsIntersect Test Results

Test Identifi er	Point 1 Latitude	Point 1 Longitude	Point 2 Latitude	Point 2 Longitude	Azimut h at Point 2 (degree s)	Azimuth from Intersecti on to Point 1 (degrees)	Distance to Point 1 from Intersecti on (nm)	Azimut h at Point 2 (degree s)	Azimuth from Intersecti on to Point 2 (degrees)	Distance to Point 2 from Intersecti on (nm)	Intersection Latitude	Intersection Longitude
test1	$\begin{aligned} & \text { 40:10:24.5000 } \\ & 0 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 12: 45.60000 \\ & \mathrm{~W} \end{aligned}$	$\begin{aligned} & 42: 04: 35.8000 \\ & 0 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:12:40.70000 } \\ & \text { W } \end{aligned}$	90.0	$\begin{aligned} & 271.0932 \\ & 8 \\ & \hline \end{aligned}$	77.96062	187.0	6.79842	$\begin{aligned} & 115.7042 \\ & 5 \end{aligned}$	$\begin{aligned} & 40: 09: 39.8358 \\ & 8 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:31:04.02698 } \\ & \mathrm{W} \\ & \hline \end{aligned}$
test2	$\begin{aligned} & \text { 40:10:24.5000 } \\ & 0 \mathrm{~N} \end{aligned}$	$70: 12: 45.60000$	$\begin{aligned} & \text { 42:04:35.8000 } \\ & 0 \mathrm{~N} \end{aligned}$	68:12:40.70000	90.0	$\begin{aligned} & 273.4921 \\ & 1 \end{aligned}$	249.4941	127.0	$\begin{aligned} & 309.2450 \\ & 1 \end{aligned}$	197.1148	$\begin{aligned} & 40: 02: 47.6253 \\ & 9 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 64:47:40.82715 } \\ & \mathrm{W} \end{aligned}$
test3	$\begin{aligned} & \text { 40:10:24.5000 } \\ & 0 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:12:45.60000 } \\ & \mathrm{W} \end{aligned}$	$\begin{aligned} & \text { 42:04:35.8000 } \\ & 0 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:12:40.70000 } \\ & \mathrm{W} \end{aligned}$	180.0	0.00000	$\begin{aligned} & 2400.885 \\ & 68 \\ & \hline \end{aligned}$	183.0	2.22965	$\begin{aligned} & 2517.349 \\ & 79 \end{aligned}$	$\begin{aligned} & \text { 0:01:16.52501 } \\ & \mathrm{N} \end{aligned}$	$\begin{aligned} & \text { 70:12:45.60000 } \\ & \mathrm{W} \end{aligned}$
test4	$\begin{aligned} & 40: 10: 24.5000 \\ & 0 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 12: 45.60000 \\ & \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 42:04:35.8000 } \\ & 0 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:12:40.70000 } \\ & \mathrm{W} \end{aligned}$	175.0	$\begin{aligned} & 355.3239 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 298.9925 \\ & 0 \end{aligned}$	190.0	9.07914	$\begin{aligned} & 417.8031 \\ & 3 \end{aligned}$	$\begin{aligned} & 35: 12: 07.9008 \\ & 0 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:41:00.06384 } \\ & \text { W } \end{aligned}$
test5	$\begin{aligned} & 40: 10: 24.5000 \\ & 0 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 12: 45.60000 \\ & \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 42:04:35.8000 } \\ & 0 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:12:40.70000 } \\ & \mathrm{W} \end{aligned}$	175.0	173.0945	$\begin{aligned} & 979.3961 \\ & 8 \\ & \hline \end{aligned}$	170.0	$\begin{aligned} & 166.5424 \\ & 3 \end{aligned}$	$\begin{aligned} & 877.9470 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 56:24:04.1050 } \\ & 2 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 72: 44: 22.05038 \\ & \mathrm{~W} \end{aligned}$
test6	$\begin{aligned} & 40: 10: 24.5000 \\ & 0 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 12: 45.60000 \\ & \mathrm{~W} \end{aligned}$	$\begin{aligned} & 42: 04: 35.8000 \\ & 0 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:12:40.70000 } \\ & \mathrm{W} \end{aligned}$	170.0	$\begin{aligned} & 352.0629 \\ & 9 \end{aligned}$	$\begin{aligned} & 1472.947 \\ & 91 \\ & \hline \end{aligned}$	175.0	$\begin{aligned} & 356.1392 \\ & 5 \end{aligned}$	$\begin{aligned} & 1574.295 \\ & 32 \end{aligned}$	$\begin{aligned} & 15: 50: 52.8475 \\ & 8 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 65: 55: 13.50649 \\ & \text { W } \end{aligned}$
test7	$\begin{aligned} & 40: 10: 24.5000 \\ & 0 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 12: 45.60000 \\ & \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 42:04:35.8000 } \\ & 0 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:12:40.70000 } \\ & \mathrm{W} \end{aligned}$	140.0	$\begin{aligned} & 321.5555 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 182.8494 \\ & 5 \end{aligned}$	175.0	$\begin{aligned} & 355.3020 \\ & 5 \end{aligned}$	$\begin{aligned} & 256.7197 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { 37:48:35.7038 } \\ & 7 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 67:44:28.20017 } \\ & \text { W } \end{aligned}$
test8	$\begin{aligned} & 40: 10: 24.5000 \\ & 0 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & 70: 12: 45.60000 \\ & \text { W } \end{aligned}$	$\begin{aligned} & \text { 42:04:35.8000 } \\ & 0 \mathrm{~N} \end{aligned}$	68:12:40.70000	35.0	$\begin{aligned} & 216.4525 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 170.2557 \\ & 2 \end{aligned}$	200.0	$\begin{aligned} & 200.1330 \\ & 4 \end{aligned}$	25.67248	$\begin{aligned} & 42: 28: 43.1818 \\ & 6 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:00:48.75631 } \\ & \text { W } \end{aligned}$
test9	$\begin{aligned} & 40: 10: 24.5000 \\ & 0 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & 70: 12: 45.60000 \\ & \mathrm{~W} \end{aligned}$	$\begin{aligned} & 42: 04: 35.8000 \\ & 0 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:12:40.70000 } \\ & \mathrm{W} \end{aligned}$	35.0	$\begin{aligned} & 215.8186 \\ & 4 \end{aligned}$	98.37315	225.0	44.50036	47.79193	$\begin{aligned} & 41: 30: 38.3729 \\ & 1 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:57:39.59637 } \\ & \mathrm{W} \end{aligned}$
test10	$\begin{aligned} & 40: 10: 24.5000 \\ & 0 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 12: 45.60000 \\ & \mathrm{~W} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 42:04:35.8000 } \\ & 0 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:12:40.70000 } \\ & \text { W } \end{aligned}$	40.0	$\begin{aligned} & 221.2376 \\ & 4 \end{aligned}$	$\begin{aligned} & 131.5928 \\ & 6 \end{aligned}$	200.0	19.92283	15.13463	$\begin{aligned} & 41: 50: 21.9114 \\ & 3 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:19:36.20912 } \\ & \text { W } \end{aligned}$
test11	$\begin{aligned} & 40: 10: 24.5000 \\ & 0 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:12:45.60000 } \\ & \text { W } \end{aligned}$	$\begin{aligned} & 42: 04: 35.8000 \\ & 0 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:12:40.70000 } \\ & \text { W } \end{aligned}$	40.0	$\begin{aligned} & 221.3329 \\ & 8 \end{aligned}$	$\begin{aligned} & 141.2871 \\ & 9 \end{aligned}$	170.0	$\begin{aligned} & 350.0183 \\ & 0 \end{aligned}$	7.04762	$\begin{aligned} & \text { 41:57:39.1815 } \\ & 7 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:11:02.27771 } \\ & \mathrm{W} \end{aligned}$
test12	$\begin{aligned} & 40: 10: 24.5000 \\ & 0 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 12: 45.60000 \\ & \mathrm{~W} \end{aligned}$	$\begin{aligned} & 42: 04: 35.8000 \\ & 0 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:12:40.70000 } \\ & \text { W } \end{aligned}$	190.0	9.32285	$\begin{aligned} & 315.3194 \\ & 0 \end{aligned}$	200.0	18.05830	$\begin{aligned} & 449.4158 \\ & 9 \end{aligned}$	$\begin{aligned} & 34: 59: 10.9227 \\ & 0 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 71: 19: 18.57958 \\ & \mathrm{~W} \end{aligned}$
test13	$\begin{aligned} & 40: 10: 24.5000 \\ & 0 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:12:45.60000 } \\ & \mathrm{W} \end{aligned}$	$\begin{aligned} & 42: 04: 35.8000 \\ & 0 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:12:40.70000 } \\ & \mathrm{W} \end{aligned}$	230.0	$\begin{aligned} & 232.6677 \\ & 4 \end{aligned}$	$\begin{aligned} & 233.2639 \\ & 3 \end{aligned}$	250.0	$\begin{aligned} & 251.3685 \\ & 0 \end{aligned}$	95.79181	$\begin{aligned} & \text { 42:36:17.8566 } \\ & 5 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 66:10:46.71710 } \\ & \mathrm{W} \end{aligned}$
test14	$\begin{aligned} & 40: 10: 24.5000 \\ & 0 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 12: 45.60000 \\ & \mathrm{~W} \end{aligned}$	$\begin{aligned} & 42: 04: 35.8000 \\ & 0 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:12:40.70000 } \\ & \mathrm{W} \end{aligned}$	300.0	117.2424	$\begin{aligned} & 217.1252 \\ & 0 \end{aligned}$	270.0	85.84998	277.4977	$\begin{aligned} & 41: 54: 31.9685 \\ & 6 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 74: 24: 39.29939 \\ & \mathrm{~W} \end{aligned}$
test15	$\begin{aligned} & \hline 40: 10: 24.5000 \\ & 0 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 12: 45.60000 \\ & \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 42:04:35.8000 } \\ & 0 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:12:40.70000 } \\ & \mathrm{W} \end{aligned}$	320.0	$\begin{aligned} & 135.9603 \\ & 9 \end{aligned}$	$\begin{aligned} & 394.3110 \\ & 8 \end{aligned}$	300.0	$\begin{aligned} & 114.5078 \\ & 7 \end{aligned}$	$\begin{aligned} & 390.4145 \\ & 4 \end{aligned}$	$\begin{aligned} & 45: 03: 45.8575 \\ & 4 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 76: 10: 13.00551 \\ & \mathrm{~W} \end{aligned}$
test16	$\begin{aligned} & 40: 10: 24.5000 \\ & 0 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 12: 45.60000 \\ & \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 42:04:35.8000 } \\ & 0 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:12:40.70000 } \\ & \text { W } \end{aligned}$	30.0	211.0642	$\begin{aligned} & 143.9767 \\ & 6 \end{aligned}$	300.0	$\begin{aligned} & 119.7407 \\ & 2 \end{aligned}$	19.87930	$\begin{aligned} & 42: 14: 30.0763 \\ & 0 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:35:51.38889 } \\ & \text { W } \end{aligned}$
test17	$\begin{aligned} & 40: 10: 24.5000 \\ & 0 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 12: 45.60000 \\ & \mathrm{~W} \end{aligned}$	$\begin{aligned} & 42: 04: 35.8000 \\ & 0 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:12:40.70000 } \\ & \mathrm{W} \end{aligned}$	30.0	$\begin{aligned} & 211.3250 \\ & 7 \end{aligned}$	$\begin{aligned} & 177.0915 \\ & 6 \end{aligned}$	0.0	$\begin{aligned} & 180.0000 \\ & 0 \end{aligned}$	38.22767	$\begin{aligned} & \text { 42:42:50.2660 } \\ & 2 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:12:40.70000 } \\ & \mathrm{W} \end{aligned}$
test18	$\begin{aligned} & 40: 10: 24.5000 \\ & 0 \mathrm{~N} \end{aligned}$	$70: 12: 45.60000$	$\begin{aligned} & \text { 42:04:35.8000 } \\ & 0 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:12:40.70000 } \\ & \text { W } \end{aligned}$	20.0	$\begin{aligned} & 202.0067 \\ & 4 \end{aligned}$	$\begin{aligned} & 361.2746 \\ & 3 \\ & \hline \end{aligned}$	10.0	$\begin{aligned} & 190.6511 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 226.9083 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 45: 47: 51.2680 \\ & 0 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 67:16:23.97908 } \\ & \text { W } \end{aligned}$
test19	$\begin{aligned} & 40: 10: 24.5000 \\ & 0 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 70: 12: 45.60000 \\ & \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 38:04:35.8000 } \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 68:12:40.70000 } \\ & \mathrm{W} \end{aligned}$	90.0	$\begin{aligned} & 268.9242 \\ & 0 \\ & \hline \end{aligned}$	76.71333	187.0	7.21051	$\begin{aligned} & 125.9425 \\ & 6 \end{aligned}$	$\begin{aligned} & 40: 09: 41.2534 \\ & 3 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:32:41.62303 } \\ & \mathrm{W} \end{aligned}$
test20	$\begin{aligned} & 40: 10: 24.5000 \\ & 0 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & 70: 12: 45.60000 \\ & \mathrm{~W} \\ & \hline \end{aligned}$	$\begin{aligned} & 38: 04: 35.8000 \\ & \text { 0S } \end{aligned}$	$\begin{aligned} & \text { 68:12:40.70000 } \\ & \mathrm{W} \\ & \hline \end{aligned}$	90.0	$\begin{aligned} & 266.4649 \\ & 0 \end{aligned}$	$\begin{aligned} & 252.5790 \\ & 3 \end{aligned}$	127.0	$\begin{aligned} & 304.8042 \\ & 2 \end{aligned}$	$\begin{aligned} & 200.9789 \\ & 6 \end{aligned}$	$\begin{aligned} & 40: 02: 36.2730 \\ & 6 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 64:43:40.26353 } \\ & \mathrm{W} \\ & \hline \end{aligned}$
test21	40:10:24.5000	70:12:45.60000	38:04:35.8000	68:12:40.70000	180.0	0.00000	1101.097	183.0	4.51831	1229.277	58:30:33.9088	70:12:45.60000

	OS	W	0S	W			25			14	3S	W
test22	$\begin{aligned} & \text { 40:10:24.5000 } \\ & \text { 0S } \end{aligned}$	70:12:45.60000 W	$\begin{aligned} & 38: 04: 35.8000 \\ & 0 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 68:12:40.70000 } \\ & \mathrm{W} \\ & \hline \end{aligned}$	175.0	$\begin{aligned} & \hline 354.6684 \\ & 0 \end{aligned}$	$\begin{aligned} & 244.3791 \\ & 2 \\ & \hline \end{aligned}$	190.0	10.99389	$\begin{array}{\|l} \hline 375.3399 \\ 1 \\ \hline \end{array}$	$\begin{aligned} & 44: 13: 53.4208 \\ & 0 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 69:43:09.64545 } \\ & \text { W } \\ & \hline \end{aligned}$
test23	$\begin{aligned} & \text { 40:10:24.5000 } \\ & \text { 0S } \end{aligned}$	$\begin{aligned} & \text { 70:12:45.60000 } \\ & \mathrm{W} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 38:04:35.8000 } \\ & \text { 0S } \end{aligned}$	$\begin{aligned} & \text { 68:12:40.70000 } \\ & \mathrm{W} \\ & \hline \end{aligned}$	175.0	$\begin{aligned} & 176.0715 \\ & 0 \end{aligned}$	$\begin{aligned} & \hline 1613.099 \\ & 44 \\ & \hline \end{aligned}$	170.0	$\begin{aligned} & 171.9168 \\ & 5 \end{aligned}$	$\begin{aligned} & 1500.622 \\ & 55 \end{aligned}$	$\begin{aligned} & \text { 13:17:28.7861 } \\ & \text { 3S } \end{aligned}$	$\begin{aligned} & \text { 72:31:44.37321 } \\ & \mathrm{W} \\ & \hline \end{aligned}$
test24	$\begin{aligned} & 40: 10: 24.5000 \\ & 0 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 70:12:45.60000 } \\ & \mathrm{W} \end{aligned}$	$\begin{aligned} & 38: 04: 35.8000 \\ & 0 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 68:12:40.70000 } \\ & \mathrm{W} \end{aligned}$	170.0	$\begin{aligned} & 346.5975 \\ & 7 \end{aligned}$	$\begin{aligned} & 915.3811 \\ & 8 \end{aligned}$	175.0	$\begin{aligned} & 353.1172 \\ & 0 \end{aligned}$	$\begin{aligned} & 1027.966 \\ & 38 \end{aligned}$	$\begin{array}{\|l\|} \hline 55: 06: 51.9932 \\ 3 \mathrm{~S} \\ \hline \end{array}$	$\begin{aligned} & \text { 65:38:55.06563 } \\ & \mathrm{W} \end{aligned}$
test25	$\begin{aligned} & 40: 10: 24.5000 \\ & 0 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 70:12:45.60000 } \\ & \mathrm{W} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 38:04:35.8000 } \\ & 0 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:12:40.70000 } \\ & \mathrm{W} \\ & \hline \end{aligned}$	140.0	$\begin{aligned} & 318.3463 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 173.4655 \\ & 1 \end{aligned}$	175.0	$\begin{aligned} & 354.6736 \\ & 1 \end{aligned}$	$\begin{array}{\|l} \hline 258.0259 \\ 7 \\ \hline \end{array}$	$\begin{aligned} & \text { 42:21:45.9161 } \\ & 9 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 67:42:22.30757 } \\ & \mathrm{W} \\ & \hline \end{aligned}$
test26	$\begin{aligned} & \text { 40:10:24.5000 } \\ & \text { 0S } \end{aligned}$	$\begin{aligned} & \text { 70:12:45.60000 } \\ & \mathrm{W} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 38:04:35.8000 } \\ & 0 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:12:40.70000 } \\ & \mathrm{W} \\ & \hline \end{aligned}$	35.0	$\begin{aligned} & \hline 213.6247 \\ & 4 \end{aligned}$	$\begin{aligned} & 181.7958 \\ & 0 \end{aligned}$	200.0	$\begin{aligned} & 199.8852 \\ & 0 \end{aligned}$	26.04680	$\begin{aligned} & \text { 37:40:05.0377 } \\ & 1 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 68:01:27.49821 } \\ & \mathrm{W} \\ & \hline \end{aligned}$
test27	$\begin{aligned} & \text { 40:10:24.5000 } \\ & \text { 0S } \end{aligned}$	$\begin{aligned} & \text { 70:12:45.60000 } \\ & \mathrm{W} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 38:04:35.8000 } \\ & 0 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:12:40.70000 } \\ & \mathrm{W} \end{aligned}$	35.0	$\begin{aligned} & 214.0330 \\ & 0 \end{aligned}$	$\begin{aligned} & 125.4253 \\ & 2 \end{aligned}$	225.0	45.29430	31.67886	$\begin{aligned} & 38: 26: 57.8047 \\ & 3 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:41:11.55669 } \\ & \text { W } \\ & \hline \end{aligned}$
test28	$\begin{aligned} & \text { 40:10:24.5000 } \\ & 0 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 70:12:45.60000 } \\ & \mathrm{W} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 38:04:35.8000 } \\ & \text { 0S } \end{aligned}$	$\begin{aligned} & \text { 68:12:40.70000 } \\ & \mathrm{W} \\ & \hline \end{aligned}$	40.0	$\begin{aligned} & 218.8389 \\ & 1 \end{aligned}$	$\begin{aligned} & 134.4067 \\ & 5 \end{aligned}$	200.0	20.10452	23.26402	$\begin{aligned} & 38: 26: 28.4278 \\ & 8 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:22:48.33817 } \\ & \mathrm{W} \\ & \hline \end{aligned}$
test29	$\begin{aligned} & \text { 40:10:24.5000 } \\ & 0 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 70:12:45.60000 } \\ & \mathrm{W} \\ & \hline \end{aligned}$	$\begin{aligned} & 38: 04: 35.8000 \\ & 0 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 68:12:40.70000 } \\ & \mathrm{W} \end{aligned}$	40.0	$\begin{aligned} & 218.7115 \\ & 5 \end{aligned}$	$\begin{aligned} & 149.8818 \\ & 4 \end{aligned}$	170.0	$\begin{aligned} & 349.9774 \\ & 4 \end{aligned}$	9.94061	$\begin{aligned} & 38: 14: 23.7925 \\ & 3 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:10:29.24046 } \\ & \mathrm{W} \\ & \hline \end{aligned}$
test30	$\begin{aligned} & 40: 10: 24.5000 \\ & 0 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 70:12:45.60000 } \\ & \mathrm{W} \\ & \hline \end{aligned}$	$\begin{aligned} & 38: 04: 35.8000 \\ & \text { 0S } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 68:12:40.70000 } \\ & \mathrm{W} \\ & \hline \end{aligned}$	190.0	10.58888	$\begin{aligned} & 220.3768 \\ & 9 \end{aligned}$	200.0	21.89034	$\begin{aligned} & 366.6713 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { 43:47:20.0839 } \\ & 7 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 71:05:33.40366 } \\ & \mathrm{W} \end{aligned}$
test31	$\begin{aligned} & 40: 10: 24.5000 \\ & 0 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 70:12:45.60000 } \\ & \mathrm{W} \end{aligned}$	$\begin{aligned} & 38: 04: 35.8000 \\ & 0 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 68:12:40.70000 } \\ & \mathrm{W} \end{aligned}$	230.0	$\begin{aligned} & 227.5691 \\ & 6 \end{aligned}$	$\begin{aligned} & 241.3832 \\ & 4 \end{aligned}$	250.0	$\begin{aligned} & 248.8525 \\ & 0 \end{aligned}$	95.09771	$\begin{aligned} & 37: 31: 08.1738 \\ & 1 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 66:20:20.79110 } \\ & \mathrm{W} \end{aligned}$
test32	$\begin{aligned} & 40: 10: 24.5000 \\ & 0 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 70:12:45.60000 } \\ & \mathrm{W} \end{aligned}$	$\begin{aligned} & 38: 04: 35.8000 \\ & 0 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 68:12:40.70000 } \\ & \mathrm{W} \end{aligned}$	300.0	$\begin{aligned} & 123.0199 \\ & 6 \end{aligned}$	$\begin{aligned} & 262.8714 \\ & 0 \end{aligned}$	270.0	94.18427	$\begin{aligned} & \hline 322.4826 \\ & 2 \end{aligned}$	$\begin{aligned} & 37: 52: 47.6582 \\ & 0 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 75:00:21.64521 } \\ & \mathrm{W} \end{aligned}$
test33	$\begin{aligned} & 40: 10: 24.5000 \\ & 0 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 70:12:45.60000 } \\ & \text { W } \end{aligned}$	$\begin{aligned} & 38: 04: 35.8000 \\ & 0 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:12:40.70000 } \\ & \mathrm{W} \end{aligned}$	320.0	$\begin{aligned} & 143.7337 \\ & 6 \end{aligned}$	$\begin{aligned} & 481.8931 \\ & 0 \end{aligned}$	300.0	$\begin{aligned} & 124.8185 \\ & 5 \end{aligned}$	$\begin{aligned} & 472.5686 \\ & 9 \end{aligned}$	$\begin{aligned} & 33: 50: 26.3510 \\ & 1 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 76:24:08.89427 } \\ & \mathrm{W} \\ & \hline \end{aligned}$
test34	$\begin{aligned} & 40: 10: 24.5000 \\ & 0 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 70:12:45.60000 } \\ & \text { W } \end{aligned}$	$\begin{aligned} & 38: 04: 35.8000 \\ & 0 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 68:12:40.70000 } \\ & \mathrm{W} \end{aligned}$	30.0	$\begin{aligned} & \hline 208.9666 \\ & 1 \end{aligned}$	$\begin{aligned} & 155.7949 \\ & 4 \end{aligned}$	300.0	$\begin{aligned} & 120.2223 \\ & 3 \end{aligned}$	19.80226	$\begin{aligned} & 37: 54: 39.0707 \\ & 1 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:34:20.89766 } \\ & \text { W } \end{aligned}$
test35	$\begin{aligned} & 40: 10: 24.5000 \\ & 0 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 70:12:45.60000 } \\ & \mathrm{W} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 38:04:35.8000 } \\ & \text { 0S } \end{aligned}$	$\begin{aligned} & \text { 68:12:40.70000 } \\ & \mathrm{W} \end{aligned}$	30.0	$\begin{aligned} & 208.7459 \\ & 9 \end{aligned}$	$\begin{aligned} & 191.4541 \\ & 0 \end{aligned}$	0.0	$\begin{aligned} & 180.0000 \\ & 0 \end{aligned}$	41.16601	$\begin{aligned} & 37: 23: 22.9781 \\ & 6 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 68:12:40.70000 } \\ & \mathrm{W} \end{aligned}$
test36	$\begin{aligned} & 40: 10: 24.5000 \\ & 0 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 70:12:45.60000 } \\ & \mathrm{W} \end{aligned}$	$\begin{aligned} & \text { 38:04:35.8000 } \\ & \text { 0S } \end{aligned}$	$\begin{aligned} & \text { 68:12:40.70000 } \\ & \mathrm{W} \end{aligned}$	20.0	$\begin{aligned} & 198.1775 \\ & 7 \end{aligned}$	$\begin{aligned} & 450.5605 \\ & 9 \end{aligned}$	10.0	$\begin{aligned} & 189.3900 \\ & 6 \end{aligned}$	$\begin{aligned} & \hline 304.5480 \\ & 2 \end{aligned}$	$\begin{aligned} & \text { 33:03:55.9155 } \\ & 5 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 67:09:49.72585 } \\ & \mathrm{W} \end{aligned}$
test37	$\begin{aligned} & \text { 40:10:24.5000 } \\ & \text { 0S } \end{aligned}$	$\begin{aligned} & \text { 68:12:45.60000 } \\ & \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 38:04:35.8000 } \\ & \text { 0S } \end{aligned}$	$\begin{array}{\|l\|} \hline 70: 12: 40.70000 \\ \mathrm{E} \\ \hline \end{array}$	90.0	$\begin{aligned} & 268.9259 \\ & 6 \end{aligned}$	76.58779	187.0	7.21051	$\begin{array}{\|l\|} \hline 125.9449 \\ 3 \end{array}$	$\begin{aligned} & \text { 40:09:41.3948 } \\ & 5 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \hline 69: 52: 39.75365 \\ & \mathrm{E} \end{aligned}$
test38	$\begin{aligned} & \text { 40:10:24.5000 } \\ & \text { 0S } \end{aligned}$	$\begin{aligned} & \text { 68:12:45.60000 } \\ & \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 38:04:35.8000 } \\ & \text { 0S } \end{aligned}$	$\begin{array}{\|l\|} \hline 70: 12: 40.70000 \\ \mathrm{E} \\ \hline \end{array}$	90.0	$\begin{aligned} & \hline 266.4665 \\ & 0 \end{aligned}$	$\begin{aligned} & 252.4636 \\ & 0 \end{aligned}$	127.0	8	$\begin{aligned} & 200.9914 \\ & 3 \end{aligned}$	$\begin{aligned} & \text { 40:02:36.7003 } \\ & 0 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 73:41:41.93617 } \\ & \mathrm{E} \end{aligned}$
test39	$\begin{aligned} & \text { 40:10:24.5000 } \\ & \text { 0S } \end{aligned}$	$\begin{array}{\|l} \hline 68: 12: 45.60000 \\ \mathrm{E} \\ \hline \end{array}$	$\begin{aligned} & 38: 04: 35.8000 \\ & \text { 0S } \end{aligned}$	$\begin{aligned} & \text { 70:12:40.70000 } \\ & \mathrm{E} \end{aligned}$	180.0	$\begin{aligned} & \hline 360.0000 \\ & 0 \end{aligned}$	$\begin{aligned} & 1100.012 \\ & 45 \end{aligned}$	183.0	4.51599	$\begin{aligned} & 1228.188 \\ & 96 \end{aligned}$	$\begin{aligned} & 58: 29: 28.9764 \\ & 5 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:12:45.60000 } \\ & \mathrm{E} \end{aligned}$
test40	$\begin{aligned} & \text { 40:10:24.5000 } \\ & \text { 0S } \end{aligned}$	$\begin{aligned} & \text { 68:12:45.60000 } \\ & \text { E } \end{aligned}$	$\begin{aligned} & \text { 38:04:35.8000 } \\ & \text { 0S } \end{aligned}$	$\begin{aligned} & \text { 70:12:40.70000 } \\ & \mathrm{E} \end{aligned}$	175.0	$\begin{aligned} & \hline 354.6690 \\ & 2 \end{aligned}$	$\begin{aligned} & 243.9689 \\ & 6 \end{aligned}$	190.0	10.99261	$\begin{aligned} & 374.9238 \\ & 9 \end{aligned}$	$\begin{aligned} & \text { 44:13:28.9171 } \\ & 2 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:42:18.37446 } \\ & \mathrm{E} \end{aligned}$
test41	$\begin{array}{\|l\|} \hline 40: 10: 24.5000 \\ \text { OS } \\ \hline \end{array}$	$\begin{aligned} & \text { 68:12:45.60000 } \\ & \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 38:04:35.8000 } \\ & \text { 0S } \end{aligned}$	$\begin{array}{\|l\|} \hline 70: 12: 40.70000 \\ \mathrm{E} \\ \hline \end{array}$	175.0	176.0709	$\begin{aligned} & 1610.923 \\ & 21 \end{aligned}$	170.0	171.9156	$\begin{aligned} & 1498.429 \\ & 64 \end{aligned}$	$\begin{aligned} & \hline 13: 19: 39.6265 \\ & 8 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 65: 53: 56.00212 \\ & \mathrm{E} \end{aligned}$
test42	$\begin{array}{\|l\|} \hline \text { 40:10:24.5000 } \\ \text { OS } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 68: 12: 45.60000 \\ \mathrm{E} \end{array}$	$\begin{aligned} & \text { 38:04:35.8000 } \\ & \text { 0S } \end{aligned}$	$\begin{array}{\|l} \hline 70: 12: 40.70000 \\ \mathrm{E} \end{array}$	170.0	$\begin{aligned} & \hline 346.6021 \\ & 0 \end{aligned}$	$\begin{aligned} & \hline 914.5607 \\ & 8 \end{aligned}$	175.0	$\begin{aligned} & \hline 353.1195 \\ & 0 \end{aligned}$	$\begin{aligned} & 1027.162 \\ & 53 \end{aligned}$	$\begin{array}{l\|} \hline \text { 55:06:04.1975 } \\ 9 \mathrm{~S} \end{array}$	$\begin{array}{\|l\|} \hline 72: 46: 16.27258 \\ \mathrm{E} \\ \hline \end{array}$
test43	$\begin{array}{\|l\|} \hline 40: 10: 24.5000 \\ \text { oS } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 68: 12: 45.60000 \\ \mathrm{E} \\ \hline \end{array}$	$\begin{aligned} & \text { 38:04:35.8000 } \\ & \text { 0S } \end{aligned}$	$\begin{array}{\|l\|} \hline 70: 12: 40.70000 \\ \mathrm{E} \\ \hline \end{array}$	140.0	$\begin{aligned} & 318.3483 \\ & 7 \end{aligned}$	$\begin{aligned} & 173.2619 \\ & 8 \end{aligned}$	175.0	$\begin{aligned} & \hline 354.6738 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 257.8732 \\ & 4 \end{aligned}$	$\begin{aligned} & 42: 21: 36.7885 \\ & 4 \mathrm{~S} \end{aligned}$	$\begin{array}{\|l\|} \hline 70: 42: 57.94500 \\ \mathrm{E} \\ \hline \end{array}$
test44	$\begin{aligned} & \hline \text { 40:10:24.5000 } \\ & \text { 0S } \end{aligned}$	$\begin{aligned} & \text { 68:12:45.60000 } \\ & \mathrm{E} \end{aligned}$	$\begin{array}{\|l\|} \hline \text { 38:04:35.8000 } \\ \text { OS } \\ \hline \end{array}$	70:12:40.70000 E	35.0	$\begin{aligned} & 213.6283 \\ & 9 \end{aligned}$	$\begin{aligned} & 181.2824 \\ & 0 \end{aligned}$	200.0	$\begin{aligned} & 199.8871 \\ & \hline 8 \end{aligned}$	25.59220	$\begin{aligned} & 37: 40: 30.7171 \\ & 2 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 70:23:42.21581 } \\ & \mathrm{E} \end{aligned}$
test45	$\begin{aligned} & \text { 40:10:24.5000 } \\ & \text { 0S } \end{aligned}$	68:12:45.60000 E	$\begin{aligned} & \text { 38:04:35.8000 } \\ & \text { 0S } \end{aligned}$	$\begin{aligned} & \text { 70:12:40.70000 } \\ & \mathrm{E} \end{aligned}$	35.0	$\begin{aligned} & \hline 214.0295 \\ & 9 \end{aligned}$	$\begin{aligned} & 125.8876 \\ & 1 \end{aligned}$	225.0	45.28920	31.13428	$\begin{aligned} & \text { 38:26:34.7941 } \\ & 0 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 69:44:39.40243 } \\ & \mathrm{E} \end{aligned}$

A2-103

test46	$\begin{aligned} & \text { 40:10:24.5000 } \\ & \text { 0S } \end{aligned}$	68:12:45.60000 E	$\begin{aligned} & \text { 38:04:35.8000 } \\ & \text { 0S } \end{aligned}$	$\begin{aligned} & \text { 70:12:40.70000 } \\ & \mathrm{E} \\ & \hline \end{aligned}$	40.0	$\begin{aligned} & 218.8420 \\ & 1 \end{aligned}$	$\begin{aligned} & 134.0315 \\ & 8 \end{aligned}$	200.0	20.10593	23.57520	$\begin{array}{\|l\|} \hline 38: 26: 45.9790 \\ 4 \mathrm{~S} \\ \hline \end{array}$	$\begin{aligned} & \text { 70:02:24.89276 } \\ & \mathrm{E} \\ & \hline \end{aligned}$
test47	$\begin{aligned} & 40: 10: 24.5000 \\ & 0 \mathrm{~S} \\ & \hline \end{aligned}$	68:12:45.60000 E	$\begin{aligned} & 38: 04: 35.8000 \\ & \text { 0S } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 70:12:40.70000 } \\ & \mathrm{E} \\ & \hline \end{aligned}$	40.0	$\begin{aligned} & 218.7129 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 149.7132 \\ & 6 \end{aligned}$	170.0	$\begin{aligned} & 349.9771 \\ & 3 \\ & \hline \end{aligned}$	10.07419	$\begin{aligned} & 38: 14: 31.6935 \\ & 3 \mathrm{~S} \end{aligned}$	70:14:53.93008 E
test48	$\begin{aligned} & \text { 40:10:24.5000 } \\ & 0 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:12:45.60000 } \\ & \text { E } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 38:04:35.8000 } \\ & \text { 0S } \end{aligned}$	$\begin{aligned} & \text { 70:12:40.70000 } \\ & \mathrm{E} \end{aligned}$	190.0	10.58725	$\begin{aligned} & 219.8166 \\ & 0 \end{aligned}$	200.0	21.88681	$\begin{array}{\|l\|} \hline 366.0777 \\ 6 \\ \hline \end{array}$	$\begin{aligned} & \text { 43:46:47.0357 } \\ & 7 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 67:20:06.32333 } \\ & \mathrm{E} \\ & \hline \end{aligned}$
test49	$\begin{aligned} & \text { 40:10:24.5000 } \\ & 0 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:12:45.60000 } \\ & \mathrm{E} \\ & \hline \end{aligned}$	$\begin{aligned} & 38: 04: 35.8000 \\ & \text { 0S } \end{aligned}$	$\begin{aligned} & \text { 70:12:40.70000 } \\ & \mathrm{E} \end{aligned}$	230.0	$\begin{aligned} & 227.5679 \\ & 5 \end{aligned}$	$\begin{aligned} & 241.5124 \\ & 0 \end{aligned}$	250.0	$\begin{aligned} & 248.8496 \\ & 2 \end{aligned}$	95.33926	$\begin{array}{\|l\|} \hline \text { 37:31:02.9386 } \\ \text { 3S } \\ \hline \end{array}$	$72: 05: 17.59883$ E
test50	$\begin{aligned} & 40: 10: 24.5000 \\ & 0 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 68:12:45.60000 } \\ & \text { E } \end{aligned}$	$\begin{aligned} & 38: 04: 35.8000 \\ & 0 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 70:12:40.70000 } \\ & \mathrm{E} \\ & \hline \end{aligned}$	300.0	$\begin{aligned} & 123.0197 \\ & 5 \end{aligned}$	$\begin{aligned} & 262.8518 \\ & 4 \end{aligned}$	270.0	94.18239	$\begin{aligned} & 322.3365 \\ & 2 \end{aligned}$	$\begin{aligned} & 37: 52: 48.2984 \\ & \text { 0S } \end{aligned}$	$\begin{aligned} & \text { 63:25:10.79761 } \\ & \mathrm{E} \end{aligned}$
test51	$\begin{aligned} & 40: 10: 24.5000 \\ & 0 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 68:12:45.60000 } \\ & \mathrm{E} \end{aligned}$	$\begin{aligned} & 38: 04: 35.8000 \\ & 0 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 70:12:40.70000 } \\ & \mathrm{E} \end{aligned}$	320.0	$\begin{aligned} & 143.7321 \\ & 8 \end{aligned}$	$\begin{aligned} & 481.6535 \\ & 0 \end{aligned}$	300.0		$\begin{array}{\|l\|} \hline 472.2303 \\ 3 \end{array}$	$\begin{aligned} & \text { 33:50:37.9632 } \\ & 2 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 62:01:32.51590 } \\ & \mathrm{E} \\ & \hline \end{aligned}$
test52	$\begin{aligned} & 40: 10: 24.5000 \\ & 0 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 68:12:45.60000 } \\ & \text { E } \\ & \hline \end{aligned}$	$\begin{aligned} & 38: 04: 35.8000 \\ & 0 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 70:12:40.70000 } \\ & \mathrm{E} \\ & \hline \end{aligned}$	30.0	$\begin{aligned} & 208.9670 \\ & 2 \end{aligned}$	$\begin{aligned} & 155.7298 \\ & 6 \end{aligned}$	300.0	$\begin{aligned} & 120.2210 \\ & 6 \end{aligned}$	19.68914	$\begin{aligned} & 37: 54: 42.4907 \\ & 5 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 69:51:07.91279 } \\ & \mathrm{E} \\ & \hline \end{aligned}$
test53	$\begin{aligned} & 40: 10: 24.5000 \\ & 0 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:12:45.60000 } \\ & \mathrm{E} \end{aligned}$	$\begin{aligned} & 38: 04: 35.8000 \\ & 0 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 70:12:40.70000 } \\ & \mathrm{E} \end{aligned}$	30.0	$\begin{aligned} & 208.7476 \\ & 4 \end{aligned}$	$\begin{aligned} & 191.1834 \\ & 6 \end{aligned}$	0.0	$\begin{aligned} & 180.0000 \\ & 0 \end{aligned}$	40.92873	$\begin{aligned} & 37: 23: 37.2326 \\ & 5 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 70:12:40.70000 } \\ & \mathrm{E} \end{aligned}$
test54	$\begin{aligned} & 40: 10: 24.5000 \\ & 0 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 68:12:45.60000 } \\ & \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 38:04:35.8000 } \\ & 0 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 70:12:40.70000 } \\ & \mathrm{E} \end{aligned}$	20.0	$\begin{aligned} & 198.1805 \\ & 7 \end{aligned}$	$\begin{aligned} & 449.6742 \\ & 8 \end{aligned}$	10.0	$\begin{aligned} & 189.3915 \\ & 7 \end{aligned}$	$\begin{array}{\|l\|} \hline 303.6945 \\ 1 \end{array}$	$\begin{array}{\|l\|} \hline \text { 33:04:46.5374 } \\ 0 \mathrm{~S} \\ \hline \end{array}$	$\begin{aligned} & \text { 71:15:21.73045 } \\ & \text { E } \end{aligned}$
test55	$\begin{aligned} & \text { 40:10:24.5000 } \\ & 0 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:12:45.60000 } \\ & \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 42:04:35.8000 } \\ & 0 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:12:40.70000 } \\ & \mathrm{E} \end{aligned}$	90.0	$\begin{aligned} & 271.0915 \\ & 3 \end{aligned}$	77.83566	187.0	6.79843	$\begin{array}{\|l\|} \hline 115.7018 \\ 5 \\ \hline \end{array}$	$\begin{aligned} & \text { 40:09:39.9789 } \\ & 3 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:54:17.39524 } \\ & \mathrm{E} \end{aligned}$
test56	$\begin{aligned} & \text { 40:10:24.5000 } \\ & 0 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:12:45.60000 } \\ & \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 42:04:35.8000 } \\ & \text { 0N } \end{aligned}$	$\begin{aligned} & \text { 70:12:40.70000 } \\ & \mathrm{E} \end{aligned}$	90.0	$\begin{aligned} & 273.4902 \\ & 2 \end{aligned}$	$\begin{aligned} & 249.3582 \\ & 9 \end{aligned}$	127.0		$\begin{array}{\|l\|} \hline 197.1017 \\ 6 \\ \hline \end{array}$	$\begin{aligned} & \text { 40:02:48.1219 } \\ & 7 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 73:37:39.78188 } \\ & \mathrm{E} \end{aligned}$
test57	$\begin{aligned} & \text { 40:10:24.5000 } \\ & 0 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:12:45.60000 } \\ & \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 42:04:35.8000 } \\ & 0 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:12:40.70000 } \\ & \mathrm{E} \end{aligned}$	180.0	$\begin{aligned} & \hline 360.0000 \\ & 0 \end{aligned}$	$\begin{aligned} & \hline 2396.683 \\ & 05 \end{aligned}$	183.0	2.22965	$\begin{aligned} & 2513.143 \\ & 98 \end{aligned}$	$\begin{aligned} & \text { 0:05:29.92696 } \\ & \mathrm{N} \end{aligned}$	$\begin{aligned} & \text { 68:12:45.60000 } \\ & \mathrm{E} \end{aligned}$
test58	$\begin{aligned} & \text { 40:10:24.5000 } \\ & \text { 0N } \end{aligned}$	$\begin{aligned} & \text { 68:12:45.60000 } \\ & \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 42:04:35.800 } \\ & 0 \mathrm{~N} \end{aligned}$	$\begin{array}{\|l\|} \hline 70: 12: 40.70000 \\ \mathrm{E} \\ \hline \end{array}$	175.0	$\begin{aligned} & 355.3233 \\ & 8 \end{aligned}$	$\begin{aligned} & 298.4366 \\ & 8 \end{aligned}$	190.0	9.08018	$\begin{array}{\|l\|} \hline 417.2421 \\ 3 \end{array}$	$\begin{aligned} & 35: 12: 41.1916 \\ & 1 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \hline 68: 44: 27.81826 \\ & \mathrm{E} \end{aligned}$
test59	$\begin{aligned} & \text { 40:10:24.5000 } \\ & \text { 0N } \end{aligned}$	$\begin{aligned} & \text { 68:12:45.60000 } \\ & \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 42:04:35.8000 } \\ & \text { 0N } \end{aligned}$	$\begin{array}{\|l\|} \hline 70: 12: 40.70000 \\ \mathrm{E} \\ \hline \end{array}$	175.0	$\begin{aligned} & 173.0968 \\ & 5 \end{aligned}$	$\begin{aligned} & 978.6223 \\ & 8 \end{aligned}$	170.0	2	$\begin{aligned} & 877.1571 \\ & 7 \end{aligned}$	$\begin{aligned} & \text { 56:23:18.1079 } \\ & 9 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 65:41:19.19227 } \\ & \mathrm{E} \end{aligned}$
test60	$\begin{aligned} & \text { 40:10:24.5000 } \\ & 0 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:12:45.60000 } \\ & \text { E } \end{aligned}$	$\begin{aligned} & \text { 42:04:35.8000 } \\ & \text { 0N } \end{aligned}$	$\begin{aligned} & \text { 70:12:40.70000 } \\ & \mathrm{E} \end{aligned}$	170.0	$\begin{aligned} & 352.0615 \\ & 5 \end{aligned}$	$\begin{aligned} & 1470.738 \\ & 41 \end{aligned}$	175.0	$\begin{aligned} & 356.1385 \\ & 5 \end{aligned}$	$\begin{aligned} & 1572.102 \\ & 01 \end{aligned}$	$\begin{aligned} & \text { 15:53:04.6965 } \\ & 2 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 72:29:58.69976 } \\ & \text { E } \end{aligned}$
test61	$\begin{aligned} & \text { 40:10:24.5000 } \\ & 0 \mathrm{~N} \end{aligned}$	$\begin{array}{\|l} \hline 68: 12: 45.60000 \\ \mathrm{E} \\ \hline \end{array}$	$\begin{aligned} & \text { 42:04:35.8000 } \\ & \text { 0N } \end{aligned}$	$\begin{aligned} & \text { 70:12:40.70000 } \\ & \mathrm{E} \end{aligned}$	140.0	$\begin{aligned} & 321.5537 \\ & 0 \end{aligned}$	$\begin{aligned} & 182.6172 \\ & 4 \end{aligned}$	175.0	$\begin{aligned} & \hline 355.3018 \\ & 6 \end{aligned}$	256.5372	$\begin{aligned} & 37: 48: 46.6282 \\ & 6 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:40:52.06822 } \\ & \mathrm{E} \end{aligned}$
test62	$\begin{aligned} & 40: 10: 24.5000 \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:12:45.60000 } \\ & \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 42:04:35.8000 } \\ & 0 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \hline 70: 12: 40.70000 \\ & \mathrm{E} \end{aligned}$	35.0	$\begin{aligned} & 216.4489 \\ & 2 \end{aligned}$	$\begin{aligned} & 169.8518 \\ & 3 \end{aligned}$	200.0	$\begin{aligned} & 200.1312 \\ & 3 \end{aligned}$	25.32646	$\begin{aligned} & \text { 42:28:23.6827 } \\ & 5 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:24:22.98760 } \\ & \mathrm{E} \end{aligned}$
test63	$\begin{aligned} & \text { 40:10:24.5000 } \\ & 0 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:12:45.60000 } \\ & \text { E } \end{aligned}$	$\begin{aligned} & \text { 42:04:35.8000 } \\ & 0 \mathrm{~N} \end{aligned}$	$\begin{array}{\|l\|} \hline 70: 12: 40.70000 \\ \mathrm{E} \\ \hline \end{array}$	35.0	215.8236	98.95285	225.0	44.50715	47.1328	$\begin{aligned} & 41: 31: 06.5899 \\ & \text { 3N } \end{aligned}$	$\begin{aligned} & \text { 69:28:18.70067 } \\ & \mathrm{E} \end{aligned}$
test6	$\begin{aligned} & \text { 40:10:24.5000 } \\ & 0 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:12:45.60000 } \\ & \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 42:04:35.8000 } \\ & \text { 0N } \end{aligned}$	$\begin{aligned} & \text { 70:12:40.70000 } \\ & \mathrm{E} \end{aligned}$	40.0	$\begin{aligned} & 221.2345 \\ & 5 \end{aligned}$	$\begin{aligned} & 131.2770 \\ & 7 \end{aligned}$	200.0	19.92155	15.3872	$\begin{aligned} & 41: 50: 07.6564 \\ & 1 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:05:38.28221 } \\ & \mathrm{E} \end{aligned}$
test65	$\begin{aligned} & \text { 40:10:24.5000 } \\ & 0 \mathrm{~N} \end{aligned}$	$\begin{array}{\|l\|} \hline 68: 12: 45.60000 \\ \mathrm{E} \end{array}$	$\begin{aligned} & \text { 42:04:35.8000 } \\ & 0 \mathrm{~N} \end{aligned}$	$\begin{array}{\|l\|} \hline 70: 12: 40.70000 \\ \mathrm{E} \end{array}$	40.0	221.3314	$\begin{aligned} & 141.1334 \\ & 4 \end{aligned}$	170.0	$\begin{aligned} & 350.0186 \\ & 0 \end{aligned}$	7.16484	$\begin{aligned} & 41: 57: 32.2517 \\ & \text { 0N } \end{aligned}$	$\begin{array}{\|l} \hline 70: 14: 20.75633 \\ \mathrm{E} \end{array}$
test66	$\begin{aligned} & \text { 40:10:24.5000 } \\ & 0 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \hline 68: 12: 45.60000 \\ & \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 42:04:35.8000 } \\ & \text { 0N } \end{aligned}$	$\begin{array}{\|l\|} \hline 70: 12: 40.70000 \\ \mathrm{E} \\ \hline \end{array}$	190.0	9.32443	314.4794	200.0	18.06144	$\begin{aligned} & 448.5440 \\ & 4 \end{aligned}$	$\begin{aligned} & \text { 35:00:00.7367 } \\ & \text { 3N } \end{aligned}$	$\begin{aligned} & \text { 67:06:22.55872 } \\ & \mathrm{E} \end{aligned}$
test67	40:10:24.5000 0 N	$68: 12: 45.60000$ E	$\begin{aligned} & \text { 42:04:35.8000 } \\ & \text { 0N } \end{aligned}$	70:12:40.70000 E	230.0	232.6692	233.3841	250.0	251.3718	96.01994	$\begin{aligned} & 42: 36: 22.2305 \\ & 8 \mathrm{~N} \end{aligned}$	72:14:52.24641
test68	40:10:24.5000 0 N	$\begin{aligned} & \hline 68: 12: 45.60000 \\ & \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 42:04:35.8000 } \\ & 0 \mathrm{~N} \end{aligned}$	$\begin{array}{\|l\|} \hline 70: 12: 40.70000 \\ \mathrm{E} \end{array}$	300.0	$\begin{aligned} & 117.2421 \\ & 8 \end{aligned}$	$\begin{aligned} & 217.1421 \\ & 4 \end{aligned}$	270.0	85.85158	$\begin{aligned} & 277.3905 \\ & 3 \end{aligned}$	$\begin{aligned} & 41: 54: 32.4340 \\ & 3 \mathrm{~N} \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \begin{array}{l} \text { 64:00:50.69032 } \\ \mathrm{E} \end{array} \\ \hline \end{array}$
test69	$\begin{aligned} & \text { 40:10:24.5000 } \\ & 0 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 68:12:45.60000 } \\ & \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 42:04:35.8000 } \\ & \text { 0N } \end{aligned}$	$\begin{aligned} & \text { 70:12:40.70000 } \\ & \mathrm{E} \end{aligned}$	320.0	$\begin{aligned} & 135.9619 \\ & 1 \end{aligned}$	$\begin{aligned} & 394.1797 \\ & 6 \end{aligned}$	300.0	$\begin{aligned} & 114.5113 \\ & 2 \end{aligned}$	$\begin{array}{\|l\|} \hline 390.1869 \\ 8 \\ \hline \end{array}$	$\begin{aligned} & \text { 45:03:40.1939 } \\ & 4 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 62:15:25.92213 } \\ & \mathrm{E} \end{aligned}$
test70	40:10:24.5000	68:12:45.60000	42:04:35.8000	70:12:40.70000	30.0	211.0637	143.9165	300.0	119.7420	19.77535	42:14:26.9810	69:49:37.30186

	0N	E	0N	E		3	6		8		6N	E
test71	$\begin{aligned} & \text { 40:10:24.5000 } \\ & \text { 0N } \end{aligned}$	68:12:45.60000 E	$\begin{aligned} & \text { 42:04:35.8000 } \\ & 0 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:12:40.70000 } \\ & \mathrm{E} \\ & \hline \end{aligned}$	30.0	$\begin{aligned} & 211.3232 \\ & 2 \end{aligned}$	$\begin{aligned} & 176.8599 \\ & 4 \end{aligned}$	0.0	$\begin{aligned} & 180.0000 \\ & 0 \end{aligned}$	38.02981	$\begin{aligned} & 42: 42: 38.3910 \\ & 8 \mathrm{~N} \end{aligned}$	70:12:40.70000 E
test72	$\begin{aligned} & \text { 40:10:24.5000 } \\ & 0 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:12:45.60000 } \\ & \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 42:04:35.8000 } \\ & \text { 0N } \end{aligned}$	$\begin{aligned} & \text { 70:12:40.70000 } \\ & \mathrm{E} \end{aligned}$	20.0	$\begin{aligned} & 202.0030 \\ & 9 \end{aligned}$	$\begin{aligned} & 360.7041 \\ & 5 \end{aligned}$	10.0	$\begin{aligned} & 190.6494 \\ & 9 \end{aligned}$	$\begin{aligned} & 226.3701 \\ & 5 \end{aligned}$	$\begin{aligned} & 45: 47: 19.5403 \\ & 5 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 71:08:48.89165 } \\ & \mathrm{E} \\ & \hline \end{aligned}$

WGS84ArcIntersect Test Results

Test Identifier	Arc 1 Center Latitude	Arc 1 Center Longitude	Arc 1 Radius	Arc 2 Center Latitude	Arc 2 Center Longitude	Arc 2 Radius	Intersection 1 Latitude	Intersection 1 Longitude	Intersection 2 Latitude	Intersection 2 Longitude
test1	40:10:24.50000N	70:12:45.60000W	100.0	52:04:35.80000N	68:12:40.70000W	270.0	N/A	N/A	N/A	N/A
test2	40:10:24.50000N	70:12:45.60000W	500.0	42:04:35.80000N	68:12:40.70000W	10.0	N/A	N/A	N/A	N/A
test3	0:00:00.00000N	0:00:00.00000E	150.0	0:00:00.00000N	4:59:27.60000W	150.0	0:00:36.09395S	2:29:43.80000W	0:00:36.09395N	2:29:43.80000W
test4	40:10:24.50000N	70:12:45.60000W	500.0	52:04:35.80000N	68:12:40.70000W	270.0	48:22:59.73249N	72:12:38.32104W	47:52:02.19529N	65:45:38.36390W
test5	40:10:24.50000N	70:12:45.60000W	500.0	52:04:35.80000N	68:12:40.70000W	500.0	46:29:29.71744N	77:40:33.97739W	45:10:28.61546N	61:09:37.26553W
test6	40:10:24.50000N	70:12:45.60000W	500.0	52:04:35.80000N	68:12:40.70000W	1000.0	36:14:44.69990N	60:52:32.48344W	37:48:21.06721N	80:28:07.28278W
test7	40:10:24.50000N	70:12:45.60000W	500.0	52:04:35.80000N	68:12:40.70000W	1200.0	32:04:17.90465N	67:44:28.29488W	32:37:16.67926N	74:36:44.61637W
test8	40:10:24.50000N	70:12:45.60000W	500.0	52:04:35.80000N	68:12:40.70000W	1300.0	N/A	N/A	N/A	N/A
test9	40:10:24.50000N	70:12:45.60000W	500.0	52:04:35.80000N	68:12:40.70000W	10.0	N/A	N/A	N/A	N/A
test10	40:10:24.50000S	70:12:45.60000W	500.0	52:04:35.80000S	68:12:40.70000W	270.0	47:52:02.19529S	65:45:38.36390W	48:22:59.73249S	72:12:38.32104W
test11	40:10:24.50000S	70:12:45.60000W	500.0	52:04:35.80000S	68:12:40.70000W	500.0	45:10:28.61546S	61:09:37.26553W	46:29:29.71744S	77:40:33.97739W
test12	40:10:24.50000S	70:12:45.60000W	500.0	52:04:35.80000S	68:12:40.70000W	1000.0	37:48:21.06721S	80:28:07.28278W	36:14:44.69990S	60:52:32.48344W
test13	40:10:24.50000S	70:12:45.60000W	500.0	52:04:35.80000S	68:12:40.70000W	1200.0	32:37:16.67926S	74:36:44.61637W	32:04:17.90465S	67:44:28.29488W
test14	40:10:24.50000S	70:12:45.60000W	500.0	52:04:35.80000S	68:12:40.70000W	1300.0	N/A	N/A	N/A	N/A
test15	40:10:24.50000S	70:12:45.60000W	500.0	52:04:35.80000S	68:12:40.70000W	10.0	N/A	N/A	N/A	N/A
test16	40:10:24.50000S	70:12:45.60000E	500.0	52:04:35.80000S	68:12:40.70000E	270.0	48:22:59.73249S	72:12:38.32104E	47:52:02.19529S	65:45:38.36390E
test17	40:10:24.50000S	70:12:45.60000E	500.0	52:04:35.80000S	68:12:40.70000E	500.0	46:29:29.71744S	77:40:33.97739E	45:10:28.61546S	61:09:37.26553E
test18	40:10:24.50000S	70:12:45.60000E	500.0	52:04:35.80000S	68:12:40.70000E	1000.0	36:14:44.69990S	60:52:32.48344E	37:48:21.06721S	80:28:07.28278E
test19	40:10:24.50000S	70:12:45.60000E	500.0	52:04:35.80000S	68:12:40.70000E	1200.0	32:04:17.90465S	67:44:28.29488E	32:37:16.67926S	74:36:44.61637E
test20	40:10:24.50000S	70:12:45.60000E	500.0	52:04:35.80000S	68:12:40.70000E	1300.0	N/A	N/A	N/A	N/A
test21	40:10:24.50000S	70:12:45.60000E	500.0	52:04:35.80000S	68:12:40.70000E	10.0	N/A	N/A	N/A	N/A
test22	40:10:24.50000N	70:12:45.60000E	500.0	52:04:35.80000N	68:12:40.70000E	270.0	47:52:02.19529N	65:45:38.36390E	48:22:59.73249N	72:12:38.32104E
test23	40:10:24.50000N	70:12:45.60000E	500.0	52:04:35.80000N	68:12:40.70000E	500.0	45:10:28.61546N	61:09:37.26553E	46:29:29.71744N	77:40:33.97739E
test24	40:10:24.50000N	70:12:45.60000E	500.0	52:04:35.80000N	68:12:40.70000E	1000.0	37:48:21.06721N	80:28:07.28278E	36:14:44.69990N	60:52:32.48344E
test25	40:10:24.50000N	70:12:45.60000E	500.0	52:04:35.80000N	68:12:40.70000E	1200.0	32:37:16.67926N	74:36:44.61637E	32:04:17.90465N	67:44:28.29488E
test26	40:10:24.50000N	70:12:45.60000E	500.0	52:04:35.80000N	68:12:40.70000E	1300.0	N/A	N/A	N/A	N/A
test27	40:10:24.50000N	70:12:45.60000E	500.0	52:04:35.80000N	68:12:40.70000E	10.0	N/A	N/A	N/A	N/A
test28	6:10:24.50000S	70:12:45.60000E	500.0	6:04:35.80000N	68:12:40.70000E	500.0	0:57:26.91899S	63:41:24.65688E	0:51:39.75573N	74:44:00.46476E
test29	90:00:00.00000N	70:12:45.60000E	500.0	78:04:35.80000N	68:12:40.70000E	500.0	81:42:32.06863N	112:26:25.42164E	81:42:32.06863N	23:58:55.97836E
test30	90:00:00.00000S	70:12:45.60000E	500.0	78:04:35.80000S	68:12:40.70000E	500.0	81:42:32.06863S	23:58:55.97836E	81:42:32.06863S	112:26:25.42164E

WGS84GeodesicArcIntersect Test Results

Test Identifier	Geodesic Start Latitude	Geodesic Start Longitude	Geodesic Azimuth	Arc Center Latitude	Arc Center Longitude	Arc Radius	Intersection 1 Latitude	Intersection 1 Longitude	Intersection 2 Latitude	Intersection 2 Longitude
test1	40:04:35.80000N	67:12:40.70000W	350.0	40:10:24.50000N	70:12:45.60000W	100.0	N/A	N/A	N/A	N/A
test2	40:04:35.80000N	67:12:40.70000W	200.0	40:10:24.50000N	70:12:45.60000W	100.0	N/A	N/A	N/A	N/A
test3	40:04:35.80000N	68:12:40.70000W	325.0	40:10:24.50000N	70:12:45.60000W	100.0	39:55:07.50121N	68:04:04.19322W	41:49:07.05128N	69:51:08.02313W
test4	40:04:35.80000N	67:12:40.70000W	270.0	40:10:24.50000N	70:12:45.60000W	100.0	40:04:25.03104N	68:02:37.73049W	39:57:42.51976N	72:21:57.92383W
test5	40:04:35.80000N	67:12:40.70000W	300.0	40:10:24.50000N	70:12:45.60000W	100.0	40:26:58.44233N	68:03:50.25317W	41:41:50.22946N	71:06:22.56112W
test6	40:04:35.80000N	67:12:40.70000W	240.0	40:10:24.50000N	70:12:45.60000W	100.0	39:39:05.08426N	68:09:19.50227W	38:31:25.09106N	70:31:48.24036W
test7	42:54:35.80000N	70:11:34.70000W	180.0	40:10:24.50000N	70:12:45.60000W	100.0	41:50:27.82240N	70:11:34.70000W	38:30:19.45513N	70:11:34.70000W
test8	42:54:35.80000N	70:11:34.70000W	148.0	40:10:24.50000N	70:12:45.60000W	100.0	41:37:21.88671N	69:07:30.61751W	40:14:53.46014N	68:02:21.53739W
test9	42:54:35.80000N	70:11:34.70000W	211.0	40:10:24.50000N	70:12:45.60000W	100.0	41:40:11.55047N	71:10:59.87403W	40:05:20.45327N	72:22:58.34527W
test10	40:24:35.80000N	75:11:34.70000W	90.0	40:10:24.50000N	70:12:45.60000W	100.0	40:22:32.07141N	72:22:27.11102W	40:11:17.30268N	68:02:17.43363W
test11	40:24:35.80000N	75:11:34.70000W	71.0	40:10:24.50000N	70:12:45.60000W	100.0	41:12:48.70166N	71:55:32.15119W	41:44:39.12385N	69:28:24.56005W
test12	40:24:35.80000N	75:11:34.70000W	117.0	40:10:24.50000N	70:12:45.60000W	100.0	38:58:10.68147N	71:42:17.04664W	38:34:08.21242N	70:48:01.94345W
test13	37:09:35.80000N	70:21:34.70000W	0.0	40:10:24.50000N	70:12:45.60000W	100.0	38:30:33.27210N	70:21:34.70000W	41:50:14.67279N	70:21:34.70000W
test14	37:09:35.80000N	70:21:34.70000W	34.0	40:10:24.50000N	70:12:45.60000W	100.0	38:51:33.35407N	68:53:10.34405W	39:40:46.86281N	68:08:35.72134W
test15	37:09:35.80000N	70:21:34.70000W	331.0	40:10:24.50000N	70:12:45.60000W	100.0	38:53:33.43923N	71:35:33.98874W	39:55:14.26604N	72:21:28.46764W
test16	40:04:35.80000N	73:12:40.70000E	350.0	40:10:24.50000N	70:12:45.60000E	100.0	N/A	N/A	N/A	N/A
test17	40:04:35.80000N	73:12:40.70000E	200.0	40:10:24.50000N	70:12:45.60000E	100.0	N/A	N/A	N/A	N/A
test18	40:04:35.80000N	72:12:40.70000E	315.0	40:10:24.50000N	70:12:45.60000E	100.0	39:57:28.59246N	72:21:55.36432E	41:49:06.70033N	69:51:05.23564E
test19	40:04:35.80000N	73:12:40.70000E	270.0	40:10:24.50000N	70:12:45.60000E	100.0	40:04:25.10140N	72:22:53.47612E	39:57:42.95307N	68:03:33.19723E
test20	40:04:35.80000N	73:12:40.70000E	300.0	40:10:24.50000N	70:12:45.60000E	100.0	40:26:53.80980N	72:21:41.88661E	41:41:48.45569N	69:19:03.39492E
test21	40:04:35.80000N	73:12:40.70000E	240.0	40:10:24.50000N	70:12:45.60000E	100.0	39:39:10.70047N	72:16:14.18085E	38:31:26.01350N	69:53:35.03132E
test22	42:54:35.80000N	70:11:34.70000E	180.0	40:10:24.50000N	70:12:45.60000E	100.0	41:50:27.82240N	70:11:34.70000E	38:30:19.45513N	70:11:34.70000E
test23	42:54:35.80000N	70:11:34.70000E	148.0	40:10:24.50000N	70:12:45.60000E	100.0	41:38:51.44804N	71:14:26.22964E	40:11:43.96597N	72:23:13.80920E
test24	42:54:35.80000N	70:11:34.70000E	211.0	40:10:24.50000N	70:12:45.60000E	100.0	41:38:52.66082N	69:11:07.98528E	40:08:17.38700N	68:02:21.75495E
test25	40:24:35.80000N	65:11:34.70000E	90.0	40:10:24.50000N	70:12:45.60000E	100.0	40:22:28.60052N	68:03:03.59248E	40:11:08.47196N	72:23:13.71817E
test26	40:24:35.80000N	65:11:34.70000E	71.0	40:10:24.50000N	70:12:45.60000E	100.0	41:13:31.30530N	68:30:43.58125E	41:44:55.52500N	70:56:05.26696E
test27	40:24:35.80000N	65:11:34.70000E	117.0	40:10:24.50000N	70:12:45.60000E	100.0	38:55:28.33410N	68:47:03.42056E	38:35:19.72896N	69:32:28.24986E
test28	37:09:35.80000N	70:21:34.70000E	0.0	40:10:24.50000N	70:12:45.60000E	100.0	38:30:33.27210N	70:21:34.70000E	41:50:14.67279N	70:21:34.70000E
test29	37:09:35.80000N	70:21:34.70000E	31.0	40:10:24.50000N	70:12:45.60000E	100.0	39:05:41.34977N	71:51:29.95766E	39:31:54.37145N	72:12:37.10649E
test30	37:09:35.80000N	70:21:34.70000E	331.0	40:10:24.50000N	70:12:45.60000E	100.0	38:39:57.65316N	69:17:30.06177E	40:20:03.37282N	68:02:45.21636E
test31	40:04:35.80000S	73:12:40.70000E	350.0	40:10:24.50000S	70:12:45.60000E	100.0	N/A	N/A	N/A	N/A
test32	40:04:35.80000S	73:12:40.70000E	200.0	40:10:24.50000S	70:12:45.60000E	100.0	N/A	N/A	N/A	N/A
test33	40:04:35.80000S	72:12:40.70000E	315.0	40:10:24.50000S	70:12:45.60000E	100.0	40:12:40.39213S	72:23:13.39076E	38:30:19.48047S	70:13:59.97421E
test34	40:04:35.80000S	73:12:40.70000E	270.0	40:10:24.50000S	70:12:45.60000E	100.0	40:04:25.10140S	72:22:53.47612E	39:57:42.95307S	68:03:33.19723E
test35	40:04:35.80000S	73:12:40.70000E	300.0	40:10:24.50000S	70:12:45.60000E	100.0	39:39:10.70047S	72:16:14.18085E	38:31:26.01350S	69:53:35.03132E
test36	40:04:35.80000S	73:12:40.70000E	240.0	40:10:24.50000S	70:12:45.60000E	100.0	40:26:53.80980S	72:21:41.88661E	41:41:48.45569S	69:19:03.39492E
test37	38:04:35.80000S	70:11:34.70000E	180.0	40:10:24.50000S	70:12:45.60000E	100.0	38:30:19.45513S	70:11:34.70000E	41:50:27.82240S	70:11:34.70000E
test38	38:04:35.80000S	70:11:34.70000E	148.0	40:10:24.50000S	70:12:45.60000E	100.0	38:31:34.10858S	70:33:03.48677E	40:38:16.13339S	72:18:29.56104E
test39	38:04:35.80000S	70:11:34.70000E	211.0	40:10:24.50000S	70:12:45.60000E	100.0	38:31:47.32219S	69:50:45.35130E	40:40:24.17522S	68:07:50.24284E
test40	40:24:35.80000S	65:51:34.70000E	90.0	40:10:24.50000S	70:12:45.60000E	100.0	40:23:20.88344S	68:03:11.35606E	40:13:31.47512S	72:23:12.41522E
test41	40:24:35.80000S	65:51:34.70000E	71.0	40:10:24.50000S	70:12:45.60000E	100.0	39:47:33.58163S	68:06:05.87892E	38:46:58.13955S	71:24:05.30746E
test42	40:24:35.80000S	65:51:34.70000E	117.0	40:10:24.50000S	70:12:45.60000E	100.0	41:34:54.09546S	69:02:08.00210E	41:46:21.53454S	69:35:18.59270E

test43	43:09:35.80000S	70:21:34.70000E	0.0	40:10:24.50000S	70:12:45.60000E	100.0	41:50:14.67279S	70:21:34.70000E	38:30:33.27210S	70:21:34.70000E
test44	43:09:35.80000S	70:21:34.70000E	34.0	40:10:24.50000S	70:12:45.60000E	100.0	N/A	N/A	N/A	N/A
test45	43:09:35.80000S	70:21:34.70000E	335.0	40:10:24.50000S	70:12:45.60000E	100.0	41:44:46.94173S	69:28:53.61272E	39:33:21.66496S	68:12:06.66151E
test46	40:04:35.80000S	67:12:40.70000W	350.0	40:10:24.50000S	70:12:45.60000W	100.0	N/A	N/A	N/A	N/A
test47	40:04:35.80000S	67:12:40.70000W	200.0	40:10:24.50000S	70:12:45.60000W	100.0	N/A	N/A	N/A	N/A
test48	40:04:35.80000S	68:12:40.70000W	315.0	40:10:24.50000S	70:12:45.60000W	100.0	40:12:32.98018S	68:02:17.71481W	38:30:19.55929S	70:11:21.32978W
test49	40:04:35.80000S	67:12:40.70000W	270.0	40:10:24.50000S	70:12:45.60000W	100.0	40:04:25.03104S	68:02:37.73049W	39:57:42.51976S	72:21:57.92383W
test50	40:04:35.80000S	67:12:40.70000W	300.0	40:10:24.50000S	70:12:45.60000W	100.0	39:39:05.08426S	68:09:19.50227W	38:31:25.09106S	70:31:48.24036W
test51	40:04:35.80000S	67:12:40.70000W	240.0	40:10:24.50000S	70:12:45.60000W	100.0	40:26:58.44233S	68:03:50.25317W	41:41:50.22946S	71:06:22.56112W
test52	38:04:35.80000S	70:11:34.70000W	180.0	40:10:24.50000S	70:12:45.60000W	100.0	38:30:19.45513S	70:11:34.70000W	41:50:27.82240S	70:11:34.70000W
test53	38:04:35.80000S	70:11:34.70000W	148.0	40:10:24.50000S	70:12:45.60000W	100.0	38:31:55.04879S	69:49:49.11075W	40:36:19.17675S	68:06:20.78959W
test54	38:04:35.80000S	70:11:34.70000W	211.0	40:10:24.50000S	70:12:45.60000W	100.0	38:31:27.49080S	70:32:08.75118W	40:42:18.41652S	72:16:54.09843W
test55	40:24:35.80000S	74:11:34.70000W	90.0	40:10:24.50000S	70:12:45.60000W	100.0	40:23:44.12558S	72:22:16.19656W	40:14:45.41675S	68:02:21.20257W
test56	40:24:35.80000S	74:11:34.70000W	71.0	40:10:24.50000S	70:12:45.60000W	100.0	39:54:28.73386S	72:21:18.43758W	38:51:32.35724S	68:53:12.00023W
test57	40:24:35.80000S	74:11:34.70000W	117.0	40:10:24.50000S	70:12:45.60000W	100.0	41:17:23.70708S	71:50:29.04635W	41:50:26.40135S	70:15:52.05998W
test58	43:09:35.80000S	70:21:34.70000W	0.0	40:10:24.50000S	70:12:45.60000W	100.0	41:50:14.67279S	70:21:34.70000W	38:30:33.27210S	70:21:34.70000W
test59	43:09:35.80000S	70:21:34.70000W	34.0	40:10:24.50000S	70:12:45.60000W	100.0	41:29:48.15752S	68:52:34.09229W	40:34:48.23070S	68:05:51.32589W
test60	43:09:35.80000S	70:21:34.70000W	331.0	40:10:24.50000S	70:12:45.60000W	100.0	41:27:45.66110S	71:36:19.10893W	40:21:28.52278S	72:22:35.77672W

WGS84TangentFixedRadiusArc Test Results

Test Identi fier	Geodesic 1 Start Latitude	Geodesic 1 Start Longitude	Geod esic 1 Azim uth	Geodesic 2 Start Latitude	Geodesic 2 Start Longitude	Geod esic 2 Azim uth	Arc Radi us	Arc Direct ion	Arc Center Latitude	Arc Center Longitude	Tangent Point 1 Latitude	Tangent Point 1 Longitude	Tangent Point 2 Latitude	Tangent Point 2 Longitude
test1	$\begin{aligned} & 40: 10: 24.50 \\ & 000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 12: 45.60 \\ & 000 \mathrm{~W} \end{aligned}$	90.0	$\begin{aligned} & \hline 42: 04: 35.80 \\ & 000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:12:34.70 } \\ & 000 \mathrm{~W} \end{aligned}$	7.0	75.0	1	$\begin{aligned} & 41: 25: 26.56 \\ & 571 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:59:17.04 } \\ & 094 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 40: 10: 23.74 \\ & 429 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:59:31.88 } \\ & 877 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 41:17:07.03 } \\ & 907 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:20:18.39 } \\ & 888 \mathrm{~W} \end{aligned}$
test2	$\begin{aligned} & 40: 10: 24.50 \\ & 000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 12: 45.60 \\ & 000 \mathrm{~W} \end{aligned}$	90.0	$\begin{aligned} & 42: 04: 35.80 \\ & 000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:12:34.70 } \\ & 000 \mathrm{~W} \end{aligned}$	307.0	25.0	1	$\begin{aligned} & 40: 31: 46.79 \\ & 892 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 66:27:03.20 } \\ & \text { 189W } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 40:06:47.06 } \\ & 612 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 66:28:25.95 } \\ & 221 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 40: 51: 25.07 \\ & 414 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 66:06:41.57 } \\ & 854 \mathrm{~W} \\ & \hline \end{aligned}$
test3	$\begin{aligned} & 40: 10: 24.50 \\ & 000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 12: 45.60 \\ & 000 \mathrm{~W} \end{aligned}$	180.0	$\begin{aligned} & \hline 42: 04: 35.80 \\ & 000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:12:34.70 } \\ & 000 \mathrm{~W} \end{aligned}$	10.0	25.0	1	$\begin{aligned} & 37: 49: 18.52 \\ & 460 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 69:41:12.45 } \\ & 766 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \hline 37: 49: 22.75 \\ & 065 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \hline 70: 12: 45.60 \\ & 000 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 37:45:17.76 } \\ & 097 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:10:04.65 } \\ & 398 \mathrm{~W} \end{aligned}$
test4	$\begin{aligned} & 40: 10: 24.50 \\ & 000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 12: 45.60 \\ & 000 \mathrm{~W} \end{aligned}$	175.0	$\begin{aligned} & \text { 42:04:35.80 } \\ & 000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:12:34.70 } \\ & 000 \mathrm{~W} \end{aligned}$	10.0	20.0	1	$\begin{aligned} & \hline 37: 58: 58.93 \\ & 078 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:32:51.13 } \\ & 441 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 37:57:20.15 } \\ & 294 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:58:03.52 } \\ & \text { 834W } \end{aligned}$	$\begin{aligned} & 37: 55: 45.22 \\ & 180 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:07:53.72 } \\ & 716 \mathrm{~W} \end{aligned}$
test5	$\begin{aligned} & 40: 10: 24.50 \\ & 000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 12: 45.60 \\ & 000 \mathrm{~W} \end{aligned}$	140.0	$\begin{aligned} & \hline 42: 04: 35.80 \\ & 000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:12:34.70 } \\ & 000 \mathrm{~W} \end{aligned}$	355.0	30.0	1	$\begin{aligned} & \hline 39: 24: 32.81 \\ & 954 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:33:23.26 } \\ & 170 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 39:05:36.47 } \\ & 498 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:03:21.38 } \\ & 752 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \hline 39: 27: 10.17 \\ & 660 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 67:54:49.02 } \\ & 689 \mathrm{~W} \\ & \hline \end{aligned}$
test6	$\begin{aligned} & 40: 10: 24.50 \\ & 000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 12: 45.60 \\ & 000 \mathrm{~W} \end{aligned}$	35.0	$\begin{aligned} & \hline 42: 04: 35.80 \\ & 000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:12:34.70 } \\ & 000 \mathrm{~W} \end{aligned}$	20.0	50.0	N/A						
test7	$\begin{aligned} & 40: 10: 24.50 \\ & 000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 12: 45.60 \\ & 000 \mathrm{~W} \end{aligned}$	35.0	$\begin{aligned} & \hline 42: 04: 35.80 \\ & 000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:12:34.70 } \\ & 000 \mathrm{~W} \end{aligned}$	45.0	50.0	-1	$\begin{aligned} & 40: 57: 48.66 \\ & 322 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:07:20.87 } \\ & 268 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \hline 41: 27: 16.30 \\ & 680 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 69:00:53.40 } \\ & 061 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 41: 33: 03.54 \\ & 197 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 68: 54: 23.62 \\ & 947 \mathrm{~W} \end{aligned}$
test8	$\begin{aligned} & 40: 10: 24.50 \\ & 000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 12: 45.60 \\ & 000 \mathrm{~W} \end{aligned}$	40.0	$\begin{aligned} & \hline 42: 04: 35.80 \\ & 000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:12:34.70 } \\ & 000 \mathrm{~W} \end{aligned}$	20.0	10.0	1	$\begin{aligned} & 41: 55: 40.79 \\ & 274 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:31:10.13 } \\ & 947 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 41: 49: 05.67 \\ & 932 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:21:05.52 } \\ & 942 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 41: 52: 16.83 \\ & 907 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:18:34.47 } \\ & 631 \mathrm{~W} \end{aligned}$
test9	$\begin{aligned} & 40: 10: 24.50 \\ & 000 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & 70: 12: 45.60 \\ & 000 \mathrm{~W} \\ & \hline \end{aligned}$	40.0	$\begin{aligned} & \text { 42:04:35.80 } \\ & 000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:12:34.70 } \\ & 000 \mathrm{~W} \\ & \hline \end{aligned}$	350.0	5.0	1	$\begin{aligned} & 41: 59: 13.16 \\ & 537 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 68:18:06.96 } \\ & \text { 458W } \\ & \hline \end{aligned}$	$\begin{aligned} & 41: 55: 55.15 \\ & 030 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 68:13:04.79 } \\ & \text { 341W } \end{aligned}$	$\begin{aligned} & \text { 42:00:05.41 } \\ & 038 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 68:11:30.78 } \\ & 144 \mathrm{~W} \\ & \hline \end{aligned}$
test10	$\begin{aligned} & 40: 10: 24.50 \\ & 000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:12:45.60 } \\ & 000 \mathrm{~W} \end{aligned}$	190.0	$\begin{aligned} & \hline 42: 04: 35.80 \\ & 000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:12:34.70 } \\ & 000 \mathrm{~W} \end{aligned}$	20.0	15.0	1	$\begin{aligned} & \hline 38: 10: 11.23 \\ & 560 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 20: 17.73 \\ & 040 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 38: 12: 44.89 \\ & 584 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 770: 39: 02.59 \\ & 725 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 38: 05: 21.93 \\ & 366 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:02:17.49 } \\ & 744 \mathrm{~W} \end{aligned}$
test11	$\begin{aligned} & 40: 10: 24.50 \\ & 000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 12: 45.60 \\ & 000 \mathrm{~W} \end{aligned}$	300.0	$\begin{aligned} & \hline 42: 04: 35.80 \\ & 000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:12:34.70 } \\ & 000 \mathrm{~W} \end{aligned}$	90.0	15.0	-1	$\begin{aligned} & \text { 41:43:02.57 } \\ & 956 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 73:12:06.06 } \\ & 904 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 41: 29: 47.49 \\ & 856 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 73: 21: 29.21 \\ & 152 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 41: 58: 01.44 \\ & 478 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 73: 13: 16.42 \\ & 120 \mathrm{~W} \end{aligned}$
test12	$\begin{aligned} & 40: 10: 24.50 \\ & 000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 12: 45.60 \\ & 000 \mathrm{~W} \end{aligned}$	320.0	$\begin{aligned} & \text { 42:04:35.80 } \\ & 000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:12:34.70 } \\ & 000 \mathrm{~W} \end{aligned}$	120.0	50.0	-1	$\begin{aligned} & 42: 22: 04.52 \\ & 412 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 71:13:56.01 } \\ & \text { 200W } \end{aligned}$	$\begin{aligned} & 41: 49: 17.86 \\ & 811 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & 72: 04: 39.94 \\ & 655 \mathrm{~W} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 43:06:10.85 } \\ & 660 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 41: 56.46 \\ & 903 \mathrm{~W} \end{aligned}$
test13	$\begin{aligned} & 40: 10: 24.50 \\ & 000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 12: 45.60 \\ & 000 \mathrm{~W} \\ & \hline \end{aligned}$	30.0	$\begin{aligned} & \hline 42: 04: 35.80 \\ & 000 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 68: 12: 34.70 \\ & 000 \mathrm{~W} \\ & \hline \end{aligned}$	120.0	15.0	-1	$\begin{aligned} & 41: 54: 13.54 \\ & 118 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 68: 28: 45.14 \\ & 229 \mathrm{~W} \\ & \hline \end{aligned}$	$\begin{aligned} & 42: 01: 57.90 \\ & 713 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 68:45:58.79 } \\ & 336 \mathrm{~W} \\ & \hline \end{aligned}$	$\begin{aligned} & 42: 07: 14.26 \\ & 829 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 68:18:43.75 } \\ & 999 \mathrm{~W} \\ & \hline \end{aligned}$
test14	$\begin{aligned} & 40: 10: 24.50 \\ & 000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \hline 70: 12: 45.60 \\ & 000 \mathrm{~W} \end{aligned}$	30.0	$\begin{aligned} & \text { 42:04:35.80 } \\ & 000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:12:34.70 } \\ & 000 \mathrm{~W} \end{aligned}$	180.0	10.0	-1	$\begin{aligned} & 42: 07: 16.10 \\ & 426 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:26:00.95 } \\ & 597 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 42: 12: 26.23 \\ & 456 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \hline 68: 37: 31.72 \\ & 202 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 42: 07: 16.89 \\ & 107 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:12:34.70 } \\ & 000 \mathrm{~W} \end{aligned}$
test15	$\begin{aligned} & 40: 10: 24.50 \\ & 000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 12: 45.60 \\ & 000 \mathrm{~W} \end{aligned}$	20.0	$\begin{aligned} & \hline 42: 04: 35.80 \\ & 000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:12:34.70 } \\ & 000 \mathrm{~W} \end{aligned}$	190.0	20.0	-1	$\begin{aligned} & 42: 33: 38.00 \\ & 509 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:33:07.56 } \\ & 179 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 42: 40: 47.45 \\ & 417 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:58:25.31 } \\ & 418 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 42: 30: 11.24 \\ & 393 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:06:28.78 } \\ & 422 \mathrm{~W} \end{aligned}$
test16	$\begin{aligned} & 40: 10: 24.50 \\ & 000 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 70: 12: 45.60 \\ & 000 \mathrm{~W} \end{aligned}$	90.0	$\begin{aligned} & \text { 38:04:35.80 } \\ & 000 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:12:34.70 } \\ & 000 \mathrm{~W} \end{aligned}$	7.0	75.0	1	$\begin{aligned} & \hline 38: 55: 19.66 \\ & 495 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 69:57:30.23 } \\ & 681 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 40: 10: 23.45 \\ & 763 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 69:57:13.42 } \\ & 772 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 39:05:15.38 } \\ & 970 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 68: 22: 08.10 \\ & 115 \mathrm{~W} \end{aligned}$
test17	$\begin{aligned} & 40: 10: 24.50 \\ & 000 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 70: 12: 45.60 \\ & 000 \mathrm{~W} \end{aligned}$	90.0	$\begin{aligned} & \text { 38:04:35.80 } \\ & 000 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:12:34.70 } \\ & 000 \mathrm{~W} \end{aligned}$	307.0	25.0	1	$\begin{aligned} & \text { 39:41:24.87 } \\ & 800 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 66:18:33.94 } \\ & 822 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 40:06:24.60 } \\ & 062 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 66:17:08.09 } \\ & \text { 870W } \end{aligned}$	$\begin{aligned} & \text { 39:21:05.93 } \\ & 754 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 65:59:42.39 } \\ & 589 \mathrm{~W} \end{aligned}$
test18	$\begin{aligned} & 40: 10: 24.50 \\ & 000 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 70: 12: 45.60 \\ & 000 \mathrm{~W} \end{aligned}$	180.0	$\begin{aligned} & \text { 38:04:35.80 } \\ & 000 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:12:34.70 } \\ & 000 \mathrm{~W} \end{aligned}$	10.0	25.0	1	$\begin{aligned} & 41: 48: 21.64 \\ & 034 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 69:39:19.85 } \\ & 614 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 41: 48: 26.50 \\ & 432 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 70: 12: 45.60 \\ & 000 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 41: 53: 01.81 \\ & 471 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 69:06:28.19 } \\ & \text { 550W } \end{aligned}$
test19	$\begin{aligned} & 40: 10: 24.50 \\ & 000 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 70: 12: 45.60 \\ & 000 \mathrm{~W} \end{aligned}$	175.0	$\begin{aligned} & \text { 38:04:35.80 } \\ & 000 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:12:34.70 } \\ & 000 \mathrm{~W} \end{aligned}$	10.0	20.0	1	$\begin{aligned} & 41: 53: 23.08 \\ & 049 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 69:33:48.78 } \\ & 224 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 41: 55: 13.61 \\ & 589 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 70:00:29.02 } \\ & 018 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 41: 57: 06.70 \\ & 642 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 69:07:29.45 } \\ & 776 \mathrm{~W} \end{aligned}$
test20	$\begin{aligned} & 40: 10: 24.50 \\ & 000 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 70: 12: 45.60 \\ & 000 \mathrm{~W} \end{aligned}$	140.0	$\begin{aligned} & \text { 38:04:35.80 } \\ & 000 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:12:34.70 } \\ & 000 \mathrm{~W} \end{aligned}$	355.0	30.0	1	$\begin{aligned} & 40: 53: 21.50 \\ & 747 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:32:50.30 } \\ & 433 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 41:13:01.31 } \\ & 780 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 69:02:47.99 } \\ & 272 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 40: 50: 44.90 \\ & 598 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 67: 53: 26.70 \\ & 965 \mathrm{~W} \end{aligned}$
test21	$\begin{aligned} & 40: 10: 24.50 \\ & 000 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 70: 12: 45.60 \\ & 000 \mathrm{~W} \end{aligned}$	35.0	$\begin{aligned} & \text { 38:04:35.80 } \\ & 000 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:12:34.70 } \\ & 000 \mathrm{~W} \end{aligned}$	20.0	50.0	N/A						
test22	40:10:24.50	70:12:45.60	35.0	38:04:35.80	68:12:34.70	45.0	50.0	-1	38:59:07.56	67:51:47.61	38:31:17.23	68:44:54.62	38:23:43.49	68:36:56.20

	000S	000W		000S	000W				203S	082W	392S	547W	887S	242W
test23	$\begin{aligned} & 40: 10: 24.50 \\ & 000 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 70: 12: 45.60 \\ & 000 \mathrm{~W} \end{aligned}$	40.0	$\begin{aligned} & 38: 04: 35.80 \\ & 000 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:12:34.70 } \\ & 000 \mathrm{~W} \end{aligned}$	20.0	10.0	1	$\begin{aligned} & 38: 21: 17.65 \\ & 803 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:33:50.38 } \\ & \text { 808W } \end{aligned}$	$\begin{aligned} & 38: 27: 34.84 \\ & 485 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:23:56.35 } \\ & \text { 353W } \end{aligned}$	$\begin{aligned} & \text { 38:24:44.64 } \\ & 049 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:21:54.05 } \\ & 514 \mathrm{~W} \end{aligned}$
test24	$\begin{aligned} & 40: 10: 24.50 \\ & 000 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 70: 12: 45.60 \\ & 000 \mathrm{~W} \end{aligned}$	40.0	$\begin{aligned} & \text { 38:04:35.80 } \\ & 000 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:12:34.70 } \\ & 000 \mathrm{~W} \end{aligned}$	350.0	5.0	1	$\begin{aligned} & \text { 38:12:57.08 } \\ & 171 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:17:09.17 } \\ & 935 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 38:16:05.07 } \\ & 958 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:12:12.22 } \\ & \text { 289W } \end{aligned}$	$\begin{aligned} & \text { 38:12:05.00 } \\ & 846 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:10:54.32 } \\ & 298 \mathrm{~W} \end{aligned}$
test25	$\begin{aligned} & 40: 10: 24.50 \\ & 000 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 70: 12: 45.60 \\ & 000 \mathrm{~W} \end{aligned}$	190.0	$\begin{aligned} & \text { 38:04:35.80 } \\ & 000 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:12:34.70 } \\ & 000 \mathrm{~W} \end{aligned}$	20.0	15.0	1	$\begin{aligned} & 41: 21: 05.57 \\ & 583 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 70:09:04.40 } \\ & 926 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 41: 18: 28.19 \\ & 792 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 70: 28: 40.65 \\ & 479 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 41: 26: 30.42 \\ & 675 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 69:50:29.08 } \\ & 027 \mathrm{~W} \end{aligned}$
test26	$\begin{aligned} & 40: 10: 24.50 \\ & 000 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & 70: 12: 45.60 \\ & 000 \mathrm{~W} \\ & \hline \end{aligned}$	300.0	$\begin{aligned} & 38: 04: 35.80 \\ & 000 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 68:12:34.70 } \\ & 000 \mathrm{~W} \end{aligned}$	90.0	15.0	-1	$\begin{aligned} & 38: 11: 39.46 \\ & 782 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 73:47:56.44 } \\ & 226 \mathrm{~W} \\ & \hline \end{aligned}$	$\begin{aligned} & 38: 24: 20.78 \\ & 704 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & 73: 58: 07.81 \\ & 572 \mathrm{~W} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 37:56:40.09 } \\ & 827 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & 73: 46: 48.10 \\ & 003 \mathrm{~W} \\ & \hline \end{aligned}$
test27	$\begin{aligned} & 40: 10: 24.50 \\ & 000 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 70: 12: 45.60 \\ & 000 \mathrm{~W} \end{aligned}$	320.0	$\begin{aligned} & 38: 04: 35.80 \\ & 000 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:12:34.70 } \\ & 000 \mathrm{~W} \end{aligned}$	120.0	50.0	-1	$\begin{aligned} & 37: 18: 22.45 \\ & 450 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 71: 50: 53.37 \\ & \text { 418W } \end{aligned}$	$\begin{aligned} & \text { 37:49:40.64 } \\ & 492 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 72:39:57.99 } \\ & \text { 848W } \end{aligned}$	$\begin{aligned} & \text { 36:35:56.07 } \\ & 395 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 71: 17: 47.86 \\ & 633 \mathrm{~W} \end{aligned}$
test28	$\begin{aligned} & 40: 10: 24.50 \\ & 000 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & 70: 12: 45.60 \\ & 000 \mathrm{~W} \\ & \hline \end{aligned}$	30.0	$\begin{aligned} & \text { 38:04:35.80 } \\ & 000 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 68: 12: 34.70 \\ & 000 \mathrm{~W} \\ & \hline \end{aligned}$	120.0	15.0	-1	$\begin{aligned} & 38: 15: 18.86 \\ & 600 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 68:27:05.40 } \\ & 167 \mathrm{~W} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 38: 08: 02.37 \\ & 874 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 68:43:44.12 } \\ & 803 \mathrm{~W} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 38:02:19.38 } \\ & 377 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 68:17:33.22 } \\ & 322 \mathrm{~W} \\ & \hline \end{aligned}$
test29	$\begin{aligned} & 40: 10: 24.50 \\ & 000 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & 70: 12: 45.60 \\ & 000 \mathrm{~W} \\ & \hline \end{aligned}$	30.0	$\begin{aligned} & \text { 38:04:35.80 } \\ & 000 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 68: 12: 34.70 \\ & 000 \mathrm{~W} \\ & \hline \end{aligned}$	180.0	10.0	-1	$\begin{aligned} & 38: 02: 17.85 \\ & 831 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 68:25:14.17 } \\ & 729 \mathrm{~W} \\ & \hline \end{aligned}$	$\begin{aligned} & 37: 57: 27.29 \\ & 149 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 68:36:18.51 } \\ & 623 \mathrm{~W} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 38:02:18.53 } \\ & 972 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 68:12:34.70 } \\ & 000 \mathrm{~W} \\ & \hline \end{aligned}$
test30	$\begin{aligned} & 40: 10: 24.50 \\ & 000 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 70: 12: 45.60 \\ & 000 \mathrm{~W} \end{aligned}$	20.0	$\begin{aligned} & \text { 38:04:35.80 } \\ & 000 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 68:12:34.70 } \\ & 000 \mathrm{~W} \end{aligned}$	190.0	20.0	-1	$\begin{aligned} & 37: 17: 13.88 \\ & 439 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:27:34.64 } \\ & \text { 341W } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 37:10:42.09 } \\ & 265 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:51:15.15 } \\ & 355 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 37:20:43.05 } \\ & 501 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:02:53.31 } \\ & 084 \mathrm{~W} \end{aligned}$
test31	$\begin{aligned} & 40: 10: 24.50 \\ & 000 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & 68: 12: 45.60 \\ & 000 \mathrm{E} \\ & \hline \end{aligned}$	90.0	$\begin{aligned} & 38: 04: 35.80 \\ & 000 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & 70: 12: 34.70 \\ & 000 \mathrm{E} \\ & \hline \end{aligned}$	7.0	75.0	1	$\begin{aligned} & 38: 55: 19.71 \\ & 316 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:27:39.15 } \\ & 441 \mathrm{E} \\ & \hline \end{aligned}$	$\begin{aligned} & 40: 10: 23.50 \\ & 671 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 68:27:55.56 } \\ & 302 \mathrm{E} \\ & \hline \end{aligned}$	$\begin{aligned} & 39: 05: 15.43 \\ & 802 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & 70: 03: 01.29 \\ & 112 \mathrm{E} \\ & \hline \end{aligned}$
test32	$\begin{aligned} & 40: 10: 24.50 \\ & 000 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 68: 12: 45.60 \\ & 000 \mathrm{E} \\ & \hline \end{aligned}$	90.0	$\begin{aligned} & \hline 38: 04: 35.80 \\ & 000 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 70: 12: 34.70 \\ & 000 \mathrm{E} \\ & \hline \end{aligned}$	307.0	25.0	1	$\begin{aligned} & 39: 41: 25.57 \\ & 535 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 72: 06: 36.70 \\ & 261 \mathrm{E} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 40:06:25.30 } \\ & 217 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 72: 08: 02.42 \\ & 702 \mathrm{E} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 39: 21: 06.63 \\ & 156 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 72: 25: 28.25 \\ & 205 \mathrm{E} \\ & \hline \end{aligned}$
test33	$\begin{aligned} & 40: 10: 24.50 \\ & 000 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & 68: 12: 45.60 \\ & 000 \mathrm{E} \\ & \hline \end{aligned}$	180.0	$\begin{aligned} & 38: 04: 35.80 \\ & 000 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & 70: 12: 34.70 \\ & 000 \mathrm{E} \\ & \hline \end{aligned}$	10.0	25.0	1	$\begin{aligned} & \text { 41:46:59.98 } \\ & 555 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 68:46:10.63 } \\ & 681 \mathrm{E} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 41:47:04.84 } \\ & 568 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 68:12:45.60 } \\ & 000 \mathrm{E} \\ & \hline \end{aligned}$	$\begin{aligned} & 41: 51: 40.05 \\ & 992 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 69:19:01.62 } \\ & 673 \mathrm{E} \\ & \hline \end{aligned}$
test34	$\begin{aligned} & 40: 10: 24.50 \\ & 000 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:12:45.60 } \\ & 000 \mathrm{E} \end{aligned}$	175.0	$\begin{aligned} & 38: 04: 35.80 \\ & 000 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 70: 12: 34.70 \\ & 000 \mathrm{E} \end{aligned}$	10.0	20.0	1	$\begin{aligned} & 41: 52: 26.37 \\ & 245 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:51:35.20 } \\ & 384 \mathrm{E} \end{aligned}$	$\begin{aligned} & 41: 54: 16.88 \\ & 004 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:24:55.35 } \\ & 570 \mathrm{E} \\ & \hline \end{aligned}$	$\begin{aligned} & 41: 56: 09.94 \\ & 304 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 69:17:54.15 } \\ & 406 \mathrm{E} \end{aligned}$
test35	$\begin{aligned} & 40: 10: 24.50 \\ & 000 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:12:45.60 } \\ & 000 \mathrm{E} \end{aligned}$	140.0	$\begin{aligned} & \text { 38:04:35.80 } \\ & 000 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 70: 12: 34.70 \\ & 000 \mathrm{E} \end{aligned}$	355.0	30.0	1	$\begin{aligned} & 40: 53: 00.52 \\ & 340 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 69:52:16.78 } \\ & 699 \mathrm{E} \end{aligned}$	$\begin{aligned} & 41: 12: 40.22 \\ & 975 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 69: 22: 19.13 \\ & 720 \mathrm{E} \end{aligned}$	$\begin{aligned} & 40: 50: 23.93 \\ & 467 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 70: 31: 40.17 \\ & 600 \mathrm{E} \end{aligned}$
test36	$\begin{aligned} & 40: 10: 24.50 \\ & 000 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:12:45.60 } \\ & 000 \mathrm{E} \end{aligned}$	35.0	$\begin{aligned} & 38: 04: 35.80 \\ & 000 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 70: 12: 34.70 \\ & 000 \mathrm{E} \end{aligned}$	20.0	50.0	N/A						
test37	$\begin{aligned} & 40: 10: 24.50 \\ & 000 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:12:45.60 } \\ & 000 \mathrm{E} \end{aligned}$	35.0	$\begin{aligned} & \text { 38:04:35.80 } \\ & 000 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 70: 12: 34.70 \\ & 000 \mathrm{E} \end{aligned}$	45.0	50.0	-1	$\begin{aligned} & 38: 58: 15.99 \\ & 199 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 70: 34: 27.34 \\ & 186 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 38:30:25.98 } \\ & 705 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 69:41:20.68 } \\ & 237 \mathrm{E} \end{aligned}$	$\begin{aligned} & 38: 22: 52.33 \\ & 996 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \hline 69: 49: 18.75 \\ & 679 \mathrm{E} \end{aligned}$
test38	$\begin{aligned} & 40: 10: 24.50 \\ & 000 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:12:45.60 } \\ & 000 \mathrm{E} \end{aligned}$	40.0	$\begin{aligned} & \text { 38:04:35.80 } \\ & 000 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \hline 70: 12: 34.70 \\ & 000 \mathrm{E} \end{aligned}$	20.0	10.0	1	$\begin{aligned} & \text { 38:21:56.65 } \\ & 274 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 69:51:00.76 } \\ & 931 \mathrm{E} \\ & \hline \end{aligned}$	$\begin{aligned} & 38: 28: 13.89 \\ & 538 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 70: 00: 54.83 \\ & 463 \mathrm{E} \\ & \hline \end{aligned}$	$\begin{aligned} & 38: 25: 23.66 \\ & 587 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 70: 02: 57.19 \\ & 466 \mathrm{E} \end{aligned}$
test39	$\begin{aligned} & 40: 10: 24.50 \\ & 000 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:12:45.60 } \\ & 000 \mathrm{E} \end{aligned}$	40.0	$\begin{aligned} & \text { 38:04:35.80 } \\ & 000 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 70: 12: 34.70 \\ & 000 \mathrm{E} \end{aligned}$	350.0	5.0	1	$\begin{aligned} & 38: 13: 14.64 \\ & 955 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 70: 08: 04.12 \\ & 833 \mathrm{E} \end{aligned}$	$\begin{aligned} & 38: 16: 22.65 \\ & 986 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 70: 13: 01.09 \\ & 183 \mathrm{E} \end{aligned}$	$\begin{aligned} & 38: 12: 22.57 \\ & 289 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 70: 14: 19.00 \\ & 895 \mathrm{E} \end{aligned}$
test40	$\begin{aligned} & 40: 10: 24.50 \\ & 000 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:12:45.60 } \\ & 000 \mathrm{E} \end{aligned}$	190.0	$\begin{aligned} & \text { 38:04:35.80 } \\ & 000 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 70: 12: 34.70 \\ & 000 \mathrm{E} \end{aligned}$	20.0	15.0	1	$\begin{aligned} & 41: 19: 48.53 \\ & 358 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:16:44.73 } \\ & 461 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 41:17:11.20 } \\ & 581 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 67:57:08.86 } \\ & 172 \mathrm{E} \end{aligned}$	$\begin{aligned} & 41: 25: 13.27 \\ & 841 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:35:19.75 } \\ & 280 \mathrm{E} \end{aligned}$
test41	$\begin{aligned} & 40: 10: 24.50 \\ & 000 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:12:45.60 } \\ & 000 \mathrm{E} \end{aligned}$	300.0	$\begin{aligned} & 38: 04: 35.80 \\ & 000 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 70: 12: 34.70 \\ & 000 \mathrm{E} \end{aligned}$	90.0	15.0	-1	$\begin{aligned} & 38: 11: 40.61 \\ & 138 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 64:37:37.05 } \\ & 220 \mathrm{E} \end{aligned}$	$\begin{aligned} & 38: 24: 21.93 \\ & 390 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 64: 27: 25.68 \\ & 277 \mathrm{E} \end{aligned}$	$\begin{aligned} & 37: 56: 41.23 \\ & 801 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 64: 38: 45.31 \\ & 315 \mathrm{E} \end{aligned}$
test42	$\begin{aligned} & 40: 10: 24.50 \\ & 000 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 68:12:45.60 } \\ & 000 \mathrm{E} \\ & \hline \end{aligned}$	320.0	$\begin{aligned} & \text { 38:04:35.80 } \\ & 000 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 70: 12: 34.70 \\ & 000 \mathrm{E} \\ & \hline \end{aligned}$	120.0	50.0	-1	$\begin{aligned} & \hline 37: 18: 44.79 \\ & 574 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 66: 35: 00.43 \\ & 984 \mathrm{E} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 37: 50: 03.14 \\ & 293 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 65: 45: 55.73 \\ & 018 \mathrm{E} \\ & \hline \end{aligned}$	$\begin{aligned} & 36: 36: 18.21 \\ & 450 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 67:08:05.70 } \\ & 311 \mathrm{E} \\ & \hline \end{aligned}$
test43	$\begin{aligned} & 40: 10: 24.50 \\ & 000 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:12:45.60 } \\ & 000 \mathrm{E} \end{aligned}$	30.0	$\begin{aligned} & \text { 38:04:35.80 } \\ & 000 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 70: 12: 34.70 \\ & 000 \mathrm{E} \end{aligned}$	120.0	15.0	-1	$\begin{aligned} & 38: 15: 26.42 \\ & 644 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 69: 58: 20.50 \\ & 710 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 38:08:09.92 } \\ & 689 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 69:41:41.76 } \\ & 083 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 38:02:26.92 } \\ & 225 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 70: 07: 52.65 \\ & 334 \mathrm{E} \end{aligned}$
test44	$\begin{aligned} & 40: 10: 24.50 \\ & 000 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & 68: 12: 45.60 \\ & 000 \mathrm{E} \\ & \hline \end{aligned}$	30.0	$\begin{aligned} & 38: 04: 35.80 \\ & 000 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & 70: 12: 34.70 \\ & 000 \mathrm{E} \\ & \hline \end{aligned}$	180.0	10.0	-1	$\begin{aligned} & \text { 38:02:49.25 } \\ & 073 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 69:59:55.13 } \\ & 263 \mathrm{E} \\ & \hline \end{aligned}$	$\begin{aligned} & 37: 57: 58.65 \\ & 008 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 69:48:50.73 } \\ & 899 \mathrm{E} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 38:02:49.93 } \\ & 235 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & 70: 12: 34.70 \\ & 000 \mathrm{E} \\ & \hline \end{aligned}$
test45	$\begin{aligned} & 40: 10: 24.50 \\ & 000 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:12:45.60 } \\ & 000 \mathrm{E} \end{aligned}$	20.0	$\begin{aligned} & 38: 04: 35.80 \\ & 000 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 70: 12: 34.70 \\ & 000 \mathrm{E} \end{aligned}$	190.0	20.0	-1	$\begin{aligned} & \text { 37:19:00.32 } \\ & 748 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 69:57:10.89 } \\ & 521 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 37:12:28.38 } \\ & 650 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 69:33:29.89 } \\ & 561 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 37:22:29.58 } \\ & 087 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \hline 70: 21: 52.79 \\ & 009 \mathrm{E} \end{aligned}$
test46	$\begin{aligned} & 40: 10: 24.50 \\ & 000 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 68:12:45.60 } \\ & 000 \mathrm{E} \\ & \hline \end{aligned}$	90.0	$\begin{aligned} & 42: 04: 35.80 \\ & 000 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 70: 12: 34.70 \\ & 000 \mathrm{E} \\ & \hline \end{aligned}$	7.0	75.0	1	$\begin{aligned} & 41: 25: 26.60 \\ & 664 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:25:52.36 } \\ & 461 \mathrm{E} \end{aligned}$	$\begin{aligned} & 40: 10: 23.78 \\ & 448 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:25:37.91 } \\ & 699 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 41:17:07.07 } \\ & 993 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:04:51.00 } \\ & 769 \mathrm{E} \end{aligned}$

test47	$\begin{aligned} & 40: 10: 24.50 \\ & 000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:12:45.60 } \\ & 000 \mathrm{E} \end{aligned}$	90.0	$\begin{aligned} & 42: 04: 35.80 \\ & 000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 12: 34.70 \\ & 000 \mathrm{E} \end{aligned}$	307.0	25.0	1	$\begin{aligned} & 40: 31: 47.54 \\ & 306 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 71:58:04.95 } \\ & 738 \mathrm{E} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 40:06:47.80 } \\ & 578 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \hline 71: 56: 42.34 \\ & 739 \mathrm{E} \\ & \hline \end{aligned}$	$\begin{aligned} & 40: 51: 25.82 \\ & 191 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 72: 18: 26.57 \\ & 839 \mathrm{E} \\ & \hline \end{aligned}$
test48	$\begin{aligned} & 40: 10: 24.50 \\ & 000 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & 68: 12: 45.60 \\ & 000 \mathrm{E} \\ & \hline \end{aligned}$	180.0	$\begin{aligned} & \text { 42:04:35.80 } \\ & 000 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & 70: 12: 34.70 \\ & 000 \mathrm{E} \\ & \hline \end{aligned}$	10.0	25.0	1	$\begin{aligned} & 37: 51: 10.80 \\ & 607 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & 68: 44: 19.53 \\ & 963 \mathrm{E} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 37: 51: 15.03 \\ & 684 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 68:12:45.60 } \\ & 000 \mathrm{E} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 37:47:09.94 } \\ & 546 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 69:15:28.10 } \\ & 850 \mathrm{E} \\ & \hline \end{aligned}$
test49	$\begin{aligned} & 40: 10: 24.50 \\ & 000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:12:45.60 } \\ & 000 \mathrm{E} \\ & \hline \end{aligned}$	175.0	$\begin{aligned} & 42: 04: 35.80 \\ & 000 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 70: 12: 34.70 \\ & 000 \mathrm{E} \\ & \hline \end{aligned}$	10.0	20.0	1	$\begin{aligned} & \hline 38: 00: 10.41 \\ & 235 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 68: 52: 32.81 \\ & 783 \mathrm{E} \\ & \hline \end{aligned}$	$\begin{aligned} & 37: 58: 31.60 \\ & 944 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 68: 27: 20.01 \\ & 909 \mathrm{E} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 37:56:56.65 } \\ & 308 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 69: 17: 30.61 \\ & 773 \mathrm{E} \\ & \hline \end{aligned}$
test50	$\begin{aligned} & 40: 10: 24.50 \\ & 000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 68: 12: 45.60 \\ & 000 \mathrm{E} \end{aligned}$	140.0	$\begin{aligned} & \text { 42:04:35.80 } \\ & 000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 12: 34.70 \\ & 000 \mathrm{E} \end{aligned}$	355.0	30.0	1	$\begin{aligned} & \text { 39:24:56.40 } \\ & 398 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:51:43.36 } \\ & 317 \mathrm{E} \end{aligned}$	$\begin{aligned} & \hline 39: 05: 59.95 \\ & 608 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 69: 21: 45.17 \\ & 977 \mathrm{E} \end{aligned}$	$\begin{aligned} & \hline 39: 27: 33.77 \\ & 651 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 30: 17.81 \\ & 305 \mathrm{E} \end{aligned}$
test51	$\begin{aligned} & 40: 10: 24.50 \\ & 000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:12:45.60 } \\ & 000 \mathrm{E} \end{aligned}$	35.0	$\begin{aligned} & 42: 04: 35.80 \\ & 000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 12: 34.70 \\ & 000 \mathrm{E} \end{aligned}$	20.0	50.0	N/A						
test52	$\begin{aligned} & \hline 40: 10: 24.50 \\ & 000 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 68: 12: 45.60 \\ & 000 \mathrm{E} \\ & \hline \end{aligned}$	35.0	$\begin{aligned} & 42: 04: 35.80 \\ & 000 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 70: 12: 34.70 \\ & 000 \mathrm{E} \\ & \hline \end{aligned}$	45.0	50.0	-1	$\begin{aligned} & 40: 58: 50.90 \\ & 375 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 70: 19: 10.81 \\ & 896 \mathrm{E} \\ & \hline \end{aligned}$	$\begin{aligned} & 41: 28: 19.01 \\ & 585 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 69:25:37.89 } \\ & 916 \mathrm{E} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 41: 34: 06.34 \\ & 313 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 69: 32: 08.06 \\ & 055 \mathrm{E} \\ & \hline \end{aligned}$
test53	$\begin{aligned} & 40: 10: 24.50 \\ & 000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:12:45.60 } \\ & 000 \mathrm{E} \end{aligned}$	40.0	$\begin{aligned} & 42: 04: 35.80 \\ & 000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 12: 34.70 \\ & 000 \mathrm{E} \end{aligned}$	20.0	10.0	1	$\begin{aligned} & \hline 41: 55: 09.03 \\ & 646 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:53:43.95 } \\ & 858 \mathrm{E} \end{aligned}$	$\begin{aligned} & 41: 48: 33.97 \\ & 658 N \end{aligned}$	$\begin{aligned} & 70: 03: 48.54 \\ & 891 \mathrm{E} \end{aligned}$	$\begin{aligned} & 41: 51: 45.11 \\ & 040 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 06: 19.53 \\ & 131 \mathrm{E} \end{aligned}$
test54	$\begin{aligned} & 40: 10: 24.50 \\ & 000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:12:45.60 } \\ & 000 \mathrm{E} \end{aligned}$	40.0	$\begin{aligned} & \text { 42:04:35.80 } \\ & 000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 12: 34.70 \\ & 000 \mathrm{E} \end{aligned}$	350.0	5.0	1	$\begin{aligned} & 41: 58: 57.74 \\ & 099 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 07: 06.10 \\ & 358 \mathrm{E} \end{aligned}$	$\begin{aligned} & 41: 55: 39.73 \\ & 901 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 12: 08.27 \\ & 010 \mathrm{E} \end{aligned}$	$\begin{aligned} & 41: 59: 49.98 \\ & 252 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 13: 42.26 \\ & 099 \mathrm{E} \end{aligned}$
test55	$\begin{aligned} & 40: 10: 24.50 \\ & 000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:12:45.60 } \\ & \text { ONOF } \end{aligned}$	190.0	$\begin{aligned} & 42: 04: 35.80 \\ & 000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 12: 34.70 \\ & 000 \mathrm{E} \end{aligned}$	20.0	15.0	1	$\begin{aligned} & 38: 11: 57.14 \\ & 712 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:05:36.93 } \\ & 299 \mathrm{E} \end{aligned}$	$\begin{aligned} & 38: 14: 30.86 \\ & 947 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 67:46:51.62 } \\ & 699 \mathrm{E} \end{aligned}$	$\begin{aligned} & 38: 07: 07.73 \\ & 150 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 68: 23: 37.55 \\ & 015 \mathrm{E} \end{aligned}$
test56	$\begin{aligned} & 40: 10: 24.50 \\ & 000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:12:45.60 } \\ & 000 \mathrm{E} \end{aligned}$	300.0	$\begin{aligned} & 42: 04: 35.80 \\ & 000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 12: 34.70 \\ & 000 \mathrm{E} \end{aligned}$	90.0	15.0	-1	$\begin{aligned} & 41: 43: 03.43 \\ & 894 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 65:13:22.97 } \\ & 799 \mathrm{E} \end{aligned}$	$\begin{aligned} & 41: 29: 48.35 \\ & 505 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 65:03:59.84 } \\ & 075 \mathrm{E} \end{aligned}$	$\begin{aligned} & 41: 58: 02.30 \\ & 748 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 65: 12: 12.70 \\ & 228 \mathrm{E} \end{aligned}$
test57	$\begin{aligned} & 40: 10: 24.50 \\ & 000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:12:45.60 } \\ & \text { 0nof } \end{aligned}$	320.0	$\begin{aligned} & 42: 04: 35.80 \\ & 000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 12: 34.70 \\ & 000 \mathrm{E} \end{aligned}$	120.0	50.0	-1	$\begin{aligned} & 42: 21: 48.75 \\ & 747 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 67:11:53.44 } \\ & 646 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 41:49:02.23 } \\ & 303 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 66: 21: 09.56 \\ & 547 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 43:05:54.90 } \\ & 302 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 67: 43: 53.33 \\ & 289 \mathrm{E} \end{aligned}$
test58	$\begin{aligned} & 40: 10: 24.50 \\ & 000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:12:45.60 } \\ & 000 \mathrm{E} \end{aligned}$	30.0	42:04:35.80	$\begin{aligned} & 70: 12: 34.70 \\ & 000 \mathrm{E} \end{aligned}$	120.0	15.0	-1	$\begin{aligned} & 41: 54: 06.60 \\ & 769 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:56:40.44 } \\ & 962 \mathrm{E} \end{aligned}$	$\begin{aligned} & 42: 01: 50.95 \\ & 973 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 69: 39: 26.81 \\ & 837 \mathrm{E} \end{aligned}$	$\begin{aligned} & 42: 07: 07.31 \\ & 140 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 06: 41.86 \\ & 897 \mathrm{E} \end{aligned}$
test59	$\begin{aligned} & 40: 10: 24.50 \\ & 000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:12:45.60 } \\ & 000 \mathrm{E} \end{aligned}$	30.0	$\begin{aligned} & 42: 04: 35.80 \\ & 000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 12: 34.70 \\ & 000 \mathrm{E} \end{aligned}$	180.0	10.0	-1	$\begin{aligned} & 42: 06: 49.39 \\ & 078 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:59:08.53 } \\ & 808 \mathrm{E} \end{aligned}$	$\begin{aligned} & 42: 11: 59.48 \\ & 512 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:47:37.82 } \\ & 330 \mathrm{E} \end{aligned}$	$\begin{aligned} & 42: 06: 50.17 \\ & 739 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 12: 34.70 \\ & 000 \mathrm{E} \end{aligned}$
test60	$\begin{aligned} & 40: 10: 24.50 \\ & 000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:12:45.60 } \\ & 000 \mathrm{E} \end{aligned}$	20.0	$\begin{aligned} & 42: 04: 35.80 \\ & 000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 12: 34.70 \\ & 000 \mathrm{E} \end{aligned}$	190.0	20.0	-1	$\begin{aligned} & 42: 32: 22.60 \\ & 485 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 69: 51: 44.28 \\ & 487 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 42:39:31.91 } \\ & 024 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:26:26.96 } \\ & 605 \mathrm{E} \end{aligned}$	$\begin{aligned} & \hline 42: 28: 55.91 \\ & 068 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 18: 22.54 \\ & 478 \mathrm{E} \end{aligned}$

WGS84GeoLocusIntersect Test Results

Test Identifi er	Geodes ic Input	Geodesic Start Latitude	Geodesic Start Longitude	Geodesic End Latitude	Geodesic End Longitude						
	Locus Input	Locus Geodesic Start Latitude	Locus Geodesic Start Longitude	Locus Geodesic End Latitude	Locus Geodesic End Longitude	Locus Start Latitude	Locus Start Longitude	Locus End Latitude	Locus End Longitude	Locus Start Distan ce (nm)	Locus End Distan ce (nm)
	Output	Intersection Latitude	Intersection Longitude								
test1	Geodes ic Input	$\begin{aligned} & \text { 43:47:17.8000 } \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 69:11:50.6000 } \\ & \text { OW } \end{aligned}$	$\begin{aligned} & \text { 39:34:35.8000 } \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 69:12:34.7000 } \\ & \text { OW } \end{aligned}$						
	Locus Input	$\begin{aligned} & 40: 10: 24.5000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & 70: 12: 45.6000 \\ & \text { OW } \end{aligned}$	$\begin{aligned} & 42: 04: 35.8000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 68:12:34.7000 } \\ & \text { OW } \end{aligned}$	$\begin{aligned} & \text { 40:34:51.0899 } \\ & 7 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 54: 12.4935 \\ & 8 \mathrm{~W} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 42:29:44.8698 } \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 68:54:29.5954 } \\ & \text { 1W } \end{aligned}$	-40.0	-40.0
	Output	$\begin{aligned} & 42: 13: 22.2144 \\ & 7 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 69:12:07.6754 } \\ & \text { OW } \end{aligned}$								
test2	Geodes ic Input	$\begin{aligned} & 41: 47: 17.8000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 69:11:50.6000 } \\ & \text { OW } \end{aligned}$	$\begin{aligned} & \text { 42:04:35.8000 } \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 68:12:34.7000 } \\ & \text { OW } \end{aligned}$						
	Locus Input	$\begin{aligned} & 40: 10: 24.5000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & 70: 12: 45.6000 \\ & \text { OW } \end{aligned}$	$\begin{aligned} & 42: 04: 35.8000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 68:12:34.7000 } \\ & \text { OW } \end{aligned}$	$\begin{aligned} & \text { 40:16:32.5468 } \\ & 3 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 23: 04.5187 \\ & 6 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 42:10:54.5106 } \\ & 7 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:23:00.3023 } \\ & \text { 2W } \end{aligned}$	-10.0	-10.0
	Output	$\begin{aligned} & 41: 57: 19.7904 \\ & 5 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:37:45.0785 } \\ & 8 \mathrm{~W} \end{aligned}$								
test3	Geodes ic Input	$\begin{aligned} & 41: 47: 17.8000 \\ & \text { ON } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 69:11:50.6000 } \\ & \text { OW } \end{aligned}$	$\begin{aligned} & 41: 47: 17.8000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 65:12:34.7000 } \\ & \text { 0W } \\ & \hline \end{aligned}$						
	Locus Input	$\begin{aligned} & 40: 10: 24.5000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & 70: 12: 45.6000 \\ & \text { OW } \end{aligned}$	$\begin{aligned} & \text { 42:04:35.8000 } \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 68:12:34.7000 } \\ & \text { OW } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 40:01:10.7013 } \\ & 8 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:57:20.7013 } \\ & 2 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 41:58:16.1381 } \\ & 7 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:02:11.1632 } \\ & \text { 1W } \end{aligned}$	15.0	10.0
	Output	$\begin{aligned} & 41: 48: 04.2439 \\ & 4 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 68:12:34.3229 } \\ & 9 \mathrm{~W} \end{aligned}$								
test4	Geodes ic Input	$\begin{aligned} & 41: 47: 17.8000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 69:11:50.6000 } \\ & \text { OW } \end{aligned}$	$\begin{aligned} & 39: 36: 04.5000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 67:26:41.2000 } \\ & \text { OW } \end{aligned}$						
	Locus Input	$\begin{aligned} & 40: 10: 24.5000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & 70: 12: 45.6000 \\ & \text { OW } \\ & \hline \end{aligned}$	$\begin{aligned} & 42: 04: 35.8000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 68:12:34.7000 } \\ & \text { OW } \end{aligned}$	$\begin{aligned} & 40: 03: 01.6262 \\ & 4 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & 70: 00: 25.3480 \\ & 4 \mathrm{~W} \\ & \hline \end{aligned}$	$\begin{aligned} & 41: 53: 11.7282 \\ & 8 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 67:53:53.8147 } \\ & \text { 1W } \end{aligned}$	12.0	18.0
	Output	$\begin{aligned} & 41: 11: 48.4012 \\ & 8 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 68: 42: 35.0157 \\ & 7 \mathrm{~W} \end{aligned}$								
test5	Geodes ic Input	$\begin{aligned} & 41: 47: 17.8000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 69:11:50.6000 } \\ & \text { OW } \end{aligned}$	$\begin{aligned} & 39: 36: 04.5000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 69:11:50.6000 } \\ & \text { OW } \end{aligned}$						
	Locus Input	$\begin{aligned} & 40: 10: 24.5000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & 70: 12: 45.6000 \\ & \text { OW } \end{aligned}$	$\begin{aligned} & 42: 04: 35.8000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 68:12:34.7000 } \\ & \text { OW } \end{aligned}$	$\begin{aligned} & 40: 17: 46.0449 \\ & 3 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 25: 08.5260 \\ & 3 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 42:10:54.5106 } \\ & 7 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:23:00.3023 } \\ & \text { 2W } \end{aligned}$	-12.0	-10.0
	Output	$\begin{aligned} & 41: 26: 42.3321 \\ & 3 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 69:11:50.6000 } \\ & \text { OW } \end{aligned}$								
test6	Geodes ic Input	$\begin{aligned} & 41: 47: 17.8000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 69:11:50.6000 } \\ & \text { OW } \end{aligned}$	$\begin{aligned} & 40: 10: 24.5000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & 70: 12: 45.6000 \\ & \text { OW } \\ & \hline \end{aligned}$						
	Locus Input	$\begin{aligned} & 40: 10: 24.5000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & 70: 12: 45.6000 \\ & \text { OW } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 42:04:35.8000 } \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 68:12:34.7000 } \\ & \text { OW } \\ & \hline \end{aligned}$	$\begin{aligned} & 40: 16: 32.5468 \\ & 3 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 23: 04.5187 \\ & 6 \mathrm{~W} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 42:17:12.2636 } \\ & 1 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 68:33:27.9794 } \\ & 9 \mathrm{~W} \\ & \hline \end{aligned}$	-10.0	-20.0
	Output	$\begin{aligned} & 41: 09: 26.3350 \\ & 3 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:36:02.5956 } \\ & 5 \mathrm{~W} \end{aligned}$								
test7	Geodes ic Input	$\begin{aligned} & 38: 47: 17.8000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 69:11:50.6000 } \\ & \text { OW } \end{aligned}$	$\begin{aligned} & \text { 42:04:35.8000 } \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 68:12:34.7000 } \\ & \text { OW } \end{aligned}$						

	Locus Input	$\begin{aligned} & \text { 42:04:35.8000 } \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 68:12:34.7000 } \\ & \text { OW } \end{aligned}$	$\begin{aligned} & 40: 10: 24.5000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & 70: 12: 45.6000 \\ & \text { OW } \\ & \hline \end{aligned}$	$\begin{aligned} & 41: 58: 16.1381 \\ & 7 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:02:11.1632 } \\ & 2 \mathrm{~W} \\ & \hline \end{aligned}$	$\begin{aligned} & 40: 01: 10.7013 \\ & 8 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 69:57:20.7013 } \\ & 2 W \end{aligned}$	-10.0	-15.0
	Output	$\begin{aligned} & 41: 40: 37.8302 \\ & 5 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 68:20:06.2633 } \\ & \text { OW } \\ & \hline \end{aligned}$								
test8	Geodes ic Input	$\begin{aligned} & 38: 47: 17.8000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 69:11:50.6000 } \\ & \text { OW } \end{aligned}$	$\begin{aligned} & 41: 36: 04.5000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 69:11:50.6000 } \\ & \text { OW } \end{aligned}$						
	Locus Input	$\begin{aligned} & 42: 04: 35.8000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 68:12:34.7000 } \\ & \text { OW } \end{aligned}$	$\begin{aligned} & 40: 10: 24.5000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & 70: 12: 45.6000 \\ & \text { OW } \end{aligned}$	$\begin{aligned} & 42: 12: 10.1380 \\ & 9 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:25:05.6714 } \\ & \text { 7W } \end{aligned}$	$\begin{aligned} & 40: 16: 32.5468 \\ & 3 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:23:04.5187 } \\ & \text { 6W } \\ & \hline \end{aligned}$	12.0	10.0
	Output	$\begin{aligned} & \text { 41:27:24.3094 } \\ & 7 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:11:50.6000 } \\ & \text { OW } \end{aligned}$								
test9	Geodes ic Input	$\begin{aligned} & 39: 47: 17.8000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 69:11:50.6000 } \\ & \text { OW } \end{aligned}$	$\begin{aligned} & 41: 10: 24.5000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & 70: 12: 45.6000 \\ & \text { 0W } \end{aligned}$						
	Locus Input	$\begin{aligned} & 42: 04: 35.8000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 68:12:34.7000 } \\ & \text { OW/ } \end{aligned}$	$\begin{aligned} & 40: 10: 24.5000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & 70: 12: 45.6000 \\ & \text { OW } \\ & \hline \end{aligned}$	$\begin{aligned} & 41: 55: 44.0085 \\ & 9 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 67:58:02.3247 } \\ & 7 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 40: 04: 15.5303 \\ & 7 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & 70: 02: 28.5382 \\ & 3 \mathrm{~W} \end{aligned}$	-14.0	-10.0
	Output	$\begin{aligned} & 40: 25: 30.2029 \\ & 5 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:39:29.1545 } \\ & 4 \mathrm{~W} \end{aligned}$								
test10	Geodes ic Input	$\begin{aligned} & 39: 47: 17.8000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 69:11:50.6000 } \\ & \text { OW } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 41:05:17.8000 } \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 72:11:50.6000 } \\ & \text { OW } \end{aligned}$						
	Locus Input	$\begin{aligned} & 42: 04: 35.8000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 68:12:34.7000 } \\ & \text { OW } \\ & \hline \end{aligned}$	$\begin{aligned} & 40: 10: 24.5000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & 70: 12: 45.6000 \\ & \text { OW } \end{aligned}$	$\begin{aligned} & 41: 39: 11.5109 \\ & 4 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 67:31:12.8528 } \\ & \text { 1W } \end{aligned}$	$\begin{aligned} & 39: 48: 49.1084 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 69:36:53.9576 } \\ & \text { OW } \end{aligned}$	-40.0	-35.0
	Output	$\begin{aligned} & 39: 55: 22.6825 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 69:29:41.6206 } \\ & 7 \mathrm{~W} \end{aligned}$								
test11	Geodes ic Input	$\begin{aligned} & 39: 47: 17.8000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 68:31:50.6000 } \\ & \text { OW } \end{aligned}$	$\begin{aligned} & \text { 39:47:17.8000 } \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 72:11:50.6000 } \\ & \text { OW } \\ & \hline \end{aligned}$						
	Locus Input	$\begin{aligned} & \text { 42:04:35.8000 } \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 68:12:34.7000 } \\ & \text { OW } \end{aligned}$	$\begin{aligned} & 40: 10: 24.5000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & 70: 12: 45.6000 \\ & \text { OW } \end{aligned}$	$\begin{aligned} & 41: 35: 59.9254 \\ & 6 N \end{aligned}$	$\begin{aligned} & \text { 67:26:04.9158 } \\ & 8 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 39: 39: 30.5435 \\ & 3 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:21:38.7068 } \\ & 5 \mathrm{~W} \end{aligned}$	-45.0	-50.0
	Output	$\begin{aligned} & \text { 39:47:49.9182 } \\ & 7 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:13:40.3936 } \\ & 7 \mathrm{~W} \end{aligned}$								
test12	Geodes ic Input	$\begin{aligned} & 40: 47: 17.8000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 68:31:50.6000 } \\ & \text { OW } \end{aligned}$	39:15:17.8000	$\begin{aligned} & 72: 11: 50.6000 \\ & \text { OW } \end{aligned}$						
	Locus Input	$\begin{aligned} & 42: 04: 35.8000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 68:12:34.7000 } \\ & \text { OW } \end{aligned}$	$\begin{aligned} & 40: 10: 24.5000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & 70: 12: 45.6000 \\ & \text { OW } \end{aligned}$	$\begin{aligned} & 41: 40: 28.0804 \\ & 1 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 67:33:16.1694 } \\ & 9 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 39: 42: 36.9560 \\ & 7 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:26:43.3345 } \\ & 6 \mathrm{~W} \\ & \hline \end{aligned}$	-38.0	-45.0
	Output	$\begin{aligned} & 40: 51: 17.2023 \\ & 2 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 68:21:40.0023 } \\ & \text { 1W } \\ & \hline \end{aligned}$								
test13	Geodes ic Input	$\begin{aligned} & 41: 47: 17.8000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & 68: 11: 50.6000 \\ & 0 E \end{aligned}$	$\begin{aligned} & \text { 42:34:35.8000 } \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 69:12:34.7000 } \\ & 0 \mathrm{E} \end{aligned}$						
	Locus Input	$\begin{aligned} & 40: 10: 24.5000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 68:12:45.6000 } \\ & \text { 0E } \end{aligned}$	$\begin{aligned} & 42: 04: 35.8000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & 70: 12: 34.7000 \\ & 0 \mathrm{E} \\ & \hline \end{aligned}$	$\begin{aligned} & 40: 34: 48.3409 \\ & 8 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 67:31:15.9527 } \\ & 5 \mathrm{E} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 42:30:56.9433 } \\ & 7 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:28:29.9691 } \\ & \text { 1E } \end{aligned}$	-40.0	-42.0
	Output	N/A	N/A								
test14	Geodes ic Input	$\begin{aligned} & 41: 47: 17.8000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 68:11:50.6000 } \\ & \text { 0E } \end{aligned}$	$\begin{aligned} & \text { 42:04:35.8000 } \\ & \text { ON } \end{aligned}$	$\begin{aligned} & 70: 12: 34.7000 \\ & 0 E \end{aligned}$						
	Locus Input	$\begin{aligned} & 40: 10: 24.5000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 68:12:45.6000 } \\ & \text { 0E } \end{aligned}$	$\begin{aligned} & \text { 42:04:35.8000 } \\ & \hline \mathrm{N} \end{aligned}$	$\begin{aligned} & 70: 12: 34.7000 \\ & 0 E \end{aligned}$	$\begin{aligned} & 40: 16: 31.8626 \\ & 3 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:02:25.9906 } \\ & 4 \mathrm{E} \end{aligned}$	$\begin{aligned} & 42: 12: 09.2928 \\ & 5 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:00:02.8081 } \\ & 5 \mathrm{E} \end{aligned}$	-10.0	-12.0
	Output	$\begin{aligned} & 42: 01: 21.0540 \\ & 6 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:48:40.1433 } \\ & \text { 4E } \end{aligned}$								
test15	Geodes ic Input	$\begin{aligned} & 41: 47: 17.8000 \\ & \text { ON } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 68:11:50.6000 } \\ & 0 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 41:47:17.8000 } \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 69:12:34.7000 } \\ & 0 E \\ & \hline \end{aligned}$						
	Locus Input	$\begin{aligned} & 40: 10: 24.5000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 68:12:45.6000 } \\ & \text { 0E } \end{aligned}$	$\begin{aligned} & \text { 42:04:35.8000 } \\ & \text { ON } \end{aligned}$	$\begin{aligned} & 70: 12: 34.7000 \\ & 0 E \end{aligned}$	$\begin{aligned} & 40: 34: 48.3409 \\ & 8 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 67:31:15.9527 } \\ & 5 \mathrm{E} \end{aligned}$	$\begin{aligned} & 42: 29: 04.5727 \\ & 8 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:31:40.1006 } \\ & \text { 1E } \end{aligned}$	-40.0	-39.0

	Output	$\begin{aligned} & 41: 47: 21.7281 \\ & 2 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:46:38.5155 } \\ & 7 \mathrm{E} \end{aligned}$								
test16	Geodes ic Input	$\begin{aligned} & 41: 47: 17.8000 \\ & \text { ON } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 67:11:50.6000 } \\ & 0 E \end{aligned}$	$\begin{aligned} & 39: 36: 04.5000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 69:26:41.2000 } \\ & \text { 0E } \\ & \hline \end{aligned}$						
	Locus Input	$\begin{aligned} & 40: 10: 24.5000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 68:12:45.6000 } \\ & 0 \mathrm{E} \\ & \hline \end{aligned}$	$\begin{aligned} & 42: 04: 35.8000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & 70: 12: 34.7000 \\ & 0 E \\ & \hline \end{aligned}$	$\begin{aligned} & 40: 16: 31.8626 \\ & 3 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 68:02:25.9906 } \\ & \text { 4E } \end{aligned}$	$\begin{aligned} & \text { 42:09:38.2818 } \\ & \text { 2N } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 70:04:13.7700 } \\ & \text { 3E } \end{aligned}$	-10.0	-8.0
	Output	$\begin{aligned} & \text { 40:37:49.7168 } \\ & 3 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:24:40.0172 } \\ & 9 E \end{aligned}$								
test17	Geodes ic Input	$\begin{aligned} & 41: 47: 17.8000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 68:31:50.6000 } \\ & 0 \mathrm{E} \\ & \hline \end{aligned}$	$\begin{aligned} & 39: 34: 35.8000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 68:31:50.6000 } \\ & \text { 0F } \end{aligned}$						
	Locus Input	$\begin{aligned} & 40: 10: 24.5000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 68:12:45.6000 } \\ & \text { 0E } \end{aligned}$	$\begin{aligned} & 42: 04: 35.8000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & 70: 12: 34.7000 \\ & 0 E \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 40:07:20.4715 } \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 68:17:54.7083 } \\ & \text { 4E } \end{aligned}$	$\begin{aligned} & \text { 42:03:20.0840 } \\ & 7 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & 70: 14: 39.7258 \\ & 8 \mathrm{E} \\ & \hline \end{aligned}$	5.0	2.0
	Output	$\begin{aligned} & 40: 21: 38.9851 \\ & 9 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 68: 31: 50.6000 \\ & 0 E \end{aligned}$								
test18	Geodes ic Input	$\begin{aligned} & 41: 47: 17.8000 \\ & \text { ON } \\ & \hline \end{aligned}$	$\begin{aligned} & 68: 41: 50.6000 \\ & 0 E \end{aligned}$	$\begin{aligned} & 40: 10: 24.5000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 68:12:45.6000 } \\ & \text { OE } \end{aligned}$						
	Locus Input	$\begin{aligned} & 40: 10: 24.5000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 68:12:45.6000 } \\ & \text { 0E } \end{aligned}$	$\begin{aligned} & \text { 42:04:35.8000 } \\ & \text { ON } \end{aligned}$	$\begin{aligned} & 70: 12: 34.7000 \\ & 0 E \\ & \hline \end{aligned}$	$\begin{aligned} & 40: 16: 31.8626 \\ & 3 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 68:02:25.9906 } \\ & \text { 4E } \end{aligned}$	$\begin{aligned} & \text { 42:07:44.9228 } \\ & \text { 6N } \end{aligned}$	$\begin{aligned} & \text { 70:07:21.7738 } \\ & 9 \mathrm{E} \\ & \hline \end{aligned}$	-10.0	-5.0
	Output	$\begin{aligned} & 40: 31: 50.2065 \\ & 4 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 68: 19: 04.0475 \\ & 2 E \end{aligned}$								
test19	Geodes ic Input	$\begin{aligned} & 38: 47: 17.8000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 68:11:50.6000 } \\ & 0 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 42:04:35.8000 } \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 69:12:34.7000 } \\ & \text { 0E } \end{aligned}$						
	Locus Input	$\begin{aligned} & \text { 42:04:35.8000 } \\ & \text { ON } \end{aligned}$	$\begin{aligned} & 70: 12: 34.7000 \\ & 0 E \end{aligned}$	$\begin{aligned} & 40: 10: 24.5000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 68:12:45.6000 } \\ & \text { OE } \end{aligned}$	$\begin{aligned} & \text { 41:59:32.7079 } \\ & 7 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 20: 54.3088 \\ & 5 \mathrm{E} \end{aligned}$	$\begin{aligned} & 40: 04: 16.2125 \\ & 5 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:23:03.3537 } \\ & \text { 3E } \end{aligned}$	-8.0	-10.0
	Output	$\begin{aligned} & \text { 40:21:27.3228 } \\ & 7 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:40:03.9922 } \\ & 6 E \end{aligned}$								
test20	Geodes ic Input	$\begin{aligned} & 38: 47: 17.8000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 69:11:50.6000 } \\ & \text { 0E } \end{aligned}$	$\begin{aligned} & \text { 41:36:04.5000 } \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 69:11:50.6000 } \\ & 0 E \end{aligned}$						
	Locus Input	$\begin{aligned} & \text { 42:04:35.8000 } \\ & \text { ON } \end{aligned}$	$\begin{aligned} & 70: 12: 34.7000 \\ & 0 \mathrm{E} \\ & \hline \end{aligned}$	$\begin{aligned} & 40: 10: 24.5000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 68:12:45.6000 } \\ & \mathrm{NF} \end{aligned}$	$\begin{aligned} & 42: 01: 26.4387 \\ & 8 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 17: 47.1100 \\ & 5 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 40:07:57.2956 } \\ & \text { 6N } \end{aligned}$	$\begin{aligned} & \text { 68:16:52.9237 } \\ & \text { 4E } \end{aligned}$	-5.0	-4.0
	Output	$\begin{aligned} & \text { 41:00:37.2269 } \\ & 9 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:11:50.6000 } \\ & 0 E \\ & \hline \end{aligned}$								
test21	Geodes ic Input	$\begin{aligned} & 39: 47: 17.8000 \\ & \text { ON } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 69:11:50.6000 } \\ & \text { 0E } \end{aligned}$	$\begin{aligned} & 41: 10: 24.5000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 68:12:45.6000 } \\ & \text { 0E } \end{aligned}$						
	Locus Input	$\begin{aligned} & \text { 42:04:35.8000 } \\ & \text { ON } \end{aligned}$	$\begin{aligned} & 70: 12: 34.7000 \\ & 0 \mathrm{E} \\ & \hline \end{aligned}$	$\begin{aligned} & 40: 10: 24.5000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 68:12:45.6000 } \\ & 0 \mathrm{E} \end{aligned}$	$\begin{aligned} & 42: 00: 48.5380 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & 70: 18: 49.5302 \\ & 3 E \end{aligned}$	$\begin{aligned} & \text { 40:01:11.7238 } \\ & 9 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:28:11.5371 } \\ & \text { 3E } \end{aligned}$	-6.0	-15.0
	Output	$\begin{aligned} & 40: 22: 24.9352 \\ & 4 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 68:47:13.1053 } \\ & 5 \mathrm{E} \end{aligned}$								
test22	Geodes ic Input	$\begin{aligned} & 38: 47: 17.8000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & 72: 11: 50.6000 \\ & 0 \mathrm{E} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 40:05:17.8000 } \\ & \text { ON } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 69:11:50.6000 } \\ & 0 E \\ & \hline \end{aligned}$						
	Locus Input	$\begin{aligned} & \text { 42:04:35.8000 } \\ & \text { ON } \\ & \hline \end{aligned}$	$\begin{aligned} & 70: 12: 34.7000 \\ & 0 \mathrm{E} \\ & \hline \end{aligned}$	$\begin{aligned} & 40: 10: 24.5000 \\ & \text { ON } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 68:12:45.6000 } \\ & \text { 0E } \\ & \hline \end{aligned}$	$\begin{aligned} & 41: 39: 14.3045 \\ & 5 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & 70: 53: 59.6280 \\ & 6 \mathrm{E} \\ & \hline \end{aligned}$	$\begin{aligned} & 39: 44: 31.5476 \\ & 6 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 68: 55: 47.7851 \\ & \text { 1E } \\ & \hline \end{aligned}$	-40.0	-42.0
	Output	$\begin{aligned} & 40: 03: 55.5261 \\ & 6 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:15:09.8638 } \\ & \text { 4E } \end{aligned}$								
test23	Geodes ic Input	$\begin{aligned} & 39: 47: 17.8000 \\ & \text { ON } \\ & \hline \end{aligned}$	$\begin{aligned} & 72: 11: 50.6000 \\ & \text { 0E } \\ & \hline \end{aligned}$	$\begin{aligned} & 39: 47: 17.8000 \\ & \text { ON } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 68:11:50.6000 } \\ & \text { 0E } \\ & \hline \end{aligned}$						
	Locus Input	$\begin{aligned} & 42: 04: 35.8000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & 70: 12: 34.7000 \\ & 0 E \end{aligned}$	$\begin{aligned} & 40: 10: 24.5000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 68:12:45.6000 } \\ & \text { OE } \end{aligned}$	$\begin{aligned} & 41: 42: 25.3115 \\ & 2 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & 70: 48: 50.7979 \\ & 6 E \end{aligned}$	$\begin{aligned} & 39: 44: 31.5476 \\ & 6 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:55:47.7851 } \\ & \text { 1E } \end{aligned}$	-35.0	-42.0
	Output	39:47:56.9679	68:58:57.6908								

		8N	7E								
test24	Geodes ic Input	$\begin{aligned} & \text { 41:47:17.8000 } \\ & \text { ON } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 72:01:50.6000 } \\ & 0 \mathrm{E} \\ & \hline \end{aligned}$	$\begin{aligned} & 40: 15: 17.8000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 69:01:50.6000 } \\ & \text { 0E } \\ & \hline \end{aligned}$						
	$\begin{aligned} & \text { Locus } \\ & \text { Input } \\ & \hline \end{aligned}$	$\begin{aligned} & 42: 04: 35.8000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 70:12:34.7000 } \\ & 0 \mathrm{E} \\ & \hline \end{aligned}$	$\begin{aligned} & 40: 10: 24.5000 \\ & 0 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 68:12:45.6000 } \\ & 0 \mathrm{E} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 41:45:36.0858 } \\ & 1 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 70:43:41.4599 } \\ & \text { 3E } \\ & \hline \end{aligned}$	$\begin{aligned} & 39: 50: 42.7543 \\ & 3 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 68:45:35.9178 } \\ & 6 \mathrm{E} \\ & \hline \end{aligned}$	-30.0	-32.0
	Output	$\begin{aligned} & \text { 40:24:52.2396 } \\ & 3 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:19:46.8195 } \\ & 9 \mathrm{E} \end{aligned}$								
test25	Geodes ic Input	$\begin{aligned} & \text { 40:32:17.8000 } \\ & 0 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 69:31:50.6000 } \\ & \text { 0W } \end{aligned}$	$\begin{aligned} & \text { 39:45:35.8000 } \\ & \text { os } \end{aligned}$	$\begin{aligned} & \text { 68:32:34.7000 } \\ & \text { 0W } \end{aligned}$						
	$\begin{aligned} & \text { Locus } \\ & \text { Input } \end{aligned}$	$\begin{aligned} & \text { 41:50:24.5000 } \\ & \text { OS } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 70:12:45.6000 } \\ & \text { 0W } \end{aligned}$	$\begin{aligned} & \text { 39:55:35.8000 } \\ & \text { OS } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 68:12:34.7000 } \\ & \text { ow } \end{aligned}$	$\begin{aligned} & \text { 41:47:14.9917 } \\ & 2 S \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 70:17:56.7067 } \\ & 3 W \end{aligned}$	$\begin{aligned} & \text { 39:37:07.2624 } \\ & 6 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 68:43:14.9169 } \\ & 5 \mathrm{~W} \\ & \hline \end{aligned}$	-5.0	-30.0
	Output	$\begin{aligned} & \text { 40:15:45.4197 } \\ & 2 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 69:10:37.4206 } \\ & \text { 1W } \\ & \hline \end{aligned}$								
test26	Geodes ic Input	$\begin{aligned} & \text { 40:12:17.8000 } \\ & 0 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 69:11:50.6000 } \\ & \text { ow } \end{aligned}$	$\begin{aligned} & \text { 39:55:35.8000 } \\ & \text { os } \end{aligned}$	$\begin{aligned} & \text { 68:12:34.7000 } \\ & \text { 0W } \end{aligned}$						
	Locus Input	$\begin{aligned} & \text { 41:50:24.5000 } \\ & 0 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 70:12:45.6000 } \\ & \text { 0W } \end{aligned}$	$\begin{aligned} & \text { 39:55:35.8000 } \\ & \text { os } \end{aligned}$	$\begin{aligned} & \text { 68:12:34.7000 } \\ & \text { ow } \end{aligned}$	$\begin{aligned} & \text { 41:44:05.2480 } \\ & 5 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 70:23:07.3045 } \\ & 6 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 39:48:13.3652 } \\ & 7 S \end{aligned}$	$\begin{aligned} & \text { 68:24:52.7554 } \\ & 6 \mathrm{~W} \end{aligned}$	-10.0	-12.0
	Output	$\begin{aligned} & \text { 40:03:21.1648 } \\ & 3 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:39:49.2081 } \\ & 5 \mathrm{~W} \\ & \hline \end{aligned}$								
test27	Geodes ic Input	$\begin{aligned} & \text { 40:12:17.8000 } \\ & \text { os } \end{aligned}$	$\begin{aligned} & \text { 69:11:50.6000 } \\ & \text { ow } \end{aligned}$	$\begin{aligned} & \text { 40:12:17.8000 } \\ & \text { os } \end{aligned}$	$\begin{aligned} & \text { 65:12:34.7000 } \\ & \text { ow } \end{aligned}$						
	Locus Input	$\begin{aligned} & 41: 50: 24.5000 \\ & \text { os } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 70:12:45.6000 } \\ & \text { ow } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 39:55:35.8000 } \\ & \text { os } \end{aligned}$	$\begin{aligned} & \text { 68:12:34.7000 } \\ & \text { oW } \end{aligned}$	$\begin{aligned} & \text { 41:40:55.2698 } \\ & \text { 1S } \end{aligned}$	$\begin{aligned} & \text { 70:28:17.3946 } \\ & 4 \mathrm{~W} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 39:44:31.6564 } \\ & 9 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:31:00.7972 } \\ & 1 \mathrm{~W} \end{aligned}$	-15.0	-18.0
	Output	$\begin{aligned} & \text { 40:12:30.9062 } \\ & 6 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:58:24.7194 } \\ & 6 \mathrm{~W} \\ & \hline \end{aligned}$								
test28	Geodes ic Input	$\begin{aligned} & \text { 40:12:17.8000 } \\ & 0 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 69:11:50.6000 } \\ & \text { 0W } \end{aligned}$	$\begin{aligned} & \text { 42:05:35.8000 } \\ & 0 \text { S } \end{aligned}$	$\begin{aligned} & \text { 67:26:34.7000 } \\ & \text { oW } \end{aligned}$						
	Locus Input	$\begin{aligned} & 41: 50: 24.5000 \\ & \text { os } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 70:12:45.6000 } \\ & \text { OW } \end{aligned}$	$\begin{aligned} & \text { 39:55:35.8000 } \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 68:12:34.7000 } \\ & \text { 0W } \end{aligned}$	$\begin{aligned} & 41: 51: 02.3733 \\ & 4 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 70:11:43.3174 } \\ & 9 \mathrm{~W} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 39:56:49.4111 } \\ & \text { 6S } \end{aligned}$	$\begin{aligned} & \text { 68:10:31.4344 } \\ & 2 W \\ & \hline \end{aligned}$	1.0	2.0
	Output	$\begin{aligned} & \text { 40:35:40.8131 } \\ & 3 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:50:43.6999 } \\ & 6 \mathrm{~W} \end{aligned}$								
test29	Geodes ic Input	$\begin{aligned} & \text { 40:12:17.8000 } \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 69:11:50.6000 } \\ & \text { ow } \end{aligned}$	$\begin{aligned} & \text { 42:25:35.8000 } \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 69:11:50.6000 } \\ & \text { ow } \end{aligned}$						
	Locus Input	$\begin{aligned} & \text { 41:50:24.5000 } \\ & \text { OS } \end{aligned}$	$\begin{aligned} & 70: 12: 45.6000 \\ & 0 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \hline \text { 39:55:35.8000 } \\ & \text { os } \end{aligned}$	$\begin{aligned} & \text { 68:12:34.7000 } \\ & \text { oW } \end{aligned}$	$\begin{aligned} & \text { 41:51:40.2372 } \\ & 3 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 70: 10: 41.0145 \\ & 6 W \end{aligned}$	$\begin{aligned} & \text { 39:57:26.2029 } \\ & 9 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:09:29.7741 } \\ & 1 \mathrm{~W} \end{aligned}$	2.0	3.0
	Output	$\begin{aligned} & \text { 40:57:17.6228 } \\ & 9 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 69:11:50.6000 } \\ & \text { ow } \end{aligned}$								
test30	Geodes ic Input	$\begin{aligned} & \text { 40:12:17.8000 } \\ & \text { os } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 69:11:50.6000 } \\ & \hline \text { N\| } \end{aligned}$	$\begin{aligned} & \text { 41:50:24.5000 } \\ & \text { os } \end{aligned}$	$\begin{array}{\|l} \hline 70: 12: 45.6000 \\ \text { OW } \\ \hline \end{array}$						
	Locus Input	$\begin{aligned} & \text { 41:50:24.5000 } \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 70:12:45.6000 } \\ & \text { ow } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 39:55:35.8000 } \\ & \text { os } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 68:12:34.7000 } \\ & \text { oW } \end{aligned}$	$\begin{aligned} & \text { 41:40:55.2698 } \\ & \text { 1S } \end{aligned}$	$\begin{aligned} & \text { 70:28:17.3946 } \\ & 4 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 39:43:17.6810 } \\ & 7 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 68:33:03.3321 } \\ & 3 W \\ & \hline \end{aligned}$	-15.0	-20.0
	Output	$\begin{array}{\|l\|} \hline 40: 43: 15.1312 \\ \text { os } \end{array}$	$\begin{aligned} & \text { 69:30:42.1630 } \\ & 9.1 \end{aligned}$								
test31	Geodes ic Input	$\begin{aligned} & \text { 43:12:17.8000 } \\ & 0 S \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 69:11:50.6000 } \\ & \text { ow } \end{aligned}$	$\begin{aligned} & \text { 39:55:35.8000 } \\ & \text { oS } \end{aligned}$	$\begin{aligned} & \text { 68:12:34.7000 } \\ & \text { oW } \end{aligned}$						
	Locus Input	39:55:35.8000	$\begin{aligned} & \text { 68:12:34.7000 } \\ & \text { ow } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 41:50:24.5000 } \\ & \text { os } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 70:12:45.6000 } \\ & \text { ow } \end{aligned}$	$\begin{aligned} & \text { 39:58:39.7591 } \\ & \text { 1S } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 68:07:26.3984 } \\ & 1 \mathrm{~W} \\ & \hline \end{aligned}$	$\begin{aligned} & 41: 51: 40.2372 \\ & 3 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & 70: 10: 41.0145 \\ & 6 \mathrm{~W} \\ & \hline \end{aligned}$	-5.0	-2.0
	Output	$\begin{aligned} & \text { 40:06:31.2891 } \\ & 6 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:15:42.7811 } \\ & \text { 0W } \\ & \hline \end{aligned}$								

test32	Geodes ic Input	$\begin{aligned} & 43: 12: 17.8000 \\ & \text { oS } \end{aligned}$	$\begin{aligned} & \text { 69:11:50.6000 } \\ & \text { OW } \end{aligned}$	$\begin{aligned} & \text { 40:55:35.8000 } \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 69:11:50.6000 } \\ & \text { OW } \end{aligned}$						
	Locus Input	$\begin{aligned} & 39: 55: 35.8000 \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 68:12:34.7000 } \\ & \text { OW } \\ & \hline \end{aligned}$	$\begin{aligned} & 41: 50: 24.5000 \\ & \text { OS } \\ & \hline \end{aligned}$	$\begin{aligned} & 70: 12: 45.6000 \\ & \text { OW } \\ & \hline \end{aligned}$	$\begin{aligned} & 40: 00: 30.0243 \\ & 5 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 68:04:21.1970 } \\ & 5 \mathrm{~W} \\ & \hline \end{aligned}$	$\begin{aligned} & 41: 54: 49.4146 \\ & 1 S \end{aligned}$	$\begin{aligned} & 70: 05: 29.1934 \\ & 6 \mathrm{~W} \\ & \hline \end{aligned}$	-8.0	-7.0
	Output	$\begin{aligned} & 41: 05: 16.1967 \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 69:11:50.6000 } \\ & \text { OW } \end{aligned}$								
test33	Geodes ic Input	$\begin{aligned} & 42: 12: 17.8000 \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 69:11:50.6000 } \\ & \text { OW } \end{aligned}$	$\begin{aligned} & 40: 50: 24.5000 \\ & \text { OS } \end{aligned}$	$\begin{aligned} & 70: 12: 45.6000 \\ & \text { OW } \end{aligned}$						
	Locus Input	$\begin{aligned} & 39: 55: 35.8000 \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 68:12:34.7000 } \\ & \text { OW } \end{aligned}$	$\begin{aligned} & 41: 50: 24.5000 \\ & \text { OS } \\ & \hline \end{aligned}$	$\begin{aligned} & 70: 12: 45.6000 \\ & \text { OW } \\ & \hline \end{aligned}$	$\begin{aligned} & 39: 48: 13.3652 \\ & \text { 7S } \end{aligned}$	$\begin{aligned} & \text { 68:24:52.7554 } \\ & \text { 6W } \\ & \hline \end{aligned}$	$\begin{aligned} & 41: 44: 05.2480 \\ & 5 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & 70: 23: 07.3045 \\ & \text { 6W } \end{aligned}$	12.0	10.0
	Output	$\begin{aligned} & 41: 16: 14.1218 \\ & 6 S \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 69:53:51.9828 } \\ & \text { 3W } \end{aligned}$								
test34	Geodes ic Input	$\begin{aligned} & 42: 12: 17.8000 \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 69:11:50.6000 } \\ & \text { OW } \end{aligned}$	$\begin{aligned} & 40: 45: 17.5000 \\ & \text { OS } \end{aligned}$	$\begin{aligned} & 72: 11: 50.6000 \\ & \text { OW } \end{aligned}$						
	Locus Input	$\begin{aligned} & 39: 55: 35.8000 \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 68:12:34.7000 } \\ & \text { OW } \\ & \hline \end{aligned}$	$\begin{aligned} & 41: 50: 24.5000 \\ & \text { OS } \\ & \hline \end{aligned}$	$\begin{aligned} & 70: 12: 45.6000 \\ & \text { OW } \\ & \hline \end{aligned}$	$\begin{aligned} & 40: 13: 56.0936 \\ & \text { OS } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 67:41:37.9819 } \\ & 4 \mathrm{~W} \\ & \hline \end{aligned}$	$\begin{aligned} & 42: 06: 08.4822 \\ & 9 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 69:46:42.3928 } \\ & 7 \mathrm{~W} \\ & \hline \end{aligned}$	-30.0	-25.0
	Output	$\begin{aligned} & 41: 59: 37.9145 \\ & 3 S \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 69:39:10.9123 } \\ & \text { 1W } \end{aligned}$								
test35	Geodes ic Input	$\begin{aligned} & 42: 12: 17.8000 \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 69:11:50.6000 } \\ & \text { OW } \end{aligned}$	$\begin{aligned} & 42: 12: 17.8000 \\ & \text { OS } \end{aligned}$	$\begin{aligned} & 72: 11: 50.6000 \\ & \text { OW } \end{aligned}$						
	Locus Input	$\begin{aligned} & \text { 39:55:35.8000 } \\ & \text { os } \end{aligned}$	$\begin{aligned} & \text { 68:12:34.7000 } \\ & \text { OW } \end{aligned}$	$\begin{aligned} & 41: 50: 24.5000 \\ & \text { OS } \end{aligned}$	$\begin{aligned} & 70: 12: 45.6000 \\ & \text { oW } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 40:20:00.9982 } \\ & 15 \end{aligned}$	$\begin{aligned} & \text { 67:31:15.3738 } \\ & 3 \mathrm{~W} \\ & \hline \end{aligned}$	$\begin{aligned} & 42: 14: 16.9856 \\ & 5 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 69:33:04.4385 } \\ & 8 \mathrm{~W} \end{aligned}$	-40.0	-38.0
	Output	$\begin{aligned} & 42: 12: 31.3088 \\ & 9 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 69:31:07.4285 } \\ & 9 \mathrm{~W} \\ & \hline \end{aligned}$								
test36	Geodes ic Input	40:12:17.8000	$\begin{aligned} & \text { 67:11:50.6000 } \\ & \text { OW } \end{aligned}$	$\begin{aligned} & 41: 30: 17.8000 \\ & \text { OS } \end{aligned}$	$\begin{aligned} & 70: 11: 50.6000 \\ & \text { oW } \end{aligned}$						
	Locus Input	$\begin{aligned} & \text { 39:55:35.8000 } \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 68:12:34.7000 } \\ & \text { OW } \end{aligned}$	$\begin{aligned} & 41: 50: 24.5000 \\ & \text { OS } \end{aligned}$	$\begin{aligned} & 70: 12: 45.6000 \\ & \text { OW } \end{aligned}$	$\begin{aligned} & 40: 01: 06.7610 \\ & 2 S \end{aligned}$	$\begin{aligned} & \text { 68:03:19.4264 } \\ & 9 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 41: 55: 27.2216 \\ & 4 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 70: 04: 26.7678 \\ & 7 \mathrm{~W} \\ & \hline \end{aligned}$	-9.0	-8.0
	Output	$\begin{aligned} & 41: 03: 44.0940 \\ & 8 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 69:08:30.8154 } \\ & \text { 4W } \end{aligned}$								
test37	Geodes ic Input	$\begin{aligned} & 40: 42: 17.8000 \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 68:11:50.6000 } \\ & \text { 0E } \end{aligned}$	$\begin{aligned} & 39: 52: 35.8000 \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 69:12:34.7000 } \\ & 0 \mathrm{E} \\ & \hline \end{aligned}$						
	Locus Input	$\begin{aligned} & 41: 50: 24.5000 \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 68:12:45.6000 } \\ & \text { 0E } \end{aligned}$	$\begin{aligned} & 39: 55: 35.8000 \\ & \text { OS } \end{aligned}$	$\begin{aligned} & 70: 12: 34.7000 \\ & 0 E \end{aligned}$	$\begin{aligned} & \text { 41:25:04.6826 } \\ & \text { 4S } \end{aligned}$	$\begin{aligned} & \text { 67:31:27.8664 } \\ & \text { 2F } \end{aligned}$	$\begin{aligned} & 39: 30: 21.5500 \\ & 1 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 69:30:40.9995 } \\ & 3 \mathrm{E} \end{aligned}$	-40.0	-41.0
	Output	$\begin{aligned} & 40: 15: 33.0873 \\ & 5 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 68:44:47.5589 } \\ & \text { 1E } \\ & \hline \end{aligned}$								
test38	Geodes ic Input	$\begin{aligned} & 40: 12: 17.8000 \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 68:11:50.6000 } \\ & 0 \mathrm{E} \end{aligned}$	$\begin{aligned} & 39: 55: 35.8000 \\ & \text { 0S } \\ & \hline \end{aligned}$	$\begin{aligned} & 70: 12: 34.7000 \\ & 0 E \\ & \hline \end{aligned}$						
	Locus Input	$\begin{aligned} & 41: 50: 24.5000 \\ & \text { os } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 68:12:45.6000 } \\ & \text { 0E } \\ & \hline \end{aligned}$	$\begin{aligned} & 39: 55: 35.8000 \\ & \text { OS } \\ & \hline \end{aligned}$	$\begin{aligned} & 70: 12: 34.7000 \\ & 0 E \\ & \hline \end{aligned}$	$\begin{aligned} & 41: 40: 56.3220 \\ & 3 S \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 67:57:12.6583 } \\ & 9 \mathrm{E} \\ & \hline \end{aligned}$	$\begin{aligned} & 39: 49: 27.8779 \\ & 9 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & 70: 02: 18.7824 \\ & 2 \mathrm{E} \\ & \hline \end{aligned}$	-15.0	-10.0
	Output	$\begin{aligned} & 39: 58: 31.8412 \\ & 8 S \end{aligned}$	$\begin{aligned} & 69: 52: 29.2974 \\ & 2 E \end{aligned}$								
test39	Geodes ic Input	$\begin{aligned} & 40: 12: 17.8000 \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 68:11:50.6000 } \\ & 0 E \end{aligned}$	$\begin{aligned} & \text { 40:12:17.8000 } \\ & \text { OS } \end{aligned}$	$\begin{aligned} & 72: 12: 34.7000 \\ & 0 E \end{aligned}$						
	Locus Input	$\begin{aligned} & 41: 50: 24.5000 \\ & \text { OS } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 68:12:45.6000 } \\ & \text { 0E } \\ & \hline \end{aligned}$	$\begin{aligned} & 39: 55: 35.8000 \\ & \text { OS } \\ & \hline \end{aligned}$	$\begin{aligned} & 70: 12: 34.7000 \\ & 0 \mathrm{E} \\ & \hline \end{aligned}$	$\begin{aligned} & 41: 47: 15.3430 \\ & 2 S \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 68:07:34.1112 } \\ & 6 E \\ & \hline \end{aligned}$	$\begin{aligned} & 39: 51: 18.3506 \\ & 3 S \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 70:05:23.3657 } \\ & \text { 7E } \\ & \hline \end{aligned}$	-5.0	-7.0
	Output	$\begin{aligned} & 40: 13: 16.8917 \\ & 9 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 69:43:44.0319 } \\ & \text { 0E } \end{aligned}$								
test40	Geodes	38:01:17.8000	68:11:50.6000	40:12:17.8000	69:56:34.7000						

	ic Input	OS	0E	OS	0E						
	Locus Input	$\begin{aligned} & 41: 50: 24.5000 \\ & \text { OS } \end{aligned}$	$\begin{aligned} & 68: 12: 45.6000 \\ & 0 E \end{aligned}$	$\begin{aligned} & 39: 55: 35.8000 \\ & \text { OS } \end{aligned}$	$\begin{aligned} & 70: 12: 34.7000 \\ & 0 E \end{aligned}$	$\begin{aligned} & 41: 40: 56.3220 \\ & 3 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 67:57:12.6583 } \\ & 9 \mathrm{E} \\ & \hline \end{aligned}$	$\begin{aligned} & 39: 44: 32.8834 \\ & 3 S \end{aligned}$	$\begin{aligned} & \text { 69:54:07.3624 } \\ & \text { 3E } \end{aligned}$	-15.0	-18.0
	Output	$\begin{aligned} & 39: 55: 56.2019 \\ & 9 S \end{aligned}$	$\begin{aligned} & \text { 69:43:03.9371 } \\ & 8 \mathrm{E} \end{aligned}$								
test41	Geodes ic Input	$\begin{aligned} & 38: 01: 17.8000 \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 69:11:50.6000 } \\ & \text { 0E } \end{aligned}$	$\begin{aligned} & 41: 12: 17.8000 \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 69:11:50.6000 } \\ & \text { 0E } \end{aligned}$						
	Locus Input	$\begin{aligned} & 41: 50: 24.5000 \\ & \text { OS } \end{aligned}$	$\begin{aligned} & 68: 12: 45.6000 \\ & 0 \mathrm{E} \\ & \hline \end{aligned}$	$\begin{aligned} & 39: 55: 35.8000 \\ & \text { OS } \end{aligned}$	$\begin{aligned} & 70: 12: 34.7000 \\ & 0 \mathrm{E} \\ & \hline \end{aligned}$	$\begin{aligned} & 41: 40: 56.3220 \\ & 3 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 67:57:12.6583 } \\ & \text { 9E } \end{aligned}$	$\begin{aligned} & 39: 43: 19.0439 \\ & 4 S \end{aligned}$	$\begin{aligned} & \text { 69:52:04.6894 } \\ & \text { 3E } \end{aligned}$	-15.0	-20.0
	Output	$\begin{aligned} & 40: 25: 31.9506 \\ & 2 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 69:11:50.6000 } \\ & 0 E \end{aligned}$								
test42	Geodes ic Input	$\begin{aligned} & 38: 01: 17.8000 \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 69:11:50.6000 } \\ & \text { 0E } \\ & \hline \end{aligned}$	$\begin{aligned} & 41: 50: 24.5000 \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 68:12:45.6000 } \\ & \text { 0E } \\ & \hline \end{aligned}$						
	Locus Input	$\begin{aligned} & 41: 50: 24.5000 \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 68:12:45.6000 } \\ & 0 \mathrm{E} \\ & \hline \end{aligned}$	$\begin{aligned} & 39: 55: 35.8000 \\ & \text { OS } \end{aligned}$	$\begin{aligned} & 70: 12: 34.7000 \\ & 0 \mathrm{E} \\ & \hline \end{aligned}$	$\begin{aligned} & 41: 40: 56.3220 \\ & 3 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 67:57:12.6583 } \\ & 9 E \end{aligned}$	$\begin{aligned} & 39: 44: 32.8834 \\ & \text { 3S } \end{aligned}$	$\begin{aligned} & \text { 69:54:07.3624 } \\ & \text { 3E } \end{aligned}$	-15.0	-18.0
	Output	$\begin{aligned} & 41: 17: 14.5926 \\ & 9 S \end{aligned}$	$\begin{aligned} & \text { 68:21:44.5433 } \\ & 8 \mathrm{E} \end{aligned}$								
test43	Geodes ic Input	$\begin{aligned} & 43: 29: 17.8000 \\ & \text { OS } \end{aligned}$	$\begin{aligned} & 68: 11: 50.6000 \\ & 0 \mathrm{E} \\ & \hline \end{aligned}$	$\begin{aligned} & 39: 55: 35.8000 \\ & \text { OS } \end{aligned}$	$\begin{aligned} & 70: 12: 34.7000 \\ & 0 \mathrm{E} \\ & \hline \end{aligned}$						
	Locus Input	$\begin{aligned} & \text { 39:55:35.8000 } \\ & \text { OS } \end{aligned}$	$\begin{aligned} & 70: 12: 34.7000 \\ & 0 \mathrm{E} \end{aligned}$	$\begin{aligned} & 41: 50: 24.5000 \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 68:12:45.6000 } \\ & \text { 0E } \end{aligned}$	$\begin{aligned} & 40: 10: 51.5757 \\ & 9 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 70: 38: 22.5258 \\ & 4 \mathrm{E} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 42:09:14.4414 } \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 68:44:05.2763 } \\ & \text { 0E } \end{aligned}$	-25.0	-30.0
	Output	$\begin{aligned} & 41: 34: 33.3590 \\ & \text { OS } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 69:18:28.6928 } \\ & 5 \mathrm{E} \\ & \hline \end{aligned}$								
test44	Geodes ic Input	$\begin{aligned} & \text { 42:29:17.8000 } \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 69:11:50.6000 } \\ & \text { 0E } \end{aligned}$	$\begin{aligned} & 38: 55: 35.8000 \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 68:11:50.6000 } \\ & \text { 0E } \end{aligned}$						
	Locus Input	$\begin{aligned} & \text { 39:55:35.8000 } \\ & \text { OS } \end{aligned}$	$\begin{aligned} & 70: 12: 34.7000 \\ & 0 E \end{aligned}$	$\begin{aligned} & 41: 50: 24.5000 \\ & \text { os } \end{aligned}$	$\begin{aligned} & \text { 68:12:45.6000 } \\ & \text { 0E } \end{aligned}$	$\begin{aligned} & 40: 00: 29.4769 \\ & 5 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 70:20:48.7528 } \\ & \text { 2E } \end{aligned}$	$\begin{aligned} & 41: 56: 04.3853 \\ & 8 S \end{aligned}$	$\begin{aligned} & \text { 68:22:07.5649 } \\ & 9 \mathrm{E} \end{aligned}$	-8.0	-9.0
	Output	$\begin{aligned} & 41: 26: 23.0050 \\ & 8 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 68:53:29.0887 } \\ & \text { 3E } \end{aligned}$								
test45	Geodes ic Input	$\begin{aligned} & 42: 29: 17.8000 \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 69:11:50.6000 } \\ & 0 \mathrm{E} \end{aligned}$	$\begin{aligned} & 40: 50: 24.5000 \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 68:12:45.6000 } \\ & \text { 0E } \end{aligned}$						
	Locus Input	$\begin{aligned} & 39: 55: 35.8000 \\ & \text { OS } \end{aligned}$	$\begin{aligned} & 70: 12: 34.7000 \\ & 0 E \end{aligned}$	$\begin{aligned} & 41: 50: 24.5000 \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 68:12:45.6000 } \\ & \text { 0E } \end{aligned}$	$\begin{aligned} & \text { 39:57:25.9978 } \\ & \text { 7S } \end{aligned}$	$\begin{aligned} & 70: 15: 39.8321 \\ & 9 E \end{aligned}$	$\begin{aligned} & 41: 53: 33.4202 \\ & 2 S \end{aligned}$	$\begin{aligned} & \text { 68:17:57.5984 } \\ & 6 \mathrm{E} \end{aligned}$	-3.0	-5.0
	Output	$\begin{aligned} & 41: 34: 00.9006 \\ & 6 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 68:38:24.2439 } \\ & \text { 6E } \\ & \hline \end{aligned}$								
test46	Geodes ic Input	$\begin{aligned} & 40: 29: 17.8000 \\ & \text { OS } \end{aligned}$	$\begin{aligned} & 70: 11: 50.6000 \\ & 0 E \end{aligned}$	$\begin{aligned} & 38: 45: 07.5000 \\ & 0 S \end{aligned}$	$\begin{aligned} & \text { 67:11:50.6000 } \\ & \text { 0E } \end{aligned}$						
	Locus Input	$\begin{aligned} & 39: 55: 35.8000 \\ & \text { OS } \end{aligned}$	$\begin{aligned} & 70: 12: 34.7000 \\ & 0 \mathrm{E} \\ & \hline \end{aligned}$	$\begin{aligned} & 41: 50: 24.5000 \\ & \text { oS } \end{aligned}$	$\begin{aligned} & 68: 12: 45.6000 \\ & 0 \mathrm{E} \end{aligned}$	$\begin{aligned} & 39: 58: 02.7121 \\ & \text { OS } \end{aligned}$	$\begin{aligned} & 70: 16: 41.5796 \\ & 0 \mathrm{E} \\ & \hline \end{aligned}$	$\begin{aligned} & 41: 52: 17.8805 \\ & 9 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 68:15:52.7378 } \\ & \text { 4E } \\ & \hline \end{aligned}$	-4.0	-3.0
	Output	$\begin{aligned} & 40: 19: 41.2420 \\ & 9 S \end{aligned}$	$\begin{aligned} & \text { 69:54:30.1130 } \\ & 8 \mathrm{E} \end{aligned}$								

WGS84LocusArcIntersect Test Results

Test Identifi er	Locus Inputs	Locus Geodesic Start Latitude	Locus Geodesic Start Longitude	Locus Geodesic End Latitude	Locus Geodesic End Longitude	Locus Start Latitude	Locus Start Longitude	Locus End Latitude	Locus End Longitude	Locus Start Distan ce	Locus End Distan ce
	Arc Inputs	Arc Center Latitude	Arc Center Longitude	Arc Radius							
	Outputs	Intersection 1 Latitude	Intersection 1 Longitude	Intersection 2 Latitude	Intersection 2 Longitude						
test1	LocusInp uts	$\begin{aligned} & 40: 04: 35.8000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 67:12:40.7000 } \\ & \text { OW } \end{aligned}$	$\begin{aligned} & 44: 59: 45.9208 \\ & 8 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:26:00.2113 } \\ & 7 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 39:56:32.2458 } \\ & \text { 3N } \end{aligned}$	$\begin{aligned} & \text { 68:10:17.8928 } \\ & 7 \mathrm{~W} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 44:49:00.821 } \\ & 97 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:41:53.8588 } \\ & \text { OW } \end{aligned}$	-45.0	-55.0
	Arclnputs	$\begin{aligned} & 40: 10: 24.5000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & 70: 12: 45.6000 \\ & \text { OW } \\ & \hline \end{aligned}$	100.0							
	Outputs	$\begin{aligned} & \text { 41:16:20.9748 } \\ & \text { 3N } \end{aligned}$	$\begin{aligned} & \text { 68:33:49.6470 } \\ & \text { 6W } \end{aligned}$	N/A	N/A						
test2	LocusInp uts	$\begin{aligned} & 40: 04: 35.8000 \\ & \text { ON } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 67:12:40.7000 } \\ & \text { OW } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 35:21:11.7476 } \\ & \text { 2N } \end{aligned}$	$\begin{aligned} & \text { 69:17:59.1245 } \\ & \text { OW } \\ & \hline \end{aligned}$	$\begin{aligned} & 40: 19: 46.7625 \\ & 7 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 68:07:58.2868 } \\ & 6 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 35: 38: 35.678 \\ & 60 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 21: 53.8095 \\ & 3 \mathrm{~W} \\ & \hline \end{aligned}$	45.0	55.0
	Arclnputs	$\begin{aligned} & 40: 10: 24.5000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & 70: 12: 45.6000 \\ & \text { OW } \end{aligned}$	100.0							
	Outputs	$\begin{aligned} & 38: 52: 37.3211 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 68:51:25.9239 } \\ & 8 \mathrm{~W} \end{aligned}$	N/A	N/A						
test3	LocusInp uts	$\begin{aligned} & \text { 40:04:35.8000 } \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 68:12:40.7000 } \\ & \text { OW } \\ & \hline \end{aligned}$	$\begin{aligned} & 44: 06: 29.0814 \\ & 5 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & 72: 11: 23.8327 \\ & 9 \mathrm{~W} \\ & \hline \end{aligned}$	$\begin{aligned} & 40: 10: 19.7105 \\ & 4 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 68:01:59.5268 } \\ & \text { OW } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 44:15:37.901 } \\ & 40 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & 71: 54: 52.5090 \\ & 7 \mathrm{~W} \\ & \hline \end{aligned}$	10.0	15.0
	Arclnputs	$\begin{aligned} & 40: 10: 24.5000 \\ & \text { ON } \\ & \hline \end{aligned}$	$\begin{aligned} & 70: 12: 45.6000 \\ & \text { OW } \end{aligned}$	100.0							
	Outputs	$\begin{aligned} & 40: 10: 40.4839 \\ & 2 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:02:17.7464 } \\ & 3 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 41: 44: 11.1114 \\ & 4 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:26:43.2997 } \\ & \text { 3W } \end{aligned}$						
test4	LocusInp uts	$\begin{aligned} & 40: 04: 35.8000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 67:12:40.7000 } \\ & \text { OW } \end{aligned}$	$\begin{aligned} & \text { 39:53:37.8685 } \\ & \text { 2N } \end{aligned}$	$\begin{aligned} & 73: 42: 48.0144 \\ & \text { OW } \end{aligned}$	$\begin{aligned} & 39: 24: 33.8481 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 67:12:40.7000 } \\ & \text { OW } \end{aligned}$	$\begin{aligned} & 39: 13: 42.172 \\ & 01 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 73: 39: 02.8520 \\ & 8 \mathrm{~W} \end{aligned}$	-40.0	-40.0
	Arclnputs	$\begin{aligned} & 40: 10: 24.5000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & 70: 12: 45.6000 \\ & \text { OW } \end{aligned}$	100.0							
	Outputs	$\begin{aligned} & 39: 24: 15.4516 \\ & \text { ON } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 68:17:38.6312 } \\ & \text { 6W } \\ & \hline \end{aligned}$	$\begin{aligned} & 39: 18: 24.7960 \\ & 5 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 72:03:32.0122 } \\ & 7 \mathrm{~W} \\ & \hline \end{aligned}$						
test5	LocusInp uts	$\begin{aligned} & 40: 04: 35.8000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 67:12:40.7000 } \\ & \text { 0W } \\ & \hline \end{aligned}$	$\begin{aligned} & 42: 25: 59.2966 \\ & 6 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 73:03:41.4214 } \\ & \text { OW } \end{aligned}$	$\begin{aligned} & 39: 47: 15.0303 \\ & 5 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 67:25:39.0489 } \\ & 4 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 42:03:31.246 } \\ & 36 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 73: 18: 28.5544 \\ & \text { 1W } \end{aligned}$	-20.0	-25.0
	Arclnputs	$\begin{aligned} & 40: 10: 24.5000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & 70: 12: 45.6000 \\ & \text { OW } \end{aligned}$	100.0							
	Outputs	$\begin{aligned} & 40: 02: 54.5608 \\ & 6 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 68:02:47.1264 } \\ & \text { 1W } \\ & \hline \end{aligned}$	$\begin{aligned} & 41: 27: 12.3325 \\ & 5 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 71: 37: 11.7522 \\ & 3 W \\ & \hline \end{aligned}$						
test6	LocusInp uts	$\begin{aligned} & 40: 04: 35.8000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 67:12:40.7000 } \\ & \text { OW } \\ & \hline \end{aligned}$	$\begin{aligned} & 37: 26: 38.4937 \\ & 4 N \end{aligned}$	$\begin{aligned} & 72: 39: 00.0419 \\ & 7 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 40: 24: 30.8080 \\ & 2 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 67:27:43.9750 } \\ & 8 \mathrm{~W} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 37:47:30.860 } \\ & 22 N \end{aligned}$	$\begin{aligned} & 72: 56: 21.9550 \\ & 9 \mathrm{~W} \end{aligned}$	23.0	25.0
	Arclnputs	$\begin{aligned} & 40: 10: 24.5000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & 70: 12: 45.6000 \\ & \text { OW } \end{aligned}$	100.0							
	Outputs	$\begin{aligned} & 40: 09: 14.2959 \\ & 5 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:02:19.6287 } \\ & 9 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 38: 40: 57.6987 \\ & 7 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 71: 10: 40.2263 \\ & 3 \mathrm{~W} \\ & \hline \end{aligned}$						
test7	LocusInp uts	$\begin{aligned} & 42: 54: 35.8000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & 70: 11: 34.7000 \\ & \text { OW } \end{aligned}$	$\begin{aligned} & 37: 54: 23.2544 \\ & 9 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 11: 34.7000 \\ & \text { OW } \end{aligned}$	$\begin{aligned} & \text { 42:54:34.6354 } \\ & 6 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:55:14.9526 } \\ & 5 \mathrm{~W} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 37:54:22.705 } \\ & 15 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:00:12.3933 } \\ & \text { 1W } \end{aligned}$	-12.0	-9.0
	Arclnputs	40:10:24.5000	70:12:45.6000	100.0							

		ON	OW								
	Outputs	$\begin{aligned} & 41: 49: 41.8125 \\ & 3 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 69:56:23.6694 } \\ & 5 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 38: 30: 50.3527 \\ & 2 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:59:38.8532 } \\ & 8 \mathrm{~W} \end{aligned}$						
test8	LocusInp uts	$\begin{aligned} & \text { 42:54:35.8000 } \\ & \text { ON } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 70:11:34.7000 } \\ & \text { OW } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 38:36:54.7497 } \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 66:48:53.1121 } \\ & \text { OW } \end{aligned}$	$\begin{aligned} & \text { 42:45:33.4587 } \\ & 9 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:31:08.9200 } \\ & \text { 1W } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 38:25:55.700 } \\ & 18 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 67:13:10.9719 } \\ & \text { 1W } \end{aligned}$	17.0	22.0
	Arclnputs	$\begin{aligned} & 40: 10: 24.5000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & 70: 12: 45.6000 \\ & \text { OW } \end{aligned}$	100.0							
	Outputs	$\begin{aligned} & 41: 48: 11.2142 \\ & 8 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:44:43.2787 } \\ & 9 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 39: 41: 58.4778 \\ & 9 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:08:06.4480 } \\ & 2 W \end{aligned}$						
test9	LocusInp uts	$\begin{aligned} & 42: 54: 35.8000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & 70: 11: 34.7000 \\ & \text { OW } \end{aligned}$	$\begin{aligned} & 38: 34: 20.9298 \\ & 5 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 73: 28: 27.3739 \\ & 7 \mathrm{~W} \\ & \hline \end{aligned}$	$\begin{aligned} & 42: 47: 21.8889 \\ & 5 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:55:16.8235 } \\ & \text { 1W } \end{aligned}$	$\begin{aligned} & \text { 38:30:28.695 } \\ & 75 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 73:19:31.7971 } \\ & 7 \mathrm{~W} \end{aligned}$	-14.0	-8.0
	Arclnputs	$\begin{aligned} & 40: 10: 24.5000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & 70: 12: 45.6000 \\ & \text { OW } \\ & \hline \end{aligned}$	100.0							
	Outputs	$\begin{aligned} & 41: 47: 15.3317 \\ & 5 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 45: 57.1355 \\ & 6 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 39: 49: 26.3001 \\ & 6 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 72: 19: 59.9361 \\ & 4 \mathrm{~W} \end{aligned}$						
test10	LocusInp uts	$\begin{aligned} & 40: 24: 35.8000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & 75: 11: 34.7000 \\ & \text { OW } \end{aligned}$	$\begin{aligned} & 40: 13: 30.1326 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 68:39:33.2928 } \\ & 9 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 40:09:35.1524 } \\ & 9 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 75: 11: 34.7000 \\ & \text { OW } \end{aligned}$	$\begin{aligned} & \text { 39:53:32.477 } \\ & 81 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:41:28.2940 } \\ & \text { OW } \end{aligned}$	15.0	20.0
	ArcInputs	$\begin{aligned} & 40: 10: 24.5000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & 70: 12: 45.6000 \\ & \text { OW } \\ & \hline \end{aligned}$	100.0							
	Outputs	$\begin{aligned} & 40: 05: 22.1852 \\ & 8 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 72:22:58.4868 } \\ & 8 \mathrm{~W} \\ & \hline \end{aligned}$	N/A	N/A						
test11	LocusInp uts	$\begin{aligned} & 40: 24: 35.8000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & 75: 11: 34.7000 \\ & \text { OW } \\ & \hline \end{aligned}$	$\begin{aligned} & 41: 52: 02.6308 \\ & 8 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 68:51:37.8257 } \\ & \text { 1W } \\ & \hline \end{aligned}$	$\begin{aligned} & 40: 17: 01.5793 \\ & 1 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & 75: 08: 10.5002 \\ & \text { 1W } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 41:46:14.448 } \\ & 89 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:49:34.6745 } \\ & 8 \mathrm{~W} \\ & \hline \end{aligned}$	8.0	
	ArcInputs	6.0	$\begin{aligned} & 40: 10: 24.5000 \\ & \text { ON } \end{aligned}$								
	Outputs	$\begin{aligned} & 70: 12: 45.6000 \\ & \text { OW } \\ & \hline \end{aligned}$	100.0	$\begin{aligned} & \text { 41:03:30.8815 } \\ & 9 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 72:04:03.6671 } \\ & 7 \mathrm{~W} \\ & \hline \end{aligned}$	$\begin{aligned} & 41: 40: 47.0691 \\ & 6 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 69:16:07.9330 } \\ & 3 W \end{aligned}$				
test12	LocusInp uts	$\begin{aligned} & 40: 24: 35.8000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & 75: 11: 34.7000 \\ & \text { OW } \\ & \hline \end{aligned}$	$\begin{aligned} & 37: 59: 52.6040 \\ & 3 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:33:17.7337 } \\ & \text { 1W } \end{aligned}$	$\begin{aligned} & 40: 34: 24.0808 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & 75: 05: 01.4892 \\ & 4 \mathrm{~W} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 38:11:04.655 } \\ & 06 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:24:54.6459 } \\ & 8 \mathrm{~W} \end{aligned}$	-11.0	-13.0
	Arclnputs	$\begin{aligned} & 40: 10: 24.5000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & 70: 12: 45.6000 \\ & \text { OW } \\ & \hline \end{aligned}$	100.0							
	Outputs	$\begin{aligned} & \text { 39:22:31.1091 } \\ & 7 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 72:06:39.1575 } \\ & 8 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 38:30:24.5213 } \\ & 7 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:07:20.1753 } \\ & \text { 1W } \end{aligned}$						
test13	LocusInp uts	$\begin{aligned} & 37: 09: 35.8000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & 70: 21: 34.7000 \\ & \text { OW } \end{aligned}$	$\begin{aligned} & 42: 09: 50.6694 \\ & 2 N \end{aligned}$	$\begin{aligned} & 70: 21: 34.7000 \\ & \text { OW } \end{aligned}$	$\begin{aligned} & 37: 09: 34.1097 \\ & 3 N \end{aligned}$	$\begin{aligned} & 70: 01: 33.7441 \\ & 6 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 42:09:49.715 } \\ & 95 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 06: 47.2225 \\ & 4 \mathrm{~W} \end{aligned}$	16.0	11.0
	Arclnputs	$\begin{aligned} & 40: 10: 24.5000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & 70: 12: 45.6000 \\ & \text { OW } \end{aligned}$	100.0							
	Outputs	$\begin{aligned} & 38: 30: 36.7511 \\ & 3 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & 70: 02: 54.7744 \\ & 7 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 41: 50: 21.1627 \\ & \text { ON } \\ & \hline \end{aligned}$	$\begin{aligned} & 70: 06: 25.6778 \\ & \text { 3W } \end{aligned}$						
test14	LocusInp uts	$\begin{aligned} & \text { 37:09:35.8000 } \\ & \text { ON } \end{aligned}$	$\begin{aligned} & 70: 21: 34.7000 \\ & \text { OW } \end{aligned}$	$\begin{aligned} & 41: 15: 08.9818 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 66:39:17.4351 } \\ & 8 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 37:14:37.7729 } \\ & 8 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 30: 55.3685 \\ & 5 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 41:19:17.778 } \\ & \text { 92N } \end{aligned}$	$\begin{aligned} & \text { 66:46:46.4276 } \\ & \text { 2W } \\ & \hline \end{aligned}$	-9.0	-7.0
	Arclnputs	$\begin{aligned} & 40: 10: 24.5000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & 70: 12: 45.6000 \\ & \text { OW } \end{aligned}$	100.0							
	Outputs	$\begin{aligned} & \text { 38:40:34.8682 } \\ & 1 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:15:50.3909 } \\ & \text { OW } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 39:59:51.9250 } \\ & \text { ON } \end{aligned}$	$\begin{aligned} & 68: 03: 11.5422 \\ & 7 \mathrm{~W} \\ & \hline \end{aligned}$						
test15	LocusInp uts	$\begin{aligned} & \text { 37:09:35.8000 } \\ & \text { ON } \end{aligned}$	$\begin{aligned} & 70: 21: 34.7000 \\ & \text { OW } \end{aligned}$	$\begin{aligned} & 41: 29: 39.4876 \\ & 1 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 73:34:58.7850 } \\ & \text { OW } \end{aligned}$	$\begin{aligned} & 37: 15: 24.5696 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 70:08:25.9039 } \\ & 6 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 41:34:48.499 } \\ & 58 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 73: 23: 33.8085 \\ & 4 \mathrm{~W} \end{aligned}$	12.0	10.0
	Arclnputs	$\begin{aligned} & 40: 10: 24.5000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & 70: 12: 45.6000 \\ & \text { OW } \end{aligned}$	100.0							

	Outputs	$\begin{aligned} & \text { 38:40:27.4572 } \\ & 7 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 71:09:21.2458 } \\ & 7 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 40: 18: 13.2691 \\ & 4 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 72:22:56.8090 } \\ & 3 \mathrm{~W} \end{aligned}$						
test16	LocusInp uts	$\begin{aligned} & 40: 04: 35.8000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & 73: 12: 40.7000 \\ & \text { OE } \end{aligned}$	$\begin{aligned} & 44: 59: 45.9208 \\ & 8 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 71: 59: 21.1886 \\ & 3 E \end{aligned}$	$\begin{aligned} & 39: 48: 00.1582 \\ & 7 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 71: 17: 40.2047 \\ & 2 E \end{aligned}$	$\begin{aligned} & 44: 43: 50.982 \\ & 19 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 09: 07.2484 \\ & 8 \mathrm{E} \\ & \hline \end{aligned}$	-90.0	-80.0
	Arclnputs	$\begin{aligned} & 40: 10: 24.5000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & 70: 12: 45.6000 \\ & 0 E \end{aligned}$	100.0							
	Outputs	$\begin{aligned} & 41: 46: 00.6833 \\ & 6 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & 70: 51: 43.5240 \\ & 2 E \end{aligned}$	N/A	N/A						
test17	LocusInp uts	$\begin{aligned} & 40: 04: 35.8000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & 73: 12: 40.7000 \\ & 0 \mathrm{E} \\ & \hline \end{aligned}$	$\begin{aligned} & 35: 21: 11.7476 \\ & 2 N \end{aligned}$	$\begin{aligned} & 71: 07: 22.2755 \\ & 0 E \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 40:36:07.6515 } \\ & 1 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 71: 15: 28.1772 \\ & 7 \mathrm{E} \\ & \hline \end{aligned}$	$\begin{aligned} & 35: 49: 22.227 \\ & 73 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:22:33.0676 } \\ & 0 \mathrm{E} \\ & \hline \end{aligned}$	95.0	90.0
	Arclnputs	$\begin{aligned} & 40: 10: 24.5000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & 70: 12: 45.6000 \\ & 0 E \end{aligned}$	100.0							
	Outputs	$\begin{aligned} & 38: 30: 43.2022 \\ & 6 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 24: 16.3655 \\ & 8 \mathrm{E} \end{aligned}$	N/A	N/A						
test18	LocusInp uts	$\begin{aligned} & 40: 04: 35.8000 \\ & \text { ON } \\ & \hline \end{aligned}$	$\begin{aligned} & 72: 12: 40.7000 \\ & 0 \mathrm{E} \\ & \hline \end{aligned}$	$\begin{aligned} & 43: 30: 53.4568 \\ & 5 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 67:21:10.0978 } \\ & \text { 4E } \\ & \hline \end{aligned}$	$\begin{aligned} & 40: 14: 29.4896 \\ & 2 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 72:25:36.3511 } \\ & \text { 1E } \end{aligned}$	$\begin{aligned} & 43: 49: 30.216 \\ & 72 N \end{aligned}$	$\begin{aligned} & \text { 67:44:10.0992 } \\ & 6 \mathrm{E} \\ & \hline \end{aligned}$	14.0	25.0
	Arclnputs	$\begin{aligned} & 40: 10: 24.5000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & 70: 12: 45.6000 \\ & 0 E \end{aligned}$	100.0							
	Outputs	$\begin{aligned} & 40: 16: 35.4902 \\ & 3 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 72: 23: 04.1901 \\ & 2 \mathrm{E} \end{aligned}$	$\begin{aligned} & 41: 49: 56.0391 \\ & 3 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:26:23.1796 } \\ & \text { 2E } \\ & \hline \end{aligned}$						
test19	LocusInp uts	$\begin{aligned} & \text { 40:04:35.8000 } \\ & \text { ON } \end{aligned}$	$\begin{aligned} & 73: 12: 40.7000 \\ & 0 E \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 39:53:37.8685 } \\ & \text { 2N } \end{aligned}$	$\begin{aligned} & \text { 66:42:33.3856 } \\ & \text { 0E } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 39:32:34.2606 } \\ & \text { 2N } \end{aligned}$	$\begin{aligned} & 73: 12: 40.7000 \\ & 0 \mathrm{E} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 39:28:40.604 } \\ & 61 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 66:44:54.6155 } \\ & \text { OE } \\ & \hline \end{aligned}$	-32.0	-25.0
	Arclnputs	$\begin{aligned} & 40: 10: 24.5000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & 70: 12: 45.6000 \\ & 0 \mathrm{E} \\ & \hline \end{aligned}$	100.0							
	Outputs	$\begin{aligned} & 39: 33: 23.2077 \\ & 9 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 72: 13: 25.3583 \\ & 8 \mathrm{E} \end{aligned}$	$\begin{aligned} & 39: 31: 28.7112 \\ & 4 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:13:08.4293 } \\ & \text { OE } \end{aligned}$						
test20	LocusInp uts	$\begin{aligned} & \text { 40:04:35.8000 } \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 73:12:40.7000 } \\ & \text { OE } \end{aligned}$	$\begin{aligned} & \text { 42:25:59.2966 } \\ & \text { 6N } \end{aligned}$	$\begin{aligned} & \text { 67:21:39.9786 } \\ & \text { OE } \end{aligned}$	$\begin{aligned} & \text { 39:55:03.5626 } \\ & 8 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 73:05:31.7978 } \\ & 6 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 42:17:00.316 } \\ & 04 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 67:15:43.8652 } \\ & 9 \mathrm{E} \end{aligned}$	-11.0	-10.0
	Arclnputs	$\begin{aligned} & 40: 10: 24.5000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & 70: 12: 45.6000 \\ & 0 \mathrm{E} \\ & \hline \end{aligned}$	100.0							
	Outputs	$\begin{aligned} & 40: 13: 44.9057 \\ & 2 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 72:23:12.0645 } \\ & \text { 1E } \\ & \hline \end{aligned}$	$\begin{aligned} & 41: 35: 55.7136 \\ & 9 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:04:18.2553 } \\ & 8 \mathrm{E} \end{aligned}$						
test21	LocusInp uts	$\begin{aligned} & \text { 40:04:35.8000 } \\ & \hline \mathrm{ON} \end{aligned}$	$\begin{aligned} & \text { 73:12:40.7000 } \\ & \text { 0E } \end{aligned}$	$\begin{aligned} & 37: 26: 38.4937 \\ & 4 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 67:46:21.3580 } \\ & \text { 3E } \end{aligned}$	$\begin{aligned} & 40: 15: 51.4884 \\ & 9 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 73:04:11.2378 } \\ & \text { 5E } \end{aligned}$	$\begin{aligned} & 37: 39: 10.229 \\ & 38 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 67:35:57.3759 } \\ & 9 \mathrm{E} \end{aligned}$	13.0	15.0
	Arclnputs	$\begin{aligned} & 40: 10: 24.5000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & 70: 12: 45.6000 \\ & 0 \mathrm{E} \\ & \hline \end{aligned}$	100.0							
	Outputs	$\begin{aligned} & 39: 57: 08.5482 \\ & 8 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 72:21:51.6052 } \\ & 7 \mathrm{E} \\ & \hline \end{aligned}$	$\begin{aligned} & 38: 36: 13.7012 \\ & 4 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:29:05.9172 } \\ & 8 \mathrm{E} \\ & \hline \end{aligned}$						
test22	LocusInp uts	$\begin{aligned} & 42: 54: 35.8000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & 70: 11: 34.7000 \\ & 0 \mathrm{E} \\ & \hline \end{aligned}$	$\begin{aligned} & 37: 54: 23.2544 \\ & 9 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & 70: 11: 34.7000 \\ & 0 E \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 42:54:17.1683 } \\ & 4 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & 71: 16: 53.4845 \\ & 0 \mathrm{E} \\ & \hline \end{aligned}$	$\begin{aligned} & 37: 54: 09.521 \\ & 52 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & 71: 08: 26.1207 \\ & 5 \mathrm{E} \\ & \hline \end{aligned}$	-48.0	-45.0
	Arclnputs	$\begin{aligned} & 40: 10: 24.5000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & 70: 12: 45.6000 \\ & 0 E \\ & \hline \end{aligned}$	100.0							
	Outputs	$\begin{aligned} & 41: 38: 47.5615 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 71:14:35.8700 } \\ & 8 \mathrm{E} \end{aligned}$	$\begin{aligned} & 38: 40: 33.8191 \\ & 8 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 71:09:38.0482 } \\ & \text { 7E } \end{aligned}$						
test23	LocusInp uts	$\begin{aligned} & 42: 54: 35.8000 \\ & \text { ON } \\ & \hline \end{aligned}$	$\begin{aligned} & 70: 11: 34.7000 \\ & 0 \mathrm{E} \\ & \hline \end{aligned}$	$\begin{aligned} & 38: 36: 54.7497 \\ & \text { ON } \\ & \hline \end{aligned}$	$\begin{aligned} & 73: 34: 16.2879 \\ & 0 \mathrm{E} \\ & \hline \end{aligned}$	$\begin{aligned} & 42: 45: 33.4587 \\ & 9 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 69:52:00.4799 } \\ & 9 \mathrm{E} \\ & \hline \end{aligned}$	$\begin{aligned} & 38: 26: 55.822 \\ & 63 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & 73: 12: 10.6557 \\ & 4 \mathrm{E} \\ & \hline \end{aligned}$	17.0	20.0
	Arclnputs	$\begin{aligned} & 40: 10: 24.5000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & 70: 12: 45.6000 \\ & 0 E \end{aligned}$	100.0							
	Outputs	41:48:29.4306	70:38:53.2169	39:41:45.9624	72:17:19.7266						

		6 N	6E	1 N	9E						
test24	LocusInp uts	$\begin{aligned} & 42: 54: 35.8000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 70:11:34.7000 } \\ & 0 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 38:34:20.9298 } \\ & 5 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 66:54:42.0260 } \\ & 3 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 42:46:50.8063 } \\ & 2 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 70:29:02.2793 } \\ & 8 \mathrm{E} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 38:26:06.617 } \\ & \text { 68N } \end{aligned}$	$\begin{aligned} & \text { 67:13:38.9838 } \\ & 6 E \end{aligned}$	-15.0	-17.0
	ArcInputs	$\begin{aligned} & \text { 40:10:24.5000 } \\ & \text { ON } \end{aligned}$	$\begin{aligned} & 70: 12: 45.6000 \\ & 0 \mathrm{E} \end{aligned}$	100.0							
	Outputs	$\begin{array}{\|l} \hline 41: 47: 43.4019 \\ 6 \mathrm{~N} \\ \hline \end{array}$	$\begin{aligned} & \text { 69:42:02.5004 } \\ & \text { 1E } \end{aligned}$	$\begin{aligned} & \text { 39:42:31.1481 } \\ & 6 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:07:53.5097 } \\ & \text { 7E } \end{aligned}$						
test25	LocusInp uts	$\begin{aligned} & \text { 40:24:35.8000 } \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 65:11:34.7000 } \\ & \text { OE } \end{aligned}$	$\begin{aligned} & \text { 40:13:30.1326 } \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 71:43:36.1071 } \\ & 1 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 39:57:34.6063 } \\ & 8 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 65:11:34.7000 } \\ & 0 E \end{aligned}$	$\begin{aligned} & 39: 41: 33.836 \\ & 75 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 71:40:32.6380 } \\ & 2 \mathrm{E} \end{aligned}$	27.0	32.0
	ArcInputs	$\begin{aligned} & \text { 40:10:24.5000 } \\ & \text { ON } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 70:12:45.6000 } \\ & \text { OE } \end{aligned}$	100.0							
	Outputs	$\begin{aligned} & \text { 39:53:11.0887 } \\ & 5 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 68:04:30.9394 } \\ & 0 \mathrm{E} \\ & \hline \end{aligned}$	N/A	N/A						
test26	LocusInp uts	$\begin{aligned} & \text { 40:24:35.8000 } \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 65:11:34.7000 } \\ & 0 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 41:52:02.6308 } \\ & 8 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 71:31:31.5742 } \\ & 9 E \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 40:13:14.4277 } \\ & 8 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 65:16:40.7150 } \\ & 7 E \end{aligned}$	$\begin{aligned} & \text { 41:41:24.264 } \\ & 79 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 71:35:17.0690 } \\ & 7 \mathrm{E} \\ & \hline \end{aligned}$	12.0	11.0
	Arclnputs	$\begin{aligned} & \text { 40:10:24.5000 } \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 70:12:45.6000 } \\ & 0 \mathrm{E} \end{aligned}$	100.0							
	Outputs	$\begin{aligned} & \text { 40:58:28.4060 } \\ & 6 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:17:39.1668 } \\ & 3 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 41:37:44.2769 } \\ & 8 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 71:17:08.4632 } \\ & 2 \mathrm{E} \\ & \hline \end{aligned}$						
test27	LocusInp uts	$\begin{aligned} & \text { 40:24:35.8000 } \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 65:11:34.7000 } \\ & 0 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 37:59:52.6040 } \\ & \text { 3N } \end{aligned}$	$\begin{aligned} & \text { 70:49:51.6662 } \\ & 9 E \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 40:38:51.3523 } \\ & 9 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 65:21:07.2755 } \\ & 6 \mathrm{E} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 38:11:56.325 } \\ & 57 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:58:53.5592 } \\ & 9 E \end{aligned}$	-16.0	-14.0
	ArcInputs	$\begin{aligned} & \text { 40:10:24.5000 } \\ & \text { ON } \\ & \hline \end{aligned}$	$\begin{aligned} & 70: 12: 45.6000 \\ & 0 \mathrm{E} \\ & \hline \end{aligned}$	100.0							
	Outputs	$\begin{aligned} & \text { 39:25:51.8708 } \\ & 6 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 68:16:33.7600 } \\ & 2 \mathrm{E} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 38:30:27.4268 } \\ & \text { 2N } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 70:19:30.2173 } \\ & 2 \mathrm{E} \\ & \hline \end{aligned}$						
test28	LocusInp uts	$\begin{aligned} & \text { 37:09:35.8000 } \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 70:21:34.7000 } \\ & \text { OE } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 42:09:50.6694 } \\ & 2 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:21:34.7000 } \\ & \text { OE } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 37:09:12.0321 } \\ & 4 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 71:36:38.0418 } \\ & 9 \mathrm{E} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 42:09:20.381 } \\ & 91 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 71:44:56.4178 } \\ & 6 \mathrm{E} \end{aligned}$	60.0	62.0
	Arclnputs	$\begin{aligned} & 40: 10: 24.5000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 70:12:45.6000 } \\ & \text { OE } \\ & \hline \end{aligned}$	100.0							
	Outputs	$\begin{array}{\|l\|} \hline 38: 56: 06.4922 \\ 9 \mathrm{~N} \\ \hline \end{array}$	$\begin{aligned} & \text { 71:39:23.3095 } \\ & 9 \mathrm{E} \end{aligned}$	$\begin{aligned} & 41: 22: 52.7168 \\ & 1 \mathrm{~N} \\ & \hline \end{aligned}$	71:43:31.9281 9E						
test29	LocusInp uts	$\begin{aligned} & \text { 37:09:35.8000 } \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 70:21:34.7000 } \\ & \text { OE } \end{aligned}$	$\begin{aligned} & 41: 24: 05.8131 \\ & 5 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 73:46:45.5983 } \\ & 0 \mathrm{E} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 37:14:44.7226 } \\ & 5 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:10:50.5808 } \\ & 7 E \end{aligned}$	$\begin{aligned} & 41: 28: 28.203 \\ & 39 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 73:37:51.0786 } \\ & \text { 4E } \end{aligned}$	-10.0	-8.0
	Arclnputs	$\begin{aligned} & \text { 40:10:24.5000 } \\ & \text { ON } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 70:12:45.6000 } \\ & 0 \mathrm{E} \end{aligned}$	100.0							
	Outputs	$\begin{array}{\|l} \hline 38: 45: 47.1679 \\ 3 \mathrm{~N} \\ \hline \end{array}$	$\begin{aligned} & \text { 71:21:43.1653 } \\ & \text { 7E } \end{aligned}$	$\begin{aligned} & \text { 40:00:12.6274 } \\ & 2 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 72: 22: 22.7926 \\ & 6 \mathrm{E} \\ & \hline \end{aligned}$						
test30	LocusInp uts	$\begin{aligned} & 37: 09: 35.8000 \\ & \text { ON } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 70:21:34.7000 } \\ & \text { OE } \\ & \hline \end{aligned}$	$\begin{aligned} & 41: 29: 39.4876 \\ & 1 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 67:08:10.6150 } \\ & \text { 0E } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 37:17:49.4571 } \end{aligned}$	$\begin{aligned} & \text { 70:40:12.7566 } \\ & \text { 2E } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 41:37:22.578 } \\ & 04 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 67:25:18.7593 } \\ & 8 \mathrm{E} \\ & \hline \end{aligned}$	17.0	15.0
	ArcInputs	$\begin{aligned} & 40: 10: 24.5000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & 70: 12: 45.6000 \\ & 0 \mathrm{E} \end{aligned}$	100.0							
	Outputs	$\begin{array}{\|l} \hline 38: 32: 19.4432 \\ 9 \mathrm{~N} \\ \hline \end{array}$	$\begin{aligned} & \text { 69:47:05.3648 } \\ & \text { 1E } \\ & \hline \end{aligned}$	$\begin{aligned} & 40: 42: 42.1017 \\ & 9 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 68:08:47.2353 } \\ & \text { 3E } \\ & \hline \end{aligned}$						
test31	LocusInp uts	$\begin{aligned} & \text { 40:04:35.8000 } \\ & 0 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 73:12:40.7000 } \\ & \text { OE } \\ & \hline \end{aligned}$	$\begin{aligned} & 35: 08: 30.4250 \\ & 8 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 72:09:14.0235 } \\ & 6 \mathrm{E} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 40:07:30.9990 } \\ & 7 \mathrm{SS} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 72:50:51.1749 } \\ & \text { 2E } \end{aligned}$	$\begin{aligned} & 35: 11: 43.385 \\ & 67 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 71:45:09.3074 } \\ & \text { 1E } \end{aligned}$	-17.0	-20.0
	ArcInputs	$\begin{aligned} & \text { 40:10:24.5000 } \\ & \text { os } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 70:12:45.6000 } \\ & \text { OE } \end{aligned}$	100.0							
	Outputs	N/A	N/A	N/A	N/A						
test32	LocusInp	40:04:35.8000	73:12:40.7000	44:45:10.4951	70:48:49.9031	39:47:12.8682	72:11:43.6127	44:24:55.275	69:38:47.3187	50.0	54.0

	uts	OS	OE	9S	2E	3S	1E	06S	9E		
	Arclnputs	$\begin{aligned} & 40: 10: 24.5000 \\ & 0 S \end{aligned}$	$\begin{aligned} & \text { 70:12:45.6000 } \\ & 0 \mathrm{E} \end{aligned}$	100.0							
	Outputs	$\begin{aligned} & \text { 41:39:29.0062 } \\ & 7 S \end{aligned}$	$\begin{aligned} & \text { 71:12:51.3478 } \\ & 2 \mathrm{E} \end{aligned}$	N/A	N/A						
test33	LocusInp uts	$\begin{aligned} & \text { 40:04:35.8000 } \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 72:12:40.7000 } \\ & \text { OE } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 36:27:08.3818 } \\ & 2 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 67:49:48.4732 } \\ & 3 E \end{aligned}$	$\begin{aligned} & \text { 40:05:18.2547 } \\ & \text { 6S } \end{aligned}$	$\begin{aligned} & \text { 72:11:45.4206 } \\ & 7 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 36:28:29.216 } \\ & 23 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 67:47:58.3980 } \\ & 9 E \end{aligned}$	-1.0	-2.0
	Arclnputs	$\begin{aligned} & \text { 40:10:24.5000 } \\ & 0 S \end{aligned}$	$\begin{aligned} & \text { 70:12:45.6000 } \\ & \text { OE } \end{aligned}$	100.0							
	Outputs	$\begin{aligned} & 38: 30: 19.5107 \\ & 2 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 70:11:27.2805 } \\ & 5 \mathrm{E} \end{aligned}$	N/A	N/A						
test34	LocusInp uts	$\begin{aligned} & \text { 40:04:35.8000 } \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 73:12:40.7000 } \\ & \text { OE } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 39:53:37.8685 } \\ & 2 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 66:42:33.3856 } \\ & \text { 0E } \end{aligned}$	$\begin{aligned} & \text { 39:09:33.0448 } \\ & \text { 3S } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 73:12:40.7000 } \\ & \text { OE } \end{aligned}$	$\begin{aligned} & \text { 39:08:42.682 } \\ & 17 \mathrm{l} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 66:46:46.3932 } \\ & 7 \mathrm{E} \end{aligned}$	55.0	45.0
	Arclnputs	$\begin{aligned} & \text { 40:10:24.5000 } \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 70:12:45.6000 } \\ & \text { OE } \\ & \hline \end{aligned}$	100.0							
	Outputs	$\begin{aligned} & \hline \text { 39:11:05.7225 } \\ & 7 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 71:57:05.4938 } \\ & 2 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 39:11:02.2519 } \\ & 3 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:28:29.0564 } \\ & 6 \mathrm{~F} \end{aligned}$						
test35	LocusInp uts	$\begin{aligned} & \text { 40:04:35.8000 } \\ & 0 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 73:12:40.7000 } \\ & 0 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 37:26:38.4937 } \\ & 4 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 67:46:21.3580 } \\ & 3 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 40:15:51.4884 } \\ & 9 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 73:04:11.2378 } \\ & 5 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 37:36:39.957 } \\ & 75 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 67:38:02.4512 } \\ & 4 \mathrm{E} \end{aligned}$	-13.0	-12.0
	Arclnputs	$\begin{aligned} & \text { 40:10:24.5000 } \\ & \text { os } \end{aligned}$	$\begin{aligned} & \text { 70:12:45.6000 } \\ & \text { OE } \end{aligned}$	100.0							
	Outputs	$\begin{aligned} & \text { 39:56:39.8330 } \\ & 7 \mathrm{FS} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 72:21:46.0648 } \\ & 1 \mathrm{E} \end{aligned}$	$\begin{aligned} & 38: 35: 25.4801 \\ & 4 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 69:32:05.8006 } \\ & 5 \mathrm{E} \end{aligned}$						
test36	LocusInp uts	$\begin{aligned} & \text { 40:04:35.8000 } \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 73:12:40.7000 } \\ & 0 \mathrm{E} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 42:25:59.2966 } \\ & 6 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 67:21:39.9786 } \\ & 0 \mathrm{E} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 39:48:07.1044 } \\ & 4 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 73:00:21.1133 } \\ & 6 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 42:10:42.839 } \\ & 13 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 67:11:35.5881 } \\ & 6 \mathrm{E} \end{aligned}$	19.0	17.0
	Arclnputs	$\begin{aligned} & 40: 10: 24.5000 \\ & 0 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 70:12:45.6000 } \\ & 0 \mathrm{E} \end{aligned}$	100.0							
	Outputs	$\begin{aligned} & 40: 04: 47.0450 \\ & 2 S \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 72:22:55.4861 } \\ & 7 \mathrm{FE} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 41:31:16.7205 } \\ & 9 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:55:09.2053 } \\ & 0 \mathrm{E} \end{aligned}$						
test37	$\begin{aligned} & \text { LocusInp } \\ & \text { uts } \end{aligned}$	$\begin{aligned} & \text { 38:04:35.8000 } \\ & \text { 0S } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 70:11:34.7000 } \\ & 0 \mathrm{E} \\ & \hline \end{aligned}$	$\begin{aligned} & 43: 04: 47.8144 \\ & 1 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 70:11:34.7000 } \\ & 0 \mathrm{E} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 38:04:34.4626 } \\ & \text { 3S } \\ & \hline \end{aligned}$	$\begin{aligned} & 70: 29: 18.5182 \\ & 4 \mathrm{E} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 43:04:45.463 } \\ & 40 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 70:34:46.5016 } \\ & 0 \mathrm{E} \\ & \hline \end{aligned}$	-14.0	-17.0
	ArcInputs	$\begin{array}{\|l} \hline 40: 10: 24.5000 \\ \text { OS } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 70: 12: 45.6000 \\ 0 E \\ \hline \end{array}$	100.0							
	Outputs	$\begin{aligned} & \text { 38:31:11.6240 } \\ & \text { 1S } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 70:29:45.3465 } \\ & 2 \mathrm{E} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 41:49:14.9963 } \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 70:33:18.3380 } \\ & 7 E \\ & \hline \end{aligned}$						
test38	$\begin{array}{\|l} \hline \text { LocusInp } \\ \text { uts } \\ \hline \end{array}$	$\begin{aligned} & \text { 38:04:35.8000 } \\ & \text { 0S } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 70:11:34.7000 } \\ & 0 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 42:16:02.9504 } \\ & \text { 1S } \end{aligned}$	$\begin{aligned} & \text { 73:45:33.8554 } \\ & 4 \mathrm{E} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 38:24:06.7176 } \\ & \text { 1S } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 69:31:39.7345 } \\ & \text { 5E } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 42:32:52.832 } \\ & 50 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 73:12:02.2158 } \\ & 0 \mathrm{E} \\ & \hline \end{aligned}$	37.0	30.0
	ArcInputs	$\begin{aligned} & \text { 40:10:24.5000 } \\ & \text { os } \end{aligned}$	$\begin{aligned} & \text { 70:12:45.6000 } \\ & 0 \mathrm{E} \end{aligned}$	100.0							
	Outputs	$\begin{aligned} & \text { 38:33:41.5692 } \\ & 4 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 69:39:34.0270 } \\ & 9 E \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 41:11:49.9870 } \\ & 5 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 71:56:32.1518 } \\ & 8 \mathrm{E} \\ & \hline \end{aligned}$						
test39	LocusInp uts	$\begin{aligned} & \text { 38:04:35.8000 } \\ & 0 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 70:11:34.7000 } \\ & \text { OE } \end{aligned}$	$\begin{aligned} & \text { 42:18:57.4280 } \\ & 8 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 66:43:26.9596 } \\ & 8 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 38:15:23.2324 } \\ & 3 S \end{aligned}$	$\begin{aligned} & \text { 70:34:25.8761 } \\ & 4 E \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 42:27:09.694 } \\ & 05 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 67:00:23.7756 } \\ & \text { 2E } \end{aligned}$	-21.0	-15.0
	Arclnputs	$\begin{aligned} & \text { 40:10:24.5000 } \\ & \text { os } \end{aligned}$	$\begin{aligned} & \text { 70:12:45.6000 } \\ & 0 \mathrm{E} \end{aligned}$	100.0							
	Outputs	$\begin{aligned} & \text { 38:30:35.9106 } \\ & 6 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 70: 22: 22.1225 \\ & 5 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 40:59:38.8952 } \\ & \text { 1S } \end{aligned}$	$\begin{aligned} & \text { 68:18:29.6020 } \\ & \text { 1E } \end{aligned}$						
test40	LocusInp uts	$\begin{aligned} & \text { 40:24:35.8000 } \\ & 0 S \end{aligned}$	$\begin{aligned} & \text { 65:51:34.7000 } \\ & 0 \mathrm{E} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 40:13:30.1326 } \\ & 0 S \end{aligned}$	$\begin{aligned} & \text { 72:23:36.1071 } \\ & \text { 1E } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 41:39:38.4501 } \\ & 7 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 65:51:34.7000 } \\ & 0 \mathrm{E} \\ & \hline \end{aligned}$	$\begin{aligned} & 41: 23: 21.122 \\ & 81 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & 72: 30: 27.6781 \\ & 5 \mathrm{E} \\ & \hline \end{aligned}$	75.0	70.0

		0 S	OW								
	Outputs	$\begin{aligned} & \text { 39:52:21.9892 } \\ & 9 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 68:04:43.1350 } \\ & 5 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 38:32:16.8257 } \\ & \text { 1S } \end{aligned}$	$\begin{aligned} & \text { 69:47:22.0623 } \\ & 3 W \end{aligned}$						
test49	LocusInp uts	$\begin{aligned} & \text { 40:04:35.8000 } \\ & \text { os } \end{aligned}$	$\begin{aligned} & \text { 67:12:40.7000 } \\ & \text { 0W } \\ & \hline \end{aligned}$	$\begin{aligned} & 39: 53: 37.8685 \\ & 2 S \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 73:42:48.0144 } \\ & \text { ow } \end{aligned}$	$\begin{aligned} & \text { 39:52:35.2435 } \\ & \text { 1S } \end{aligned}$	$\begin{aligned} & \text { 67:12:40.7000 } \\ & \text { ow } \end{aligned}$	$\begin{aligned} & 39: 43: 38.981 \\ & 59 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 73:41:51.3189 } \\ & \text { 0W } \end{aligned}$	12.0	10.0
	Arclnputs	$\begin{aligned} & \text { 40:10:24.5000 } \\ & \text { os } \end{aligned}$	$\begin{aligned} & \text { 70:12:45.6000 } \\ & \text { 0W } \end{aligned}$	100.0							
	Outputs	$\begin{aligned} & \text { 39:52:39.5690 } \\ & 3 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:04:38.7058 } \\ & 4 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 39:47:22.4378 } \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 72:19:21.7385 } \\ & 6 \mathrm{~W} \end{aligned}$						
test50	LocusInp uts	$\begin{aligned} & \text { 40:04:35.8000 } \\ & 0 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 67:12:40.7000 } \\ & \text { 0W } \end{aligned}$	$\begin{aligned} & \text { 37:26:38.4937 } \\ & 4 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 72:39:00.0419 } \\ & 7 W \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 40:12:23.6530 } \\ & 5 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 67:18:33.1054 } \\ & \text { 1W } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 37:33:19.536 } \\ & 735 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 72:44:32.3991 } \\ & \text { ow } \\ & \hline \end{aligned}$	-9.0	-8.0
	ArcInputs	$\begin{aligned} & \text { 40:10:24.5000 } \\ & \text { oS } \end{aligned}$	$\begin{aligned} & \text { 70:12:45.6000 } \\ & \text { OW } \end{aligned}$	100.0							
	Outputs	$\begin{aligned} & \text { 39:51:22.1708 } \\ & 7 S \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 68:04:58.7312 } \\ & 4 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 38:33:52.8622 } \\ & 5 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 70:46:51.0549 } \\ & 5 \mathrm{~W} \end{aligned}$						
test51	LocusInp uts	$\begin{aligned} & \text { 40:04:35.8000 } \\ & 0 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 67:12:40.7000 } \\ & \text { oW } \end{aligned}$	$\begin{aligned} & \text { 42:25:59.2966 } \\ & 6 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 73:03:41.4214 } \\ & \text { 0W } \end{aligned}$	$\begin{aligned} & \text { 39:54:11.5185 } \\ & \text { 1S } \end{aligned}$	$\begin{aligned} & \text { 67:20:28.4948 } \\ & \text { 1W } \end{aligned}$	$\begin{aligned} & \text { 42:17:54.228 } \\ & 55 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 73:09:01.9993 } \\ & 6 \mathrm{~W} \\ & \hline \end{aligned}$	12.0	
	ArcInputs	9.0	$\begin{aligned} & 40: 10: 24.5000 \\ & 0 S \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 70:12:45.6000 } \\ & \text { 0W } \\ & \hline \end{aligned}$							
	Outputs	100.0	$\begin{aligned} & \text { 40:12:56.7452 } \\ & 6 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:02:18.0598 } \\ & \text { 0W } \end{aligned}$	$\begin{aligned} & \text { 41:36:12.1797 } \\ & \text { os } \end{aligned}$	$\begin{aligned} & \text { 71:20:37.1459 } \\ & 8 W \end{aligned}$					
test52	LocusInp uts	$\begin{aligned} & \text { 38:04:35.8000 } \\ & \text { 0S } \end{aligned}$	$\begin{aligned} & \text { 70:11:34.7000 } \\ & \text { ow } \end{aligned}$	$\begin{aligned} & \text { 43:04:47.8144 } \\ & \text { 1S } \end{aligned}$	$\begin{aligned} & \text { 70:11:34.7000 } \\ & \text { ow } \end{aligned}$	$\begin{aligned} & \text { 38:04:33.8280 } \\ & 6 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 70: 33: 06.4772 \\ & 2 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 43:04:45.984 } \\ & 03 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 70:32:02.7621 } \\ & 6 \mathrm{~W} \end{aligned}$	17.0	15.0
	ArcInputs	$\begin{aligned} & \text { 40:10:24.5000 } \\ & \text { os } \end{aligned}$	$\begin{aligned} & \text { 70:12:45.6000 } \\ & \text { ow } \end{aligned}$	100.0							
	Outputs	$\begin{aligned} & 38: 31: 33.7683 \\ & 5 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 70: 33: 00.7342 \\ & 1 \mathrm{~W} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { 41:49:21.9263 } \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \hline 70: 32: 18.7801 \\ & 8 \mathrm{~W} \end{aligned}$						
test53	LocusInp uts	$\begin{aligned} & \text { 38:04:35.8000 } \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 70:11:34.7000 } \\ & \text { ow } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 42:16:02.9504 } \\ & \text { 1S } \end{aligned}$	$\begin{aligned} & \text { 66:37:35.5445 } \\ & 6 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 38: 08: 18.3689 \\ & 2 S \\ & \hline \end{aligned}$	$\begin{aligned} & 70: 19: 06.1664 \\ & 2 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 42:18:51.947 } \\ & 05 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 66:43:09.5742 } \\ & 2 W \end{aligned}$	7.0	
	Arclnputs	5.0	$\begin{aligned} & \text { 40:10:24.5000 } \\ & \text { OS } \end{aligned}$								
	Outputs	$\begin{aligned} & \text { 70:12:45.6000 } \\ & \text { ow } \end{aligned}$	100.0	$\begin{aligned} & \text { 38:30:44.0931 } \\ & 5 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 70: 01: 02.1551 \\ & 2 \mathrm{~W} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 40:43:33.7987 } \\ & \text { 1S } \end{aligned}$	$\begin{aligned} & \text { 68:09:09.8591 } \\ & 4 \mathrm{~W} \end{aligned}$				
test54	LocusInp uts	$\begin{aligned} & \text { 38:04:35.8000 } \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 70:11:34.7000 } \\ & \text { 0W } \end{aligned}$	$\begin{aligned} & 42: 18: 57.4280 \\ & 8 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & 73: 39: 42.4403 \\ & 2 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 38:11:17.1184 } \\ & 4 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 69:57:26.6712 } \\ & 6 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 42:24:58.669 } \\ & 38 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 73:27:17.2069 } \\ & 4 \mathrm{~W} \end{aligned}$	-13.0	-11.0
	ArcInputs	$\begin{aligned} & \text { 40:10:24.5000 } \\ & 0 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 70:12:45.6000 } \\ & 0 W \end{aligned}$	100.0							
	Outputs	$\begin{aligned} & 38: 30: 19.2704 \\ & 6 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 70:12:08.8825 } \\ & 1 \mathrm{~W} \\ & \hline \end{aligned}$	$\begin{aligned} & 40: 55: 39.9262 \\ & 8 S \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 72:09:46.0694 } \\ & 1 \mathrm{~W} \\ & \hline \end{aligned}$						
test55	LocusInp uts	$\begin{aligned} & \text { 40:24:35.8000 } \\ & \text { os } \end{aligned}$	$\begin{aligned} & \text { 74:11:34.7000 } \\ & \text { ow } \end{aligned}$	$\begin{aligned} & \text { 40:13:30.1326 } \\ & 0 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 67:39:33.2928 } \\ & 9 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 40:31:36.0887 } \\ & 9 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 74:11:34.7000 } \\ & \text { ow } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 40:18:29.530 } \\ & 53 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 67:39:04.3669 } \\ & \text { 0W } \end{aligned}$	7.0	
	ArcInputs	5.0	$\begin{aligned} & \text { 40:10:24.5000 } \\ & \text { OS } \end{aligned}$								
	Outputs	$\begin{aligned} & \text { 70:12:45.6000 } \\ & \text { ow } \\ & \hline \end{aligned}$	100.0	$\begin{aligned} & \text { 40:30:09.4866 } \\ & 7 S \end{aligned}$	$\begin{aligned} & \text { 72:20:57.9109 } \\ & 9 W \end{aligned}$	$\begin{aligned} & \text { 40:19:54.8752 } \\ & 3 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:02:44.2857 } \\ & 5 \mathrm{~W} \end{aligned}$				
test56	LocusInp uts	$\begin{aligned} & \text { 40:24:35.8000 } \\ & 0 \text { os } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 74:11:34.7000 } \\ & \text { 0W } \end{aligned}$	$\begin{aligned} & \text { 38:37:15.5353 } \\ & 8 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:09:25.7588 } \\ & 4 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \hline \text { 40:29:19.6318 } \\ & 8 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 74:09:26.6875 } \\ & 4 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 38: 40: 01.575 \\ & 10 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 68:07:56.5399 } \\ & \text { 1W } \end{aligned}$	5.0	
	Arclnputs	3.0	$\begin{aligned} & \text { 40:10:24.5000 } \\ & \text { os } \end{aligned}$								

	Outputs	$\begin{aligned} & 70: 12: 45.6000 \\ & \text { OW } \end{aligned}$	100.0	$\begin{aligned} & 39: 59: 27.5984 \\ & 5 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 72:22:15.8536 } \\ & \text { 4W } \end{aligned}$	$\begin{aligned} & 38: 53: 50.9894 \\ & \text { 3S } \end{aligned}$	$\begin{aligned} & \text { 68:49:29.9986 } \\ & 7 \mathrm{~W} \end{aligned}$				
test57	LocusInp uts	$\begin{aligned} & 40: 24: 35.8000 \\ & \text { OS } \end{aligned}$	$\begin{aligned} & 74: 11: 34.7000 \\ & \text { OW } \\ & \hline \end{aligned}$	$\begin{aligned} & 42: 31: 36.1455 \\ & 2 S \end{aligned}$	$\begin{aligned} & \text { 68:09:51.8171 } \\ & 7 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 40: 18: 21.2380 \\ & 9 S \end{aligned}$	$\begin{aligned} & 74: 07: 25.4644 \\ & 6 \mathrm{~W} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 42:26:04.620 } \\ & 97 S \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 68:06:41.8210 } \\ & 4 \mathrm{~W} \\ & \hline \end{aligned}$	-7.0	-6.0
	Arclnputs	$\begin{aligned} & 40: 10: 24.5000 \\ & \text { OS } \end{aligned}$	$\begin{aligned} & 70: 12: 45.6000 \\ & \text { OW } \end{aligned}$	100.0							
	Outputs	$\begin{aligned} & 41: 05: 49.4322 \\ & 5 S \end{aligned}$	$\begin{aligned} & 72: 02: 08.1952 \\ & 3 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 41: 49: 47.0223 \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 69:57:20.4136 } \\ & \text { 2W } \end{aligned}$						
test58	LocusInp uts	$\begin{aligned} & \text { 43:09:35.8000 } \\ & \text { OS } \end{aligned}$	$\begin{aligned} & 70: 21: 34.7000 \\ & \text { OW } \\ & \hline \end{aligned}$	$\begin{aligned} & 38: 09: 24.0356 \\ & \text { 7S } \end{aligned}$	$\begin{aligned} & 70: 21: 34.7000 \\ & \text { OW } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 43:09:34.6253 } \\ & \text { OS } \end{aligned}$	$\begin{aligned} & 70: 05: 10.9676 \\ & \text { OW } \\ & \hline \end{aligned}$	$\begin{aligned} & 38: 09: 23.351 \\ & 38 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 70: 08: 53.9985 \\ & \text { OW } \\ & \hline \end{aligned}$	12.0	10.0
	Arclnputs	$\begin{aligned} & 40: 10: 24.5000 \\ & \text { OS } \end{aligned}$	$\begin{aligned} & 70: 12: 45.6000 \\ & \text { OW } \end{aligned}$	100.0							
	Outputs	$\begin{aligned} & 41: 50: 20.7257 \\ & 3 S \end{aligned}$	$\begin{aligned} & 70: 06: 13.8396 \\ & 6 \mathrm{~W} \\ & \hline \end{aligned}$	$\begin{aligned} & 38: 30: 22.2401 \\ & 6 S \end{aligned}$	$\begin{aligned} & 70: 08: 39.6534 \\ & \text { 0W } \\ & \hline \end{aligned}$						
test59	LocusInp uts	$\begin{aligned} & \text { 43:09:35.8000 } \\ & \text { OS } \end{aligned}$	$\begin{aligned} & 70: 21: 34.7000 \\ & \text { OW } \\ & \hline \end{aligned}$	$\begin{aligned} & 38: 57: 14.6046 \\ & \text { 1S } \end{aligned}$	$\begin{aligned} & \text { 66:46:39.4688 } \\ & 2 W \end{aligned}$	$\begin{aligned} & \text { 43:06:47.8649 } \\ & 6 S \end{aligned}$	$\begin{aligned} & 70: 27: 14.2560 \\ & \text { OW } \\ & \hline \end{aligned}$	$\begin{aligned} & 38: 55: 40.030 \\ & 26 S \end{aligned}$	$\begin{aligned} & \text { 66:49:55.8331 } \\ & 7 W \end{aligned}$	-5.0	-3.0
	Arclnputs	$\begin{aligned} & 40: 10: 24.5000 \\ & \text { OS } \end{aligned}$	$\begin{aligned} & 70: 12: 45.6000 \\ & \text { OW } \end{aligned}$	100.0							
	Outputs	$\begin{aligned} & 41: 36: 12.3850 \\ & 7 S \end{aligned}$	$\begin{aligned} & \text { 69:04:54.5032 } \\ & 6 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 40: 25: 02.1678 \\ & 4 S \end{aligned}$	$\begin{aligned} & \text { 68:03:28.1370 } \\ & 5 \mathrm{~W} \end{aligned}$						
test60	LocusInp uts	$\begin{aligned} & \text { 43:09:35.8000 } \\ & \text { OS } \end{aligned}$	$\begin{aligned} & 70: 21: 34.7000 \\ & \text { OW } \\ & \hline \end{aligned}$	$\begin{aligned} & 38: 44: 26.1773 \\ & 4 S \end{aligned}$	$\begin{aligned} & \text { 73:27:19.4204 } \\ & \text { OW } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 43:06:11.8293 } \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 70:13:13.2659 } \\ & 7 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 38:42:09.850 } \\ & 51 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 73:21:37.8696 } \\ & \text { 1W } \end{aligned}$	7.0	
	Arclnputs	5.0	$\begin{aligned} & 40: 10: 24.5000 \\ & \text { OS } \end{aligned}$								
	Outputs	$\begin{aligned} & 70: 12: 45.6000 \\ & \text { OW } \end{aligned}$	100.0	$\begin{aligned} & 41: 36: 07.2264 \\ & 7 S \end{aligned}$	$\begin{aligned} & 71: 20: 47.9604 \\ & \text { 4W } \end{aligned}$	$\begin{aligned} & \text { 40:08:27.7810 } \\ & 7 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 72: 23: 09.8858 \\ & \text { 2W } \end{aligned}$				
test61	LocusInp uts	$\begin{aligned} & \text { 42:54:35.0000 } \\ & \text { ON } \end{aligned}$	$\begin{aligned} & 70: 51: 34.0000 \\ & \text { OW } \end{aligned}$	$\begin{aligned} & 42: 54: 31.7652 \\ & \text { 1N } \end{aligned}$	$\begin{aligned} & 70: 24: 21.1037 \\ & 3 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 42:55:05.0078 } \\ & \text { 2N } \end{aligned}$	$\begin{aligned} & 70: 51: 34.0000 \\ & \text { OW } \end{aligned}$	$\begin{aligned} & \text { 42:55:01.772 } \\ & 59 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 24: 20.8836 \\ & 8 \mathrm{~W} \end{aligned}$	-0.5	-0.5
	ArcInputs	42:54:35.0000	$\begin{aligned} & 70: 51: 34.0000 \\ & \text { OW } \\ & \hline \end{aligned}$								
	Outputs	1.0	$\begin{aligned} & 42: 55: 05.0017 \\ & 5 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & 70: 50: 23.2833 \\ & \text { OW } \end{aligned}$	N/A	N/A					
test62	LocusInp uts	$\begin{aligned} & \text { 42:54:35.0000 } \\ & \text { ON } \end{aligned}$	$\begin{aligned} & 70: 51: 34.0000 \\ & \text { OW } \end{aligned}$	$\begin{aligned} & \text { 42:54:31.7652 } \\ & \text { 1N } \end{aligned}$	$\begin{aligned} & 70: 24: 21.1037 \\ & 3 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 42:55:05.0078 } \\ & \text { 2N } \end{aligned}$	$\begin{aligned} & 70: 51: 34.0000 \\ & \text { OW } \end{aligned}$	$\begin{aligned} & 42: 55: 01.772 \\ & 59 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 24: 20.8836 \\ & 8 \mathrm{~W} \end{aligned}$	-0.5	-0.5
	Arclnputs	$\begin{aligned} & 42: 54: 35.0000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & 70: 50: 14.0000 \\ & \text { OW } \end{aligned}$								
	Outputs	1.0	$\begin{aligned} & 42: 55: 05.0077 \\ & \text { 1N } \end{aligned}$	$\begin{aligned} & \text { 70:51:24.7120 } \\ & \text { 1W } \end{aligned}$	$\begin{aligned} & \text { 42:55:04.9802 } \\ & 6 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 49: 03.2664 \\ & 4 \mathrm{~W} \end{aligned}$					
test63	LocusInp uts	$\begin{aligned} & 42: 54: 35.0000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & 70: 51: 34.0000 \\ & \text { OW } \end{aligned}$	$\begin{aligned} & 42: 54: 31.7652 \\ & 1 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & 70: 24: 21.1037 \\ & 3 \mathrm{~W} \\ & \hline \end{aligned}$	$\begin{aligned} & 42: 55: 35.0155 \\ & 9 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 51: 34.0000 \\ & \text { OW } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 42:55:31.779 } \\ & 93 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & 70: 24: 20.6635 \\ & 6 \mathrm{~W} \\ & \hline \end{aligned}$	-1.0	-1.0
	Arclnputs	$\begin{aligned} & \text { 42:55:35.0000 } \\ & \text { ON } \end{aligned}$	$\begin{aligned} & 70: 48: 52.0000 \\ & \text { OW } \end{aligned}$								
	Outputs	1.0	$\begin{aligned} & 42: 55: 35.0077 \\ & 6 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:50:13.6676 } \\ & \text { 1W } \\ & \hline \end{aligned}$	$\begin{aligned} & 42: 55: 34.9435 \\ & 8 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 47: 30.3324 \\ & 4 \mathrm{~W} \end{aligned}$					
test64	LocusInp uts	$\begin{aligned} & 42: 54: 35.0000 \\ & \text { ON } \\ & \hline \end{aligned}$	$\begin{aligned} & 70: 51: 34.0000 \\ & \text { 0W } \\ & \hline \end{aligned}$	$\begin{aligned} & 42: 54: 31.7652 \\ & 1 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & 70: 24: 21.1037 \\ & 3 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 42: 52: 34.9683 \\ & \text { ON } \\ & \hline \end{aligned}$	$\begin{aligned} & 70: 51: 34.0000 \\ & \text { OW } \\ & \hline \end{aligned}$	42:52:31.735	$\begin{aligned} & 70: 24: 21.9833 \\ & 6 \mathrm{~W} \\ & \hline \end{aligned}$	2.0	
	Arclnputs	2.0	$\begin{aligned} & 42: 53: 05.0000 \\ & \text { ON } \end{aligned}$								
	Outputs	70:47:32.0000	1.5	42:52:34.9488	70:49:27.3891	42:52:34.8133	70:45:36.6763				

		OW		4N	4W	2N	2W				
test65	LocusInp uts	$\begin{aligned} & \text { 42:54:35.0000 } \\ & \text { ON } \end{aligned}$	$\begin{aligned} & 70: 51: 34.0000 \\ & \text { 0W } \end{aligned}$	$\begin{aligned} & 42: 54: 31.7652 \\ & 1 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & 70: 24: 21.1037 \\ & 3 \mathrm{~W} \\ & \hline \end{aligned}$	$\begin{aligned} & 42: 57: 35.0462 \\ & 4 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:51:34.0000 } \\ & \text { 0W } \end{aligned}$	$\begin{aligned} & 42: 57: 31.808 \\ & 85 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 24: 19.7825 \\ & \text { 1W } \\ & \hline \end{aligned}$	-3.0	-3.0
	Arclnputs	$\begin{aligned} & \text { 42:56:35.0000 } \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 70:46:12.0000 } \\ & \text { 0W } \\ & \hline \end{aligned}$								
	Outputs	1.0	$\begin{aligned} & \text { 42:57:34.9240 } \\ & 4 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:46:16.5022 } \\ & 7 W \end{aligned}$	$\begin{aligned} & \text { 42:57:34.9168 } \\ & 7 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:46:07.3243 } \\ & 2 W \end{aligned}$					
test66	LocusInp uts	$\begin{aligned} & \text { 42:54:35.0000 } \\ & \text { ON } \end{aligned}$	$\begin{aligned} & 70: 51: 34.0000 \\ & \text { 0W } \end{aligned}$	$\begin{aligned} & 42: 54: 31.7652 \\ & 1 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 24: 21.1037 \\ & 3 W \end{aligned}$	$\begin{aligned} & \text { 42:50:34.9359 } \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 70:51:34.0000 } \\ & 0 W \end{aligned}$	$\begin{aligned} & \text { 42:50:31.704 } \\ & 55 \mathrm{~N} \end{aligned}$	$70: 24: 22.8620$ 5W	4.0	
	ArcInputs	4.0	$\begin{aligned} & \text { 42:51:35.0000 } \\ & \text { ON } \end{aligned}$								
	Outputs	$\begin{aligned} & \text { 70:44:52.0000 } \\ & \text { ow } \end{aligned}$	1.5	$\begin{aligned} & \text { 42:50:34.8184 } \\ & 3 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:46:22.9951 } \\ & 5 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 42:50:34.6409 } \\ & 8 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 70:43:21.2222 } \\ & 5 \mathrm{~W} \\ & \hline \end{aligned}$				
test67	LocusInp uts	$\begin{aligned} & \text { 42:54:35.0000 } \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 70:51:34.0000 } \\ & \text { 0W } \end{aligned}$	$\begin{aligned} & \text { 42:54:31.7652 } \\ & 1 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:24:21.1037 } \\ & 3 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \hline 42: 59: 35.0761 \\ & 8 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:51:34.0000 } \\ & \text { ow } \end{aligned}$	$\begin{aligned} & \text { 42:59:31.837 } \\ & 07 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 24: 18.9005 \\ & \text { 0W } \\ & \hline \end{aligned}$	-5.0	-5.0
	Arclnputs	$\begin{aligned} & \text { 42:58:35.0000 } \\ & \text { ON } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 70:43:32.0000 } \\ & \text { 0W } \end{aligned}$								
	Outputs	2.0	$\begin{aligned} & 42: 59: 34.9358 \\ & 4 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 45: 53.6482 \\ & \text { 1W } \end{aligned}$	$\begin{aligned} & \text { 42:59:34.6045 } \\ & 8 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 41: 10.0928 \\ & \text { 1W } \\ & \hline \end{aligned}$					
test68	Locuslnp uts	$\begin{aligned} & \text { 42:54:35.0000 } \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 70:51:34.0000 } \\ & \text { ow } \end{aligned}$	$\begin{aligned} & 42: 54: 31.7652 \\ & 1 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 70:24:21.1037 } \\ & 3 W \end{aligned}$	$\begin{aligned} & \text { 42:48:34.9027 } \\ & 9 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:51:34.0000 } \\ & \text { ow } \end{aligned}$	$\begin{aligned} & \text { 42:48:31.673 } \\ & 17 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 70:24:23.7397 } \\ & 8 \mathrm{~W} \end{aligned}$	6.0	
	Arclnputs	6.0	$\begin{aligned} & 42: 49: 35.0000 \\ & \text { ON } \\ & \hline \end{aligned}$								
	Outputs	$\begin{aligned} & \text { 70:42:12.0000 } \\ & \text { 0W } \\ & \hline \end{aligned}$	1.5	$\begin{aligned} & \text { 42:48:34.6329 } \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 70:43:42.7194 } \\ & 9 W \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 42:48:34.3855 } \\ & 6 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:40:41.5853 } \\ & 8 \mathrm{~W} \end{aligned}$				
test69	LocusInp uts	$\begin{aligned} & \text { 42:54:35.0000 } \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 70:51:34.0000 } \\ & \text { ow } \end{aligned}$	$\begin{aligned} & \text { 42:54:31.7652 } \\ & 1 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:24:21.1037 } \\ & 3 W \end{aligned}$	$\begin{aligned} & 43: 01: 35.1054 \\ & 3 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:51:34.0000 } \\ & \text { ow } \\ & \hline \end{aligned}$	$\begin{aligned} & 43: 01: 31.864 \\ & 59 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:24:18.0175 } \\ & \text { 4W } \end{aligned}$	-7.0	-7.0
	ArcInputs	$\begin{aligned} & \text { 43:00:05.0000 } \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 70:43:32.0000 } \\ & \text { 0W } \end{aligned}$								
	Outputs	2.0	$\begin{aligned} & \text { 43:01:34.9363 } \\ & 5 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:45:20.3213 } \\ & 4 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 43:01:34.6829 } \\ & 1 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:41:43.2892 } \\ & 1 \mathrm{~W} \end{aligned}$					
test70	Locusinp uts	$\begin{aligned} & \text { 42:54:35.0000 } \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 70:51:34.0000 } \\ & \text { ow } \end{aligned}$	$\begin{aligned} & \text { 42:54:31.7652 } \\ & 1 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:24:21.1037 } \\ & 3 W \end{aligned}$	$\begin{aligned} & \text { 42:46:34.8689 } \\ & 9 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 70:51:34.0000 } \\ & \text { ow } \end{aligned}$	$\begin{aligned} & \text { 42:46:31.641 } \\ & 08 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & 70: 24: 24.6165 \\ & 8 \mathrm{~W} \\ & \hline \end{aligned}$	8.0	
	Arclnputs	8.0	$\begin{aligned} & \text { 42:47:35.0000 } \\ & \text { ON } \end{aligned}$								
	Outputs	$\begin{aligned} & \text { 70:42:12.0000 } \\ & \text { 0W } \end{aligned}$	1.5	$\begin{aligned} & \text { 42:46:34.5988 } \\ & 4 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 43: 42.6294 \\ & 2 \mathrm{~W} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 42:46:34.3516 } \\ & 2 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & 70: 40: 41.6754 \\ & 5 \mathrm{~W} \\ & \hline \end{aligned}$				

WGS84LocusIntersect Test Results

Test Identifi er	Locu s 1 Input s	Locus 1 Geodesic Start Latitude	Locus 1 Geodesic Start Longitude	Locus 1 Geodesic End Latitude	Locus 1 Geodesic End Longitude	Locus 1 Start Latitude	Locus 1 Start Longitude	Locus 1 End Latitude	Locus 1 End Longitude	Locus 1 Start Distanc e	Locus 1 End Distanc e
	$\begin{aligned} & \text { Locu } \\ & \text { s } 2 \\ & \text { Input } \\ & \text { s } \\ & \hline \end{aligned}$	Locus 2 Geodesic Start Latitude	Locus 2 Geodesic Start Longitude	Locus 2 Geodesic End Latitude	Locus 2 Geodesic End Longitude	Locus 2 Start Latitude	Locus 2 Start Longitude	Locus 2 End Latitude	Locus 2 End Longitude	Locus 2 Start Distanc e	Locus 2 End Distanc e
	Outp ut	Intersection Latitude	Intersection Longitude								
test1	Locu s 1 Input s	$\begin{aligned} & 40: 10: 24.5000 \\ & 0 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 12: 45.6000 \\ & \text { OW } \end{aligned}$	$\begin{aligned} & \text { 42:04:35.8000 } \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 68:12:34.7000 } \\ & \text { OW } \end{aligned}$	$\begin{aligned} & \text { 40:34:51.0899 } \\ & 7 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 54: 12.4935 \\ & 8 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 42:29:44.8698 } \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 68:54:29.5954 } \\ & \text { 1W } \end{aligned}$	-40.0	-40.0
	Locu s 2 Input s	$\begin{aligned} & \text { 43:47:17.8000 } \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 69:11:50.6000 } \\ & \text { OW } \end{aligned}$	$\begin{aligned} & \text { 39:34:35.8000 } \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 69:12:34.7000 } \\ & \text { OW } \end{aligned}$	$\begin{aligned} & \text { 43:47:17.1676 } \\ & \text { 6N } \end{aligned}$	$\begin{aligned} & \text { 69:39:27.2347 } \\ & 9 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 39:34:35.4551 } \\ & 7 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:38:26.6752 } \\ & \text { 8W } \end{aligned}$	20.0	20.0
	Outp ut	$\begin{aligned} & 41: 48: 06.5241 \\ & 6 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 69:38:56.6040 } \\ & \text { OW } \end{aligned}$								
test2	Locu s 1 Input s	$\begin{aligned} & 40: 10: 24.5000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & 70: 12: 45.6000 \\ & \text { OW } \end{aligned}$	$\begin{aligned} & \text { 42:04:35.8000 } \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 68:12:34.7000 } \\ & \text { OW } \end{aligned}$	$\begin{aligned} & 40: 16: 32.5468 \\ & 3 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 23: 04.5187 \\ & 6 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 42: 10: 54.5106 \\ & 7 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:23:00.3023 } \\ & 2 \mathrm{~W} \end{aligned}$	-10.0	-10.0
	Locu s 2 Input s	$\begin{aligned} & \text { 41:47:17.8000 } \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 69:11:50.6000 } \\ & \text { OW } \end{aligned}$	$\begin{aligned} & \text { 42:04:35.8000 } \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 68:12:34.7000 } \\ & \text { OW } \end{aligned}$	$\begin{aligned} & 41: 37: 59.8802 \\ & 5 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:06:54.9891 } \\ & \text { 8W } \end{aligned}$	$\begin{aligned} & \text { 41:55:15.3956 } \\ & 3 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:07:46.3891 } \\ & \text { 7W } \end{aligned}$	10.0	10.0
	Outp ut	$\begin{aligned} & 41: 41: 38.5201 \\ & 9 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:54:37.0039 } \\ & \text { OW } \end{aligned}$								
test3	$\begin{aligned} & \text { Locu } \\ & \text { s } 1 \\ & \text { Input } \\ & \text { s } \\ & \hline \end{aligned}$	$\begin{aligned} & 40: 10: 24.5000 \\ & 0 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 12: 45.6000 \\ & \text { OW } \end{aligned}$	$\begin{aligned} & \text { 42:04:35.8000 } \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 68:12:34.7000 } \\ & \text { OW } \end{aligned}$	$\begin{aligned} & \text { 40:01:10.7013 } \\ & 8 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:57:20.7013 } \\ & 2 W \end{aligned}$	$\begin{aligned} & 41: 58: 16.1381 \\ & 7 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:02:11.1632 } \\ & \text { 1W } \end{aligned}$	15.0	10.0
	$\begin{aligned} & \text { Locu } \\ & \text { s } 2 \\ & \text { Input } \\ & \text { s } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 41:47:17.8000 } \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 69:11:50.6000 } \\ & \text { OW } \end{aligned}$	$\begin{aligned} & 41: 47: 17.8000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 65:12:34.7000 } \\ & \hline \text { NW } \end{aligned}$	$\begin{aligned} & 41: 37: 17.6777 \\ & 5 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:11:32.0456 } \\ & \text { 2W } \end{aligned}$	$\begin{aligned} & 41: 32: 17.6097 \\ & 7 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 65:13:02.4957 } \\ & 5 \mathrm{~W} \end{aligned}$	10.0	15.0
	Outp ut	$\begin{aligned} & \text { 41:36:57.4329 } \\ & 2 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:23:48.5601 } \\ & \text { OW } \end{aligned}$								
test4	$\begin{aligned} & \text { Locu } \\ & \text { s } 1 \\ & \text { Input } \\ & \text { s } \\ & \hline \end{aligned}$	$\begin{aligned} & 40: 10: 24.5000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & 70: 12: 45.6000 \\ & \text { OW } \end{aligned}$	$\begin{aligned} & \text { 42:04:35.8000 } \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 68:12:34.7000 } \\ & \text { OW } \end{aligned}$	$\begin{aligned} & \text { 40:03:01.6262 } \\ & 4 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 00: 25.3480 \\ & 4 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 41:53:11.7282 } \\ & 8 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 67:53:53.8147 } \\ & \text { 1W } \end{aligned}$	12.0	18.0
	$\begin{aligned} & \text { Locu } \\ & \text { s } 2 \\ & \text { Input } \\ & \text { s } \end{aligned}$	$\begin{aligned} & 41: 47: 17.8000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 69:11:50.6000 } \\ & \text { ow } \end{aligned}$	$\begin{aligned} & \text { 39:36:04.5000 } \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 67:26:41.2000 } \\ & \text { OW } \end{aligned}$	$\begin{aligned} & 41: 52: 34.9417 \\ & 4 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:00:29.1444 } \\ & 3 W \end{aligned}$	$\begin{aligned} & 39: 42: 12.8489 \\ & 4 N \end{aligned}$	$\begin{aligned} & \text { 67:13:19.9927 } \\ & \text { 3W } \end{aligned}$	-10.0	-12.0

	Outp ut	$\begin{aligned} & 41: 20: 04.4625 \\ & 8 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:32:58.4065 } \\ & \text { 5W } \end{aligned}$								
test5	Locu s 1 Input s	$\begin{aligned} & 40: 10: 24.5000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & 70: 12: 45.6000 \\ & \text { OW } \end{aligned}$	$\begin{aligned} & \text { 42:04:35.8000 } \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 68:12:34.7000 } \\ & \text { OW } \end{aligned}$	$\begin{aligned} & 40: 17: 46.0449 \\ & 3 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 25: 08.5260 \\ & \text { 3W } \end{aligned}$	$\begin{aligned} & 42: 10: 54.5106 \\ & 7 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:23:00.3023 } \\ & \text { 2W } \end{aligned}$	-12.0	-10.0
	Locu s 2 Input s	$\begin{aligned} & 41: 47: 17.8000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 69:11:50.6000 } \\ & \text { OW } \end{aligned}$	$\begin{aligned} & 39: 36: 04.5000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 69:11:50.6000 } \\ & \text { OW } \end{aligned}$	$\begin{aligned} & 41: 47: 16.0501 \\ & 1 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:51:47.4998 } \\ & 8 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 39: 36: 03.6284 \\ & 5 N \end{aligned}$	$\begin{aligned} & \text { 68:57:36.7133 } \\ & 8 \mathrm{~W} \end{aligned}$	-15.0	-11.0
	Outp ut	$\begin{aligned} & 41: 44: 55.2592 \\ & 2 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 68:51:53.9657 } \\ & 8 \mathrm{~W} \end{aligned}$								
test6	Locu s 1 Input s	$\begin{aligned} & \text { 40:10:24.5000 } \\ & \text { ON } \end{aligned}$	$\begin{aligned} & 70: 12: 45.6000 \\ & \text { OW } \end{aligned}$	$\begin{aligned} & \text { 42:04:35.8000 } \\ & \mathrm{ON} \end{aligned}$	$\begin{aligned} & \text { 68:12:34.7000 } \\ & \text { OW } \end{aligned}$	$\begin{aligned} & \text { 40:16:32.5468 } \\ & 3 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 23: 04.5187 \\ & 6 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 42:17:12.2636 } \\ & \text { 1N } \end{aligned}$	$\begin{aligned} & \text { 68:33:27.9794 } \\ & 9 W \end{aligned}$	-10.0	-20.0
	Locu s 2 Input s	$\begin{aligned} & 41: 47: 17.8000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 69:11:50.6000 } \\ & \text { OW } \end{aligned}$	$\begin{aligned} & 40: 10: 24.5000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & 70: 12: 45.6000 \\ & \text { OW } \end{aligned}$	$\begin{aligned} & 41: 49: 02.2422 \\ & 2 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:16:39.5521 } \\ & 7 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 40: 12: 31.9150 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & 70: 18: 40.0683 \\ & 8 \mathrm{~W} \end{aligned}$	4.0	5.0
	Outp ut	$\begin{aligned} & 40: 44: 08.2182 \\ & 5 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:58:43.8293 } \\ & \text { 7W } \end{aligned}$								
test7	Locu s 1 Input s	$\begin{aligned} & \text { 42:04:35.8000 } \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 68:12:34.7000 } \\ & \text { OW } \end{aligned}$	$\begin{aligned} & 40: 10: 24.5000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & 70: 12: 45.6000 \\ & \text { OW } \end{aligned}$	$\begin{aligned} & 41: 58: 16.1381 \\ & 7 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:02:11.1632 } \\ & \text { 2W } \end{aligned}$	$\begin{aligned} & \text { 40:01:10.7013 } \\ & 8 N \end{aligned}$	$\begin{aligned} & \text { 69:57:20.7013 } \\ & \text { 2W } \end{aligned}$	-10.0	-15.0
	$\begin{aligned} & \text { Locu } \\ & \text { s } 2 \\ & \text { Input } \\ & \text { s } \end{aligned}$	$\begin{aligned} & 38: 47: 17.8000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 69:11:50.6000 } \\ & \text { ow } \end{aligned}$	$\begin{aligned} & \text { 42:04:35.8000 } \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 68:12:34.7000 } \\ & \text { OW } \end{aligned}$	$\begin{aligned} & 38: 50: 20.0384 \\ & 9 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:29:19.7500 } \\ & 3 W \end{aligned}$	$\begin{aligned} & \text { 42:09:21.4152 } \\ & \text { 1N } \end{aligned}$	$\begin{aligned} & \text { 68:40:03.6747 } \\ & \text { 2W } \end{aligned}$	-14.0	-21.0
	Outp ut	$\begin{aligned} & \text { 41:03:48.9093 } \\ & 7 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:56:49.9517 } \\ & \text { 3W } \end{aligned}$								
test8	Locu s 1 Input s	$\begin{aligned} & \text { 42:04:35.8000 } \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 68:12:34.7000 } \\ & \text { OW } \end{aligned}$	$\begin{aligned} & 40: 10: 24.5000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & 70: 12: 45.6000 \\ & \text { OW } \end{aligned}$	$\begin{aligned} & 42: 12: 10.1380 \\ & 9 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:25:05.6714 } \\ & \text { 7W } \end{aligned}$	$\begin{aligned} & 40: 16: 32.5468 \\ & 3 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 23: 04.5187 \\ & 6 W \end{aligned}$	12.0	10.0
	$\begin{aligned} & \text { Locu } \\ & \text { s } 2 \\ & \text { Input } \\ & \text { s } \end{aligned}$	$\begin{aligned} & 38: 47: 17.8000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 69:11:50.6000 } \\ & \text { OW } \end{aligned}$	$\begin{aligned} & \text { 41:36:04.5000 } \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 69:11:50.6000 } \\ & \text { OW } \end{aligned}$	$\begin{aligned} & \text { 38:47:17.4570 } \\ & 7 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:20:47.7572 } \\ & 6 W \end{aligned}$	$\begin{aligned} & 41: 36: 03.5650 \\ & 7 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:26:30.3233 } \\ & \text { 2W } \end{aligned}$	-7.0	-11.0
	Outp ut	$\begin{aligned} & 41: 13: 51.0104 \\ & 3 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:25:43.4742 } \\ & \text { 2W } \end{aligned}$								
test9	Locu s 1 Input s	$\begin{aligned} & \text { 42:04:35.8000 } \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 68:12:34.7000 } \\ & \text { OW } \end{aligned}$	$\begin{aligned} & 40: 10: 24.5000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & 70: 12: 45.6000 \\ & \text { OW } \end{aligned}$	$\begin{aligned} & \text { 41:55:44.0085 } \\ & 9 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 67:58:02.3247 } \\ & 7 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 40:04:15.5303 } \\ & 7 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:02:28.5382 } \\ & \text { 3W } \end{aligned}$	-14.0	-10.0
	Locu s 2 Input s	$\begin{aligned} & 38: 47: 17.8000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 69:11:50.6000 } \\ & \text { OW } \end{aligned}$	$\begin{aligned} & 40: 10: 24.5000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & 70: 12: 45.6000 \\ & \text { OW } \end{aligned}$	$\begin{aligned} & 38: 59: 28.6538 \\ & 7 N \end{aligned}$	$\begin{aligned} & \text { 68:43:52.4133 } \\ & \text { 2W } \end{aligned}$	$\begin{aligned} & \text { 40:20:21.2677 } \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 69:50:05.4418 } \\ & 8 \mathrm{~W} \end{aligned}$	25.0	20.0

	Outp ut	$\begin{aligned} & 40: 17: 45.1343 \\ & 4 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:47:54.6864 } \\ & 5 \mathrm{~W} \end{aligned}$								
test10	Locu s 1 Input s	$\begin{aligned} & 42: 04: 35.8000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 68:12:34.7000 } \\ & \text { OW } \end{aligned}$	$\begin{aligned} & 40: 10: 24.5000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & 70: 12: 45.6000 \\ & \text { OW } \end{aligned}$	$\begin{aligned} & 41: 39: 11.5109 \\ & 4 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 67:31:12.8528 } \\ & \text { 1W } \end{aligned}$	$\begin{aligned} & 39: 48: 49.1084 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 69:36:53.9576 } \\ & \text { OW } \end{aligned}$	-40.0	-35.0
	$\begin{aligned} & \text { Locu } \\ & \text { s } 2 \\ & \text { Input } \\ & \text { s } \end{aligned}$	$\begin{aligned} & 38: 47: 17.8000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 69:11:50.6000 } \\ & \text { OW } \end{aligned}$	$\begin{aligned} & \text { 40:05:17.8000 } \\ & \text { ON } \end{aligned}$	$\begin{aligned} & 72: 11: 50.6000 \\ & \text { OW } \end{aligned}$	$\begin{aligned} & 39: 47: 44.1723 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 68:26:14.2059 } \\ & 5 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 41:02:28.8540 } \\ & 6 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 71:31:12.0259 } \\ & 2 \mathrm{~W} \end{aligned}$	70.0	65.0
	Outp ut	$\begin{aligned} & 40: 08: 19.8280 \\ & 5 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:15:22.3249 } \\ & 8 \mathrm{~W} \end{aligned}$								
test11	Locu s 1 Input s	$\begin{aligned} & \text { 42:04:35.8000 } \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 68:12:34.7000 } \\ & \text { OW } \end{aligned}$	$\begin{aligned} & 40: 10: 24.5000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & 70: 12: 45.6000 \\ & \text { OW } \end{aligned}$	$\begin{aligned} & 41: 35: 59.9254 \\ & 6 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 67:26:04.9158 } \\ & 8 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 39: 39: 30.5435 \\ & 3 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:21:38.7068 } \\ & 5 \mathrm{~W} \end{aligned}$	-45.0	-50.0
	Locu s 2 Input s	38:47:17.8000	$\begin{aligned} & \text { 68:31:50.6000 } \\ & \text { OW } \end{aligned}$	$\begin{aligned} & 38: 47: 17.8000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & 72: 11: 50.6000 \\ & \text { OW } \end{aligned}$	$\begin{aligned} & 40: 22: 21.4225 \\ & 5 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:29:21.1058 } \\ & 2 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 40:07:20.9579 } \\ & 6 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 72:13:56.0319 } \\ & \text { 2W } \end{aligned}$	95.0	80.0
	Outp ut	$\begin{aligned} & \text { 40:21:46.0977 } \\ & 1 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:40:43.7978 } \\ & 3 \mathrm{~W} \end{aligned}$								
test12	Locu s 1 Input s	$\begin{aligned} & \text { 42:04:35.8000 } \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 68:12:34.7000 } \\ & \text { OW } \end{aligned}$	$\begin{aligned} & 40: 10: 24.5000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & 70: 12: 45.6000 \\ & \text { OW } \end{aligned}$	$\begin{aligned} & 41: 40: 28.0804 \\ & 1 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 67: 33: 16.1694 \\ & 9 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 39: 42: 36.9560 \\ & 7 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:26:43.3345 } \\ & 6 \mathrm{~W} \end{aligned}$	-38.0	-45.0
	$\begin{aligned} & \text { Locu } \\ & \text { s } 2 \\ & \text { Input } \\ & \text { s } \end{aligned}$	$\begin{aligned} & 38: 47: 17.8000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 68:31:50.6000 } \\ & \text { OW } \end{aligned}$	$\begin{aligned} & 37: 15: 17.8000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 72:11:50.6000 } \\ & \text { OW } \end{aligned}$	$\begin{aligned} & \text { 40:08:26.7293 } \\ & 9 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:25:11.9334 } \\ & \text { 6W } \end{aligned}$	$\begin{aligned} & 38: 40: 51.7713 \\ & 9 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 73:12:28.7597 } \\ & \text { 3W } \end{aligned}$	91.0	98.0
	Outp ut	N/A	N/A								
test13	Locu s 1 Input s	$\begin{aligned} & 40: 10: 24.5000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 68:12:45.6000 } \\ & 0 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 42:04:35.8000 } \end{aligned}$	$\begin{aligned} & 70: 12: 34.7000 \\ & 0 E \end{aligned}$	$\begin{aligned} & 40: 34: 48.3409 \\ & 8 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 67:31:15.9527 } \\ & 5 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 42:30:56.9433 } \\ & 7 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:28:29.9691 } \\ & \text { 1E } \end{aligned}$	-40.0	-42.0
	Locu s 2 Input s	$\begin{aligned} & \text { 41:47:17.8000 } \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 68:11:50.6000 } \\ & 0 E \end{aligned}$	$\begin{aligned} & 42: 34: 35.8000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 69:12:34.7000 } \\ & 0 E \end{aligned}$	$\begin{aligned} & \text { 41:17:38.5789 } \\ & 7 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:53:19.8260 } \\ & 4 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 42:03:10.5022 } \\ & 8 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:56:00.7853 } \\ & \text { 3E } \end{aligned}$	43.0	45.0
	Outp ut	N/A	N/A								
test14	Locu s 1 Input s	$\begin{aligned} & \text { 40:10:24.5000 } \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 68:12:45.6000 } \\ & 0 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 42:04:35.8000 } \\ & \text { ON } \end{aligned}$	$\begin{aligned} & 70: 12: 34.7000 \\ & 0 E \end{aligned}$	$\begin{aligned} & \text { 40:16:31.8626 } \\ & 3 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:02:25.9906 } \\ & 4 \mathrm{E} \end{aligned}$	$\begin{aligned} & 42: 12: 09.2928 \\ & 5 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:00:02.8081 } \\ & 5 \mathrm{E} \end{aligned}$	-10.0	-12.0
	Locu s 2 Input s	$\begin{aligned} & 41: 47: 17.8000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 68:11:50.6000 } \\ & 0 E \end{aligned}$	$\begin{aligned} & \text { 42:04:35.8000 } \\ & \text { ON } \end{aligned}$	$\begin{aligned} & 70: 12: 34.7000 \\ & 0 E \end{aligned}$	$\begin{aligned} & 41: 32: 35.4823 \\ & 1 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:15:50.2484 } \\ & 6 E \end{aligned}$	$\begin{aligned} & 41: 48: 50.4711 \\ & 7 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 16: 21.8070 \\ & 9 E \end{aligned}$	15.0	16.0

	Outp ut	$\begin{aligned} & 41: 42: 45.7526 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 69:29:17.3042 } \\ & 9 E \end{aligned}$								
test15	Locu s 1 Input s	$\begin{aligned} & 40: 10: 24.5000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 68:12:45.6000 } \\ & 0 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 42:04:35.8000 } \\ & \text { ON } \end{aligned}$	$\begin{aligned} & 70: 12: 34.7000 \\ & 0 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 40:34:48.3409 } \\ & 8 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 67:31:15.9527 } \\ & 5 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 42:29:04.5727 } \\ & 8 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:31:40.1006 } \\ & \text { 1E } \end{aligned}$	-40.0	-39.0
	$\begin{aligned} & \text { Locu } \\ & \text { s } 2 \\ & \text { Input } \\ & \text { s } \end{aligned}$	$\begin{aligned} & 41: 47: 17.8000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 68:11:50.6000 } \\ & 0 E \end{aligned}$	$\begin{aligned} & 41: 47: 17.8000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 69:12:34.7000 } \\ & 0 E \end{aligned}$	$\begin{aligned} & 41: 57: 18.0553 \\ & 9 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:11:45.8662 } \\ & 9 E \end{aligned}$	$\begin{aligned} & 41: 56: 18.0306 \\ & 4 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:12:38.9592 } \\ & \text { 3E } \end{aligned}$	-10.0	-9.0
	Outp ut	$\begin{aligned} & 41: 56: 37.0676 \\ & 2 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 68:56:31.2985 } \\ & \text { 6E } \end{aligned}$								
test16	Locu s 1 Input s	$\begin{aligned} & 40: 10: 24.5000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 68:12:45.6000 } \\ & 0 E \end{aligned}$	$\begin{aligned} & \text { 42:04:35.8000 } \\ & \text { ON } \end{aligned}$	$\begin{aligned} & 70: 12: 34.7000 \\ & 0 E \end{aligned}$	$\begin{aligned} & \text { 40:16:31.8626 } \\ & \text { 3N } \end{aligned}$	$\begin{aligned} & \text { 68:02:25.9906 } \\ & 4 \mathrm{E} \end{aligned}$	42:09:38.2818	$\begin{aligned} & \text { 70:04:13.7700 } \\ & \text { 3E } \end{aligned}$	-10.0	-8.0
	Locu s 2 Input s	$\begin{aligned} & 41: 47: 17.8000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 67:11:50.6000 } \\ & 0 \mathrm{E} \end{aligned}$	$\begin{aligned} & 39: 36: 04.5000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 69:26:41.2000 } \\ & 0 \mathrm{E} \end{aligned}$	$\begin{aligned} & 41: 50: 25.6189 \\ & 4 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 67:17:03.5345 } \\ & \text { 1E } \end{aligned}$	$\begin{aligned} & 39: 39: 42.6864 \\ & 8 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:32:52.0080 } \\ & 0 \mathrm{E} \end{aligned}$	-5.0	-6.0
	Outp ut	$\begin{aligned} & 40: 42: 15.6690 \\ & 2 N \end{aligned}$	$\begin{aligned} & \text { 68:29:20.0061 } \\ & \text { 3E } \end{aligned}$								
test17	Locu s 1 Input s	$\begin{aligned} & 40: 10: 24.5000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 68:12:45.6000 } \\ & 0 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 42:04:35.8000 } \\ & \text { ON } \end{aligned}$	$\begin{aligned} & 70: 12: 34.7000 \\ & 0 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 40:07:20.4715 } \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 68:17:54.7083 } \\ & 4 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 42:03:20.0840 } \\ & 7 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 14: 39.7258 \\ & 8 \mathrm{E} \end{aligned}$	5.0	2.0
	$\begin{aligned} & \text { Locu } \\ & \text { s } 2 \\ & \text { Input } \\ & \text { s } \end{aligned}$	$\begin{aligned} & \text { 41:47:17.8000 } \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 68:31:50.6000 } \\ & 0 E \end{aligned}$	$\begin{aligned} & 39: 34: 35.8000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 68:31:50.6000 } \\ & \text { 0E } \end{aligned}$	$\begin{aligned} & \text { 41:47:17.7922 } \\ & \text { 2N } \end{aligned}$	$\begin{aligned} & \text { 68:30:30.3929 } \\ & 2 E \end{aligned}$	$\begin{aligned} & 39: 34: 35.7352 \\ & \text { 3N } \end{aligned}$	$\begin{aligned} & \text { 68:27:57.8038 } \\ & \text { OE } \end{aligned}$	1.0	3.0
	Outp ut	$\begin{aligned} & 40: 18: 31.3117 \\ & 1 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:28:47.2260 } \\ & 9 E \end{aligned}$								
test18	Locu s 1 Input s	$\begin{aligned} & 40: 10: 24.5000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 68:12:45.6000 } \\ & 0 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 42:04:35.8000 } \end{aligned}$	$\begin{aligned} & 70: 12: 34.7000 \\ & 0 E \end{aligned}$	$\begin{aligned} & 40: 16: 31.8626 \\ & 3 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:02:25.9906 } \\ & 4 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 42:07:44.9228 } \\ & 6 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:07:21.7738 } \\ & 9 E \end{aligned}$	-10.0	-5.0
	Locu s 2 Input s	$\begin{aligned} & \text { 41:47:17.8000 } \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 68:41:50.6000 } \\ & 0 \mathrm{E} \end{aligned}$	$\begin{aligned} & 40: 10: 24.5000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 68:12:45.6000 } \\ & 0 \mathrm{E} \end{aligned}$	$\begin{aligned} & 41: 46: 10.2267 \\ & 8 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:48:21.2823 } \\ & \text { 7E } \end{aligned}$	$\begin{aligned} & \text { 40:09:05.3082 } \\ & 9 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:20:23.6852 } \\ & \text { 4E } \end{aligned}$	-5.0	-6.0
	Outp ut	$\begin{aligned} & 40: 41: 23.8055 \\ & 8 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:29:32.6277 } \\ & 4 \mathrm{E} \end{aligned}$								
test19	Locu s 1 Input s	$\begin{aligned} & \text { 42:04:35.8000 } \\ & \hline \mathrm{N} \end{aligned}$	$\begin{aligned} & \text { 70:12:34.7000 } \\ & \text { OE } \end{aligned}$	$\begin{aligned} & 40: 10: 24.5000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 68:12:45.6000 } \\ & 0 E \end{aligned}$	$\begin{aligned} & \text { 41:59:32.7079 } \\ & 7 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:20:54.3088 } \\ & 5 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 40:04:16.2125 } \\ & 5 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:23:03.3537 } \\ & 3 \mathrm{E} \end{aligned}$	-8.0	-10.0
	Locu s 2 Input s	$\begin{aligned} & 38: 47: 17.8000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 68:11:50.6000 } \\ & 0 E \end{aligned}$	$\begin{aligned} & \text { 42:04:35.8000 } \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 69:12:34.7000 } \\ & 0 E \end{aligned}$	$\begin{aligned} & 38: 45: 43.5422 \\ & 8 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:20:33.9873 } \\ & \text { 4E } \end{aligned}$	$\begin{aligned} & \text { 42:02:42.6772 } \\ & 7 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:23:00.9583 } \\ & \text { 2E } \end{aligned}$	7.0	8.0

	Outp ut	$\begin{aligned} & \text { 40:36:11.7226 } \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 68:54:48.3960 } \\ & \text { 6F } \end{aligned}$								
test20	Locu s 1 Input s	$\begin{aligned} & 42: 04: 35.8000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & 70: 12: 34.7000 \\ & 0 E \end{aligned}$	$\begin{aligned} & 40: 10: 24.5000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 68:12:45.6000 } \\ & 0 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 42:01:26.4387 } \\ & 8 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 17: 47.1100 \\ & 5 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 40:07:57.2956 } \\ & \text { 6N } \end{aligned}$	$\begin{aligned} & \text { 68:16:52.9237 } \\ & \text { 4E } \end{aligned}$	-5.0	-4.0
	$\begin{aligned} & \text { Locu } \\ & \text { s } 2 \\ & \text { Input } \\ & \text { s } \end{aligned}$	$\begin{aligned} & 38: 47: 17.8000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 69:11:50.6000 } \\ & 0 E \end{aligned}$	$\begin{aligned} & \text { 41:36:04.5000 } \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 69:11:50.6000 } \\ & 0 E \end{aligned}$	$\begin{aligned} & \text { 38:47:17.7720 } \\ & \text { 1N } \end{aligned}$	$\begin{aligned} & \text { 69:14:24.0736 } \\ & 3 E \end{aligned}$	$41: 36: 04.4304$	$\begin{aligned} & \text { 69:15:50.5251 } \\ & 4 E \end{aligned}$	2.0	3.0
	Outp ut	$\begin{aligned} & 41: 04: 06.9429 \\ & 7 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:15:33.5551 } \\ & 7 E \end{aligned}$								
test21	Locu s 1 Input s	$\begin{aligned} & \text { 42:04:35.8000 } \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 70:12:34.7000 } \\ & 0 \mathrm{E} \end{aligned}$	$\begin{aligned} & 40: 10: 24.5000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 68:12:45.6000 } \\ & 0 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 42:00:48.5380 } \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 70:18:49.5302 } \\ & 3 E \end{aligned}$	$\begin{aligned} & \text { 40:06:06.7955 } \\ & 3 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:19:58.2220 } \\ & 0 E \end{aligned}$	-6.0	-7.0
	Locu s 2 Input s	38:47:17.8000	$\begin{aligned} & \text { 69:11:50.6000 } \\ & 0 \mathrm{E} \end{aligned}$	$40: 10: 24.5000$	$\begin{aligned} & \text { 68:12:45.6000 } \\ & 0 \mathrm{E} \end{aligned}$	$\begin{aligned} & 38: 49: 41.1280 \\ & 2 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:17:27.8536 } \\ & \text { 1E } \end{aligned}$	$\begin{aligned} & 40: 13: 19.8610 \\ & 3 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:19:36.0001 } \\ & 8 \mathrm{E} \end{aligned}$	5.0	6.0
	Outp ut	$\begin{aligned} & \text { 40:08:53.2734 } \\ & \text { 3N } \end{aligned}$	$\begin{aligned} & \text { 68:22:44.4858 } \\ & 7 \mathrm{E} \end{aligned}$								
test22	Locu s 1 Input s	$\begin{aligned} & \text { 42:04:35.8000 } \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 70:12:34.7000 } \\ & \text { OE } \end{aligned}$	$\begin{aligned} & 40: 10: 24.5000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 68:12:45.6000 } \\ & 0 \mathrm{E} \end{aligned}$	$\begin{aligned} & 41: 39: 14.3045 \\ & 5 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 53: 59.6280 \\ & 6 E \end{aligned}$	$\begin{aligned} & 39: 48: 51.4871 \\ & 6 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:48:39.6699 } \\ & \text { 5E } \end{aligned}$	-40.0	-35.0
	$\begin{aligned} & \text { Locu } \\ & \text { s } 2 \\ & \text { Input } \\ & \text { s } \end{aligned}$	$\begin{aligned} & 38: 47: 17.8000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 72:11:50.6000 } \\ & 0 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 40:05:17.8000 } \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 69:11:50.6000 } \\ & 0 E \end{aligned}$	$\begin{aligned} & 39: 00: 16.4273 \\ & 8 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 72:21:30.4059 } \\ & 5 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 40:27:19.1913 } \\ & 8 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:27:20.3440 } \\ & 9 E \end{aligned}$	15.0	25.0
	Outp ut	$\begin{aligned} & 40: 26: 06.2537 \\ & 5 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:29:53.1140 } \\ & \text { 3E } \end{aligned}$								
test23	Locu s 1 Input s	$\begin{aligned} & \text { 42:04:35.8000 } \\ & \text { ON } \end{aligned}$	$\begin{aligned} & 70: 12: 34.7000 \\ & 0 \mathrm{E} \end{aligned}$	$\begin{aligned} & 40: 10: 24.5000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 68:12:45.6000 } \\ & 0 \mathrm{E} \end{aligned}$	$\begin{aligned} & 41: 42: 25.3115 \\ & 2 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 48: 50.7979 \\ & 6 E \end{aligned}$	$\begin{aligned} & 39: 48: 14.3800 \\ & 2 N \end{aligned}$	$\begin{aligned} & \text { 68:49:40.8840 } \\ & 6 E \end{aligned}$	-35.0	-36.0
	Locu s 2 Input s	$\begin{aligned} & 39: 47: 17.8000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 72:11:50.6000 } \\ & 0 E \end{aligned}$	$\begin{aligned} & 39: 47: 17.8000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 69:11:50.6000 } \\ & 0 E \end{aligned}$	$\begin{aligned} & 40: 27: 19.2540 \\ & 3 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 72: 12: 43.2781 \\ & 0 \mathrm{E} \end{aligned}$	$\begin{aligned} & 40: 25: 19.1880 \\ & 8 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:11:00.5804 } \\ & 2 E \end{aligned}$	40.0	38.0
	Outp ut	$\begin{aligned} & 40: 25: 42.0926 \\ & 1 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 69:27:47.1856 } \\ & 7 \mathrm{E} \end{aligned}$								
test24	Locu s 1 Input s	$\begin{aligned} & \text { 42:04:35.8000 } \\ & \hline \mathrm{N} \end{aligned}$	$\begin{aligned} & \text { 70:12:34.7000 } \\ & \text { OE } \end{aligned}$	$\begin{aligned} & 40: 10: 24.5000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 68:12:45.6000 } \\ & 0 E \end{aligned}$	$\begin{aligned} & 41: 45: 36.0858 \\ & \text { 1N } \end{aligned}$	$\begin{aligned} & \text { 70:43:41.4599 } \\ & 3 E \end{aligned}$	$\begin{aligned} & \text { 39:50:42.7543 } \\ & \text { 3N } \end{aligned}$	$\begin{aligned} & \text { 68:45:35.9178 } \\ & 6 E \end{aligned}$	-30.0	-32.0
	Locu s 2 Input s	$\begin{aligned} & 41: 47: 17.8000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 72:11:50.6000 } \\ & 0 \mathrm{E} \end{aligned}$	$\begin{aligned} & 40: 15: 17.8000 \\ & \text { ON } \end{aligned}$	$\begin{aligned} & \text { 69:11:50.6000 } \\ & 0 E \end{aligned}$	$\begin{aligned} & 42: 14: 05.9248 \\ & \text { 1N } \end{aligned}$	$\begin{aligned} & \text { 71:48:22.0642 } \\ & 0 E \end{aligned}$	$\begin{aligned} & 40: 42: 18.3300 \\ & 9 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:46:57.6206 } \\ & 2 E \end{aligned}$	32.0	33.0

	Outp ut	$\begin{aligned} & 41: 38: 45.6196 \\ & 1 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 70:36:24.0717 } \\ & \text { OE } \end{aligned}$								
test25	Locu s 1 Input s	$\begin{aligned} & 41: 50: 24.5000 \\ & \text { OS } \end{aligned}$	$\begin{aligned} & 70: 12: 45.6000 \\ & \text { OW } \end{aligned}$	$\begin{aligned} & 39: 55: 35.8000 \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 68:12:34.7000 } \\ & \text { OW } \end{aligned}$	$\begin{aligned} & \text { 41:25:01.8880 } \\ & 7 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 70:54:00.2690 } \\ & \text { 1W } \end{aligned}$	$\begin{aligned} & 39: 34: 01.7159 \\ & 5 S \end{aligned}$	$\begin{aligned} & \text { 68:48:20.0298 } \\ & \text { 8W } \end{aligned}$	-40.0	-35.0
	$\begin{aligned} & \text { Locu } \\ & \text { s } 2 \\ & \text { Input } \\ & \text { s } \end{aligned}$	$\begin{aligned} & 40: 12: 17.8000 \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 69:11:50.6000 } \\ & \text { OW } \end{aligned}$	$\begin{aligned} & \text { 39:25:35.8000 } \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 68:12:34.7000 } \\ & \text { OW } \end{aligned}$	$\begin{aligned} & 40: 37: 33.3002 \\ & 7 S \end{aligned}$	$\begin{aligned} & \text { 68:38:14.1693 } \\ & 6 W \end{aligned}$	$\begin{aligned} & \text { 39:51:57.4501 } \\ & \text { 1S } \end{aligned}$	$\begin{aligned} & \text { 67:37:07.0531 } \\ & 6 W \end{aligned}$	36.0	38.0
	Outp ut	N/A	N/A								
test26	Locu s 1 Input s	$\begin{aligned} & 41: 50: 24.5000 \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 70:12:45.6000 } \\ & \text { OW } \end{aligned}$	$\begin{aligned} & \text { 39:55:35.8000 } \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 68:12:34.7000 } \\ & \text { OW } \end{aligned}$	$\begin{aligned} & 41: 44: 05.2480 \\ & 5 S \end{aligned}$	$\begin{aligned} & 70: 23: 07.3045 \\ & 6 W \end{aligned}$	$\begin{aligned} & \text { 39:48:13.3652 } \\ & 7 S \end{aligned}$	$\begin{aligned} & \text { 68:24:52.7554 } \\ & \text { 6W } \end{aligned}$	-10.0	-12.0
	Locu s 2 Input s	$\begin{aligned} & 40: 12: 17.8000 \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 69:11:50.6000 } \\ & \text { OW } \end{aligned}$	$\begin{aligned} & 39: 55: 35.8000 \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 68:12:34.7000 } \\ & \text { OW } \end{aligned}$	$\begin{aligned} & \text { 40:07:35.3452 } \\ & \text { 1S } \end{aligned}$	$\begin{aligned} & \text { 69:14:03.2237 } \\ & 5 W \end{aligned}$	$\begin{aligned} & \text { 39:49:58.2074 } \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 68:15:18.0372 } \\ & 7 W \end{aligned}$	-5.0	-6.0
	Outp ut	$\begin{aligned} & \text { 39:54:52.2421 } \\ & \text { 6S } \end{aligned}$	$\begin{aligned} & \text { 68:31:25.5935 } \\ & 3 W \end{aligned}$								
test27	Locu s 1 Input s	$\begin{aligned} & 41: 50: 24.5000 \\ & \text { OS } \end{aligned}$	$\begin{aligned} & 70: 12: 45.6000 \\ & \text { OW } \end{aligned}$	$\begin{aligned} & \text { 39:55:35.8000 } \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 68:12:34.7000 } \\ & \text { OW } \end{aligned}$	$\begin{aligned} & 41: 40: 55.2698 \\ & \text { 1S } \end{aligned}$	$\begin{aligned} & 70: 28: 17.3946 \\ & \text { 4W } \end{aligned}$	$\begin{aligned} & 39: 44: 31.6564 \\ & 9 S \end{aligned}$	$\begin{aligned} & \text { 68:31:00.7972 } \\ & \text { 1W } \end{aligned}$	-15.0	-18.0
	$\begin{aligned} & \text { Locu } \\ & \text { s } 2 \\ & \text { Input } \\ & \text { s } \\ & \hline \end{aligned}$	$\begin{aligned} & 40: 12: 17.8000 \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 69:11:50.6000 } \\ & \text { oW } \end{aligned}$	$\begin{aligned} & 40: 12: 17.8000 \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 65:12:34.7000 } \\ & \text { OW } \end{aligned}$	$\begin{aligned} & 40: 02: 17.5025 \\ & 4 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 69:11:33.0485 } \\ & 9 W \end{aligned}$	$\begin{aligned} & \text { 40:01:17.4718 } \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 65:12:54.0018 } \\ & 4 W \end{aligned}$	-10.0	-11.0
	Outp ut	$\begin{aligned} & \text { 40:02:33.1706 } \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 68:48:36.2281 } \\ & 2 \mathrm{~W} \end{aligned}$								
test28	Locu s 1 Input s	$\begin{aligned} & 41: 50: 24.5000 \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 70:12:45.6000 } \\ & \text { OW } \end{aligned}$	$\begin{aligned} & \text { 39:55:35.8000 } \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 68:12:34.7000 } \\ & \text { OW } \end{aligned}$	$\begin{aligned} & 41: 51: 02.3733 \\ & 4 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 70: 11: 43.3174 \\ & 9 W \end{aligned}$	$\begin{aligned} & \text { 39:56:49.4111 } \\ & \text { 6S } \end{aligned}$	$\begin{aligned} & \text { 68:10:31.4344 } \\ & 2 W \end{aligned}$	1.0	2.0
	$\begin{aligned} & \text { Locu } \\ & \text { s } 2 \\ & \text { Input } \\ & \text { s } \\ & \hline \end{aligned}$	$\begin{aligned} & 40: 12: 17.8000 \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 69:11:50.6000 } \\ & \text { OW } \end{aligned}$	$\begin{aligned} & \text { 42:05:35.8000 } \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 67:26:34.7000 } \\ & \text { OW } \end{aligned}$	$\begin{aligned} & 40: 10: 35.7133 \\ & \text { 1S } \end{aligned}$	$\begin{aligned} & \text { 69:08:37.0796 } \\ & \text { 3W } \end{aligned}$	$\begin{aligned} & \text { 42:03:15.7465 } \\ & 4 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 67:22:12.9443 } \\ & 9 \mathrm{~W} \end{aligned}$	-3.0	-4.0
	Outp ut	$\begin{aligned} & 40: 33: 04.1739 \\ & 9 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:47:59.7102 } \\ & 5 \mathrm{~W} \end{aligned}$								
test29	$\begin{aligned} & \text { Locu } \\ & \text { s } 1 \\ & \text { Input } \\ & \text { s } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 41:50:24.5000 } \\ & \text { OS } \end{aligned}$	$\begin{aligned} & 70: 12: 45.6000 \\ & \text { OW } \end{aligned}$	$\begin{aligned} & \text { 39:55:35.8000 } \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 68:12:34.7000 } \\ & \text { OW } \end{aligned}$	$\begin{aligned} & 41: 51: 40.2372 \\ & 3 S \end{aligned}$	$\begin{aligned} & 70: 10: 41.0145 \\ & 6 W \end{aligned}$	$\begin{aligned} & \text { 39:57:26.2029 } \\ & 9 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:09:29.7741 } \\ & 1 \mathrm{~W} \end{aligned}$	2.0	3.0
	Locu s 2 Input s	$\begin{aligned} & 40: 12: 17.8000 \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 69:11:50.6000 } \\ & \text { OW } \end{aligned}$	$\begin{aligned} & \text { 42:25:35.8000 } \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 69:11:50.6000 } \\ & \text { OW } \end{aligned}$	$\begin{aligned} & 40: 12: 17.6822 \\ & 8 S \end{aligned}$	$\begin{aligned} & \text { 69:06:37.3581 } \\ & 3 W \end{aligned}$	$\begin{aligned} & 42: 25: 35.6011 \\ & 9 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 69:05:05.5212 } \\ & 9 \mathrm{~W} \end{aligned}$	-4.0	-5.0

	Outp ut	$\begin{aligned} & 40: 51: 57.1088 \\ & \text { 3S } \end{aligned}$	$\begin{aligned} & \text { 69:06:10.7401 } \\ & 3 \mathrm{~W} \end{aligned}$								
test30	Locu s 1 Input s	$\begin{aligned} & 41: 50: 24.5000 \\ & \text { OS } \end{aligned}$	$\begin{aligned} & 70: 12: 45.6000 \\ & \text { OW } \end{aligned}$	$\begin{aligned} & 39: 55: 35.8000 \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 68:12:34.7000 } \\ & \text { OW } \end{aligned}$	$\begin{aligned} & 41: 40: 55.2698 \\ & \text { 1S } \end{aligned}$	$\begin{aligned} & 70: 28: 17.3946 \\ & 4 W \end{aligned}$	$\begin{aligned} & \text { 39:43:17.6810 } \\ & 7 S \end{aligned}$	$\begin{aligned} & \text { 68:33:03.3321 } \\ & \text { 3W } \end{aligned}$	-15.0	-20.0
	$\begin{aligned} & \text { Locu } \\ & \text { s } 2 \\ & \text { Input } \\ & \text { s } \end{aligned}$	$\begin{aligned} & 40: 12: 17.8000 \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 69:11:50.6000 } \\ & \text { OW } \end{aligned}$	$\begin{aligned} & 41: 50: 24.5000 \\ & \text { OS } \end{aligned}$	$\begin{aligned} & 70: 12: 45.6000 \\ & \text { OW } \end{aligned}$	$\begin{aligned} & 40: 11: 27.3049 \\ & 7 S \end{aligned}$	$\begin{aligned} & \text { 69:14:12.6876 } \\ & \text { 4W } \end{aligned}$	$\begin{aligned} & 41: 49: 06.8626 \\ & 6 S \end{aligned}$	$\begin{aligned} & 70: 16: 22.8494 \\ & 9 W \end{aligned}$	2.0	3.0
	Outp ut	$\begin{aligned} & 40: 52: 52.4060 \\ & 4 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 69:40:09.5855 } \\ & \text { 2W } \end{aligned}$								
test31	Locu s 1 Input s	$\begin{aligned} & \text { 39:55:35.8000 } \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 68:12:34.7000 } \\ & \text { OW } \end{aligned}$	$\begin{aligned} & 41: 50: 24.5000 \\ & \text { OS } \end{aligned}$	$\begin{aligned} & 70: 12: 45.6000 \\ & \text { OW } \end{aligned}$	$\begin{aligned} & \text { 39:58:39.7591 } \\ & \text { 1S } \end{aligned}$	$\begin{aligned} & \text { 68:07:26.3984 } \\ & \text { 1W } \end{aligned}$	$\begin{aligned} & 41: 51: 40.2372 \\ & 3 S \end{aligned}$	$\begin{aligned} & 70: 10: 41.0145 \\ & 6 W \end{aligned}$	-5.0	-2.0
	Locu s 2 Input s	$\begin{aligned} & \text { 43:12:17.8000 } \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 69:11:50.6000 } \\ & \text { OW } \end{aligned}$	$\begin{aligned} & 39: 55: 35.8000 \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 68:12:34.7000 } \\ & \text { OW } \end{aligned}$	$\begin{aligned} & \text { 43:08:10.8260 } \\ & 4 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 69:35:47.3723 } \\ & 5 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 39: 52: 20.4527 \\ & 2 S \end{aligned}$	$\begin{aligned} & \text { 68:31:36.2910 } \\ & 2 \mathrm{~W} \end{aligned}$	-18.0	-15.0
	Outp ut	$\begin{aligned} & 40: 33: 38.4360 \\ & 3 S \end{aligned}$	$\begin{aligned} & \text { 68:44:35.4019 } \\ & 6 \mathrm{~W} \end{aligned}$								
test32	Locu s 1 Input s	$\begin{aligned} & \text { 39:55:35.8000 } \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 68:12:34.7000 } \\ & \text { OW } \end{aligned}$	$\begin{aligned} & 41: 50: 24.5000 \\ & \text { OS } \end{aligned}$	$\begin{aligned} & 70: 12: 45.6000 \\ & \text { OW } \end{aligned}$	$\begin{aligned} & 40: 00: 30.0243 \\ & 5 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:04:21.1970 } \\ & \text { 5W } \end{aligned}$	$\begin{aligned} & 41: 54: 49.4146 \\ & 1 S \end{aligned}$	$\begin{aligned} & 70: 05: 29.1934 \\ & 6 W \end{aligned}$	-8.0	-7.0
	$\begin{aligned} & \text { Locu } \\ & \text { s } 2 \\ & \text { Input } \\ & \text { s } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 43:12:17.8000 } \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 69:11:50.6000 } \\ & \text { oW } \end{aligned}$	$\begin{aligned} & \text { 40:55:35.8000 } \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 69:11:50.6000 } \\ & \text { OW } \end{aligned}$	$\begin{aligned} & 43: 12: 17.5957 \\ & 4 S \end{aligned}$	$\begin{aligned} & \text { 69:05:00.4091 } \\ & \text { 4W } \end{aligned}$	$\begin{aligned} & 40: 55: 35.5283 \\ & 3 S \end{aligned}$	$\begin{aligned} & \text { 69:03:55.6633 } \\ & 8 \mathrm{~W} \end{aligned}$	5.0	6.0
	Outp ut	$\begin{aligned} & 40: 57: 49.8565 \\ & 7 S \end{aligned}$	$\begin{aligned} & \text { 69:03:56.6928 } \\ & 3 W \end{aligned}$								
test33	Locu s 1 Input s	$\begin{aligned} & \text { 39:55:35.8000 } \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 68:12:34.7000 } \\ & \text { OW } \end{aligned}$	$\begin{aligned} & 41: 50: 24.5000 \\ & \text { OS } \end{aligned}$	$\begin{aligned} & 70: 12: 45.6000 \\ & \text { OW } \end{aligned}$	$\begin{aligned} & 40: 05: 23.6594 \\ & \text { 1S } \end{aligned}$	$\begin{aligned} & \text { 67:56:06.5168 } \\ & \text { 1W } \end{aligned}$	$\begin{aligned} & \text { 42:01:07.0566 } \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 69:55:04.0151 } \\ & 7 \mathrm{~W} \end{aligned}$	-16.0	-17.0
	$\begin{aligned} & \text { Locu } \\ & \text { s } 2 \\ & \text { Input } \\ & \text { s } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 43:12:17.8000 } \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 69:11:50.6000 } \\ & \text { OW } \end{aligned}$	$\begin{aligned} & 41: 50: 24.5000 \\ & \text { OS } \end{aligned}$	$\begin{aligned} & 70: 12: 45.6000 \\ & \text { OW } \end{aligned}$	$\begin{aligned} & \text { 43:05:27.1130 } \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 68:55:09.5575 } \\ & \text { 6W } \end{aligned}$	$\begin{aligned} & 41: 41: 47.3066 \\ & 4 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 69:51:38.3996 } \\ & \text { 3W } \end{aligned}$	14.0	18.0
	Outp ut	$\begin{aligned} & 41: 51: 43.9270 \\ & 2 S \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 69:45:04.4481 } \\ & 8 \mathrm{~W} \end{aligned}$								
test34	$\begin{aligned} & \text { Locu } \\ & \text { s } 1 \\ & \text { Input } \\ & \text { s } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 39:55:35.8000 } \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 68:12:34.7000 } \\ & \text { חw } \end{aligned}$	$\begin{aligned} & \text { 41:50:24.5000 } \\ & \text { OS } \end{aligned}$	$\begin{aligned} & 70: 12: 45.6000 \\ & \text { OW } \end{aligned}$	$\begin{aligned} & 40: 32: 07.9811 \\ & 9 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 67:10:24.5596 } \\ & \text { OW } \end{aligned}$	$\begin{aligned} & \text { 42:24:53.3228 } \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 69:15:09.5121 } \\ & \text { awn } \end{aligned}$	-60.0	-55.0
	Locu s 2 Input s	$\begin{aligned} & 43: 12: 17.8000 \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 69:11:50.6000 } \\ & \text { OW } \end{aligned}$	$\begin{aligned} & 41: 45: 17.5000 \\ & \text { OS } \end{aligned}$	$\begin{aligned} & 72: 11: 50.6000 \\ & \text { OW } \end{aligned}$	$\begin{aligned} & 42: 12: 48.7174 \\ & 1 S \end{aligned}$	$\begin{aligned} & \text { 68:21:45.1793 } \\ & 7 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 40: 42: 57.9486 \\ & 1 S \end{aligned}$	$\begin{aligned} & 71: 16: 28.5124 \\ & 9 W \end{aligned}$	70.0	75.0

	Outp ut	$\begin{aligned} & 42: 00: 18.1729 \\ & 6 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:47:07.7527 } \\ & 2 \mathrm{~W} \end{aligned}$								
test35	Locu s 1 Input s	$\begin{aligned} & 39: 55: 35.8000 \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 68:12:34.7000 } \\ & \text { OW } \end{aligned}$	$\begin{aligned} & 41: 50: 24.5000 \\ & \text { OS } \end{aligned}$	$\begin{aligned} & 70: 12: 45.6000 \\ & \text { OW } \end{aligned}$	$\begin{aligned} & 40: 20: 00.9982 \\ & \text { 1S } \end{aligned}$	$\begin{aligned} & \text { 67:31:15.3738 } \\ & 3 W \end{aligned}$	$\begin{aligned} & 42: 14: 16.9856 \\ & 5 S \end{aligned}$	$\begin{aligned} & \text { 69:33:04.4385 } \\ & \text { 8W } \end{aligned}$	-40.0	-38.0
	$\begin{aligned} & \text { Locu } \\ & \text { s } 2 \\ & \text { Input } \\ & \text { s } \end{aligned}$	$\begin{aligned} & \text { 43:12:17.8000 } \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 69:11:50.6000 } \\ & \text { OW } \end{aligned}$	$\begin{aligned} & \text { 43:12:17.8000 } \\ & \text { OS } \end{aligned}$	$\begin{aligned} & 72: 11: 50.6000 \\ & \text { OW } \end{aligned}$	$\begin{aligned} & 41: 57: 17.0731 \\ & 2 S \end{aligned}$	$\begin{aligned} & \text { 69:13:38.6955 } \\ & 8 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 41: 52: 16.9886 \\ & 5 S \end{aligned}$	$\begin{aligned} & \text { 72:09:55.4492 } \\ & \text { 2W } \end{aligned}$	75.0	80.0
	Outp ut	$\begin{aligned} & 41: 57: 16.4355 \\ & 7 S \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 69:14:20.4102 } \\ & 2 \mathrm{~W} \\ & \hline \end{aligned}$								
test36	Locu s 1 Input s	$\begin{aligned} & 39: 55: 35.8000 \\ & \text { os } \end{aligned}$	$\begin{aligned} & \text { 68:12:34.7000 } \\ & \text { OW } \end{aligned}$	$\begin{aligned} & 41: 50: 24.5000 \\ & \text { OS } \end{aligned}$	$\begin{aligned} & 70: 12: 45.6000 \\ & \text { OW } \end{aligned}$	$\begin{aligned} & \text { 40:50:11.2981 } \\ & \text { 1S } \end{aligned}$	$\begin{aligned} & \text { 66:38:54.2320 } \\ & 3 W \end{aligned}$	$\begin{aligned} & \text { 42:51:30.1510 } \\ & \text { 3S } \end{aligned}$	$\begin{aligned} & \text { 68:29:23.5167 } \\ & 3 W \end{aligned}$	-90.0	-98.0
	Locu s 2 Input s	$\begin{aligned} & 41: 12: 17.8000 \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 67:11:50.6000 } \\ & \text { OW } \end{aligned}$	$\begin{aligned} & 42: 30: 17.8000 \\ & \text { OS } \end{aligned}$	$\begin{aligned} & 70: 11: 50.6000 \\ & \text { OW } \end{aligned}$	$\begin{aligned} & 40: 07: 50.5927 \\ & 8 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:02:20.2247 } \\ & \text { OW } \end{aligned}$	$\begin{aligned} & \text { 41:21:13.0029 } \\ & 7 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 71: 02: 42.7457 \\ & 6 \mathrm{~W} \end{aligned}$	75.0	78.8
	Outp ut	N/A	N/A								
test37	Locu s 1 Input s	$\begin{aligned} & 41: 50: 24.5000 \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 68:12:45.6000 } \\ & 0 \mathrm{E} \end{aligned}$	$\begin{aligned} & 39: 55: 35.8000 \\ & \text { os } \end{aligned}$	$\begin{aligned} & 70: 12: 34.7000 \\ & 0 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 41:25:04.6826 } \\ & \text { 4S } \end{aligned}$	$\begin{aligned} & \text { 67:31:27.8664 } \\ & 2 E \end{aligned}$	$\begin{aligned} & 39: 30: 21.5500 \\ & \text { 1S } \end{aligned}$	$\begin{aligned} & \text { 69:30:40.9995 } \\ & \text { 3E } \end{aligned}$	-40.0	-41.0
	$\begin{aligned} & \text { Locu } \\ & \text { s } 2 \\ & \text { Input } \\ & \text { s } \end{aligned}$	$\begin{aligned} & \text { 40:12:17.8000 } \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 68:11:50.6000 } \\ & 0 E \end{aligned}$	$\begin{aligned} & \text { 39:22:35.8000 } \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 69:12:34.7000 } \\ & 0 E \end{aligned}$	$\begin{aligned} & \text { 40:26:04.9362 } \\ & \text { 1S } \end{aligned}$	$\begin{aligned} & \text { 68:30:47.9679 } \\ & \text { 6E } \end{aligned}$	$\begin{aligned} & 39: 34: 51.5879 \\ & 8 S \end{aligned}$	$\begin{aligned} & \text { 69:29:36.4934 } \\ & \text { OE } \end{aligned}$	20.0	18.0
	Outp ut	$\begin{aligned} & 40: 02: 03.4349 \\ & 8 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:58:38.1547 } \\ & 4 \mathrm{E} \end{aligned}$								
test38	Locu s 1 Input s	$\begin{aligned} & 41: 50: 24.5000 \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 68:12:45.6000 } \\ & 0 \mathrm{E} \end{aligned}$	$\begin{aligned} & 39: 55: 35.8000 \\ & \text { os } \end{aligned}$	$\begin{aligned} & 70: 12: 34.7000 \\ & 0 E \end{aligned}$	$\begin{aligned} & 41: 40: 56.3220 \\ & 3 S \end{aligned}$	$\begin{aligned} & \text { 67:57:12.6583 } \\ & 9 \mathrm{E} \end{aligned}$	$\begin{aligned} & 39: 49: 27.8779 \\ & 9 S \end{aligned}$	$\begin{aligned} & 70: 02: 18.7824 \\ & 2 E \end{aligned}$	-15.0	-10.0
	Locu s 2 Input s	$\begin{aligned} & \text { 40:12:17.8000 } \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 68:11:50.6000 } \\ & 0 E \end{aligned}$	$\begin{aligned} & \text { 39:55:35.8000 } \\ & \text { OS } \end{aligned}$	$\begin{aligned} & 70: 12: 34.7000 \\ & 0 E \end{aligned}$	$\begin{aligned} & 40: 10: 19.3774 \\ & 9 S \end{aligned}$	$\begin{aligned} & \text { 68:11:24.6095 } \\ & 9 E \end{aligned}$	$\begin{aligned} & 39: 52: 38.8777 \\ & 9 S \end{aligned}$	$\begin{aligned} & \text { 70:11:50.6796 } \\ & \text { 1E } \end{aligned}$	-2.0	-3.0
	Outp ut	$\begin{aligned} & 39: 55: 03.7590 \\ & \text { 7S } \end{aligned}$	$\begin{aligned} & \text { 69:56:15.2088 } \\ & 6 E \end{aligned}$								
test39	Locu s 1 Input s	$\begin{aligned} & 41: 50: 24.5000 \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 68:12:45.6000 } \\ & 0 \mathrm{E} \end{aligned}$	$\begin{aligned} & 39: 55: 35.8000 \\ & \text { os } \end{aligned}$	$\begin{aligned} & 70: 12: 34.7000 \\ & 0 E \end{aligned}$	$\begin{aligned} & 41: 47: 15.3430 \\ & 2 S \end{aligned}$	$\begin{aligned} & \text { 68:07:34.1112 } \\ & 6 E \end{aligned}$	$\begin{aligned} & \text { 39:51:18.3506 } \\ & \text { 3S } \end{aligned}$	$\begin{aligned} & \text { 70:05:23.3657 } \\ & 7 E \end{aligned}$	-5.0	-7.0
	Locu s 2 Input s	$\begin{aligned} & 40: 12: 17.8000 \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 68:11:50.6000 } \\ & 0 E \end{aligned}$	$\begin{aligned} & 40: 12: 17.8000 \\ & \text { OS } \end{aligned}$	$\begin{aligned} & 72: 12: 34.7000 \\ & 0 E \end{aligned}$	$\begin{aligned} & \text { 40:02:17.5044 } \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 68:12:08.2592 } \\ & 7 E \end{aligned}$	$\begin{aligned} & 40: 00: 17.4431 \\ & \text { 1S } \end{aligned}$	$\begin{aligned} & \text { 72:12:13.5192 } \\ & \text { OE } \end{aligned}$	-10.0	-12.0

	Outp ut	$\begin{aligned} & 40: 02: 27.4222 \\ & 5 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 69:54:26.2922 } \\ & 9 E \end{aligned}$								
test40	Locu s 1 Input s	$\begin{aligned} & 41: 50: 24.5000 \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 68:12:45.6000 } \\ & 0 \mathrm{E} \end{aligned}$	$\begin{aligned} & 39: 55: 35.8000 \\ & \text { OS } \end{aligned}$	$\begin{aligned} & 70: 12: 34.7000 \\ & 0 \mathrm{E} \end{aligned}$	$\begin{aligned} & 41: 40: 56.3220 \\ & 3 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 67:57:12.6583 } \\ & 9 \mathrm{E} \end{aligned}$	$\begin{aligned} & 39: 44: 32.8834 \\ & \text { 3S } \end{aligned}$	$\begin{aligned} & \text { 69:54:07.3624 } \\ & \text { 3E } \end{aligned}$	-15.0	-18.0
	$\begin{aligned} & \text { Locu } \\ & \text { s } 2 \\ & \text { Input } \\ & \text { s } \end{aligned}$	$\begin{aligned} & \text { 38:01:17.8000 } \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 68:11:50.6000 } \\ & 0 E \end{aligned}$	$\begin{aligned} & 40: 12: 17.8000 \\ & \text { OS } \end{aligned}$	69:56:34.7000	$\begin{aligned} & 38: 01: 49.0630 \\ & 3 S \end{aligned}$	$\begin{aligned} & \text { 68:10:45.7608 } \\ & 6 E \end{aligned}$	$\begin{aligned} & 40: 13: 22.2509 \\ & 6 S \end{aligned}$	$\begin{aligned} & \text { 69:54:22.5298 } \\ & 9 E \end{aligned}$	1.0	2.0
	Outp ut	$\begin{aligned} & 39: 57: 32.7447 \\ & 6 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 69:41:29.8226 } \\ & 4 \mathrm{E} \end{aligned}$								
test41	Locu s 1 Input s	$\begin{aligned} & 41: 50: 24.5000 \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 68:12:45.6000 } \\ & 0 E \end{aligned}$	$\begin{aligned} & 39: 55: 35.8000 \\ & \text { os } \end{aligned}$	$\begin{aligned} & 70: 12: 34.7000 \\ & 0 E \end{aligned}$	$\begin{aligned} & 41: 40: 56.3220 \\ & \text { 3S } \end{aligned}$	$\begin{aligned} & \text { 67:57:12.6583 } \\ & 9 E \end{aligned}$	$\begin{aligned} & 39: 43: 19.0439 \\ & 4 S \end{aligned}$	$\begin{aligned} & \text { 69:52:04.6894 } \\ & \text { 3E } \end{aligned}$	-15.0	-20.0
	Locu s 2 Input s	$\begin{aligned} & 38: 01: 17.8000 \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 69:11:50.6000 } \\ & 0 \mathrm{E} \end{aligned}$	$\begin{aligned} & 41: 12: 17.8000 \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 69:11:50.6000 } \\ & 0 E \end{aligned}$	$\begin{aligned} & 38: 01: 17.7931 \\ & 9 S \end{aligned}$	$\begin{aligned} & \text { 69:13:06.5304 } \\ & \text { 4E } \end{aligned}$	$\begin{aligned} & 41: 12: 17.7695 \\ & 2 S \end{aligned}$	$\begin{aligned} & \text { 69:14:29.5812 } \\ & 5 E \end{aligned}$	-1.0	-2.0
	Outp ut	$\begin{aligned} & 40: 23: 10.1576 \\ & 3 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 69:14:07.4397 } \\ & 3 E \end{aligned}$								
test42	Locu s 1 Input s	$\begin{aligned} & 41: 50: 24.5000 \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 68:12:45.6000 } \\ & 0 \mathrm{E} \end{aligned}$	$\begin{aligned} & 39: 55: 35.8000 \\ & \text { os } \end{aligned}$	$\begin{aligned} & 70: 12: 34.7000 \\ & 0 \mathrm{E} \end{aligned}$	$\begin{aligned} & 41: 40: 56.3220 \\ & \text { 3S } \end{aligned}$	$\begin{aligned} & \text { 67:57:12.6583 } \\ & 9 E \end{aligned}$	$\begin{aligned} & 39: 44: 32.8834 \\ & \text { 3S } \end{aligned}$	$\begin{aligned} & \text { 69:54:07.3624 } \\ & \text { 3E } \end{aligned}$	-15.0	-18.0
	$\begin{aligned} & \text { Locu } \\ & \text { s } 2 \\ & \text { Input } \\ & \text { s } \end{aligned}$	$\begin{aligned} & \text { 38:01:17.8000 } \\ & 0 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 69:11:50.6000 } \\ & 0 E \end{aligned}$	$\begin{aligned} & 41: 50: 24.5000 \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 68:12:45.6000 } \\ & 0 \mathrm{E} \end{aligned}$	$\begin{aligned} & 38: 00: 55.0262 \\ & \text { 1S } \end{aligned}$	$\begin{aligned} & \text { 69:09:21.4992 } \\ & 2 E \end{aligned}$	$\begin{aligned} & 41: 49: 48.3843 \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 68:08:49.6956 } \\ & \text { 6E } \end{aligned}$	2.0	3.0
	Outp ut	$\begin{aligned} & 41: 22: 22.7750 \\ & 2 S \end{aligned}$	$\begin{aligned} & \text { 68:16:27.4783 } \\ & 6 E \end{aligned}$								
test43	Locu s 1 Input s	$\begin{aligned} & 39: 55: 35.8000 \\ & \text { os } \end{aligned}$	$\begin{aligned} & \text { 70:12:34.7000 } \\ & 0 \mathrm{E} \end{aligned}$	$\begin{aligned} & 41: 50: 24.5000 \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 68:12:45.6000 } \\ & 0 \mathrm{E} \end{aligned}$	$\begin{aligned} & 40: 10: 51.5757 \\ & 9 S \end{aligned}$	$\begin{aligned} & 70: 38: 22.5258 \\ & 4 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 42:09:14.4414 } \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 68:44:05.2763 } \\ & 0 E \end{aligned}$	-25.0	-30.0
	Locu s 2 Input s	$\begin{aligned} & \text { 43:29:17.8000 } \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 68:11:50.6000 } \\ & 0 E \end{aligned}$	$\begin{aligned} & \text { 39:55:35.8000 } \\ & \text { OS } \end{aligned}$	$\begin{aligned} & 70: 12: 34.7000 \\ & 0 E \end{aligned}$	$\begin{aligned} & 43: 30: 05.8626 \\ & 2 S \end{aligned}$	$\begin{aligned} & \text { 68:14:21.6632 } \\ & 4 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 39:56:44.0461 } \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 70:16:11.2661 } \\ & \text { 3E } \end{aligned}$	2.0	3.0
	Outp ut	$\begin{aligned} & 41: 25: 37.2397 \\ & \text { 1S } \end{aligned}$	$\begin{aligned} & \text { 69:27:12.7189 } \\ & 5 \mathrm{E} \end{aligned}$								
test44	Locu s 1 Input s	$\begin{aligned} & \text { 39:55:35.8000 } \\ & \text { os } \end{aligned}$	$\begin{aligned} & \text { 70:12:34.7000 } \\ & \text { OE } \end{aligned}$	$\begin{aligned} & 41: 50: 24.5000 \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 68:12:45.6000 } \\ & 0 E \end{aligned}$	$\begin{aligned} & 40: 00: 29.4769 \\ & 5 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 70:20:48.7528 } \\ & 2 E \end{aligned}$	$\begin{aligned} & 41: 56: 04.3853 \\ & 8 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:22:07.5649 } \\ & 9 E \end{aligned}$	-8.0	-9.0
	Locu s 2 Input s	$\begin{aligned} & \text { 43:29:17.8000 } \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 68:11:50.6000 } \\ & 0 E \end{aligned}$	$\begin{aligned} & 39: 55: 35.8000 \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 68:11:50.6000 } \\ & 0 E \end{aligned}$	$\begin{aligned} & 43: 29: 16.9748 \\ & 8 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:25:34.8046 } \\ & 9 E \end{aligned}$	$\begin{aligned} & 39: 55: 34.9183 \\ & 95 \end{aligned}$	$\begin{aligned} & \text { 68:26:08.5148 } \\ & \text { 4E } \end{aligned}$	10.0	11.0

	Outp ut	$\begin{aligned} & 41: 52: 35.5433 \\ & 9 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:25:50.1207 } \\ & 7 \mathrm{E} \end{aligned}$								
test45	Locu s 1 Input s	$\begin{aligned} & 39: 55: 35.8000 \\ & \text { OS } \end{aligned}$	$\begin{aligned} & 70: 12: 34.7000 \\ & 0 E \end{aligned}$	$\begin{aligned} & 41: 50: 24.5000 \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 68:12:45.6000 } \\ & 0 \mathrm{E} \end{aligned}$	$\begin{aligned} & 40: 01: 42.8040 \\ & 3 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 70:22:52.4496 } \\ & 9 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 41:57:19.8108 } \\ & \text { 1S } \end{aligned}$	$\begin{aligned} & \text { 68:24:12.6710 } \\ & \text { 4E } \end{aligned}$	-10.0	-11.0
	$\begin{aligned} & \text { Locu } \\ & \text { s } 2 \\ & \text { Input } \\ & \text { s } \end{aligned}$	$\begin{aligned} & \text { 43:29:17.8000 } \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 69:11:50.6000 } \\ & 0 E \end{aligned}$	$\begin{aligned} & 41: 50: 24.5000 \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 68:12:45.6000 } \\ & 0 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 43:23:08.2692 } \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 69:30:36.9790 } \\ & 6 \mathrm{E} \end{aligned}$	$\begin{aligned} & 41: 43: 36.3125 \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 68:33:35.1944 } \\ & 9 E \end{aligned}$	15.0	17.0
	Outp ut	$\begin{aligned} & 41: 46: 49.2592 \\ & 2 S \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 68:35:22.6806 } \\ & \text { 0E } \end{aligned}$								
test46	Locu s 1 Input s	$\begin{aligned} & 39: 55: 35.8000 \\ & \text { os } \end{aligned}$	$\begin{aligned} & \text { 70:12:34.7000 } \\ & 0 \mathrm{E} \end{aligned}$	$\begin{aligned} & 41: 50: 24.5000 \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 68:12:45.6000 } \\ & 0 E \end{aligned}$	$\begin{aligned} & 40: 44: 05.6230 \\ & 9 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 71:35:48.6236 } \\ & \text { 3E } \end{aligned}$	$\begin{aligned} & \text { 42:39:04.1763 } \\ & \text { 4S } \end{aligned}$	$\begin{aligned} & \text { 69:34:51.5364 } \\ & \text { 1E } \end{aligned}$	-80.0	-78.0
	Locu s 2 Input s	$\begin{aligned} & \text { 43:29:17.8000 } \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 69:11:50.6000 } \\ & 0 \mathrm{E} \end{aligned}$	$\begin{aligned} & 41: 45: 07.5000 \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 66:11:50.6000 } \\ & 0 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 42:55:41.1691 } \\ & \text { 6S } \end{aligned}$	$\begin{aligned} & \text { 69:46:17.7245 } \\ & \text { 7E } \end{aligned}$	$\begin{aligned} & 41: 10: 04.6593 \\ & 2 S \end{aligned}$	$\begin{aligned} & \text { 66:49:24.8624 } \\ & 3 E \end{aligned}$	42.0	45.0
	Outp ut	N/A	N/A								
test47	Locu s 1 Input s	$\begin{aligned} & 39: 55: 35.8000 \\ & \text { os } \end{aligned}$	$\begin{aligned} & \text { 70:12:34.7000 } \\ & \text { OE } \end{aligned}$	$\begin{aligned} & 41: 50: 24.5000 \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 68:12:45.6000 } \\ & 0 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 40:24:48.9416 } \\ & \text { 7S } \end{aligned}$	$\begin{aligned} & \text { 71:02:16.7393 } \\ & \text { 7E } \end{aligned}$	$\begin{aligned} & \text { 42:21:42.9132 } \\ & \text { 1S } \end{aligned}$	$\begin{aligned} & \text { 69:05:08.7091 } \\ & 7 E \end{aligned}$	-48.0	-50.0
	$\begin{aligned} & \text { Locu } \\ & \text { s } 2 \\ & \text { Input } \\ & \text { s } \end{aligned}$	$\begin{aligned} & \text { 42:09:17.8000 } \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 70:11:50.6000 } \\ & 0 E \end{aligned}$	$\begin{aligned} & \text { 42:09:17.8000 } \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 66:11:50.6000 } \\ & 0 E \end{aligned}$	$\begin{aligned} & \text { 41:24:17.2934 } \\ & 9 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 70: 10: 26.5343 \\ & 0 E \end{aligned}$	$\begin{aligned} & 41: 20: 17.2305 \\ & 4 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 66:13:22.0442 } \\ & 9 E \end{aligned}$	45.0	49.0
	Outp ut	$\begin{aligned} & 41: 24: 17.3247 \\ & \text { OS } \end{aligned}$	$\begin{aligned} & 70: 03: 47.7950 \\ & 5 \mathrm{E} \end{aligned}$								
test48	Locu s 1 Input s	$\begin{aligned} & 39: 55: 35.8000 \\ & \text { os } \end{aligned}$	$\begin{aligned} & 70: 12: 34.7000 \\ & 0 E \end{aligned}$	$\begin{aligned} & 41: 50: 24.5000 \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 68:12:45.6000 } \\ & 0 E \end{aligned}$	$\begin{aligned} & 40: 50: 05.0655 \\ & 9 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 71: 46: 21.2980 \\ & 6 E \end{aligned}$	$\begin{aligned} & 42: 51: 59.9928 \\ & 5 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 69:57:19.4976 } \\ & 2 E \end{aligned}$	-90.0	-99.0
	Locu s 2 Input s	$\begin{aligned} & \text { 42:29:17.8000 } \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 69:11:50.6000 } \\ & 0 E \end{aligned}$	$\begin{aligned} & \text { 44:01:17.8000 } \\ & \text { OS } \end{aligned}$	$\begin{aligned} & \text { 66:11:50.6000 } \\ & \text { OE } \end{aligned}$	$\begin{aligned} & 41: 48: 42.5624 \\ & \text { 1S } \end{aligned}$	$\begin{aligned} & \text { 68:32:33.3747 } \\ & 6 \mathrm{E} \end{aligned}$	$\begin{aligned} & 43: 15: 31.5444 \\ & 6 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 65:29:49.9212 } \\ & 9 E \end{aligned}$	50.0	55.0
	Outp ut	N/A	N/A								

WGS84LocusTanFixedRadiusArc Test Results

Test Identifi er	$\begin{aligned} & \text { Locus } \\ & 1 \\ & \text { Input } \end{aligned}$	Locus 1 Geodesic Start Latitude	Locus 1 Geodesic Start Longitude	Locus 1 Geodesic End Latitude	Locus 1 Geodesic End Longitude	Locus 1 Start Latitude	Locus 1 Start Longitude	Locus 1 End Latitude	Locus 1 End Longitude	Locus 1 Start Distan ce (nm)	Locus 1 End Distan ce (nm)	
	$\begin{aligned} & \text { Locus } \\ & 2 \\ & \text { Input } \end{aligned}$	Locus 2 Geodesic Start Latitude	Locus 2 Geodesic Start Longitude	Locus 2 Geodesic End Latitude	Locus 2 Geodesic End Longitude	Locus 2 Start Latitude	Locus 2 Start Longitude	Locus 2 End Latitude	Locus 2 End Longitude	Locus 2 Start Distan ce (nm)	Locus 2 End Distan ce (nm)	Arc Radi us (nm)
	Outpu t	Arc Direction	Arc Center Latitude	Arc Center Longitude	Tangent Point 1 Latitude	Tangent Point 1 Longitude	Tangent Point 2 Latitude	Tangent Point 2 Longitude				
test1	$\begin{aligned} & \text { Locus } \\ & 1 \\ & \text { Inputs } \end{aligned}$	$\begin{aligned} & \text { 40:10:24.500 } \\ & 00 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:12:45.600 } \\ & \text { 00W } \end{aligned}$	$\begin{aligned} & \text { 40:05:30.770 } \\ & 99 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 65:52:03.221 } \\ & 58 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 40:11:24.544 } \\ & 24 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:12:45.600 } \\ & \text { 00W } \end{aligned}$	$\begin{aligned} & \text { 40:06:30.744 } \\ & 30 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 65:51:59.399 } \\ & 53 W \end{aligned}$	-1.0	-1.0	
	$\begin{aligned} & \text { Locus } \\ & 2 \\ & \text { Inputs } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 38:45:52.615 } \\ & 65 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:43:43.428 } \\ & \text { 97W } \end{aligned}$	$\begin{aligned} & \text { 42:04:35.800 } \\ & 00 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:12:34.700 } \\ & \text { 00W } \end{aligned}$	$\begin{aligned} & \text { 38:45:59.577 } \\ & 64 N \end{aligned}$	$\begin{aligned} & \text { 68:44:59.624 } \\ & \text { 33W } \end{aligned}$	$\begin{aligned} & \text { 42:04:43.107 } \\ & 40 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:13:54.671 } \\ & \text { 12W } \end{aligned}$	-1.0	-1.0	2.0
	$\begin{aligned} & \text { Outpu } \\ & \mathrm{t} \end{aligned}$	1	$\begin{aligned} & \text { 40:12:42.909 } \\ & 80 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:34:26.170 } \\ & \text { 64W } \end{aligned}$	$\begin{aligned} & \text { 40:10:42.842 } \\ & 03 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:34:29.058 } \\ & \text { 90W } \end{aligned}$	$\begin{aligned} & \text { 40:12:28.742 } \\ & 86 \mathrm{~N} \end{aligned}$	68:31:50.631				
test2	$\begin{aligned} & \text { Locus } \\ & 1 \\ & \text { Inputs } \\ & \hline \end{aligned}$	$\begin{aligned} & 40: 10: 24.500 \\ & 00 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 12: 45.600 \\ & 00 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 40:05:30.770 } \\ & 99 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 65:52:03.221 } \\ & 58 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 40: 11: 24.544 \\ & 24 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 12: 45.600 \\ & \text { 00W } \end{aligned}$	$\begin{aligned} & 40: 07: 30.717 \\ & 40 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 65:51:55.575 } \\ & 62 W \end{aligned}$	-1.0	-2.0	
	Locus 2 Inputs	$\begin{aligned} & 38: 45: 52.615 \\ & 65 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:43:43.428 } \\ & 97 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 42:04:35.800 } \\ & 00 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:12:34.700 } \\ & \text { 00W } \end{aligned}$	$\begin{aligned} & \text { 38:46:06.525 } \\ & 83 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:46:15.823 } \\ & \text { 80W } \end{aligned}$	$\begin{aligned} & \text { 42:04:43.107 } \\ & 40 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:13:54.671 } \\ & 12 \mathrm{~W} \end{aligned}$	-2.0	-1.0	2.0
	Outpu t	1	$\begin{aligned} & 40: 13: 05.945 \\ & 59 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:35:07.044 } \\ & \text { 02W } \end{aligned}$	$\begin{aligned} & 40: 11: 05.868 \\ & 17 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 68:35:09.129 } \\ & \text { 78W } \end{aligned}$	$\begin{aligned} & 40: 12: 51.197 \\ & 87 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:32:31.582 } \\ & \text { 71W } \end{aligned}$				
test3	$\begin{aligned} & \text { Locus } \\ & 1 \\ & \text { Inputs } \end{aligned}$	$\begin{aligned} & \text { 40:10:24.500 } \\ & 00 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:12:45.600 } \\ & \text { 00W } \end{aligned}$	$\begin{aligned} & \text { 40:05:30.770 } \\ & 99 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 65:52:03.221 } \\ & 58 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 40: 09: 24.455 \\ & 59 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:12:45.600 } \\ & \text { 00W } \end{aligned}$	$\begin{aligned} & 40: 04: 30.797 \\ & 47 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 65:52:07.041 } \\ & \text { 76W } \end{aligned}$	1.0	1.0	
	$\begin{aligned} & \text { Locus } \\ & 2 \\ & \text { Inputs } \\ & \hline \end{aligned}$	38:45:52.615	$\begin{aligned} & \text { 68:43:43.428 } \\ & 97 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 42:04:35.800 } \\ & 00 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:12:34.700 } \\ & \text { 00W } \end{aligned}$	$\begin{aligned} & \text { 38:45:45.639 } \\ & 86 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:42:27.237 } \\ & 74 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 42:04:28.477 } \\ & 12 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:11:14.733 } \\ & \text { 98W } \end{aligned}$	1.0	1.0	3.0
	Outpu t	1	$\begin{aligned} & \text { 40:11:41.867 } \\ & 65 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:33:16.759 } \\ & \text { 39W } \end{aligned}$	$\begin{aligned} & \text { 40:08:41.765 } \\ & 92 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:33:21.140 } \\ & 59 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 40: 11: 20.556 \\ & 56 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:29:23.522 } \\ & 19 \mathrm{~W} \end{aligned}$				
test4	$\begin{aligned} & \text { Locus } \\ & 1 \\ & \text { Inputs } \end{aligned}$	$\begin{aligned} & \text { 40:10:24.500 } \\ & 00 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:12:45.600 } \\ & \text { 00W } \end{aligned}$	$\begin{aligned} & \text { 40:05:30.770 } \\ & 99 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 65:52:03.221 } \\ & 58 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 40:09:24.455 } \\ & 59 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:12:45.600 } \\ & \text { 00W } \end{aligned}$	$\begin{aligned} & \text { 40:03:30.823 } \\ & 74 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 65:52:10.860 } \\ & \text { 08W } \end{aligned}$	1.0	2.0	
	Locus 2 Inputs	$\begin{aligned} & \text { 38:45:52.615 } \\ & 65 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:43:43.428 } \\ & 97 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 42:04:35.800 } \\ & 00 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:12:34.700 } \\ & \text { 00W } \end{aligned}$	$\begin{aligned} & 38: 45: 38.650 \\ & 27 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:41:11.050 } \\ & 62 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 42:04:28.477 } \\ & 12 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:11:14.733 } \\ & \text { 98W } \end{aligned}$	2.0	1.0	2.0
	Outpu ts	1	$\begin{aligned} & \text { 40:10:16.886 } \\ & 71 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:31:25.719 } \\ & \text { 47W } \end{aligned}$	$\begin{aligned} & \text { 40:08:16.832 } \\ & 7 \mathrm{NN} \end{aligned}$	$\begin{aligned} & \text { 68:31:29.476 } \\ & 43 W \end{aligned}$	$\begin{aligned} & 40: 10: 03.248 \\ & 71 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:28:50.192 } \\ & \text { 80W } \end{aligned}$				
test5	$\begin{aligned} & \text { Locus } \\ & 1 \\ & \text { Inputs } \end{aligned}$	$\begin{aligned} & \text { 40:10:24.500 } \\ & 00 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 12: 45.600 \\ & \text { 00W } \end{aligned}$	$\begin{aligned} & \text { 40:05:30.770 } \\ & 99 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 65:52:03.221 } \\ & 58 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 40: 11: 24.544 \\ & 24 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 12: 45.600 \\ & 00 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 40: 06: 30.744 \\ & 30 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 65:51:59.399 } \\ & \text { 53W } \end{aligned}$	-1.0	-1.0	

	$\begin{aligned} & \text { Locus } \\ & 2 \\ & \text { Inputs } \end{aligned}$	$\begin{aligned} & \text { 38:45:52.615 } \\ & 65 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:43:43.428 } \\ & 97 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 42:04:35.800 } \\ & 00 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:12:34.700 } \\ & \text { 00W } \end{aligned}$	$\begin{aligned} & \text { 38:45:45.639 } \\ & 86 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:42:27.237 } \\ & 74 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 42:04:28.477 } \\ & 12 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:11:14.733 } \\ & \text { 98W } \end{aligned}$	1.0	1.0	2.0
	Outpu ts	1	$\begin{aligned} & 40: 12: 40.653 \\ & 68 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:31:48.782 } \\ & 39 W \end{aligned}$	$\begin{aligned} & 40: 10: 40.586 \\ & 99 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:31:51.747 } \\ & \text { 66W } \end{aligned}$	$\begin{aligned} & \text { 40:12:26.428 } \\ & 00 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:29:13.254 } \\ & \text { 21W } \end{aligned}$				
test6	$\begin{aligned} & \text { Locus } \\ & 1 \\ & \text { Inputs } \end{aligned}$	$\begin{aligned} & \text { 40:10:24.500 } \\ & 00 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:12:45.600 } \\ & \text { 00W } \end{aligned}$	$\begin{aligned} & \text { 40:05:30.770 } \\ & 99 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 65:52:03.221 } \\ & 58 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 40: 11: 24.544 \\ & 24 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 12: 45.600 \\ & 00 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 40: 07: 30.717 \\ & 40 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 65:51:55.575 } \\ & 62 W \end{aligned}$	-1.0	-2.0	
	$\begin{aligned} & \text { Locus } \\ & 2 \\ & \text { Inputs } \end{aligned}$	$\begin{aligned} & \text { 39:01:03.206 } \\ & 12 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 64:47:37.885 } \\ & 16 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 41:04:35.800 } \\ & \text { OON } \end{aligned}$	$\begin{aligned} & \text { 68:12:34.700 } \\ & \text { 00W } \end{aligned}$	$\begin{aligned} & \text { 38:59:30.112 } \\ & 07 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 64:49:15.158 } \\ & 95 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 41:03:47.851 } \\ & 19 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:13:22.435 } \\ & 86 \mathrm{~W} \end{aligned}$	-2.0	-1.0	2.0
	Outpu ts	1	$\begin{aligned} & 40: 11: 11.478 \\ & 12 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 66:48:27.886 } \\ & \text { 28W } \end{aligned}$	$\begin{aligned} & \text { 40:09:11.456 } \\ & 03 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 66:48:33.100 } \\ & 50 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 40:12:45.838 } \\ & 78 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 66:46:51.019 } \\ & \text { 20W } \end{aligned}$				
test7	$\begin{aligned} & \hline \text { Locus } \\ & 1 \\ & \text { Inputs } \\ & \hline \end{aligned}$	$\begin{aligned} & 40: 10: 24.500 \\ & 00 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:12:45.600 } \\ & \text { 00W } \end{aligned}$	$\begin{aligned} & \text { 36:50:12.190 } \\ & 34 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:12:45.600 } \\ & \text { 00W } \end{aligned}$	$\begin{aligned} & \text { 40:10:24.470 } \\ & 60 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:10:09.051 } \\ & 40 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 36:50:12.183 } \\ & 82 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:11:30.856 } \\ & \text { 98W } \end{aligned}$	-2.0	-1.0	
	$\begin{aligned} & \text { Locus } \\ & 2 \\ & \text { Inputs } \end{aligned}$	$\begin{aligned} & \text { 38:10:03.489 } \\ & 78 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 71:19:20.313 } \\ & \text { 30W } \end{aligned}$	$\begin{aligned} & \text { 41:04:35.800 } \\ & 00 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:12:34.700 } \\ & \text { 00W } \end{aligned}$	$\begin{aligned} & 38: 10: 32.285 \\ & 15 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 71:20:27.085 } \\ & \text { 81W } \end{aligned}$	$\begin{aligned} & \text { 41:05:35.812 } \\ & \text { 05N } \end{aligned}$	$\begin{aligned} & \text { 69:14:52.148 } \\ & \text { 42W } \end{aligned}$	-1.0	-2.0	3.0
	Outpu ts	1	$\begin{aligned} & \text { 40:02:07.334 } \\ & 83 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:06:18.248 } \\ & \text { 80W } \end{aligned}$	$\begin{aligned} & \text { 40:02:08.387 } \\ & 28 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:10:12.593 } \\ & 88 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 40: 00: 39.589 \\ & 07 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:02:53.618 } \\ & \text { 27W } \end{aligned}$				
test8	$\begin{aligned} & \text { Locus } \\ & 1 \\ & \text { Inputs } \end{aligned}$	$\begin{aligned} & 40: 10: 24.500 \\ & 00 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 12: 45.600 \\ & 00 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 36: 50: 55.829 \\ & 85 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:51:03.262 } \\ & \text { 40W } \end{aligned}$	$\begin{aligned} & 40: 10: 14.004 \\ & 41 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 15: 21.546 \\ & 23 W \end{aligned}$	$\begin{aligned} & 36: 50: 50.822 \\ & 61 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:52:17.756 } \\ & \text { 45W } \end{aligned}$	2.0	1.0	
	$\begin{aligned} & \text { Locus } \\ & 2 \\ & \text { Inputs } \end{aligned}$	$\begin{aligned} & \text { 38:02:20.089 } \\ & \text { 09N } \end{aligned}$	$\begin{aligned} & \text { 70:59:31.553 } \\ & \text { 24W } \end{aligned}$	$\begin{aligned} & \text { 41:04:35.800 } \\ & 00 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:12:34.700 } \\ & \text { 00W } \end{aligned}$	$\begin{aligned} & \text { 38:01:55.782 } \\ & 14 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 58: 22.104 \\ & 46 W \end{aligned}$	$\begin{aligned} & \text { 41:03:45.031 } \\ & 32 N \end{aligned}$	$\begin{aligned} & \text { 69:10:10.925 } \\ & 36 \mathrm{~W} \end{aligned}$	1.0	2.0	2.0
	Outpu ts	1	$\begin{aligned} & 39: 33: 03.947 \\ & 33 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:08:17.798 } \\ & \text { 94W } \end{aligned}$	$\begin{aligned} & 39: 32: 52.952 \\ & 67 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 10: 52.284 \\ & 75 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 39: 32: 13.764 \\ & 21 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 70:05:56.864 } \\ & \text { 47W } \end{aligned}$				
test9	$\begin{aligned} & \text { Locus } \\ & 1 \\ & \text { Inputs } \end{aligned}$	$\begin{aligned} & \text { 40:10:24.500 } \\ & 00 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 12: 45.600 \\ & \text { 00W } \end{aligned}$	$\begin{aligned} & \text { 37:35:08.049 } \\ & 87 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 67:31:03.267 } \\ & 43 W \end{aligned}$	$\begin{aligned} & 40: 11: 41.674 \\ & 10 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:10:45.639 } \\ & 05 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 37: 35: 45.282 \\ & 80 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 67:30:04.026 } \\ & \text { 42W } \end{aligned}$	-2.0	-1.0	
	$\begin{aligned} & \text { Locus } \\ & 2 \\ & \text { Inputs } \end{aligned}$	$\begin{aligned} & \text { 37:45:08.920 } \\ & 78 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 67:50:36.686 } \\ & \text { 93W } \end{aligned}$	$\begin{aligned} & \text { 41:04:35.800 } \\ & \text { OON } \end{aligned}$	$\begin{aligned} & \text { 68:12:34.700 } \\ & \text { 00W } \end{aligned}$	$\begin{aligned} & \text { 37:45:03.921 } \\ & 63 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 67:51:52.078 } \\ & \text { 35W } \end{aligned}$	$\begin{aligned} & \text { 41:04:25.305 } \\ & 11 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:15:12.760 } \\ & \text { 89W } \end{aligned}$	-1.0	-2.0	3.0
	Outpu ts	1	$\begin{aligned} & \text { 38:09:11.856 } \\ & 36 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 67:58:23.767 } \\ & \text { 23W } \end{aligned}$	$\begin{aligned} & 38: 07: 20.135 \\ & 32 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:01:22.776 } \\ & \text { 21W } \end{aligned}$	$\begin{aligned} & 38: 09: 27.920 \\ & 01 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 67:54:36.468 } \\ & 55 \mathrm{~W} \end{aligned}$				
test10	$\begin{aligned} & \text { Locus } \\ & 1 \\ & \text { Inputs } \end{aligned}$	$\begin{aligned} & 40: 10: 24.500 \\ & 00 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:12:45.600 } \\ & \text { 00W } \end{aligned}$	$\begin{aligned} & 42: 52: 36.591 \\ & 94 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 67:36:46.624 } \\ & \text { 23W } \end{aligned}$	$\begin{aligned} & 40: 09: 15.600 \\ & 15 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:10:37.398 } \\ & 89 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 42: 52: 00.699 \\ & 38 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 67:35:41.228 } \\ & \text { 61W } \end{aligned}$	2.0	1.0	
	Locus 2 Inputs	$\begin{aligned} & \text { 39:55:58.224 } \\ & \text { 92N } \end{aligned}$	$\begin{aligned} & \text { 69:41:27.775 } \\ & 37 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 43:04:35.800 } \\ & 00 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:12:34.700 } \\ & \text { 00W } \end{aligned}$	$\begin{aligned} & \text { 39:56:37.332 } \\ & 95 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:43:55.282 } \\ & \text { 80W } \end{aligned}$	$\begin{aligned} & \text { 43:04:56.318 } \\ & 78 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:13:51.636 } \\ & \text { 78W } \end{aligned}$	-2.0	-1.0	2.0
	Outpu ts	1	$\begin{aligned} & \hline 41: 21: 07.174 \\ & 87 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:07:28.710 } \\ & 56 \mathrm{~W} \end{aligned}$	41:19:57.562	$\begin{aligned} & \text { 69:05:18.906 } \\ & \text { 22W } \end{aligned}$	$\begin{aligned} & 41: 20: 26.728 \\ & 78 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 69:04:58.698 } \\ & \text { 14W } \end{aligned}$				
test11	$\begin{aligned} & \text { Locus } \\ & 1 \\ & \text { Inputs } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 40:10:24.500 } \\ & 00 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:12:45.600 } \\ & \text { 00W } \end{aligned}$	$\begin{aligned} & \text { 42:41:33.376 } \\ & 50 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 67:18:27.472 } \\ & 57 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 40:11:41.674 } \\ & 10 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:14:45.560 } \\ & 95 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 42:42:13.471 } \\ & 96 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 67:19:28.019 } \\ & \text { 14W } \end{aligned}$	-2.0	-1.0	
	Locus	38:47:21.082	67:28:11.049	42:04:35.800	68:12:34.700	38:47:40.921	67:25:39.675	42:04:46.215	68:11:15.351	2.0	1.0	2.0

	Inputs											
	Outpu ts	1	$\begin{aligned} & \text { 40:03:14.478 } \\ & 49 S \end{aligned}$	$\begin{aligned} & \text { 66:37:33.384 } \\ & \text { 95W } \end{aligned}$	$\begin{aligned} & \text { 40:05:14.445 } \\ & 65 S \end{aligned}$	$\begin{aligned} & \text { 66:37:26.294 } \\ & \text { 02W } \end{aligned}$	$\begin{aligned} & \text { 40:02:07.807 } \\ & 89 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 66:35:23.422 } \\ & 43 W \end{aligned}$				
test18	Locus 1 Inputs	$\begin{aligned} & \text { 40:10:24.500 } \\ & 00 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 70: 12: 45.600 \\ & 00 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 43: 30: 29.876 \\ & 90 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 70: 12: 45.600 \\ & \text { 00W } \end{aligned}$	$\begin{aligned} & 40: 10: 24.470 \\ & 60 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 70: 10: 09.051 \\ & 40 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 43: 30: 29.868 \\ & 64 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 70:11:23.152 } \\ & \text { 09W } \end{aligned}$	-2.0	-1.0	
	$\begin{aligned} & \text { Locus } \\ & 2 \\ & \text { Inputs } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 40:56:44.386 } \\ & 23 S \end{aligned}$	$\begin{aligned} & 70: 24: 30.082 \\ & 51 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 38:04:35.800 } \\ & 00 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:12:34.700 } \\ & \text { 00W } \end{aligned}$	$\begin{aligned} & \text { 40:56:13.101 } \\ & 74 S \end{aligned}$	$\begin{aligned} & 70: 25: 37.657 \\ & 28 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 38:03:35.713 } \\ & 46 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:14:46.283 } \\ & 92 \mathrm{~W} \end{aligned}$	-1.0	-2.0	3.0
	Outpu ts	1	$\begin{aligned} & 40: 25: 56.597 \\ & 23 S \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 70:06:18.828 } \\ & \text { 40W } \end{aligned}$	$\begin{aligned} & 40: 25: 55.848 \\ & 92 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 70:10:14.547 } \\ & \text { 14W } \end{aligned}$	$\begin{aligned} & 40: 27: 29.089 \\ & 86 S \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 70:02:56.519 } \\ & \text { 01W } \end{aligned}$				
test19	Locus 1 Inputs	$\begin{aligned} & \text { 40:10:24.500 } \\ & 00 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 70: 12: 45.600 \\ & 00 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 43: 29: 41.803 \\ & 26 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 69:48:49.551 } \\ & 37 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 40: 10: 34.937 \\ & 24 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 70: 15: 21.559 \\ & 54 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 43:29:47.302 } \\ & 91 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 69:50:11.635 } \\ & 25 \mathrm{~W} \end{aligned}$	2.0	1.0	
	Locus 2 Inputs	$\begin{aligned} & \text { 40:46:58.965 } \\ & 10 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 70:43:33.361 } \\ & 04 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 38:04:35.800 } \\ & 00 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:12:34.700 } \\ & \text { 00W } \end{aligned}$	$\begin{aligned} & 40: 47: 34.755 \\ & 34 S \end{aligned}$	$\begin{aligned} & 70: 42: 29.939 \\ & 66 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 38:05:44.686 } \\ & 44 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:10:30.177 } \\ & 29 \mathrm{~W} \end{aligned}$	1.0	2.0	2.0
	Outpu ts	1	$\begin{aligned} & \text { 40:13:25.078 } \\ & 66 S \end{aligned}$	$\begin{aligned} & \text { 70:12:23.800 } \\ & \text { 09W } \end{aligned}$	$\begin{aligned} & \text { 40:13:36.121 } \\ & 95 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 70:14:59.803 } \\ & 79 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 40:14:36.571 } \\ & 01 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 70: 10: 17.905 \\ & 79 \mathrm{~W} \end{aligned}$				
test20	$\begin{aligned} & \hline \text { Locus } \\ & 1 \\ & \text { Inputs } \\ & \hline \end{aligned}$	$\begin{aligned} & 40: 10: 24.500 \\ & 00 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 70:12:45.600 } \\ & \text { 00W } \end{aligned}$	$\begin{aligned} & \text { 42:41:33.376 } \\ & 50 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 67:18:27.472 } \\ & \text { 57W } \end{aligned}$	$\begin{aligned} & \text { 40:09:07.291 } \\ & 11 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 70: 10: 45.714 \\ & 53 W \end{aligned}$	$\begin{aligned} & \text { 42:40:53.272 } \\ & 07 S \end{aligned}$	$\begin{aligned} & \hline 67: 17: 26.947 \\ & 63 W \end{aligned}$	-2.0	-1.0	
	$\begin{aligned} & \text { Locus } \\ & 2 \\ & \text { Inputs } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 41:23:57.635 } \\ & \text { 85S } \end{aligned}$	$\begin{aligned} & \text { 68:49:25.737 } \\ & 53 W \end{aligned}$	$\begin{aligned} & \text { 38:04:35.800 } \\ & 00 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 69:12:34.700 } \\ & \text { 00W } \end{aligned}$	$\begin{aligned} & \text { 41:24:03.117 } \\ & 84 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:50:45.132 } \\ & 38 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 38:04:46.243 } \\ & 10 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 69:15:06.102 } \\ & 22 W \end{aligned}$	-1.0	-2.0	3.0
	Outpu ts	1	$\begin{aligned} & \text { 41:11:40.445 } \\ & 78 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:56:19.657 } \\ & \text { 74W } \end{aligned}$	$\begin{aligned} & \text { 41:13:37.479 } \\ & 45 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:59:20.932 } \\ & \text { 78W } \end{aligned}$	$\begin{aligned} & \text { 41:11:23.248 } \\ & 99 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:52:22.321 } \\ & 54 \mathrm{~W} \end{aligned}$				
test21	$\begin{aligned} & \text { Locus } \\ & 1 \\ & \text { Inputs } \end{aligned}$	$\begin{aligned} & \text { 40:10:24.500 } \\ & 00 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 70: 12: 45.600 \\ & 00 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 37: 24: 53.776 \\ & 02 S \end{aligned}$	$\begin{aligned} & \text { 67:48:48.292 } \\ & 35 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 40: 11: 33.360 \\ & 17 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 70: 10: 37.326 \\ & 86 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 37: 25: 26.924 \\ & 44 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 67:47:45.478 } \\ & \text { 85W } \end{aligned}$	2.0	1.0	
	$\begin{aligned} & \text { Locus } \\ & 2 \\ & \text { Inputs } \end{aligned}$	$\begin{aligned} & \text { 40:23:45.261 } \\ & 80 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 71:17:39.828 } \\ & \text { 70W } \end{aligned}$	$\begin{aligned} & \text { 38:04:35.800 } \\ & 00 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:12:34.700 } \\ & \text { 00W } \end{aligned}$	$\begin{aligned} & \text { 40:22:17.492 } \\ & 77 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 71:19:27.002 } \\ & 96 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 38:03:53.323 } \\ & 48 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:13:28.422 } \\ & \text { 49W } \end{aligned}$	-2.0	-1.0	2.0
	Outpu ts	-1	$\begin{aligned} & 38: 19: 04.226 \\ & 08 S \end{aligned}$	$\begin{aligned} & \text { 68:29:21.213 } \\ & \text { 74W } \end{aligned}$	$\begin{aligned} & 38: 17: 57.687 \\ & 53 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:31:28.147 } \\ & \text { 15W } \\ & \hline \end{aligned}$	$\begin{aligned} & 38: 17: 38.591 \\ & 51 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:31:08.128 } \\ & 37 \mathrm{~W} \\ & \hline \end{aligned}$				
test22	$\begin{aligned} & \text { Locus } \\ & 1 \\ & \text { Inputs } \\ & \hline \end{aligned}$	$\begin{aligned} & 40: 10: 24.500 \\ & 00 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 70: 12: 45.600 \\ & 00 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 37:35:08.049 } \\ & 87 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 67:31:03.267 } \\ & 43 W \end{aligned}$	$\begin{aligned} & \text { 40:09:07.291 } \\ & 11 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 70: 14: 45.485 \\ & 47 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 37:34:30.808 } \\ & 62 S \end{aligned}$	$\begin{aligned} & \text { 67:32:02.492 } \\ & \text { 05W } \end{aligned}$	-2.0	-1.0	
	$\begin{aligned} & \text { Locus } \\ & 2 \\ & \text { Inputs } \end{aligned}$	$\begin{aligned} & \text { 41:21:34.316 } \\ & 10 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 67:26:28.970 } \\ & \text { 88W } \end{aligned}$	$\begin{aligned} & \text { 38:04:35.800 } \\ & 00 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:12:34.700 } \\ & \text { 00W } \end{aligned}$	$\begin{aligned} & \text { 41:21:12.424 } \\ & 83 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 67:23:52.292 } \\ & 53 W \end{aligned}$	$\begin{aligned} & \hline 38: 04: 25.363 \\ & 03 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:11:19.870 } \\ & \text { 10W } \end{aligned}$	2.0	1.0	2.0
	Outpu ts	1	$\begin{aligned} & \text { 38:11:04.159 } \\ & 43 S \end{aligned}$	$\begin{aligned} & \text { 68:12:22.746 } \\ & \text { 71W } \end{aligned}$	$\begin{aligned} & \text { 38:12:19.771 } \\ & 40 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:10:24.461 } \\ & 67 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 38:10:42.677 } \\ & 13 S \end{aligned}$	$\begin{aligned} & \text { 68:09:53.007 } \\ & 75 \mathrm{~W} \end{aligned}$				
test23	Locus 1 Inputs	$\begin{aligned} & \text { 40:10:24.500 } \\ & 00 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 70: 12: 45.600 \\ & 00 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 43:27:18.010 } \\ & 78 S \end{aligned}$	$\begin{aligned} & \text { 71:00:24.952 } \\ & 85 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 40: 10: 14.066 \\ & 28 S \end{aligned}$	$\begin{aligned} & \text { 70:14:02.681 } \\ & 87 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 43: 26: 56.045 \\ & 70 S \end{aligned}$	$\begin{aligned} & \text { 71:03:06.913 } \\ & \text { 12W } \end{aligned}$	1.0	2.0	
	Locus 2 Inputs	$\begin{aligned} & 42: 35: 45.277 \\ & 80 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 72: 06: 36.630 \\ & 38 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 40:04:35.800 } \\ & 00 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 69:12:34.700 } \\ & \text { 00W } \end{aligned}$	$\begin{aligned} & \text { 42:37:05.450 } \\ & 79 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 72:04:35.690 } \\ & 54 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 40:05:14.392 } \\ & 06 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 69:11:34.814 } \\ & \text { 05W } \end{aligned}$	2.0	1.0	2.0

	Outpu ts	1	$\begin{aligned} & \text { 41:09:00.289 } \\ & 76 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 70:25:29.091 } \\ & \text { 05W } \end{aligned}$	$\begin{aligned} & \text { 41:08:38.535 } \\ & 06 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 70:28:05.303 } \\ & 41 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 41:10:18.257 } \\ & 57 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 70: 23: 28.270 \\ & 22 \mathrm{~W} \end{aligned}$				
test24	$\begin{aligned} & \text { Locus } \\ & 1 \\ & \text { Inputs } \\ & \hline \end{aligned}$	$\begin{aligned} & 40: 10: 24.500 \\ & 00 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 70: 12: 45.600 \\ & 00 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 38:26:46.467 } \\ & 74 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 73:53:15.484 } \\ & \text { 61W } \end{aligned}$	$\begin{aligned} & 40: 12: 08.492 \\ & 21 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 70: 14: 03.907 \\ & 52 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 38: 27: 37.217 \\ & 79 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 73:53:56.335 } \\ & \text { 33W } \end{aligned}$	-2.0	-1.0	
	$\begin{aligned} & \text { Locus } \\ & 2 \\ & \text { Inputs } \end{aligned}$	$\begin{aligned} & \text { 38:59:53.214 } \\ & 74 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 73:29:12.959 } \\ & 94 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 39:04:35.800 } \\ & \text { 00S } \end{aligned}$	$\begin{aligned} & \text { 69:12:34.700 } \\ & \text { 00W } \end{aligned}$	$\begin{aligned} & \text { 38:58:53.224 } \\ & 54 S \end{aligned}$	$\begin{aligned} & \text { 73:29:09.342 } \\ & \text { 42W } \end{aligned}$	$\begin{aligned} & \text { 39:02:35.688 } \\ & 26 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 69:12:34.700 } \\ & \text { 00W } \end{aligned}$	-1.0	-2.0	2.0
	Outpu ts	-1	$\begin{aligned} & \text { 39:02:21.677 } \\ & 93 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 72: 38: 46.919 \\ & 55 W \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 39: 04: 03.709 \\ & 82 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 72:40:08.199 } \\ & \text { 04W } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 39:00:21.629 } \\ & 99 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 72:38:41.871 } \\ & 65 \mathrm{~W} \end{aligned}$				
test25	$\begin{aligned} & \hline \text { Locus } \\ & 1 \\ & \text { Inputs } \\ & \hline \end{aligned}$	$\begin{aligned} & 40: 10: 24.500 \\ & 00 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 70: 12: 45.600 \\ & \text { 00W } \end{aligned}$	$\begin{aligned} & 37: 15: 52.751 \\ & 97 S \end{aligned}$	$\begin{aligned} & \text { 68:07:31.780 } \\ & 07 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 40: 11: 24.522 \\ & 18 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 70:10:29.991 } \\ & 73 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 37:16:21.590 } \\ & 37 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:06:25.839 } \\ & \text { 60W } \end{aligned}$	2.0	1.0	
	$\begin{aligned} & \text { Locus } \\ & 2 \\ & \text { Inputs } \end{aligned}$	$\begin{aligned} & \text { 36:21:10.677 } \\ & 74 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 71:47:01.134 } \\ & \text { 06W } \end{aligned}$	$\begin{aligned} & \text { 38:04:35.800 } \\ & 00 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:12:34.700 } \\ & \text { 00W } \end{aligned}$	$\begin{aligned} & \text { 36:19:28.943 } \\ & 58 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 71:45:42.083 } \\ & 55 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 38:03:43.779 } \\ & 56 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:11:56.713 } \\ & 84 \mathrm{~W} \end{aligned}$	-2.0	-1.0	2.0
	Outpu ts	-1	$\begin{aligned} & \text { 37:57:02.695 } \\ & \text { 88S } \end{aligned}$	$\begin{aligned} & \text { 68:31:21.637 } \\ & 89 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 37:56:05.076 } \\ & 32 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:33:34.749 } \\ & \text { 30W } \end{aligned}$	$\begin{aligned} & \text { 37:55:19.155 } \\ & 11 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:30:04.714 } \\ & 14 \mathrm{~W} \end{aligned}$				
test26	$\begin{aligned} & \hline \text { Locus } \\ & 1 \\ & \text { Inputs } \end{aligned}$	$\begin{aligned} & 40: 10: 24.500 \\ & 00 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:12:45.600 } \\ & \text { O0E } \end{aligned}$	$\begin{aligned} & \text { 40:05:30.770 } \\ & 99 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 72:33:27.978 } \\ & \text { 42E } \end{aligned}$	$\begin{aligned} & \text { 40:11:24.544 } \\ & 24 S \end{aligned}$	$\begin{aligned} & \text { 68:12:45.600 } \\ & \text { O0E } \end{aligned}$	$\begin{aligned} & \text { 40:07:30.717 } \\ & 40 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 72: 33: 35.624 \\ & 38 \mathrm{E} \end{aligned}$	1.0	2.0	
	$\begin{aligned} & \text { Locus } \\ & 2 \\ & \text { Inputs } \end{aligned}$	$\begin{aligned} & \text { 41:23:11.704 } \\ & 67 S \end{aligned}$	$\begin{aligned} & \text { 69:40:12.887 } \\ & 93 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 38:04:35.800 } \\ & 00 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 70: 12: 34.700 \\ & 00 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 41:23:27.023 } \\ & 65 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 69:42:51.013 } \\ & 02 \mathrm{E} \end{aligned}$	$\begin{aligned} & 38: 04: 43.113 \\ & 48 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 70: 13: 50.122 \\ & 96 \mathrm{E} \end{aligned}$	2.0	1.0	2.0
	Outpu ts	1	$\begin{aligned} & \text { 40:09:04.647 } \\ & 98 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 69:52:10.380 } \\ & \text { 91E } \end{aligned}$	$\begin{aligned} & 40: 11: 04.725 \\ & 55 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 69:52:12.518 } \\ & 66 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 40:09:19.104 } \\ & 87 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 69:54:45.745 } \\ & \text { 00E } \end{aligned}$				
test27	$\begin{aligned} & \hline \text { Locus } \\ & 1 \\ & \text { Inputs } \\ & \hline \end{aligned}$	$\begin{aligned} & 40: 10: 24.500 \\ & 00 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:12:45.600 } \\ & \text { 00E } \end{aligned}$	$\begin{aligned} & 40: 05: 30.770 \\ & 99 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 72:33:27.978 } \\ & \text { 42E } \end{aligned}$	$\begin{aligned} & \text { 40:09:24.455 } \\ & 59 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:12:45.600 } \\ & \text { 00E } \end{aligned}$	$\begin{aligned} & \text { 40:03:30.823 } \\ & 74 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 72:33:20.339 } \\ & \text { 92E } \end{aligned}$	-1.0	-2.0	
	$\begin{aligned} & \text { Locus } \\ & 2 \\ & \text { Inputs } \end{aligned}$	$\begin{aligned} & 40: 51: 02.568 \\ & 24 S \end{aligned}$	$\begin{aligned} & \text { 72:36:04.820 } \\ & \text { 91E } \end{aligned}$	$\begin{aligned} & \text { 38:04:35.800 } \\ & 00 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 70:12:34.700 } \\ & \text { 00E } \end{aligned}$	$\begin{aligned} & \text { 40:52:10.594 } \\ & 42 S \end{aligned}$	$\begin{aligned} & \text { 72:33:54.495 } \\ & \text { 92E } \end{aligned}$	$\begin{aligned} & \text { 38:05:08.509 } \\ & 46 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 70:11:30.963 } \\ & 82 E \end{aligned}$	-2.0	-1.0	2.0
	Outpu ts	1	$\begin{aligned} & \text { 40:03:15.216 } \\ & 15 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 71: 47: 36.655 \\ & 50 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 40:05:15.183 } \\ & 67 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 71:47:43.736 } \\ & \text { 13E } \end{aligned}$	$\begin{aligned} & \text { 40:02:08.545 } \\ & 36 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 71:49:46.618 } \\ & \text { 23E } \end{aligned}$				
test28	$\begin{aligned} & \text { Locus } \\ & 1 \\ & \text { Inputs } \\ & \hline \end{aligned}$	$\begin{aligned} & 40: 10: 24.500 \\ & 00 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:12:45.600 } \\ & \text { 00E } \end{aligned}$	$\begin{aligned} & 43: 30: 29.876 \\ & 90 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:12:45.600 } \\ & \text { 00E } \end{aligned}$	$\begin{aligned} & \text { 40:10:24.470 } \\ & 60 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:15:22.148 } \\ & 60 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 43:30:29.868 } \\ & 64 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:14:08.047 } \\ & \text { 91E } \end{aligned}$	-2.0	-1.0	
	$\begin{aligned} & \text { Locus } \\ & 2 \\ & \text { Inputs } \end{aligned}$	$\begin{aligned} & \text { 40:56:44.386 } \\ & 23 S \end{aligned}$	$\begin{aligned} & \text { 68:00:39.317 } \\ & \text { 49E } \end{aligned}$	$\begin{aligned} & \text { 38:04:35.800 } \\ & \text { 00S } \end{aligned}$	$\begin{aligned} & 70: 12: 34.700 \\ & 00 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 40:56:13.101 } \\ & 74 S \end{aligned}$	$\begin{aligned} & \text { 67:59:31.742 } \\ & \text { 72E } \end{aligned}$	$\begin{aligned} & \text { 38:03:35.713 } \\ & 46 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 70: 10: 23.116 \\ & 08 \mathrm{E} \end{aligned}$	-1.0	-2.0	3.0
	Outpu ts	1	$\begin{aligned} & \text { 40:25:28.598 } \\ & 97 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:19:12.510 } \\ & 23 E \end{aligned}$	$\begin{aligned} & \text { 40:25:27.850 } \\ & 71 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:15:16.818 } \\ & \text { 63E } \end{aligned}$	$\begin{aligned} & \text { 40:27:01.081 } \\ & 04 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:22:34.804 } \\ & 66 \mathrm{E} \end{aligned}$				
test29	$\begin{aligned} & \text { Locus } \\ & 1 \\ & \text { Inputs } \end{aligned}$	$\begin{aligned} & 40: 10: 24.500 \\ & 00 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:12:45.600 } \\ & 00 \mathrm{E} \end{aligned}$	$\begin{aligned} & 43: 29: 41.803 \\ & 26 S \end{aligned}$	$\begin{aligned} & \text { 68:36:41.648 } \\ & \text { 63E } \end{aligned}$	$\begin{aligned} & 40: 10: 34.937 \\ & 24 S \end{aligned}$	$\begin{aligned} & \text { 68:10:09.640 } \\ & 46 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 43:29:47.302 } \\ & 91 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:35:19.564 } \\ & 75 \mathrm{E} \end{aligned}$	2.0	1.0	
	$\begin{aligned} & \text { Locus } \\ & 2 \\ & \text { Inputs } \end{aligned}$	$\begin{aligned} & \text { 40:46:58.965 } \\ & \text { 10S } \end{aligned}$	$\begin{aligned} & \text { 67:41:36.038 } \\ & \text { 96E } \end{aligned}$	$\begin{aligned} & \text { 38:04:35.800 } \\ & 00 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 70:12:34.700 } \\ & \text { 00E } \end{aligned}$	$\begin{aligned} & 40: 47: 34.755 \\ & 34 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 67:42:39.460 } \\ & \text { 34E } \end{aligned}$	$\begin{aligned} & \text { 38:05:44.686 } \\ & 44 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 70:14:39.222 } \\ & \text { 71E } \end{aligned}$	1.0	2.0	2.0
	Outpu	1	40:13:05.036	68:13:04.979	40:13:16.079	68:10:28.987	40:14:16.523	68:15:10.868				

	ts		69S	01E	09S	97E	26S	66E				
test30	$\begin{aligned} & \hline \text { Locus } \\ & 1 \\ & \text { Inputs } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 40:10:24.500 } \\ & 00 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:12:45.600 } \\ & \text { 00E } \end{aligned}$	$\begin{aligned} & \text { 42:41:33.376 } \\ & 50 S \end{aligned}$	$\begin{aligned} & \text { 71:07:03.727 } \\ & \text { 43E } \end{aligned}$	$\begin{aligned} & \text { 40:09:07.291 } \\ & 11 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:14:45.485 } \\ & 47 E \end{aligned}$	$\begin{aligned} & \text { 42:40:53.272 } \\ & 07 S \end{aligned}$	$\begin{aligned} & \text { 71:08:04.252 } \\ & 37 \mathrm{E} \end{aligned}$	-2.0	-1.0	
	$\begin{aligned} & \text { Locus } \\ & 2 \\ & \text { Inputs } \end{aligned}$	$\begin{aligned} & \text { 41:23:57.635 } \\ & 85 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 69:35:43.662 } \\ & \text { 47E } \end{aligned}$	$\begin{aligned} & \text { 38:04:35.800 } \\ & 00 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 69:12:34.700 } \\ & \text { 00E } \end{aligned}$	$\begin{aligned} & \text { 41:24:03.117 } \\ & 84 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 69:34:24.267 } \\ & \text { 62E } \end{aligned}$	$\begin{aligned} & \text { 38:04:46.243 } \\ & 10 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 69: 10: 03.297 \\ & 78 \mathrm{E} \end{aligned}$	-1.0	-2.0	3.0
	Outpu ts	1	$\begin{aligned} & \text { 41:11:18.773 } \\ & 46 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 69:28:47.001 } \\ & \text { 30E } \end{aligned}$	$\begin{aligned} & \text { 41:13:15.796 } \\ & 50 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 69:25:45.730 } \\ & \text { 71E } \end{aligned}$	$\begin{aligned} & \text { 41:11:01.578 } \\ & 21 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 69:32:44.315 } \\ & 95 \mathrm{E} \end{aligned}$				
test31	$\begin{aligned} & \text { Locus } \\ & 1 \\ & \text { Inputs } \end{aligned}$	$\begin{aligned} & \text { 40:10:24.500 } \\ & 00 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:12:45.600 } \\ & \text { 00E } \end{aligned}$	$\begin{aligned} & 37: 24: 53.776 \\ & 02 S \end{aligned}$	$\begin{aligned} & \text { 70:36:42.907 } \\ & \text { 65E } \end{aligned}$	$\begin{aligned} & 40: 11: 33.360 \\ & 17 S \end{aligned}$	$\begin{aligned} & \text { 68:14:53.873 } \\ & 14 \mathrm{E} \end{aligned}$	$\begin{aligned} & 37: 25: 26.924 \\ & 44 \mathrm{~S} \end{aligned}$	70:37:45.721	2.0	1.0	
	Locus 2 Inputs	$\begin{aligned} & \text { 40:23:45.261 } \\ & 80 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 67:07:29.571 } \\ & \text { 30E } \end{aligned}$	$\begin{aligned} & \text { 38:04:35.800 } \\ & 00 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 70: 12: 34.700 \\ & 00 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 40:22:17.492 } \\ & 77 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 67:05:42.397 } \\ & \text { 04E } \end{aligned}$	$\begin{aligned} & \text { 38:03:53.323 } \\ & 48 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 70: 11: 40.977 \\ & 51 \mathrm{E} \end{aligned}$	-2.0	-1.0	2.0
	Outpu ts	-1	$\begin{aligned} & 38: 18: 15.297 \\ & 86 S \end{aligned}$	$\begin{aligned} & \text { 69:56:51.276 } \\ & 53 \mathrm{E} \\ & \hline \end{aligned}$	$\begin{aligned} & 38: 17: 08.771 \\ & 55 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 69:54:44.356 } \\ & \text { 35E } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 38:16:49.679 } \\ & 07 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 69:55:04.361 } \\ & \text { 25E } \end{aligned}$				
test32	Locus 1 Inputs	$\begin{aligned} & \text { 40:10:24.500 } \\ & 00 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:12:45.600 } \\ & \text { 00E } \end{aligned}$	$\begin{aligned} & \text { 37:35:08.049 } \\ & 87 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 70: 54: 27.932 \\ & 57 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 40:09:07.291 } \\ & 11 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:10:45.714 } \\ & 53 \mathrm{E} \end{aligned}$	$\begin{aligned} & 37: 34: 30.808 \\ & 62 S \end{aligned}$	$\begin{aligned} & 70: 53: 28.707 \\ & 95 \mathrm{E} \end{aligned}$	-2.0	-1.0	
	$\begin{aligned} & \hline \text { Locus } \\ & 2 \\ & \text { Inputs } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 41:21:34.316 } \\ & 10 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 70: 58: 40.429 \\ & 12 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 38:04:35.800 } \\ & 00 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 70: 12: 34.700 \\ & \text { OOE } \end{aligned}$	$\begin{aligned} & \text { 41:21:12.424 } \\ & 83 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 71:01:17.107 } \\ & \text { 47E } \end{aligned}$	$\begin{aligned} & \text { 38:04:25.363 } \\ & 03 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 70: 13: 49.529 \\ & 90 \mathrm{E} \end{aligned}$	2.0	1.0	2.0
	Outpu ts	1	$\begin{aligned} & \text { 38:11:21.506 } \\ & 67 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & 70: 12: 50.643 \\ & 10 \mathrm{E} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 38:12:37.123 } \\ & 56 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & 70: 14: 48.930 \\ & 82 \mathrm{E} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 38:11:00.022 } \\ & 97 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & 70: 15: 20.391 \\ & 60 \mathrm{E} \end{aligned}$				
test33	$\begin{aligned} & \text { Locus } \\ & 1 \\ & \text { Inputs } \end{aligned}$	$\begin{aligned} & 40: 10: 24.500 \\ & 00 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:12:45.600 } \\ & \text { 00E } \end{aligned}$	$\begin{aligned} & \text { 43:27:18.010 } \\ & 78 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 67:25:06.247 } \\ & 15 \mathrm{E} \end{aligned}$	$\begin{aligned} & 40: 10: 14.066 \\ & 28 S \end{aligned}$	$\begin{aligned} & \text { 68:11:28.518 } \\ & \text { 13E } \end{aligned}$	$\begin{aligned} & 43: 26: 56.045 \\ & 70 S \end{aligned}$	67:22:24.286 88E	1.0	2.0	
	$\begin{aligned} & \text { Locus } \\ & 2 \\ & \text { Inputs } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 42:35:45.277 } \\ & 80 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 66:18:32.769 } \\ & \text { 62E } \end{aligned}$	$\begin{aligned} & \text { 40:04:35.800 } \\ & 00 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 69:12:34.700 } \\ & \text { O0E } \end{aligned}$	$\begin{aligned} & \text { 42:37:05.450 } \\ & 79 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 66:20:33.709 } \\ & 46 E \end{aligned}$	$\begin{aligned} & \text { 40:05:14.392 } \\ & 06 \mathrm{~S} \end{aligned}$	69:13:34.585 95E	2.0	1.0	2.0
	Outpu ts	1	$\begin{aligned} & \text { 41:08:35.701 } \\ & 13 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 68:00:08.093 } \\ & \text { 19E } \end{aligned}$	$\begin{aligned} & \text { 41:08:13.948 } \\ & 66 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 67:57:31.896 } \\ & \text { 48E } \end{aligned}$	$\begin{aligned} & \text { 41:09:53.660 } \\ & 93 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:02:08.910 } \\ & \text { 61E } \end{aligned}$				
test34	$\begin{aligned} & \text { Locus } \\ & 1 \\ & \text { Inputs } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 40:10:24.500 } \\ & 00 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:12:45.600 } \\ & \text { 00E } \end{aligned}$	$\begin{aligned} & 38: 26: 46.467 \\ & 74 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 64:32:15.715 } \\ & \text { 39E } \end{aligned}$	$\begin{aligned} & 40: 12: 08.492 \\ & 21 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 68: 11: 27.292 \\ & 48 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 38:27:37.217 } \\ & 79 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 64:31:34.864 } \\ & \text { 67E } \end{aligned}$	-2.0	-1.0	
	Locus 2 Inputs	$\begin{aligned} & \text { 38:59:53.214 } \\ & 74 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 64:55:56.440 } \\ & \text { 06E } \end{aligned}$	$\begin{aligned} & \text { 39:04:35.800 } \\ & 00 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 69:12:34.700 } \\ & \text { 00E } \end{aligned}$	$\begin{aligned} & \text { 38:58:53.224 } \\ & 54 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 64:56:00.057 } \\ & 58 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 39:02:35.688 } \\ & 26 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 69:12:34.700 } \\ & \text { 00E } \end{aligned}$	-1.0	-2.0	2.0
	Outpu ts	-1	$\begin{aligned} & \text { 39:02:22.266 } \\ & 16 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 65:46:45.495 } \\ & \text { 14E } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 39:04:04.298 } \\ & 28 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 65:45:24.215 } \\ & \text { 95E } \end{aligned}$	$\begin{aligned} & \text { 39:00:22.217 } \\ & 94 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 65:46:50.532 } \\ & 25 \mathrm{E} \\ & \hline \end{aligned}$				
test35	Locus 1 Inputs	$\begin{aligned} & \text { 40:10:24.500 } \\ & 00 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:12:45.600 } \\ & \text { 00E } \end{aligned}$	$\begin{aligned} & \text { 37:15:52.751 } \\ & 97 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 70:17:59.419 } \\ & \text { 93E } \end{aligned}$	$\begin{aligned} & 40: 11: 24.522 \\ & 18 S \end{aligned}$	$\begin{aligned} & \text { 68:15:01.208 } \\ & \text { 27E } \end{aligned}$	$\begin{aligned} & \text { 37:16:21.590 } \\ & 37 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 70: 19: 05.360 \\ & 40 \mathrm{E} \end{aligned}$	2.0	1.0	
	$\begin{aligned} & \text { Locus } \\ & 2 \\ & \text { Inputs } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 36:21:10.677 } \\ & 74 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 66:38:08.265 } \\ & \text { 94E } \end{aligned}$	$\begin{aligned} & \text { 38:04:35.800 } \\ & 00 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 70: 12: 34.700 \\ & \text { OOE } \end{aligned}$	$\begin{aligned} & \text { 36:19:28.943 } \\ & 58 \mathrm{~S} \end{aligned}$	66:39:27.316	$\begin{aligned} & \text { 38:03:43.779 } \\ & 56 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 70: 13: 12.686 \\ & 16 \mathrm{E} \end{aligned}$	-2.0	-1.0	2.0
	Outpu ts	-1	$\begin{aligned} & \text { 37:57:10.383 } \\ & 18 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 69:54:04.258 } \\ & \text { 02E } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 37:56:12.761 } \\ & \text { 97S } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 69:51:51.143 } \\ & \text { 91E } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 37:55:26.839 } \\ & 44 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 69:55:21.177 } \\ & 57 \mathrm{E} \\ & \hline \end{aligned}$				

test36	$\begin{aligned} & \text { Locus } \\ & 1 \\ & \text { Inputs } \end{aligned}$	$\begin{aligned} & \text { 40:10:24.500 } \\ & 00 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:12:45.600 } \\ & \text { 00E } \end{aligned}$	$\begin{aligned} & \text { 40:05:30.770 } \\ & 99 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 72: 33: 27.978 \\ & 42 E \end{aligned}$	$\begin{aligned} & \text { 40:09:24.455 } \\ & 59 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:12:45.600 } \\ & \text { OOE } \end{aligned}$	$\begin{aligned} & \text { 40:03:30.823 } \\ & 74 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 72:33:20.339 } \\ & \text { 92E } \end{aligned}$	1.0	2.0	
	Locus 2 Inputs	$\begin{aligned} & \text { 38:52:47.192 } \\ & 34 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:57:43.988 } \\ & 57 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 42:04:35.800 } \\ & 00 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 12: 34.700 \\ & 00 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 38:52:13.675 } \\ & 62 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:00:11.545 } \\ & 46 E \end{aligned}$	$\begin{aligned} & \text { 42:04:18.243 } \\ & 36 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:13:51.742 } \\ & \text { 73E } \end{aligned}$	2.0	1.0	2.0
	Outpu ts	1	$\begin{aligned} & 40: 10: 43.922 \\ & 55 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:26:42.172 } \\ & 53 \mathrm{E} \\ & \hline \end{aligned}$	$\begin{aligned} & 40: 08: 43.855 \\ & 04 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:26:39.219 } \\ & \text { 07E } \\ & \hline \end{aligned}$	$\begin{aligned} & 40: 10: 10.370 \\ & 31 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 69:29:12.488 } \\ & \text { 39E } \end{aligned}$				
test37	$\begin{aligned} & \text { Locus } \\ & 1 \\ & \text { Inputs } \end{aligned}$	$\begin{aligned} & \text { 40:10:24.500 } \\ & 00 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:12:45.600 } \\ & \text { 00E } \end{aligned}$	$\begin{aligned} & \text { 40:05:30.770 } \\ & 99 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 72: 33: 27.978 \\ & 42 E \end{aligned}$	$\begin{aligned} & 40: 11: 24.544 \\ & 24 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:12:45.600 } \\ & \text { O0E } \end{aligned}$	$\begin{aligned} & \text { 40:07:30.717 } \\ & 40 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 72:33:35.624 } \\ & 38 \mathrm{E} \end{aligned}$	-1.0	-2.0	
	$\begin{aligned} & \text { Locus } \\ & 2 \\ & \text { Inputs } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 39:13:29.535 } \\ & 78 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 72:28:55.256 } \\ & 46 E \end{aligned}$	42:04:35.800	$\begin{aligned} & 70: 12: 34.700 \\ & \text { OOE } \end{aligned}$	$\begin{aligned} & 39: 12: 28.520 \\ & 52 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 72:26:42.261 } \\ & \text { 84E } \end{aligned}$	$\begin{aligned} & \text { 42:04:03.986 } \\ & 22 N \end{aligned}$	$\begin{aligned} & 70: 11: 26.382 \\ & 99 E \end{aligned}$	-2.0	-1.0	2.0
	Outpu ts	1	$\begin{aligned} & 40: 11: 08.564 \\ & 56 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 71:38:56.668 } \\ & \text { 11E } \end{aligned}$	$\begin{aligned} & \text { 40:09:08.543 } \\ & 88 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & 71: 38: 51.398 \\ & 55 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 40:12:09.970 } \\ & 80 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 71:41:11.243 } \\ & \text { 40E } \end{aligned}$				
test38	$\begin{aligned} & \text { Locus } \\ & 1 \\ & \text { Inputs } \end{aligned}$	$\begin{aligned} & \text { 40:10:24.500 } \\ & 00 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:12:45.600 } \\ & \text { 00E } \end{aligned}$	$\begin{aligned} & 36: 50: 12.190 \\ & 34 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:12:45.600 } \\ & \text { OOE } \end{aligned}$	$\begin{aligned} & 40: 10: 24.470 \\ & 60 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:15:22.148 } \\ & 60 \mathrm{E} \end{aligned}$	$\begin{aligned} & 36: 50: 12.183 \\ & 82 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:14:00.343 } \\ & \text { 02E } \end{aligned}$	-2.0	-1.0	
	Locus 2 Inputs	$\begin{aligned} & 39: 10: 02.815 \\ & 29 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:04:02.523 } \\ & \text { 80E } \end{aligned}$	$\begin{aligned} & \text { 42:04:35.800 } \\ & 00 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 12: 34.700 \\ & 00 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 39:10:31.561 } \\ & 85 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:02:54.785 } \\ & 28 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 42:05:35.800 } \\ & 77 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 10: 15.113 \\ & 66 \mathrm{E} \end{aligned}$	-1.0	-2.0	3.0
	Outpu ts	1	$\begin{aligned} & 39: 39: 58.785 \\ & 61 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:19:02.287 } \\ & 04 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 39:39:59.831 } \\ & 37 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:15:09.193 } \\ & 44 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 39:38:32.840 } \\ & 35 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:22:27.111 } \\ & 64 \mathrm{E} \end{aligned}$				
test39	$\begin{aligned} & \text { Locus } \\ & 1 \\ & \text { Inputs } \end{aligned}$	$\begin{aligned} & 40: 10: 24.500 \\ & 00 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:12:45.600 } \\ & \text { 00E } \end{aligned}$	$\begin{aligned} & 36: 50: 55.829 \\ & 85 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:34:27.937 } \\ & \text { 60E } \end{aligned}$	$\begin{aligned} & 40: 10: 14.004 \\ & 41 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:10:09.653 } \\ & 77 \mathrm{E} \end{aligned}$	$\begin{aligned} & 36: 50: 50.822 \\ & 61 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:33:13.443 } \\ & \text { 55E } \end{aligned}$	2.0	1.0	
	$\begin{aligned} & \text { Locus } \\ & 2 \\ & \text { Inputs } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 39:19:02.159 } \\ & \text { 78N } \end{aligned}$	$\begin{aligned} & \text { 67:44:48.148 } \\ & \text { 99E } \end{aligned}$	$\begin{aligned} & \text { 42:04:35.800 } \\ & 00 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 12: 34.700 \\ & \text { OOE } \end{aligned}$	$\begin{aligned} & 39: 18: 29.102 \\ & 41 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 67:45:52.688 } \\ & \text { 73E } \end{aligned}$	$\begin{aligned} & \text { 42:03:26.921 } \\ & 61 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 14: 46.657 \\ & \text { 09E } \end{aligned}$	1.0	2.0	2.0
	Outpu ts	1	$\begin{aligned} & \text { 39:55:11.691 } \\ & 16 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:14:35.294 } \\ & 94 \mathrm{E} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 39:55:00.638 } \\ & \text { 26N } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 68:11:59.990 } \\ & 70 \mathrm{E} \end{aligned}$	$\begin{aligned} & \hline 39: 54: 04.521 \\ & 66 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:16:44.570 } \\ & \text { 11E } \end{aligned}$				
test40	$\begin{aligned} & \text { Locus } \\ & 1 \\ & \text { Inputs } \end{aligned}$	$\begin{aligned} & \text { 40:10:24.500 } \\ & 00 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:12:45.600 } \\ & \text { 00E } \end{aligned}$	$\begin{aligned} & \text { 37:35:08.049 } \\ & 87 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 54: 27.932 \\ & 57 \mathrm{E} \end{aligned}$	$\begin{aligned} & 40: 11: 41.674 \\ & 10 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:14:45.560 } \\ & 95 \mathrm{E} \end{aligned}$	$\begin{aligned} & 37: 35: 45.282 \\ & 80 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 55: 27.173 \\ & 58 \mathrm{E} \end{aligned}$	-2.0	-1.0	
	$\begin{aligned} & \text { Locus } \\ & 2 \\ & \text { Inputs } \end{aligned}$	$\begin{aligned} & 38: 45: 10.915 \\ & 27 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:34:50.910 } \\ & \text { 08E } \end{aligned}$	$\begin{aligned} & \text { 42:04:35.800 } \\ & 00 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:12:34.700 } \\ & \text { 00E } \end{aligned}$	$\begin{aligned} & \text { 38:45:05.925 } \\ & 27 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:33:34.476 } \\ & 94 \mathrm{E} \end{aligned}$	$\begin{aligned} & 42: 04: 25.305 \\ & 87 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:09:54.182 } \\ & 28 \mathrm{E} \end{aligned}$	-1.0	-2.0	3.0
	Outpu ts	1	$\begin{aligned} & \text { 39:08:09.551 } \\ & 99 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:27:04.938 } \\ & \text { 64E } \end{aligned}$	$\begin{aligned} & 39: 06: 16.317 \\ & 47 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:24:05.041 } \\ & 75 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 39:08:25.589 } \\ & 99 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:30:55.365 } \\ & \text { 92E } \end{aligned}$				
test41	$\begin{aligned} & \text { Locus } \\ & 1 \\ & \text { Inputs } \end{aligned}$	$\begin{aligned} & \text { 40:10:24.500 } \\ & 00 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:12:45.600 } \\ & \text { 00E } \end{aligned}$	$\begin{aligned} & 42: 52: 36.591 \\ & 94 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:48:44.575 } \\ & 77 \mathrm{E} \end{aligned}$	$\begin{aligned} & 40: 09: 15.600 \\ & 15 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:14:53.801 } \\ & \text { 11E } \end{aligned}$	$\begin{aligned} & 42: 52: 00.699 \\ & 38 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 49: 49.971 \\ & 39 E \end{aligned}$	2.0	1.0	
	$\begin{aligned} & \text { Locus } \\ & 2 \\ & \text { Inputs } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 39:40:36.035 } \\ & 10 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 67:09:25.734 } \\ & 56 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 42:04:35.800 } \\ & 00 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 12: 34.700 \\ & \text { OOE } \end{aligned}$	$\begin{aligned} & \text { 39:41:57.929 } \\ & 29 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 67:07:32.032 } \\ & \text { 41E } \end{aligned}$	$\begin{aligned} & \text { 42:05:18.239 } \\ & 71 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 11: 37.718 \\ & 48 \mathrm{E} \end{aligned}$	-2.0	-1.0	2.0
	Outpu ts	-1	$\begin{aligned} & \text { 41:42:57.598 } \\ & 35 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 69:45:22.814 } \\ & \text { 27E } \end{aligned}$	$\begin{aligned} & \text { 41:44:07.680 } \\ & 26 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 69:43:12.694 } \\ & \text { 17E } \end{aligned}$	$\begin{aligned} & \text { 41:44:22.451 } \\ & 21 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:43:29.437 } \\ & \text { 85F } \end{aligned}$				
test42	Locus	40:10:24.500	68:12:45.600	42:41:33.376	71:07:03.727	40:11:41.674	68:10:45.639	42:42:13.471	71:06:03.180	-2.0	-1.0	

	1 Inputs	00N	00E	50N	43E	10N	05E	96N	86E			
	$\begin{aligned} & \text { Locus } \\ & 2 \\ & \text { Inputs } \end{aligned}$	$\begin{aligned} & \text { 38:47:21.082 } \\ & 27 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 56: 58.350 \\ & 57 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 42:04:35.800 } \\ & 00 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 12: 34.700 \\ & 00 \mathrm{E} \end{aligned}$	$\begin{aligned} & 38: 47: 40.921 \\ & 31 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 59: 29.724 \\ & \text { 18E } \end{aligned}$	$\begin{aligned} & 42: 04: 46.215 \\ & 51 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:13:54.048 } \\ & 70 \mathrm{E} \end{aligned}$	2.0	1.0	2.0
	Outpu ts	1	$\begin{aligned} & \text { 42:00:40.360 } \\ & 69 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 12: 10.192 \\ & 54 \mathrm{E} \end{aligned}$	$\begin{aligned} & 41: 59: 20.648 \\ & 42 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:14:10.537 } \\ & 96 E \end{aligned}$	$\begin{aligned} & \text { 42:01:01.777 } \\ & 07 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 14: 48.590 \\ & 80 \mathrm{E} \end{aligned}$				
test43	$\begin{aligned} & \text { Locus } \\ & 1 \\ & \text { Inputs } \\ & \hline \end{aligned}$	$\begin{aligned} & 40: 10: 24.500 \\ & 00 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:12:45.600 } \\ & \text { 00E } \end{aligned}$	$\begin{aligned} & \text { 36:53:06.456 } \\ & 88 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 67:29:29.557 } \\ & \text { 64E } \end{aligned}$	$\begin{aligned} & 40: 10: 34.919 \\ & 46 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:11:28.511 } \\ & 58 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 36:53:26.367 } \\ & 62 N \end{aligned}$	$\begin{aligned} & \text { 67:27:02.039 } \\ & \text { 91E } \end{aligned}$	1.0	2.0	
	$\begin{aligned} & \text { Locus } \\ & 2 \\ & \text { Inputs } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 37:29:19.581 } \\ & 28 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 66:31:04.909 } \\ & \text { 95E } \end{aligned}$	$\begin{aligned} & \text { 40:04:35.800 } \\ & 00 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:12:34.700 } \\ & \text { 00E } \end{aligned}$	$\begin{aligned} & \text { 37:28:05.079 } \\ & 86 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 66:33:03.180 } \\ & 57 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 40:03:57.199 } \\ & 27 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:13:34.567 } \\ & \text { 17E } \end{aligned}$	2.0	1.0	2.0
	Outpu ts	1	$\begin{aligned} & \text { 38:54:00.302 } \\ & 76 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 67:56:19.259 } \\ & \text { 60E } \end{aligned}$	$\begin{aligned} & \hline 38: 54: 21.364 \\ & 33 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 67:53:47.920 } \\ & \text { 86E } \end{aligned}$	$\begin{aligned} & \text { 38:52:44.849 } \\ & 07 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 67:58:18.842 } \\ & \text { 32E } \end{aligned}$				
test44	$\begin{aligned} & \text { Locus } \\ & 1 \\ & \text { Inputs } \end{aligned}$	$\begin{aligned} & \text { 40:10:24.500 } \\ & 00 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:12:45.600 } \\ & \text { 00E } \end{aligned}$	$\begin{aligned} & \text { 41:46:39.602 } \\ & 65 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 64: 21: 12.905 \\ & 32 E \end{aligned}$	$\begin{aligned} & 40: 08: 40.492 \\ & 57 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:11:27.358 } \\ & 86 \mathrm{E} \end{aligned}$	$\begin{aligned} & 41: 45: 46.340 \\ & 67 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 64:20:35.923 } \\ & \text { 33E } \end{aligned}$	-2.0	-1.0	
	$\begin{aligned} & \text { Locus } \\ & 2 \\ & \text { Inputs } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 40:59:32.625 } \\ & 80 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 64:48:21.016 } \\ & 82 E \end{aligned}$	$\begin{aligned} & \text { 41:04:35.800 } \\ & 00 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:12:34.700 } \\ & 00 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 41:00:32.585 } \\ & 02 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 64:48:17.018 } \\ & \text { 19E } \end{aligned}$	$\begin{aligned} & \text { 41:06:35.869 } \\ & 47 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:12:34.700 } \\ & \text { 00E } \end{aligned}$	-1.0	-2.0	2.0
	Outpu ts	-1	$\begin{aligned} & \text { 41:01:38.016 } \\ & 65 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 66:14:41.465 } \\ & 26 \mathrm{E} \\ & \hline \end{aligned}$	$\begin{aligned} & 40: 59: 52.998 \\ & 91 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 66:13:24.616 } \\ & \text { 88E } \\ & \hline \end{aligned}$	$\begin{aligned} & 41: 03: 37.995 \\ & 84 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 66:14:35.281 } \\ & 50 \mathrm{E} \end{aligned}$				
test45	$\begin{aligned} & \text { Locus } \\ & 1 \\ & \text { Inputs } \end{aligned}$	$\begin{aligned} & \text { 40:10:24.500 } \\ & 00 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:12:45.600 } \\ & \text { 00E } \end{aligned}$	$\begin{aligned} & \text { 43:02:23.578 } \\ & 55 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 29: 04.943 \\ & 42 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 40:09:24.433 } \\ & 55 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:15:01.141 } \\ & 89 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 43:01:52.206 } \\ & 97 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:30:14.687 } \\ & 94 \mathrm{E} \end{aligned}$	2.0	1.0	
	$\begin{aligned} & \hline \text { Locus } \\ & 2 \\ & \text { Inputs } \\ & \hline \end{aligned}$	$\begin{aligned} & 43: 40: 32.943 \\ & 22 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 66:13:51.158 } \\ & \text { 61E } \end{aligned}$	$\begin{aligned} & \text { 42:04:35.800 } \\ & 00 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:12:34.700 } \\ & \text { 00E } \end{aligned}$	$\begin{aligned} & \hline 43: 42: 19.591 \\ & 29 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 66:15:07.014 } \\ & \text { 71E } \end{aligned}$	$\begin{aligned} & \text { 42:05:27.780 } \\ & 65 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:13:14.993 } \\ & 69 \mathrm{E} \end{aligned}$	-2.0	-1.0	2.0
	Outpu ts	-1	$\begin{aligned} & \text { 42:11:59.998 } \\ & 55 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:52:47.824 } \\ & 75 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 42:13:01.467 } \\ & 06 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:50:29.125 } \\ & \text { 65E } \end{aligned}$	$\begin{aligned} & \text { 42:13:43.885 } \\ & 07 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:54:08.746 } \\ & \text { 43E } \end{aligned}$				

WGS84PerpIntercept Test Results

Test Identifier	Geodesic Start Latitude	Geodesic Start Longitude	Geodesic Azimuth (degrees)	Test Point Latitude	Test Point Longitude	Azimuth From Test Point To Intercept (degrees)	Distance From Test Point To Intercept (nm)	Intercept Latitude	Intercept Longitude
test1	40:10:24.50000N	70:12:45.60000W	38.0	42:04:35.80000N	68:12:40.70000W	129.31642	0.41489	42:04:20.02035N	68:12:14.84062W
test2	40:10:24.50000N	70:12:45.60000W	62.0	42:04:35.80000N	68:12:40.70000W	153.29737	59.66462	41:11:10.62477N	67:37:10.15895W
test3	40:10:24.50000N	70:12:45.60000W	90.0	42:04:35.80000N	68:12:40.70000W	181.29165	115.13091	40:09:25.68132N	68:16:03.75475W
test4	40:10:24.50000N	70:12:45.60000W	127.0	42:04:35.80000N	68:12:40.70000W	218.31581	145.78046	40:09:07.48064N	70:10:32.43942W
test5	40:10:24.50000N	70:12:45.60000W	150.0	42:04:35.80000N	68:12:40.70000W	241.33453	135.01795	40:58:00.14293N	70:49:04.80560W
test6	40:10:24.50000N	70:12:45.60000W	0.0	42:04:35.80000N	68:12:40.70000W	271.34146	89.41691	42:05:38.63720N	70:12:45.60000W
test7	40:10:24.50000N	70:12:45.60000W	335.0	42:04:35.80000N	68:12:40.70000W	246.33745	129.70818	41:10:42.02846N	70:50:01.67112W
test8	40:10:24.50000N	70:12:45.60000W	305.0	42:04:35.80000N	68:12:40.70000W	216.31402	145.61723	40:06:15.57774N	70:05:03.11962W
test9	40:10:24.50000N	70:12:45.60000W	180.0	38:04:35.80000N	72:12:40.70000W	88.76710	94.68092	38:05:36.99418N	70:12:45.60000W
test10	40:10:24.50000N	70:12:45.60000W	230.0	38:04:35.80000N	72:12:40.70000W	318.72576	34.59985	38:30:34.10445N	72:41:45.37882W
test11	40:10:24.50000N	70:12:45.60000W	270.0	38:04:35.80000N	72:12:40.70000W	358.70998	124.63008	40:09:18.54080N	72:16:20.21715W
test12	40:10:24.50000S	70:12:45.60000W	38.0	38:04:35.80000S	68:12:40.70000W	126.73606	2.00964	38:05:47.98305S	68:10:38.28715W
test13	40:10:24.50000S	70:12:45.60000W	62.0	38:04:35.80000S	68:12:40.70000W	150.71427	65.51427	39:01:40.59903S	67:31:33.29933W
test14	40:10:24.50000S	70:12:45.60000W	90.0	38:04:35.80000S	68:12:40.70000W	178.70822	124.62717	40:09:18.36107S	68:09:00.88927W
test15	40:10:24.50000S	70:12:45.60000W	127.0	38:04:35.80000S	68:12:40.70000W	215.73655	156.61476	40:10:50.64448S	70:12:00.36233W
test16	40:10:24.50000S	70:12:45.60000W	150.0	38:04:35.80000S	68:12:40.70000W	238.75798	144.43973	39:17:48.31169S	70:51:45.99999W
test17	40:10:24.50000S	70:12:45.60000W	0.0	38:04:35.80000S	68:12:40.70000W	268.76542	94.80986	38:05:37.16104S	70:12:45.60000W
test18	40:10:24.50000S	70:12:45.60000W	335.0	38:04:35.80000S	68:12:40.70000W	243.76128	138.61172	39:04:08.70412S	70:52:19.87385W
test19	40:10:24.50000S	70:12:45.60000W	305.0	38:04:35.80000S	68:12:40.70000W	213.73448	156.49404	40:13:57.58564S	70:06:08.18853W
test20	40:10:24.50000S	70:12:45.60000W	180.0	42:04:35.80000S	72:12:40.70000W	91.33964	89.29531	42:05:38.46633S	70:12:45.60000W
test21	40:10:24.50000S	70:12:45.60000W	230.0	42:04:35.80000S	72:12:40.70000W	321.30417	30.78578	41:40:30.62405S	72:38:21.72071W
test22	40:10:24.50000S	70:12:45.60000W	270.0	42:04:35.80000S	72:12:40.70000W	1.28990	115.12817	40:09:25.84116S	72:09:17.92603W
test23	40:10:24.50000S	68:12:45.60000E	38.0	38:04:35.80000S	70:12:40.70000E	126.73774	2.11300	38:05:51.69739S	70:14:49.40745E
test24	40:10:24.50000S	68:12:45.60000E	62.0	38:04:35.80000S	70:12:40.70000E	150.71599	65.57735	39:01:43.94797S	70:53:50.37701E
test25	40:10:24.50000S	68:12:45.60000E	90.0	38:04:35.80000S	70:12:40.70000E	178.70998	124.63008	40:09:18.54080S	70:16:20.21715E
test26	40:10:24.50000S	68:12:45.60000E	127.0	38:04:35.80000S	70:12:40.70000E	215.73831	156.53943	40:10:46.85840S	68:13:24.28550E
test27	40:10:24.50000S	68:12:45.60000E	150.0	38:04:35.80000S	70:12:40.70000E	238.75971	144.32946	39:17:44.81540S	67:33:42.64546E
test28	40:10:24.50000S	68:12:45.60000E	0.0	38:04:35.80000S	70:12:40.70000E	268.76710	94.68092	38:05:36.99418S	68:12:45.60000E
test29	40:10:24.50000S	68:12:45.60000E	335.0	38:04:35.80000S	70:12:40.70000E	243.76299	138.49604	39:04:05.58767S	67:33:09.49758E
test30	40:10:24.50000S	68:12:45.60000E	305.0	38:04:35.80000S	70:12:40.70000E	213.73624	156.42241	40:13:53.89461S	68:19:16.11563E
test31	40:10:24.50000S	72:12:45.60000E	180.0	42:04:35.80000S	70:12:40.70000E	91.34146	89.41691	42:05:38.63720S	72:12:45.60000E
test32	40:10:24.50000S	72:12:45.60000E	230.0	42:04:35.80000S	70:12:40.70000E	321.30598	30.70974	41:40:34.16471S	69:47:03.52290E
test33	40:10:24.50000S	72:12:45.60000E	270.0	42:04:35.80000S	70:12:40.70000E	1.29165	115.13091	40:09:25.68132S	70:16:03.75475E
test34	40:10:24.50000N	68:12:45.60000E	38.0	42:04:35.80000N	70:12:40.70000E	129.31459	0.50899	42:04:16.44172N	70:13:12.42516E
test35	40:10:24.50000N	68:12:45.60000E	62.0	42:04:35.80000N	70:12:40.70000E	153.29558	59.71928	41:11:07.73298N	70:48:13.29934E
test36	40:10:24.50000N	68:12:45.60000E	90.0	42:04:35.80000N	70:12:40.70000E	181.28990	115.12817	40:09:25.84116N	70:09:17.92603E
test37	40:10:24.50000N	68:12:45.60000E	127.0	42:04:35.80000N	70:12:40.70000E	218.31405	145.70504	40:09:10.93426N	68:14:52.79291E
test38	40:10:24.50000N	68:12:45.60000E	150.0	42:04:35.80000N	70:12:40.70000E	241.33274	134.91123	40:58:03.16688N	67:36:24.05438E
test39	40:10:24.50000N	68:12:45.60000E	0.0	42:04:35.80000N	70:12:40.70000E	271.33964	89.29531	42:05:38.46633N	68:12:45.60000E
test40	40:10:24.50000N	68:12:45.60000E	335.0	42:04:35.80000N	70:12:40.70000E	246.33565	129.59677	41:10:44.67776N	67:35:27.86348E
test41	40:10:24.50000N	68:12:45.60000E	305.0	42:04:35.80000N	70:12:40.70000E	216.31226	145.54520	40:06:18.96327N	68:20:21.80300E

test42	$40: 10: 24.50000 \mathrm{~N}$	$72: 12: 45.60000 \mathrm{E}$	180.0	$38: 04: 35.80000 \mathrm{~N}$	$70: 12: 40.70000 \mathrm{E}$	88.76542	94.80986	$38: 05: 37.16104 \mathrm{~N}$
	$72: 12: 45.60000 \mathrm{E}$							
test43	$40: 10: 24.50000 \mathrm{~N}$	$72: 12: 45.60000 \mathrm{E}$	230.0	$38: 04: 35.80000 \mathrm{~N}$	$70: 12: 40.70000 \mathrm{E}$	318.72407	34.51477	$38: 30: 30.24106 \mathrm{~N}$
$69: 43: 40.27830 \mathrm{E}$								
test44	$40: 10: 24.50000 \mathrm{~N}$	$72: 12: 45.60000 \mathrm{E}$	270.0	$38: 04: 35.80000 \mathrm{~N}$	$70: 12: 40.70000 \mathrm{E}$	358.70822	124.62717	$40: 09: 18.36107 \mathrm{~N}$

WGS84LocusPerpIntercept Test Results

Test Identi fier	Input	Locus Geodesic Start Latitude	Locus Geodesic Start Longitude	Locus Geodesic End Latitude	Locus Geodesic End Longitude	Locus Start Latitude	Locus Start Longitude	Locus End Latitude	Locus End Longitude	Locu s Start Dista nce $(n m)$	Locu s End Dista nce (nm)	Test Point Latitude	Test Point Longitude
	Outp uts	Azimuth From Test Point To Intercept (degrees)	Distance From Test Point To Intercept (nm)	Intercept Latitude	Intercept Longitude								
test1	$\begin{aligned} & \text { Input } \\ & \mathrm{s} \\ & \hline \end{aligned}$	$\begin{aligned} & 40: 10: 24.5 \\ & 0000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:12:45.60 } \\ & \text { 000W } \end{aligned}$	$\begin{aligned} & \hline 42: 46: 07.4 \\ & 5918 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \hline 67: 25: 36.90 \\ & \text { 158W } \end{aligned}$	$\begin{aligned} & \hline 40: 11: 01.4 \\ & 6238 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:13:47.29 } \\ & \text { 029W } \end{aligned}$	$\begin{aligned} & \text { 42:46:45.9 } \\ & 0859 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 67:26:39.45 } \\ & 541 \mathrm{~W} \end{aligned}$	-1.0	-1.0	$\begin{aligned} & \hline \text { 42:04:35.8 } \\ & 0000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \hline 68: 12: 34.70 \\ & \text { 000W } \end{aligned}$
	Outp uts	309.31753	0.64273	$\begin{aligned} & \text { 42:05:00.2 } \\ & 4258 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:13:14.76 } \\ & 673 \mathrm{~W} \\ & \hline \end{aligned}$								
test2	$\begin{aligned} & \text { Input } \\ & \text { s } \end{aligned}$	$\begin{aligned} & \text { 40:10:24.5 } \\ & 0000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:12:45.60 } \\ & \text { 000W } \end{aligned}$	$\begin{aligned} & \hline 42: 46: 07.4 \\ & 5918 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 67:25:36.90 } \\ & \text { 158W } \end{aligned}$	$\begin{aligned} & \text { 40:09:47.5 } \\ & 2843 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 11: 43.92 \\ & 830 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \hline 42: 45: 29.0 \\ & 0021 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 67:24:34.36 } \\ & 924 \mathrm{~W} \end{aligned}$	1.0	1.0	$\begin{aligned} & \hline 42: 04: 35.8 \\ & 0000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \hline 68: 12: 34.70 \\ & \text { 000W } \end{aligned}$
	Outp uts	129.31753	1.35727	$\begin{aligned} & \hline 42: 03: 44.1 \\ & 7073 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:11:10.11 } \\ & 749 W \end{aligned}$								
test3	$\begin{aligned} & \text { Input } \\ & \mathrm{s} \\ & \hline \end{aligned}$	$\begin{aligned} & 40: 10: 24.5 \\ & 0000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 12: 45.60 \\ & \text { 000W } \end{aligned}$	$\begin{aligned} & \text { 42:46:07.4 } \\ & 5918 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 67:25:36.90 } \\ & \text { 158W } \end{aligned}$	$\begin{aligned} & 40: 09: 47.5 \\ & 2843 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 11: 43.92 \\ & 830 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 42: 44: 50.5 \\ & 3170 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 67:23:31.85 } \\ & 839 \mathrm{~W} \\ & \hline \end{aligned}$	1.0	2.0	$\begin{aligned} & 42: 04: 35.8 \\ & 0000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:12:34.70 } \\ & \text { 000W } \end{aligned}$
	Outp uts	129.60401	2.08646	$\begin{aligned} & \text { 42:03:15.9 } \\ & 4272 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:10:25.22 } \\ & \text { 603W } \end{aligned}$								
test4	Input s	$\begin{aligned} & 40: 10: 24.5 \\ & 0000 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 70:12:45.60 } \\ & \text { 000W } \end{aligned}$	$\begin{aligned} & \hline 42: 46: 07.4 \\ & 5918 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 67: 25: 36.90 \\ & \text { 158W } \end{aligned}$	$\begin{aligned} & \hline 40: 11: 01.4 \\ & 6238 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & 70: 13: 47.29 \\ & 029 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \hline 42: 47: 24.3 \\ & 4843 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \hline 67: 27: 42.03 \\ & 074 \mathrm{~W} \end{aligned}$	-1.0	-2.0	$\begin{aligned} & \hline 42: 04: 35.8 \\ & 0000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \hline 68: 12: 34.70 \\ & \text { 000W } \end{aligned}$
	Outp uts	309.03106	1.37192	$\begin{aligned} & 42: 05: 27.6 \\ & 4952 N \end{aligned}$	$\begin{aligned} & \text { 68:14:00.58 } \\ & \text { 323W } \end{aligned}$								
test5	Input s	$\begin{aligned} & 40: 10: 24.5 \\ & 0000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:12:45.60 } \\ & \text { 000W } \end{aligned}$	$\begin{aligned} & \hline 41: 40: 24.6 \\ & 1603 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 66:17:03.91 } \\ & \text { 251W } \end{aligned}$	$\begin{aligned} & 40: 11: 17.5 \\ & 1431 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 13: 22.35 \\ & 551 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 41: 42: 13.0 \\ & 3866 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 66:18:12.69 } \\ & 511 \mathrm{~W} \end{aligned}$	-1.0	-2.0	$\begin{aligned} & \hline 42: 04: 35.8 \\ & 0000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \hline 68: 12: 34.70 \\ & \text { 000W } \end{aligned}$
	Outp uts	153.01195	57.96492	$\begin{aligned} & \text { 41:12:49.8 } \\ & 1350 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 67:37:43.49 } \\ & 832 \mathrm{~W} \\ & \hline \end{aligned}$								
test6	Input	$\begin{aligned} & \hline 40: 10: 24.5 \\ & 0000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 12: 45.60 \\ & \text { 000W } \end{aligned}$	$\begin{aligned} & \hline 40: 05: 30.7 \\ & 7099 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \hline 65: 52: 03.22 \\ & \text { 158W } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 40: 08: 24.4 \\ & 1100 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & 70: 12: 45.60 \\ & \text { 000W } \end{aligned}$	$\begin{aligned} & \text { 40:04:30.7 } \\ & 9747 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 65: 52: 07.04 \\ & 176 \mathrm{~W} \\ & \hline \end{aligned}$	2.0	1.0	$\begin{aligned} & \hline 42: 04: 35.8 \\ & 0000 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 68:12:34.70 } \\ & \text { 000W } \end{aligned}$
	Outp uts	181.00609	116.68342	$\begin{aligned} & \hline 40: 07: 51.8 \\ & 0394 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:15:14.93 } \\ & \text { 906W } \end{aligned}$								
test7	$\begin{aligned} & \text { Input } \\ & \text { s } \end{aligned}$	$\begin{aligned} & 40: 10: 24.5 \\ & 0000 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & 70: 12: 45.60 \\ & \text { 000W } \end{aligned}$	$\begin{aligned} & \hline 38: 06: 56.4 \\ & 7029 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 66:50:21.71 } \\ & \text { 131W } \\ & \hline \end{aligned}$	$\begin{aligned} & 40: 12: 00.3 \\ & 9619 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & 70: 11: 11.34 \\ & 983 W \\ & \hline \end{aligned}$	$\begin{aligned} & 38: 08: 29.6 \\ & 4659 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 66:48:45.71 } \\ & 750 \mathrm{~W} \end{aligned}$	-2.0	-2.0	$\begin{aligned} & \text { 42:04:35.8 } \\ & 0000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:12:34.70 } \\ & \text { 000W } \end{aligned}$
	Outp uts	218.31689	143.82663	$\begin{aligned} & \hline 40: 10: 41.2 \\ & 3180 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 70: 08: 54.51 \\ & \text { 269W } \\ & \hline \end{aligned}$								
test8	Input	$\begin{aligned} & \hline 40: 10: 24.5 \\ & 0000 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & 70: 12: 45.60 \\ & \text { 000W } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 37: 15: 52.7 \\ & 5197 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { 68:07:31.78 } \\ & \text { 007W } \end{aligned}$	$\begin{aligned} & \hline 40: 09: 54.4 \\ & 7230 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 70:13:53.37 } \\ & 924 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 37: 14: 55.0 \\ & 4445 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 68:09:43.61 } \\ & 910 \mathrm{~W} \end{aligned}$	1.0	2.0	$\begin{aligned} & \hline 40: 04: 35.8 \\ & 0000 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 69:12:34.70 } \\ & \text { 000W } \end{aligned}$
	Outp uts	240.93040	38.37214	$\begin{aligned} & \hline 39: 45: 48.1 \\ & 0411 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 69:56:04.27 } \\ & \text { 064W } \\ & \hline \end{aligned}$								
test9	$\begin{aligned} & \text { Input } \\ & \text { s } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 40: 10: 24.5 \\ & 0000 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & 70: 12: 45.60 \\ & \text { 000W } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 43: 25: 53.9 \\ & 5085 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \hline \text { 69:15:43.32 } \\ & \text { 087W } \end{aligned}$	$\begin{aligned} & 40: 10: 36.9 \\ & 7688 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:14:02.16 } \\ & \text { 772W } \end{aligned}$	$\begin{aligned} & 43: 26: 20.1 \\ & 7044 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \hline 69: 18: 24.04 \\ & 024 \mathrm{~W} \\ & \hline \end{aligned}$	-1.0	-2.0	$\begin{aligned} & \hline 42: 04: 35.8 \\ & 0000 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 68: 12: 34.70 \\ & \text { 000W } \end{aligned}$
	Outp uts	283.05132	65.25203	$\begin{aligned} & \text { 42:18:48.3 } \\ & 5558 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:38:15.57 } \\ & \text { 457W } \end{aligned}$								

$\begin{aligned} & \text { test1 } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Input } \\ & \text { s } \end{aligned}$	$\begin{aligned} & \text { 40:10:24.5 } \\ & 0000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:12:45.60 } \\ & \text { 000W } \end{aligned}$	$\begin{aligned} & \text { 43:30:29.8 } \\ & 7690 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 12: 45.60 \\ & 000 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \hline 40: 10: 24.4 \\ & 7060 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:10:09.05 } \\ & \text { 140W } \end{aligned}$	$\begin{aligned} & \hline 43: 30: 29.8 \\ & 6864 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:11:23.15 } \\ & \text { 209W } \end{aligned}$	2.0	1.0	$\begin{aligned} & \text { 42:04:35.8 } \\ & 0000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:12:34.70 } \\ & \text { 000W } \end{aligned}$
	Outp uts	271.05601	88.06612	$\begin{aligned} & 42: 05: 12.2 \\ & 8968 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 10: 50.66 \\ & 239 \mathrm{~W} \end{aligned}$								
$\begin{aligned} & \hline \text { test1 } \\ & 1 \end{aligned}$	$\begin{aligned} & \text { Input } \\ & \text { s } \end{aligned}$	$\begin{aligned} & \hline 40: 10: 24.5 \\ & 0000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 12: 45.60 \\ & 000 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 43: 29: 41.8 \\ & 0326 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 36: 41.64 \\ & 863 W \end{aligned}$	$\begin{aligned} & 40: 10: 19.2 \\ & 5950 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:14:03.57 } \\ & \text { 478W } \end{aligned}$	$\begin{aligned} & \hline 43: 29: 30.7 \\ & 5486 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 39: 25.80 \\ & 395 \mathrm{~W} \end{aligned}$	-1.0	-2.0	$\begin{aligned} & 42: 04: 35.8 \\ & 0000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:12:34.70 } \\ & 000 \mathrm{~W} \end{aligned}$
	Outp uts	266.05671	100.72052	$\begin{aligned} & 41: 56: 20.9 \\ & 4047 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:27:13.96 } \\ & \text { 006W } \end{aligned}$								
$\begin{aligned} & \text { test1 } \\ & 2 \end{aligned}$	$\begin{aligned} & \text { Input } \\ & \text { s } \end{aligned}$	$\begin{aligned} & \text { 40:10:24.5 } \\ & 0000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 12: 45.60 \\ & \text { 000W } \end{aligned}$	$\begin{aligned} & 42: 10: 25.7 \\ & 8109 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 73: 44: 43.81 \\ & 529 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 40: 11: 11.8 \\ & 1273 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:11:57.40 } \\ & 023 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 42: 11: 14.5 \\ & 3862 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 73:43:56.74 } \\ & \text { 833W } \end{aligned}$	1.0	1.0	$\begin{aligned} & \text { 42:04:35.8 } \\ & 0000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:12:34.70 } \\ & 000 \mathrm{~W} \end{aligned}$
	Outp uts	218.66979	116.72692	$\begin{aligned} & \text { 40:32:44.2 } \\ & 7479 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 48: 14.72 \\ & \text { 623W } \end{aligned}$								
$\begin{aligned} & \text { test1 } \\ & 3 \end{aligned}$	$\begin{aligned} & \text { Input } \\ & \mathrm{s} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 40:10:24.5 } \\ & \text { ROnN } \end{aligned}$	$\begin{aligned} & 70: 12: 45.60 \\ & 000 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 36: 50: 12.1 \\ & 9034 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 12: 45.60 \\ & 000 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 40: 10: 24.4 \\ & 9265 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 11: 27.32 \\ & 569 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 36: 50: 12.1 \\ & 6424 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 10: 16.11 \\ & 397 \mathrm{~W} \end{aligned}$	-1.0	-2.0	$\begin{aligned} & 38: 04: 35.8 \\ & 0000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 72: 12: 34.70 \\ & 000 \mathrm{~W} \end{aligned}$
	Outp uts	88.48154	96.22417	$\begin{aligned} & \hline 38: 06: 05.7 \\ & 7988 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 10: 42.38 \\ & 354 \mathrm{~W} \end{aligned}$								
$\begin{aligned} & \hline \text { test1 } \\ & 4 \end{aligned}$	$\begin{aligned} & \text { Input } \\ & \mathrm{s} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 40:10:24.5 } \end{aligned}$	$\begin{aligned} & 70: 12: 45.60 \\ & \text { 000W } \end{aligned}$	$\begin{aligned} & \text { 37:58:59.0 } \\ & 8359 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \hline 73: 26: 32.36 \\ & \text { 055W } \end{aligned}$	$\begin{aligned} & \hline 40: 11: 56.4 \\ & 8089 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:14:26.26 } \\ & 527 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \hline 37: 59: 43.6 \\ & 9324 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 73:27:23.18 } \\ & 593 W \end{aligned}$	2.0	1.0	$\begin{aligned} & \hline 38: 04: 35.8 \\ & 0000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 72:12:34.70 } \\ & \text { 000W } \end{aligned}$
	Outp uts	318.44031	35.88843	$\begin{aligned} & \hline 38: 31: 24.8 \\ & 4927 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 72: 42: 54.95 \\ & 851 \mathrm{~W} \end{aligned}$								
$\begin{aligned} & \text { test1 } \\ & 5 \end{aligned}$	$\begin{aligned} & \text { Input } \\ & \text { s } \end{aligned}$	$\begin{aligned} & \hline 40: 10: 24.5 \\ & 0000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 12: 45.60 \\ & 000 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 40:05:30.7 } \\ & 7099 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 74: 33: 27.97 \\ & 842 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \hline 40: 08: 24.4 \\ & 1100 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:12:45.60 } \\ & \text { 000W } \end{aligned}$	$\begin{aligned} & \hline 40: 04: 30.7 \\ & 9747 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 74: 33: 24.15 \\ & 824 \mathrm{~W} \end{aligned}$	-2.0	-1.0	$\begin{aligned} & \hline 38: 04: 35.8 \\ & 0000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 72: 12: 34.70 \\ & 000 \mathrm{~W} \end{aligned}$
	Outp uts	358.99772	123.10364	$\begin{aligned} & \text { 40:07:47.6 } \\ & 7496 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 72: 15: 23.10 \\ & 907 \mathrm{~W} \end{aligned}$								
$\begin{aligned} & \text { test1 } \\ & 6 \end{aligned}$	Input s	$\begin{aligned} & \text { 20:10:24.5 } \\ & 0000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 12: 45.60 \\ & \text { 000W } \end{aligned}$	$\begin{aligned} & \text { 22:47:42.8 } \\ & 8332 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 67:59:32.62 } \\ & 915 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 20:11:01.5 } \\ & 7566 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 13: 35.86 \\ & \text { 376W } \end{aligned}$	$\begin{aligned} & 22: 48: 20.6 \\ & 1693 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:00:23.22 } \\ & 901 \mathrm{~W} \end{aligned}$	-1.0	-1.0	$\begin{aligned} & \text { 22:04:35.8 } \\ & 0000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:12:34.70 } \\ & \text { 000W } \end{aligned}$
	Outp uts	308.72881	18.49323	$\begin{aligned} & \text { 22:16:11.6 } \\ & 8878 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \hline 68: 28: 07.95 \\ & \text { 660W } \end{aligned}$								
$\begin{aligned} & \text { test1 } \\ & 7 \end{aligned}$	Input	$\begin{aligned} & 20: 10: 24.5 \\ & 0000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 12: 45.60 \\ & 000 \mathrm{~W} \\ & \hline \end{aligned}$	$\begin{aligned} & 22: 47: 42.8 \\ & 8332 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 67:59:32.62 } \\ & 915 \mathrm{~W} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 20:09:47.4 } \\ & 2031 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & 70: 11: 55.34 \\ & \text { 284W } \\ & \hline \end{aligned}$	$\begin{aligned} & 22: 47: 05.1 \\ & 4519 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 67:58:42.03 } \\ & \text { 703W } \\ & \hline \end{aligned}$	1.0	1.0	$\begin{aligned} & 22: 04: 35.8 \\ & 0000 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 68:12:34.70 } \\ & 000 \mathrm{~W} \end{aligned}$
	Outp uts	308.72881	16.49323	$\begin{aligned} & \text { 22:14:56.5 } \\ & 0252 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 68: 26: 26.90 \\ & \text { 385W } \\ & \hline \end{aligned}$								
$\begin{aligned} & \text { test1 } \\ & 8 \end{aligned}$	Input s	$\begin{aligned} & \hline 20: 10: 24.5 \\ & 0000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 12: 45.60 \\ & 000 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 22:47:42.8 } \\ & 8332 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 67:59:32.62 } \\ & 915 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \hline 20: 09: 47.4 \\ & 2031 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 11: 55.34 \\ & \text { 284W } \end{aligned}$	$\begin{aligned} & \hline 22: 46: 27.4 \\ & 0256 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \hline 67: 57: 51.45 \\ & \text { 264W } \end{aligned}$	1.0	2.0	$\begin{aligned} & 22: 04: 35.8 \\ & 0000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:12:34.70 } \\ & 000 \mathrm{~W} \end{aligned}$
	Outp uts	309.01529	15.69835	$\begin{aligned} & \text { 22:14:30.2 } \\ & 9919 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 68:25:43.56 } \\ & 946 \mathrm{~W} \\ & \hline \end{aligned}$								
$\begin{aligned} & \text { test1 } \\ & 9 \end{aligned}$	Input	$\begin{aligned} & \hline 20: 10: 24.5 \\ & 0000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 12: 45.60 \\ & 000 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \hline 22: 47: 42.8 \\ & 8332 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 67: 59: 32.62 \\ & 915 \mathrm{~W} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 20: 11: 01.5 \\ & 7566 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:13:35.86 } \\ & \text { 376W } \end{aligned}$	$\begin{aligned} & \hline 22: 48: 58.3 \\ & 4604 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 68:01:13.83 } \\ & \text { 660W } \end{aligned}$	-1.0	-2.0	$\begin{aligned} & \hline 22: 04: 35.8 \\ & 0000 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 68:12:34.70 } \\ & \text { 000W } \end{aligned}$
	Outp uts	308.44233	19.28768	$\begin{aligned} & \text { 22:16:37.0 } \\ & 0430 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 68: 28: 51.98 \\ & 766 \mathrm{~W} \\ & \hline \end{aligned}$								
$\begin{aligned} & \text { test2 } \\ & 0 \end{aligned}$	$\begin{aligned} & \hline \text { Input } \\ & \text { s } \end{aligned}$	$\begin{aligned} & \hline 20: 10: 24.5 \\ & 0000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 12: 45.60 \\ & 000 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \hline 21: 42: 55.0 \\ & 4997 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 67:03:07.16 } \\ & 284 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \hline 20: 11: 17.6 \\ & 7400 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & 70: 13: 15.54 \\ & \text { 639W } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 21: 44: 42.4 \\ & 7168 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { 67:04:05.42 } \\ & \text { 224W } \\ & \hline \end{aligned}$	-1.0	-2.0	$\begin{aligned} & \hline 22: 04: 35.8 \\ & 0000 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 68:12:34.70 } \\ & 000 \mathrm{~W} \end{aligned}$
	Outp uts	152.41757	46.88028	$\begin{aligned} & \hline 21: 22: 52.1 \\ & 6995 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 67:49:19.19 } \\ & 587 \mathrm{~W} \end{aligned}$								
$\begin{aligned} & \text { test2 } \\ & 1 \end{aligned}$	Input s	$\begin{aligned} & \text { 20:10:24.5 } \\ & 0000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 12: 45.60 \\ & 000 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 20: 08: 16.1 \\ & 0563 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 66:40:11.24 } \\ & 376 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 20: 08: 24.0 \\ & 5152 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 70:12:45.60 } \\ & \text { 000w } \end{aligned}$	$\begin{aligned} & \text { 20:07:15.8 } \\ & 9488 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 66:40:12.60 } \\ & \text { 255W } \\ & \hline \end{aligned}$	2.0	1.0	$\begin{aligned} & 22: 04: 35.8 \\ & 0000 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 68:12:34.70 } \\ & \text { 000W } \\ & \hline \end{aligned}$
	Outp uts	180.40439	115.88931	$\begin{aligned} & \hline 20: 08: 17.3 \\ & 9840 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { 68:13:26.84 } \\ & \text { 791W } \\ & \hline \end{aligned}$								
test2	Input	20:10:24.5	70:12:45.60	18:08:16.6	67:25:03.87	20:12:00.6	70:11:28.81	18:09:51.6	67:23:46.42	-2.0	-2.0	22:04:35.8	68:12:34.70

2	S	0000N	000W	0075N	343W	8945N	766W	3861N	707W			0000N	000W
	Outp uts	217.71425	156.60521	$\begin{aligned} & \text { 19:59:44.5 } \\ & 1317 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:54:16.80 } \\ & \text { 106W } \end{aligned}$								
$\begin{aligned} & \text { test2 } \\ & 3 \end{aligned}$	$\begin{aligned} & \text { Input } \\ & \text { s } \end{aligned}$	$\begin{aligned} & \text { 20:10:24.5 } \\ & 0000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 12: 45.60 \\ & 000 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 17:16:01.6 } \\ & 1500 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:28:18.10 } \\ & 827 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 20:09:54.3 } \\ & 8551 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 13: 40.83 \\ & 341 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 17:15:02.3 } \\ & 8476 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:30:07.30 } \\ & 583 W \end{aligned}$	1.0	2.0	$\begin{aligned} & \text { 20:04:35.8 } \\ & \text { 0000N } \end{aligned}$	$\begin{aligned} & \hline \text { 69:12:34.70 } \\ & \text { 000W } \end{aligned}$
	Outp uts	240.62790	47.41380	$\begin{aligned} & \text { 19:41:09.8 } \\ & 0503 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:56:21.99 } \\ & \text { 784W } \end{aligned}$								
$\begin{aligned} & \text { test2 } \\ & 4 \end{aligned}$	Input s	$\begin{aligned} & \text { 20:10:24.5 } \\ & 0000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 12: 45.60 \\ & 000 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 23:26:37.8 } \\ & 6400 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:27:33.93 } \\ & 765 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 20:10:37.0 } \\ & 1823 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:13:47.98 } \\ & 905 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 23:27:03.4 } \\ & 5735 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:29:41.45 } \\ & \text { 246W } \end{aligned}$	-1.0	-2.0	$\begin{aligned} & \text { 22:04:35.8 } \\ & \text { 0000N } \end{aligned}$	$\begin{aligned} & \text { 68:12:34.70 } \\ & \text { 000W } \end{aligned}$
	Outp uts	282.46352	87.05417	$\begin{aligned} & \hline 22: 23: 01.2 \\ & 3192 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:44:17.95 } \\ & \text { ר70w } \end{aligned}$								
$\begin{aligned} & \text { test2 } \\ & 5 \end{aligned}$	$\begin{aligned} & \hline \text { Input } \\ & \mathrm{s} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 20: 10: 24.5 \\ & 0000 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 70: 12: 45.60 \\ & 000 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \hline 23: 31: 06.9 \\ & 3560 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \hline 70: 12: 45.60 \\ & 000 \mathrm{~W} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 20: 10: 24.4 \\ & 8716 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & 70: 10: 38.03 \\ & 712 \mathrm{~W} \\ & \hline \end{aligned}$	$\begin{aligned} & 23: 31: 06.9 \\ & 3179 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 11: 40.31 \\ & 639 \mathrm{~W} \end{aligned}$	2.0	1.0	$\begin{aligned} & \hline 22: 04: 35.8 \\ & 0000 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 68:12:34.70 } \\ & \text { 000W } \end{aligned}$
	Outp uts	270.46647	110.19089	$\begin{aligned} & \hline 22: 04: 46.7 \\ & 8090 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & 70: 11: 13.20 \\ & 586 \mathrm{~W} \\ & \hline \end{aligned}$								
$\begin{aligned} & \hline \text { test2 } \\ & 6 \end{aligned}$	Input s	$\begin{aligned} & \text { 20:10:24.5 } \\ & 0000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:12:45.60 } \\ & \text { 000W } \end{aligned}$	$\begin{aligned} & 23: 30: 20.0 \\ & 6967 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 31: 42.81 \\ & 974 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \hline 20: 10: 19.2 \\ & 4793 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 13: 49.13 \\ & 814 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 23:30:09.3 } \\ & 1498 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:33:52.85 } \\ & 078 \mathrm{~W} \end{aligned}$	-1.0	-2.0	$\begin{aligned} & \text { 22:04:35.8 } \\ & 0000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:12:34.70 } \\ & \text { 000W } \end{aligned}$
	Outp uts	265.46611	122.69379	$\begin{aligned} & \text { 21:53:59.0 } \\ & 0085 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & 70: 24: 06.45 \\ & 107 \mathrm{~W} \\ & \hline \end{aligned}$								
$\begin{aligned} & \text { test2 } \\ & 7 \end{aligned}$	Input s	$\begin{aligned} & \hline 20: 10: 24.5 \\ & 0000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:12:45.60 } \\ & \text { 000W } \end{aligned}$	$\begin{aligned} & 22: 12: 35.6 \\ & 9228 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & 73: 02: 34.77 \\ & 881 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 20: 11: 11.9 \\ & 5601 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & 70: 12: 06.32 \\ & 892 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 22:13:23.7 } \\ & 9135 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 73:01:55.88 } \\ & \text { 211W } \end{aligned}$	1.0	1.0	$\begin{aligned} & \text { 22:04:35.8 } \\ & 0000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:12:34.70 } \\ & \text { 000W } \end{aligned}$
	Outp uts	218.36943	123.21147	$\begin{aligned} & \text { 20:27:18.8 } \\ & 1236 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 34: 01.01 \\ & 617 \mathrm{~W} \end{aligned}$								
$\begin{aligned} & \text { test2 } \\ & 8 \end{aligned}$	$\begin{aligned} & \text { Input } \\ & \mathrm{s} \end{aligned}$	$\begin{aligned} & \text { 20:10:24.5 } \\ & 0000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:12:45.60 } \\ & \text { 000W } \end{aligned}$	$\begin{aligned} & \text { 16:49:37.4 } \\ & 9349 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 12: 45.60 \\ & \text { 000W } \end{aligned}$	$\begin{aligned} & \text { 20:10:24.4 } \\ & 9679 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:11:41.81 } \\ & 856 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 16: 49: 37.4 \\ & 8292 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 70:10:40.49 } \\ & \text { 187W } \end{aligned}$	-1.0	-2.0	$\begin{aligned} & \text { 18:04:35.8 } \\ & 0000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 72:12:34.70 } \\ & \text { 000W } \end{aligned}$
	Outp uts	89.09350	115.76556	$\begin{aligned} & 18: 05: 47.8 \\ & 6911 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:11:03.51 } \\ & 621 \mathrm{~W} \end{aligned}$								
$\begin{aligned} & \text { test2 } \\ & 9 \end{aligned}$	Input s	$\begin{aligned} & 20: 10: 24.5 \\ & 0000 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & 70: 12: 45.60 \\ & \text { 000W } \end{aligned}$	$\begin{aligned} & \text { 18:00:09.4 } \\ & 6178 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 72: 53: 29.02 \\ & 106 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 20:11:56.7 } \\ & 6327 N \end{aligned}$	$\begin{aligned} & \text { 70:14:07.60 } \\ & 925 \mathrm{~W} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 18:00:55.0 } \\ & 0817 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 72: 54: 10.22 \\ & 384 \mathrm{~W} \end{aligned}$	2.0	1.0	18:04:35.8	$\begin{aligned} & \text { 72:12:34.70 } \\ & \text { 000W } \end{aligned}$
	Outp uts	319.05008	23.26620	$\begin{aligned} & 18: 22: 13.6 \\ & 4861 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \hline 72: 28: 36.69 \\ & \text { 646W } \end{aligned}$								
$\begin{aligned} & \hline \text { test3 } \\ & 0 \end{aligned}$	Input s	$\begin{aligned} & \text { 20:10:24.5 } \\ & 0000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:12:45.60 } \\ & \text { 000W } \end{aligned}$	$\begin{aligned} & \text { 20:08:16.1 } \\ & 0563 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 73: 45: 19.95 \\ & 624 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 20:08:24.0 } \\ & 5152 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:12:45.60 } \\ & \text { 000W } \end{aligned}$	$\begin{aligned} & \text { 20:07:15.8 } \\ & 9488 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 73:45:18.59 } \\ & 745 \mathrm{~W} \end{aligned}$	-2.0	-1.0	$\begin{aligned} & \text { 18:04:35.8 } \\ & 0000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 72:12:34.70 } \\ & \text { 000W } \end{aligned}$
	Outp uts	359.59765	123.21213	$\begin{aligned} & \text { 20:08:16.8 } \\ & \text { 2998N } \end{aligned}$	$\begin{aligned} & \text { 72:13:29.86 } \\ & \text { 100W } \end{aligned}$								

WGS84PointToArcTangents

Test Identifie r	Point Latitude	Point Longitude	Arc Center Latitude	Arc Center Longitude	Arc Radiu s	Tangent Point 1 Latitude	Tangent Point 1 Longitude	Tangent Point 2 Latitude	Tangent Point 2 Longitude
test1	$\begin{aligned} & 40: 04: 35.80000 \\ & \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 68:12:34.70000 } \\ & W \\ & \hline \end{aligned}$	$\begin{aligned} & 40: 10: 24.50000 \\ & \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & 70: 12: 45.60000 \\ & \text { W } \end{aligned}$	100.0	N/A	N/A	N/A	N/A
test2	$\begin{aligned} & 40: 04: 35.80000 \\ & \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 67:12:34.70000 } \\ & \text { W } \end{aligned}$	40:10:24.50000	$\begin{aligned} & 70: 12: 45.60000 \\ & \text { W } \end{aligned}$	100.0	$\begin{aligned} & \text { 38:58:50.99979 } \\ & \mathrm{N} \end{aligned}$	$\begin{aligned} & \text { 68:42:19.92957 } \\ & \text { W } \end{aligned}$	$\begin{aligned} & 41: 17: 02.57149 \\ & \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 68:34:37.49185 } \\ & \text { W } \end{aligned}$
test3	$\begin{aligned} & 40: 04: 35.80000 \\ & \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & 60: 42: 34.70000 \\ & \text { W } \end{aligned}$	$\begin{aligned} & \text { 40:10:24.50000 } \\ & \mathrm{N} \end{aligned}$	$\begin{aligned} & 70: 12: 45.60000 \\ & \text { W } \end{aligned}$	100.0	$\begin{aligned} & \text { 38:33:51.49399 } \\ & \mathrm{N} \end{aligned}$	$\begin{aligned} & \text { 69:38:46.59230 } \\ & \text { W } \\ & \hline \end{aligned}$	$\begin{aligned} & 41: 48: 38.13537 \\ & \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 69:47:36.01065 } \\ & \text { W } \end{aligned}$
test4	$\begin{aligned} & 40: 04: 35.80000 \\ & \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 47:18:34.70000 } \\ & \text { W } \\ & \hline \end{aligned}$	$\begin{aligned} & 40: 10: 24.50000 \\ & \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & 70: 12: 45.60000 \\ & \text { W } \end{aligned}$	100.0	$\begin{aligned} & 38: 32: 36.38289 \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:45:21.56093 } \\ & \text { W } \end{aligned}$	$\begin{aligned} & 41: 50: 24.89752 \\ & \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 70:17:02.95660 } \\ & \text { W } \end{aligned}$
test5	$\begin{aligned} & \text { 42:54:35.80000 } \\ & \mathrm{N} \end{aligned}$	$\begin{aligned} & 70: 11: 34.70000 \\ & W \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 40:10:24.50000 } \\ & \mathrm{N} \end{aligned}$	$\begin{aligned} & 70: 12: 45.60000 \\ & \mathrm{~W} \\ & \hline \end{aligned}$	100.0	$\begin{aligned} & \text { 41:10:08.36776 } \\ & \mathrm{N} \end{aligned}$	$\begin{aligned} & \text { 68:27:18.83665 } \\ & \text { W } \end{aligned}$	$\begin{aligned} & 41: 10: 59.53083 \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & 71: 57: 22.47464 \\ & \text { W } \\ & \hline \end{aligned}$
test6	$\begin{aligned} & \text { 64:54:35.80000 } \\ & \mathrm{N} \end{aligned}$	$\begin{aligned} & 70: 11: 34.70000 \\ & W \end{aligned}$	$\begin{aligned} & 40: 10: 24.50000 \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 12: 45.60000 \\ & \text { W } \end{aligned}$	100.0	$\begin{aligned} & \text { 40:15:27.76756 } \\ & \mathrm{N} \end{aligned}$	$\begin{aligned} & \text { 68:02:23.12392 } \\ & \text { W } \end{aligned}$	$\begin{aligned} & 40: 15: 31.95981 \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 72:23:07.86461 } \\ & \text { W } \end{aligned}$
test7	$\begin{aligned} & \text { 52:54:35.80000 } \\ & \mathrm{N} \end{aligned}$	$\begin{aligned} & 70: 11: 34.70000 \\ & \text { W } \end{aligned}$	$\begin{aligned} & 40: 10: 24.50000 \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 12: 45.60000 \\ & \text { W } \end{aligned}$	100.0	$\begin{aligned} & 40: 21: 58.95584 \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:02:59.46118 } \\ & \text { W } \end{aligned}$	$\begin{aligned} & 40: 22: 10.22316 \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 72:22:30.19164 } \\ & \text { W } \end{aligned}$
test8	$\begin{aligned} & 40: 24: 35.80000 \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & 75: 11: 34.70000 \\ & \text { W } \end{aligned}$	$\begin{aligned} & 40: 10: 24.50000 \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 12: 45.60000 \\ & \text { W } \end{aligned}$	100.0	$\begin{aligned} & \text { 41:43:51.26621 } \\ & \mathrm{N} \end{aligned}$	$\begin{aligned} & 70: 59: 57.14126 \\ & W \end{aligned}$	$\begin{aligned} & \text { 38:44:18.56935 } \end{aligned}$	$\begin{aligned} & \text { 71:18:35.69631 } \\ & \mathrm{W} \\ & \hline \end{aligned}$
test9	$\begin{aligned} & \text { 40:24:35.80000 } \\ & \mathrm{N} \end{aligned}$	$\begin{aligned} & \text { 85:11:34.70000 } \\ & \text { W } \end{aligned}$	$\begin{aligned} & \text { 40:10:24.50000 } \\ & \mathrm{N} \end{aligned}$	$\begin{aligned} & \text { 70:12:45.60000 } \\ & \text { W } \end{aligned}$	100.0	$\begin{aligned} & \text { 41:50:23.42412 } \\ & \mathrm{N} \end{aligned}$	$\begin{aligned} & 70: 17: 57.13255 \\ & W \end{aligned}$	$\begin{aligned} & \text { 38:33:20.77969 } \\ & \mathrm{N} \end{aligned}$	$\begin{aligned} & 70: 44: 13.68450 \\ & \mathrm{~W} \\ & \hline \end{aligned}$
test10	$\begin{aligned} & 40: 24: 35.80000 \\ & \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & 80: 11: 34.70000 \\ & W \end{aligned}$	$\begin{aligned} & 40: 10: 24.50000 \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 12: 45.60000 \\ & \text { W } \\ & \hline \end{aligned}$	100.0	$\begin{aligned} & 41: 49: 34.92720 \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 30: 17.76805 \\ & \mathrm{~W} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 38:34:51.79348 } \\ & \mathrm{N} \end{aligned}$	$\begin{aligned} & 70: 51: 10.47505 \\ & \mathrm{~W} \\ & \hline \end{aligned}$
test11	$\begin{aligned} & \text { 37:09:35.80000 } \\ & \mathrm{N} \end{aligned}$	$\begin{aligned} & 70: 21: 34.70000 \\ & \text { W } \end{aligned}$	$\begin{aligned} & 40: 10: 24.50000 \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 12: 45.60000 \\ & \mathrm{~W} \end{aligned}$	100.0	$\begin{aligned} & \text { 39:17:29.76121 } \\ & \mathrm{N} \end{aligned}$	$\begin{aligned} & \text { 72:02:47.41811 } \\ & \mathrm{W} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 39:11:04.58987 } \\ & \mathrm{N} \end{aligned}$	$\begin{aligned} & \text { 68:28:26.79906 } \\ & \text { W } \end{aligned}$
test12	$\begin{aligned} & 30: 09: 35.80000 \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 21: 34.70000 \\ & \text { W } \end{aligned}$	$\begin{aligned} & 40: 10: 24.50000 \\ & \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & 70: 12: 45.60000 \\ & \text { W } \end{aligned}$	100.0	$\begin{aligned} & 39: 53: 58.01340 \\ & \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 72:21:11.40785 } \\ & \mathrm{W} \\ & \hline \end{aligned}$	$\begin{aligned} & 39: 51: 26.97905 \\ & \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 68:04:57.44757 } \\ & \text { W } \end{aligned}$
test13	$\begin{aligned} & \text { 25:09:35.80000 } \\ & \mathrm{N} \end{aligned}$	$\begin{aligned} & 70: 21: 34.70000 \\ & \text { W } \end{aligned}$	$\begin{aligned} & 40: 10: 24.50000 \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 12: 45.60000 \\ & \text { W } \end{aligned}$	100.0	$\begin{aligned} & \text { 39:59:12.99136 } \\ & \mathrm{N} \end{aligned}$	$\begin{aligned} & \text { 72:22:13.50689 } \\ & \text { W } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 39:57:25.86494 } \\ & \mathrm{N} \end{aligned}$	$\begin{aligned} & \text { 68:03:36.34196 } \\ & \text { W } \end{aligned}$
test14	$\begin{aligned} & 40: 04: 35.80000 \\ & \mathrm{~N} \\ & \hline \end{aligned}$	72:12:34.70000E	$\begin{aligned} & 40: 10: 24.50000 \\ & \mathrm{~N} \end{aligned}$	70:12:45.60000E	100.0	N/A	N/A	N/A	N/A
test15	$\begin{aligned} & 40: 04: 35.80000 \\ & \mathrm{~N} \end{aligned}$	73:12:34.70000E	$\begin{aligned} & 40: 10: 24.50000 \\ & \mathrm{~N} \end{aligned}$	70:12:45.60000E	100.0	$\begin{aligned} & 38: 58: 59.31128 \\ & \mathrm{~N} \end{aligned}$	71:43:22.32134E	$\begin{aligned} & 41: 16: 52.48137 \\ & \mathrm{~N} \\ & \hline \end{aligned}$	71:51:05.39764E
test16	$\begin{aligned} & \text { 40:04:35.80000 } \\ & \mathrm{N} \end{aligned}$	80:12:34.70000E	$\begin{aligned} & \text { 40:10:24.50000 } \\ & \mathrm{N} \end{aligned}$	70:12:45.60000E	100.0	$\begin{aligned} & \text { 38:33:38.85748 } \\ & \mathrm{N} \end{aligned}$	70:45:44.00068E	$\begin{aligned} & 41: 48: 54.91998 \\ & \mathrm{~N} \\ & \hline \end{aligned}$	70:35:56.19986E
test17	$\begin{aligned} & 40: 04: 35.80000 \\ & \mathrm{~N} \end{aligned}$	85:12:34.70000E	$\begin{aligned} & 40: 10: 24.50000 \\ & \mathrm{~N} \end{aligned}$	70:12:45.60000E	100.0	$\begin{aligned} & 38: 32: 40.44989 \\ & \mathrm{~N} \end{aligned}$	70:40:33.55927E	$\begin{aligned} & 41: 50: 14.09817 \\ & \mathrm{~N} \end{aligned}$	70:21:45.92010E
test18	$\begin{aligned} & 42: 54: 35.80000 \\ & \mathrm{~N} \\ & \hline \end{aligned}$	70:11:34.70000E	$\begin{aligned} & 40: 10: 24.50000 \\ & \mathrm{~N} \\ & \hline \end{aligned}$	70:12:45.60000E	100.0	$\begin{aligned} & 41: 10: 59.53083 \\ & \mathrm{~N} \\ & \hline \end{aligned}$	71:57:22.47464E	$\begin{aligned} & 41: 10: 08.36776 \\ & \mathrm{~N} \end{aligned}$	68:27:18.83666E
test19	$\begin{aligned} & \text { 52:54:35.80000 } \\ & \mathrm{N} \end{aligned}$	70:11:34.70000E	$\begin{aligned} & 40: 10: 24.50000 \\ & \mathrm{~N} \end{aligned}$	70:12:45.60000E	100.0	$\begin{aligned} & \text { 40:22:10.22315 } \\ & \mathrm{N} \end{aligned}$	72:22:30.19164E	$\begin{aligned} & 40: 21: 58.95586 \\ & \mathrm{~N} \end{aligned}$	68:02:59.46118E
test20	$\begin{aligned} & 57: 54: 35.80000 \\ & \mathrm{~N} \end{aligned}$	70:11:34.70000E	$\begin{aligned} & \text { 40:10:24.50000 } \\ & \mathrm{N} \end{aligned}$	70:12:45.60000E	100.0	$\begin{aligned} & 40: 18: 20.82175 \\ & \mathrm{~N} \\ & \hline \end{aligned}$	72:22:56.15166E	$\begin{aligned} & 40: 18: 13.61636 \\ & \mathrm{~N} \\ & \hline \end{aligned}$	68:02:34.42092E
test21	$\begin{aligned} & 40: 24: 35.80000 \\ & \mathrm{~N} \end{aligned}$	65:11:34.70000E	$\begin{aligned} & 40: 10: 24.50000 \\ & \mathrm{~N} \end{aligned}$	70:12:45.60000E	100.0	$\begin{aligned} & 41: 43: 58.89962 \\ & \mathrm{~N} \end{aligned}$	69:26:00.45951E	$\begin{aligned} & 38: 44: 06.31619 \\ & \mathrm{~N} \end{aligned}$	69:07:22.38700E
test22	$\begin{aligned} & 40: 24: 35.80000 \\ & \mathrm{~N} \end{aligned}$	55:11:34.70000E	$\begin{aligned} & 40: 10: 24.50000 \\ & \mathrm{~N} \end{aligned}$	70:12:45.60000E	100.0	$\begin{aligned} & \text { 41:50:23.55695 } \\ & \mathrm{N} \end{aligned}$	70:07:38.55861E	$\begin{aligned} & 38: 33: 20.46158 \\ & \mathrm{~N} \end{aligned}$	69:41:19.14594E

test23	$\begin{aligned} & 40: 24: 35.80000 \\ & \mathrm{~N} \end{aligned}$	60:11:34.70000E	$\begin{aligned} & 40: 10: 24.50000 \\ & \mathrm{~N} \end{aligned}$	70:12:45.60000E	100.0	$\begin{aligned} & 41: 49: 35.71820 \\ & \mathrm{~N} \end{aligned}$	69:55:21.25651E	$\begin{aligned} & \text { 38:34:50.41383 } \\ & \mathrm{N} \end{aligned}$	69:34:26.43627E
test24	$\begin{aligned} & 37: 09: 35.80000 \\ & \mathrm{~N} \end{aligned}$	70:21:34.70000E	$40: 10: 24.50000$	70:12:45.60000E	100.0	$\begin{aligned} & 39: 11: 04.58989 \\ & \mathrm{~N} \end{aligned}$	68:28:26.79904E	$\begin{aligned} & 39: 17: 29.76123 \\ & \mathrm{~N} \end{aligned}$	72:02:47.41812E
test25	$\begin{aligned} & \text { 32:09:35.80000 } \\ & \mathrm{N} \end{aligned}$	70:21:34.70000E	$\begin{aligned} & 40: 10: 24.50000 \\ & \mathrm{~N} \end{aligned}$	70:12:45.60000E	100.0	$\begin{aligned} & \text { 39:47:00.76207 } \\ & \mathrm{N} \end{aligned}$	68:06:16.51285E	$\begin{aligned} & 39: 50: 03.52790 \\ & N \end{aligned}$	72:20:10.72389E
test26	$\begin{aligned} & \text { 27:09:35.80000 } \\ & \mathrm{N} \end{aligned}$	70:21:34.70000E	$\begin{aligned} & 40: 10: 24.50000 \\ & \mathrm{~N} \end{aligned}$	70:12:45.60000E	100.0	$\begin{aligned} & \text { 39:55:34.77439 } \\ & \mathrm{N} \end{aligned}$	68:03:58.36606E	$\begin{aligned} & 39: 57: 35.60852 \\ & N \end{aligned}$	72:21:56.65907E
test27	40:04:35.80000S	72:12:34.70000E	40:10:24.50000S	70:12:45.60000E	100.0	N/A	N/A	N/A	N/A
test28	40:04:35.80000S	73:12:34.70000E	40:10:24.50000S	70:12:45.60000E	100.0	41:16:52.48137S	71:51:05.39763E	38:58:59.31128S	71:43:22.32134E
test29	40:04:35.80000S	83:12:34.70000E	40:10:24.50000S	70:12:45.60000E	100.0	41:49:55.55059S	70:26:29.37475E	38:32:53.74966S	70:41:49.38811E
test30	40:04:35.80000S	80:12:34.70000E	40:10:24.50000S	70:12:45.60000E	100.0	41:48:54.91998S	70:35:56.19985E	38:33:38.85748S	70:45:44.00069E
test31	38:04:35.80000S	70:11:34.70000E	40:10:24.50000S	70:12:45.60000E	100.0	38:49:55.28970S	71:29:33.42172E	38:50:48.30732S	68:54:26.10830E
test32	28:04:35.80000S	70:11:34.70000E	40:10:24.50000S	70:12:45.60000E	100.0	39:55:27.43830S	72:21:31.28285E	39:55:44.66533S	68:03:56.29379E
test33	33:04:35.80000S	70:11:34.70000E	40:10:24.50000S	70:12:45.60000E	100.0	39:45:36.78731S	72:18:46.32802E	39:46:03.95424S	68:06:35.51577E
test34	40:24:35.80000S	65:51:34.70000E	40:10:24.50000S	70:12:45.60000E	100.0	38:48:24.38501S	68:58:41.71027E	41:41:16.63837S	69:17:31.03298E
test35	40:24:35.80000S	60:51:34.70000E	40:10:24.50000S	70:12:45.60000E	100.0	38:35:16.36317S	69:32:41.49524E	41:49:20.73591S	69:53:01.97091E
test36	40:24:35.80000S	55:51:34.70000E	40:10:24.50000S	70:12:45.60000E	100.0	38:33:26.36693S	69:40:49.11846E	41:50:20.97633S	70:06:20.58405E
test37	43:09:35.80000S	69:38:25.30000E	40:10:24.50000S	70:12:45.60000E	100.0	40:52:32.16687S	68:13:48.41601E	41:16:01.63700S	71:52:03.48811E
test38	48:09:35.80000S	69:38:25.30000E	40:10:24.50000S	70:12:45.60000E	100.0	40:25:12.33606S	68:03:29.94912E	40:34:39.67829S	72:19:42.54233E
test39	53:09:35.80000S	69:38:25.30000E	40:10:24.50000S	70:12:45.60000E	100.0	40:19:08.92651S	68:02:39.52957E	40:24:28.22924S	72:22:08.94257E
test40	40:04:35.80000S	$\begin{aligned} & \text { 68:12:34.70000 } \\ & \text { W } \end{aligned}$	40:10:24.50000S	$\begin{aligned} & 70: 12: 45.60000 \\ & \text { W } \end{aligned}$	100.0	N/A	N/A	N/A	N/A
test41	40:04:35.80000S	$\begin{aligned} & \text { 66:47:25.30000 } \\ & \text { W } \end{aligned}$	40:10:24.50000S	$\begin{aligned} & 70: 12: 45.60000 \\ & \text { W } \\ & \hline \end{aligned}$	100.0	41:26:06.94082S	$\begin{aligned} & \text { 68:46:38.84215 } \\ & \text { W } \\ & \hline \end{aligned}$	38:51:27.83161S	$\begin{aligned} & \text { 68:53:19.53080 } \\ & \text { W } \end{aligned}$
test42	40:04:35.80000S	$\begin{aligned} & 56: 47: 25.30000 \\ & \text { W } \end{aligned}$	40:10:24.50000S	$\begin{aligned} & 70: 12: 45.60000 \\ & W \end{aligned}$	100.0	41:50:00.49059S	$\begin{aligned} & 70: 00: 06.82169 \\ & \mathrm{~W} \end{aligned}$	38:32:50.15608S	$\begin{aligned} & \text { 69:44:01.95578 } \\ & \text { W } \end{aligned}$
test43	40:04:35.80000S	$\begin{aligned} & \text { 59:47:25.30000 } \\ & \text { W } \end{aligned}$	40:10:24.50000S	$\begin{aligned} & 70: 12: 45.60000 \\ & W \end{aligned}$	100.0	41:49:07.32741S	$\begin{aligned} & \text { 69:51:10.22069 } \\ & \text { W } \end{aligned}$	38:33:29.54331S	$\begin{aligned} & \text { 69:40:33.17198 } \\ & \text { W } \end{aligned}$
test44	38:04:35.80000S	$\begin{aligned} & 70: 11: 34.70000 \\ & \text { W } \end{aligned}$	40:10:24.50000S	$\begin{aligned} & 70: 12: 45.60000 \\ & \text { W } \\ & \hline \end{aligned}$	100.0	38:50:48.30732S	$\begin{aligned} & \text { 68:54:26.10830 } \\ & \text { W } \end{aligned}$	38:49:55.28969S	$\begin{aligned} & 71: 29: 33.42171 \\ & \text { W } \end{aligned}$
test45	28:04:35.80000S	$\begin{aligned} & 70: 11: 34.70000 \\ & \text { W } \end{aligned}$	40:10:24.50000S	$\begin{aligned} & \text { 70:12:45.60000 } \\ & \text { W } \end{aligned}$	100.0	39:55:44.66533S	$\begin{aligned} & \text { 68:03:56.29379 } \\ & \text { W } \end{aligned}$	39:55:27.43828S	$\begin{aligned} & 72: 21: 31.28285 \\ & \text { W } \end{aligned}$
test46	33:04:35.80000S	$\begin{aligned} & \text { 70:11:34.70000 } \\ & \text { W } \end{aligned}$	40:10:24.50000S	$\begin{aligned} & 70: 12: 45.60000 \\ & \mathrm{~W} \end{aligned}$	100.0	39:46:03.95424S	$\begin{aligned} & \text { 68:06:35.51577 } \\ & \text { W } \end{aligned}$	39:45:36.78730S	$\begin{aligned} & \text { 72:18:46.32802 } \\ & \text { W } \end{aligned}$
test47	40:24:35.80000S	$\begin{aligned} & \text { 74:11:34.70000 } \\ & \text { W } \end{aligned}$	40:10:24.50000S	$\begin{aligned} & 70: 12: 45.60000 \\ & \mathrm{~W} \end{aligned}$	100.0	38:51:54.10807S	$\begin{aligned} & \text { 71:32:55.13292 } \\ & \mathrm{W} \\ & \hline \end{aligned}$	41:39:02.49151S	$\begin{aligned} & 71: 13: 58.65781 \\ & \text { W } \end{aligned}$
test48	40:24:35.80000S	$\begin{aligned} & 84: 11: 34.70000 \\ & \text { W } \end{aligned}$	40:10:24.50000S	$\begin{aligned} & \text { 70:12:45.60000 } \\ & \text { W } \end{aligned}$	100.0	38:33:30.19485S	$\begin{aligned} & 70: 45: 01.28168 \\ & W \end{aligned}$	41:50:19.19941S	$\begin{aligned} & 70: 19: 56.15761 \\ & W \end{aligned}$
test49	40:24:35.80000S	$\begin{aligned} & 80: 11: 34.70000 \\ & W \end{aligned}$	40:10:24.50000S	$\begin{aligned} & \text { 70:12:45.60000 } \\ & \text { W } \end{aligned}$	100.0	38:34:51.79347S	$\begin{aligned} & \text { 70:51:10.47504 } \\ & \mathrm{W} \\ & \hline \end{aligned}$	41:49:34.92720S	$\begin{aligned} & 70: 30: 17.76806 \\ & W \end{aligned}$
test50	43:09:35.80000S	$\begin{aligned} & 70: 21: 34.70000 \\ & W \end{aligned}$	40:10:24.50000S	$\begin{aligned} & \text { 70:12:45.60000 } \\ & \text { W } \end{aligned}$	100.0	41:02:16.59197S	$\begin{aligned} & \text { 72:05:02.69299 } \\ & \text { W } \end{aligned}$	41:08:20.56609S	$\begin{aligned} & \text { 68:25:37.35380 } \\ & \text { W } \end{aligned}$
test51	48:09:35.80000S	$\begin{aligned} & \text { 70:21:34.70000 } \\ & \text { W } \end{aligned}$	40:10:24.50000S	$\begin{aligned} & 70: 12: 45.60000 \\ & \text { W } \end{aligned}$	100.0	40:28:45.82853S	$\begin{aligned} & \text { 72:21:17.78853 } \\ & \text { W } \end{aligned}$	40:31:11.70040S	$\begin{aligned} & \text { 68:04:49.12313 } \\ & \text { W } \end{aligned}$
test52	53:09:35.80000S	$\begin{aligned} & 70: 21: 34.70000 \\ & \text { W } \end{aligned}$	40:10:24.50000S	$\begin{aligned} & 70: 12: 45.60000 \\ & \text { W } \\ & \hline \end{aligned}$	100.0	40:21:08.09707S	$\begin{aligned} & 72: 22: 38.37153 \\ & \text { W } \\ & \hline \end{aligned}$	40:22:30.13116S	$\begin{aligned} & \text { 68:03:03.81110 } \\ & \text { W } \end{aligned}$

WGS84PerpTangentPoints Test Results

Test Ident ifier	Geodesic Start Latitude	Geodesic Start Longitude	Geod esic Azim uth (degr ees)	Arc Center Latitude	Arc Center Longitude	$\begin{aligned} & \text { Arc } \\ & \text { Rad } \\ & \text { ius } \end{aligned}$	Intercept 1 Latitude	```Intercept 1 Longitude```	Intercept 2 Latitude	```Intercept 2 Longitude```	Tangent Point 1 Latitude	Tangent Point 1 Longitude	Tangent Point 2 Latitude	Tangent s Point 2 Longitude
test1	$\begin{aligned} & \text { 40:04:35. } \\ & 80000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 65:12:40. } \\ & 70000 \mathrm{~W} \end{aligned}$	350.0	$\begin{aligned} & \text { 40:10:24. } \\ & 50000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:12:45. } \\ & \text { 60000W } \end{aligned}$	$\begin{aligned} & 50 . \\ & 0 \end{aligned}$	$\begin{aligned} & \text { 41:45:15. } \\ & 42301 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 65:36:23. } \\ & 05394 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 40:06:32. } \\ & \text { 80959N } \end{aligned}$	$\begin{aligned} & \text { 65:13:07. } \\ & 57044 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 40:59:04. } \\ & 91370 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:27:57. } \\ & 32812 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 39: 21: 40 . \\ & 43861 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:58:02. } \\ & \text { 47943W } \end{aligned}$
test2	$\begin{aligned} & \text { 40:04:35. } \\ & 80000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \hline 65: 12: 40 . \\ & 70000 \mathrm{~W} \end{aligned}$	200.0	$\begin{aligned} & \text { 40:10:24. } \\ & 50000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \hline 70: 12: 45 . \\ & 60000 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 50 . \\ & 0 \end{aligned}$	$\begin{aligned} & \text { 38:14:05. } \\ & \text { 43205N } \end{aligned}$	$\begin{aligned} & \hline 66: 03: 35 . \\ & 08024 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 39:48:31. } \\ & 53705 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \hline 65: 20: 15 . \\ & 65454 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \hline 39: 22: 29 . \\ & 68372 N \end{aligned}$	$\begin{aligned} & \hline 70: 31: 27 . \\ & 94338 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 40:58:17. } \\ & 46091 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \hline \text { 69:53:43. } \\ & \text { 69995W } \end{aligned}$
test3	$\begin{aligned} & \text { 40:04:35. } \\ & 80000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:12:40. } \\ & 70000 \mathrm{~W} \end{aligned}$	325.0	$\begin{aligned} & \text { 40:10:24. } \\ & 50000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 12: 45 . \\ & 60000 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 100 \\ & .0 \end{aligned}$	$\begin{aligned} & \text { 42:13:23. } \\ & 37083 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \hline 70: 14: 57 . \\ & 87719 W \end{aligned}$	$\begin{aligned} & \text { 39:30:24. } \\ & \text { 62906N } \end{aligned}$	$\begin{aligned} & \text { 67:41:50. } \\ & \text { 28458W } \end{aligned}$	$\begin{aligned} & \text { 41:30:34. } \\ & 37380 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 71:31:37. } \\ & \text { 17040W } \end{aligned}$	$\begin{aligned} & \text { 38:49:17. } \\ & 65513 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:57:04. } \\ & 57474 \mathrm{~W} \end{aligned}$
test4	$\begin{aligned} & \text { 40:04:35. } \\ & 80000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 65:12:40. } \\ & 70000 W \end{aligned}$	270.0	$\begin{aligned} & \text { 40:10:24. } \\ & 50000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:12:45. } \\ & 60000 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 50 . \\ & 0 \end{aligned}$	$\begin{aligned} & \text { 39:55:02. } \\ & \text { 92066N } \end{aligned}$	$\begin{aligned} & \text { 71:16:44. } \\ & 98301 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 40:00:38. } \\ & 90564 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:06:53. } \\ & \text { 45783W } \end{aligned}$	$\begin{aligned} & \text { 40:07:17. } \\ & 85127 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 71:17:50. } \\ & \text { 28392W } \end{aligned}$	$\begin{aligned} & \text { 40:12:54. } \\ & 82728 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:07:35. } \\ & \text { 57088W } \end{aligned}$
test5	$\begin{aligned} & \text { 40:04:35. } \\ & 80000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \hline 65: 12: 40 . \\ & 70000 \mathrm{~W} \end{aligned}$	300.0	$\begin{aligned} & 40: 10: 24 \\ & 50000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:12:45. } \\ & \text { 60000W } \end{aligned}$	$\begin{aligned} & 50 . \\ & 0 \end{aligned}$	$\begin{aligned} & 42: 06: 05 \\ & 22048 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:09:48. } \\ & \text { 79496W } \end{aligned}$	$\begin{aligned} & \hline \text { 41:20:00. } \\ & 99595 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \hline \text { 68:11:12. } \\ & \text { 42020W } \end{aligned}$	$\begin{aligned} & 40: 32: 38 \\ & 56283 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 71:11:21. } \\ & 28560 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 39:47:38. } \\ & 67195 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \hline \text { 69:14:49. } \\ & 94129 \mathrm{~W} \end{aligned}$
test6	$\begin{aligned} & \text { 40:04:35. } \\ & 80000 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 65:12:40. } \\ & 70000 \mathrm{~W} \end{aligned}$	240.0	$\begin{aligned} & \text { 40:10:24. } \\ & 50000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:12:45. } \\ & \text { 60000W } \end{aligned}$	$\begin{aligned} & 50 . \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 37:57:45. } \\ & 76917 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:38:55. } \\ & \text { 15062W } \end{aligned}$	$\begin{aligned} & \text { 38:51:12. } \\ & \text { 13212N } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 67:51:14. } \\ & \text { 22782W } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 39:42:50. } \\ & \text { 60770N } \end{aligned}$	$\begin{aligned} & \text { 71:07:01. } \\ & \text { 04721W } \end{aligned}$	$\begin{aligned} & \text { 40:37:35. } \\ & 17545 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:17:48. } \\ & 54937 \mathrm{~W} \\ & \hline \end{aligned}$
test7	$\begin{aligned} & 44: 54: 35 \\ & 80000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 11: 34 . \\ & 70000 \mathrm{~W} \end{aligned}$	180.0	$\begin{aligned} & 40: 10: 24 \\ & 50000 \mathrm{~N} \end{aligned}$	70:12:45.	$\begin{aligned} & 50 . \\ & 0 \end{aligned}$	$\begin{aligned} & \text { 39:20:22. } \\ & 07307 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 11: 34 . \\ & 70000 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 41: 00: 26 . \\ & 50523 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 11: 34 . \\ & 70000 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \hline 39: 20: 22 . \\ & 06721 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:12:44. } \\ & 75738 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 41:00:26. } \\ & 49902 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 12: 46 . \\ & 49381 \mathrm{~W} \end{aligned}$
test8	$\begin{aligned} & 44: 54: 35 \\ & 80000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 11: 34 . \\ & 70000 \mathrm{~W} \end{aligned}$	148.0	$\begin{aligned} & 40: 10: 24 \\ & 50000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 12: 45 . \\ & 60000 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 50 . \\ & 0 \end{aligned}$	$\begin{aligned} & \text { 40:44:55. } \\ & 03008 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 66:49:02. } \\ & 96925 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 42:11:35. } \\ & 30495 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 67:55:46. } \\ & \text { 12774W } \end{aligned}$	$\begin{aligned} & \text { 39:27:50. } \\ & \text { 18529N } \end{aligned}$	$\begin{aligned} & \text { 69:38:39. } \\ & \text { 28546W } \end{aligned}$	$\begin{aligned} & \text { 40:52:46. } \\ & 19633 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 47: 39 . \\ & 16449 \mathrm{~W} \end{aligned}$
test9	$\begin{aligned} & 44: 54: 35 \\ & 80000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 11: 34 . \\ & 70000 \mathrm{~W} \end{aligned}$	211.0	$\begin{aligned} & \text { 40:10:24. } \\ & 50000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:12:45. } \\ & 60000 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 50 . \\ & 0 \end{aligned}$	$\begin{aligned} & \text { 40:39:20. } \\ & 90907 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 73:30:31. } \\ & 26204 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 42:06:51. } \\ & 06530 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 72:25:51. } \\ & 03824 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \hline 39: 27: 22 . \\ & 55669 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:45:52. } \\ & \text { 63953W } \end{aligned}$	$\begin{aligned} & 40: 53: 14 . \\ & 53640 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \hline \text { 69:38:52. } \\ & \text { 20992W } \end{aligned}$
$\begin{aligned} & \text { test1 } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { 40:24:35. } \\ & 80000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 75: 11: 34 . \\ & 70000 \mathrm{~W} \end{aligned}$	90.0	$\begin{aligned} & 40: 10: 24 . \\ & 50000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:12:45. } \\ & \text { 60000W } \end{aligned}$	$\begin{aligned} & 50 . \\ & 0 \end{aligned}$	$\begin{aligned} & \text { 40:15:00. } \\ & \text { 17740N } \end{aligned}$	$\begin{aligned} & \hline \text { 69:06:59. } \\ & \text { 49277W } \end{aligned}$	$\begin{aligned} & \hline 40: 20: 38 . \\ & 68482 N \end{aligned}$	$\begin{aligned} & \text { 71:17:28. } \\ & 91405 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 40:07:17. } \\ & 14968 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \hline \text { 69:07:40. } \\ & \text { 97872W } \end{aligned}$	$\begin{aligned} & 40: 12: 55 . \\ & 02357 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 71: 17: 55 . \\ & 61784 \mathrm{~W} \end{aligned}$
$\begin{aligned} & \text { test1 } \\ & 1 \end{aligned}$	$\begin{aligned} & \text { 40:24:35. } \\ & 80000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 75: 11: 34 . \\ & 70000 \mathrm{~W} \end{aligned}$	71.0	$\begin{aligned} & 40: 10: 24 \\ & 50000 \mathrm{~N} \end{aligned}$	70:12:45.	$\begin{aligned} & 50 . \\ & 0 \end{aligned}$	$\begin{aligned} & \text { 41:42:40. } \\ & 03737 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:38:05. } \\ & 90758 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 41: 14: 59 . \\ & 29549 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 71: 45: 59 . \\ & 60155 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 40:23:40. } \\ & 58611 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:09:45. } \\ & \text { 81981W } \end{aligned}$	$\begin{aligned} & \hline 39: 56: 32 . \\ & 34252 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 71:15:19. } \\ & \text { 64207W } \end{aligned}$
$\begin{aligned} & \text { test1 } \\ & 2 \end{aligned}$	$\begin{aligned} & \text { 40:24:35. } \\ & 80000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 75: 11: 34 . \\ & 70000 \mathrm{~W} \end{aligned}$	117.0	$\begin{aligned} & \text { 40:10:24. } \\ & 50000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:12:45. } \\ & 60000 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 50 . \\ & 0 \end{aligned}$	$\begin{aligned} & \text { 38:21:19. } \\ & 52582 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 19: 44 . \\ & 57750 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 39:10:39. } \\ & 07842 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 72:11:03. } \\ & \text { 63508w } \end{aligned}$	$\begin{aligned} & \text { 39:45:02. } \\ & 93329 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:16:42. } \\ & \text { 08956W } \end{aligned}$	$\begin{aligned} & 40: 35: 20 \\ & 61719 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 71:09:29. } \\ & \text { 12730W } \end{aligned}$
$\begin{aligned} & \text { test1 } \\ & 3 \end{aligned}$	$\begin{aligned} & \text { 37:09:35. } \\ & \text { 80000N } \end{aligned}$	$\begin{aligned} & 70: 21: 34 . \\ & 70000 \mathrm{~W} \end{aligned}$	0.0	$\begin{aligned} & 40: 10: 24 \\ & 50000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:12:45. } \\ & 60000 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 50 . \\ & 0 \end{aligned}$	$\begin{aligned} & 41: 00: 26 . \\ & 84065 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 21: 34 . \\ & 70000 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 39: 20: 22 . \\ & 39722 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 21: 34 . \\ & 70000 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 41:00:26. } \\ & 49479 N \end{aligned}$	$\begin{aligned} & \text { 70:12:38. } \\ & 92986 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 39:20:22. } \\ & 07107 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 12: 51 . \\ & 88818 \mathrm{~W} \end{aligned}$
$\begin{aligned} & \text { test1 } \\ & 4 \end{aligned}$	$\begin{aligned} & \text { 37:09:35. } \\ & \text { 80000N } \end{aligned}$	$\begin{aligned} & 70: 21: 34 . \\ & 70000 \mathrm{~W} \end{aligned}$	34.0	$\begin{aligned} & \text { 40:10:24. } \\ & 50000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 12: 45 . \\ & 60000 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 50 . \\ & 0 \end{aligned}$	$\begin{aligned} & \text { 39:57:02. } \\ & \text { 53883N } \end{aligned}$	$\begin{aligned} & \text { 67:53:34. } \\ & 67323 W \end{aligned}$	$\begin{aligned} & \text { 38:35:09. } \\ & 95589 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 69:07:43. } \\ & \text { 83953W } \end{aligned}$	$\begin{aligned} & \text { 40:51:46. } \\ & 48176 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 69:35:52. } \\ & \text { 67111W } \end{aligned}$	$\begin{aligned} & \text { 39:28:52. } \\ & 04803 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:48:56. } \\ & \text { 68220W } \end{aligned}$
$\begin{aligned} & \text { test1 } \\ & 5 \end{aligned}$	$\begin{aligned} & \text { 37:09:35. } \\ & \text { 80000N } \end{aligned}$	$\begin{aligned} & 70: 21: 34 . \\ & 70000 \mathrm{~W} \end{aligned}$	331.0	$\begin{aligned} & 40: 10: 24 \\ & 50000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 12: 45 . \\ & 60000 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 50 . \\ & 0 \end{aligned}$	$\begin{aligned} & \text { 40:07:42. } \\ & 80472 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & 72: 30: 57 . \\ & 33906 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 38:41:00. } \\ & 31862 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 71:26:24. } \\ & 86130 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 40:54:09. } \\ & 57283 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & 70: 44: 34 . \\ & 61853 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 39:26:31. } \\ & \text { 66858N } \end{aligned}$	$\begin{aligned} & \text { 69:41:34. } \\ & \text { 39676W } \end{aligned}$
$\begin{aligned} & \text { test1 } \\ & 6 \end{aligned}$	$\begin{aligned} & \text { 40:04:35. } \\ & \text { 80000N } \end{aligned}$	$\begin{aligned} & 75: 12: 34 . \\ & 70000 E \end{aligned}$	350.0	$\begin{aligned} & 40: 10: 24 \\ & 50000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 12: 45 . \\ & 60000 \mathrm{E} \end{aligned}$	$\begin{aligned} & 50 . \\ & 0 \end{aligned}$	$\begin{aligned} & 41: 45: 12 . \\ & 67315 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 74: 48: 53 . \\ & 01070 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 40:06:30. } \\ & 07882 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 75: 12: 08 . \\ & 45696 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 40:59:04. } \\ & 94944 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \hline \text { 69:57:34. } \\ & \text { 06882E } \end{aligned}$	$\begin{aligned} & \text { 39:21:40. } \\ & \text { 40510N } \end{aligned}$	$\begin{aligned} & 70: 27: 28 . \\ & 53420 \mathrm{E} \end{aligned}$
$\begin{aligned} & \text { test1 } \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 40:04:35. } \\ & 80000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 75: 12: 34 \\ & 70000 \mathrm{E} \end{aligned}$	200.0	$\begin{aligned} & 40: 10: 24 \\ & 50000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 12: 45 \\ & 60000 \mathrm{E} \end{aligned}$	$\begin{aligned} & 50 . \\ & 0 \end{aligned}$	$\begin{aligned} & 38: 14: 08 . \\ & 75549 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 74:21:41. } \\ & \text { 80893E } \end{aligned}$	$\begin{aligned} & 39: 48: 34 . \\ & 82983 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 75: 05: 01 \\ & 29260 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 39:22:29. } \\ & 72463 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:54:03. } \\ & \text { 08054E } \end{aligned}$	$\begin{aligned} & 40: 58: 17 \\ & 41786 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:31:47. } \\ & \text { 68622E } \end{aligned}$
$\begin{aligned} & \text { test1 } \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 40: 04: 35 \\ & 80000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 72: 12: 34 . \\ & 70000 E \end{aligned}$	315.0	$\begin{aligned} & 40: 10: 24 \\ & 50000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 12: 45 . \\ & 60000 \mathrm{E} \end{aligned}$	$\begin{aligned} & 100 \\ & .0 \end{aligned}$	$\begin{aligned} & \text { 42:02:53. } \\ & 59978 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:31:25. } \\ & 90082 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 39:43:08. } \\ & 75530 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 72: 40: 17 . \\ & 05485 E \end{aligned}$	$\begin{aligned} & \text { 41:18:51. } \\ & 03968 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:36:46. } \\ & \text { 64551E } \end{aligned}$	$\begin{aligned} & \text { 39:00:35. } \\ & 86938 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 71:45:27. } \\ & \text { 62796E } \end{aligned}$
$\begin{aligned} & \text { test1 } \\ & 9 \end{aligned}$	$\begin{aligned} & 40: 04: 35 \\ & 80000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 73: 12: 34 . \\ & 70000 \mathrm{E} \end{aligned}$	270.0	$\begin{aligned} & 40: 10: 24 \\ & 50000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 12: 45 . \\ & 60000 \mathrm{E} \end{aligned}$	$\begin{aligned} & 50 . \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 40:00:17. } \\ & 63529 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:08:04. } \\ & 99603 E \end{aligned}$	$\begin{aligned} & \text { 40:03:39. } \\ & 33076 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 71:18:12. } \\ & \text { 14247E } \end{aligned}$	$\begin{aligned} & 40: 08: 25 \\ & 20509 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:07:35. } \\ & \text { 90168E } \end{aligned}$	$\begin{aligned} & 40: 11: 47 \\ & 29572 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 71:17:58. } \\ & 51179 \mathrm{E} \end{aligned}$
$\begin{aligned} & \text { test2 } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { 40:04:35. } \\ & 80000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 73: 12: 34 \\ & 70000 \mathrm{E} \end{aligned}$	300.0	$\begin{aligned} & 40: 10: 24 \\ & 50000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 12: 45 \\ & 60000 \mathrm{E} \end{aligned}$	$\begin{aligned} & 50 . \\ & 0 \end{aligned}$	$\begin{aligned} & \text { 41:28:31. } \\ & 69569 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:52:44. } \\ & \text { 13264E } \end{aligned}$	$\begin{aligned} & \text { 40:40:49. } \\ & 88638 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 71:49:00. } \\ & 24598 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 40:33:41. } \\ & 08619 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:14:51. } \\ & \text { 20890E } \end{aligned}$	$\begin{aligned} & \text { 39:46:37. } \\ & 81172 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 71:09:59. } \\ & 27305 \mathrm{E} \end{aligned}$
test2	40:04:35.	73:12:34.	240.0	40:10:24.	70:12:45.	50.	38:39:26.	70:09:47.	39:31:32.	71:59:30.	39:43:45.	69:17:44.	40:36:38.	71:08:28.

1	80000N	70000E		50000N	60000E	0	28959N	67412E	39864N	22696E	18199N	08525E	84939N	77660E
$\begin{aligned} & \text { test2 } \\ & 2 \end{aligned}$	$\begin{aligned} & 42: 54: 35 . \\ & 80000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 11: 34 \\ & 70000 \mathrm{E} \end{aligned}$	180.0	$\begin{aligned} & 40: 10: 24 \\ & 50000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 12: 45 \\ & 60000 \mathrm{E} \end{aligned}$	$\begin{aligned} & 50 . \\ & 0 \end{aligned}$	$\begin{aligned} & \text { 39:20:22. } \\ & 07307 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 11: 34 . \\ & 70000 \mathrm{E} \end{aligned}$	$\begin{aligned} & 41: 00: 26 . \\ & 50523 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 11: 34 . \\ & 70000 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 39:20:22. } \\ & 06721 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:12:44. } \\ & 75738 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 41:00:26. } \\ & 49902 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 12: 46 \\ & \text { 49381E } \end{aligned}$
$\begin{aligned} & \text { test2 } \\ & 3 \end{aligned}$	$\begin{aligned} & 42: 54: 35 \\ & 80000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 11: 34 . \\ & 70000 \mathrm{E} \end{aligned}$	148.0	$\begin{aligned} & 40: 10: 24 \\ & 50000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 12: 45 . \\ & 60000 \mathrm{E} \end{aligned}$	$\begin{aligned} & 50 . \\ & 0 \end{aligned}$	$\begin{aligned} & \text { 40:12:21. } \\ & 71012 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 72:22:44. } \\ & 76027 \mathrm{E} \end{aligned}$	$\begin{aligned} & 41: 38: 14 . \\ & 00626 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 71:14:56. } \\ & 56898 \mathrm{E} \end{aligned}$	$\begin{aligned} & 39: 27: 51 \\ & 50743 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:46:54. } \\ & \text { 69271E } \end{aligned}$	$\begin{aligned} & \text { 40:52:45. } \\ & 72705 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:37:51. } \\ & 05930 \mathrm{E} \end{aligned}$
$\begin{aligned} & \text { test2 } \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 42: 54: 35 \\ & 80000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 11: 34 . \\ & 70000 \mathrm{E} \end{aligned}$	211.0	$\begin{aligned} & 40: 10: 24 \\ & 50000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 12: 45 . \\ & 60000 \mathrm{E} \end{aligned}$	$\begin{aligned} & 50 . \\ & 0 \end{aligned}$	$\begin{aligned} & 40: 10: 13 \\ & 49744 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:03:47. } \\ & \text { 64473E } \end{aligned}$	$\begin{aligned} & 41: 36: 57 \\ & 43421 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:09:38. } \\ & \text { 18678E } \end{aligned}$	$\begin{aligned} & \text { 39:27:25. } \\ & 16505 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:39:32. } \\ & 86210 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 40:53:12. } \\ & 66240 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 46: 43 . \\ & 04537 \mathrm{E} \end{aligned}$
$\begin{aligned} & \text { test2 } \\ & 5 \end{aligned}$	$\begin{aligned} & \text { 40:24:35. } \\ & 80000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 65:11:34. } \\ & 70000 \mathrm{E} \end{aligned}$	90.0	$\begin{aligned} & 40: 10: 24 \\ & 50000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 12: 45 \\ & 60000 \mathrm{E} \end{aligned}$	$\begin{aligned} & 50 . \\ & 0 \end{aligned}$	$\begin{aligned} & 40: 14: 52 \\ & 70121 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 71:18:31. } \\ & 30185 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 40:20:33. } \\ & 87049 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:08:02. } \\ & \text { 27516E } \end{aligned}$	$\begin{aligned} & \text { 40:07:15. } \\ & 81920 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 71:17:50. } \\ & \text { 10192E } \end{aligned}$	$\begin{aligned} & 40: 12: 56 \\ & 35847 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:07:35. } \\ & \text { 65928E } \end{aligned}$
$\begin{aligned} & \hline \text { test2 } \\ & 6 \end{aligned}$	$\begin{aligned} & \text { 40:24:35. } \\ & 80000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 65:11:34. } \\ & 70000 \mathrm{E} \end{aligned}$	71.0	$\begin{aligned} & 40: 10: 24 . \\ & 50000 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & 70: 12: 45 . \\ & 60000 \mathrm{E} \\ & \hline \end{aligned}$	$\begin{aligned} & 50 . \\ & 0 \end{aligned}$	$\begin{aligned} & \text { 41:43:07. } \\ & 73081 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 47: 18 . \\ & 27558 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 41:15:29. } \\ & 46607 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:39:22. } \\ & \text { 65865E } \end{aligned}$	$\begin{aligned} & \text { 40:23:39. } \\ & 25925 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 71:15:45. } \\ & 84597 \mathrm{E} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 39:56:33. } \\ & \text { 64852N } \end{aligned}$	$\begin{aligned} & \text { 69:10:11. } \\ & 05812 \mathrm{E} \end{aligned}$
$\begin{aligned} & \text { test2 } \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 40:24:35. } \\ & 80000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 65:11:34. } \\ & 70000 \mathrm{E} \end{aligned}$	117.0	$\begin{aligned} & 40: 10: 24 . \\ & 50000 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & 70: 12: 45 . \\ & 60000 \mathrm{E} \\ & \hline \end{aligned}$	$\begin{aligned} & 50 . \\ & 0 \end{aligned}$	$\begin{aligned} & 38: 20: 32 . \\ & 33083 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 05: 08 . \\ & 22153 E \end{aligned}$	$\begin{aligned} & \text { 39:09:53. } \\ & 57178 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 68:13:51. } \\ & 51407 \mathrm{E} \end{aligned}$	$\begin{aligned} & 39: 45: 01 . \\ & 83231 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 71:08:48. } \\ & 26146 \mathrm{E} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 40:35:21. } \\ & 75120 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:16:02. } \\ & \text { 91762E } \end{aligned}$
$\begin{aligned} & \text { test2 } \\ & 8 \end{aligned}$	$\begin{aligned} & \text { 37:09:35. } \\ & \text { 80000N } \end{aligned}$	$\begin{aligned} & 70: 21: 34 . \\ & 70000 \mathrm{E} \end{aligned}$	0.0	$\begin{aligned} & 40: 10: 24 \\ & 50000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 12: 45 . \\ & 60000 \mathrm{E} \end{aligned}$	$\begin{aligned} & 50 . \\ & 0 \end{aligned}$	$\begin{aligned} & \text { 41:00:26. } \\ & 84065 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 21: 34 . \\ & 70000 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 39:20:22. } \\ & 39722 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:21:34. } \\ & 70000 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 41:00:26. } \\ & 49479 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:12:38. } \\ & 92986 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 39:20:22. } \\ & 07107 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 12: 51 . \\ & 88818 \mathrm{E} \end{aligned}$
$\begin{aligned} & \text { test2 } \\ & 9 \end{aligned}$	$\begin{aligned} & \text { 37:09:35. } \\ & \text { 80000N } \end{aligned}$	$\begin{aligned} & 70: 21: 34 . \\ & 70000 \mathrm{E} \end{aligned}$	31.0	$\begin{aligned} & \text { 40:10:24. } \\ & 50000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 12: 45 . \\ & 60000 \mathrm{E} \end{aligned}$	$\begin{aligned} & 50 . \\ & 0 \end{aligned}$	$\begin{aligned} & \text { 40:01:09. } \\ & 54385 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 72:36:33. } \\ & 75760 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 38:36:16. } \\ & 81276 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 71:28:10. } \\ & \text { 67923E } \end{aligned}$	$\begin{aligned} & \text { 40:53:16. } \\ & 92717 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 70:46:33. } \\ & 80034 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 39:27:23. } \\ & 36126 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:39:36. } \\ & \text { 80041E } \end{aligned}$
$\begin{aligned} & \text { test3 } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { 37:09:35. } \\ & \text { 80000N } \end{aligned}$	$\begin{aligned} & 70: 21: 34 \\ & 70000 \mathrm{E} \end{aligned}$	331.0	$\begin{aligned} & 40: 10: 24 \\ & 50000 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 12: 45 . \\ & 60000 \mathrm{E} \end{aligned}$	$\begin{aligned} & 50 . \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 40: 13: 21 . \\ & 86911 \mathrm{~N} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 68:07:53. } \\ & \text { 03613E } \end{aligned}$	$\begin{aligned} & 38: 46: 42 . \\ & 27396 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:12:35. } \\ & \text { 67163E } \end{aligned}$	$\begin{aligned} & 40: 54: 04 . \\ & 71013 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 69:40:45. } \\ & \text { 15677E } \end{aligned}$	$\begin{aligned} & \text { 39:26:36. } \\ & 29194 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 70: 44: 07 . \\ & 71534 \mathrm{E} \end{aligned}$
$\begin{aligned} & \text { test3 } \\ & 1 \end{aligned}$	$\begin{aligned} & \text { 40:14:35. } \\ & 80000 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 76:12:34. } \\ & 70000 \mathrm{~F} \end{aligned}$	350.0	$\begin{aligned} & \text { 40:10:24. } \\ & 50000 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 70: 12: 45 . \\ & 60000 \mathrm{E} \end{aligned}$	$\begin{aligned} & 40 . \\ & 0 \end{aligned}$	$\begin{aligned} & \text { 38:52:44. } \\ & 97680 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 75:54:07. } \\ & 21038 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 40:11:52. } \\ & 39692 S \end{aligned}$	$\begin{aligned} & \text { 76:11:57. } \\ & \text { 12656E } \end{aligned}$	$\begin{aligned} & \text { 39:30:36. } \\ & 53650 S \end{aligned}$	$\begin{aligned} & \hline 70: 07: 10 . \\ & \text { 29772E } \end{aligned}$	$\begin{aligned} & \text { 40:50:12. } \\ & 39327 S \end{aligned}$	$\begin{aligned} & \text { 70:18:21. } \\ & 70242 E \end{aligned}$
$\begin{aligned} & \text { test3 } \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 40:04:35. } \\ & \text { 80000S } \end{aligned}$	$\begin{aligned} & \text { 75:12:34. } \\ & 70000 \mathrm{E} \end{aligned}$	200.0	$\begin{aligned} & \text { 40:10:24. } \\ & 50000 \mathrm{~s} \end{aligned}$	$\begin{aligned} & 70: 12: 45 . \\ & 60000 \mathrm{E} \end{aligned}$	$\begin{aligned} & 50 . \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 42:16:12. } \\ & \text { 64050S } \end{aligned}$	$\begin{aligned} & \text { 74:07:57. } \\ & 72436 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 40:42:17. } \\ & 22780 S \end{aligned}$	$\begin{aligned} & \text { 74:54:32. } \\ & 53991 E \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 40:56:18. } \\ & 37182 S \end{aligned}$	$\begin{aligned} & \text { 69:46:38. } \\ & \text { 66583E } \end{aligned}$	$\begin{aligned} & \text { 39:24:22. } \\ & \text { 40493S } \end{aligned}$	$\begin{aligned} & \text { 70:38:11. } \\ & 32653 \mathrm{E} \end{aligned}$
test3	$\begin{aligned} & \text { 40:04:35. } \\ & \text { 80000S } \end{aligned}$	$\begin{aligned} & 72: 12: 34 . \\ & 70000 E \end{aligned}$	315.0	$\begin{aligned} & \text { 40:10:24. } \\ & 50000 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 70: 12: 45 . \\ & 60000 \mathrm{E} \end{aligned}$	$\begin{aligned} & 100 \\ & .0 \end{aligned}$	$\begin{aligned} & \text { 38:09:45. } \\ & \text { 50471S } \end{aligned}$	$\begin{aligned} & \hline \text { 69:49:01. } \\ & \text { 12662E } \end{aligned}$	$\begin{aligned} & \text { 40:32:44. } \\ & 31824 S \end{aligned}$	$\begin{aligned} & \text { 72:49:35. } \\ & 77432 E \end{aligned}$	$\begin{aligned} & \text { 38:57:32. } \\ & \text { 89527S } \end{aligned}$	$\begin{aligned} & \text { 68:44:05. } \\ & \text { 92033E } \end{aligned}$	$\begin{aligned} & \text { 41:22:09. } \\ & \text { 83417S } \end{aligned}$	$\begin{aligned} & \hline 71: 44: 30 . \\ & 08384 \mathrm{E} \end{aligned}$
$\begin{aligned} & \text { test3 } \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 40:04:35. } \\ & \text { 80000S } \end{aligned}$	$\begin{aligned} & \text { 73:12:34. } \\ & 70000 E \end{aligned}$	270.0	$\begin{aligned} & \text { 40:10:24. } \\ & 50000 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 70: 12: 45 . \\ & 60000 \mathrm{E} \end{aligned}$	$\begin{aligned} & 50 . \\ & 0 \end{aligned}$	$\begin{aligned} & \text { 40:00:17. } \\ & \text { 63529S } \end{aligned}$	$\begin{aligned} & \hline \text { 69:08:04. } \\ & \text { 99603E } \end{aligned}$	$\begin{aligned} & \text { 40:03:39. } \\ & 33076 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 71:18:12. } \\ & \text { 14247E } \end{aligned}$	$\begin{aligned} & \text { 40:08:25. } \\ & 20509 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \hline \text { 69:07:35. } \\ & \text { 90168E } \end{aligned}$	$\begin{aligned} & \hline 40: 11: 47 . \\ & 29572 S \end{aligned}$	$\begin{aligned} & \hline 71: 17: 58 . \\ & 51179 \mathrm{E} \end{aligned}$
$\begin{aligned} & \text { test3 } \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 40:04:35. } \\ & \text { 80000S } \end{aligned}$	$\begin{aligned} & \text { 73:12:34. } \\ & \text { 70000E } \end{aligned}$	300.0	$\begin{aligned} & 40: 10: 24 \\ & 50000 \mathrm{~s} \end{aligned}$	$\begin{aligned} & 70: 12: 45 . \\ & 60000 \mathrm{E} \end{aligned}$	$\begin{aligned} & 50 . \\ & 0 \end{aligned}$	$\begin{aligned} & \text { 38:39:26. } \\ & \text { 28959S } \end{aligned}$	$\begin{aligned} & \text { 70:09:47. } \\ & \text { 67412E } \end{aligned}$	$\begin{aligned} & \text { 39:31:32. } \\ & 39864 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 71:59:30. } \\ & \text { 22696E } \end{aligned}$	$\begin{aligned} & \text { 39:43:45. } \\ & \text { 18199S } \end{aligned}$	$\begin{aligned} & \text { 69:17:44. } \\ & 08525 E \end{aligned}$	$\begin{aligned} & \text { 40:36:38. } \\ & \text { 84939S } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 71:08:28. } \\ & \text { 77660E } \end{aligned}$
test3	$\begin{aligned} & \text { 40:04:35. } \\ & 80000 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 73: 12: 34 . \\ & 70000 E \end{aligned}$	240.0	$\begin{aligned} & \text { 40:10:24. } \\ & 50000 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 70:12:45. } \\ & 60000 \mathrm{E} \end{aligned}$	$\begin{aligned} & 50 . \\ & 0 \end{aligned}$	$\begin{aligned} & \hline 41: 28: 31 . \\ & 69569 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \hline \text { 69:52:44. } \\ & \text { 13264E } \end{aligned}$	$\begin{aligned} & \text { 40:40:49. } \\ & 88638 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 71:49:00. } \\ & \text { 24598E } \end{aligned}$	$\begin{aligned} & \text { 40:33:41. } \\ & 08619 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \hline \text { 69:14:51. } \\ & \text { 20890E } \end{aligned}$	$\begin{aligned} & \text { 39:46:37. } \\ & \text { 81172S } \end{aligned}$	$\begin{aligned} & \hline 71: 09: 59 . \\ & \text { 27305E } \end{aligned}$
$\begin{aligned} & \text { test3 } \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 38:04:35. } \\ & \text { 80000S } \end{aligned}$	$\begin{aligned} & 70: 11: 34 . \\ & 70000 \mathrm{E} \end{aligned}$	180.0	$\begin{aligned} & 40: 10: 24 \\ & 50000 \mathrm{~s} \end{aligned}$	$\begin{aligned} & 70: 12: 45 . \\ & 60000 \mathrm{E} \end{aligned}$	$\begin{aligned} & 50 . \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 41:00:26. } \\ & 50523 S \end{aligned}$	$\begin{aligned} & \text { 70:11:34. } \\ & 70000 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 39:20:22. } \\ & 07307 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 70:11:34. } \\ & 70000 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 41:00:26. } \\ & \text { 49an2s. } \end{aligned}$	$\begin{aligned} & \text { 70:12:46. } \\ & \text { 49381E } \end{aligned}$	$\begin{aligned} & \text { 39:20:22. } \\ & 06721 S \end{aligned}$	$\begin{aligned} & 70: 12: 44 . \\ & 75738 \mathrm{E} \end{aligned}$
$\begin{aligned} & \text { test3 } \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 38:04:35. } \\ & \text { 80000S } \\ & \hline \end{aligned}$	$\begin{aligned} & 70: 11: 34 . \\ & 70000 \mathrm{E} \\ & \hline \end{aligned}$	148.0	$\begin{aligned} & \text { 40:10:24. } \\ & 50000 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & 70: 12: 45 . \\ & 60000 \mathrm{E} \\ & \hline \end{aligned}$	$\begin{aligned} & 50 . \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 40:17:07. } \\ & \text { 13084S } \\ & \hline \end{aligned}$	$\begin{aligned} & 72: 00: 20 . \\ & 55877 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 38:52:56. } \\ & \text { 85946S } \end{aligned}$	$\begin{aligned} & \text { 70:50:18. } \\ & \text { 83964E } \end{aligned}$	$\begin{aligned} & \text { 40:52:45. } \\ & 70508 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & 70: 47: 40 \\ & 18638 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 39:27:53. } \\ & \text { 54845S } \end{aligned}$	$\begin{aligned} & \hline \text { 69:38:32. } \\ & \text { 22868E } \end{aligned}$
$\begin{aligned} & \text { test3 } \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 38:04:35. } \\ & \text { 80000S } \end{aligned}$	$\begin{aligned} & 70: 11: 34 . \\ & 70000 \mathrm{E} \end{aligned}$	211.0	$\begin{aligned} & 40: 10: 24 \\ & 50000 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 70: 12: 45 . \\ & 60000 \mathrm{E} \end{aligned}$	$\begin{aligned} & 50 . \\ & 0 \end{aligned}$	$\begin{aligned} & \text { 40:18:46. } \\ & 00666 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:25:41. } \\ & 54164 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 38:53:38. } \\ & \text { 70009S } \end{aligned}$	$\begin{aligned} & \text { 69:33:47. } \\ & 56507 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 40:53:14. } \\ & 02637 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 69:38:51. } \\ & \text { 10513E } \end{aligned}$	$\begin{aligned} & \text { 39:27:25. } \\ & 77604 S \end{aligned}$	$\begin{aligned} & \text { 70:45:59. } \\ & \text { 66955E } \end{aligned}$
$\begin{aligned} & \text { test4 } \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 40:24:35. } \\ & 80000 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 65:51:34. } \\ & \text { 70000E } \\ & \hline \end{aligned}$	90.0	$\begin{aligned} & \text { 40:10:24. } \\ & 50000 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 70: 12: 45 . \\ & 60000 \mathrm{E} \end{aligned}$	$\begin{aligned} & 50 . \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 40:16:52. } \\ & \text { 78726S } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 71: 18: 36 . \\ & 57794 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 40:21:48. } \\ & 85747 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 69:08:01. } \\ & \text { 28224E } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 40:07:38. } \\ & 35059 \mathrm{~s} \end{aligned}$	$\begin{aligned} & \hline 71: 17: 52 . \\ & 01922 \mathrm{E} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 40:12:33. } \\ & 75700 \mathrm{~s} \end{aligned}$	$\begin{aligned} & \text { 69:07:34. } \\ & \text { 45828E } \end{aligned}$
$\begin{aligned} & \text { test4 } \\ & 1 \end{aligned}$	$\begin{aligned} & 40: 24: 35 \\ & 80000 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 65:51:34. } \\ & 70000 \mathrm{E} \end{aligned}$	71.0	$\begin{aligned} & 40: 10: 24 \\ & 50000 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 70: 12: 45 . \\ & 60000 \mathrm{E} \end{aligned}$	$\begin{aligned} & 50 . \\ & 0 \end{aligned}$	$\begin{aligned} & \text { 38:59:21. } \\ & \text { 92563S } \end{aligned}$	$\begin{aligned} & 70: 45: 28 . \\ & 67998 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 39:36:03. } \\ & 21874 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:45:36. } \\ & 55313 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 39:51:34. } \\ & 97299 S \end{aligned}$	$\begin{aligned} & \text { 71:13:03. } \\ & \text { 49121E } \end{aligned}$	$\begin{aligned} & \text { 40:28:43. } \\ & 60957 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 69:11:55. } \\ & 38110 \mathrm{E} \end{aligned}$
$\begin{aligned} & \hline \text { test4 } \\ & 2 \end{aligned}$	$\begin{aligned} & \text { 40:24:35. } \\ & 80000 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 65:51:34. } \\ & 70000 \mathrm{E} \end{aligned}$	117.0	$\begin{aligned} & 40: 10: 24 \\ & 50000 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \hline 70: 12: 45 . \\ & 60000 \mathrm{E} \end{aligned}$	$\begin{aligned} & 50 . \\ & 0 \end{aligned}$	$\begin{aligned} & \text { 42:01:19. } \\ & \text { 14270S } \end{aligned}$	$\begin{aligned} & \text { 70:19:39. } \\ & \text { 19192E } \end{aligned}$	$\begin{aligned} & \text { 41:19:26. } \\ & 82819 S \end{aligned}$	$\begin{aligned} & \hline \text { 68:18:23. } \\ & 75678 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 40:30:35. } \\ & 82765 S \end{aligned}$	$\begin{aligned} & 71: 12: 35 \\ & 50340 \mathrm{E} \end{aligned}$	$\begin{aligned} & \hline 39: 49: 40 . \\ & 20801 S \end{aligned}$	$\begin{aligned} & \hline \text { 69:13:32. } \\ & \text { 78935E } \end{aligned}$
$\begin{aligned} & \text { test4 } \\ & 3 \end{aligned}$	$\begin{aligned} & \text { 43:09:35. } \\ & \text { 80000S } \end{aligned}$	$\begin{aligned} & \text { 69:38:25. } \\ & 30000 \mathrm{E} \end{aligned}$	0.0	$\begin{aligned} & 40: 10: 24 \\ & 50000 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 70: 12: 45 . \\ & 60000 \mathrm{E} \end{aligned}$	$\begin{aligned} & 50 . \\ & 0 \end{aligned}$	$\begin{aligned} & \text { 39:20:27. } \\ & 07217 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 69:38:25. } \\ & 30000 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 41:00:31. } \\ & 67824 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 69:38:25. } \\ & 30000 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 39:20:22. } \\ & \text { 12663S } \end{aligned}$	$\begin{aligned} & 70: 12: 21 \\ & 11372 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 41:00:26. } \\ & \text { 43381S } \end{aligned}$	$\begin{aligned} & 70: 13: 11 . \\ & 57361 \mathrm{E} \end{aligned}$
$\begin{aligned} & \text { test4 } \\ & 4 \end{aligned}$	$\begin{aligned} & \text { 43:09:35. } \\ & 80000 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 69:38:25. } \\ & 30000 \mathrm{E} \end{aligned}$	34.0	$\begin{aligned} & 40: 10: 24 \\ & 50000 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 70: 12: 45 . \\ & 60000 \mathrm{E} \end{aligned}$	$\begin{aligned} & 50 . \\ & 0 \end{aligned}$	$\begin{aligned} & \text { 40:10:58. } \\ & 21027 S \end{aligned}$	$\begin{aligned} & \text { 72:13:54. } \\ & \text { 61283E } \end{aligned}$	$\begin{aligned} & 41: 35: 13 . \\ & 91157 S \end{aligned}$	$\begin{aligned} & \text { 71:02:44. } \\ & 04238 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 39:28:37. } \\ & 32353 S \end{aligned}$	$\begin{aligned} & 70: 48: 27 . \\ & 91118 \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { 40:51:59. } \\ & 02911 S \end{aligned}$	$\begin{aligned} & \text { 69:36:16. } \\ & 97478 \mathrm{E} \end{aligned}$
$\begin{aligned} & \text { test4 } \\ & 5 \end{aligned}$	$\begin{aligned} & \text { 43:09:35. } \\ & \text { 80000S } \end{aligned}$	$\begin{aligned} & \text { 69:38:25. } \\ & 30000 \mathrm{E} \end{aligned}$	335.0	$\begin{aligned} & \text { 40:10:24. } \\ & 50000 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 70: 12: 45 . \\ & 60000 \mathrm{E} \end{aligned}$	$\begin{aligned} & 50 . \\ & 0 \end{aligned}$	$\begin{aligned} & \text { 40:06:15. } \\ & \text { 66891S } \end{aligned}$	$\begin{aligned} & \hline 67: 47: 39 . \\ & \text { 73289E } \end{aligned}$	$\begin{aligned} & \text { 41:37:39. } \\ & \text { 92668S } \end{aligned}$	$\begin{aligned} & \hline \text { 68:41:26. } \\ & \text { 00208E } \end{aligned}$	$\begin{aligned} & \text { 39:25:07. } \\ & 21618 S \end{aligned}$	$\begin{aligned} & \hline \text { 69:45:10. } \\ & \text { 03499E } \end{aligned}$	$\begin{aligned} & \text { 40:55:33. } \\ & \text { 61492S } \end{aligned}$	$\begin{aligned} & \text { 70:41:01. } \\ & \text { 20850E } \end{aligned}$

$\begin{aligned} & \text { test4 } \\ & 6 \end{aligned}$	$\begin{aligned} & \text { 40:24:35. } \\ & 80000 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \hline \text { 65:12:40. } \\ & 70000 \mathrm{~W} \end{aligned}$	350.0	$\begin{aligned} & \hline 40: 10: 24 . \\ & 50000 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \hline 70: 12: 45 . \\ & \text { 60000W } \end{aligned}$	$\begin{aligned} & 40 . \\ & 0 \end{aligned}$	$\begin{aligned} & \hline 38: 58: 11 . \\ & \text { 44004S } \end{aligned}$	$\begin{aligned} & \text { 65:32:11. } \\ & 35937 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 40:17:14. } \\ & 24083 S \end{aligned}$	$\begin{aligned} & \text { 65:14:22. } \\ & 36760 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \hline \text { 39:30:39. } \\ & \text { 49061S } \end{aligned}$	70:18:54.	$\begin{aligned} & \text { 40:50:09. } \\ & 33911 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 70:06:34. } \\ & \text { 13853W } \end{aligned}$
$\begin{aligned} & \text { test4 } \\ & 7 \\ & \hline \end{aligned}$	40:04:35.	$\begin{aligned} & \text { 67:12:40. } \\ & 70000 \mathrm{~W} \end{aligned}$	200.0	$\begin{aligned} & \text { 40:10:24. } \\ & 50000 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 70:12:45. } \\ & \text { 60000W } \end{aligned}$	$\begin{aligned} & 50 . \\ & 0 \end{aligned}$	$\begin{aligned} & \text { 41:43:04. } \\ & 52714 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:00:35. } \\ & \text { 08875W } \end{aligned}$	$\begin{aligned} & \text { 40:09:08. } \\ & \text { 86953S } \end{aligned}$	$\begin{aligned} & \text { 67:14:50. } \\ & \text { 23285W } \end{aligned}$	$\begin{aligned} & \text { 40:56:45. } \\ & \text { 65430S } \end{aligned}$	$70: 37: 27$	$\begin{aligned} & \hline \text { 39:23:56. } \\ & \text { 63322S } \end{aligned}$	$\begin{aligned} & \text { 69:48:40. } \\ & \text { 85141W } \end{aligned}$
$\begin{aligned} & \text { test4 } \\ & 8 \end{aligned}$	$\begin{aligned} & \text { 40:04:35. } \\ & 80000 \mathrm{~S} \end{aligned}$	68:12:40.	315.0	$\begin{aligned} & 40: 10: 24 \\ & 50000 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 70: 12: 45 . \\ & 60000 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 100 \\ & .0 \end{aligned}$	$\begin{aligned} & \text { 38:09:39. } \\ & \text { 42011S } \end{aligned}$	$\begin{aligned} & 70: 36: 21 . \\ & 58383 W \end{aligned}$	$\begin{aligned} & 40: 32: 38 . \\ & 43897 S \end{aligned}$	$\begin{aligned} & 67: 35: 47 . \end{aligned}$	$\begin{aligned} & \text { 38:57:32. } \\ & 70200 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 71:41:25. } \\ & 01247 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 41:22:10. } \\ & 04449 S \end{aligned}$	$\begin{aligned} & \text { 68:41:01. } \\ & 39841 \mathrm{~W} \end{aligned}$
$\begin{aligned} & \text { test4 } \\ & 9 \end{aligned}$	$\begin{aligned} & \text { 40:04:35. } \\ & 80000 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 66:47:19. } \\ & 30000 \mathrm{~W} \end{aligned}$	270.0	$\begin{aligned} & 40: 10: 24 \\ & 50000 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 70:12:45. } \\ & \text { 60חnow } \end{aligned}$	$\begin{aligned} & 50 . \\ & 0 \end{aligned}$	$\begin{aligned} & \hline \text { 39:59:20. } \\ & \text { 91374S } \end{aligned}$	$\begin{aligned} & \text { 71:17:19. } \\ & 47416 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \hline \text { 40:03:11. } \\ & 27515 S \end{aligned}$	$\begin{aligned} & \text { 69:07:15. } \\ & 00811 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \hline \text { 40:08:10. } \\ & \text { 83970S } \end{aligned}$	$\begin{aligned} & \text { 71:17:54. } \\ & 39452 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 40:12:01. } \\ & 69154 S \end{aligned}$	$\begin{aligned} & \text { 69:07:33. } \\ & \text { 13622W } \end{aligned}$
$\begin{aligned} & \text { test5 } \\ & 0 \end{aligned}$	40:04:35.	$\begin{aligned} & \text { 66:47:19. } \\ & 30000 \mathrm{~W} \end{aligned}$	300.0	$\begin{aligned} & 40: 10: 24 \\ & 50000 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 70: 12: 45 . \\ & 60000 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 50 . \\ & 0 \end{aligned}$	$\begin{aligned} & \text { 38:30:35. } \\ & \text { 82998S } \end{aligned}$	$\begin{aligned} & 70: 08: 06 . \\ & 75040 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 39:22:59. } \\ & 34750 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 68:18:50. } \\ & 55549 W \end{aligned}$	$\begin{aligned} & \hline \text { 39:43:33. } \\ & \text { 42333S } \end{aligned}$	$\begin{aligned} & \text { 71:07:37. } \\ & 37083 W \end{aligned}$	$\begin{aligned} & \text { 40:36:50. } \\ & 98023 S \end{aligned}$	$\begin{aligned} & \text { 69:17:12. } \\ & \text { 16414W } \end{aligned}$
$\begin{aligned} & \text { test5 } \\ & 1 \end{aligned}$	$\begin{aligned} & 40: 04: 35 \\ & 80000 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 66:47:19. } \\ & 30000 \mathrm{~W} \end{aligned}$	240.0	$\begin{aligned} & 40: 10: 24 \\ & 50000 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 70:12:45. } \\ & 60000 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 50 . \\ & 0 \end{aligned}$	$\begin{aligned} & \text { 41:36:36. } \\ & 30412 S \end{aligned}$	$\begin{aligned} & 70: 27: 37 \\ & 90336 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 40:49:14. } \\ & 86902 S \end{aligned}$	$\begin{aligned} & \text { 68:30:52. } \\ & \text { 22885W } \end{aligned}$	$\begin{aligned} & \text { 40:33:27. } \\ & 89443 S \end{aligned}$	$\begin{aligned} & \text { 71:10:48. } \\ & \text { 90600w } \end{aligned}$	$\begin{aligned} & \text { 39:46:50. } \\ & \text { 64641S } \end{aligned}$	$\begin{aligned} & \text { 69:15:22. } \\ & 88056 \mathrm{~W} \end{aligned}$
$\begin{aligned} & \text { test5 } \\ & 2 \end{aligned}$	$\begin{aligned} & \text { 38:04:35. } \\ & 80000 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 70: 11: 34 . \\ & 70000 \mathrm{~W} \end{aligned}$	180.0	$\begin{aligned} & 40: 10: 24 \\ & 50000 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 70:12:45. } \\ & 60000 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 50 . \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 41:00:26. } \\ & 50523 S \end{aligned}$	$\begin{aligned} & 70: 11: 34 . \\ & 70000 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 39:20:22. } \\ & 07307 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 70:11:34. } \\ & 70000 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 41:00:26. } \\ & 49902 S \end{aligned}$	$\begin{aligned} & 70: 12: 46 . \\ & 49381 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 39:20:22. } \\ & 06721 S \end{aligned}$	$\begin{aligned} & 70: 12: 44 . \\ & 75738 \mathrm{~W} \end{aligned}$
$\begin{aligned} & \text { test5 } \\ & 3 \end{aligned}$	$\begin{aligned} & 38: 04: 35 \\ & 80000 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 70: 11: 34 . \\ & 70000 \mathrm{~W} \end{aligned}$	148.0	$\begin{aligned} & 40: 10: 24 \\ & 50000 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 70: 12: 45 . \\ & 60000 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 50 . \\ & 0 \end{aligned}$	$\begin{aligned} & \text { 40:16:18. } \\ & 90281 S \end{aligned}$	$\begin{aligned} & \text { 68:23:29. } \\ & 95567 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 38:52:08. } \\ & \text { 17125S } \end{aligned}$	$\begin{aligned} & \text { 69:33:30. } \\ & \text { 08556W } \end{aligned}$	$\begin{aligned} & \text { 40:52:46. } \\ & 41906 S \end{aligned}$	$\begin{aligned} & \text { 69:37:52. } \\ & \text { 49907W } \end{aligned}$	$\begin{aligned} & \text { 39:27:52. } \\ & 86878 S \end{aligned}$	$\begin{aligned} & 70: 46: 57 . \\ & 54788 \mathrm{~W} \end{aligned}$
$\begin{aligned} & \hline \text { test5 } \\ & 4 \end{aligned}$	$\begin{aligned} & 38: 04: 35 \\ & 80000 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 70: 11: 34 . \\ & 70000 \mathrm{~W} \end{aligned}$	211.0	$\begin{aligned} & \text { 40:10:24. } \\ & 50000 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 70:12:45. } \\ & 60000 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 50 . \\ & 0 \end{aligned}$	$\begin{aligned} & 40: 19: 33 \\ & 41765 S \end{aligned}$	$\begin{aligned} & \text { 71:58:06. } \\ & 74176 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 38: 54: 26 . \\ & 53851 S \end{aligned}$	$\begin{aligned} & \text { 70:49:59. } \\ & \text { 19702W } \end{aligned}$	$\begin{aligned} & \text { 40:53:13. } \\ & 33180 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \hline 70: 46: 41 . \\ & 59808 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 39:27:26. } \\ & \text { 43690S } \end{aligned}$	$\begin{aligned} & \hline \text { 69:39:30. } \\ & 09147 \mathrm{~W} \end{aligned}$
$\begin{aligned} & \text { test5 } \\ & 5 \end{aligned}$	$\begin{aligned} & 40: 24: 35 \\ & 80000 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 74: 11: 34 \\ & 70000 \mathrm{~W} \end{aligned}$	90.0	$\begin{aligned} & 40: 10: 24 \\ & 50000 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 70:12:45. } \\ & \text { 60000W } \end{aligned}$	$\begin{aligned} & 50 . \\ & 0 \end{aligned}$	$\begin{aligned} & \text { 40:17:53. } \\ & 93865 S \end{aligned}$	$\begin{aligned} & \text { 69:06:53. } \\ & \text { 05426W } \end{aligned}$	$\begin{aligned} & 40: 22: 24 . \\ & 75464 \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 71:17:31. } \\ & 47355 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 40:07:50. } \\ & \text { 95861S } \end{aligned}$	$\begin{aligned} & \text { 69:07:38. } \\ & \text { 20443W } \end{aligned}$	$\begin{aligned} & 40: 12: 21 \\ & 11411 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 71: 17: 57 . \\ & 31644 \mathrm{~W} \\ & \hline \end{aligned}$
$\begin{aligned} & \text { test5 } \\ & 6 \end{aligned}$	$\begin{aligned} & 40: 24: 35 \\ & 80000 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 74:11:34. } \\ & 70000 \mathrm{~W} \end{aligned}$	71.0	$\begin{aligned} & 40: 10: 24 \\ & 50000 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 70: 12: 45 . \\ & 60000 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 50 . \\ & 0 \end{aligned}$	$\begin{aligned} & \text { 39:05:20. } \\ & \text { 87464S } \end{aligned}$	$\begin{aligned} & \text { 69:36:38. } \\ & \text { 15858W } \end{aligned}$	$\begin{aligned} & \text { 39:41:42. } \\ & 34805 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 71:36:49. } \\ & 98435 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 39:51:46. } \\ & 35643 S \end{aligned}$	$\begin{aligned} & \text { 69:12:21. } \\ & 64904 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 40:28:31 } \\ & 97625 S \end{aligned}$	$\begin{aligned} & 71: 13: 41 . \\ & 67519 \mathrm{~W} \\ & \hline \end{aligned}$
$\begin{aligned} & \text { test5 } \\ & 7 \end{aligned}$	$\begin{aligned} & 40: 24: 35 \\ & 80000 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 74: 11: 34 . \\ & 70000 \mathrm{~W} \end{aligned}$	117.0	$\begin{aligned} & 40: 10: 24 \\ & 50000 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 70: 12: 45 . \\ & 60000 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 50 . \\ & 0 \end{aligned}$	$\begin{aligned} & \text { 41:54:54. } \\ & 96618 S \end{aligned}$	$\begin{aligned} & \text { 70:02:37. } \\ & 71975 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 41:12:42. } \\ & 82714 S \end{aligned}$	$\begin{aligned} & \text { 72:03:28. } \\ & \text { 17431W } \end{aligned}$	$\begin{aligned} & \text { 40:30:47. } \\ & 80049 \mathrm{~S} \end{aligned}$	69:13:02.	$\begin{aligned} & 39: 49: 28 \\ & 51990 S \end{aligned}$	$\begin{aligned} & 71: 11: 51 . \\ & 36671 \mathrm{~W} \end{aligned}$
$\begin{aligned} & \text { test5 } \\ & 8 \end{aligned}$	$\begin{aligned} & \text { 43:09:35. } \\ & 80000 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 70: 21: 34 \\ & 70000 \mathrm{~W} \end{aligned}$	0.0	$\begin{aligned} & 40: 10: 24 \\ & 50000 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 70:12:45. } \\ & 60000 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 50 . \\ & 0 \end{aligned}$	$\begin{aligned} & \text { 39:20:22. } \\ & 39722 S \end{aligned}$	$\begin{aligned} & 70: 21: 34 \\ & 70000 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 41:00:26. } \\ & 84065 S \end{aligned}$	$\begin{aligned} & 70: 21: 34 \\ & 70000 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 39:20:22. } \\ & 07107 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 70: 12: 51 . \\ & 88818 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 41:00:26. } \\ & 49479 S \end{aligned}$	$\begin{aligned} & \text { 70:12:38. } \\ & 92986 \mathrm{~W} \end{aligned}$
$\begin{aligned} & \text { test5 } \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 43:09:35. } \\ & \text { 80000S } \end{aligned}$	$\begin{aligned} & 70: 21: 34 . \\ & 70000 \mathrm{~W} \end{aligned}$	34.0	$\begin{aligned} & 40: 10: 24 \\ & 50000 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 70:12:45. } \\ & 60000 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 50 . \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 40:20:09. } \\ & 24057 S \end{aligned}$	$\begin{aligned} & \text { 67:53:40. } \\ & 37644 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 41:44:20. } \\ & 61162 S \end{aligned}$	$\begin{aligned} & \text { 69:05:11. } \\ & \text { 16171W } \end{aligned}$	$\begin{aligned} & \text { 39:28:45. } \\ & 24018 S \end{aligned}$	$\begin{aligned} & \text { 69:36:47. } \\ & 75179 W \end{aligned}$	$\begin{aligned} & \text { 40:51:50. } \\ & 71125 S \end{aligned}$	$\begin{aligned} & \text { 70:49:30. } \\ & 38048 \mathrm{~W} \end{aligned}$
$\begin{aligned} & \text { test6 } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { 43:09:35. } \\ & \text { 80000S } \end{aligned}$	$\begin{aligned} & 70: 21: 34 . \\ & 70000 \mathrm{~W} \end{aligned}$	331.0	$\begin{aligned} & 40: 10: 24 \\ & 50000 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { 70:12:45. } \\ & 60000 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 50 . \\ & 0 \end{aligned}$	$\begin{aligned} & 40: 10: 21 \\ & 52153 S \end{aligned}$	$\begin{aligned} & 72: 30: 11 \\ & 26250 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 41: 38: 48 . \\ & 88727 S \end{aligned}$	$\begin{aligned} & 71: 28: 25 . \\ & 57541 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 39: 26: 35 \\ & 31407 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 70: 44: 05 . \\ & 41422 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 40:54:03. } \\ & 53921 S \end{aligned}$	$\begin{aligned} & \text { 69:40:42. } \\ & 41911 \mathrm{~W} \end{aligned}$

The following individuals contributed to this Appendix:
Alan Jones, AFS-420
Dr. Michael Mills, The MITRE Corporation
Dr. Richard Snow, The MITRE Corporation
M. Jane Henry, Innovative Solutions International, Inc.

Dr. Dave Stapleton, Innovative Solutions International, Inc.

MM/DD/YY

THIS PAGE INTENTIONALLY LEFT BLANK

Appendix 3. Conditions and Assumptions for Special PinS Departure Criteria

The following conditions must be inserted on FAA Form 8260-10, for providing guidance and criteria for helicopter point-in-space (PinS) departure procedures.

The Helipoint or Heliport Reference Point (HRP) coordinates must be contained in the navigation receiver database. For PinS departures the procedure must be retrievable by the procedure name from the avionics database and conform to the charted procedure. The PinS departure criteria require the navigational receiver to achieve a terminal receiver autonomous integrity monitoring (RAIM) of 1.0 nautical mile (NM). If the Special PinS departure obstacle clearance areas are to be applied, then the following operations must be completed successfully prior to flying the departure:

Step 1: For TSO-C129A receivers for the departure heliport either perform an approach RAIM prediction for the departure time or check with Flight Service Station.

Step 2; Set the course deviation indicator (CDI) scaling to 0.3 NM to reduce FTE. For helicopters equipped with a flight management system (FMS) or an electronic flight information system (EFIS) that are unable to display ± 0.3 NM full scale, the lateral deviation must be coupled to the flight director roll command bar or the autopilot roll axis (TSO C129-C1).

Step 3: Perform a position verification check with the helicopter over the final approach and takeoff area (FATO) center to verify the navigation performance. With the navigation receiver, verify the distance is within $\pm 0.0 \mathrm{NM}$ of the distance to the initial departure fix (IDF). The 0.0 readout may reflect up to a 304-ft error from the center of the FATO if the navigation receiver rounds up in 0.05-NM increments.

After passing the second departure fix waypoint (normally the final approach fix (FAF) on the approach), the CDI scaling may be set to 1.0 NM .

Airspeed: Must accelerate to at least Vmini prior to entering instrument meteorological conditions (IMC) at the IDF. Maximum speed is limited to 70 KIAS until passing the waypoint equivalent to the approach $\boldsymbol{F A F}$. Maximum speed is limited to 90 knot indicated airspeed (KIAS) to the waypoint equivalent to the instrument approach fix (IAF).

These procedures require operations specifications (OpSpecs) approval for Part 135 operations and letter of authorization (LOA) for Part 91 operations. Obstacle avoidance, clearance from other aircraft, and compliance with the appropriate minimums during the climb from the heliport to the IDF is the responsibility of the pilot. The obstacle clearances are based on specific climb gradients and ground speed. In the visual segment, the pilot must accelerate the helicopter to the minimum speed requirement for instrument flight $\left(\mathrm{V}_{\text {mini }}\right)$ prior to the IDF.

The principal operations inspector (POI) must determine, by the operator's helicopter flight manual, the helicopter manufacturer, or the Rotorcraft Directorate's Office (ASW-100), if the helicopter can meet the visual and $\boldsymbol{I F R}$ segment climb gradients. These performance determinations must be under the worst expected conditions for the helicopter weight, density altitude, and wind. POIs needing assistance in determining helicopter performance capabilities should contact the Rotorcraft Director's Office ASW-100, telephone number (817) 222-5101.

Appendix 4. Conditions and Assumptions for Special Sector and Diverse Departure Criteria from Civil IFR Heliports

The following conditions must be inserted on FAA Form 8260-10, for providing guidance and criteria for Special Sector and Diverse departure procedures.

The Heliport Reference Point (HRP) coordinates must be contained in the navigation receiver database. For Sector and Diverse departures the manual loading of waypoints is authorized. If the Special Sector and Diverse departure obstacle clearance areas are to be applied, then the following operations must be completed successfully prior to flying the departure:

Step 1: For TSO-C129A receivers for the departure heliport, either perform an approach received autonomous integrity monitoring (RAIM) prediction for the departure time or check with the Flight Service Station.

Step 2: Set the course deviation indicator (CDI) scaling to 1.0 nautical mile (NM) to reduce flight technical error (FTE). This is the accuracy with which the helicopter is controlled as measured by the indicated aircraft position with respect to the indicated command or desired position.

Step 3: Perform a position verification check with the helicopter over the final approach takeoff area (FATO) center to verify the navigation performance. With the navigation receiver, verify the distance is within $\pm 0.0 \mathrm{NM}$ of the distance to the initial departure fix (IDF). The 0.0 readout may reflect up to a 304 ft error from the center of the $\boldsymbol{F A T O}$ if the navigation receiver rounds up in $0.05-N M$ increments. At 30 NM from the heliport reference point (HRP), the CDI scaling may be set to the appropriate en route scaling.

These procedures require operations specifications (OpSpecs) approval for Part 135 operations and letter of authorization (LOA) for Part 91 operations. The obstacle clearances are based on specific climb gradients and ground speed. The helicopter must also accelerate to the minimum knot indicated airspeed (KIAS) for instrument flight ($\mathrm{V}_{\text {mini }}$) prior to instrument meteorological conditions (IMC).

The principal operations inspector (POI) must determine by the operator's helicopter flight manual, the helicopter manufacturer, or the Rotorcraft Directorate's Office (ASW-100) if the helicopter can meet the instrument flight rule (IFR) segment climb gradients. These performance determinations must be under the worst expected conditions for the helicopter weight, density altitude, and wind. POIs needing assistance in determining helicopter performance capabilities should contact the Rotorcraft Director's Office ASW-100, telephone number (817) 222-5101.

THIS PAGE INTENTIONALLY LEFT BLANK

Appendix 5. Conditions and Assumptions for Special Helicopter GPS Holding

The following conditions must be inserted on FAA Form 8260-2 for providing guidance and criteria for special helicopter Global Positioning System (GPS) holding.

1. The course to the holding fix must be within -40 degrees to +140 degrees of the holding course reciprocal to ensure either a teardrop or direct entry.
2. Where appropriate to accommodate either a teardrop or direct entry, use a nonstandard holding pattern (left turns).
3. Use Pattern D for holding below $4,000 \mathrm{ft}$ mean sea level (MSL).
4. Use Pattern E for holding $4,000 \mathrm{ft}$ thru $10,000 \mathrm{ft}$ MSL.
5. Holding airspeed is $\mathbf{9 0}$ knot indicated airspeed (KIAS.
6. Use 3 nautical mile (NM) leg lengths.
7. Pilot Training Required:
a. Maintain 90 knots during holding to minimize turn radius and wind drift.
b. All holding entries require either a direct or teardrop entry to prevent exceeding protected airspace on the non-holding side.
c. Patterns below $\mathbf{4 , 0 0 0} \mathrm{ft}$ MSL: Remain within 2.5 NM of the holding course on the holding side and 1.8 NM on the non-holding side.
d. Patterns $\mathbf{4 , 0 0 0} \mathbf{f t}$ thru $\mathbf{1 0 , 0 0 0} \mathbf{f t} \mathbf{M S L}$: Remain within 2.8 NM of the holding course on the holding side and 1.9 NM on the non-holding side.

MM/DD/YY

Directive Feedback Information

Please submit any written comments or recommendation for improving this directive, or suggest new items or subjects to be added to it. Also, if you find an error, please tell us about it.

Subject: Order 8260.42B, Helicopter Area Navigation Instrument Procedure Construction
To: Directive Management Officer,
(Please check all appropriate line items)
\square An error (procedural or typographical) has been noted in paragraph \qquad on page \qquad .

ㅁ Recommend paragraph \qquad on page \qquad be changed as follows: (attached separate sheet if necessary)
\square In a future change to this order, please include coverage on the following subject (briefly describe what you want added):

ㅁ Other comments:
$\square \quad$ I would like to discuss the above. Please contact me.

Submitted by: \qquad Date: \qquad

Telephone Number: \qquad Routing Symbol: \qquad

[^0]: ${ }^{1}$ Dana, Peter H., "Coordinate Conversion Geodetic Latitude, Longitude, and Height to ECEF, X, Y, Z", http://www.colorado.edu/geography/gcraft/notes/datum/gif/llhxyz.gif>, 11 February, 2003

